A Caltech Library Service

Young, Massive Star Clusters in the Antennae


Christopher, Micol Huw (2008) Young, Massive Star Clusters in the Antennae. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/QP4P-SD67.


While massive star clusters have been detected in almost every galaxy with appreciable star formation, they are most prevalent in interacting and merging galaxies. As many as 95% of these clusters will ultimately be disrupted, often in the first 10 Myr, but those clusters that do survive may be the progenitors of globular clusters. Many questions exist regarding these massive clusters and the processes that lead to their formation and disruption, including the uniformity of these processes within a galaxy and between galaxies with different degrees of cluster formation (e.g., quiescent spirals, starbursts, and merging systems). To address these questions, we present a detailed spectroscopic survey of young, massive star clusters in the Antennae, one of the best examples of cluster formation in a merging galaxy.

Using near-infrared imaging, we selected a sample of 117 clusters to observe with a combination of near-infrared and optical spectroscopy at the W.M. Keck Observatory. These clusters were chosen to sample the major star-forming regions within the Antennae. This is the largest spectroscopic survey of young massive star clusters in any merging galaxy.

Comparing the equivalent widths of hydrogen recombination lines and CO absorption bandheads to the population synthesis models of Starburst99, we measure the age of each cluster. More than half of the clusters show the simultaneous presence of hydrogen recombination lines and CO bandheads, which is not predicted by an instantaneous burst model of cluster formation. We determine that cluster formation is better modeled by a 5 Myr duration constant rate burst of star formation, which we apply to our cluster measurements. We find the vast majority of clusters have ages between 7 and 12 Myr, with a few younger clusters. Comparing cluster ages with predictions of the temporal evolution of cluster luminosity, we find the lack of older (>12 Myr) clusters (and to a lesser extent younger (<7 Myr) clusters) is not a selection effect but a true deficit. Variation in cluster ages exists with location in the Antennae, with the youngest clusters found in the overlap region where the disks of the two galaxies coincide. We interpret these age variations as an indication that cluster disruption rates differ by location within the Antennae.

Cluster masses are measured by comparing the extinction-corrected K-band luminosity with model luminosity predictions. We find most cluster masses are between 105 and 106 M☉ with a median cluster mass around 3.5 x 105 M☉. Substantial variation exists in masses between different regions, with the overlap region having the most massive clusters on average. These mass differences can be interpreted as size-of-sample effects and our results are consistent with a uniform cluster initial mass function throughout the Antennae.

Improved spatial resolution CO (1-0) observations of the Antennae show that younger clusters coincide with areas of enhanced molecular gas concentration and, not surprisingly, also have on average higher extinctions. From two metallicity tracers, we find cluster metallicities consistent with solar values. Based on CO bandhead and SiI equivalent widths in the near-infrared spectra, we uncover strong evidence of a substantial population of M2--M4 supergiants in many of the older clusters.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:interacting galaxies; LRIS; NIRSPEC
Degree Grantor:California Institute of Technology
Division:Physics, Mathematics and Astronomy
Major Option:Astrophysics
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Scoville, Nicholas Zabriskie
Group:Owens Valley Radio Observatory (OVRO), Astronomy Department
Thesis Committee:
  • Hillenbrand, Lynne A. (chair)
  • Schweizer, Francois
  • Cohen, Judith G.
  • Scoville, Nicholas Zabriskie
  • Ellis, Richard S.
Defense Date:21 March 2008
Record Number:CaltechETD:etd-05152008-141502
Persistent URL:
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:1825
Deposited By: Imported from ETD-db
Deposited On:22 May 2008
Last Modified:30 May 2023 22:31

Thesis Files

PDF (thesis.pdf) - Final Version
See Usage Policy.


Repository Staff Only: item control page