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Abstract

Let G be a group andG′ its commutator subgroup. Commutator length (cl) and stable commutator length

(scl) are naturally defined concepts for elements ofG′. We study cl and scl for two classes of groups. First,

we compute scl in generalized Thompson’s groups and their central extensions. As a consequence, we find

examples of finitely presented groups in which scl takes irrational (in fact, transcendental) values. Second,

we study large scale geometry of the Cayley graphCS(G′) of a commutator subgroupG′ with respect to

the canonical generating setS of all commutators. WhenG is a non-elementaryδ-hyperbolic group, we

prove that there exists a quasi-isometrically embeddedZn in CS(G′), for eachn ∈ Z+. Thus this graph is

not δ-hyperbolic, has infinite asymptotic dimension, and has only one end. For a general finitely presented

group, we show that this graphCS(G′) is large scale simply connected.
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Chapter 1

Introduction

Let G be a group andG′ = [G, G] its commutator subgroup. Elements ofG′ are products of commutators.

Thecommutator length(denoted cl) of an elementg ∈ G′ is defined to be the least number of commutators

whose products equalsg. The stable commutator length(denoted scl) ofg is the stabilized commutator

length, i.e., the limit of cl(gn)/n, asn → ∞. cl and scl have been studied not only in group theory, but

also in topology, usually as genus norms. In the later case, there are two geometric approaches. The first

is to use the topological definitions of cl and scl directly. In this approach, one essentially studies maps of

surfaces (with boundaries) into spaces and tries to find the “simplest” one among them. The second approach

comes from the deep connection of scl with bounded group cohomology. The main tool in this direction

is the concept of (homogeneous) quasimorphisms. Quasimorphisms are homomorphisms up to bounded

errors, and, surprisingly, many important invariants from geometry and dynamical systems can be regarded

as quasimorphisms. The connection between scl and quasimorphisms comes fromBavard’s Duality Theorem,

which states that the set of all homogeneous quasimorphisms determines scl. One can also obtain nontrivial

estimates of cl from quasimorphisms.

The purpose of this paper is to study arithmetic and geometric properties of cl and scl. We adopt the

second approach via quasimorphisms. We study two classes of finitely generated groups which have different

spaces of homogeneous quasimorphisms. The first class of groups isgeneralized Thompson’s groupsand their

central extensions. Elements in these groups can be interpreted as automorphisms of the unit circle or the

real line. We prove that the spaces of homogeneous quasimorphisms of these groups have finite dimensions

(in fact0 or 1), and when the dimension is1, the only nontrivial (normalized) homogeneous quasimorphism

is given by therotation quasimorphism. Thus the computation of scl is reduced to that of rotation numbers.

As a consequence, we have the following irrationality theorem:

Theorem A ([60]). There are finitely presented groups, in whichscl takes irrational (in fact, transcendental)

values.

In contrast to this irrationality theorem, D. Calegari [12] shows that scl takes only rational values in free

groups. In general geometric settings, scl, viewed as a relative genus norm, is expected to take only rational
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values. Calegari’s computation in free groups and Thurston’s norm in3-dimensional topology give important

evidence of this. Our examples from generalized Thompson’s groups display a totally different phenomenon.

The second class of groups are hyperbolic groups. In contrast to the first class of groups considered above,

the spaces of homogeneous quasimorphisms of these groups are infinite dimensional, which has many geo-

metric interpretations. One is through the notion of bounded cohomology, which says that the2nd bounded

cohomology (withR-coefficients) of a hyperbolic group is infinite dimensional. In this paper, we give another

interpretation through thelarge scale geometryof commutator subgroups. LetS be the set of all commuta-

tors, which form a canonical generating set forG′. Let CS(G′) be theCayley graphof G′ with respect toS,

meaning the vertices ofCS(G′) are elements inG′, and two elementsg1 andg2 are connected by an edge

if g−1
1 g2 is in S. By identifying each edge with the unit interval (with length1), CS(G′) becomes a metric

space, on whichG′ acts by isometries. Then cl is the path metric in this graph and scl equals the translation

length of this action. Cayley graphs are the most studied objects in geometric group theory, and we are in-

terested in the large scale geometry of these graphs, i.e., those properties invariant underquasi-isometries.

Roughly speaking, under quasi-isometries, we throw away local structures and only focus on large scale (or

long range) properties of metric spaces. In the case of the Cayley graph of a commutator subgroup, we prove

that

Theorem B. Let G be a non-elementary word-hyperbolic group andZn the integral lattice inRn with the

induced metric. Then, for anyn ∈ Z+, we have a mapρn : Zn → CS(G′), which is a quasi-isometric

embedding.

The proof implies that the geometry ofCS(G′) should be non-negatively curved and shows the existence

of flats (zero curved subsets) of arbitrarily large dimensions. It usescounting quasimorphisms, constructed

by R. Brooks [6] in free groups and Epstein-Fujiwara [27] in general hyperbolic groups. As a corollary of

this theorem, we have

Corollary C. LetG be a non-elementary word-hyperbolic group. Then we have

1. CS(G′) is notδ-hyperbolic;

2. asdim(CS(G′)) = ∞;

3. CS(G′) is one-ended, i.e.,CS(G′) is connected at infinity.

For a general group, we study the large scale topology of this graph and show that

Theorem D ([15]). LetG be a finitely presented group. ThenCS(G′) is large scale simply connected.

Theorem B, Corollary C and Theorem D are joint work with D. Calegari.

The next two preliminary chapters summarize the basic theory of cl and scl. Here we emphasize the

geometric nature of these two notions. We give topological definitions and show the connection with group
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cohomology and quasimorphisms, which leads to a sketch of the proof of Bavard’s Duality Theorem. In

Chapter4, we study generalized Thompson’s groups. Two main ingredients here are M. Stein’s work [58]

on the homology of generalized Thompson’s groups and I. Liousse’s work [51] on the values of rotation

numbers in these groups. We give detailed accounts of these works and deduce useful information for the

computation of scl. Theorem A is proved at the end of this chapter. In the last chapter, we study the large

scale geometry of the Cayley graph of a commutator subgroup. We give a brief overview of the large scale

geometry of metric spaces, word-hyperbolic groups and counting quasimorphisms, and prove Theorem B,

Corollary C and Theorem D. Both Theorem B and Corollary C can be extended to more general classes of

groups, including mapping class groups of oriented surfaces. We state the corresponding theorems at the end.



4
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Chapter 2

Commutator Length

In this chapter, we introduce the notion of commutator length. Commutator length is an algebraic invariant of

elements in groups. It’s related to the topological concept of the genus of a surface . We are going to explore

this connection through the theory of group (co)homology. At the end, we give examples, exemplifying

the computations of commutator length in various groups, which are important in geometry and dynamical

systems.

2.1 Definitions of Commutator Length

Let G be a group. An elementa ∈ G is a commutator if there existb, c ∈ G, such thata = [b, c] = bcb−1c−1.

Let G′ = [G,G] denote the normal subgroup ofG which is generated by commutators. We callG′ the

commutator subgroup ofG and they fit into a short exact sequence

1 −→ G′ −→ G −→ G/G′ −→ 0.

The quotient groupG/G′ is, by its construction, the largest abelian quotient group ofG and whenG is finitely

generated, this abelian quotient group is well understood by the classification theorem of finitely generated

abelian groups. So in principle, to studyG, we only need to understand the commutator subgroupG′ andG′

contains all the information lost in the quotient process. A natural measure of complexity for the elements in

G′ is the notion ofcommutator length.

Definition 2.1.1. Let G be a group anda ∈ G′. Thecommutator lengthof a, denoted cl(a), is the smallest

number of commutators whose product is equal toa, i.e.,

cl(a) = min{ n | a = [b1, c1] · · · [bn, cn], bi, ci ∈ G }.

Set cl(a) = ∞ if a is not an element inG′.

Commutator length could also be defined topologically. LetX be a topological space andG = π1(X, ∗)
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(∗ is the base point). An elementγ ∈ π1(X, ∗) can be represented by a mapf : (S1, ∗) → (X, ∗). Since

commutator length takes the same value in a conjugacy class, we only need to consider the conjugacy class

of γ, which can be interpreted as the free homotopy class of the mapf : S1 → X. From now on, we sayγ

is represented by a looplγ , the image of the mapf in X without the base point. Ifγ is an element in the

commutator subgroupG′, we can write

γ = [α1, β1][α2, β2] · · · [αg, βg].

Let S be an oriented surface of genusg with one boundary component.S is obtained from a(4g + 1)-gon

P by identifying edges in pairs and the edges ofP are labelled bya1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g c−1. Choose

the loops inX representingγ, αi, βi, 1 ≤ i ≤ g and leth : ∂P → X be defined by sending edges ofP

to those loops inX by ai → αi, bi → βi and the free edgec to γ. By the construction,h factors through

the quotient map∂P → S induced by gluing up all but one of the edges. Moreover, by hypothesis,h(∂P )

represents[α1, β1] · · · [αg, βg]γ−1 = 1 in π1(X). Henceh can be extended to a maph : S → X, sending∂S

to γ. Therefore a loop, corresponding to an element in[π1(X), π1(X)], bounds a map of an oriented surface

into X and the number of commutators needed in the product is the genus of the surface. In this language,

commutator length has the following equivalent definition

Definition 2.1.2. Let X be a topological space andG = π1(X). Givenγ ∈ [π1(X), π1(X)], we have

cl(γ) = min
S∈Λ

{ genus(S) },

whereΛ = {h : S → X} andS is an oriented surface with one boundary component such thath(∂S) ⊂ γ

and[h(∂S)] = ±[γ] in H1(γ,Z).

If a loop γ bounds an oriented surface inX, then [γ], regarded as a dimension-1 homological class,

represents the trivial element inH1(X) = π1(X)/[π1(X), π1(X)]. The commutator length ofγ measures

the complexity of this triviality on the level of homology.

2.2 Group Homology and Commutator Length

In this section, we study the connection between commutator length and the theory of group (co)homology.

The (co)homology theory of groups arose from both topological and algebraic sources. We briefly introduce

the theory from both points of view and give a very rough interpretation of commutator length as a norm

related to the homology of a group.

Definition 2.2.1. LetG be a group. A CW-complexY is called anEilenberg-Maclane complexof type(G, 1)

if Y satisfies the following conditions:

1. Y is connected;
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2. π1(Y ) ∼= G;

3. The universal cover̃Y of Y is contractible. Or equivalentlyHi(Ỹ ) = 0 for i ≥ 2, or πi(Ỹ ) = 0 for

i ≥ 2.

By Hurewicz’s theorem, the homotopy type ofY is determined byG = π1(Y ), and we denote it by

K(G, 1). For any groupG, we can construct such a complex. Thus we have

Definition 2.2.2. Let G be a group. The homology ofG with Z-coefficients is defined to be the homology of

the correspondingK(G, 1), i.e.,

H∗(G,Z) = H∗(K(G, 1),Z).

The homology of a group can also be defined using thebar complex.

Definition 2.2.3. Let G be a group. Thebar complexC∗(G) is the complex generated in dimensionn by

n-tuples(g1, g2, . . . , gn) with gi ∈ G. The boundary map∂ is defined by the formula

∂(g1, . . . , gn) = (g2, . . . , gn) +
n−1∑

i=1

(−1)i(g1, . . . , gigi+1, . . . , gn) + (−1)n(g1, . . . , gn−1).

With a coefficient groupR (= Z,Q, orR), define the homology of the groupG with coefficients inR to

beH∗(C∗(G)⊗R).

All n-tuples(g1, g2, . . . , gn), gi ∈ G form a canonical basis for then-dimensional chain groupCn(G),

and we have the canonical inclusionsC∗(G,Z) ↪→ C∗(G,Q) ↪→ C∗(G,R). From now on, we’ll only useR

as the coefficient group, and the elements inC∗(G,Z) or C∗(G,Q) will be called integral or rational chains.

Let [c] be a homology class inHi(G,R). We can writec =
∑

riσi ∈ Ci(G,R), ri ∈ R, as a chain

representative of[c]. Define

‖ c ‖1=
∑

i

|ri|.

Definition 2.2.4. The (Gromov)L1-norm of[c] ∈ Hi(G) is defined by

‖ [c] ‖1= inf
c
‖ c ‖1,

wherec ranges over all chain representatives of[c] in Ci(G).

Denote the cycles and the boundaries withR-coefficients byZ∗(G) andB∗(G) respectively. Then we

have, in dimension2, a short exact sequence

0 −→ Z2(G) i−→C2(G) ∂−→B1(G) −→ 0.

The usualL1-norm onC2(G) induces a quotient norm onB1(G).
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Definition 2.2.5. Let a ∈ B1(G). The (Gersten) boundary norm ofa, denoted‖ a ‖B , is defined by

‖ a ‖B = inf
A∈C2(G),∂A=a

‖ A ‖1 .

The groupG includes as a canonical basis inC1(G). If a is an element inG′, then the image ofa in

C1(G) lies inB1(G). In fact,a ∈ G′ implies thata, thought of as a loop, bounds an oriented surface with one

boundary component. A one-vertex triangulation of this surface, with the only vertex on the boundary, gives

an expression ofa as an element inB1(G). For example, ifa = [x, y], we have∂((xyx−1, x)+([x, y], y)−
(x, y)) = [x, y]. Recall the topological definition of commutator length, which gives an interpretation of cl

as a measure of complexity among all the surfaces witha as the only boundary component. It’s not difficult

to see, through counting the number of triangles, that ifa ∈ [G,G],

‖ a ‖B≤ 4cl(a)− 1.

It’s not clear whether there exists an inequality in the opposite direction. And one way to overcome

this difficulty is to “stabilize” both the boundary norm and commutator length, which will give an equality

between them. Roughly speaking, we need to identifygn

n andg for anyg and consider the boundary norm

under this identification. InChapter2, we will explore this idea and study stable commutator length.

2.3 Computations of Commutator Length

In this section, we do computations of commutator length. Some of the groups are the special examples of

more general classes of groups we are going to study in the following chapters.

2.3.1 Commutator length in free groups. Commutator length in free groups has been studied by

many people. C. C. Edmunds in [22] [23] first showed that there exists an effective procedure for comput-

ing commutator length in free groups. M. Culler, using surface theory, also worked out an algorithm for

computing commutator length, which we will describe below. See [17] for more details.

Let Tn be an orientable surface of genusn with one boundary component. LetΓr be the wedge product

of r circles, then the fundamental group ofΓr is free onr generators. So questions about commutator length

in a free group translate into questions about maps fromTn to Γr. M. Culler shows that ifw ∈ [Fr, Fr] has

commutator lengthn andf : Tn → Γr is any map such thatf(∂Tn) representsw, thenf is homotopic to a

“tight” map. Supposew is written as a reduced word, then each “tight” map gives a “pairing” of the letters in

w. Conversely, given a “pairing” of the letters inw, we can construct a unique (up to homotopy) “tight” map

and the genus of the surface can be read from the combinatorial information of the “pairing”.

Example2.3.1.
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1. If a1, b1, · · · , an, bn are elements of a basis of a free group, then we have

cl([a1, b1] · · · [an, bn]) = n.

2. If a, b are basis elements in a free group, then

cl([a, b]n) = bn
2
c+ 1.

And we also obtain interesting commutator identities, for example

[a, b]3 = [aba−1, b−1aba−2][b−1ab, b2].

2.3.2 Commutator length inHomeo+(S1). Let Homeo+(S1) be the group of orientation-preserving

homeomorphisms of the circle. Every element in Homeo+(S1) can be written as a product of two elements

both of which have a fixed point. And a homeomorphism in Homeo+(S1) with a fixed point can be written as

a commutator. (In fact, such an element is conjugate to its square.) So cl≤ 2 in Homeo+(S1). Furthermore,

one can show that cl≤ 1 in Homeo+(S1). See [25] for more details.

2.3.3 Knots in3-sphere. A knot γ is an embedding:γ : S1 → S3. A Seifert surfacefor a knotγ is

a connected, two-sided, compact embedded surfaceΣ ⊆ S3 with ∂Σ = γ. Define thegenusof a knotγ,

denotedg(γ), to be the least genus of all its Seifert surfaces. It follows from a deep theorem of D. Gabai [33]

thatg(γ) = cl(γ), whereγ is regarded as an element inπ1(S3\N(γ)) andN(γ) is an open neighborhood of

γ. Genus of a knot is a very important knot invariant.

2.3.4 Commutator length in mapping class groups. Mapping class group is a fundamental object

in 2-dimensional topology. See [4] and [28] for more details.

Definition 2.3.2. Let S be an oriented surface (possibly punctured). Themapping class groupof S, denoted

MCG(S), is the group of isotopy classes of orientation-preserving self-homeomorphisms ofS.

MCG(S) is finitely presentable and its generating set can be chosen from a special class of elements,

called Dehn twists.

Definition 2.3.3. Let γ be an essential simple closed curve inS. A right-handedDehn twistin γ is the

maptγ : S → S supported on an annulus neighborhoodγ × [0, 1] which takes each curveγ × t to itself by

a positive twist through a fractiont of its length. If the annulus is parameterized asR/Z × [0, 1], then in

coordinates, the map is given by(θ, t) → (θ + t, t).

M. Korkmaz has the following interesting computation about commutator length in MCG(S).
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Theorem 2.3.4 ([47]). Leta ∈ MCG(S) be a Dehn twist in a nonseparating closed curve. Thena10 can be

written as a product of two commutators, i.e.,cl(a10) ≤ 2.
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Chapter 3

Stable Commutator Length

In this chapter, we continue the study of group (co)homology and define stable commutator length both al-

gebraically and topogically. A very important tool in the study of stable commutator length is the notion of

(homogeneous) quasimorphisms. We sketch the proof of Bavard’s theorem (3.2.10), which shows the duality

between stable commutator length and homogeneous quasimorphisms. At the end, we give the explicit con-

structions of quasimorphisms in Homeo+(S1) and free groups. These quasimorphisms will play important

roles in the next two chapters.

3.1 Definitions of Stable Commutator Length

Definition 3.1.1. Let G be a group anda ∈ G. Thestable commutator lengthof a, denoted scl(a), is the

following limit

scl(a) = lim
n→∞

cl(an)
n

.

Set scl(a) = ∞, if no power ofa is in [G,G].

Commutator length cl clearly has the subadditive property, i.e., cl(am+n) ≤ cl(am) + cl(an). Then the

existence of the limit in the definition follows from the lemma below.

Lemma 3.1.2. If am+n ≤ am+an+L, for all m,n ∈ N and some fixedL, thenlimn→∞ an/n ∈ R∪{−∞}
exists.

Proof. Suppose

lim inf
n→∞

an

n
< b < c,

then there existsn, n > 2L
c−b such thatan

n < b. For sufficiently largel, l > n, l(c− b) > 2maxr<n an, write

l = nk + r, 0 < r < n, and

al

l
≤ kan + ar + kL

l
≤ an

n
+

ar

l
+

L

n
≤ b +

c− b

2
+

c− b

2
= c.
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Thuslim supn→∞ an/n = lim infn→∞ an/n, and the limit exists.

Remark3.1.3. cl and scl are invariant under the action of Aut(G), where Aut(G) is the group of automor-

phisms ofG. In particular, they are conjugacy invariant.

Stable commutator length also has a topological description. LetG ∼= π1(X) andγ is a loop inX,

representing the conjugacy class of an elementa ∈ G. One easily sees, from the topological definition of

cl, that scl(a) equals the infimum of genus(S)/n(S), whereS is a connected, oriented surface with only one

boundary component andS admits a map intoX with ∂S wrapping aroundγ n(S) times. One deficiency

of this definition is that this infimum will never be achieved. For any such surfaceS with one boundary

component, we can pass to finite covers ofS and genus(S)/n(S) can be reduced to−χ(S)
2n(S) , whereχ(S) is

the Euler characteristic ofS. Therefore we have the following alternative topological definition for stable

commutator length.

Let G,X, a, γ be as above. Given a compact, oriented, not necessarily connected surfaceS, define

−χ−(S) to be the sum ofmax(−χ, 0) over all components ofS. Given a mapf : S → X, taking∂S → γ,

definen(s) to be the sum, over all components of∂S, of the degree of the mapf |∂S , i.e.,f∗[∂S] = n(S)[γ],

where[γ] is the generator ofH1(γ,Z).

Proposition and Definition 3.1.4 ([9]). LetG = π1(X) andγ ⊂ X a loop representing the conjugacy class

of a ∈ G. Then

scl(a) = inf
S

−χ−(S)
2n(S)

,

where the infimum is taken over all mapsf : (S, ∂S) → (X, γ).

Definition 3.1.5. A surfaceS, admitting a mapf : (S, ∂S) → (X, γ) which realizes the infimum of−χ−(S)
2n(S) ,

is said to be extremal.

Example3.1.6.

1. If a, b are basis elements in a free group, by Example (2.3.1), we have

scl([a, b]) = lim
n→∞

bn
2 c+ 1

n
=

1
2
.

2. In Homeo+(S1), cl is bounded (≤ 1). So by definition, scl≡ 0.

3. In mapping class groups, interesting lower bounds of scl can be obtained using gauge theory.

Theorem3.1.7(Endo-Kotschick [26], Kotschick [48]).Let S be a closed orientable surface of genus

g ≥ 2. If a ∈ MCG(S) is the product ofk right-handed Dehn twists along essential disjoint simple

closed curvesγ1, · · · , γk, then

scl(a) ≥ k

6(3g − 1)
.
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Theorem3.1.8(Kotschick). If t is a Dehn twist along a non-separating curve in a closed orientable

surface of genusg, there is an estimatescl(t) = O( 1
g ).

3.2 Quasimorphisms and Bavard’s Duality Theorem

In this section, we introduce the notion of quasimorphisms. Quasimorphisms are related to our study of

stable commutator length by Bavard’s duality theorem. In fact the content of this paper is the application

of quasimorphisms and Bavard’s theorem to the study of commutator subgroups, and this section is the

foundation of the whole paper.

3.2.1 Definition of Quasimorphisms

Definition 3.2.1. Let G be a group. AquasimorphismonG is a function

φ : G → R,

for which there is a constantD(φ) ≥ 0 such that for anya, b ∈ G, we have an inequality

|φ(a) + φ(b)− φ(ab)| ≤ D(φ).

In other words, a quasimorphism is like a homomorphism up to a bounded error. The least constantD(φ)

with this property is called thedefectof φ.

Definition 3.2.2. A quasimorphism ishomogeneousif it satisfies the additional property

φ(an) = nφ(a)

for all a ∈ G andn ∈ Z.

Remark3.2.3. D(φ) = 0 if and only if φ is a homomorphism, i.e.,φ ∈ Hom(G,R). And it’s not difficult to

see that a homogeneous quasimorphism is a class function.

Denote the sets of quasimorphisms and homogeneous quasimorphisms byQ̂(G) andQ(G) respectively.

Givenφ ∈ Q̂(G), we can homogenize it to obtain a homogeneous quasimorphism.

Lemma 3.2.4 ([9]). φ ∈ Q̂(G) with D(φ). Then for anya ∈ G, the limit

φ(a) = lim
n→∞

φ(an)
n

exists, and thus defines a homogeneous quasimorphism. Furthermore, we haveD(φ) ≤ 4D(φ).
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3.2.2 Bounded Cohomology and Bavard’s Duality Theorem

We defined bar complexC∗(G,R) and used it to define the homology of a groupG. Let C∗(G,R) =

Hom(C∗(G),R) be the dual chain complex andδ the adjoint of∂. The homology group of(C∗(G,R), δ) is

called the cohomology group ofG with coefficients inR and is denotedH∗(G,R).

The chain groupC∗(G) has a canonical basis, consisting of alln-tuples(g1, · · · , gn), gi ∈ G, in dimen-

sionn. A cochainα ∈ Cn(G,R) is called bounded if

sup |α(g1, · · · , gn)| < ∞,

where the supremum is taken over alln-tuples. This supremum is called theL∞-norm ofα, and is denoted

‖ α ‖∞. The set of all bounded cochains forms a subcomplexC∗b (G,R) and its homology is the so-called

bounded cohomologyof G and is denotedH∗
b (G). ‖ · ‖∞ induces a (pseudo)norm onH∗

b (G) defined as

follows: if [α] ∈ H∗
b (G) is a bounded cohomology class, set‖ [α] ‖∞= inf ‖ σ ‖∞, where the infimum is

taken over all bounded cocyclesσ in the class of[α].

Let’s see what these definitions mean in low dimensions. A dimension-1 cochainφ ∈ C1(G) is just a

real-valued function fromG toR andφ is a cocycle if and only ifδφ = 0. By the definition of the coboundary

map,

δφ(a, b) = φ(a) + φ(b)− φ(ab).

Thusφ is a cocycle if and only ifφ is a homomorphism andH1(G,R) can be identified with Hom(G,R).

Since any nontrivial homomorphism fromG to R is unbounded, it’s immediate thatH1
b (G,R) = 0 for any

groupG.

Supposeφ is a quasimorphism defined above, then

|δφ(a, b)| = |φ(a) + φ(b)− φ(ab)| ≤ D(φ),

for anya, b ∈ G. Thusδφ is by definition a bounded2-cochain, i.e.,δφ ∈ C2
b (G,R) and‖ δφ ‖∞= D(φ).

Sinceδφ is obviously a cocycle, we get that the image of the coboundary map of a quasimorphism is a

bounded dimension-2 cocycle. Furthermore, we have

Theorem 3.2.5 ([9]). There is an exact sequence

0 −→ H1(G,R) −→ Q(G) δ−→H2
b (G,R) → H2(G,R).

Proof. Consider the short exact sequence of cochain complexes

0 −→ C∗b −→ C∗ −→ C∗/C∗b −→ 0,
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and the associated long exact sequence of cohomology groups. We get an exact sequence

0 = H1
b (G,R) −→ H1(G,R) −→ H1(C∗/C∗b ) −→ H2

b (G,R) −→ H2(G,R).

And H1(C∗/C∗b ) = Q̂/C1
b
∼= Q. We are done.

Recall that inChapter1, we defined (Gersten) boundary norm‖ · ‖B on B1(G,R), the dimension-1

boundary group and we tried to explore the relation between‖ a ‖B and cl(a) for an elementa ∈ [G,G] ⊂
B1(G,R). In the following, we stabilize both of the notions and obtain an equality between them.

Proposition 3.2.6 ([9]). Leta ∈ [G,G], so thata ∈ B1(G) as a cycle. Then

‖ a ‖B = sup
φ∈ bQ(G)/H1(G,R)

|φ(a)|
D(φ)

.

Proof. The dual space ofB1(G) with respect to the‖ · ‖B norm isQ̂(G)/H1(G,R) and the operator norm

on the dual is equal toD(·) = ‖ δ· ‖∞. Then the equality follows from Hahn-Banach Theorem.

Definition 3.2.7. Let G, a be as above. Define thefilling norm, denoted fill(a), to be the homogenization of

‖ a ‖∞. That is

fill (a) = lim
n→∞

‖ an ‖B

n
.

Remark3.2.8. fill (a) is the stabilized (Gersten) bounded norm.

Proposition 3.2.9 ([9]). LetG be a group anda ∈ G′. There is an equality

scl(a) =
1
4

fill (a).

Proof. We have known that for an elementa ∈ [G,G] and anyn ∈ Z+,

‖ an ‖B≤ 4 · cl(an)− 1.

Divide both sides byn, take the limit asn →∞, and we get the inequality

fill (a) ≤ 4 · scl(a).

Conversely, assumeG = π1(X) andγ is a loop inX, representing the conjugacy class ofa. let A be a chain

with ∂A = a and‖ A ‖1 is close to‖ a ‖B . WLOG, we assume thatA is a rational chain. After scaling by

some integer, we can assume thatA is an integral chain and∂A = na for which the ratio‖ A ‖1 /n ‖ a ‖B

is very close to1. Write A =
∑

i niσi, where eachni ∈ Z, and eachσi is a singular2-simplex, i.e., a map

σi : ∆2 → X. We could group edges ofσi’s in pairs, except for those edges with images inγ. This pairing
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gives us an orientable surfaceS and a mapΦ: S → X, such thatΦ∗([S, ∂S]) = A, where[S, ∂S] is a chain

representing the fundamental class of(S, ∂S). By the construction,‖ A ‖1=‖ [S, ∂S] ‖1. About the Gromov

L1-norm of a surface, we have the following inequality

‖ [S, ∂S] ‖1≥ −2χ(S).

Dividing both sides byn, we get

fill (a) ≥ 4 · scl(a).

Putting this with the earlier inequality, we are done.

Now combine Proposition (3.2.6) and Proposition (3.2.9) together, we get (see [1] or [9] for a proof)

Theorem 3.2.10 (Bavard’s Duality Theorem [1]).LetG be a group. Then for anya ∈ [G, G], we have an

equality

scl(a) =
1
2

sup
φ∈Q(G)/H1(G,R)

|φ(a)|
D(φ)

.

Remark3.2.11.

1. Bavard’s theorem reflects the duality between scl and homogeneous quasimorphisms and the duality

(i.e., Hahn-Banach theorem) is contained in Proposition (3.2.6).

2. In principle, given a groupG, we only need to work out the set of homogeneous quasimorphisms, and

then we can compute scl by Bavard’s theorem. This approach is especially fruitful whenQ(G) has

small dimension. InChapter3, we are going to study several classes of finitely presented groups, of

which the sets of homogeneous quasimorphisms are 1-dimensional.

3. There are many groups of which the sets of homogeneous quasimorphisms are infinite dimensional. In

Chapter4, we will see that this is a common phenomenon in the groups related to hyperbolic geometry.

Example3.2.12. Let G be a group. Recall that ameanonG is a linear functional onL∞(G) which maps the

constant functionf(g) ≡ 1 to 1, and maps non-negative functions to non-negative numbers.

Definition3.2.13. A groupG is amenableif there is aG-invariant meanπ : L∞(G) → R whereG acts on

L∞(G) by g · f(h) = f(g−1h), for all g, h ∈ G andf ∈ L∞(G).

Examples of amenable groups are finite groups, solvable groups (including abelian groups), and Grig-

orchuk’s groups of intermediate growth.

Theorem3.2.14(Johnson, Trauber, Gromov).If G is amenable, thenH∗
b (G,R) = 0.

As a corollary of Theorem (3.2.5) and the theorem above, we have

Corollary 3.2.15. If G is amenable, thenQ(G) = H1(G,R) = Hom(G,R).
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3.3 Further Properties and Constructions of Quasimorphisms

The importance of quasimorphisms has been displayed by Bavard’s duality theorem (3.2.10). And in general,

homogeneous quasimorphisms are easier to work with than ordinary quasimorphisms, but ordinary quasi-

morphisms are easier to construct. They are related by the homogenization procedure (Lemma 3.2.4). In this

section, we describe some important constructions of quasimorphisms in two classes of groups. Before that,

we first mention a lemma about defect estimation. Supposeφ is a homogeneous quasimorphism, then for any

commutator[a, b] ∈ G, we have an inequality

|φ([a, b])| ≤ D(φ).

And the following lemma says that this inequality is always sharp.

Lemma 3.3.1 (Bavard [1]). Letφ be a homogeneous quasimorphism onG. Then there is an equality

sup
a,b∈G

|φ([a, b])| = D(φ).

3.3.1 Rotation Number

Let S1 = [0, 1]/{0, 1} be the unit circle andπ : R → S1 the covering projection. Let Homeo+(S1) be the

group of orientation-preserving homeomorphisms ofS1. Define ˜Homeo+(S1) = {f ∈ Homeo+(R) | f(x +

1) = f(x) + 1}. It’s the subgroup of Homeo+(R), consisting of all the possible lifts of elements in

Homeo+(S1) under the covering projectionπ.We have the central extension

0 −→ Z −→ ˜Homeo+(S1)
p−→Homeo+(S1) −→ 1,

whereZ is generated by the unit translation andp : ˜Homeo+(S1) → Homeo+(S1) is the natural projection.

Definition 3.3.2. Forg ∈ ˜Homeo+(S1), define therotation numberof g, denoted rot(g), to be

rot(g) = lim
n→∞

gn(0)
n

.

Remark3.3.3. Usually, rotation number is defined for elements in Homeo+(S1). For f ∈ Homeo+(S1),

choose an arbitrary lift̃f ∈ ˜Homeo+(S1) and the usual rotation number off is rot(f̃) (modZ), which is a

value inR/Z.

Rotation number is a very important dynamical invariant in Homeo+(S1). We put together some well-

known properties of rotation number in the following proposition. ( See [45] for further discussions. )

Proposition 3.3.4.

1. rot(·) is continuous inC0 topology.
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2. rot(g) ∈ Q if and only ifp(g) ∈ Homeo+(S1) has a periodic point.

3. If rot(g) is irrational andp(g) ∈ Homeo+(S1) acts transitively onS1, thenp(g) is conjugate to the

rotation through the anglerot(g)(modZ).

The following proposition shows that rotation number, as a function oñHomeo+(S1), is a homogeneous

quasimorphism.

Proposition 3.3.5 ([60]). rot: ˜Homeo+(S1) → R is a homogeneous quasimorphism and its defectD(rot) =

1.

Proof. First let f, g ∈ ˜Homeo+(S1). Without loss of generality, we assume that0 ≤ f(0), g(0) < 1. So

0 ≤ f ◦ g(0) < 2. And 0 ≤ rot(f) ≤ 1, 0 ≤ rot(g) ≤ 1, and0 ≤ rot(f ◦ g) ≤ 2. Thus we have

|rot(f ◦ g) − rot(f) − rot(g)| ≤ 2, and rot is a quasimorphism. rot being homogeneous is clear from its

definition.

Second we show thatD(rot) = 1 by using Lemma 3.3.1. Take anyf, g ∈ ˜Homeo+(S1). We want to

compute rot([f, g]). We can still assume that0 ≤ f(0), g(0) < 1. Suppose0 ≤ g(0) ≤ f(0) < 1, then we

have, by the fact thatf, g are both increasing functions:

g(f(0)) < g(1) = g(0) + 1 ≤ f(0) + 1 ≤ f(g(0)) + 1.

So

f(g(0))− g(f(0)) > −1

We have two cases:

(i) If we also havef(g(0))− g(f(0)) ≤ 1, then

−1 ≤ f(g(0))− g(f(0)) ≤ 1,

g(f(−1)) = g(f(0))− 1 ≤ f(g(0)) ≤ g(f(0)) + 1 = g(f(1)),

which implies

−1 ≤ f−1g−1fg(0) ≤ 1 =⇒ |rot([f, g])| ≤ 1.

(ii) If instead we havef(g(0)) > g(f(0)) + 1, then

g(f(0)) < f(g(0))− 1 = f(g(0)− 1) < f(0).
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ConsiderH(x) = f−1g−1fg(x)− 1− x, for x ∈ [0, 1]. H(0) = f−1g−1fg(0)− 1 > 0 by assumption.

H(f(0)) = f−1g−1fg(f(0))− 1− f(0)

< f−1g−1f(f(0))− 1− f(0)

= f−1g−1f2(0)− 1− f(0).

We want to show thatH(f(0)) < 0, which can be deduced from the inequality below

f−1g−1f2(0) < 1 + f(0),

which is equivalent to

f2(0) < g(f2(0)) + 1.

This is always true sincex < g(x) + 1, for anyx ∈ R.

So we haveH(0) > 0 andH(f(0)) < 0, here0 < f(0) < 1. There must be a pointy ∈ (0, f(0)) such that

H(y) = f−1g−1fg(y)− 1− y = 0.

That is

f−1g−1fg(y) = 1 + y.

So

rot[f, g] = lim
n→∞

[f, g]n(y)− y

n
= 1.

The proof for the case0 ≤ f(0) ≤ g(0) < 1 is the same. Put all together, and we getD(rot) = 1.

3.3.2 Counting Quasimorphisms

Counting quasimorphisms were introduced by R. Brooks [6] in the study of bounded cohomology of free

groups. Later on, this construction was generalized to word-hyperbolic groups by Epstein-Fujiwara [27] and

more general classes of groups by Fujiwara [30] [31] and Bestvina-Fujiwara [2]. An immediate result of these

constructions is that the 2nd bounded cohomology of these groups are infinite dimensional. In this section,

we focus on free groups and give Brooks’ construction.

Let F be a free group with a finite free generating setS. Then any element inF has a unique reduced

form, written as a word inS ∪ S−1. Let w be a reduced word andg ∈ F . Thebig counting functionCw(g)

is defined by

Cw(g) = number of copies ofw in the reduced representative ofg,



20

and thelittle counting functioncw(g) is defined by

cw(g) = maximal number of disjoint copies ofw in the reduced representative ofg.

Definition 3.3.6. A big counting quasimorphismis a function of the form

Hw(g) = Cw(g)− Cw−1(g).

And a little counting quasimorphismis a function of the form

hw(g) = cw(g)− cw−1(g).

Example3.3.7. Let F = F2 = 〈a, b〉.

1. Let w = a or b. It’s clear thatHw = hw in this case and they are both homomorphisms. In fact they

are the only cases in whichHw or hw could be a homomorphism.

2. Let w = aba, thenHw(ababa) = 2, buthw(ababa) = 1.

It’s not difficult to see that bothHw(·) andhw(·) are quasimorphisms with defects≤ O(|w|), where|w|
is the word length ofw. It turns out that for a big quasimorphismHw(·), its defectD(Hw) depends on|w|,
but for a little quasimorphismhw(·), we have the following uniform bound for allw ∈ F .

Theorem 3.3.8 (D. Calegari [9]).LetF be a free group andw ∈ F a reduced word. Lethw(·) be the little

counting quasimorphism. Then we haveD(hw) ≤ 2. More precisely, we have

1. D(hw) = 0 if and only if|w| = 1;

2. D(hw) = 2 if and only ifw is of the formw = w1w2w
−1
1 , w = w1w2w

−1
1 w3 or w = w1w2w3w

−1
2 as

reduced expressions;

3. D(hw) = 1 otherwise.

Remark3.3.9.

1. The proof involves a careful analysis of the appearance ofw or w−1 in the junction where2 reduced

words are concatenated.

2. We know from the discussion before Theorem (3.2.5) that[δhw] ∈ H2
b (F,R). A careful choice of a

sequence ofwi’s with |wi| → ∞ will give hw ’s such that the cohomology class[δhwi ]’s are linearly

independent, implying that dimRH2
b (F,R) = ∞.

3. In Chapter4, we will introduce the generalizations of the little counting quasimorphisms to word-

hyperbolic groups, and their defects also have a uniform bound.
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Chapter 4

SCL in Generalized Thompson’s Groups

In this chapter, we study scl in generalized Thompson’s groups. Generalized Thompson’s groups are very

important objects in many branches of mathematics. They can be realized as subgroups of Homeo+(S1),

and show a lot of interesting properties, similar to those of Homeo+(S1). For several classes of generalized

Thompson’s groups, we prove that

1. For any groupT in these classes, the space of homogeneous quasimorphismsQ(T ) = {0}. As a

consequence,Q(T̃ ) has dimension1 and is generated by the rotation quasimorphism. HereT̃ is the

central extension ofT byZ.

2. Thus by Bavard’s Duality Theorem, we can compute scl inT̃ , and there are elements iñT , whose scl’s

take irrational (in fact, transcendental) values.

In contrast to bulletin2 above, D. Calegari studies scl in free groups [12] (more generally, free product of

abelian groups [13]) and shows that scl takes only rational values in them. And in general geometric settings,

(relative) genus norms are expected to take rational values, like Thurston’s norm in3-dimensional topology.

M. Gromov (in [36]6.C2) asked the question of whether such a stable norm, or in our content, the stable

commutator length in a finitely presented group, is always rational, or more generally, algebraic. And our

computations give the negative answer.

4.1 Thompson’s Groups and Generalized Thompson’s Groups

Thompson’s groups were first defined by Richard Thompson in the study of logic. They were used to con-

struct finitely presented groups with unsolvable word problems [54]. Later, these groups were rediscovered by

homotopy theorists in the work on homotopy idempotents [20][21][29][19]. Nowadays, Thompson’s groups

are still the main objects in many researches related to (geometric) group theory. Many important concepts

and constructions have been applied to these groups, which has raised a lot of interesting problems. In this

section, we briefly recall the definitions and basic properties of Thompson’s groups and their generalizations.
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Let F be the set of piecewise linear homeomorphisms from the closed unit interval[0, 1] to itself that are

differentiable except at finitely many dyadic rational numbers (i.e., numbers of the formp · 2q, p, q ∈ Z) and

such that on intervals of differentiability, the derivatives (slopes) are powers of2 (i.e., numbers of the form

2m,m ∈ Z). It’s easy to verify thatF is a group and is called Thompson’s groupF .

Example4.1.1. Two elementsx0 andx1 in F , which are generators ofF .
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8
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1

1

Figure 4.1:x0 (left) andx1 (right).

The main properties ofF are contained in the following theorem. See [16] for proofs and further refer-

ences.

Theorem 4.1.2.

1. F is finitely presented and in factFP∞, i.e., there is an Eilenberg-Maclane complexK(F, 1) with finite

number of cells in each dimension.

2. The commutator subgroup[F, F ] of F consists of all elements that are trivial in the neighborhoods of

0 and1, i.e.,[F, F ] = kerρ, whereρ is the following homomorphism

ρ : F −→ Z⊕ Z
f 7−→ (log2 f ′(0+), log2 f ′(1−)).

ThusF/[F, F ] ∼= Z⊕ Z.

3. [F, F ] is a simple group.

Next we define Thompson’s groupT . ConsiderS1 as the unit interval[0, 1] with the endpoints identified.

ThenT is the set of piecewise linear homeomorphisms fromS1 = [0, 1]/{0, 1} to itself that map dyadic

rational numbers to dyadic rational numbers and that are differentiable except at finitely many dyadic rational

numbers and on intervals of differentiability, the derivatives (slopes) are powers of2. T is a group and called

Thompson’s groupT .

Theorem 4.1.3 (Brown-Geoghegan).T is a finitely presented, infinite simple group and isFP∞.
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There are several ways to generalize the definitions of Thompson’s groups. The one we are going to

study is due to M. Stein [58]. LetP be a multiplicative subgroup of the positive real numbers and letA be

aZP -submodule of the reals withPA = A. Choose a numberl ∈ A, l > 0. Let F (l, A, P ) be the group

of piecewise linear homeomorphisms of[0, l] with finitely many break points, all inA, having slopes only

in P . Similarly defineT (l, A, P ) to be the group of piecewise linear homeomorphisms of[0, l]/{0, l} (the

circle formed by identifying endpoints of the closed interval[0, l]) with finitely many break points inA and

slopes inP , with the additional requirement that the homeomorphisms sendA ∩ [0, l] to itself. It’s clear that

F (l, A, P ) ⊂ T (l, A, P ). If we let P = 〈2〉 andA = Z[ 12 ], Thompson’s groups areF = F (1,Z[ 12 ], 〈2〉) and

T = T (1,Z[ 12 ], 〈2〉).
We are interested in the case thatP is generated by integers, i.e.,P = 〈n1, n2, . . . , nk〉 and A =

Z[ 1
n1

, 1
n2

, . . . , 1
nk

]. P is a free abelian group and we can assume that{n1, n2, . . . , nk} forms a basis for

P , i.e., log n1, . . . , log nk areQ-independent, andk is the rank ofP . Let d = gcd(n1 − 1, . . . , nk − 1)

andIP · A the submodule ofA generated by elements of the form(1 − p)a, wherea ∈ A andp ∈ P . An

important theorem in studying generalized Thompson’s groups is the following Bieri-Strebel criterion.

Theorem 4.1.4 (R. Bieri and R. Strebel [3]). Leta, c, a′, c′ be elements ofA with a < c anda′ < c′. Then

there existsf , a piecewise linear homeomorphism ofR, with slopes inP and finitely many break points, all

in A, mapping[a, c] onto[a′, c′] if and only ifc′ − a′ is congruent toc− a moduloIP ·A.

Proof. Assume first that such anf exists. Leta = b0, b1, . . . , bn−1, bn = c be an increasing sequence of

elements ofA such thatf is linear on[bi−1, bi] with slopepi, for all i. Thenc′ − a′ =
∑n

i=1 pi(bi − bi−1).

But c− a =
∑n

i=1(bi − bi−1), so(c′ − a′)− (c− a) ∈ IP ·A.

Conversely, suppose there exista1, . . . , an ∈ A andp1, . . . , pn ∈ P such that

(c′ − a′) = (c− a) +
n∑

i=1

(1− pi)ai.

Setb′ = c′ − a′ andb = c − a. If we could findf mapping[0, b] to [0, b′], composingf with translation by

−c on the right andc′ on the left gives the desired map. Now there exists a permutationπ of {1, 2, . . . , n}
such that the partial sumbj = b +

∑j
i=1(1− pπ(i))aπ(i) are positive forj = 0, 1, 2, . . . , n. If f1, f2, . . . , fn

are piecewise linear homeomorphisms ofR with slopes inP and break points inA such thatfi([0, bj−1]) =

[0, bj ], thenfn ◦ · · · ◦ f1 is the desiredf . Therefore it is sufficient to prove the claim forn = 1. Moreover,

as(1− p1)a = (1− p−1
1 )(−p1a), we may assume thatp1 > 1. So we need to constructf mapping[0, b] to

[0, b + (p− 1)a], wherep > 1, a 6= 0(if a = 0, the identity works), andb andb + (p− 1)a are both positive.

Suppose first thata > 0. Choose a numberk with a < pkb, and seta′ = p−ka. Definef1, f2 : R→ R by

f1(t) =





t if t ≤ b− a′,

p(t− (b− a′)) + (b− a′) if b− a′ < t ≤ b,

t + (p− 1)a′ if b < t.
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f2(t) =





t if t ≤ b,

pk(t− b) + b if b < t ≤ b + (p− 1)a′,

t + (p− 1)(a− a′) if b + (p− 1)a′ < t.

Thenf1 maps[0, b] to [0, b + (p− 1)a′] andf2 maps[0, b + (p− 1)a′] to [0, b + (p− 1)a], sof = f2 ◦ f1 is

the desired map.

On the other hand, ifa < 0 then there existsf taking[0, b+(p−1)a] to [0, b+(p−1)a+(p−1)(−a)] =

[0, b], sof−1 will be the map we needed.

Remark4.1.5. If d = gcd(n1 − 1, . . . , nk − 1) = 1, IP · A = P (dZ) = PZ = A, and the conclusion

in Theorem (4.1.4) is vacuously satisfied. Therefore in this case, we have that for anya < c, a′ < c′,

a, c, a′, c′ ∈ A, there always exists anf with slopes inP and break points inA, such thatf maps[a, c] to

[a′, c′].

Theorem 4.1.6 (G. Higman [42]).LetΩ be a totally ordered set and letB be a two-fold transitive, ordered

permutation group onΩ, consisting of bounded elements. Then[B, B] is a nontrivial simple group.

Here “two-fold transitive” means that ifa < c, a′ < c′, a, c, a′, c′ ∈ Ω, then there is an element ofB

takinga to a′ andc to c′. Let Ω = IP · A ∩ [0, l], then Theorem (4.1.4) tells us thatF (l, A, P ) is two-fold

transitive onΩ, so we have

Corollary 4.1.7. For any choice ofP , A andl, F = F (l, A, P ) has a simple commutator subgroup.

M. Stein also proves similar simplicity result for the groupT .

Theorem 4.1.8 ([58]).For any choice ofP , A andl, T (l, A, P ) has a simple second commutator subgroup.

4.2 Homology of Generalized Thompson’s Groups

To study scl on generalized Thompson’s groups, we need to know the perfectness of some subgroups of

F = F (l, A, P ), which can be deduced from the information on the dimension-1 homology group ofF .

M. Stein constructs a contractible CW-complexK, on whichF acts freely. SoK/F is a K(F, 1) and

H∗(F,Z) ∼= H∗(K/F,Z). In the following, we give details of this construction, from which the desired

property ofH1(F ) easily follows. Most of the materials in this section are taken from M. Stein’s paper [58].

4.2.1 Construction ofX

TheX was first constructed by K. S. Brown [7], and Brown used it to show thatF = F (l, A, P ) is finitely

presented and of typeFP∞. Its costruction comes from a poset on which the groupF acts. Let’s describe

the poset first.
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From now on, we’ll fixP = 〈n1, n2, . . . , nk〉, A = Z[ 1
n1

, 1
n2

, . . . , 1
nk

], whereni’s ∈ Z+ form a basis for

P andl ∈ Z+ ∩A. An element of the poset is a piecewise linear homeomorphism from[0, a] to [0, l], where

a ∈ Z, a ≡ l (modd), which has finitely many break points, all inA, and slopes inP . The “modd” condition

comes from Theorem (4.1.4), by which such a homeomorphism exists if and only ifa − l ∈ IP · A. And

A/IP ·A ∼= Z/dZ, thus we can have such a map if and only ifa− l ≡ 0(modd). Givenf1 : [0, a] → [0, l],

we sayf2 is a simple expansion off1 if for some i, there existss : [0, a + ni − 1] → [0, a] such that

f2 = f1 ◦ s, wheres is a homeomorphism, which has slope1 everywhere except on some interval[x, x+ni],

x ∈ {0, 1, . . . , a − 1}, on which it has slope1
ni

. We think of these expansion mapss as expanding the

domain off1 by dividing some unit subinterval of the domain intoni equal pieces and expanding each one

to an interval of length one in the domain off2. See Figure (4.2) for an expansion whena = 3, n1 = 2.

1

2

3

0 1 3 4

Figure 4.2: An expansion(a = 3, n1 = 2).

We extend this to a partial order by saying thatf1 < f2 if f2 can be obtained fromf1 by doing finitely

many simple expansions. ThenF = F (l, A, P ) acts on the poset by composition: givenf ∈ F andg in the

poset,f(g) is the mapf ◦ g. Since the group acts on the range of a poset element, and expansions take place

in the domain, this action preserves the partial order.

This poset is directed. That is given any two elementsf : [0, a] → [0, l] andg : [0, b] → [0, l], we can find

h : [0, c] → [0, l] such thath is an expansion of bothf andg. Now letX be the simplicial complex associated

to the poset, i.e.,X has ann-simplex for each linearly ordered(n+1)-tuplef0 < f1 < · · · < fn in the poset.

The poset being directed guarantees thatπ1(X) = 1 andHn(X) = 0 for anyn ≥ 1. By Whitehead’s and

Hurewicz’s theorems,X is contractible. SinceF acts freely onX, X/F is aK(F, 1), the Eilenberg-Maclane

space forF .

Let’s take a close look at the action. If an element (or a vertex inX) f has domain[0, a], we say that

f is a basis of sizea. It’s not difficult to see that ifv1 andv2 are two bases of the same size, there exists a

unique group elementf such thatf(v1) = v2. So the bases of the same size form an orbit of the group action

and inX/F , there is one vertex corresponding to eacha ∈ Z+, a ≡ l(modd). We refer to the basis which

is just the identity map on[0, l] as the standard basis and call the subposet of all expansions of the standard

basis the standard subposet. By the same argument above, the translations of the standard subposet by group
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elements cover the whole poset, so is true for the subcomplex constructed from the standard subposet inX.

Therefore, to study the cell structure inX/F , we only need to keep track of the relations within the standard

subposet. One way to do this is to associate aforestto each basis. To the standard basis, we associate a row

of l dots. Then iff is a basis in the standard subposet, we can inductively represent the simple expansion

of f , obtained by expanding theith interval intonj , by drawing the forest forf , and then drawingnj new

leaves descending from theith leaf in the forest forf . As an example, the following picture (Figure (4.3))

is for the expansion obtained from the standard basis (l = 1) by dividing the root interval in thirds, and then

each interval of the result in halves.

Figure 4.3: A forest.

Remark4.2.1. The same construction with minor modifications also works for the groupT .

4.2.2 Costruction ofN

We write [f, g] for the closed interval in the poset, i.e., the subposet{h | f ≤ h ≤ g}. Similarly, we write

(f, g) for the open interval.|[f, g]| and |(f, g)| stand for the subcomplex ofX spanned by these intervals.

Since group elements act only on the range of bases, up to the group action, we are only concerned with

which expansion maps take you fromf to g, rather than the particular basisf . So we will be looking at the

domain off and how it is divided when expanding tog. Given a basisf : [0, a] → [0, l], we will refer to the

intervals[i, i + 1], i = 0, 1, · · · , a− 1 of the domain off asf -interval.

Now we are ready to studyX. It turns out that many simplices ofX are inessential in the sense of

homotopy equivalence. Let’s consider an arbitrary interval[f, g]. Let {fi} be the set of simple expansions of

f which are in the interval, i.e.,fi < g. Let h be the least upper bound offi’s.

Definition 4.2.2 ([58]). If h = g, [f, g] (or (f, g)) is an elementary interval. Ifh < g, the interval is

nonelementary. Furthermore, a simplex(f0, f1, · · · , fn) is elementary if[fi, fj ] is elementary for anyi < j.

Let N ⊂ X be the union of all elementary simplices.

Another way to describe an elementary interval is:[fi, fj ] is elementary if in expandingfi to fj , each

fi-interval is divided inton equal pieces, wheren is some (possible empty) product of theni’s in which each

ni appears at most once. Here are two examples for the caseF = F (1,Z[ 12 , 1
3 ], 〈2, 3〉). See Figure (4.4).

N is clearly anF -invariant subcomplex ofX. Furthermore, we have

Theorem 4.2.3 ([58]). The inclusioni : N ↪→ X is a homotopy equivalence. ThusN is contractible and

N/F is aK(F, 1).
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Figure 4.4: Elementary (left) and non-elementary (right) simplexes.

The proof is almost contained in the following lemma

Lemma 4.2.4 ([58]). Let {fi}, 1 ≤ i ≤ n, be the simple expansions off in (f, g). Let (f, g)N be the

subposet consisting of all the least upper bounds of any subset of{fi}, as long as these lub’s are less than

g. Then the inclusion of|(f, g)N | into |(f, g)| is a homotopy equivalence. In particular,(f, g) is homotopy

equivalent toSn−2 if the interval is elementary, and is contractible if the interval is nonelementary.

We can buildX in the following way. Let theheightof |(f, g)| beb− a, where the sizes off andg area

andb respectively. We buildX by starting with all of the vertices, then adjoining intervals of height1, then

all the intervals of height2, etc. By Lemma (4.2.4), we only need to adjoin elementary intervals. In fact,

instead of adjoining the full interval, we only need to adjoin|[f, g]N |.
Let’s see what|[f, g]N | is as a subcomplex. Suppose[f, g] is elementary and{fi}n

i=1 is the simple

expansions off in [f, g]. Taken copies of{0, 1}, viewed as a poset with0 < 1. Denote the poset of the

n-tuples of0’s and1’s by C, then the geometric realization ofC, denoted|C|, is just a triangulatedn-cube

(Figure (4.5)).

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1, 1)(0, 1, 1)

(1, 1, 0)

(0, 0, 1)

Figure 4.5: A triangulated3-cube.

We make a poset isomorphism betweenC and[f, g]N , by sending(ε1, ε2, · · · , εn) with εi ∈ {0, 1} to the

least upper bound of{fi | εi = 1, i = 1, 2, · · · , n}. This isomorphism reveals|[f, g]N | to be a triangulated

n-cube. Now ifP , the slope group, has rank1 as a free abelian group, any two of these cubes intersect in a
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common face, so that the cubes give a CW-complex structure toN . Thus in the case of anF group with rank

one slope group, the cubical chain complex forN can be used directly to compute the homology ofF .

However, ifP has rank≥ 2, faces of these cubes may be attached to the interior of the same or higher

dimensional cubes.

Example4.2.5. In Figure (4.6), we have a square (the bigger one on the right) in the complex forF =

F (1,Z[ 12 , 1
3 ], 〈2, 3〉).

Figure 4.6: A non-cubic structure.

Notice that the bottom two sides of the square are diagonals of a2-dimensional cube and a3-dimensional

cube respectively.

Therefore we can’t just write down a chain complex with the cubes as generators. But for the purpose of

obtaining a presentation forF , the cubical structure has already given enough information. The reason is that

all the diagonals can be homotopied to the edges of the corresponding cube, thus don’t need to be considered

as elements in a generating set.

Example4.2.6. Let F = F (1,Z[ 12 ], 〈2〉), the Thompson’s groupF . In this case,N is actually a cubical

complex. We lift a maximal tree inN/F to N by lifting the vertex of size one inN/F to the standard basis,

and then making a tree by taking successive expansions at the leftmost interval (Figure (4.7)).

x0, x1, · · · can be taken to be the generators forF , and the relations among them come from2-dimensional

cubes. Here is an example of a nontrivial relation:x0x2 = x1x0 (Figure (4.8)).

If we do this analysis systematically, we could obtain the following presentation forF :

F (1,Z[
1
2
], 〈2〉) = 〈 x0, x1, x2, · · · | xixj+1 = xjxi, ∀ i < j 〉.

And x0 andx1 are the two elements in Example (4.1.1). This is the well-known presentation for the Thomp-

son’s groupF , which says thatF has a universal conjugacy idempotent.
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x0

x0

x1

x0x1x2

Figure 4.7: Part of the maximal tree.

x0

x1

x2

x0

Figure 4.8: A relation from a2-cube.
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Theoretically, we are able to retrieve information on the dimension-1 homology of the groupF from this

presentation. But since the complexN is infinite in each dimension and for higher rank slope groups, the

construction will be much more complicated. We need to do more collapsings onN to make the computation

accessible.

4.2.3 Collapsing to a Complex of Finite Type

We viewN as a “cell complex” with the cubes|[f, g]N | as “cells”. We have seen that in the higher rank case,

it’s not a CW-complex structure. This means we can’t buildN by adjoining cubes in order of dimensions.

There is a natural concept, calleddegree, which replaces the notion of dimension. For any cube|[f, g]N |,
eachf -interval is expanded intop pieces, wherep is a product ofni’s in which eachni appears at most once.

We say that|[f, g]N | has degree(a1, a2, · · · , ak) (k is the rank), whereaj is the number off -intervals which

are divided intop pieces andp is a product ofk − j + 1 of theni’s. Then the dimension of a cube of degree

(a1, a2, · · · , ak) is ka1 + (k − 1)a2 + · · · + 2ak−1 + ak. The degrees are ordered lexicographically. Note

that each face of|[f, g]N | is contained in a cube of smaller degree, even though it may have larger dimension.

Then we buildN by adjoining cubes in the order of degrees. And the action ofF is cellular and preserves

degrees.

Let’s look at this action and give each cube in the quotient complexN/F a symbol. First notice that

there is one zero cube for each natural numbers ≡ l (modd) (corresponding to all bases of sizes). We give

the zero cube, corresponding tos, the symbolvs = v · · · v, a string ofs v’s. Now for eachn-cubeσ in the

quotient, we may choose a lift[f, g]N in N andg is obtained by expanding certainf -intervals into pieces. We

encode this information in a symbol of lengths, wheres is the number off -intervals (i.e., the size off ). Our

symbol has one letter for eachf -interval, with the leftmost letter corresponding to the leftmostf -interval,

etc. We putv if there is no expansion at an interval, andxJ if the interval is divided intoni1ni2 · · ·nir equal

pieces, whereJ = {i1, i2, · · · , ir}.

Example4.2.7. v2x1x1,2v is a3-cube ofN/F such that any lift of it toN , written as[f, g]N , hasf , a basis

of size5. When expanding fromf to g, the third interval is divided inton1 equal pieces, and the forth interval

is divided inton1 · n2 equal pieces (Figure (4.9)).

Figure 4.9: A forest representingv2x1x1,2v (n1 = 2 andn2 = 3).

It’s clear that this symbol is independent of the choice of the lift ofσ.
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Remark4.2.8.

1. These symbols are just another way of writing the forest symbols introduced in the previous sections.

2. These symbols can also be regarded as a product of cubes. For example,v2x1x1,2v is a product of

two 0-cubes, one1-cube, one2-cube and the last0-cube. This product structure will be used in the

computation of the homology group.

With these symbols, we now define theface operators. An n-cubeσ has2n faces,Ai(σ) andBi(σ) for

i ∈ {1, 2, · · · , n}. Supposeσ = SxJR, whereS is ans-cube andJ = {i1, i2, · · · , ir}, with r ≥ 1 and

i1 < i2 < · · · < ir. We may think ofv asx∅. Choosej with 1 ≤ j ≤ r, and letJ ′ = J\{ij}. We define

As+j(σ) = SxJ′R Bs+j(σ) = S xJ′ · · ·xJ′︸ ︷︷ ︸
nij

R

If we consider a cube|C| as the geometric realization of the posetC of n-tuples of0’s and1’s (Figure (4.5)),

the face operators defined above give exactly the2n geometric faces of|C| in pairs. But in the complexN ,

given ann-cubeσ written as a symbol, the faces defined above may not be the actual geometric faces. In

face, theAi-faces of a cube defined above are precisely the geometricAi-faces, whereas theBi-faces are

the geometricBi-faces only ifr = 1. Otherwise, the geometricBi-faces of the cube are diagonals of the

Bi-faces defined above.

Definition 4.2.9 ([58]). A collapsible patten is anx1 not preceded byv. A redundant patten isn1 v’s in a row.

A cube (symbol) is essential if it contains no collapsible or redundant patten. An inessential cube (symbol) is

collapsible if the first (always from the left) such patten is collapsible, and redundant if the first such patten

is redundant.

Let σ be a redundant cube of degreea, thenσ = Rvn1S, whereR is essential and doesn’t end inv.

Let c(σ) = Rx1S. One can verify thatc gives a bijection between the set of redundant cubes of degree

a = (a1, · · · , ak) and the set of collapsible cubes of degree(a1, · · · , ak + 1), such thatσ is a geometric face

of c(σ). We then build our complexN by first adjoining all essential cubes of a given degreea and then

attaching each redundant cubeσ of degreea along withc(σ). In fact there is some order in which to adjoin

the redundant cubes of a given degree such that when we adjoinσ, all other faces of the collapsible cubec(σ)

will have been already adjoined. Then this adjunction will just be an elementary expansion (in homotopy

theory), and will not change the homotopy type. We then move on to the next greatest degree and repeat the

process. This yields a quotient complexY of N/F with one cube for each essential symbol ofN/F , and the

quotient map is a homotopy equivalence.

Checking the definition of essential symbols, we see that the number ofv’s in an essential symbol of a

given dimension is bounded, so there are only finitely many cubes in each dimension, establishing

Theorem 4.2.10 ([58]).F = F (l, Z[ 1
n1

, 1
n2

, . . . , 1
nk

], 〈n1, n2, . . . , nk〉) is of typeFP∞.
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Since in rank= 1 case, the cubical structure is actually a CW-complex structure, we can useY to compute

the homology ofF .

Theorem 4.2.11 ([58]).If F = F (l, Z[ 1
n ], 〈n〉), thenHk(F ) = Zn(n−1)k−1

, k ≥ 1.

And Y also gives a finite presentation forF .

Example4.2.12. ForF = F (l, Z[ 12 ], 〈2〉), the Thompson’s groupF , we have

F = 〈x0, x1 | x0x3 = x2x0, x1x4 = x3x1〉,

wherex−1
i−2xi−1xi−2 = xi, for anyi ≥ 2, andx0 andx1 are the two elements in Example (4.1.1).

4.2.4 More Collapsings and Construction of a CW-complex

The cubical structure ofY can’t be used to compute homology group directly in the higher rank case, and

the reason is, in the language of the face operators above, that someBi-faces of ann-cubeσ may not be the

actual geometricBi-faces ofσ. If not, the geometricBi-faces appear as the diagonals of theBi-faces. So

when we attach then-cubeσ, its boundary (or faces) doesn’t go into lower dimensional cubes.

To make full use of the cubical structure, M. Stein constructed a new CW-complexK, which is homotopy

equivalent toN . The idea of the construction is very simple. Since the problem lies in those cubes whose

faces may be the diagonals of another higher dimensional cubes, we only need to find a way to push those

diagonals into lower dimensional cubes, then we are done.

Example4.2.13. In dimension2, we have the following map:d2 : I → I × I, where

d2(t) =





(0, 2t) if t ∈ [0, 1
2 ]

(2t− 1, 1) if t ∈ [ 12 , 1]

Figure 4.10: The pushing defined byd2.
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One systematic retraction from diagonals to sides of a cube is given by the Alexander-Whitney map,

which has good functorial properties. And this gives us a method of constructing a CW-complex as follows:

Corresponding to each cube inN , we have a cell of the same dimension. We start with0-cells and then

1-cells,2-cells, etc. At each adjoining, whenever we have a cell, corresponding to a cubeσ (in N ), where

the diagonal phenomenon occurs, we push the diagonals (geometric faces ofσ) into lower dimensional cells,

which we have already adjoined in previous steps, thus we can attach the cell and obtain a CW-complex

eventually. Denote it byK. By the construction, there is a1 − 1 correspondence between cells ofK and

cubes ofN andK has a more complicated boundary maps (face operators) because of the pushing operations.

Theorem 4.2.14 ([58]).K is homotopy equivalent toN .

The cubical action ofF on N induces a cellular action ofF on K, which is still free, thusK/F is a

K(F, 1). From now on, we won’t distinguish the cubes inN from the cells inK. And we have a symbol for

each cell. One can check that the collapsings we did onN in the previous section can be carried out onK,

thus we haveYK , homotopy equivalent toK/F and with only cells corresponding to essential symbols. In

fact, we can do more collapsings inYK .

Definition 4.2.15 ([58]). A collapsible patten is anxJ not preceded byv, where1 ∈ J . A redundant patten

is n1 − 1 = r1 v’s followed byxJ , where1 /∈ J . A cell (symbol) is essential if it contains no collapsible or

redundant patten. An inessential cell (symbol) is collapsible if the first (always from the left) such patten is

collapsible, and redundant if the first such patten is redundant.

Let σ be a redundantm-cube, thenσ = Rvr1xJS, whereR is essential and1 /∈ J . Let c(σ) =

RxJ∪{1}S. Then the same argument, as we did in collapsingN , can be carried out exactly as before and we

collapseYK to a complexZ with one cell for each essential symbol inYK .

Example4.2.16. Let P = 〈2, n2, · · · , nk〉, A = Z[ 1
2n2···nk

], whereni ∈ Z+ and2 = n1 < n2 < · · · < nk

form a basis forP . Thend = gcd(n1 − 1, . . . , nk − 1) = 1 andr1 = n1 − 1 = 1. Let F = F (1, A, P ), and

let’s check the ranks of low dimensional chain complex ofZ.

In dimension0, C0(Z) is generated by only one symbolv. Thus rankZ(C0(Z)) = 1.

In dimension1, C1(Z) is generated by the following essential symbols:

vx1, vx1v, x2, x2v, · · · , xk, xkv.

Thus rankZ(C1(Z)) = 2k.
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In dimension2, C2(Z) is generated by the following essential symbols:

vx1l, vx1lv, 2 ≤ l ≤ k

xij , xijv, 2 ≤ i < j ≤ k

vx1vx1, vx1vx1v,

vx1xl, vx1xlv, 2 ≤ l ≤ k

xlvx1, xlvx1v, 2 ≤ l ≤ k

xixj , xixjv, 2 ≤ i < j ≤ k.

Thus rankZ(C2(Z)) = 3k2 − k.

In the example above, it’s clear that∂1 : C1(Z) → C0(Z) must be a zero map sinceH0(Z) ∼= Z and it

can be verified that∂2 : C2(Z) → C1(Z) is also a zero map, but we’ll show this fact by other method below.

In general,∂∗ : C∗(Z) → C∗(Z) could be nontrivial and the computation is very complicated.

In [58], M. Stein did the computation in the case where the slope groupP has rank2 and obtained

Theorem 4.2.17 ([58]).Let F = F (l, Z[ 1
n1

, 1
n2

], 〈n1, n2〉), wheren1, n2 form a basis for the slope group.

Let d = gcd(n1 − 1, n2 − 1). ThenH∗(F ) is a free abelian group, and if we sethj(F ) = rankZ(Hj(F )),

then they are given byh0(F ) = 1, h1(F ) = 2(d + 1), h2(F ) = (1 + 4d)(d + 1) and

hj(F ) = dhj−2(F ) + 2dhj−1(F ), ∀ j > 2.

Corollary 4.2.18. LetF = F (l,Z[ 1
n1

, 1
n2

], 〈n1, n2〉), andd = gcd(n1−1, n2−1) = 1, thenrankZ(H1(F )) =

2(d + 1) = 4.

LetB be the subgroup ofF = F (1, Z[ 1
n1

, 1
n2

, . . . , 1
nk

], 〈n1, n2, . . . , nk〉) consisting of homeomorphisms

which are the identity in the neighborhoods of0 and1, i.e.,B is the kernel of the following homomorphism

ρ : F −→ P × P

f 7−→ (f ′(0+), f ′(1−)).

Then we have the following theorem

Theorem 4.2.19 (K. S. Brown).H∗(F ) ∼= H∗(B)⊗H∗(P × P ).

Proof. We have a split exact sequence

0 −→ B
i−→F

ρ−→P × P −→ 0,
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and a commutative diagram

0 −−−−→ B −−−−→ F −−−−→ P × P −−−−→ 0
ym|B

y(m,ρ)

yid

0 −−−−→ B −−−−→ B × (P × P ) −−−−→ P × P −−−−→ 0

wherem is defined as follows: choose a piecewise linear homeomorphismϕ with slopes inP and break

points inA, taking[0, 1] to [0 + ε1, 1− ε2]. If h ∈ F , define

m(h)(x) =





x if x ∈ [0, ε1] ∪ [1− ε2, 1]

ϕ ◦ h ◦ ϕ−1 if x ∈ [ε1, 1− ε2].

It’s not difficult to see thatm|B : B → B induces the identity onH∗(B). Thus the commutative diagram

induces the identity maps betweenE2 page of the spectral sequence for the two exact sequences. So(m, ρ)

in the middle must induce an isomorphism on the homology and we have

H∗(F ) ∼= H∗(B × P × P ) ∼= H∗(B)⊗H∗(P × P ).

Combine Theorem (4.2.19) and Example (4.2.16) together, we get

Proposition 4.2.20. Let P = 〈2, n2, · · · , nk〉, A = Z[ 1
2n2···nk

], whereni ∈ Z+ and2 = n1 < n2 < · · · <
nk form a basis forP . LetF = F (1, A, P ), thenH1(F ) ∼= Z2k.

Proof. We computed the rank of the corresponding dimension-1 chain complex forF in Example (4.2.16)

and rankZ(C1(Z)) = 2k, therefore we must have that rankZ(H1(Z)) ≤ rankZ(C1(Z)) = 2k. By The-

orem (4.2.19) above, we getH1(F ) ∼= H1(B) ⊕ H1(P × P ), whereP × P ∼= Zk × Zk ∼= Z2k, thus

rankZ(H1(Z)) ≥ rankZ(H1(P × P )) = 2k. Combining the two inequality together, we getH1(F ) ∼=
Z2k.

The complexZ also gives much smaller finite presentations for generalized Thompson’s groups.

Example4.2.21. ForF = F (1,Z[ 16 ], 〈2, 3〉), we have the following finite presentation.

〈x0, x1, y0, y1 | x0x2 = x3x0, x1x3 = x4x1, x0y2 = y3x0,

y1y3 = y4y1, y
+
0 x1 = x3y

+
0 , y+

1 x2 = x4y
+
1 ,

y+
0 y1 = y3y

+
0 , y+

1 y2 = y4y
+
1 ,

y+
0 y+

1 x0 = x0x1x2y
+
0 , y+

1 y+
2 x1 = x1x2x3y

+
1 〉,
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wherex−1
i−2xi−1xi−2 = xi, x−1

i−2yi−1xi−2 = yi, ∀i ≥ 2 andy+
i = xixi+1yiy

−1
i+1 ∀i. y0 andy+

0 are the

following two elements:

1
2

1

0

2
3

1 0

1
8

1
4

1
2

1
2

2
3

5
6

1

1

Figure 4.11:y0 (left) andy+
0 (right).

4.3 SCL in Generalized Thompson’s Groups

4.3.1 Main Theorem

Recall thatT = T (1, A, P ) is the group of piecewise linear homeomorphisms of the circleS1 = [0, 1]/{0, 1},
with finitely many break points inA, slopes inP , and sendingA ∩ [0, 1] to itself. T is a subgroup of

Homeo+(S1). Let T̃ be the central extension ofT byZ, i.e.,T̃ = p−1(T ) ⊂ ˜Homeo+(S1), and we have the

short exact sequence

0 −→ Z i−→ T̃
p−→T −→ 1,

whereZ = 〈t〉 is generated by the unit translationt onR.

In section (2.3.1), we defined rotation quasimorphism rot oñHomeo+(S1) and computed its defect

D(rot) = 1. It’s clear that rot|eT is still a homogeneous quasimorphism and we’ll see that rot|eT is essen-

tially the only homogeneous (normalized) quasimorphism onT̃ . Let’s computeD(rot|eT ) first.

Lemma 4.3.1 ([60]). Let T = T (1, A, P ), whereP = 〈n1, n2, . . . , nk〉, A = Z[ 1
n1

, 1
n2

, . . . , 1
nk

], and

0 < n1 < · · · < nk, ni ∈ Z, form a basis forP . ThenT is dense inHomeo+(S1) with theC0-topology.

ThereforeT̃ is dense in ˜Homeo+(S1), andD(rot|eT ) = 1.

Proof. Take an arbitrary homeomorphismf ∈ Homeo+(S1) and anyε > 0. Sincef is uniformly continuous,

we can choose0 = x0 < x1 < · · · < xl < 1, xi’s lying in the dense subsetIP · A ⊂ [0, 1], such that

|f(xi) − f(xi−1)| < ε
3 . SinceIP · A is dense in[0, 1], we can find0 ≤ y0 < y1 < · · · < yl < 1, with

yi ∈ IP · A and|yi − f(xi)| < ε
3 . By Theorem (4.1.4), there existsg ∈ T such thatg(xi) = yi. From the

choice ofxi’s andyi’s, it’s easy to see that‖f − g‖C0 < ε. SoT is a dense subgroup of Homeo+(S1), and

so isT̃ in ˜Homeo+(S1).

On the other hand, by Proposition (3.3.4), the function rot: ˜Homeo+(S1) → R is continuous inC0-

topology, so we must haveD(rot|eT ) = D(rot) = 1.
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We compute scl on the groupT first.

Lemma 4.3.2 ([60]). Let T = T (1, A, P ), whereP = 〈n1, n2, . . . , nk〉, A = Z[ 1
n1

, 1
n2

, . . . , 1
nk

] andd =

gcd(n1 − 1, . . . , nk − 1) = 1. For anyf ∈ T , there existg1, g2 ∈ T such that

1. f = g1 ◦ g2;

2. Eachgi fixes an open arc of the circle, i.e., there exists an open intervalα ⊂ [0, 1]/{0, 1}, such that

gi|α is the identity.

Proof. Sinced = 1, Theorem (4.1.4) is vacuously satisfied. For anyf ∈ T , choose pointsa < b andc < d,

a, b, c, d ∈ A∩ [0, 1], satisfying[c, d]∩ ([a, b]∪ f([a, b])) = ∅. Denote[a1, b1] = f([a, b]). Such points exist

becauseA is dense in[0, 1] and we only need to choosea, b such that[a, b] is a very small interval. Since

a1, b1 are also points inA, there exist piecewise linear homeomorphismsg1 andg2, with slopes inP and

break points inA, such thatg1 sends[b, c] to [b1, c] andg2 sends[d, a] to [d, a1].

a

b

d

c

b1

a1

a

b a1

b1

d

c

g

Figure 4.12: The homeomorphismg.

Define (see Figure (4.12))

g =





f if x ∈ [a, b]

g1 if x ∈ [b, c]

id if x ∈ [c, d]

g2 if x ∈ [d, a].

Thenf = (f ◦ g−1) ◦ g. Clearlyg fixes the interval(c, d) andf ◦ g−1 fixes the interval(a, b).

Theorem 4.3.3 ([60]). Let P = 〈n1, n2, . . . , nk〉 andA = Z[ 1
n1

, 1
n2

, . . . , 1
nk

]. F = F (1, A, P ) andT =

T (1, A, P ). Supposed = gcd(n1 − 1, . . . , nk − 1) = 1 andH1(F ) is a free abelian group ofrank2k. Then

1. T is a simple group;

2. Q(T ) = {0}, or equivalentlyscl≡ 0 onT .

Proof. For an arbitrary homeomorphismf ∈ T , by Lemma (4.3.2) above, we can writef = g1 ◦ g2, where

gi fixes some proper open arcαi in the circle. Take a pointθi ∈ αi ∩ A ( sinceA is dense). ThenRθi , the

rotation of the circle through angleθi, is an element inT . It’s easy to see that supp(Rθi ◦ gi ◦R−1
θi

) ⊂ (0, 1),
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i.e., Rθi
◦ gi ◦ R−1

θi
fixes a neighborhood of0 = 1. Write hi = Rθi

◦ gi ◦ R−1
θi

., which is the identity in

the neighborhood[0, ε) and(1− ε, 1], sohi is an element of the subgroupB, whereB is the subgroup ofF

consisting of elements which are identity in the neighborhood of0 and1.

By Theorem (4.2.19),H1(F ) = H1(B) ⊕ H1(P × P ). We haveP × P ∼= Zk ⊕ Zk ∼= Z2k, and the

assumption says thatH1(F ) ∼= Z2k. Thus we must haveH1(B) = 0, i.e.,B = B′ = [B, B], B is a perfect

group. Therefore eachhi can be written as a product of commutators, so isgi sincegi is conjugate tohi.

Thereforef = g1 ◦ g2 also lies in the commutator subgroup. Sincef is chosen arbitrarily, we get thatT is

perfect, i.e.,T = T ′. We know, by Theorem (4.1.8), thatT ′′ is a simple group, soT = T ′ = T ′′ is also

simple. Claim1 is proved.

Let φ ∈ Q(T ) be an arbitrary homogeneous quasimorphism onT . As we did above, for anyf ∈ T ,

we write f = g1 ◦ g2 andhi = Rθi ◦ gi ◦ R−1
θi

, hi ∈ B = B′. Sinceh1 andh2 both are elements in

B′, write hi = [si
1, t

i
1] · · · [si

mi
, timi

], wherei = 1, 2 andsi
j , tij , 1 ≤ j ≤ mi, are homeomorphisms inB.

Let J =
⋃2

i=1

⋃mi

j=1(supp(si
j)

⋃
supp(tij)), then it’s clear thatJ is a proper closed subset of(0, 1). Assume

J ⊂ (α1, β1) $ (0, 1), whereα1, β1 ∈ A. We can chooseαi, βi ∈ A ∩ [0, 1], i ≥ 2, such that

0 < α1 < β1 < α2 < β2 < α3 < β3 < · · · < 1.

By Theorem (4.1.4), for anyl ∈ Z+, we can constructγl ∈ F , a piecewise linear homeomorphism with

slopes inP and break points inA, such thatγl([αi, βi]) = [αi+1, βi+1], 1 ≤ i ≤ l. Define

∆l(hi) =
l−1∏

k=0

γk
l ◦ hi ◦ (γk

l )
−1

∆l(si
j) =

l−1∏

k=0

γk
l ◦ si

j ◦ (γk
l )
−1

∆l(tij) =
l−1∏

k=0

γk
l ◦ tij ◦ (γk

l )
−1

.

Since any two items in the products have disjoint supports (supp(γk
l ◦ hi ◦ (γk

l )−1) ⊆ [αk+1, βk+1]), we still

have that

∆l(hi) = [∆l(si
1), ∆l(ti1)] · · · [∆l(si

mi
),∆l(timi

)]

Define

h′i =
l−1∏

k=0

γk
l ◦ hk+1

i ◦ (γk
l )
−1

,

and we see, by direct calculation, thathi, h
′
i andγi satisfy the following equality

[γl, h′i] = (γlh
′
iγ
−1
l ) ◦ h′i

−1 = ∆l(h−1
i ) ◦ (γl

lh
l
iγ
−l
l ).
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So we get

hl
i = γ−l

l ∆l(hi)[γl, h
′
i] γl

l .

Then we have the following estimate of commutator length

cl(hl
i) ≤ 1 + cl(∆l(hi)) ≤ 1 + mi,

and
cl(hl

i)
l

≤ 1 + mi

l
.

Sincel can be made arbitrarily large, we get

scl(hi) = lim
l→∞

cl(hl
i)

l
= 0,

for eachi = 1, 2.

Then by Bavard’s Duality Theorem (3.2.10),φ(hi) = 0, for anyφ ∈ Q(T ). Sincegi is conjugate tohi

andφ is homogeneous, we haveφ(gi) = φ(hi) = 0.

For anyn ∈ Z+, write fn = g1n ◦ g2n, such thatφ(g1n) = φ(g2n) = 0. Then we have

|nφ(f)| = |φ(fn)| = |φ(g1ng2n)| = |φ(g1ng2n)− φ(g1n)− φ(g2n)| ≤ D(φ),

so

|φ(f)| ≤ D(φ)
n

,

for any n ∈ Z+. Let n → ∞, we getφ(f) = 0. That scl≡ 0 follows directly from Bavard’s Theorem

(3.2.10). Claim2 is proved.

Remark4.3.4. Part of the proof is derived from the proof of a more general theorem due to D. Calegari:

Theorem4.3.5([11]). LetG be a subgroup ofPL+(I), thenscl of every element in[G,G] is zero.

Now we are ready to compute scl iñT .

Theorem 4.3.6 ([60]). LetP = 〈n1, n2, . . . , nk〉 andA = Z[ 1
n1

, 1
n2

, . . . , 1
nk

], where0 < n1 < n2 < · · · <
nk form a basis forP . F = F (1, A, P ), T = T (1, A, P ), and T̃ is the central extension ofT . Suppose

d = gcd(n1 − 1, . . . , nk − 1) = 1 andH1(F ) ∼= Z2k, thenrot|eT is the unique homogeneous quasimorphism

which sends the unit translation to1.

Thus by Bavard’s Duality Theorem (3.2.10), we have for anyg ∈ T̃ ,

scl(g) =
|rot(g)|

2D(rot|eT )
=

|rot(g)|
2

.
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Proof. Clearly rot|eT ∈ Q(T̃ ) and sends the unit translation to1. Supposeτ ∈ Q(T̃ ) is another such homo-

geneous quasimorphism. We consider their difference

rot− τ : T̃ −→ R,

which is still a homogeneous quasimorphism.

For any elementf ∈ T , let f1 andf2 be two arbitrary lifts off in T̃ . Then there is an m∈ Z such that

f2 = f1 + m. Bothf1 andf2 are elements of the subgroupp−1(f) ⊂ T̃ , which is generated byf1 andt,

the unit translation. This subgroup is an abelian group. Thus by Corollary (3.2.15), rot− τ , restricted to it,

is a homomorphism. We have(rot− τ)(f2) = (rot− τ)(f1 + m) = (rot− τ)(f1) + (rot− τ)(m). The

normalization assumption tells us that rot(m) = τ(m), so(rot− τ)(f1) = (rot− τ)(f2). Therefore rot− τ

induces a function onT and it’s easy to see that the induced function is still a homogeneous quasimorphism.

By Theorem (4.3.3), we must have rot= τ .

ThusQ(T̃ ) is one dimensional and generated by rot|eT . And the last claim follows from Bavard’s Duality

Theorem and the defect estimation in Lemma (4.3.1).

The last thing is to find generalized Thompson’s groups satisfying those assumptions in Theorem (4.3.6)

above. The computation of homology of generalized Thompson’s groups in the previous section provides

us with a lot of such groups. LetP = 〈2, n2, · · · , nk〉, A = Z[ 1
2n2···nk

] or P = 〈n1, n2〉, A = Z[ 1
n1n2

],

wheregcd(n1 − 1, n2 − 1) = 1. Let F = F (1, A, P ), T = T (1, A, P ), andT̃ the central extension ofT .

In either case, Proposition (4.2.20) and Corollary (4.2.18) say that these groups satisfy the assumptions in

Theorem (4.3.6), thus we have for anyg ∈ T̃ ,

scl(g) =
|rot(g)|

2
.

4.3.2 Examples

Theorem (4.3.6) leaves the computation of scl to the computation of rotation numbers in generalized Thomp-

son’s groups. There have been a lot of researches on rotation numbers in these groups, and more generally

of piecewise linear homeomorphisms ofS1 with various assumptions on slopes and break points. In this

section, we compile some known results and give concrete examples, in which the computation of rotation

number is possible.

In [34], E. Ghys and V. Sergiescu studied the Thompson’s groupT = T (1,Z[ 12 ], 〈2〉). They built a

smooth action ofT on S1, i.e., a representationφ : T → Diff∞(S1), with an exceptional minimal set. Then

by a theorem of Denjoy, which says that everyC2 diffeomorphism ofS1 with an irrational rotation number

has dense orbits, they deduced that

Theorem 4.3.7 ([34]). Every element inT has a rational rotation number, and furthermore, every rational
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number can be realized as the rotation number of some element inT .

Thus scl onT̃ = T̃ (1,Z[ 12 ], 〈2〉) takes rational values, and we also get a finitely presented, infinite simple

group, on which scl can take any rational number as its value.

Remark4.3.8. A generalization of Theorem (4.3.7) is proved later by I. Liousse [51] and D. Calegari [10].

In [50] and [51], I. Liousse studied generalized Thompson’s groups. She modified a construction of M.

Boshernitzan and obtained

Theorem 4.3.9. Let P = 〈n1, n2, . . . , nk〉, A = Z[ 1
n1

, 1
n2

, . . . , 1
nk

], where0 < n1, < · · · < nk form a

basis forP . T = T (1, A, P ). Assume therankk ≥ 2, then there are elements inT with irrational rotation

numbers. Furthermore, there are(k−1) commuting homeomorphismsβ1, β2, · · · , βk−1 in T , with irrational

rotation numbersρi, 1 ≤ i ≤ k − 1, such that1 and theρi’s areQ-independent.

In the following, we give two examples of the computations of rotation numbers in generalized Thomp-

son’s groups. Both of them are taken from [50].

Example4.3.10([50]). Let T = T (1,Z[ 16 ], 〈2, 3〉). Let f be the following homeomorphism inT

f =





2
3x + 2

3 if x ∈ [0, 1
2 ]

4
3x− 2

3 if x ∈ [ 12 , 1].

0

1

2
3

1

2
3

1
2

1
2

Figure 4.13: Graph off .

The transformationt(x) : = 2−21−x, x ∈ [0, 1] conjugatesf to the rotation byρ, whereρ = log 3
log 2 −1 ≈

0.58496250072 · · · . Thus any lift off has the rotation numberlog 3
log 2 +n, n ∈ Z. By the theorem of Gel’fand-

Schneider [49], the rotation numberρ is transcendental.

In general, we can’t find the conjugacy homeomorphism and we need to work out rotation numbers

indirectly. Here is such an example:



42

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.14: Graph oft.

Example4.3.11([50]). T = T (1,Z[ 16 ], 〈2, 3〉), andg ∈ T is the following homeomorphism

g =





x + 8
9 if x ∈ [0, 1

9 ]
1
2x− 1

18 if x ∈ [ 19 , 5
9 ]

x− 3
9 if x ∈ [ 59 , 8

9 ]

3x− 19
9 if x ∈ [ 89 , 1].

a = 0
b = 1

9
c = 5

9
d = 8

9

1

2
9

c = 5
9

d = 8
9

1

Figure 4.15: Graph ofg.

The mapg satisfiesProperty D, which, roughly speaking, says that the product of theg-jump (ratio of

derivatives from two sides) on each orbit is trivial. In fact any piecewise linear homeomorphism with all

break points in one orbit satisfies Property D. For such a homeomorphism, there existsh ∈ Homeo+(S1),

such thath ◦ g ◦ h−1 ∈ SO(2). So there is a measureµ onS1, which is invariant under the iteration ofg. Let



43

Dg be the derivative function ofg. Then we have the following equality

∫
log(Dg)dµ = 0.

This equality will enable us to compute the rotation number ofg.

Let’s denote the break points to bea = 0, b = 1
9 , c = 5

9 andd = 8
9 . They all lie in the same orbit ofg:

g : b 7→ a = 0 7→ d 7→ c. Supposeh is the homeomorphism, conjugatingg to a rotation homeomorphism

through angleρ, where0 ≤ ρ < 1. We want to find the images ofa, b, c andd underh. WLOG, we can

assume thath(0) = h(a) = 0. Sinceb = g−1(a), d = g(a) andc = g2(a), we must haveh(b) = −ρ + nb,

h(c) = 2ρ + nc, andh(d) = ρ + nd, wherenb, nc andnd are some proper integers. Combining this with the

facts thath is an orientation-preserving homeomorphism, andh(b), h(c), andh(d) are points in(0, 1), we

get thath(b) = 1− ρ, h(c) = 2ρ− 1, andh(d) = ρ. And on[a, b], Dg ≡ λ1 = 1. On [b, c], Dg ≡ λ2 = 1
2 .

On [c, d], Dg ≡ λ3 = 1. On [d, a], Dg ≡ λ4 = 3. The integral equality gives a linear equation

log λ1 · (1− ρ) + log λ2 · (3ρ− 2) + log λ3 · (1− ρ) + log λ4 · (1− ρ) = 0.

Substituteλi’s, and we get

ρ =
2 log 2 + log 3
3 log 2 + log 3

.

Numerically, we can draw the graph of the conjugacy functionh as follows:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.16: Graph ofh.

As a corollary of Theorem (4.3.6), Theorem (4.3.9) and the computations in Example (4.3.10) and Ex-

ample (4.3.11), we have

Corollary 4.3.12 ([60]). There exist finitely presented groups, on whichscl takes irrational (in fact, tran-

scendental) values.

Theorem (4.3.6) also reflects the deep connection between scl and dynamical properties of these groups.

One series of groups in our list has very rigid dynamical properties. LetP = 〈2, n2, · · · , nk〉, A =
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Z[ 1
2n2···nk

], k ≥ 2 and2 < n2 < · · · < nk forms the basis forP . Let T = T (1, A, P ), then we have

the following theorem due to I. Liousse.

Theorem 4.3.13 ([51]).

1. Each nontrivial representationφ from T into Diff 2(S1) is topologically conjugate to the standard

representation inPL(S1).

2. Each nontrivial representationφ from T into PL(S1) is PL-conjugate to the standard representation

in PL(S1).

3. There existsl ≥ 2, depending on thelog ni’s diophantine coefficients, such that any representation

fromT into Diff l(S1) has finite images. In particular,T is not realizable inDiff∞(S1).
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Chapter 5

Large Scale Geometry of Commutator
Subgroups

In this chapter, we study commutator subgroup as a geometric object: its Cayley graph with respect to the

canonical generating set of all commutators. With the path metric, cl and scl can both be interpreted as impor-

tant geometric quantities on it. We are interested in the large scale geometry of this graph. First we prove that,

for any finitely presented group, the graph is large scale simply connected. Then we focus on a very important

class of groups in geometric group theory: hyperbolic groups. In contrast to generalized Thompson’s groups,

the space of homogeneous quasimorphisms of a hyperbolic group is infinite dimensional. We study the geo-

metric implication of this infinite dimensional phenomenon, and prove that for a non-elementary hyperbolic

group, the corresponding Cayley graph of the commutator subgroup contains a quasi-isometrically embedded

Zn, for anyn ∈ Z+. As corollaries, the graph is notδ-hyperbolic, has infinite asymptotic dimension and is

one-ended.

5.1 Commutator Subgroup as a Metric Space

Let G be a group andG′ = [G,G] its commutator subgroup. The subgroupG′ has a canonical generating set

S consisting of all commutators. WithG′ andS, we can construct a graphCS(G′) as follows: each element

in G′ gives a vertex inCS(G′), andg, h ∈ G′ are connected by an edge if and only ifg−1h ∈ S, i.e.,g−1h

is a commutator. We callCS(G′) theCayley graphof G′ with respect to the generating setS. By assigning

each edge with length1, CS(G′) becomes a metric space, where the distance is defined by the path metric.

Proposition 5.1.1.

1. The distance inCS(G′) equals commutator length, i.e., for anyg, h ∈ G′, d(g, h) = cl(g−1h);

2. The semidirect productG′ o Aut(G) acts onCS(G′) by isometries;

3. The metric onG′ inherited as a subset ofCS(G′) is both left- and right- invariant;
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4. Simplicial loops inCS(G′) through the origin1 correspond to (marked) homotopy classes of maps of

closed surfaces into aK(G, 1).

Proof.

1. By the definition of the path metric, for anyg, h ∈ G′,

d(g, h) = min{ length ofL | L is a simplicial path fromg to h in CS(G′)}.

By the definition of edges inCS(G′), any such pathL gives the following equality inG′

g[a1, b1] · · · [an, bn] = h,

wheren = length ofL. So the minimal length path represents a shortest expression ofg−1h as a

product of commutators, which is the commutator length ofg−1h. Thus we haved(g, h) = cl(g−1h)

and in particulard(1, g) = cl(g).

2. The setS of commutators, is characteristic, i.e.,S is invariant under any automorphism ofG. So

Aut(G) acts onG′ which induces an action onCS(G′). The action is obviously by isometries.

G′ acts on itself byleft multiplication, i.e., anyg ∈ G′ corresponds to a bijectionLg : G′ → G′, where

Lg(h) = gh. Then for anyh1, h2 ∈ G′,

d(Lg(h1), Lg(h2)) = d(gh1, gh2) = cl((gh1)−1gh2) = cl(h−1
1 h2) = d(h1, h2).

ThusG′ acts onCS(G′) by isometries. Combine these two actions together, we get the bulletin (2).

3. We only need to verify “right invariance”. For anyg, h1, h2 ∈ G′, we have

d(h1g, h2g) = cl((h1g)−1h2g) = cl(g−1(h−1
1 h2)g) = cl(h−1

1 h2) = d(h1, h2).

The 3rd equality comes from the fact that the conjugate of a commutator is still a commutator.

4. A simplicial loop through1 gives the following equality inG′:

[a1, b1][a2, b2] · · · [an, bn] = 1.

SupposeX = K(G, 1), then the discussion inChapter1 gives a map from a closed oriented surfaceS

of genusn into X. The mark onS is the1-skeleton from the standard polygon representation ofS.
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Definition 5.1.2. Given a metric space(X, d) and an isometryh of X, the translation lengthof h on X,

denotedτ(h), is defined by the formula

τ(h) = lim
n→∞

d(p, hn(p))
n

,

wherep ∈ X is an arbitrary base point.

Remark5.1.3.

1. The limit exists by Lemma (3.1.2), and the limit does not depend on the choice of the base pointp by

triangular inequality.

2. Let Mn be a dimension-n Riemannian manifold with negative section curvature andM̃n its universal

covering. TheñMn is homeomorphicallyRn with a negatively curved Riemannian metric. We can de-

fine the corresponding path metric oñMn. The fundamental groupπ1(Mn) acts onM̃n isometrically,

and the set of values of translation lengths corresponding to this action equals thelength spectrumof

Mn, which is the set of lengths of closed geodesics inMn. Thus the set of translation lengths reflects

very important geometric and dynamical properties of the underlying spaces and groups.

Proposition 5.1.4. Letg ∈ G′ act onCS(G′) by left multiplication. Then there is an equality

τ(g) = scl(g).

Proof. We can choosep = 1 in CS(G′). Then we have

τ(g) = lim
n→∞

d (1, Ln
g (1))

n

= lim
n→∞

d (1, gn)
n

= lim
n→∞

cl(gn)
n

= scl(g).

One can obtain lower bounds onτ(g) by constructing a Lipschitz function onX which grows linearly on

the orbit of a point under powers ofg. One important class of Lipschitz functions onCS(G′) are quasimor-

phisms.

By repeated application of the defining property of quasimorphisms and triangular inequality, one can

estimate that

|φ(f [g, h])− φ(f)| ≤ 7D(φ),

whereφ ∈ Q̂(G) andf, g, h ∈ G. This immediately gives
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Proposition 5.1.5. A quasimorphismφ, restricted toG′, is a 7D(φ)-Lipshitz map in the metric inherited

fromCS(G′), and we have

cl(g) ≥ |φ(g)− φ(1)|
7D(φ)

,

for anyg ∈ G′ andφ ∈ Q̂(G).

So we have translated cl and scl into geometric notions on the metric spaceCS(G′), cl as the path metric

and scl as the translation length. In the following, we will study this metric space through our knowledge of

cl and scl, and vice versa.

5.2 Large Scale Geometry of Metric Spaces

One entry of geometric ideas into group theory is through Cayley graphs and word lengths. The Cayley graph

CS(G′) for a commutator subgroup is one such example. In general, given a finitely generated groupΓ and

a finite symmetric generating setT , the corresponding Cayley graphCT (Γ) is the graph with vertex setΓ in

which two verticesγ1 andγ2 are the ends of an edge if and only ifdT (γ1, γ2) = 1, i.e.,γ−1
1 γ2 ∈ T . Γ acts

on CT (Γ) by left multiplications, and this action is obviously transitive. Each edge ofCT (Γ) can be made

a metric space isometric to the segment[0, 1] of the real line, then one defines naturally the length of a path

between two points (not necessarily two vertices) of the graph, and the distance between two points is defined

to be the infimum of the appropriate path lengths. With this path metric, the left action ofΓ on CT (Γ) is by

isometries. (Γ also has a natural right action onCT (Γ), but in general this right action is not by isometries.)

Moreover,CT (Γ) is a proper, geodesic metric space.

Definition 5.2.1.

1. A metric space(X, d) is proper if its closed balls of finite radius are compact.

2. A geodesic in(X, d) is a mapσ : I → X defined on an interval I ofR such that

d(σ(t1), σ(t2)) = | t1 − t2|,

for anyt1, t2 ∈ I. X is said to be geodesic if any two points inX can be joined by a geodesic segment

(not necessarily to be unique).

The Cayley graph of a commutator subgroup is generally not proper (since the setS of commutators is

generally infinite.), but still geodesic.

One deficiency of the construction of the Cayley graph is that, for an arbitrarily finitely generated group,

we don’t have a canonical finite generating set. Thus each choice of a generating set gives a Cayley graph, and

these graphs are usually not (even locally) isometric. Thus to obtain useful information from these graphs,
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we need to find a way to identify them and study the properties invariant under the identifications. Here is

one such identification due to M. Gromov.

Definition 5.2.2. Let (X, dX), (Y, dY ) be two metric spaces. A mapf : X → Y is a(λ, c)-quasi-isometric

embeddingif there exist constantsλ ≥ 1, c ≥ 0 such that

1
λ

dX(x, y)− c ≤ dY (f(x), f(y)) ≤ λ dX(x, y) + c,

for all x, y ∈ X.

f is aquasi-isometryif there exists moreover a constantD ≥ 0 such that any point ofY is within distance

D from some point off(X). The two spacesX andY are then quasi-isometric.

Remark5.2.3.

1. Being Quasi-isometric is an equivalence relation.

2. A metric space is of finite diameter (bounded) if and only if it is quasi-isometric to the space of a point.

This is the reason why the geometry of quasi-isometries are called large scale geometry.

3. let Γ be a group with two finite symmetric generating setsT1 and T2. Let d1 and d2 denote the

corresponding word metrics (or path metrics on the Cayley graphs). The identity map ofΓ, viewed as

a map(Γ, d1) → (Γ, d2) is a(λ, 0)-quasi-isometry, i.e.,

1
λ

d1(γ1, γ2) ≤ d2(γ1, γ2) ≤ λ d1(γ1, γ2),

for anyγ1, γ2 ∈ Γ andλ is determined byT1 andT2. Therefore, the quasi-isometric equivalent class

of CT (Γ) is canonically associated with the groupΓ itself.

4. It seems, from the bulletin (3), that the constantc in the definition is unnecessary. In fact, M. Gromov

introduces this constant to study a broader class of spaces in geometry naturally related to group actions.

We have the following theorem due to Efremovich [24],Švarc [59] and Milnor [55]: LetX be a metric

space which is geodesic and proper. LetΓ be a group andΓ × X → X an action by isometries (say

from the left). Assume the action is proper and that the quotientΓ \X is compact. Then the groupΓ is

finitely generated and quasi-isometric toX. (The metric onΓ is the word metric with respect to some

finite generating set.)

For the commutator subgroupG′ of G, the generating setS of commutators is uniquely determined and

thus there is no such quasi-isometric issue forCS(G′). Nevertheless, we are still interested in studying prop-

erties ofCS(G′) that are invariant under quasi-isometries. The justification is that the study of finitely gener-

ated groups as geometric objects has proven to be very fruitful and it is standard to expect that the large scale

geometry (invariant under quasi-isometries) of a Cayley graph will reveal useful information about a group.
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In the following, we are going to introduce some concepts on metric spaces, which are quasi-isometrically

invariant and they are generalizations of similar notions from topology, geometry and analysis.

Definition 5.2.4. A thickeningY of a metric spaceX is an isometric inclusionX → Y with the property

that there is a constantC so that every point inY is within distanceC of some point inX.

Definition 5.2.5. A metric spaceX is large scalek-connectedif for every thickeningX ⊂ Y there is a

thickeningY ⊂ Z which is k-connected in the usual sense, i.e.,Z is path-connected, andπi(Z) = 0 for

i ≤ k.

Large scalek-connectivity is a quasi-isometrically invariant property (or large scale property). ForG a

finitely generated group with a generating setT , Gromov outlines a proof ([36], 1.C2) that the Cayley graph

CT (G) is large scale1-connected if and only ifG is finitely presented, andCT (G) is large scalek-connected

if and only if there exists a proper simplicial action ofG on a(k + 1)-dimensionalk-connected simplicial

complexX with compact quotientX/G.

ForT an infinite generating set, large scale simple connectivity is equivalent to the assertion thatG admits

a presentationG = 〈 T | R 〉 where all elements inR haveuniformly bounded lengthas words inT , i.e., all

relations inG are consequences of relations of bounded length.

Next we define the notion of connectivity at infinity.

Definition 5.2.6. A metric space(X, d) is calleddisconnected at infinityif for any k > 0, there exist two

subsetsX1 andX2 in X, such that

1. X1 andX2 are both unbounded;

2. X1 andX2 cover almost allX, i.e., the complementX \ (X1 ∪X2) is bounded;

3. d(X1, X2) ≥ k, i.e.,d(x1, x2) ≥ k for all xi ∈ Xi, i = 1, 2.

ThenX is calledconnected at infinityif for somek, the aboveX1, X2 don’t exist.

Similarly, we define the number of ends ofX at infinity as follows

Definition 5.2.7. Let (X, d) be a metric space, thenumber of endsof X at infinity is the maximalL ∈ Z+

such that for anyk > 0, there exist subsetsX1, · · · , XL, satisfying

1. X1, · · · , XL are all unbounded;

2. X \ (
⋃L

i=1 Xi) is bounded;

3. d(Xi, Xj) ≥ k, for anyi 6= j.
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If X is a path connected metric space, thespace of endsof X can be defined as follows. Fix a base point

p in X. Let Bi(p) be the ball of radiusi centered atp. π0(X \ Bi) is the set of path components ofX \ Bi.

Then we have an inverse system:

π0(X \B1) ←− π0(X \B2) ←− · · · · · · ←− π0(X \Bn) ←− · · · · · · .

Let

E = lim
←−

π0(X \Bi).

E is called the space of ends and it’s clear that the number of ends equals the cardinality ofE. Number of

ends is quasi-isometrically invariant. And the number of ends of the Cayley graph of a finitely generated

group agrees with the usual definition of ends of a group.

Example5.2.8.

1. Let F2 = 〈a, b〉 be the free group of rank2. Let T = {a, b, a−1, b−1}, thenCT (F ) is a 4-valence

regular tree. ThusF2 has infinite ends, and the space of ends is a Cantor set.

2. Let G = π1(Sg), whereSg is a closed oriented surface of genusg ≥ 2. Then the Cayley graph ofG

is quasi-isometric toH2, the Poincaŕe disk with the hyperbolic metric. ThusG has only one end and is

connected at infinity.

At last, we define the notion of asymptotic dimension.

Definition 5.2.9. Let X be a metric space andX = ∪iUi a covering by subsets. For givenD ≥ 0, the

D-multiplicity of the covering is at mostn if for any x ∈ X, the closedD-ball centered atx intersects at

mostn of theUi.

Definition 5.2.10. A metric spaceX hasasymptotic dimension at mostn if for every D ≥ 0 there is a

coveringX = ∪iUi for which the diameters of theUi are uniformly bounded, and theD-multiplicity of the

covering is at mostn + 1. The least suchn is theasymptotic dimensionof X, and we write

asdim(X) = n

The definition of asymptotic dimension is a generalization of the usual topological (covering) dimension

and they have similar properties. See [8] for other equivalent definitions and further properties.

Proposition 5.2.11.

1. asdim(X) is quasi-isometrically invariant;

2. monotonicity X ′ ⊆ X ⇒ asdim(X ′) ≤ asdim(X);

3. product asdim(X1 ×X2) ≤ asdim(X1) + asdim(X2);
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4. finite union X = A ∪B, thenasdim(X) = max{asdim(A), asdim(B)}.

Example5.2.12.

1. asdim(X) = 0 ⇔ X is bounded⇔ X 'q.i. a point.

2. asdim(Rn) = n as expected. WriteZn to be the free abelian group of rank n. The the Cayley graph

of Zn with respect to the standard free generating set is the integral lattice inRn, and thusZn is

quasi-isometric toRn. So we get asdim(Zn) = n.

Remark5.2.13. All definitions in this section are from M. Gromov’s seminal paper “Asymptotic Invariants

of Infinite Groups” ([36]), which has been the main source of ideas for the development of geometric group

theory since its publication.

5.3 Large Scale Simple Connectivity

In this section, we are going to prove that for any finitely presented groupG, the Cayley graph of the commu-

tator subgroupCS(G′) is large scale1-connected (simply connected). This is a joint work with D. Calegari

[15].

By the definition (5.2.5) and the discussion there, to show thatCS(G′) is large scale1-connected, it

suffices to show that there is a constantK so that for every simplicial loopγ in CS(G′) there are a sequence

of loopsγ = γ0, γ1, · · · , γn whereγn is the trivial loop, and eachγi is obtained fromγi−1 by cutting out a

subpathσi−1 ⊂ γi−1 and replacing it by a subpathσi ⊂ γi with the same endpoints, so that|σi−1|+|σi| ≤ K.

More generally, we call the operation of cutting out a subpathσ and replacing it by a subpathσ′ with the

same endpoints where|σ|+ |σ′| ≤ K aK-move.

Definition 5.3.1. Two loopsγ andγ′ areK-equivalentif there is a finite sequence ofK-moves which begins

atγ, and ends atγ′.

K-equivalence is (as the name suggests) an equivalence relation. The statement thatCS(G′) is large scale

1-connected is equivalent to the statement that there is a constantK such that every two loops inCS(G′) are

K-equivalent.

First we establish large scale simple connectivity in the case of a free group.

Lemma 5.3.2. LetF be a finitely generated free group. ThenCS(F ′) is large scale simply connected.

Proof. Let γ be a loop inCS(F ′). After acting onγ by left translation, we may assume thatγ passes through

1, so we may think ofγ as a simplicial path inCS(F ′) which starts and ends at id. Ifsi ∈ S corresponds to

theith segment ofγ, we obtain an expression

s1s2 · · · sn = 1
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in F , where eachsi is a commutator. For eachi, let ai, bi ∈ F be elements with[ai, bi] = si (note thatai, bi

with this property are not necessarily unique). LetΣ be a surface of genusn, and letαi, βi for i ≤ n be a

standard basis forπ1(Σ); see Figure 5.1.

Figure 5.1: A standard basis forπ1(Σ) whereΣ has genus4. Theαi curves are in red, and theβi curves are
in blue.

Let X be a wedge of circles corresponding to free generators forF , so thatπ1(X) = F . We can construct

a basepoint preserving mapf : Σ → X with f∗(αi) = ai andf∗(βi) = bi for eachi. SinceX is aK(F, 1),

the homotopy class off is uniquely determined by theai, bi.

Let φ be a (basepoint preserving) self-homeomorphism ofΣ. The mapf ◦ φ : Σ → X determines a new

loop in CS(F ′) (also passing through1) which we denoteφ∗(γ) (despite the notation, this image does not

depend only onγ, but on the choice of elementsai, bi as above).

Sublemma 5.3.3.There is a universal constantK independent ofγ or of φ (or even ofF ) so that after

composingφ by an inner automorphism ofπ1(Σ) if necessary,γ andφ∗(γ) as above areK-equivalent.

Proof. Suppose we can expressφ as a product of (basepoint preserving) automorphisms

φ = φm ◦ φm−1 ◦ · · · ◦ φ1

such that ifαj
i , β

j
i denote the images ofαi, βi underφj ◦φj−1◦· · ·◦φ1, thenφj+1 fixes all butK consecutive

pairsαj
i , β

j
i up to (basepoint preserving) homotopy. Letsj

i = [f∗α
j
i , f∗β

j
i ], and letγj be the loop inCS(F ′)

corresponding to the identitysj
1s

j
2 · · · sj

n = id in F .

For eachj, let suppj+1 denote thesupportof φj+1, i.e., the set of indicesi such thatφj+1(α
j
i ) 6= αj

i or

φj+1(β
j
i ) 6= βj

i . By hypothesis, suppj+1 consists of at mostK indices for eachj.

Because it is just the marking onΣ which has been changed and not the mapf , if k ≤ i ≤ k + K − 1 is

a maximal consecutive string of indices in suppj+1, then there is an equality of products

sj
ksj

k+1 · · · sj
k+K−1 = sj+1

k sj+1
k+1 · · · sj+1

k+K−1

as elements ofF . This can be seen geometrically as follows. The expression on the left is the image under
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f∗ of an element represented by a certain embedded based loop inΣ, while the expression on the right is its

image underf∗ ◦ φj+1. The automorphismφj+1 is represented by a homeomorphism ofΣ whose support is

contained in regions bounded by such loops. Hence the expressions are equal. It follows thatγj andγj+1

are2K-equivalent.

So to prove the Sublemma it suffices to show that any automorphism ofS can be expressed (up to inner

automorphism) as a product of automorphismsφi with the property above.

The hypothesis that we may composeφ by an inner automorphism means that we need only consider the

image ofφ in the mapping class group ofΣ. It is well-known since Dehn [18] that the mapping class group of

a closed oriented surfaceΣ of genusg is generated by twists in a finite standard set of curves, each of which

intersects at most two of theαi, βi essentially; see Figure 5.2.

Figure 5.2: A standard set of3g − 1 simple curves, in yellow. Dehn twists in these curves generate the
mapping class group ofΣ.

So writeφ = τ1τ2 · · · τm where theτi are all standard generators. Now define

φj = τ1τ2 · · · τj−1τjτ
−1
j−1 · · · τ−1

1

We have

φjφj−1 · · ·φ1 = τ1τ2 · · · τj

Moreover, eachφj is a Dehn twist in a curve which is the image of a standard curve underφj−1 · · ·φ1, and

therefore intersectsαj−1
i , βj−1

i essentially for at most2 (consecutive) indicesi. This completes the proof of

the Sublemma (and shows, in fact, that we can takeK = 4).

We now complete the proof of the Lemma. As observed by Stallings (see e.g. [57]), a nontrivial map

f : Σ → X from a closed, oriented surface to a wedge of circles factors (up to homotopy) through apinch in

the following sense. Makef transverse to some edgee of X, and look at the preimageΓ of a regular value of

f in e. After homotoping inessential loops ofΓ off e, we may assume that for some edgee and some regular

value, the preimageΓ contains an embedded essential loopδ.

There are two cases to consider. In the first case,δ is nonseparating. In this case, letφ be an automorphism

which takesα1 to the free homotopy class ofδ. Thenγ andφ∗(γ) areK-equivalent by the Sublemma.
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However, sincef(δ) is homotopically trivial inX, there is an identity[φ∗α1, φ∗β1] = id and thereforeφ∗(γ)

has length1 shorter thanγ.

In the second case,φ is separating, and we can letφ be an automorphism which takes the free homotopy

class of[α1, β1] · · · [αj , βj ] to δ. Again, by the Sublemma,γ andφ∗(γ) areK-equivalent. But nowφ∗(γ)

contains a subarc of lengthj with both endpoints at id, so we may write it as a product of two loops at id,

each of length shorter than that ofγ.

By induction,γ is K-equivalent to the trivial loop, and we are done.

We are now in a position to prove our first main theorem.

Theorem 5.3.4.LetG be a finitely presented group. ThenCS(G′) is large scale simply connected.

Proof. Let W be a smooth4-manifold (with boundary) satisfyingπ1(W ) = G. If G = 〈T | R〉 is a finite

presentation, we can buildW as a handlebody, with one0-handle, one1-handle for every generator inT ,

and one2-handle for every relation inR. If ri ∈ R is a relation, letDi be the cocore of the corresponding

2-handle, so thatDi is a properly embedded disk inW . Let V ⊂ W be the union of the0-handle and the

1-handles. Topologically,V is homotopy equivalent to a wedge of circles. By the definition of cocores, the

complement of∪iDi in W deformation retracts toV . See e.g. [46], Chapter 1 for an introduction to handle

decompositions of4-manifolds.

Givenγ a loop inCS(G′), translate it by left multiplication so that it passes through1. As before, letΣ

be a closed oriented marked surface, andf : Σ → W a map representingγ.

SinceG is finitely presented,H2(G;Z) is finitely generated. Choose finitely many closed oriented sur-

facesS1, · · · , Sr in W which generateH2(G;Z). Let K ′ be the supremum of the genus of theSi. We can

choose a basepoint on eachSi, and maps toW which are basepoint preserving. By tubingΣ repeatedly to

copies of theSi with either orientation, we obtain a new surface and mapf ′ : Σ′ → W representing a loop

γ′ such thatf ′(Σ′) is null-homologous inW , andγ′ is K ′-equivalent toγ (note thatK ′ depends onG but

not onγ).

Putf ′ in general position with respect to theDi by a homotopy. Sincef ′(Σ′) is null-homologous, for

each proper diskDi, the signed intersection number vanishes:Di ∩ f ′(Σ′) = 0. Hencef ′(Σ) ∩Di = Pi is

a finite, even number of points which can be partitioned into two sets of equal size corresponding to the local

intersection number off ′(Σ′) with Di atp ∈ Pi.

Let p, q ∈ Pi have opposite signs, and letµ be an embedded path inDi from f ′(p) to f ′(q). Identifying

p and q implicitly with their preimages inΣ′, let α and β be arcs inΣ′ from the basepoint to(f ′)−1p

and (f ′)−1q. Sinceµ is contractible, there is a neighborhood ofµ in Di on which the normal bundle is

trivializable. Hence, sincef ′(Σ′) andDi are transverse, we can find a neighborhoodU of µ in W disjoint

from the otherDj , and co-ordinates onU satisfying

1. Di ∩ U is the plane(x, y, 0, 0);
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2. µ ∩ U is the interval(t, 0, 0, 0) for t ∈ [0, 1];

3. f ′(Σ′) ∩ U is the union of the planes(0, 0, z, w) and(1, 0, z, w).

Let A be the annulus consisting of points(t, 0, cos(θ), sin(θ)) wheret ∈ [0, 1]. ThenA is disjoint fromDi

and all the otherDj , and we can tubef ′(Σ′) with A to reduce the number of intersection points off ′(Σ′) with

∪iDi, at the cost of raising the genus by1. Technically, we remove the disks(f ′)−1(0, 0, s cos(θ), s sin(θ))

and(f ′)−1(1, 0, s cos(θ), s sin(θ)) for s ∈ [0, 1] from Σ′, and sew in a new annulus which we map homeo-

morphically toA. The result isf ′′ : Σ′′ → W with two fewer intersection points with∪iDi. This has the

effect of adding a new (trivial) edge to the start ofγ′, which is the commutator of the elements represented

by the core ofA and the loopf ′(α) ∗ µ ∗ f ′(β). Let γ′′ denote this resulting loop, and observe thatγ′′ is

1-equivalent toγ′. After finitely many operations of this kind, we obtainf ′′′ : Σ′′′ → W corresponding to a

loopγ′′′ which ismax(1,K ′)-equivalent toγ, such thatf ′′′(Σ′′′) is disjoint from∪iDi.

After composing with a deformation retraction, we may assumef ′′′ mapsΣ′′′ into V . Let F = π1(V ),

and letρ : F → G be the homomorphism induced by the inclusionV → W . There is a loopγF in CS(F ′)

corresponding tof ′′′ such thatρ∗(γF ) = γ′′′ under the obvious simplicial mapρ∗ : CS(F ′) → CS(G′). By

Lemma (5.3.2), the loopγF is K-equivalent to a trivial loop inCS(F ′). Pushing forward the sequence of

intermediate loops byρ∗ shows thatγ′′′ is K-equivalent to a trivial loop inCS(G′). Sinceγ was arbitrary,

we are done.

Remark5.3.5. A similar, though perhaps more combinatorial argument could be made working directly with

2-complexes in place of4-manifolds.

In words, Theorem (5.3.4) says that forG a finitely presented group, all relations amongst the commuta-

tors ofG are consequences of relations involving only boundedly many commutators.

The next example shows that the size of this bound depends onG:

Example5.3.6. Let Σ be a closed surface of genusg, andG = π1(Σ). If γ is a loop inCS(G) through the

origin, andf : Σ′ → Σ is a corresponding map of a closed surface, then the homology class ofΣ′ is trivial

unless the genus ofΣ′ is at least as big as that ofΣ. Hence the loop inCS(G) of lengthg corresponding to

the relation in the “standard” presentation ofπ1(Σ) is notK-equivalent to the trivial loop wheneverK < g.

5.4 Hyperbolicity and Large Scale Geometry

In this section, we specialize to the case when the groupG is word-hyperbolic, or more generally,G admits an

action on a hyperbolic graph. This hyperbolicity implies that the space of homogeneous quasimorphisms on

these groups is infinite dimensional, and quasimorphisms can be used to separate elements in the commutator

subgroupG′. As a consequence, we show that in the Cayley graphCS(G′), there exists a quasi-isometrically

embeddedZn, for anyn ∈ Z+. Therefore, the graphCS(G′) is no longer hyperbolic, with only one end and

its asymptotic dimension is infinite.
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5.4.1 Hyperbolic Groups

M. Gromov introduced the definition ofδ-hyperbolic spaces in [35]. This definition ofδ-hyperbolicity is

so robust that it encapsulates many of the global features of the geometry of complete, simply connected

manifolds of negative curvature.

Definition 5.4.1 (Slim Triangle). Let δ > 0. A geodesic triangle in a metric space is said to beδ-slim if each

of its sides is contained in theδ-neighborhood of the union of the other two sides. A geodesic metric space

X is said to beδ-hyperbolic if every geodesic triangle inX is δ-slim.

Definition 5.4.2. A groupG with a finite symmetric generating setT is δ-hyperbolic if the corresponding

Cayley graphCT (G), with the path metric, isδ-hyperbolic. A groupG is word-hyperbolicif there is some

δ > 0 and a finite symmetric generating setT for whichCT (G) is δ-hyperbolic.

Example5.4.3.

1. Finitely generated free groups are word-hyperbolic. A geodesic metric space is0-hyperbolic if and

only if it is anR-tree. ThusG is 0-hyperbolic if and only ifG is a free group of finite rank.

2. LetM be a closed Riemannian manifold with section curvature uniformly bounded above by a negative

number. Thenπ1(M) is hyperbolic. In particular, the fundamental groups of compact surfaces with

χ < 0 are hyperbolic.

Word-hyperbolic groups must be finitely presentable and the converse is almost true (in some probability

sense). Thus hyperbolic groups represent a very large class of groups, interesting to geometer.

A very important object in the study of hyperbolic spaces is the notion of quasi-geodesics.

Definition 5.4.4. Let X be a metric space. A(λ, k)-quasi-geodesicis a (λ, k)-quasi-isometric embedding

σ : I → X, where I is an interval ofR or ofZ. In the case when I⊆ Z, we say that we have a quasi-geodesic

sequence.

We summarize some of the main properties of quasi-geodesics in hyperbolic spaces below (see [5] or [35]

for details):

Theorem 5.4.5.LetX be aδ-hyperbolic geodesic metric space.

1. Morse Lemma. For everyλ, k, there is a universal constantC(δ, λ, k) such that every(λ, k)-quasi-

geodesic segment with endpointsp, q ∈ X lies in theC-neighborhood of any geodesic joiningp to

q.

2. Quasi-geodesic is local. For everyλ, k there is a universal constantC(δ, λ, k) such that every map

φ : R → X which restricts on each segment of lengthC to a (λ, k)-quasi-geodesic is a (globally)

(2λ, 2k)-quasi-geodesic.
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3. Ideal Boundary. There is an ideal boundary∂X functorially associated toX, whose points consist

of quasi-geodesic rays up to the equivalence relation of being a finite Hausdorff distance apart. There

is a natural topology on∂X for which it is metrizable. If X is proper,∂X is compact. Moreover, any

quasi-isometric embeddingX → Y between hyperbolic spaces induces a continuous map∂X → ∂Y .

If G is hyperbolic, we denote the ideal boundary of its Cayley graph by∂G. As a topological space, this

does not depend on the choice of a generating set, so we call it theideal boundary(or just theboundary)

of G. The left action ofG on itself induces an action ofG on ∂G by homeomorphisms. Every element

g ∈ G is either finite order (i.e., is elliptic), or fixes two pointsp± in ∂G with “source-sink” dynamics (i.e is

hyperbolic).

A hyperbolic groupG is callednon-elementaryif ∂G contains more than two (then uncountably infinitely

many) points. Klein’s ping-pong argument applied to the action ofG on∂G shows that in this caseG contains

many (quasi-isometrically embedded and quasi-convex) nonabelian free groups of arbitrary finite rank. On

the contrary, a hyperbolic group iselementaryif and only if it is virtually cyclic.

G acts on its Cayley graph on the left by isometries. IfX is a geodesic metric space, andg fixes some

geodesicl and acts on it as a translation, then the translation length ofg, τ(g) = dX(q, g(q)) for anyq ∈ l.

For hyperbolic groups, we have the following Lemma:

Lemma 5.4.6 (Axes in hyperbolic Cayley graphs).Let G be δ-hyperbolic with respect to the generating

setT . Then there is a positive constantC(δ, |T |) such that everyg ∈ G either has finite order, or there is

somen ≤ C such thatgn fixes some bi-infinite geodesic axislg and acts on it by translation.

For a proof, see Theorem5.1 from [27], or [5].

5.4.2 Generalized Counting Quasimorphisms

In this section, we introduce the generalizations of Brooks’ counting quasimorphisms, due to Epstein-Fujiwara

[27] and Fujiwara [30] [31] in general.

Let G be a group acting simplicially on aδ-hyperbolic complexX (not assumed to be locally finite).

Definition 5.4.7. Let σ be a finite oriented simplicial path inX, and letσ−1 denote the same path with the

opposite orientation. Acopyof σ is a translatea · σ wherea ∈ G.

Definition 5.4.8. Let σ be a finite oriented simplicial path inX, and letp ∈ X be a base vertex. For any

oriented simplicial pathγ in X, let |γ|σ denote the maximal number of disjoint copies ofσ contained inγ.

Givena ∈ G, define

cσ(a) = d(p, a(p))− inf
γ

(length(γ)− |γ|σ),

where the infimum is taken over all oriented simplicial pathsγ in X from p to a(p).
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Define the (small)counting quasimorphismhσ by the formula

hσ(a) = cσ(a)− cσ−1(a).

For fixedp anda, a pathγ is a realizing pathif it realizes the infimum of length(γ) − |γ|σ. Since the

value of this function on anyγ is an integer, realizing paths always exist. Realizing paths have the following

universal geometric property.

Lemma 5.4.9 (Fujiwara[30]). Supposelength(σ) ≥ 2. Any realizing path forcσ is a (2, 4)-quasi-geodesic.

By bullet (1) from Theorem (5.4.5) (i.e., the “Morse Lemma”), there is a constantC(δ) such that any

realizing path forcσ from p to a(p) must be contained in theC-neighborhood of any geodesic between these

two points. In particular, we have the following consequence:

Lemma 5.4.10. There is a constantC(δ) such that for any pathσ in X of length at least2, and for any

a ∈ G, if theC-neighborhood of any geodesic fromp to a(p) does not contain a copy ofσ, thencσ(a) = 0.

Finally, the defect ofhσ is independent of the choice ofσ:

Lemma 5.4.11 (Fujiwara[30]). Letσ be a path of length at least2. Then there is a constantC(δ) such that

D(hσ) ≤ C.

5.4.3 Quasi-isometrically EmbeddedZn

In this section, we prove the following theorem concerning the existence of (high-dimensional) flats in the

Cayley graph of a commutator subgroup. This is a joint work with D. Calegari.

Theorem 5.4.12.Let G be a non-elementary word-hyperbolic group andCS(G′) the Cayley graph of the

commutator subgroupG′ with respect to the setS of commutators. LetZn be the integral lattice inRn with

the induced metric. Then for anyn ∈ Z+, we have a mapρn : Zn → CS(G′), which is a quasi-isometric

embedding.

This theorem can be regarded as an application of the followingseparation theoremabout counting quasi-

morphisms.

Theorem 5.4.13 (Calegari-Fujiwara[14]). Let G be a group which isδ-hyperbolic with respect to some

symmetric generating setT . Leta be nontorsion, with no positive power conjugate to its inverse. Letai ∈ G

be a collection of elements withτ : = supi τ(ai) finite. Suppose that for all nonzero integersn,m and all

b ∈ G and indicesi we have an inequality

am
i 6= banb−1.

Then there is a homogeneous quasimorphismφ ∈ Q(G) such that



60

1. φ(a) = 1 andφ(ai) = 0 for all i;

2. The defect satisfiesD(φ) ≤ C(δ, |T |)( τ
τ(a) + 1).

Proof. By Lemma (5.4.6), after replacing eachai by a fixed power whose size depends only onδ and|T |,
we can assume that eachai acts as translation on some geodesic axisli. Similarly, letl be a geodesic axis for

a. Choose some bigN (to be determined), and letσ be a fundamental domain for the action ofaN on l. The

quasimorphismφ will be a multiple of the homogenization ofhσ, normalized to satisfyφ(a) = 1. We need to

show that ifN is chosen sufficiently large, there are no copies ofσ or σ−1 contained in theC-neighborhood

of anyli or l−1, whereC is as in Lemma (5.4.10).

Suppose for the sake of argument that there is such a copy, and letp be the midpoint ofσ. The segment

σ is contained in a translateb(l). The translation length ofai on li is τ(ai) ≤ τ , and the translation length

of bab−1 on b(l) is τ(a) (the case ofl−1 is similar and is omitted). For bigN , we can assume the length

of σ is large compared toτ(a) and τ(ai). Then for eachn which is small compared toN , the element

wn := aiba
nb−1a−1

i ba−nb−1 satisfiesd(p, wn(p)) ≤ 4C. Since there are less than|T |4C elements in the

ball of radius4C about any point, eventually we must havewn = wm for distinctn,m. But this implies

aiba
nb−1a−1

i ba−nb−1 = aiba
mb−1a−1

i ba−mb−1

and thereforea−1
i andban−mb−1 commute. SinceG is hyperbolic, commuting elements have powers which

are equal, contrary to the hypothesis that no conjugate ofa has a power equal to a power ofai.

This contradiction implies thatτ(ai) + |T |4Cτ(a) ≥ Nτ(a). On the other hand,D(hσ) is uniformly

bounded, by Lemma (5.4.11), andhσsatisfieshσ(aNn) ≥ n. Homogenizing and scaling by the appropriate

factor, we obtain the desired result.

Proof of Theorem 5.4.12. Let G be a non-elementary,δ-hyperbolic group with respect to some symmet-

ric generating setT . Then we can find a sequence of elementsg1, g2, · · · ∈ G′ such that

1. gi’s are nontorsion;

2. gn
i 6= bg−m

i b−1, for any nonzero positivem,n andb ∈ G;

3. gn
i 6= bgm

j b−1, for anyi 6= j, nonzerom,n andb ∈ G.

If G is a nonabelian free group, it’s not difficult to see that such a sequence of elements exist inG′. In general,

G contains quasi-isometrically embedded, quasi-convex nonabelian free groups, and such elements can be

constructed accordingly. For more details, see Proposition2 in [2].

For any fixedn ∈ Z+, defineρn : Zn → CS(G′) as follows:

ρn : Zn −→ CS(G′)

(k1, · · · , kn) 7−→ gk1
1 · · · gkn

n .
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Sincegi’s ∈ G′, we havegk1
1 · · · gkn

n ∈ G′. Thusρn is in fact a map fromZn to the vertex set of the graph

CS(G′). We need to estimate the distances between the vertices in the image ofρn.

1. (Upper Bound) Pick any two pointsp, q ∈ Zn, sayp = (s1, · · · , sn) andq = (t1, · · · , tn). The

distance inZn can be written as

dZn(p, q) = |s1 − t1|+ |s2 − t2|+ · · ·+ |sn − tn|,

which is the path metric ofZn with respect to the standard free generating set. Writed(·, ·) for the

metric inCS(G′).

d(ρn(p), ρn(q)) = d(gs1
1 · · · gsn

n , gt1
1 · · · gtn

n )

= cl(g−sn
n · · · g−s1

1 gt1
1 · · · gtn

n )

Claim.

g−sn
n · · · g−s1

1 gt1
1 · · · gtn

n = (gn
ln)cn · · · (g1

l1)c1

where(gi
li)ci = cigi

lic−1
i and|li| = |si − ti|.

The proof of the claim is a direct computation. We substitute this expression into the formula and get

d(ρn(p), ρn(q)) = cl((gn
ln)cn · · · (g1

l1)c1)

≤ cl((gn
ln)cn) + · · ·+ cl((g1

l1)c1)

= cl(gn
ln) + · · ·+ cl(g1

l1)

= |ln|cl(gn) + · · ·+ |l1|cl(g1)

≤ A(|l1|+ · · ·+ |ln|)
= A(|s1 − t1|+ · · ·+ |sn − tn|)

whereA = maxi cl(gi), 1 ≤ i ≤ n. So we have the up bound

d(ρn(p), ρn(q)) ≤ A dZn(p, q).

2. Lower Bound By Separation Theorem (5.4.13), there exist homogeneous quasimorphismsφi, 1 ≤
i ≤ n, such thatφi(gj) = δij , whereδij = 1, if i = j andδij = 0, if i 6= j. Write D = maxi D(φi),
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1 ≤ i ≤ n. Then we have

d(ρn(p), ρn(q)) = cl(g−sn
n · · · g−s1

1 gt1
1 · · · gtn

n )

= cl((gn
ln)cn · · · (g1

l1)c1)

≥ 1
7D(φi)

| φi((gn
ln)cn · · · (g1

l1)c1)− φi(1) |

≥ 1
7D(φi)

[ |φi((g1
l1)c1)|+ · · ·+ |φi((gn

ln)cn)| − nD(φi) ]

=
1

7D(φi)
[ |l1||φi(g1)|+ · · ·+ |ln||φi(gn)| − nD(φi) ]

=
|li| − nD(φi)

7D(φi)

≥ |li| − nD

7D

for any1 ≤ i ≤ n. Write L = maxi |li|, 1 ≤ i ≤ n. Then we have

nL ≥
n∑

i=1

|li| =
n∑

i=1

|si − ti| = dZn(p, q).

So we obtain the lower bound

d(ρn(p), ρn(q)) ≥ L− nD

7D
≥ 1

7nD
dZn(p, q)− n

7
.

Combining the two inequalities together, we have that for fixedn ∈ Z+ and any two pointsp, q ∈ Zn,

1
7nD

dZn(p, q)− n

7
≤ d(ρn(p), ρn(q)) ≤ A dZn(p, q)

whereD, n and A are constants independent ofp and q. Thusρn : Zn → CS(G′) is a quasi-isometric

embedding.

Theorem (5.4.12) tells us that in the graphCS(G′), there exist a lot of flats with arbitrarily large dimen-

sions and we immediately have the following corollaries.

Corollary 5.4.14. LetG be a non-elementary, word-hyperbolic group andCS(G′) the corresponding Cayley

graph of the commutator subgroup. ThenCS(G′) is not (δ-)hyperbolic.

Proof. Zn with the standard path metric is clearly notδ-hyperbolics since there are “parallel” quasi-geodesics

and the Hausdorff distances between them could be arbitrarily large, a contradiction to the bulletin(1) in

Therem (5.4.5) . Theorem (5.4.12) transports these “parallel” quasi-geodesics intoCS(G′), thusCS(G′) is

not δ-hyperbolic.

Corollary 5.4.15. LetG andCS(G′) be as above. Thenasdim(CS(G′)) = ∞.
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Proof. By Example (5.2.12), asdim(Zn) = n. Theorem (5.4.12) gives quasi-isometrically embeddedZn in

CS(G′) for anyn, so by Proposition (5.2.11),

asdim(CS(G′)) ≥ asdim(ρn(Zn)) = asdim(Zn) = n

for anyn. Thus asdim(CS(G′)) = ∞.

Theorem (5.4.12) is still true in a more general setting. To state the general case, we need to introduce

some terminology first. All definitions below are from [2].

Let X be a path connected graph with the path metricd. Suppose(X, d) is δ-hyperbolic. LetG be a

discrete group, acting onX simplicially and isometrically. An isometryg ∈ G of X is calledhyperbolicif it

admits an invariant bi-infinite quasi-geodesic and we will refer to it as aquasi-axis.

Definition 5.4.16. We say the action ofG onX satisfiesWPD(weak proper discontinuity) if

1. G is not virtually cyclic;

2. G contains at least one element that acts onX as a hyperbolic isometry;

3. For every hyperbolic elementg ∈ G, everyx ∈ X, and everyc > 0, there existsN > 0 such that the

set

{h ∈ G | d(x, h(x)) ≤ c, d(gN (x), hgN (x)) ≤ c}

is finite.

Then we can state the general theorem.

Theorem 5.4.17. Let G be a group, andG acts simplicially on aδ-hyperbolic graphX by isometries.

Suppose the action satisfies WPD. Then for anyn ∈ Z+, we have a mapρn : Zn → CS(G′), which is a

quasi-isometric embedding.

And similarly we have the corollary.

Corollary 5.4.18. LetG be a group as above, thenCS(G′) is notδ-hyperbolic, andasdim(CS(G′)) = ∞.

We omit the proofs since they are exactly the same as those in Theorem (5.4.12) and Corollary (5.4.14)

and (5.4.15).

The main application of Theorem (5.4.17) is to the action of mapping class groups on curve complexes.

Let S be a compact orientable surface of genusg andp punctures. We consider the associated mapping

class group MCG(S) of S. This group acts on the curve complexC(S) of S defined by Harvey [41] and

successfully used in the study of mapping class groups by Harer [40] [39] and by Ivanov [43] [44]. For our

purpose, we restrict to the1-skeleton of the curve complex, so thatC(S) is a graph whose vertices are isotopy

classes of essential, non-parallel, non-peripheral, pairwise disjoint simple closed curves inS and two distinct
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vertices are joined by an edge if the corresponding curve system can be realized simultaneously by pairwise

disjoint curves. In certain sporadic cases,C(S) as defined above is0-dimensional or empty (for example,

wheng = 0, p ≤ 4 or g = 1, p ≤ 1) and in the theorems below, these cases are excluded. The mapping class

group MCG(S) acts onC(S) by f · a = f(a).

H. Masur and Y. Minsky [53] proved the following remarkable result.

Theorem 5.4.19.The curve complexC(S) is δ-hyperbolic. An element ofMCG(S) acts hyperbolically on

C(S) if and only if it is pseudo-Anosov.

In [2], Bestvina and Fujiwara study the action of MCG(s) on the curve complexC(S) and show that

Theorem 5.4.20.LetS be a non-sporadic surface. Then the action ofMCG(S) on the curve complexC(S)

satisfies WPD.

Combine 5.4.17, 5.4.18, 5.4.19 and 5.4.20 together, we have the following corollary.

Corollary 5.4.21. Let S be a non-sporadic surface. Then for anyn ∈ Z+, there exists quasi-isometrically

embeddedZn in the Cayley graph of the commutator subgroupCS(MCG(S)′). ThusCS(MCG(S)′) is not

δ-hyperbolic and has infinite asymptotic dimension.

Corolary (5.4.21) is especially interesting in the case whenS is a closed orientable surface of genusg ≥ 3.

In this case, MCG(S) is perfect ([56]), i.e., MCG(S)′ = MCG(S). SoCS(MCG(S)′) = CS(MCG(S)) is

the Cayley graph of MCG(S) itself with respect to a canoncial infinite generating set.

5.4.4 Large Scale Connectivity at Infinity

In this last section, we continue our study of large scale geometry of a commutator subgroup and show

that whenG is a non-elementary word-hyperbolic group or admits an action on a hyperbolic graph, the

corresponding Cayley graph of the commutator subgroupCS(G′) has only one end. This is a joint work with

D. Calegari [15].

Again we only state and prove the case whenG is a non-elementary word-hyperbolic group and the proof

for the general case is the same.

Theorem 5.4.22.Let G be a non-elementary word-hyperbolic group. ThenCS(G′) is one-ended; i.e., for

anyr > 0 there is anR ≥ r such that any two points inCS(G′) at distance at leastR from 1 can be joined

by a path which does not come closer than distancer to id.

We can use Theorem (5.4.12) to give a heuristic proof. For anyg, h ∈ G′, we construct an element

a ∈ G′ with cl(a) À cl(g), cl(h) such thatg and a are “independent”, meaning they have no powers

which are conjugate to each other. And so areh anda. Then by the proof of Theorem (5.4.12), we have

quasi-isometrically embeddedZ2’s, generated by{g, a} and{h, a} respectively. Use these twoZ2’s to find
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paths fromg to a and froma to h, which are far away from1. Then we are done. In the following, we

give a direct proof, and the main tool is still to use counting quasimorphisms to obtain lower bounds for

commutator lengths. The proof also gives us the picture of the local structure of the lattice constructed in

Theorem (5.4.12)

Lemma 5.4.23. Let G be a non-elementary word-hyperbolic group. Letgi be a finite collection of elements

of G. There is a commutators ∈ G′ and a quasimorphismφ onG with the following properties:

1. |φ(gi)| = 0 for all i;

2. |φ(sn)− n| ≤ K1 for all n, whereK1 is a constant which depends only onG;

3. D(φ) ≤ K2 whereK2 is a constant which depends only onG.

Proof. Fix a finite generating setT so thatCT (G) is δ-hyperbolic. There is a constantN such that for any

nonzerog ∈ G, the powergN fixes an axislg (Lemma (5.4.6)). SinceG is non-elementary, it contains

quasi-isometrically embedded copies of free groups of any fixed rank. So we can find a commutators

whose translation length (inCT (G)) is as big as desired. In particular, giveng1, · · · , gj , we chooses with

τ(s) À τ(gi) for all i. Let l be a geodesic axis forsN , and letσ be a fundamental domain for the action

of sN on l. Since|σ| = Nτ(s) À τ(gi), Lemma (5.4.10) implies that there are no copies ofσ or σ−1 in a

realizing path for anygi. Hencehσ(gi) = 0 for all i. By Lemma (5.4.11),D(hσ) ≤ K(δ). It remains to

estimatehσ(sn).

The argument of the Separation Theorem (5.4.13) shows that forN sufficiently large (depending only on

G and not ons) no copies ofσ−1 are contained in any realizing path forsn with n positive, and therefore

|hσ(sn) − bn/Nc| is bounded by a constant depending only onG. The quasimorphismφ = N · hσ has the

desired properties.

We now give the proof of Theorem (5.4.22).

Proof. Let g, h ∈ G′ have commutator length at leastR. Let g = s1s2 · · · sn andh = t1t2 · · · tm where

n,m ≥ R are equal to the commutator lengths ofg andh respectively, and eachsi, ti is a commutator in

G. Let s be a commutator with the properties described in Lemma (5.4.23) with respect to the elementsg, h;

that is, we wants for which there is a quasimorphismφ with φ(g) = φ(h) = 0, with |φ(sn) − n| ≤ K1 for

all n, and withD(φ) ≤ K2. Let N À R be very large. We build a path inCS(G′) from g to h out of four

segments, none of which come too close to id.

The first segment is

g, gs, gs2, gs3, · · · , gsN .

Sinces is a commutator,d(gsi, id) ≥ R− i for anyi. On the other hand,

φ(gsi) ≥ φ(g) + φ(si)−D(φ) ≥ i−K2 −K1
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whereK1,K2 are as in Lemma (5.4.23) (and do not depend ong, h, s). We can estimate

d(gsi, id) = cl(gsi) ≥ φ(gsi)
7D(φ)

≥ i−K2 −K1

7K2
.

Henced(gsi, id) ≥ R/14K2 − (K1 + K2)/7K2 for all i, so providingR À K1,K2, the pathgsi never gets

too close to id.

The second segment is

gsN = s1s2 · · · snsN , s2 · · · snsN , · · · , sN .

Note that consecutive elements in this segment are distance1 apart inCS(G′). Sinced(gsN , id) ≥ (N −
K2 −K1)/7K2 À R for N sufficiently large, we have

d(si · · · snsN , id) À R

for all i.

The third segment is

sN , tmsN , tm−1tmsN , · · · , t1t2 · · · tmsN = hsN ,

and the fourth is

hsN , hsN−1, · · · , hs, h.

For the same reason as above, neither of these segments gets too close to id. This completes the proof of the

theorem, takingr = R/14K2 − (K1 + K2)/7K2.
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