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Abstract

Let G be a group and:’ its commutator subgroup. Commutator length (cl) and stable commutator length
(scl) are naturally defined concepts for element&/6fWe study cl and scl for two classes of groups. First,

we compute scl in generalized Thompson'’s groups and their central extensions. As a consequence, we find
examples of finitely presented groups in which scl takes irrational (in fact, transcendental) values. Second,
we study large scale geometry of the Cayley grapi{G’) of a commutator subgrou@’ with respect to

the canonical generating sétof all commutators. Wheu- is a non-elementary-hyperbolic group, we

prove that there exists a quasi-isometrically embedéfeéh Cs(G’), for eachn € Z ... Thus this graph is

not 0-hyperbolic, has infinite asymptotic dimension, and has only one end. For a general finitely presented

group, we show that this grapghs (G’) is large scale simply connected.
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Chapter 1

Introduction

Let G be a group and:’ = [G, G| its commutator subgroup. Elements@f are products of commutators.
Thecommutator lengtlidenoted cl) of an elemegte G’ is defined to be the least number of commutators
whose products equals The stable commutator lengtfdenoted scl) ofy is the stabilized commutator

length, i.e., the limit of dlg™)/n, asn — oo. cl and scl have been studied not only in group theory, but

also in topology, usually as genus norms. In the later case, there are two geometric approaches. The first
is to use the topological definitions of cl and scl directly. In this approach, one essentially studies maps of
surfaces (with boundaries) into spaces and tries to find the “simplest” one among them. The second approach
comes from the deep connection of scl with bounded group cohomology. The main tool in this direction
is the concept of (homogeneous) quasimorphisms. Quasimorphisms are homomorphisms up to bounded
errors, and, surprisingly, many important invariants from geometry and dynamical systems can be regarded
as quasimorphisms. The connection between scl and quasimorphisms comBaWais Duality Theorem

which states that the set of all homogeneous quasimorphisms determines scl. One can also obtain nontrivial
estimates of cl from quasimorphisms.

The purpose of this paper is to study arithmetic and geometric properties of cl and scl. We adopt the
second approach via quasimorphisms. We study two classes of finitely generated groups which have different
spaces of homogeneous quasimorphisms. The first class of graygreislized Thompson'’s grouasd their
central extensions. Elements in these groups can be interpreted as automorphisms of the unit circle or the
real line. We prove that the spaces of homogeneous quasimorphisms of these groups have finite dimensions
(in fact0 or 1), and when the dimension is the only nontrivial (normalized) homogeneous quasimorphism
is given by therotation quasimorphismThus the computation of scl is reduced to that of rotation numbers.

As a consequence, we have the following irrationality theorem:

Theorem A ([60]). There are finitely presented groups, in whétitakes irrational (in fact, transcendental)

values.

In contrast to this irrationality theorem, D. Calegari [12] shows that scl takes only rational values in free

groups. In general geometric settings, scl, viewed as a relative genus norm, is expected to take only rational
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values. Calegari’s computation in free groups and Thurston’s nogrdimensional topology give important

evidence of this. Our examples from generalized Thompson’s groups display a totally different phenomenon.
The second class of groups are hyperbolic groups. In contrast to the first class of groups considered above,

the spaces of homogeneous quasimorphisms of these groups are infinite dimensional, which has many geo-

metric interpretations. One is through the notion of bounded cohomology, which says thatitheunded

cohomology (withR-coefficients) of a hyperbolic group is infinite dimensional. In this paper, we give another

interpretation through thiarge scale geometrgf commutator subgroups. Létbe the set of all commuta-

tors, which form a canonical generating set@r Let C's(G’) be theCayley graptof G’ with respect toS,

meaning the vertices @f's(G’) are elements id’, and two elementg; andg, are connected by an edge

if g;ng is in S. By identifying each edge with the unit interval (with lendth Cs(G’) becomes a metric

space, on whicld?’ acts by isometries. Then cl is the path metric in this graph and scl equals the translation

length of this action. Cayley graphs are the most studied objects in geometric group theory, and we are in-

terested in the large scale geometry of these graphs, i.e., those properties invariamjuasdesometries

Roughly speaking, under quasi-isometries, we throw away local structures and only focus on large scale (or

long range) properties of metric spaces. In the case of the Cayley graph of a commutator subgroup, we prove

that

Theorem B. Let G be a non-elementary word-hyperbolic group af¢ the integral lattice inR™ with the
induced metric. Then, for any € Z,, we have a map,,: Z" — Cs(G’), which is a quasi-isometric

embedding.

The proof implies that the geometry 6% (G’) should be non-negatively curved and shows the existence
of flats (zero curved subsets) of arbitrarily large dimensions. It agaating quasimorphismsonstructed
by R. Brooks [6] in free groups and Epstein-Fujiwara [27] in general hyperbolic groups. As a corollary of

this theorem, we have
Corollary C. LetG be a non-elementary word-hyperbolic group. Then we have
1. Cs(G’) is noté-hyperbolic;
2. asdimCs(G")) = o0;
3. Cs(G") is one-ended, i.eG's(G’) is connected at infinity.
For a general group, we study the large scale topology of this graph and show that
Theorem D ([15]). LetG be a finitely presented group. ThéR(G’) is large scale simply connected.

Theorem B, Corollary C and Theorem D are joint work with D. Calegari.
The next two preliminary chapters summarize the basic theory of cl and scl. Here we emphasize the

geometric nature of these two notions. We give topological definitions and show the connection with group
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cohomology and quasimorphisms, which leads to a sketch of the proof of Bavard's Duality Theorem. In
Chapter4, we study generalized Thompson’s groups. Two main ingredients here are M. Stein’s work [58]
on the homology of generalized Thompson’s groups and |. Liousse’s work [51] on the values of rotation
numbers in these groups. We give detailed accounts of these works and deduce useful information for the
computation of scl. Theorem A is proved at the end of this chapter. In the last chapter, we study the large
scale geometry of the Cayley graph of a commutator subgroup. We give a brief overview of the large scale
geometry of metric spaces, word-hyperbolic groups and counting quasimorphisms, and prove Theorem B,
Corollary C and Theorem D. Both Theorem B and Corollary C can be extended to more general classes of

groups, including mapping class groups of oriented surfaces. We state the corresponding theorems at the end.






Chapter 2

Commutator Length

In this chapter, we introduce the notion of commutator length. Commutator length is an algebraic invariant of
elements in groups. It's related to the topological concept of the genus of a surface . We are going to explore
this connection through the theory of group (co)homology. At the end, we give examples, exemplifying
the computations of commutator length in various groups, which are important in geometry and dynamical

systems.

2.1 Definitions of Commutator Length

Let G be a group. An elemente G is a commutator if there existc € G, such thatt = [b,¢] = beb~ 1L,
Let @ = |G, G] denote the normal subgroup 6f which is generated by commutators. We dall the

commutator subgroup @¥ and they fit into a short exact sequence
1—G —G— G/G'—0.

The quotient groud’/G’ is, by its construction, the largest abelian quotient groud ehd wherG is finitely
generated, this abelian quotient group is well understood by the classification theorem of finitely generated
abelian groups. So in principle, to stu@y we only need to understand the commutator subgt&ugnd G’
contains all the information lost in the quotient process. A natural measure of complexity for the elements in

G’ is the notion ofcommutator length

Definition 2.1.1. Let G be a group and € G’. Thecommutator lengttof a, denoted dla), is the smallest

number of commutators whose product is equal,toe.,
cl(a) =min{n|a=[b1,c1] - [bn,cnl], bisc; € G }.

Set cla) = x if ais not an element iG+”.

Commutator length could also be defined topologically. Xebe a topological space aféd = 7 (X, *)
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(x is the base point). An elemente 7 (X, *) can be represented by a m#ip (S!,*) — (X, *). Since
commutator length takes the same value in a conjugacy class, we only need to consider the conjugacy class
of v, which can be interpreted as the free homotopy class of thefma&d — X. From now on, we say

is represented by a lodp, the image of the mag in X without the base point. i is an element in the

commutator subgrou@’, we can write

v = laa, Bilaz, Ba] - - - [ag, By)-

Let S be an oriented surface of gengsvith one boundary componen§ is obtained from d4g + 1)-gon

P by identifying edges in pairs and the edgesoére labelled by:ibyay "oy - - - agbga, 'by'c~!. Choose

the loops inX representingy, o;, 3;,1 < ¢ < g and leth: 9P — X be defined by sending edges Bf

to those loops inX by a; — «;, b; — (; and the free edgeto . By the constructionh factors through

the quotient map P — S induced by gluing up all but one of the edges. Moreover, by hypotheg?)
representgoy, 51] - - - [ag, 3]y ! = 1in m (X). Henceh can be extended to amap S — X, sendingdS

to . Therefore a loop, corresponding to an elemeritri{ X ), 71 (X )], bounds a map of an oriented surface

into X and the number of commutators needed in the product is the genus of the surface. In this language,

commutator length has the following equivalent definition

Definition 2.1.2. Let X be a topological space aiiél= 7, (X). Giveny € [r1(X), 71 (X)], we have

cl(y) = min{ genugs) },

whereA = {h: S — X} andS is an oriented surface with one boundary component sucthtitef) C ~
and[h(0S)] = £[7] in Hy (v, Z).

If a loop v bounds an oriented surface i, then[y], regarded as a dimensidnhomological class,
represents the trivial element iy (X) = m1(X)/[r1(X), 71 (X)]. The commutator length of measures

the complexity of this triviality on the level of homology.

2.2 Group Homology and Commutator Length

In this section, we study the connection between commutator length and the theory of group (co)homology.
The (co)homology theory of groups arose from both topological and algebraic sources. We briefly introduce
the theory from both points of view and give a very rough interpretation of commutator length as a norm

related to the homology of a group.

Definition 2.2.1. Let G be a group. A CW-compleX is called arEilenberg-Maclane complex type (G, 1)

if Y satisfies the following conditions:

1. Y is connected;



2. 7T1(Y) ~ G,

3. The universal cove¥ of Y is contractible. Or equivalentlyZ;(Y) = 0 for i > 2, or ;(Y) = 0 for

1> 2,

By Hurewicz’s theorem, the homotopy type Bfis determined byG = =1 (Y), and we denote it by

K (G, 1). For any group, we can construct such a complex. Thus we have

Definition 2.2.2. Let G be a group. The homology ¢f with Z-coefficients is defined to be the homology of
the corresponding (G, 1), i.e.,
H.(G,Z)= H.(K(G,1),Z).

The homology of a group can also be defined usingoirecomplex

Definition 2.2.3. Let G be a group. Thdéar complexC,(G) is the complex generated in dimensiorby
n-tuples(g1, g2, - - -, gn) With g; € G. The boundary map is defined by the formula

n—1

a(gla e agn) = (927 cee 7.971) + Z(_l)z(gla ey 9iGi+41, - - - agn) + (_l)n(gl7 e 7971—1)-
i=1

With a coefficient grouR (= Z, Q, or R), define the homology of the group with coefficients inR to
be H.(C.(G) ® R).

All n-tuples(g1, go,-.-,9,), gi € G form a canonical basis for the-dimensional chain groug’, (G),
and we have the canonical inclusiafis(G,Z) — C.(G,Q) — C.(G,R). From now on, we'll only us®
as the coefficient group, and the element€'ifiG, Z) or C.. (G, Q) will be called integral or rational chains.

Let [c] be a homology class i#f;(G,R). We can writec = > r;0; € C;(G,R),r; € R, as a chain

representative dt]. Define

lel="lril.
i

Definition 2.2.4. The (Gromov)L'-norm of[c] € H;(G) is defined by
el = inf || ¢ |,

wherec ranges over all chain representativesdin C;(G).

Denote the cycles and the boundaries viRtlroefficients byZ. (G) and B, (G) respectively. Then we

have, in dimensiog, a short exact sequence

0 — Z5(G) - Co(G) - B1(G) — 0.

The usuaL'-norm onCy(G) induces a quotient norm aB, (G).
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Definition 2.2.5. Leta € B;(G). The (Gersten) boundary norm efdenoted| a || 5, is defined by

lalls=,  mf Al
The groupG includes as a canonical basis@h (G). If a is an element inG’, then the image of; in

C1(Q) liesin B1(G). Infact,a € G’ implies thata, thought of as a loop, bounds an oriented surface with one

boundary component. A one-vertex triangulation of this surface, with the only vertex on the boundary, gives

an expression of as an element iB; (G). For example, it = [z, y], we have)((zyxz — 1, z) + ([x, y],y) —

(z,y)) = [z,y]. Recall the topological definition of commutator length, which gives an interpretation of cl

as a measure of complexity among all the surfaces wihb the only boundary component. It's not difficult

to see, through counting the number of triangles, thatdf (G, G/,

| a|p< 4cl(a) — 1.

It's not clear whether there exists an inequality in the opposite direction. And one way to overcome
this difficulty is to “stabilize” both the boundary norm and commutator length, which will give an equality
between them. Roughly speaking, we need to ider%;j?)andg for any g and consider the boundary norm

under this identification. IChapter2, we will explore this idea and study stable commutator length.

2.3 Computations of Commutator Length

In this section, we do computations of commutator length. Some of the groups are the special examples of

more general classes of groups we are going to study in the following chapters.

2.3.1 Commutator length in free groups. Commutator length in free groups has been studied by
many people. C. C. Edmunds in [22] [23] first showed that there exists an effective procedure for comput-
ing commutator length in free groups. M. Culler, using surface theory, also worked out an algorithm for

computing commutator length, which we will describe below. See [17] for more details.

Let T, be an orientable surface of genusvith one boundary component. LEf be the wedge product
of r circles, then the fundamental groupldf is free orr generators. So questions about commutator length
in a free group translate into questions about maps ffgrto I',.. M. Culler shows that ifv € [F,., F.] has
commutator lengtlh and f : T, — I, is any map such that(9T;,) representsv, then f is homotopic to a
“tight” map. Supposev is written as a reduced word, then each “tight” map gives a “pairing” of the letters in
w. Conversely, given a “pairing” of the lettersim we can construct a unique (up to homotopy) “tight” map

and the genus of the surface can be read from the combinatorial information of the “pairing”.

Example2.3.1
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1. If ay,by,--- ,an, b, are elements of a basis of a free group, then we have

cl([a1,b1] - - [an, br]) = n.

2. If a,b are basis elements in a free group, then
n n
cl(fa, b]") = |5] +1.
And we also obtain interesting commutator identities, for example

[a, 0] = [aba™', b~ aba~2][b~ ab, b?].

2.3.2 Commutator length inHomeo™ (S'). Let Homed (S') be the group of orientation-preserving
homeomorphisms of the circle. Every element in Hoimg®') can be written as a product of two elements
both of which have a fixed point. And a homeomorphism in Hof(&d ) with a fixed point can be written as
a commutator. (In fact, such an element is conjugate to its square.)<S@ i Homeo (S'). Furthermore,

one can show that ¢t 1 in Homeo' (S!). See [25] for more details.

2.3.3 Knots in3-sphere. A knot~ is an embeddingy: S* — S3. A Seifert surfacdor a knot is
a connected, two-sided, compact embedded sudface S* with 9% = ~. Define thegenusof a knot~,
denotedy(y), to be the least genus of all its Seifert surfaces. It follows from a deep theorem of D. Gabai [33]
thatg(v) = cl(v), wherey is regarded as an elementin(S*\ N (v)) and N () is an open neighborhood of

~. Genus of a knot is a very important knot invariant.

2.3.4 Commutator length in mapping class groups. Mapping class group is a fundamental object

in 2-dimensional topology. See [4] and [28] for more details.

Definition 2.3.2. Let S be an oriented surface (possibly punctured). fita@ping class groupf S, denoted

MCG(S), is the group of isotopy classes of orientation-preserving self-homeomorphis$ns of

MCG(S) is finitely presentable and its generating set can be chosen from a special class of elements,

called Dehn twists.

Definition 2.3.3. Let v be an essential simple closed curveSn A right-handedDehn twistin ~ is the
mapt,: S — S supported on an annulus neighborhaeog [0, 1] which takes each curve x ¢ to itself by
a positive twist through a fractionof its length. If the annulus is parameterized®&Z x [0, 1], then in

coordinates, the map is given bg,t) — (6 + ¢, ).

M. Korkmaz has the following interesting computation about commutator length in MCG
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Theorem 2.3.4 ([47]). Leta € MCG(S) be a Dehn twist in a nonseparating closed curve. Th€ncan be

written as a product of two commutators, i.€(a'?) < 2.
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Chapter 3

Stable Commutator Length

In this chapter, we continue the study of group (co)homology and define stable commutator length both al-
gebraically and topogically. A very important tool in the study of stable commutator length is the notion of
(homogeneous) quasimorphisms. We sketch the proof of Bavard’s theorem (3.2.10), which shows the duality
between stable commutator length and homogeneous quasimorphisms. At the end, we give the explicit con-
structions of quasimorphisms in Home@'!) and free groups. These quasimorphisms will play important

roles in the next two chapters.

3.1 Definitions of Stable Commutator Length

Definition 3.1.1. Let G be a group and € G. Thestable commutator lengtbf a, denoted s¢h), is the

following limit

scl(a) = lim Cl(a”)'

n— o0 n

Set scla) = oo, if no power ofa is in [G, GI.

Commutator length cl clearly has the subadditive property, i.e2ct”™) < cl(a™) + cl(a™). Then the

existence of the limit in the definition follows from the lemma below.

Lemma3.1.2.1f a;pin < ay+a,+L, forall m,n € Nand some fixed, thenlim,, o a,/n € RU{—0o0}

exists.

Proof. Suppose

.. a
liminf = < b < ¢,
n—oo N

then there exists, n > C%Lb such thatt= < b. For sufficiently largd, I > n, [(c — b) > 2max, <, a,, Write

l=nk+r,0<r<n,and

ﬂgkan—O—ar—}—kLSal+&+£§b+c—b+c—b_
l l n l n 2 2
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Thuslim sup,,_, ., an/n = liminf, . a,/n, and the limit exists. O

Remark3.1.3 cl and scl are invariant under the action of A@Y), where Aut{G) is the group of automor-

phisms ofG. In particular, they are conjugacy invariant.

Stable commutator length also has a topological description.GLét 71 (X) and~ is a loop inX,
representing the conjugacy class of an elemest G. One easily sees, from the topological definition of
cl, that sc(a) equals the infimum of gen@S) /n(S), whereS is a connected, oriented surface with only one
boundary component angl admits a map into¥ with 9.5 wrapping aroundy n(S) times. One deficiency
of this definition is that this infimum will never be achieved. For any such surfawdth one boundary
component, we can pass to finite coversSadnd genusS)/n(S) can be reduced tg%, wherex(S) is
the Euler characteristic &f. Therefore we have the following alternative topological definition for stable
commutator length.

Let G, X, a,~ be as above. Given a compact, oriented, not necessarily connected stirfdeéne
—x~(S) to be the sum ofnax(—y, 0) over all components of. Given a mapf: S — X, takingds — -,
definen(s) to be the sum, over all componentsif, of the degree of the mafiss, i.e., f.[0S] = n(S)[v],
where[v] is the generator off; (v, Z).

Proposition and Definition 3.1.4 ([9]). LetG = 71 (X) and~y C X aloop representing the conjugacy class

ofa € G. Then
—x~(S5)
2n(S) ’

scl(a) = 1gf
where the infimum is taken over all maps(S, 95) — (X, ~).

Definition 3.1.5. A surfaceS, admitting a map’: (S,0S) — (X, ) which realizes the infimum o%g)

is said to be extremal.
Example3.1.6
1. If a, b are basis elements in a free group, by Example (2.3.1), we have

scl(fa.b)) = lim L Jn+ L %

N[3

2. InHomeo" (S'), clis bounded £ 1). So by definition, sck 0.
3. In mapping class groups, interesting lower bounds of scl can be obtained using gauge theory.

Theorem3.1.7 (Endo-Kotschick [26], Kotschick [48])Let S be a closed orientable surface of genus
g > 2. If a € MCG(S) is the product of right-handed Dehn twists along essential disjoint simple
closed curvesq, - - - , v, then

k
scl(a) > Gy — 1)
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Theorem3.1.8(Kotschick). If ¢ is a Dehn twist along a non-separating curve in a closed orientable

surface of genusg, there is an estimatscl(t) = O(%).

3.2 Quasimorphisms and Bavard’s Duality Theorem

In this section, we introduce the notion of quasimorphisms. Quasimorphisms are related to our study of
stable commutator length by Bavard’s duality theorem. In fact the content of this paper is the application
of quasimorphisms and Bavard’s theorem to the study of commutator subgroups, and this section is the

foundation of the whole paper.

3.2.1 Definition of Quasimorphisms

Definition 3.2.1. Let G be a group. Aguasimorphisnon G is a function
¢: G — R,
for which there is a consta?(¢) > 0 such that for any, b € G, we have an inequality

¢(a) + ¢(b) — ¢(ab)| < D(¢).

In other words, a quasimorphism is like a homomorphism up to a bounded error. The least cbrigtant

with this property is called thdefectof ¢.

Definition 3.2.2. A quasimorphism iflomogeneou it satisfies the additional property

foralla € G andn € Z.

Remark3.2.3 D(¢) = 0 if and only if ¢ is a homomorphism, i.eg € Hom(G,R). And it's not difficult to

see that a homogeneous quasimorphism is a class function.

Denote the sets of quasimorphisms and homogeneous quasimorphié}(\@byndQ(G) respectively.

Giveng¢ € @(G), we can homogenize it to obtain a homogeneous quasimorphism.

Lemma 3.2.4 ([9]). ¢ € @(G) with D(¢). Then for any: € G, the limit

¢(a) = lim o)

n— 00 n

exists, and thus defines a homogeneous quasimorphism. Furthermore, we(agve 4D(¢).
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3.2.2 Bounded Cohomology and Bavard’s Duality Theorem

We defined bar compleg’,(G,R) and used it to define the homology of a groGp Let C*(G,R) =
Hom(C.(G),R) be the dual chain complex aidhe adjoint ofd. The homology group ofC*(G,R), ) is
called the cohomology group ¢f with coefficients inR and is denoted * (G, R).

The chain grou’, (G) has a canonical basis, consisting ofralluples(gs, - - , g.), g; € G, in dimen-

sionn. A cochaina € C™(G, R) is called bounded if

Sup|a(917"' agn)| < 00,

where the supremum is taken overatuples. This supremum is called th&-norm of o, and is denoted
I @ [l- The set of all bounded cochains forms a subcomglgis, R) and its homology is the so-called
bounded cohomologyf G and is denoted?; (G). || - ||~ induces a (pseudo)norm di;} (G) defined as
follows: if [a] € H;(G) is a bounded cohomology class, §€ty] ||oo= inf || o ||o, Where the infimum is

taken over all bounded cocyclesn the class ofa].

Let's see what these definitions mean in low dimensions. A dimenisimoehaing € C!(G) is just a
real-valued function frondz to R and¢ is a cocycle if and only if¢ = 0. By the definition of the coboundary
map,

6¢(a,b) = ¢(a) + ¢(b) — p(ab).

Thus¢ is a cocycle if and only ifs is a homomorphism anff ! (G, R) can be identified with Hoift7, R).
Since any nontrivial homomorphism fro6i to R is unbounded, it's immediate that! (G,R) = 0 for any
groupG.

Suppose is a quasimorphism defined above, then

0¢(a, )| = [¢(a) + ¢(b) — ¢(ab)| < D(¢),

for anya,b € G. Thusd¢ is by definition a bounde@-cochain, i.e.f¢ € CZ(G,R) and|| §¢ ||oo= D().
Sinced¢ is obviously a cocycle, we get that the image of the coboundary map of a quasimorphism is a

bounded dimensiof-cocycle. Furthermore, we have

Theorem 3.2.5 ([9]). There is an exact sequence
0 — H'(G,R) — Q(G) = H(G,R) — H*(G,R).
Proof. Consider the short exact sequence of cochain complexes

0—Cf —C"—C*"/C; — 0,
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and the associated long exact sequence of cohomology groups. We get an exact sequence
0= H;(G,R) — HY(G,R) — H'(C*/C}) — HE(G,R) — H?*(G,R).

And HY(C*/C;) = Q/C} = Q. We are done. O

Recall that inChapter1, we defined (Gersten) boundary nofim ||z on B;(G,R), the dimensiont
boundary group and we tried to explore the relation between| z and cla) for an element € [G,G] C

B1(G,R). In the following, we stabilize both of the notions and obtain an equality between them.

Proposition 3.2.6 ([9]). Leta € [G, G], so thata € B;(G) as a cycle. Then

|als= sup -
veo(a)/ i ax) D9)

Proof. The dual space B, (G) with respect to the - ||z norm isQ(G)/H" (G, R) and the operator norm

on the dual is equal t®(-) = || §- |- Then the equality follows from Hahn-Banach Theorem. O

Definition 3.2.7. Let G, a be as above. Define thi#ling norm, denoted fil{a), to be the homogenization of
| @ |- Thatis

fil (a) = tim L2 B
n—oo n

Remark3.2.8 fill (a) is the stabilized (Gersten) bounded norm.

Proposition 3.2.9 ([9]). Let G be a group and: € G’. There is an equality
1,
scl(a) = —fill (a).
4
Proof. We have known that for an element [G, G] and anyn € Z™,
| a™ [|[p<4-cl(a™) — 1.
Divide both sides by, take the limit a3 — oo, and we get the inequality
fill (a) < 4-scl(a).

Conversely, assum@ = 71 (X) and~ is a loop inX, representing the conjugacy classiofet A be a chain

with A = e and|| A ||; is close to|| a | z. WLOG, we assume that is a rational chain. After scaling by
some integer, we can assume tHais an integral chain andA = na for which the ratio|| A || /n || a |5

is very close tal. Write A = > n;o;, where each; € Z, and eacly; is a singula-simplex, i.e., a map

oi: A2 — X. We could group edges of;’s in pairs, except for those edges with images irThis pairing
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gives us an orientable surfaSeand a mapb: S — X, such thatb, ([S, 95]) = A, where[S, 9S] is a chain
representing the fundamental clasg8f0.5). By the construction|] A |1=|| [S, 95] ||1. About the Gromov

L!-norm of a surface, we have the following inequality
| [S,08] 1= —2x(S).
Dividing both sides by, we get
fill (a) > 4 - scl(a).
Putting this with the earlier inequality, we are done. O

Now combine Proposition (3.2.6) and Proposition (3.2.9) together, we get (see [1] or [9] for a proof)

Theorem 3.2.10 (Bavard’s Duality Theorem [1]). Let G be a group. Then for any € [G, G|, we have an
equality
wp 0@

scl(a) =
scQ(c)/H (G,R) D(9)

|~

Remark3.2.11

1. Bavard’s theorem reflects the duality between scl and homogeneous quasimorphisms and the duality

(i.e., Hahn-Banach theorem) is contained in Proposition (3.2.6).

2. In principle, given a groujg+, we only need to work out the set of homogeneous quasimorphisms, and

then we can compute scl by Bavard’s theorem. This approach is especially fruitful @(t&nhas

small dimension. IrChapter3, we are going to study several classes of finitely presented groups, of

which the sets of homogeneous quasimorphisms are 1-dimensional.

3. There are many groups of which the sets of homogeneous quasimorphisms are infinite dimensional. In

Chapter4, we will see that this is a common phenomenon in the groups related to hyperbolic geometry.

Example3.2.12 Let G be a group. Recall thatmeanon G is a linear functional or.>* (G) which maps the

constant functiory (¢) = 1 to 1, and maps non-negative functions to non-negative numbers.

Definition3.2.13 A group G is amenablef there is aG-invariant meanr: L>°(G) — R whereG acts on
L>®(G)byg- f(h) = f(g~'h),forallg,h € G andf € L>=(G).

Examples of amenable groups are finite groups, solvable groups (including abelian groups), and Grig-

orchuk’s groups of intermediate growth.
TheorenB.2.14(Johnson, Trauber, Gromov)f G is amenable, thel; (G,R) = 0.
As a corollary of Theorem (3.2.5) and the theorem above, we have

Corollary 3.2.15 If G is amenable, the®)(G) = H'(G,R) = Hom(G, R).
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3.3 Further Properties and Constructions of Quasimorphisms

The importance of quasimorphisms has been displayed by Bavard’s duality theorem (3.2.10). And in general,
homogeneous quasimorphisms are easier to work with than ordinary quasimorphisms, but ordinary quasi-
morphisms are easier to construct. They are related by the homogenization procedure (Lemma 3.2.4). In this
section, we describe some important constructions of quasimorphisms in two classes of groups. Before that,
we first mention a lemma about defect estimation. Suppdse homogeneous quasimorphism, then for any

commutatofa, b] € G, we have an inequality

|6([a,0])] < D(¢).

And the following lemma says that this inequality is always sharp.

Lemma 3.3.1 (Bavard [1]). Let ¢ be a homogeneous quasimorphismanThen there is an equality

sup [§([a,b])| = D(¢).

a,beG

3.3.1 Rotation Number

Let S' = [0,1]/{0, 1} be the unit circle and: R — S the covering projection. Let HomégsS!) be the

group of orientation-preserving homeomorphism$bf DefineHomeo" (S') = {f € Homed" (R) | f(z +
1) = f(z) + 1}. It's the subgroup of HomegR), consisting of all the possible lifts of elements in

Homea" (S') under the covering projectionWe have the central extension

—_~—

0 — Z — Homeo' (S') % Homeo" (S') — 1,

—~—

whereZ is generated by the unit translation gndHomeo™ (S') — Homeo  (S!) is the natural projection.

Definition 3.3.2. Forg € Homeo" (S!), define theotation numbeof g, denoted rdty), to be

rot(g) = lim g”(O).

n—oo n

Remark3.3.3 Usually, rotation number is defined for elements in Homgg'). For f € Homeo (S!),

—~

choose an arbitrary liff € Homeo' (S') and the usual rotation number $fis rot(f) (modZ), which is a

value inR/Z.

Rotation number is a very important dynamical invariant in Hofret ). We put together some well-

known properties of rotation number in the following proposition. ( See [45] for further discussions. )
Proposition 3.3.4.

1. rot(-) is continuous inC° topology.
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2. rot(g) € Qif and only ifp(g) € Homeo (S!) has a periodic point.

3. If rot(g) is irrational andp(g) € Homeo" (S') acts transitively onS?, thenp(g) is conjugate to the

rotation through the angleot(¢g)(modZ).

The following proposition shows that rotation number, as a functiod@mec (S*), is a homogeneous

qguasimorphism.

Proposition 3.3.5 ([60]). rot: Homeo' (S*) — R is a homogeneous quasimorphism and its delf§cot) =
1.

—_~—

Proof. First let f,g € Homeo (S'). Without loss of generality, we assume thak f(0), g(0) < 1. So
0 < fog(0) <2 AndO0 < rot(f) < 1,0 < rot(g) < 1, and0 < rot(f o g) < 2. Thus we have
[rot(f o g) — rot(f) — rot(g)| < 2, and rot is a quasimorphism. rot being homogeneous is clear from its

definition.

Second we show thab(rot) = 1 by using Lemma 3.3.1. Take anfyg € Homeo (S!). We want to
compute rof[f, g]). We can still assume that< f(0),¢(0) < 1. Supposé < ¢g(0) < f(0) < 1, then we

have, by the fact thaf, g are both increasing functions:

g9(f(0)) <g(1) =g(0) +1 < f(0) + 1 < f(g(0)) + 1.

So
f(g(0)) —g(f(0)) > -1

We have two cases:

(i) If we also havef(g(0)) — g(f(0)) < 1, then

which implies
1< f7lg 7 fg(0) < 1= [rot([f,q])| < 1.

(ii) If instead we havef (g(0)) > g(f(0)) + 1, then

9(f(0)) < f(9(0)) = 1= f(g(0) — 1) < f(0).
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ConsiderH (z) = f~ g7 ' fg(z) — 1 — z,forz € [0,1]. H(0) = f~'g=1fg(0) — 1 > 0 by assumption.

H(f(0) = f g ' fg(£(0)) =1~ f(0)
< flgTHF(f(0) =1 £(0)
= fTlgTHA0) =1 - £(0).

We want to show thak (f(0)) < 0, which can be deduced from the inequality below

Flg7HF2(0) < 1+ £(0),

which is equivalent to

£2(0) < g(£2(0) + 1.

This is always true since < g(x) + 1, for anyz € R.
So we haved (0) > 0 andH (f(0)) < 0, hered < f(0) < 1. There must be a point< (0, f(0)) such that

H(y)=f"'9" fgly) -1 -y =0.

That is
g7 fely) = 1+y.
So
rotlf, g] = lim LW Y '7(5;) —Y g
The proof for the case < f(0) < ¢g(0) < 1 is the same. Put all together, and we §gtot) = 1. O

3.3.2 Counting Quasimorphisms

Counting quasimorphisms were introduced by R. Brooks [6] in the study of bounded cohomology of free

groups. Later on, this construction was generalized to word-hyperbolic groups by Epstein-Fujiwara [27] and
more general classes of groups by Fujiwara [30] [31] and Bestvina-Fujiwara [2]. An immediate result of these
constructions is that the 2nd bounded cohomology of these groups are infinite dimensional. In this section,

we focus on free groups and give Brooks’ construction.

Let F' be a free group with a finite free generating SetThen any element i’ has a unique reduced
form, written as a word it U S~1. Letw be a reduced word angle F'. Thebig counting functiorC,,(g)
is defined by

Cw(g) = number of copies ofv in the reduced representative of
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and thdlittle counting functiorc,, (g) is defined by
cw(g) = maximal number of disjoint copies af in the reduced representative pf

Definition 3.3.6. A big counting quasimorphisis a function of the form

Example3.3.7. Let F' = F» = (a, b).

1. Letw = a orb. It's clear thatH,, = h,, in this case and they are both homomorphisms. In fact they

are the only cases in whicH,, or h,, could be a homomorphism.
2. Letw = aba, thenH,,(ababa) = 2, buth,,(ababa) = 1.

It's not difficult to see that bottH,,(-) andh,,(-) are quasimorphisms with defectsO(|w|), where|w|
is the word length ofv. It turns out that for a big quasimorphish, (), its defectD(H,,) depends otw|,

but for a little quasimorphism,, (-), we have the following uniform bound for all € F'.

Theorem 3.3.8 (D. Calegari [9]). Let F' be a free group anay € F a reduced word. Lek,,(-) be the little

counting quasimorphism. Then we havéh,,) < 2. More precisely, we have
1. D(h,) = 0ifand only if|w| = 1;

2. D(hy) = 2ifand only ifw is of the formw = wlwgwfl, w= wlwgwflwg orw = wlwgwgwgl as

reduced expressions;
3. D(h,) = 1 otherwise.
Remark3.3.9

1. The proof involves a careful analysis of the appearancee of w~! in the junction wher& reduced

words are concatenated.

2. We know from the discussion before Theorem (3.2.5) ibaf,] € H?(F,R). A careful choice of a
sequence ofv;’s with |w;| — oo will give h,,’s such that the cohomology clagg,,|'s are linearly

independent, implying that digf/? (F, R) = oo.

3. In Chapter4, we will introduce the generalizations of the little counting quasimorphisms to word-

hyperbolic groups, and their defects also have a uniform bound.
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Chapter 4

SCL in Generalized Thompson’s Groups

In this chapter, we study scl in generalized Thompson’s groups. Generalized Thompson’s groups are very
important objects in many branches of mathematics. They can be realized as subgroups of (8meo
and show a lot of interesting properties, similar to those of Hon8d). For several classes of generalized

Thompson'’s groups, we prove that

1. For any groupT in these classes, the space of homogeneous quasimorpRi€fs= {0}. As a
consequencel(T) has dimensionl and is generated by the rotation quasimorphism. Heis the

central extension df' by Z.

2. Thus by Bavard'’s Duality Theorem, we can compute s@jmnd there are elementsTh whose scl's

take irrational (in fact, transcendental) values.

In contrast to bulletir2 above, D. Calegari studies scl in free groups [12] (more generally, free product of
abelian groups [13]) and shows that scl takes only rational values in them. And in general geometric settings,
(relative) genus norms are expected to take rational values, like Thurston’s n8¢dinrensional topology.

M. Gromov (in [36]6.C5) asked the question of whether such a stable norm, or in our content, the stable
commutator length in a finitely presented group, is always rational, or more generally, algebraic. And our

computations give the negative answer.

4.1 Thompson’'s Groups and Generalized Thompson’s Groups

Thompson'’s groups were first defined by Richard Thompson in the study of logic. They were used to con-
struct finitely presented groups with unsolvable word problems [54]. Later, these groups were rediscovered by
homotopy theorists in the work on homotopy idempotents [20][21][29][19]. Nowadays, Thompson’s groups
are still the main objects in many researches related to (geometric) group theory. Many important concepts
and constructions have been applied to these groups, which has raised a lot of interesting problems. In this

section, we briefly recall the definitions and basic properties of Thompson'’s groups and their generalizations.
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Let F’ be the set of piecewise linear homeomorphisms from the closed unit infervato itself that are
differentiable except at finitely many dyadic rational numbers (i.e., numbers of thefoh p, ¢ € Z) and
such that on intervals of differentiability, the derivatives (slopes) are powergiad., numbers of the form

2™ m € 7). It's easy to verify that" is a group and is called Thompson'’s grolip

Example4.1.1 Two elementsy andz; in F', which are generators df.

1 1
1
3 3
1 1
1 1
1

5 1

) 8 i
0 1 1 0 3 1 1

2

Figure 4.1z (left) andx, (rigﬁwt)
The main properties of” are contained in the following theorem. See [16] for proofs and further refer-
ences.
Theorem 4.1.2.

1. Fisfinitely presented and in faBP., i.e., there is an Eilenberg-Maclane complEX F, 1) with finite

number of cells in each dimension.

2. The commutator subgroyp’, F'] of F' consists of all elements that are trivial in the neighborhoods of

0 andl, i.e.,[F, F] = kerp, wherep is the following homomorphism

p: F—7Z&Z

[ (log, fl(0+)a log, f/(l_))~

ThusF/[F,F| 2 Z & Z.
3. [F, F]is a simple group.

Next we define Thompson’s grodp ConsiderS! as the unit interval0, 1] with the endpoints identified.
ThenT is the set of piecewise linear homeomorphisms fit= [0, 1]/{0,1} to itself that map dyadic
rational numbers to dyadic rational numbers and that are differentiable except at finitely many dyadic rational
numbers and on intervals of differentiability, the derivatives (slopes) are powerdak a group and called

Thompson'’s groufd’.

Theorem 4.1.3 (Brown-Geoghegan)T' is a finitely presented, infinite simple group andrR,.
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There are several ways to generalize the definitions of Thompson'’s groups. The one we are going to
study is due to M. Stein [58]. LeP be a multiplicative subgroup of the positive real numbers andl lbe
aZP-submodule of the reals witfFA = A. Choose a numbére A1 > 0. Let F'(I, A, P) be the group
of piecewise linear homeomorphisms[6fi] with finitely many break points, all i, having slopes only
in P. Similarly defineT’(l, A, P) to be the group of piecewise linear homeomorphismggdf/{0,1} (the
circle formed by identifying endpoints of the closed interfal]) with finitely many break points il and
slopes inP, with the additional requirement that the homeomorphisms gendo, /] to itself. It's clear that
F(l,A,P) C T(l, A, P). If we let P = (2) andA = Z[3], Thompson's groups at€ = F(1,Z[1], (2)) and
T = T(1,Z[3], (2)).

We are interested in the case thatis generated by integers, i.&? = (nj,no,...,n;) and A =

[nil, n%, el %] P is a free abelian group and we can assume {hatn,, ..., n;} forms a basis for
P,ie.logn,...,logn; areQ-independent, and is the rank ofP. Letd = ged(ny — 1,...,n; — 1)
andIP - A the submodule oft generated by elements of the fofth— p)a, wherea € A andp € P. An

important theorem in studying generalized Thompson’s groups is the following Bieri-Strebel criterion.

Theorem 4.1.4 (R. Bieri and R. Strebel [3]). Leta, ¢, a’, ¢’ be elements oft witha < canda’ < ¢’. Then
there existsf, a piecewise linear homeomorphismifwith slopes inP and finitely many break points, all

in A, mapping[a, c] onto[d/, ¢'] if and only if¢’ — a’ is congruent taz — « modulol P - A.

Proof. Assume first that such afi exists. Leta = bg,by,...,b,_1,b, = ¢ be an increasing sequence of
elements ofd such thatf is linear on[b;_1, b;] with slopep;, for all i. Thenc’ —a’ = Z,’Z:l pi(bi — bi—1).
Butc—a=3Y . (bi —bi—1),s0(¢ —a')— (c—a) € IP- A,

Conversely, suppose there exist . .., a, € Aandpy,...,p, € P such that

(d—d)=(c—a)+ i(l —pi)a;.
=1

Sett! = ¢/ — a’ andb = ¢ — a. If we could find f mapping|0, b] to [0, b'], composingf with translation by
—c on the right and’ on the left gives the desired map. Now there exists a permutatioin{1,2,...,n}
such that the partial sufy = b + Z-Z:l(l — Pr(i))ar(;) @re positive forj = 0,1,2,...,n. If fi, fo,..., fu
are piecewise linear homeomorphismgRofvith slopes inP and break points i such thatf;([0,b,_1]) =
[0,b,], thenf,, o --- o fy is the desiredf. Therefore it is sufficient to prove the claim far= 1. Moreover,
as(1—py)a = (1 —p;')(—pia), we may assume thai > 1. So we need to construgtmapping|0, b] to
[0,0+ (p — 1)a], wherep > 1, a # 0(if a = 0, the identity works), and andb + (p — 1)a are both positive.

Suppose first that > 0. Choose a numbérwith a < p*b, and sets’ = p~*a. Definef;, fo: R — R by

t ift<b—d,
i) =19 pt—(b—a))+(b—a') fb—a <t<b,
t+(p—1)d if b<t.
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t if t <b,
fa(t) =< pF(t—b)+b ifo<t<b+(p—1)d,
t+(p—1D(a—d) ifb+(p-1)d <t
Then f1 maps|0,b] to [0,b+ (p — 1)a’] and fo maps[0,b + (p — 1)a’] to [0,b+ (p — 1)a], sof = fao f1is
the desired map.
On the other hand, if < 0 then there existg taking[0,b+ (p—1)a] t0[0,b+ (p—1)a+ (p—1)(—a)] =

[0, 0], so f~! will be the map we needed. O

Remark4.1.5 If d = ged(ny — 1,...,n, — 1) = 1, IP - A = P(dZ) = PZ = A, and the conclusion
in Theorem (4.1.4) is vacuously satisfied. Therefore in this case, we have that far any, o’ < ¢/,
a,c,a’, ¢ € A, there always exists afi with slopes inP and break points ii, such thatf mapsia, | to

[a, ].

Theorem 4.1.6 (G. Higman [42]).Let 2 be a totally ordered set and |€2 be a two-fold transitive, ordered

permutation group o2, consisting of bounded elements. ThBnB] is a nontrivial simple group.

Here “two-fold transitive” means that if < ¢, o’ < ¢/, a,c,d’,c € , then there is an element &f
takinga to o’ andcto . LetQ = IP - AN |0,l], then Theorem (4.1.4) tells us th&(l, A, P) is two-fold

transitive or2, so we have
Corollary 4.1.7. For any choice of?, A andl, F' = F(l, A, P) has a simple commutator subgroup.
M. Stein also proves similar simplicity result for the grdfip

Theorem 4.1.8 ([58]). For any choice ofP, A andil, T'(I, A, P) has a simple second commutator subgroup.

4.2 Homology of Generalized Thompson’s Groups

To study scl on generalized Thompson’s groups, we need to know the perfectness of some subgroups of
F = F(l, A, P), which can be deduced from the information on the dimension-1 homology grofp of

M. Stein constructs a contractible CW-compl&x on which F' acts freely. SoK/F is a K(F,1) and
H.(F,Z) = H.(K/F,Z). In the following, we give details of this construction, from which the desired

property ofH; (F') easily follows. Most of the materials in this section are taken from M. Stein’s paper [58].

4.2.1 Construction of X

The X was first constructed by K. S. Brown [7], and Brown used it to show fhat F(I, A, P) is finitely
presented and of typE P.,. Its costruction comes from a poset on which the gréugacts. Let's describe

the poset first.
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From now on, we'll fixP = (ny,na,...,ng), A = Z[nil, niz, o nik], wheren;'s € Z+ form a basis for
Pandl € ZT N A. An element of the poset is a piecewise linear homeomorphism{fsomto [0, ], where
a € Z,a =1 (modd), which has finitely many break points, all #y and slopes irP. The “modd” condition
comes from Theorem (4.1.4), by which such a homeomorphism exists if and anly ife TP - A. And
A/IP-A>7/dZ, thus we can have such a map if and only if [ = 0(modd). Given f;: [0,a] — [0,1],
we say f» is a simple expansion of; if for somei, there existss: [0,a + n; — 1] — [0, a] such that
f2 = f10s, wheres is a homeomorphism, which has slopeverywhere except on some interjialx + n;],
x € {0,1,...,a — 1}, on which it has slopgll—i. We think of these expansion mapsas expanding the
domain of f; by dividing some unit subinterval of the domain intpequal pieces and expanding each one

to an interval of length one in the domain ff. See Figure (4.2) for an expansion whee 3,n; = 2.

3

0 1 3 4
Figure 4.2: An expansiofu = 3,n; = 2).

We extend this to a partial order by saying thfat< fs if fo can be obtained fronf; by doing finitely
many simple expansions. Théh= F(I, A, P) acts on the poset by composition: givére F andg in the
poset,f(g) is the mapf o g. Since the group acts on the range of a poset element, and expansions take place
in the domain, this action preserves the partial order.

This poset is directed. That is given any two elemeht§0, a] — [0,1] andg: [0, b] — [0,!], we can find
h: [0,¢] — [0,1] such that: is an expansion of botfiandg. Now let X be the simplicial complex associated
to the poset, i.e X has am-simplex for each linearly orderdd + 1)-tuple fo < f1 < --- < f, inthe poset.
The poset being directed guarantees thatX) = 1 andH,,(X) = 0 for anyn > 1. By Whitehead’s and
Hurewicz’s theoremsy is contractible. Sincé” acts freely onX, X/F isaK (F, 1), the Eilenberg-Maclane
space forF'.

Let’s take a close look at the action. If an element (or a verteX)nf has domair[0, a], we say that
f is a basis of size. It's not difficult to see that ify; andvy are two bases of the same size, there exists a
unique group element such thatf (v, ) = vo. So the bases of the same size form an orbit of the group action
and in X/F, there is one vertex corresponding to each Z*, a = I[(modd). We refer to the basis which
is just the identity map ofD, ] as the standard basis and call the subposet of all expansions of the standard

basis the standard subposet. By the same argument above, the translations of the standard subposet by group
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elements cover the whole poset, so is true for the subcomplex constructed from the standard subfoset in
Therefore, to study the cell structure ¥y F', we only need to keep track of the relations within the standard
subposet. One way to do this is to associaterestto each basis. To the standard basis, we associate a row
of [ dots. Then iff is a basis in the standard subposet, we can inductively represent the simple expansion
of f, obtained by expanding thih interval inton;, by drawing the forest foff, and then drawing; new

leaves descending from thith leaf in the forest forf. As an example, the following picture (Figure (4.3))

is for the expansion obtained from the standard basis {) by dividing the root interval in thirds, and then

each interval of the result in halves.

Figure 4.3: A forest.

Remark4.2.1 The same construction with minor modifications also works for the giidup

4.2.2 Costruction of N

We write [f, ¢] for the closed interval in the poset, i.e., the subpdéet f < h < g}. Similarly, we write
(f,g) for the open interval|[f, g]| and|(f, g)| stand for the subcomplex of spanned by these intervals.
Since group elements act only on the range of bases, up to the group action, we are only concerned with
which expansion maps take you frofito g, rather than the particular basfs So we will be looking at the
domain of f and how it is divided when expanding go Given a basig : [0,a] — [0, ], we will refer to the
intervalsfi,i + 1],¢ =0,1,--- ,a — 1 of the domain off as f-interval.

Now we are ready to study. It turns out that many simplices of are inessential in the sense of
homotopy equivalence. Let’s consider an arbitrary intefia]. Let {f;} be the set of simple expansions of

f which are in the interval, i.ef; < g. Leth be the least upper bound ¢fs.

Definition 4.2.2 ([58]). If h = ¢, [f,g] (or (f,g)) is an elementary interval. |k < g, the interval is
nonelementary. Furthermore, a simplg¥, f1,- - - , f») is elementary if f;, f;] is elementary for any < j.

Let N C X be the union of all elementary simplices.

Another way to describe an elementary interval[i§; f;] is elementary if in expanding; to f;, each
fi-interval is divided inta: equal pieces, wheneis some (possible empty) product of thgs in which each
n; appears at most once. Here are two examples for thefcasd’(1, Z[%, %], (2,3)). See Figure (4.4).

N is clearly anF'-invariant subcomplex oK. Furthermore, we have
Theorem 4.2.3 ([58]). The inclusioni: N — X is a homotopy equivalence. ThDsis contractible and

N/FisaK(F1).
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AN AN

Figure 4.4: Elementary (left) and non-elementary (right) simplexes.

The proof is almost contained in the following lemma

Lemma 4.2.4 ([58]). Let {f;}, 1 < i < n, be the simple expansions §fin (f,g). Let(f,g)n be the
subposet consisting of all the least upper bounds of any subgét jofas long as these lub’s are less than
g. Then the inclusion of f, g) x| into |(f, g)| is @ homotopy equivalence. In particuldy, g) is homotopy

equivalent taS™~2 if the interval is elementary, and is contractible if the interval is nonelementary.

We can buildX in the following way. Let théheightof |(f, g)| beb — a, where the sizes of andg area
andb respectively. We buildX by starting with all of the vertices, then adjoining intervals of heighthen
all the intervals of heigh®, etc. By Lemma (4.2.4), we only need to adjoin elementary intervals. In fact,
instead of adjoining the full interval, we only need to adjfify g] v |.

Let's see whal[f, g|n| is as a subcomplex. Suppopg g| is elementary and f;}_, is the simple
expansions off in [f,g]. Taken copies of{0,1}, viewed as a poset with < 1. Denote the poset of the
n-tuples of0’s and1’s by C, then the geometric realization 6f, denotedC|, is just a triangulated-cube

(Figure (4.5)).
(0,1,1) (1,1,1)

(0,1,0) ,0)

(0,0 (1,0,1)

(0,0,0) (1,0,0)

Figure 4.5: A triangulated-cube.

We make a poset isomorphism betwéeand|f, g]n, by sendingey,ea,- -+ ,&,) Withe; € {0,1} to the
least upper bound dff; | e, = 1,i = 1,2,--- ,n}. This isomorphism reveal$f, g] v | to be a triangulated

n-cube. Now if P, the slope group, has rarikas a free abelian group, any two of these cubes intersect in a
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common face, so that the cubes give a CW-complex structuke fthus in the case of af group with rank
one slope group, the cubical chain complexfbcan be used directly to compute the homologyof
However, if P has rank> 2, faces of these cubes may be attached to the interior of the same or higher

dimensional cubes.

Example4.2.5 In Figure (4.6), we have a square (the bigger one on the right) in the complex fer
F(1,Z[3, 5, (2,3)).

Figure 4.6: A non-cubic structure.

Notice that the bottom two sides of the square are diagonal&-afimensional cube and3adimensional

cube respectively.

Therefore we can't just write down a chain complex with the cubes as generators. But for the purpose of
obtaining a presentation fdt, the cubical structure has already given enough information. The reason is that
all the diagonals can be homotopied to the edges of the corresponding cube, thus don't need to be considered

as elements in a generating set.

Example4.2.6 Let F = F(1,Z[1],(2)), the Thompson's group’. In this case,N is actually a cubical
complex. We lift a maximal tree it/ F' to N by lifting the vertex of size one iV/ F to the standard basis,
and then making a tree by taking successive expansions at the leftmost interval (Figure (4.7)).

xo, 1, - canbe taken to be the generatorsfpand the relations among them come frerdimensional
cubes. Here is an example of a nontrivial relatiopr, = x1x¢ (Figure (4.8)).

If we do this analysis systematically, we could obtain the following presentatiof:for
1 .
F(laz[i]a (2)) = (w0, 21,22, -+ | wiwjp1 = zj2;, Vi < j ).

And zq andz; are the two elements in Example (4.1.1). This is the well-known presentation for the Thomp-

son’s groupk’, which says thaf' has a universal conjugacy idempotent.
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Figure 4.7: Part of the maximal tree.

AN

Figure 4.8: A relation from a-cube.
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Theoretically, we are able to retrieve information on the dimensibomology of the groug from this
presentation. But since the complékis infinite in each dimension and for higher rank slope groups, the
construction will be much more complicated. We need to do more collapsingystormake the computation

accessible.

4.2.3 Collapsing to a Complex of Finite Type

We view N as a “cell complex” with the cubes§f, g] v | as “cells”. We have seen that in the higher rank case,
it's not a CW-complex structure. This means we can’t bilcby adjoining cubes in order of dimensions.
There is a natural concept, callddgree which replaces the notion of dimension. For any c{lfeg] |,
eachf-interval is expanded intp pieces, wherg is a product of:;’s in which eachn; appears at most once.
We say that[f, g] v | has degreéa;, as, - - - , ax) (k is the rank), where; is the number of -intervals which
are divided intg pieces ang is a product ok — j + 1 of then;’s. Then the dimension of a cube of degree
(a1,a9, - ,ar)iska; + (k — 1)ag + - - - + 2ax—1 + ar. The degrees are ordered lexicographically. Note
that each face dff, g] | is contained in a cube of smaller degree, even though it may have larger dimension.
Then we buildN by adjoining cubes in the order of degrees. And the actiof ¢f cellular and preserves
degrees.

Let's look at this action and give each cube in the quotient compigk’ a symbol. First notice that
there is one zero cube for each natural number/ (modd) (corresponding to all bases of sige We give
the zero cube, correspondingdpthe symbok® = v - -- v, a string ofs v’s. Now for eachn-cubecs in the
quotient, we may choose a lfff, g] y in N andg is obtained by expanding certafrintervals into pieces. We
encode this information in a symbol of lengthwheres is the number off -intervals (i.e., the size gf). Our
symbol has one letter for eaghinterval, with the leftmost letter corresponding to the leftmpsdihterval,
etc. We pub if there is no expansion at an interval, andif the interval is divided into;, n;, - - - n;,. equal
pieces, wherd = {i1,ia, -+ ,ir}.
Example4.2.7. v?z121 v is @3-cube of N/ F such that any lift of it talV, written as[f, g] v, hasf, a basis
of size5. When expanding fronf to g, the third interval is divided inta; equal pieces, and the forth interval
is divided inton, - ny equal pieces (Figure (4.9)).

Figure 4.9: A forest representin@xlxl,gv (n1 =2 andny = 3).

It's clear that this symbol is independent of the choice of the lift of
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Remark4.2.8
1. These symbols are just another way of writing the forest symbols introduced in the previous sections.

2. These symbols can also be regarded as a product of cubes. For exafaple, »v is a product of
two 0-cubes, ond-cube, one-cube and the lagi-cube. This product structure will be used in the

computation of the homology group.

With these symbols, we now define tfeee operators An n-cubeo has2n faces,A; (o) and B; (o) for
i€ {1,2,---,n}. Supposer = Sz;R, whereS is ans-cube andJ = {iy,é2,---,i.}, withr > 1 and

i1 <ig < --- < i,. We may think ofv aszy. Choosej with 1 < j <r, andletJ’ = J\{;}. We define

Astj(o) =Sz R Beij(o)=8Szp---xzy R

ni].

If we consider a cub&”| as the geometric realization of the poéebf n-tuples of0’'s and1’s (Figure (4.5)),

the face operators defined above give exactly2thgeometric faces diC| in pairs. But in the compleX,

given ann-cubeo written as a symbol, the faces defined above may not be the actual geometric faces. In
face, theA,-faces of a cube defined above are precisely the geométrfaces, whereas thB;-faces are

the geometricB;-faces only ifr = 1. Otherwise, the geometriB;-faces of the cube are diagonals of the

B;-faces defined above.

Definition 4.2.9 ([58]). A collapsible patten is am; not preceded by. A redundant patten is; v's in a row.
A cube (symbol) is essential if it contains no collapsible or redundant patten. An inessential cube (symbol) is
collapsible if the first (always from the left) such patten is collapsible, and redundant if the first such patten

is redundant.

Let o be a redundant cube of degreethenoc = Rv™ S, whereR is essential and doesn’t end in
Let c(oc) = Rz1S. One can verify that gives a bijection between the set of redundant cubes of degree
a = (a1,--- ,a;) and the set of collapsible cubes of degfeg - - - , ar + 1), such that is a geometric face
of ¢(o). We then build our compled by first adjoining all essential cubes of a given degiesnd then
attaching each redundant cub®f degreen along withc(o). In fact there is some order in which to adjoin
the redundant cubes of a given degree such that when we adgjailother faces of the collapsible cubgr)
will have been already adjoined. Then this adjunction will just be an elementary expansion (in homotopy
theory), and will not change the homotopy type. We then move on to the next greatest degree and repeat the
process. This yields a quotient complg>of N/ F with one cube for each essential symboldfF', and the
guotient map is a homotopy equivalence.

Checking the definition of essential symbols, we see that the numhes of an essential symbol of a

given dimension is bounded, so there are only finitely many cubes in each dimension, establishing

Theorem 4.2.10 ([S8]). F = F(I, Z[ -, 7=y -+ ) (n1,m2, ..+, ng)) is of typeF Pu.
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Since in rank= 1 case, the cubical structure is actually a CW-complex structure, we cantassompute

the homology off'.

Theorem 4.2.11 ([58]).If F = F (I, Z[+], (n)), thenH(F) = zZrn=D"" >,

1
AndY also gives a finite presentation fér.

Example4.2.12 For ' = F(l, Z[1], (2)), the Thompson's group’, we have
F = <I0,I1 | LT3 = 22X, L1T4 = I3I1>,

Wherex;_12xi_1o:i_2 = x;, for anyi > 2, andx andz; are the two elements in Example (4.1.1).

4.2.4 More Collapsings and Construction of a CW-complex

The cubical structure of can’'t be used to compute homology group directly in the higher rank case, and
the reason is, in the language of the face operators above, that/$efaees of am-cubes may not be the
actual geometrid3;-faces ofo. If not, the geometrid3;-faces appear as the diagonals of fhefaces. So
when we attach the-cubegs, its boundary (or faces) doesn't go into lower dimensional cubes.

To make full use of the cubical structure, M. Stein constructed a new CW-cormfplesich is homotopy
equivalent toN. The idea of the construction is very simple. Since the problem lies in those cubes whose
faces may be the diagonals of another higher dimensional cubes, we only need to find a way to push those

diagonals into lower dimensional cubes, then we are done.
Example4.2.13 In dimensior2, we have the following mapi,: I — I x I, where

(0,2t) if t €0, 3]

da(t) =
(2t —1,1) ifte[3,1]

1
<\

Figure 4.10: The pushing defined by.
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One systematic retraction from diagonals to sides of a cube is given by the Alexander-Whitney map,
which has good functorial properties. And this gives us a method of constructing a CW-complex as follows:
Corresponding to each cube M, we have a cell of the same dimension. We start Witells and then
1-cells, 2-cells, etc. At each adjoining, whenever we have a cell, corresponding to arcfinéV), where
the diagonal phenomenon occurs, we push the diagonals (geometric fagestoflower dimensional cells,
which we have already adjoined in previous steps, thus we can attach the cell and obtain a CW-complex
eventually. Denote it by<. By the construction, there isla— 1 correspondence between cellsifand

cubes ofV and K has a more complicated boundary maps (face operators) because of the pushing operations.

Theorem 4.2.14 ([58]). K is homotopy equivalent t.

The cubical action of” on NV induces a cellular action af on K, which is still free, thusk/F is a
K (F,1). From now on, we won't distinguish the cubesihfrom the cells inK'. And we have a symbol for
each cell. One can check that the collapsings we di&van the previous section can be carried out/gn
thus we havé’x, homotopy equivalent té&/F' and with only cells corresponding to essential symbols. In

fact, we can do more collapsings¥ix.

Definition 4.2.15 ([58]). A collapsible patten is am; not preceded by, wherel € J. A redundant patten
isn; — 1 =r v's followed byz ;, wherel ¢ J. A cell (symbol) is essential if it contains no collapsible or
redundant patten. An inessential cell (symbol) is collapsible if the first (always from the left) such patten is

collapsible, and redundant if the first such patten is redundant.

Let o be a redundantn-cube, theno = Rv™x;S, whereR is essential and ¢ J. Letc(o) =
Rz jy(1)S. Then the same argument, as we did in collapsihgan be carried out exactly as before and we

collapseYy to a complexZ with one cell for each essential symbol¥f .

Example4.2.16 Let P = (2,ny,--- ,ni), A = Z[5——], wheren; € Zt and2 = n; < np < --- < ny

2no- Ny

form a basis foP?. Thend = ged(n, — 1,...,np, — 1) =1landr; =n; — 1 =1. LetF = F(1, A, P), and

let's check the ranks of low dimensional chain complexZof
In dimensiond, Cy(Z) is generated by only one symbal Thus rank (Cy(Z2)) = 1.

In dimensionl, C;(Z) is generated by the following essential symbols:
V1, VX1V, T2, T2V, *** , Tk, TEV.

Thus rank(C1(2)) = 2k.
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In dimensior2, C5(Z) is generated by the following essential symbols:

VI, VT, 2<I<k
Tij, Tijv, 2§Z<]§k

Vr1vr1, VIr1VI10,

VT, VT1T, 2<I<k
Tve], TUTV, 2<I<k
TiTj, Z;x;v, 2<1 <j< k.

Thus rank(C2(Z)) = 3k* — k.

In the example above, it’s clear thdt: C1(Z) — Co(Z) must be a zero map sindé,(Z) = Z and it
can be verified that, : C5(Z) — C1(Z) is also a zero map, but we'll show this fact by other method below.

In generalp,.: C.(Z) — C.(Z) could be nontrivial and the computation is very complicated.

In [58], M. Stein did the computation in the case where the slope gfobhps rank2 and obtained

Theorem 4.2.17 ([58]).Let F = F(I, Z[nil, n%], (n1,m2)), Whereny, n, form a basis for the slope group.

Letd = ged(n1 — 1,n2 — 1). ThenH,(F) is a free abelian group, and if we skt (F) = rank;(H;(F)),
then they are given by, (F) =1, hy(F) = 2(d + 1), h2(F) = (1 +4d)(d + 1) and

hJ(F) = dhj_Q(F) + th]‘_l(F), VJ > 2.

Corollary 4.2.18. LetF = F(I,Z[;-, -], (n1, n2)), andd = ged(ny—1,ny—1) = 1, thenrank; (Hy (F)) =
2(d+1) = 4.
Let B be the subgroup df = F(1, Z[nil, %27 el %], (n1,na,...,n)) consisting of homeomorphisms

which are the identity in the neighborhoodsiadindl, i.e., B is the kernel of the following homomorphism

p: F— PxP

f—= (f1(0+4), f1(1=)).

Then we have the following theorem
Theorem 4.2.19 (K. S. Brown). H.(F') =2 H.(B) ® H.(P x P).

Proof. We have a split exact sequence

0—B-“F2PxP—0,
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and a commutative diagram

0 B F — PxP — 0
lm\g l(rﬂ,p) lid
0 B Bx(PxP) —— PxP —— 0

wherem is defined as follows: choose a piecewise linear homeomorphiswth slopes inP and break

points inA, taking[0,1] to [0 + 1,1 — &2]. If h € F, define

m(h)()={ * it o€ 0,e]Ul -]

pohop™ ifxe€ler,1— e

It's not difficult to see thatn|z: B — B induces the identity o, (B). Thus the commutative diagram
induces the identity maps betweei page of the spectral sequence for the two exact sequencés:,

in the middle must induce an isomorphism on the homology and we have

H.(F)2 H.(BxPxP)~H,(B)®H.(P x P).

Combine Theorem (4.2.19) and Example (4.2.16) together, we get

Proposition 4.2.20.Let P = (2,ny,--- ,ny), A = Z|5———], wheren; € ZT and2 =n; <ny < --- <

271/2”-7’Lk

ny form a basis forP. Let F = F(1, A, P), thenH, (F) = 72*,

Proof. We computed the rank of the corresponding dimensiahain complex forF' in Example (4.2.16)
and rank(C:1(Z)) = 2k, therefore we must have that rgsilel; (Z)) < rank;(C1(Z)) = 2k. By The-

orem (4.2.19) above, we géf,(F) = H,(B) ® H,(P x P), whereP x P = 7F x 7* = 72k, thus
rank;(H(Z)) > rank;(H,(P x P)) = 2k. Combining the two inequality together, we g8t (F') =
/i

The complexZ also gives much smaller finite presentations for generalized Thompson’s groups.

Example4.2.21 For F = F(1,Z[¢], (2,3)), we have the following finite presentation.

<130, T1, Yo, Y1 | ToT2 = X3Tp,XL1T3 = T4T1,ToY2 = Y3Zo,
_ +,. _ + 4. +
Y1Y3 = Ya¥Y1,Yg T1 = T3Yg » Yy T2 = T4Yq
+ + 4, +
Yo Y1 = Y3Yo » Y1 Y2 = Y4Yy

+ 4. + 4t +
Yo Y1 To = ToT1X2Yy Yy Yo T1 = T1T2T3Y, >7
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-1 -1 - —1
wherex; x;_1%,—2 = Ty, T oYi—1Ti—2 = Y;, Vi > 2 andyj = TTi1YiYip1 Vi Yo andyé’ are the

following two elements:

1 1
1
B 5
1
7
1
2 3 2 5
3 8 5 3 @
0 10 1

Figure 4.11y, (left) andyg (right).

4.3 SCL in Generalized Thompson’s Groups

4.3.1 Main Theorem

Recallthafl’ = T'(1, A, P) is the group of piecewise linear homeomorphisms of the cltle- [0,1]/{0, 1},
with finitely many break points i, slopes inP, and sendingd N [0, 1] to itself. T is a subgroup of

Homeo™ (S?). LetT be the central extension @fby Z, i.e., T = p~(T) C Homed" (S'), and we have the
short exact sequence

0—Z-T-2T 1,

whereZ = (t) is generated by the unit translatioon R.
In section (2.3.1), we defined rotation quasimorphism rotHmmeo (S*) and computed its defect
D(rot) = 1. It's clear that rofz is still a homogeneous quasimorphism and we'll see tha ristessen-

tially the only homogeneous (normalized) quasimorphisrﬁ“vohet's computeD(rot| =) first.

Lemma 4.3.1 ([60]). Let T = T(1,A, P), whereP = (ny,ns,...,n;), A = Z[-~, L ... L] and

7,77 n727 . ) ng
0<ng <---<ngn; €7, form abasis forP. ThenT is dense irHomeo" (S') with the C°-topology.

Thereforel is dense iHomeo™ (S'), and D(rot|7) = 1.

Proof. Take an arbitrary homeomorphisfne Homeo" (S') and any > 0. Sincef is uniformly continuous,
we can choos® = zp < 21 < --- < 27 < 1, 2;'s lying in the dense subsétP - A C [0, 1], such that
|f(zs) — f(wi—1)| < §. SincelP - A'is dense in0, 1], we can find) < yo < y1 < --- <y < 1, with

yi € IP- Aand|y; — f(z;)| < §. By Theorem (4.1.4), there exisgsc T such thay(z;) = y;. From the

choice ofz;'s andy;’s, it's easy to see thaltf — g||co < e. SoT is a dense subgroup of Honie@s?), and

so isT in Homeo' (S1).

On the other hand, by Proposition (3.3.4), the function Hbomeo (S') — R is continuous inC°-
topology, so we must have(rot|7) = D(rot) = 1. O
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We compute scl on the groupfirst.

Lemma 4.3.2 ([60]). LetT = T'(1, A, P), whereP = (ni,na,...,ng), A = Z[;-, -, ..., ;-] andd =
ged(ng —1,...,n, — 1) = 1. Forany f € T, there exisy1, go € T such that

1 f=g109;

2. Eachy; fixes an open arc of the circle, i.e., there exists an open interval [0, 1]/{0, 1}, such that

gila is the identity.

Proof. Sinced = 1, Theorem (4.1.4) is vacuously satisfied. For gng T', choose pointa < b andec < d,
a,b,c,d € An|0,1], satisfying[c, d] N ([a,b] U f([a,b])) = 0. Denotelay, b1] = f([a,b]). Such points exist
becaused is dense in0, 1] and we only need to chooseb such thafa, b] is a very small interval. Since
a1, by are also points i, there exist piecewise linear homeomorphigmsand g, with slopes inP and

break points in4, such thay; senddb, c| to [by, ¢] andgs senddd, a] to [d, a4].
d d

Figure 4.12: The homeomorphisgm

Define (see Figure (4.12))

Thenf = (f o g~ 1) o g. Clearlyg fixes the intervalc, d) and f o g~ fixes the intervala, b). O

Theorem 4.3.3 ([60]).Let P = (ny,na,...,np)and A = Z[-L L .. L] F = F(1,A, P)andT =

ni’mng? " ng

T(1,A, P). Supposé = ged(ny, — 1,...,n, — 1) = 1 and H,(F) is a free abelian group afank2k. Then
1. T is a simple group;
2. Q(T) = {0}, or equivalentlyscl= 0 onT.

Proof. For an arbitrary homeomorphisyfhe T, by Lemma (4.3.2) above, we can wrife= g; o g2, where
g; fixes some proper open afG in the circle. Take a poird; € a; N A ( sinceA is dense). ThemRy,, the

rotation of the circle through angtg, is an element iff". It's easy to see that supfy, o g; o Rg‘il) C (0,1),
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i.e., Ry, 0g;o Re‘il fixes a neighborhood af = 1. Write h; = Ry, o g; o Re‘il., which is the identity in
the neighborhoodD, ¢) and(1 — ¢, 1], soh; is an element of the subgroup, whereB is the subgroup of’

consisting of elements which are identity in the neighborhodtlarid1.

By Theorem (4.2.19)H,(F) = H,(B) @ H,(P x P). We haveP x P = 7*F @ 7% = 72?* and the
assumption says thaf; (F) = Z**. Thus we must havé/, (B) = 0, i.e., B = B’ = [B, B], B is a perfect
group. Therefore each; can be written as a product of commutators, sg;isinceg; is conjugate tas;.
Thereforef = g1 o g also lies in the commutator subgroup. Sintes chosen arbitrarily, we get thdt is
perfect, i.e.. T = T’. We know, by Theorem (4.1.8), tha@t’ is a simple group, s@ = T" = T" is also

simple. Claiml is proved.

Let ¢ € Q(T) be an arbitrary homogeneous quasimorphisn¥orAs we did above, for any € T,
we write f = g3 0o gs andh; = Ry, o0 g; o Re‘il, h; € B = B’. Sinceh; and h, both are elements in
B', write h; = [s},ti]---[s},,, th,.], wherei = 1,2 ands’, t}, 1 < j < m;, are homeomorphisms iB.

LetJ = U7, UjZ, (supds}) Usuprt})), then it's clear that/ is a proper closed subset @f, 1). Assume

J C (a1, 01) G (0,1), whereay, 31 € A. We can choose;, 5; € AN [0,1],7 > 2, such that
O<ap < <ae<fe<az<f3<---<1.

By Theorem (4.1.4), for any € Z*, we can construct; € F, a piecewise linear homeomorphism with

slopes inP and break points i, such thaty; ([, 5i]) = [@it1, Biv1], 1 < i < 1. Define
-1 =
Ay(hi) = H Y o hio (V)
k=0
. -1 . .
Ai(sh) = [ o sho ()
k=0
, -1 4 .
Ni(ty) =[] otioaf)
k=0

Since any two items in the products have disjoint supports ((S)tilfpphi o (7{“)71) C [agt1, Bry1]), we still
have that
Ag(hi) = [Au(s1), A(t)] - [Au(sy, ) Aulty,,)]

Define
-1 1

=1L ohi™ o)
k=0

and we see, by direct calculation, ttiat »; and-; satisfy the following equality

[y 1Y) = (bl ) o bl = Ay(hit) o (vRlah).
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So we get

hi = " Au(ha) b, hi) i

Then we have the following estimate of commutator length

C|(hl) < 1—|—C|(Al(hl)) < 14 my,

?

and

Sincel can be made arbitrarily large, we get

l
scl(h;) = lim clhy) = 0,

l—o0 l

foreachi =1, 2.
Then by Bavard’s Duality Theorem (3.2.1@).h;) = 0, for any¢ € Q(T). Sincey; is conjugate td:;
and¢ is homogeneous, we havég;) = ¢(h;) = 0.

For anyn € Z*, write f™ = g1, 0 ga,,, such that(gi1,,) = ¢(g2,) = 0. Then we have

Ind(f)l = [6(f") = |¢(g1ngan)| = |&(g1ng2n) — ¢(91n) — ¢(g20)| < D(9),

SO

()| < 29

n

foranyn € Z*. Letn — oo, we getg(f) = 0. That scl= 0 follows directly from Bavard’s Theorem

(3.2.10). Clain® is proved. O

Remarkd.3.4 Part of the proof is derived from the proof of a more general theorem due to D. Calegari:
Theorem4.3.5([11]). LetG be a subgroup oPL™ (1), thenscl of every element ifGG, G] is zero.
Now we are ready to compute sclih

Theorem 4.3.6 ([60]). Let P = (ny,n,...,nx) and A = Z[-, .-, ..., -], where0 < n; <ng < --- <
ny form a basis forP. F = F(1,A,P), T = T(1, A, P), andT is the central extension @f. Suppose
d=ged(ny —1,...,n, — 1) = 1and H, (F) = Z*", thenrot|z is the unique homogeneous quasimorphism
which sends the unit translation 1o
Thus by Bavard’s Duality Theorem (3.2.10), we have for@&yf,
rot(g)] _ [rot(g)|

A9 = Doty 2
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Proof. Clearly rots < Q(T) and sends the unit translationto Suppose- € Q(T) is another such homo-

geneous quasimorphism. We consider their difference
rot—r: T — R,

which is still a homogeneous quasimorphism.

For any elemenf € T, let f; and f, be two arbitrary lifts off in T. Then there is an n& Z such that
fo = f1 +m. Both f; and f, are elements of the subgropp(f) C T, which is generated by, andt,
the unit translation. This subgroup is an abelian group. Thus by Corollary (3.2.15),matestricted to it,
is a homomorphism. We haveot — 7)(f2) = (rot — 7)(f1 + m) = (rot — 7)(f1) + (rot — 7)(m). The
normalization assumption tells us that(ret) = 7(m), so(rot — 7)(f1) = (rot — 7)(f2). Therefore rot- 7
induces a function off’ and it's easy to see that the induced function is still a homogeneous quasimorphism.
By Theorem (4.3.3), we must have rotr.

ThusQ(T) is one dimensional and generated by #otAnd the last claim follows from Bavard’s Duality

Theorem and the defect estimation in Lemma (4.3.1). O

The last thing is to find generalized Thompson’s groups satisfying those assumptions in Theorem (4.3.6)

above. The computation of homology of generalized Thompson’s groups in the previous section provides

]
ningd?

us with a lot of such groups. L&® = (2,n2,--- ,ni), A = Z[5—-—] or P = (ny,ny), A = Z]

2ng-ng

whereged(ny — 1,ny — 1) = 1. Let F = F(1, A, P), T = T(1, A, P), andT the central extension dF.

In either case, Proposition (4.2.20) and Corollary (4.2.18) say that these groups satisfy the assumptions in

Theorem (4.3.6), thus we have for apy T,

) _ It

scl
2

4.3.2 Examples

Theorem (4.3.6) leaves the computation of scl to the computation of rotation numbers in generalized Thomp-
son’s groups. There have been a lot of researches on rotation numbers in these groups, and more generally
of piecewise linear homeomorphisms $f with various assumptions on slopes and break points. In this
section, we compile some known results and give concrete examples, in which the computation of rotation
number is possible.

In [34], E. Ghys and V. Sergiescu studied the Thompson's gtBug 7'(1,Z[1], (2)). They built a
smooth action of” on S, i.e., a representatiop: 7' — Diff °°(S1), with an exceptional minimal set. Then
by a theorem of Denjoy, which says that eveéry diffeomorphism ofS! with an irrational rotation number

has dense orbits, they deduced that

Theorem 4.3.7 ([34]). Every element iff” has a rational rotation number, and furthermore, every rational
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number can be realized as the rotation number of some elemé&nt in

Thus sclorl’ = T(1, Z[3], (2)) takes rational values, and we also get a finitely presented, infinite simple

group, on which scl can take any rational number as its value.
Remark4.3.8 A generalization of Theorem (4.3.7) is proved later by |. Liousse [51] and D. Calegari [10].

In [50] and [51], I. Liousse studied generalized Thompson's groups. She modified a construction of M.

Boshernitzan and obtained

Theorem 4.3.9.Let P = (ny,na,...,n;), A = Z[nil,%,...771k], where0 < nq, < --- < ni form a
basis forP. T = T(1, A, P). Assume theankk > 2, then there are elements | with irrational rotation
numbers. Furthermore, there afé — 1) commuting homeomorphistiis, 32, - - - , Bx—1 in T', with irrational

rotation numberg;, 1 <1i < k — 1, such thatl and thep,’s are Q-independent.

In the following, we give two examples of the computations of rotation numbers in generalized Thomp-

son’s groups. Both of them are taken from [50].

Example4.3.10([50]). LetT =T(1, Z[%], (2,3)). Let f be the following homeomorphism if

x+ £ ifzel ;]

if z € [3,1].

~
Il
Wi wiN
8
I
Wi Wi
N|—=

N

win
[SIIN]

1
2

Figure 4.13: Graph of.

The transformation(z): = 2—2=% x € [0, 1] conjugates to the rotation by, wherep = }gg; —1=
0.58496250072 - - - . Thus any lift of f has the rotation numbg$3 +n, n € Z. By the theorem of Gel'fand-

Schneider [49], the rotation numbgis transcendental.

In general, we can't find the conjugacy homeomorphism and we need to work out rotation numbers

indirectly. Here is such an example:
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Figure 4.14: Graph of.

Example4.3.11([50]). T = T(1,Z[3],(2,3)), andg € T is the following homeomorphism

v+ 3 if z € [0, §]

. ir—L ifzel},?]

r—32 if z€[3,38]

9 909

3v— 2 ifzeld 1]
1
d=3
c=13
2
9

a=0 1 5 8 1
b=1 d=2

c=5
Figure 4.15: Gra%)h of.

The mapg satisfiesProperty D, which, roughly speaking, says that the product of gjamp (ratio of
derivatives from two sides) on each orbit is trivial. In fact any piecewise linear homeomorphism with all
break points in one orbit satisfies Property D. For such a homeomorphism, therehexistiomea (S1),

suchthatio go h~! € SO(2). So there is a measureon S1, which is invariant under the iteration of Let
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Dy be the derivative function gf. Then we have the following equality

/log(Dg)du =0.

This equality will enable us to compute the rotation numbey. of

Let’'s denote the break points to he= 0, b = é c= g andd = % They all lie in the same orbit of:
g:b— a=0— d~— c. Supposé isthe homeomorphism, conjugatiggo a rotation homeomorphism
through anglen, where0 < p < 1. We want to find the images af b, c andd underh. WLOG, we can
assume that(0) = h(a) = 0. Sinceb = g~'(a), d = g(a) andc = g*(a), we must havér(b) = —p + ny,
h(c) = 2p + n., andh(d) = p + ng4, wheren;, n. andn, are some proper integers. Combining this with the
facts thath is an orientation-preserving homeomorphism, &), 4(c), andh(d) are points in(0,1), we
getthath(b) = 1 — p, h(c) = 2p — 1, andh(d) = p. And on[a,b], Dg = Ay = 1. On[b,c], Dg = Ay = %.
Onle,d], Dg = A3 = 1. On[d, a], Dg = A\, = 3. The integral equality gives a linear equation

logA1- (1 —p)+logha-(3p—2)+1logAs- (1 —p)+loghs-(1—p)=0.

Substitute);’s, and we get
~ 2log2+log3
~ 3log2+log3’

Numerically, we can draw the graph of the conjugacy functi@s follows:

10k
08
06
04

02

Figure 4.16: Graph af.
As a corollary of Theorem (4.3.6), Theorem (4.3.9) and the computations in Example (4.3.10) and Ex-
ample (4.3.11), we have

Corollary 4.3.12 ([60]). There exist finitely presented groups, on whechtakes irrational (in fact, tran-

scendental) values.

Theorem (4.3.6) also reflects the deep connection between scl and dynamical properties of these groups.

One series of groups in our list has very rigid dynamical properties. et (2,ngo, - ,ng), A =
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Llgprmr) k> 2and2 < ng < --- < ny, forms the basis foP. LetT = T(1, A, P), then we have

the following theorem due to I. Liousse.

Theorem 4.3.13 ([51)]).

1. Each nontrivial representatior from 7" into Diff?(S') is topologically conjugate to the standard

representation iPL(S?).

2. Each nontrivial representation from 7" into PL(S!) is PL-conjugate to the standard representation

in PL(S1).

3. There existd > 2, depending on théog n;'s diophantine coefficients, such that any representation

from T into Diff'(S*) has finite images. In particulai] is not realizable irDiff *°(S*).
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Chapter 5

Large Scale Geometry of Commutator
Subgroups

In this chapter, we study commutator subgroup as a geometric object: its Cayley graph with respect to the
canonical generating set of all commutators. With the path metric, cl and scl can both be interpreted as impor-
tant geometric quantities on it. We are interested in the large scale geometry of this graph. First we prove that,
for any finitely presented group, the graph is large scale simply connected. Then we focus on a very important
class of groups in geometric group theory: hyperbolic groups. In contrast to generalized Thompson’s groups,
the space of homogeneous quasimorphisms of a hyperbolic group is infinite dimensional. We study the geo-
metric implication of this infinite dimensional phenomenon, and prove that for a non-elementary hyperbolic
group, the corresponding Cayley graph of the commutator subgroup contains a quasi-isometrically embedded
7™, for anyn € Z, . As corollaries, the graph is néthyperbolic, has infinite asymptotic dimension and is

one-ended.

5.1 Commutator Subgroup as a Metric Space

Let G be a group and’ = [G, G| its commutator subgroup. The subgratiphas a canonical generating set
S consisting of all commutators. Wit#’ and.S, we can construct a graghis (G’) as follows: each element
in G’ gives a vertex irCs(G’), andg, h € G’ are connected by an edge if and onlyif'h € S, i.e.,g7'h

is a commutator. We call's(G’) the Cayley graphof G with respect to the generating st By assigning

each edge with length, Cs(G’) becomes a metric space, where the distance is defined by the path metric.
Proposition 5.1.1.

1. The distance itC's(G’) equals commutator length, i.e., for apyh € G’, d(g, h) = cl(g~h);

2. The semidirect produe®’ x Aut(G) acts onCs(G’) by isometries;

3. The metric orG’ inherited as a subset @fs(G’) is both left- and right- invariant;
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4. Simplicial loops inCs(G") through the originl correspond to (marked) homotopy classes of maps of

closed surfaces into & (G, 1).
Proof.

1. By the definition of the path metric, for amyh € G/,
d(g,h) = min{ length of L | L is a simplicial path frony to h in Cs(G’)}.
By the definition of edges it's(G’), any such patti gives the following equality iz’

g[alabl] e [anvbn] = ha

wheren = length of L. So the minimal length path represents a shortest expressign'afas a
product of commutators, which is the commutator lengtp ofh. Thus we havel(g, h) = cl(g~1h)

and in particulari(1, g) = cl(g).

2. The setS of commutators, is characteristic, i.&.,is invariant under any automorphism 6f So

Aut(G) acts onG’ which induces an action afig(G’). The action is obviously by isometries.

G’ acts on itself byeft multiplication i.e., anyg € G’ corresponds to a bijectiob, : G’ — G’, where
L,(h) = gh. Then for anyhy, he € G,

d(Lg(hy), Lg(h2)) = d(ghi, ghs) = cl((gh1) ' gha) = cl(hy "ha) = d(h1, ha).

ThusG’ acts onCs(G’) by isometries. Combine these two actions together, we get the bultgtin (

3. We only need to verify “right invariance”. For amy h1, ho € G’, we have
d(h1g, hag) = cl((h1g)~ ' hag) = cl(g~" (A7 *ha)g) = cl(hy *ha) = d(ha, ho).
The 3rd equality comes from the fact that the conjugate of a commutator is still a commutator.
4. A simplicial loop throughl gives the following equality irz’:
[a1,b1][ag, ba] - - - [an, by] = 1.

SupposeX = K(G, 1), then the discussion i@hapterl gives a map from a closed oriented surf&ce

of genusn into X. The mark onS is thel-skeleton from the standard polygon representatiofi. of

O
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Definition 5.1.2. Given a metric spacéX, d) and an isometry, of X, thetranslation lengthof ~ on X,

denotedr(h), is defined by the formula

wherep € X is an arbitrary base point.
Remark5.1.3

1. The limit exists by Lemma (3.1.2), and the limit does not depend on the choice of the basg lppint

triangular inequality.

2. Let M™ be a dimensiom Riemannian manifold with negative section curvature afidlits universal
covering. ThenV™ is homeomorphicalR™ with a negatively curved Riemannian metric. We can de-
fine the corresponding path metric of". The fundamental group, (M™) acts onM™ isometrically,
and the set of values of translation lengths corresponding to this action equbdadhiespectrunof
M™, which is the set of lengths of closed geodesicd/4n. Thus the set of translation lengths reflects

very important geometric and dynamical properties of the underlying spaces and groups.

Proposition 5.1.4. Letg € G’ act onCs(G’) by left multiplication. Then there is an equality

7(g) = scl(g).

Proof. We can choosg = 1in Cs(G’). Then we have

=1
7(g) = lim ——
d 1 n
n—oo n
n
= lim —2 ) _ scl(g)

O

One can obtain lower bounds @fig) by constructing a Lipschitz function ok which grows linearly on
the orbit of a point under powers gf One important class of Lipschitz functions 6R (G’) are quasimor-
phisms.

By repeated application of the defining property of quasimorphisms and triangular inequality, one can

estimate that

[¢(fg, h]) — ¢(F)] < 7D(¢),

whereg € Q(G) andf, g, h € G. This immediately gives
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Proposition 5.1.5. A quasimorphism, restricted toG’, is a 7D(¢)-Lipshitz map in the metric inherited

from C's(G’), and we have

foranyg € G’ and¢ € Q(Q).

So we have translated cl and scl into geometric notions on the metric 6pdc#), cl as the path metric
and scl as the translation length. In the following, we will study this metric space through our knowledge of

cl and scl, and vice versa.

5.2 Large Scale Geometry of Metric Spaces

One entry of geometric ideas into group theory is through Cayley graphs and word lengths. The Cayley graph
Cs(G’) for a commutator subgroup is one such example. In general, given a finitely generated’ gnodip

a finite symmetric generating s€&f the corresponding Cayley graph-(T) is the graph with vertex sétin

which two verticesy,; andy, are the ends of an edge if and onlydif(v1,72) = 1, i.e.,7; 72 € T. " acts

on Cr(I") by left multiplications, and this action is obviously transitive. Each edg€g(fl") can be made

a metric space isometric to the segmfnt] of the real line, then one defines naturally the length of a path
between two points (not necessarily two vertices) of the graph, and the distance between two points is defined
to be the infimum of the appropriate path lengths. With this path metric, the left actibowo{(T") is by
isometries. [ also has a natural right action 6iy-(I"), but in general this right action is not by isometries.)

Moreover,Cr(T") is a proper, geodesic metric space.
Definition 5.2.1.
1. A metric spac€ X, d) is proper if its closed balls of finite radius are compact.

2. AgeodesicinX,d)isamap: | — X defined on an interval | dR such that
d(o(t1),0(t2)) = [ t1 — 1o,

foranyt;,t, € 1. X is said to be geodesic if any two pointsihcan be joined by a geodesic segment

(not necessarily to be unique).

The Cayley graph of a commutator subgroup is generally not proper (since tBeofebmmutators is
generally infinite.), but still geodesic.

One deficiency of the construction of the Cayley graph is that, for an arbitrarily finitely generated group,
we don't have a canonical finite generating set. Thus each choice of a generating set gives a Cayley graph, and

these graphs are usually not (even locally) isometric. Thus to obtain useful information from these graphs,
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we need to find a way to identify them and study the properties invariant under the identifications. Here is

one such identification due to M. Gromov.

Definition 5.2.2. Let (X, dx), (Y, dy) be two metric spaces. Amafxr X — Y is a(}, ¢)-quasi-isometric

embeddingf there exist constants > 1, ¢ > 0 such that

Tix(ey) —e < dy(f@), ) < Ndx(e.y) +e.

forallz,y € X.
f is aquasi-isometryf there exists moreover a constant> 0 such that any point of is within distance

D from some point off (X). The two spaceX andY are then quasi-isometric.
Remarks.2.3
1. Being Quasi-isometric is an equivalence relation.

2. A metric space is of finite diameter (bounded) if and only if it is quasi-isometric to the space of a point.

This is the reason why the geometry of quasi-isometries are called large scale geometry.

3. let I" be a group with two finite symmetric generating sétsand7>. Let d; andd, denote the
corresponding word metrics (or path metrics on the Cayley graphs). The identity mapiefved as

amap(T,d;) — (T, dz) is a(\, 0)-quasi-isometry, i.e.,

1
Xdl('ﬂa')?) < da(v1,72) < Adi(y1,72),

for any~;,7v. € I" and )\ is determined byi; andT;. Therefore, the quasi-isometric equivalent class

of C(T') is canonically associated with the groliptself.

4. It seems, from the bulletirg], that the constantin the definition is unnecessary. In fact, M. Gromov
introduces this constant to study a broader class of spaces in geometry naturally related to group actions.
We have the following theorem due to Efremovich [2@\}'arc [59] and Milnor [55]: LetX be a metric
space which is geodesic and proper. Ldie a group and’ x X — X an action by isometries (say
from the left). Assume the action is proper and that the quolienk is compact. Then the groupis
finitely generated and quasi-isometricXo (The metric o is the word metric with respect to some

finite generating set.)

For the commutator subgroup' of G, the generating set of commutators is uniquely determined and
thus there is no such quasi-isometric issuedgf{G’). Nevertheless, we are still interested in studying prop-
erties ofCs(G’) that are invariant under quasi-isometries. The justification is that the study of finitely gener-
ated groups as geometric objects has proven to be very fruitful and it is standard to expect that the large scale

geometry (invariant under quasi-isometries) of a Cayley graph will reveal useful information about a group.



50

In the following, we are going to introduce some concepts on metric spaces, which are quasi-isometrically

invariant and they are generalizations of similar notions from topology, geometry and analysis.

Definition 5.2.4. A thickeningY” of a metric spaceX is an isometric inclusiotX — Y with the property

that there is a constant so that every point iy’ is within distance” of some point inX.

Definition 5.2.5. A metric spaceX is large scalek-connectedf for every thickeningX C Y there is a
thickeningY” ¢ Z which is k-connected in the usual sense, i8.is path-connected, and (Z) = 0 for

1 < k.

Large scalé:-connectivity is a quasi-isometrically invariant property (or large scale property)GFror
finitely generated group with a generating $etGromov outlines a proof ([36], C;) that the Cayley graph
Cr(G) is large scald-connected if and only if7 is finitely presented, an@(G) is large scalé-connected
if and only if there exists a proper simplicial action@fon a(k + 1)-dimensionalk-connected simplicial
complexX with compact quotienk /G.

ForT an infinite generating set, large scale simple connectivity is equivalent to the assertiGratiraits
a presentatiods = ( T' | R ) where all elements iR haveuniformly bounded lengtas words ifT’, i.e., all
relations inG are consequences of relations of bounded length.

Next we define the notion of connectivity at infinity.

Definition 5.2.6. A metric spaceg X, d) is calleddisconnected at infinitif for any £ > 0, there exist two
subsetsX; and X5 in X, such that

1. X; and X, are both unbounded,;
2. X, and X, cover almost allX, i.e., the complemenX \ (X; U X5) is bounded;
3. d(X1,X2) > k,ie.d(xy,x0) > kforalz; € X;,i=1,2.

ThenX is calledconnected at infinityf for somek, the aboveX;, X, don't exist.
Similarly, we define the number of ends &fat infinity as follows

Definition 5.2.7. Let (X, d) be a metric space, theumber of endsf X at infinity is the maximalL € Z,

such that for any: > 0, there exist subsetX,, - - - , X, satisfying
1. Xy, ---, X are all unbounded;
2. X\ (U, X,) is bounded:;

3. d(X;, X;) > k, for anyi # j.
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If X is a path connected metric space, space of endsf X can be defined as follows. Fix a base point
pin X. Let B;(p) be the ball of radius centered ap. 7o(X \ B;) is the set of path components &f\ B;.

Then we have an inverse system:

Let
E =lim 7T0(X \ Bz)

E is called the space of ends and it's clear that the number of ends equals the cardin&litilomber of
ends is quasi-isometrically invariant. And the number of ends of the Cayley graph of a finitely generated

group agrees with the usual definition of ends of a group.

Example5.2.8

1. Let F, = (a,b) be the free group of rank. LetT = {a,b,a"*,b='}, thenCr(F) is a4-valence

regular tree. Thug’ has infinite ends, and the space of ends is a Cantor set.

2. LetG = m1(S,), wheresS,, is a closed oriented surface of genug 2. Then the Cayley graph o
is quasi-isometric t@12, the Poinca& disk with the hyperbolic metric. Thus has only one end and is

connected at infinity.
At last, we define the notion of asymptotic dimension.

Definition 5.2.9. Let X be a metric space and = U,;U; a covering by subsets. For givdn > 0, the
D-multiplicity of the covering is at most if for any z € X, the closedD-ball centered at intersects at

mostn of the U;.

Definition 5.2.10. A metric spaceX hasasymptotic dimension at mostif for every D > 0 there is a
coveringX = U,;U; for which the diameters of th€; are uniformly bounded, and the-multiplicity of the

covering is at most + 1. The least such is theasymptotic dimensioof X, and we write
asdimX) =n
The definition of asymptotic dimension is a generalization of the usual topological (covering) dimension
and they have similar properties. See [8] for other equivalent definitions and further properties.
Proposition 5.2.11.
1. asdim(X) is quasi-isometrically invariant;
2. monotonicity X’ C X = asdim{(X’) < asdimX);

3. product asdim(X; x X,) < asdim(X;) + asdim(X»);
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4. finite union X = AU B, thenasdin(X) = max{asdin{A), asdim B)}.
Examples.2.12
1. asdim{X) =0 < X isbounded= X ~,, apoint.

2. asdimR™) = n as expected. Writé™ to be the free abelian group of rank n. The the Cayley graph
of Z™ with respect to the standard free generating set is the integral lattiRg imand thusZ” is

quasi-isometric t®R"™. So we get asdifZ"™) = n.

Remark5.2.13 All definitions in this section are from M. Gromov’s seminal paper “Asymptotic Invariants
of Infinite Groups” ([36]), which has been the main source of ideas for the development of geometric group

theory since its publication.

5.3 Large Scale Simple Connectivity

In this section, we are going to prove that for any finitely presented giuipe Cayley graph of the commu-
tator subgroug’'s(G’) is large scald-connected (simply connected). This is a joint work with D. Calegari
[15].

By the definition (5.2.5) and the discussion there, to show hatG’) is large scalel-connected, it
suffices to show that there is a constanhso that for every simplicial loop in Cs(G’) there are a sequence
of loopsy = 70,71, -+ ,v» Wherew, is the trivial loop, and each; is obtained fromy; _; by cutting out a
subpathr;_; C 7,_1 and replacing it by a subpath C ~; with the same endpoints, so that_; |+|o;| < K.

More generally, we call the operation of cutting out a subpa#imd replacing it by a subpatt with the

same endpoints whete| + 0’| < K a K-move

Definition 5.3.1. Two loopsy and~’ are K-equivalentif there is a finite sequence &f-moves which begins

at-~y, and ends at’.

K-equivalence is (as the name suggests) an equivalence relation. The statentént@iats large scale
1-connected is equivalent to the statement that there is a codétamth that every two loops ifis(G') are
K-equivalent.

First we establish large scale simple connectivity in the case of a free group.
Lemma 5.3.2. Let F' be a finitely generated free group. Th€g (F”) is large scale simply connected.

Proof. Lety be aloop inCs(F"). After acting oy by left translation, we may assume thgbasses through
1, so we may think ofy as a simplicial path i (F”) which starts and ends at id. 4f € S corresponds to

theith segment ofy, we obtain an expression

3132...571:1
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in ', where each; is a commutator. For eachleta;, b; € F be elements witlfu;, b;] = s; (note thata;, b;
with this property are not necessarily unique). Eebe a surface of genus, and leto;, 8; for i < n be a

standard basis far; (X); see Figure 5.1.

Figure 5.1: A standard basis fof (X) whereX has genud. Theq; curves are in red, and th# curves are
in blue.

Let X be a wedge of circles corresponding to free generatorB feo thatr, (X') = F. We can construct
a basepoint preserving mgp X — X with f.(«;) = a; and f.(5;) = b; for eachi. SinceX is aK(F, 1),
the homotopy class of is uniquely determined by the, b,.

Let ¢ be a (basepoint preserving) self-homeomorphisia.ofhe mapf o ¢: ¥ — X determines a new
loop in Cs(F") (also passing through) which we denotep. () (despite the notation, this image does not

depend only ony, but on the choice of elemenis, b; as above).

Sublemma 5.3.3. There is a universal constarit’” independent ofy or of ¢ (or even ofF) so that after

composingp by an inner automorphism af; () if necessaryy and¢. () as above ard{-equivalent.

Proof. Suppose we can expregsas a product of (basepoint preserving) automorphisms

¢ = o Pm_10-:-0¢1

such thatifa?, 3/ denote the images af;, 3; underg, op;_10---o¢,, theng,, , fixes all butk consecutive
pairsa?, 3/ up to (basepoint preserving) homotopy. ksét= [f.a?, f.3’], and lety? be the loop inC's (F”)
corresponding to the identity/ s}, - - - s7 = id in F.

For eachy, let supp_ ; denote thesupportof ¢, 1, i.e., the set of indicessuch thatj)jﬂ(a{) + a{ or
¢j+1(ﬁf) # Bf By hypothesis, supp, consists of at mosk’ indices for each.

Because it is just the marking ahwhich has been changed and notthenfiaif k <i < k+ K —11is
a maximal consecutive string of indices in supp then there is an equality of products

JoJ J _ Jt1 _g+1 j+1
SkSk41" " Skak—1 = St Sk41 " Skik—1

as elements of'. This can be seen geometrically as follows. The expression on the left is the image under
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f+« of an element represented by a certain embedded based lagminile the expression on the right is its
image underf, o ¢;41. The automorphisrp; . is represented by a homeomorphisnoivhose support is
contained in regions bounded by such loops. Hence the expressions are equal. It folloyisatigt’ 1
are2 K-equivalent.

So to prove the Sublemma it suffices to show that any automorphisircah be expressed (up to inner
automorphism) as a product of automorphisfpsvith the property above.

The hypothesis that we may compasby an inner automorphism means that we need only consider the
image of¢ in the mapping class group &F. It is well-known since Dehn [18] that the mapping class group of
a closed oriented surfadeof genusg is generated by twists in a finite standard set of curves, each of which

intersects at most two of the;, 5; essentially; see Figure 5.2.

N N
D) ®) @)@

Figure 5.2: A standard set 8fy — 1 simple curves, in yellow. Dehn twists in these curves generate the
mapping class group at.

So write¢ = 1175 - - - T, Where ther; are all standard generators. Now define

_— . . _1 ... _1
G;j =T1T2" - Tj-ATjTj " Ty

We have

GjQj—1 b1 =T1T2 T

Moreover, eachy; is a Dehn twist in a curve which is the image of a standard curve upidar- - - ¢, and
therefore intersects’ ', 37 ~! essentially for at most (consecutive) indices This completes the proof of

the Sublemma (and shows, in fact, that we can tiake 4). O

We now complete the proof of the Lemma. As observed by Stallings (see e.g. [57]), a nontrivial map
f: 2 — X from a closed, oriented surface to a wedge of circles factors (up to homotopy) thrpirgthan
the following sense. Makg transverse to some edgef X, and look at the preimadeof a regular value of
f in e. After homotoping inessential loops Bfoff e, we may assume that for some edgend some regular
value, the preimagE contains an embedded essential I6op

There are two cases to consider. In the first c&genonseparating. In this case, debe an automorphism

which takesa; to the free homotopy class of Then~ and ¢.(v) are K-equivalent by the Sublemma.
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However, sincef (§) is homotopically trivial inX, there is an identity¢..aq, ¢./51] = id and therefore.. ()
has lengthl shorter thany.

In the second case,is separating, and we can l¢te an automorphism which takes the free homotopy
class ofjas, 1] - - - [a;, B;] t0 6. Again, by the Sublemmay and¢. () are K-equivalent. But now., (v)
contains a subarc of lengthwith both endpoints at id, so we may write it as a product of two loops at id,
each of length shorter than thatof

By induction,y is K-equivalent to the trivial loop, and we are done. O

We are now in a position to prove our first main theorem.
Theorem 5.3.4. Let G be a finitely presented group. ThéR(G’) is large scale simply connected.

Proof. Let W be a smooth-manifold (with boundary) satisfying; (W) = G. If G = (T | R) is a finite
presentation, we can build” as a handlebody, with oriehandle, onel-handle for every generator if,

and one2-handle for every relation iR. If r; € R is a relation, letD; be the cocore of the corresponding
2-handle, so thaD; is a properly embedded disk i. LetVV C W be the union of thé@-handle and the
1-handles. Topologicallyy” is homotopy equivalent to a wedge of circles. By the definition of cocores, the
complement ofJ; D; in W deformation retracts t&". See e.g. [46], Chapter 1 for an introduction to handle
decompositions of-manifolds.

Given~y aloop inCs(G’), translate it by left multiplication so that it passes throdgls before, let2
be a closed oriented marked surface, gnd> — W a map representing.

Sinced is finitely presentedH,(G; Z) is finitely generated. Choose finitely many closed oriented sur-
facesSy, -, .S, in W which generatdd»(G;Z). Let K’ be the supremum of the genus of the We can
choose a basepoint on eagh and maps tdV which are basepoint preserving. By tubiRgepeatedly to
copies of theS; with either orientation, we obtain a new surface and rfiapX’ — W representing a loop
~" such thatf’(¥’) is null-homologous iV, and~’ is K’-equivalent toy (note thatK’ depends ot but
not on~y).

Put f/ in general position with respect to thig; by a homotopy. Sincg’(%’) is null-homologous, for
each proper dislD;, the signed intersection number vanishBs:n f/(¥') = 0. Hencef'(X) N D, = P; is
a finite, even number of points which can be partitioned into two sets of equal size corresponding to the local
intersection number of’ (X') with D; atp € P;.

Letp, ¢ € P, have opposite signs, and letbe an embedded path ip; from f/(p) to f'(¢q). Identifying
p and ¢ implicitly with their preimages in%’, let « and 3 be arcs inX’ from the basepoint tgf’)~!p
and (f")~1q. Sincey is contractible, there is a neighborhood;oin D; on which the normal bundle is
trivializable. Hence, sincg’(¥’) and D; are transverse, we can find a neighborh®bdf . in W disjoint

from the otherD;, and co-ordinates ofi satisfying

1. D;nU isthe plangz, y, 0, 0);
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2. uNU is theinterval(t, 0,0, 0) for t € [0, 1];
3. f/(¥") N U is the union of the plang$), 0, z, w) and(1,0, z, w).

Let A be the annulus consisting of poirts 0, cos(9), sin(#)) wheret € [0,1]. ThenA is disjoint from D;

and all the otheD, and we can tubg’(X’) with A to reduce the number of intersection pointg ') with

U, D;, at the cost of raising the genus byTechnically, we remove the diskg’) ~*(0, 0, s cos(), s sin(#))
and(f")~1(1,0, scos(f), ssin(f)) for s € [0,1] from X/, and sew in a new annulus which we map homeo-
morphically toA. The result isf”: ¥ — W with two fewer intersection points witty; D;. This has the
effect of adding a new (trivial) edge to the startdf which is the commutator of the elements represented
by the core ofA and the loopf’(«) * p * f'(5). Let~” denote this resulting loop, and observe thatis
1-equivalent toy’. After finitely many operations of this kind, we obtajfi’: X"/ — W corresponding to a
loop~”"” which ismax(1, K')-equivalent toy, such thatf”’ (") is disjoint fromu; D;.

After composing with a deformation retraction, we may assyffienaps:”’ into V. Let F = w1 (V),
and letp: F — G be the homomorphism induced by the inclusién— . There is a loopy/' in Cs(F")
corresponding tg”” such thaip. (v'") = 4" under the obvious simplicial map.: Cs(F') — Cs(G’). By
Lemma (5.3.2), the loop’" is K-equivalent to a trivial loop irC's(F’). Pushing forward the sequence of
intermediate loops by.. shows thaty’”’ is K-equivalent to a trivial loop irCs(G’). Sincey was arbitrary,

we are done. l

Remarks.3.5 A similar, though perhaps more combinatorial argument could be made working directly with

2-complexes in place of-manifolds.

In words, Theorem (5.3.4) says that fGra finitely presented group, all relations amongst the commuta-
tors of G are consequences of relations involving only boundedly many commutators.

The next example shows that the size of this bound depends on

Example5.3.6 Let X be a closed surface of gengsandG = 71 (X). If v is a loop inCs(G) through the
origin, andf: ¥’ — X is a corresponding map of a closed surface, then the homology cla¥sofrivial
unless the genus af’ is at least as big as that &f. Hence the loop itCs(G) of lengthg corresponding to

the relation in the “standard” presentationm@f X)) is not K-equivalent to the trivial loop whenevéf < g.

5.4 Hyperbolicity and Large Scale Geometry

In this section, we specialize to the case when the géigawvord-hyperbolic, or more generally, admits an

action on a hyperbolic graph. This hyperbolicity implies that the space of homogeneous quasimorphisms on
these groups is infinite dimensional, and quasimorphisms can be used to separate elements in the commutator
subgroup’. As a consequence, we show that in the Cayley gragptGG’), there exists a quasi-isometrically
embedded.”, for anyn € Z . Therefore, the grapfi's(G’) is no longer hyperbolic, with only one end and

its asymptotic dimension is infinite.
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5.4.1 Hyperbolic Groups

M. Gromov introduced the definition @F-hyperbolic spaces in [35]. This definition éfhyperbolicity is
so robust that it encapsulates many of the global features of the geometry of complete, simply connected

manifolds of negative curvature.

Definition 5.4.1 (Slim Triangle). Leté > 0. A geodesic triangle in a metric space is said ta+tsimif each
of its sides is contained in thieneighborhood of the union of the other two sides. A geodesic metric space

X is said to be)-hyperbolic if every geodesic triangle i is 6-slim.

Definition 5.4.2. A group G with a finite symmetric generating sétis o-hyperbolic if the corresponding
Cayley graphCr(G), with the path metric, ig-hyperbolic. A groupG is word-hyperbolicf there is some
d > 0 and a finite symmetric generating §efor which C(G) is §-hyperbolic.

Examples.4.3

1. Finitely generated free groups are word-hyperbolic. A geodesic metric spadeyerbolic if and

only if it is an R-tree. Thug7 is 0-hyperbolic if and only ifG is a free group of finite rank.

2. Let M be a closed Riemannian manifold with section curvature uniformly bounded above by a negative
number. Thenr; (M) is hyperbolic. In particular, the fundamental groups of compact surfaces with

x < 0 are hyperbolic.

Word-hyperbolic groups must be finitely presentable and the converse is almost true (in some probability
sense). Thus hyperbolic groups represent a very large class of groups, interesting to geometer.

A very important object in the study of hyperbolic spaces is the notion of quasi-geodesics.

Definition 5.4.4. Let X be a metric space. A\, k)-quasi-geodesits a (), k)-quasi-isometric embedding
o: | — X, where |l is an interval oR or of Z. In the case whend Z, we say that we have a quasi-geodesic

sequence.

We summarize some of the main properties of quasi-geodesics in hyperbolic spaces below (see [5] or [35]

for details):
Theorem 5.4.5. Let X be ad-hyperbolic geodesic metric space.

1. Morse Lemma. For every)\, k, there is a universal constait(d, A, k) such that every\, k)-quasi-

geodesic segment with endpoipty; € X lies in theC-neighborhood of any geodesic joinipgto

q.

2. Quasi-geodesic is local. For every\, k there is a universal constaut (4, A, k) such that every map
¢: R — X which restricts on each segment of lengthto a (), k)-quasi-geodesic is a (globally)

(2), 2k)-quasi-geodesic.
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3. Ideal Boundary. There is an ideal bounda§X functorially associated td, whose points consist
of quasi-geodesic rays up to the equivalence relation of being a finite Hausdorff distance apart. There
is a natural topology od X for which it is metrizable. If X is propef X is compact. Moreover, any

quasi-isometric embedding — Y between hyperbolic spaces induces a continuousdap- 9Y .

If G is hyperbolic, we denote the ideal boundary of its Cayley grapti®yAs a topological space, this
does not depend on the choice of a generating set, so we callideghEboundary(or just theboundary
of G. The left action ofG on itself induces an action @ on G by homeomorphisms. Every element
g € G is either finite order (i.e., is elliptic), or fixes two poini$ in G with “source-sink” dynamics (i.e is
hyperbolic).

A hyperbolic group= is callednon-elementarif 9G contains more than two (then uncountably infinitely
many) points. Klein’s ping-pong argument applied to the actiad oh dG shows that in this cas@ contains
many (quasi-isometrically embedded and quasi-convex) nonabelian free groups of arbitrary finite rank. On
the contrary, a hyperbolic groupétementaryf and only if it is virtually cyclic.

G acts on its Cayley graph on the left by isometriesXliis a geodesic metric space, andixes some
geodesid and acts on it as a translation, then the translation lengih ofg) = dx (¢, g(q)) for anyq € L.

For hyperbolic groups, we have the following Lemma:

Lemma 5.4.6 (Axes in hyperbolic Cayley graphs).Let G be 5-hyperbolic with respect to the generating
setT. Then there is a positive constafi{J, |T'|) such that every; € G either has finite order, or there is

somen < C such thaty™ fixes some bi-infinite geodesic akjsand acts on it by translation.

For a proof, see Theoreml from [27], or [5].

5.4.2 Generalized Counting Quasimorphisms

In this section, we introduce the generalizations of Brooks’ counting quasimorphisms, due to Epstein-Fujiwara
[27] and Fujiwara [30] [31] in general.

Let G be a group acting simplicially on&hyperbolic complexX (not assumed to be locally finite).

Definition 5.4.7. Let o be a finite oriented simplicial path ii¥, and lets—! denote the same path with the

opposite orientation. Aopyof ¢ is a translate - o wherea € G.

Definition 5.4.8. Let o be a finite oriented simplicial path i, and letp € X be a base vertex. For any
oriented simplicial path in X, let |y|, denote the maximal number of disjoint copiesso€ontained iry.

Givena € G, define

co(a) = d(p,a(p)) — igf(lengtf(v) — 1lo),

where the infimum is taken over all oriented simplicial paghis X from p to a(p).
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Define the (smallrounting quasimorphisrh, by the formula

he(a) = co(a) — cy-1(a).

For fixedp anda, a pathy is arealizing pathif it realizes the infimum of lengtty) — |y|,. Since the
value of this function on any is an integer, realizing paths always exist. Realizing paths have the following

universal geometric property.
Lemma 5.4.9 (Fujiwara[30]). Supposéength(c) > 2. Any realizing path for, is a (2, 4)-quasi-geodesic.

By bullet (1) from Theorem (5.4.5) (i.e., the “Morse Lemma”), there is a consf&ia such that any
realizing path for, from p to a(p) must be contained in th€-neighborhood of any geodesic between these

two points. In particular, we have the following consequence:

Lemma 5.4.10. There is a constanf’(§) such that for any patly in X of length at leas®, and for any
a € G, if the C-neighborhood of any geodesic frgnto a(p) does not contain a copy ef, thenc, (a) = 0.

Finally, the defect ofi,, is independent of the choice of

Lemma 5.4.11 (Fujiwara[30]). Leto be a path of length at leagt Then there is a constant(§) such that
D(hs) < C.

5.4.3 Quasi-isometrically Embedded.”

In this section, we prove the following theorem concerning the existence of (high-dimensional) flats in the

Cayley graph of a commutator subgroup. This is a joint work with D. Calegari.

Theorem 5.4.12.Let G be a non-elementary word-hyperbolic group afid(G’) the Cayley graph of the
commutator subgroup”’ with respect to the sef of commutators. LEL™ be the integral lattice iR™ with
the induced metric. Then for any € Z,, we have a map,,: Z" — Cgs(G’), which is a quasi-isometric

embedding.

This theorem can be regarded as an application of the follogépgration theorerabout counting quasi-

morphisms.

Theorem 5.4.13 (Calegari-Fujiwara[14]). Let G be a group which igi-hyperbolic with respect to some
symmetric generating sét. Leta be nontorsion, with no positive power conjugate to its inverseal et G
be a collection of elements witht = sup, 7(a;) finite. Suppose that for all nonzero integersn and all

b € GG and indices we have an inequality
al™ # ba"b .

Then there is a homogeneous quasimorphiss@(G) such that
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1. ¢(a) = 1andg(a;) = 0 for all ¢;

2. The defect satisfieB(¢) < C(0, |T|) (= + 1).

7(a)

Proof. By Lemma (5.4.6), after replacing eaehby a fixed power whose size depends onlydoand |T'|,
we can assume that eachacts as translation on some geodesic gxiSimilarly, let! be a geodesic axis for
a. Choose some bigy (to be determined), and letbe a fundamental domain for the actionadf onl. The
quasimorphisng will be a multiple of the homogenization &f,, normalized to satisfy(a) = 1. We need to
show that if NV is chosen sufficiently large, there are no copies of c~! contained in the&”-neighborhood
of anyl; orl~!, whereC is as in Lemma (5.4.10).

Suppose for the sake of argument that there is such a copy, amtiéethe midpoint ot. The segment
o is contained in a translatg!). The translation length of; onl; is 7(a;) < 7, and the translation length
of bab=! onb(l) is 7(a) (the case of ~! is similar and is omitted). For bigv, we can assume the length
of o is large compared t@(a) and(a;). Then for eachm which is small compared t&v, the element
wy, = a;ba™b"ta; tba""b~! satisfiesd(p, w, (p)) < 4C. Since there are less théfi|*“ elements in the

ball of radius4C about any point, eventually we must havg = w,, for distinctn, m. But this implies
aiba"bra; ba" "0 = a;ba™b " a; tha bt

and therefore,; ' andba™ b~ commute. Sincé is hyperbolic, commuting elements have powers which
are equal, contrary to the hypothesis that no conjugatehafs a power equal to a power @f

This contradiction implies that(a;) + |T|*“7(a) > N7(a). On the other handD(h,) is uniformly
bounded, by Lemma (5.4.11), ahgsatisfiesh, (a’¥") > n. Homogenizing and scaling by the appropriate

factor, we obtain the desired result. O

Proof of Theorem 5.4.12LetG be a non-elementany;hyperbolic group with respect to some symmet-

ric generating sef’. Then we can find a sequence of elementsgs, --- € G’ such that
1. g;'s are nontorsion;
2. g # bg; "b~1, for any nonzero positiver, n andb € G;
3. g # bggnb—l, for anyi # j, nonzerom,n andb € G.

If G'is a nonabelian free group, it's not difficult to see that such a sequence of elements @kidhigeneral,
G contains quasi-isometrically embedded, quasi-convex nonabelian free groups, and such elements can be
constructed accordingly. For more details, see Propositiarj2].

For any fixedn € Z, definep,,: Z" — Cs(G’) as follows:

Pn: 7z — C5(G@")

(k’177kn)|_> gflgi”
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Sinceg;'s € G, we havegf1 ... gk € G'. Thusp, is in fact a map fronZ" to the vertex set of the graph

Cs(G'). We need to estimate the distances between the vertices in the image of

1. (Upper Bound) Pick any two pointy,q € Z", sayp = (s1, - ,S,) andq = (t1,--- ,t,). The

distance irZ™ can be written as
dzn(p,q) = |81 — t1] + |82 — ta| + -+ + |8 — tnl,

which is the path metric o£™ with respect to the standard free generating set. Wifite) for the
metric inCs(G").

dlpn(p), pulq)) = d(gi" g5 gt - gh)

—s1 t1

cllg,* 97" 91" -9 )

Claim.

s —s1 t1 t"

gat g et g = (ga!) o (")

Where(gili)ci = Cigilici_l and‘ll| = |57 — tl‘

The proof of the claim is a direct computation. We substitute this expression into the formula and get

d(pn(®), pu(a) = cl(ga") - (02"))
< cl((ga")e) 4 el((g))
= clgn'")+ -+ +cl(g")
= |ln[cl(gn) + -+ [Llcl(g1)
< ALl A+ )

= A(|51_t1|+"'+‘3n_tn‘)

whereA = max; cl(g;), 1 < i < n. So we have the up bound

d(pn(p), pn(q)) < Adgn(p,q).

2. Lower Bound By Separation Theorem (5.4.13), there exist homogeneous quasimorphisms
1 < n, such thatbl(g]) = 51']', Whereél-j =1, if i = J and§ij =0, if 4 7é 7. Write D = max; D((j)l),
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1 <7 < n. Then we have

d(pn(p),pn(@)) = cl(gy™ g7 gt gl )
= cl((ga') - ("))

7D mlqz((n e (i) ) = (1)

1
(
1 . |
1
7D(¢:)

= D) [|ll||¢i(91)|+"'+|ln‘|q§i(gn)|7nD(¢i)]

|li] = nD(¢)
7D(¢;)

|l1‘ —nD
7D

v

foranyl < i < n.Write L = max; |l;/, 1 <4 < n. Then we have

nL > Z ;| = Z |si — ti| = dzn(p, q)-
i=1 i=1

So we obtain the lower bound

L —nD 1
7D~ TnD

d(pn(p), pn(q)) > dzn (p, q) —

n
=
Combining the two inequalities together, we have that for fixed Z, and any two pointg, ¢ € Z",

1

= dan (p,q) — % < d(pn(p), pn(q)) < Adzn(p,q)

where D, n and A are constants independent pfandq. Thusp,: Z" — Cgs(G’) is a quasi-isometric

embedding. O

Theorem (5.4.12) tells us that in the gra@h(G’), there exist a lot of flats with arbitrarily large dimen-

sions and we immediately have the following corollaries.

Corollary 5.4.14. LetG be a non-elementary, word-hyperbolic group aig G') the corresponding Cayley
graph of the commutator subgroup. Th€g(G’) is not (¢-)hyperbolic.

Proof. Z™ with the standard path metric is clearly delyperbolics since there are “parallel” quasi-geodesics
and the Hausdorff distances between them could be arbitrarily large, a contradiction to the bujl&tin
Therem (5.4.5) . Theorem (5.4.12) transports these “parallel” quasi-geodesi€%ifd), thusCs(G’) is

not d-hyperbolic. O

Corollary 5.4.15. LetG andCs(G’) be as above. Themsdin{Cs(G’)) =
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Proof. By Example (5.2.12), asdifii™) = n. Theorem (5.4.12) gives quasi-isometrically embeddedn
Cs(G") for anyn, so by Proposition (5.2.11),

asdim(Cs(G")) > asdim(p,,(Z")) = asdimZ"™) = n

for anyn. Thus asdinfiCs(G")) = cc. O

Theorem (5.4.12) is still true in a more general setting. To state the general case, we need to introduce
some terminology first. All definitions below are from [2].

Let X be a path connected graph with the path metricSupposg X, d) is §-hyperbolic. LetG be a
discrete group, acting o simplicially and isometrically. An isometry € G of X is calledhyperbolicif it

admits an invariant bi-infinite quasi-geodesic and we will refer to it gsasi-axis

Definition 5.4.16. We say the action aff on X satisfieaNPD (weak proper discontinuity) if
1. G is not virtually cyclic;
2. GG contains at least one element that actsXoas a hyperbolic isometry;

3. For every hyperbolic elemeptc G, everyx € X, and every > 0, there existsV > 0 such that the
set
{heGd(z,h(z) < ¢ dg"(x),hg"(x)) < ¢}

is finite.
Then we can state the general theorem.

Theorem 5.4.17.Let G be a group, and= acts simplicially on aj-hyperbolic graphX by isometries.
Suppose the action satisfies WPD. Then for any Z, , we have a map,,: Z" — Cg(G’), which is a

guasi-isometric embedding.
And similarly we have the corollary.
Corollary 5.4.18. LetG be a group as above, thens(G’) is noté-hyperbolic, andasdin{C's(G’)) = oo.

We omit the proofs since they are exactly the same as those in Theorem (5.4.12) and Corollary (5.4.14)
and (5.4.15).

The main application of Theorem (5.4.17) is to the action of mapping class groups on curve complexes.
Let S be a compact orientable surface of geguandp punctures. We consider the associated mapping
class group MCGS) of S. This group acts on the curve compl€xS) of S defined by Harvey [41] and
successfully used in the study of mapping class groups by Harer [40] [39] and by Ivanov [43] [44]. For our
purpose, we restrict to thieskeleton of the curve complex, so tiHtS) is a graph whose vertices are isotopy

classes of essential, non-parallel, non-peripheral, pairwise disjoint simple closed cut\vesdriwo distinct
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vertices are joined by an edge if the corresponding curve system can be realized simultaneously by pairwise
disjoint curves. In certain sporadic cas€$S) as defined above &-dimensional or empty (for example,
wheng =0,p <4 org =1,p < 1) and in the theorems below, these cases are excluded. The mapping class
group MCQS) acts onC(S) by f - a = f(a).

H. Masur and Y. Minsky [53] proved the following remarkable result.

Theorem 5.4.19.The curve compleg(S) is d-hyperbolic. An element dICG(.S) acts hyperbolically on

C(S) if and only if it is pseudo-Anosov.
In [2], Bestvina and Fujiwara study the action of MGG on the curve compleg(.S) and show that

Theorem 5.4.20.Let S be a non-sporadic surface. Then the actiotMG(.S) on the curve compleR(S)
satisfies WPD.

Combine 5.4.17, 5.4.18, 5.4.19 and 5.4.20 together, we have the following corollary.

Corollary 5.4.21. Let S be a non-sporadic surface. Then for amye Z, there exists quasi-isometrically
embedded” in the Cayley graph of the commutator subgratip(MCG(S)’). ThusCs(MCG(S)’) is not

0-hyperbolic and has infinite asymptotic dimension.

Corolary (5.4.21) is especially interesting in the case whéa closed orientable surface of gegus 3.
In this case, MC@S) is perfect ([56]), i.e., MCGS)' = MCG(S). SoCs(MCG(S)) = Cs(MCG(S)) is

the Cayley graph of MC®) itself with respect to a canoncial infinite generating set.

5.4.4 Large Scale Connectivity at Infinity

In this last section, we continue our study of large scale geometry of a commutator subgroup and show
that whenG is a non-elementary word-hyperbolic group or admits an action on a hyperbolic graph, the
corresponding Cayley graph of the commutator subg@yf=") has only one end. This is a joint work with
D. Calegari [15].

Again we only state and prove the case whi&is a non-elementary word-hyperbolic group and the proof

for the general case is the same.

Theorem 5.4.22.Let G be a non-elementary word-hyperbolic group. ThHen(G’) is one-ended; i.e., for
anyr > 0 there is anR > r such that any two points ié's(G’) at distance at leasR from 1 can be joined

by a path which does not come closer than distant®id.

We can use Theorem (5.4.12) to give a heuristic proof. For@ahye G’, we construct an element
a € G’ with cl(a) > cl(g),cl(h) such thaty anda are “independent”, meaning they have no powers
which are conjugate to each other. And so aranda. Then by the proof of Theorem (5.4.12), we have

quasi-isometrically embeddeétf’s, generated by g, a} and{h,a} respectively. Use these tvi&?*'s to find
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paths fromg to a and froma to h, which are far away from. Then we are done. In the following, we

give a direct proof, and the main tool is still to use counting quasimorphisms to obtain lower bounds for
commutator lengths. The proof also gives us the picture of the local structure of the lattice constructed in
Theorem (5.4.12)

Lemma 5.4.23. Let G be a non-elementary word-hyperbolic group. kebe a finite collection of elements

of G. There is a commutator € G’ and a quasimorphism on GG with the following properties:
1. |¢(g:)| = 0forall ¢;
2. |p(s™) — n| < K for all n, whereK] is a constant which depends only 6
3. D(¢) < K, whereK is a constant which depends only 6n

Proof. Fix a finite generating séf so thatC'r(G) is d-hyperbolic. There is a constant such that for any
nonzerog € G, the powerg” fixes an axis, (Lemma (5.4.6)). Sincé&' is non-elementary, it contains
guasi-isometrically embedded copies of free groups of any fixed rank. So we can find a commutator
whose translation length (i6'7(G)) is as big as desired. In particular, given - - - , g;, we chooses with
7(s) > 7(g;) for all i. Let! be a geodesic axis for'¥, and letc be a fundamental domain for the action
of s onl. Since|o| = N7(s) > 7(g;), Lemma (5.4.10) implies that there are no copies @f o1 in a
realizing path for any;;. Henceh,(g;) = 0 for all ;. By Lemma (5.4.11)D(h,) < K (). It remains to
estimateh,, (s™).

The argument of the Separation Theorem (5.4.13) shows that &ufficiently large (depending only on
G and not ons) no copies ofr—! are contained in any realizing path fgt with » positive, and therefore
|ho(s™) — |n/N || is bounded by a constant depending only@nThe quasimorphismd = N - h, has the

desired properties. O
We now give the proof of Theorem (5.4.22).

Proof. Let g,h € G’ have commutator length at leaBt Letg = sysy---s, andh = tity---t,, Where
n,m > R are equal to the commutator lengthsgoind i respectively, and each}, ¢; is a commutator in
G. Let s be a commutator with the properties described in Lemma (5.4.23) with respect to the elgments
that is, we wang for which there is a quasimorphisghwith ¢(g) = ¢(h) = 0, with |¢(s™) —n| < K; for
all n, and withD(¢) < Ks. Let N > R be very large. We build a path ifis(G’) from g to h out of four
segments, none of which come too close to id.

The first segment is

g,gS,gSQ,gSB, T vgsN'

Sinces is a commutatord(gs’,id) > R — i for anyi. On the other hand,

d(gs') = d(g) + ¢(s") — D(¢) > i — Ky — K,
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whereK, K, are as in Lemma (5.4.23) (and do not depend 0on s). We can estimate

PN #(gs’) _ i— Ky — K,
d(gs',id) = cl(gs') > D) > R

Henced(gs?,id) > R/14K, — (K1 + K3) /7K, for all i, so providingR >> K, K», the pathys’ never gets
too close to id.
The second segment is

gSN:8182-~-SnSN,82-~-SnSN,--- 7sN.

Note that consecutive elements in this segment are distaapart inCs(G’). Sinced(gs”™,id) > (N —

K, — K1)/7TK3 > Rfor N sufficiently large, we have

for all 5.

The third segment is

N

S 7tm5N; tm—ltmsN; e at1t2 te thN = hSN

)

and the fourth is

hs™ hsV7L, ... hs,h.

For the same reason as above, neither of these segments gets too close to id. This completes the proof of the
theorem, taking = R/14K5 — (K1 + K»)/7K>. O
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