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Abstract

This thesis addresses the Ho, optimal control theory. It is shown that SISO H, optimal
control problems are equivalent to weighted Wiener-Hopf optimization in the sense that
there exists a weighting function such that the solution of the weighted H, optimization
problem also solves the given Ho, problem. The weight is identified as the maximum
magnitude Hankel singular vector of a particular function in He, constructed from the
data of the problem at hand, and thus a state-space expression for it is obtained. An
interpretation of the weight as the worst-case disturbance in an optimal disturbance
rejection problem is discussed.

A simple approach to obtain all solutions for the Nehari extension problem for a given
performance level 4 is introduced. By a limit taking procedure we give a parameterization
of all optimal solutions for the Nehari’s problem.

Using an imbedding idea [12] , it is proven that four-block general distance problem
can be treated as a one-block problem. Using this result an elementary method is
introduced to find a parameterization for all solutions to the four-block problem for a
performance level 7 .

The set of optimal solutions for the four-block GDP is obtained by treating the
problem as a one-block problem. Several possible kinds of optimality are identified and

their solutions are obtained.
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Chapter 1

Introduction

The H,, optimization problem has attracted enormous attention in the 1980’s after being
introduced by Zames [34)]. It has been shown that many frequency-domain, control-design
problems can be meaningfully formulated as H,, optimization problems [4], [11], [27] .
Examples of such problems include minimization of the sensitivity transfer function in
a minimax sense and optimizing the robustness margins for unstructured uncertainty.
Mathematically, the H., optimal control problem is to minimize the weighted infinity
norm of some closed loop transfer function or a combination of transfer functions over
the set of controllers that satisfy the internal stability requirement. The set of stabilizing
controllers is parameterized by Youla’s Lemma [33]. Youla’s Lemma provides a great
simplification in the H,, optimization problem. Using Youla’s parametrization and inner-
outer factorizations, the H,, optimization problem is reduced to the General Distance
Problem (GDP). In special cases, the general distance problem becomes the Nehari
extension problem or the so-called one-block, general distance problem. To distinguish
the general case from the special case, namely, from Nehari’s extension problem, we call

it the four-block general distance problem.
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H, optimization can be interpreted as a loop-shaping tool. In this sense, the con-
troller is selected so as to shape the magnitude of certain closed-loop transfer functions.
The infinity norm is a generalization of the magnitude of a complex number. H; optimal
control or Wiener-Hopf design methods and their time-domain counterpart LQG have
been proposed as loop-shaping techniques. The H,, optimal control makes a more pre-
cise t001 than Wiener-Hopf or LQG since the closed-loop transfer function is optimized.
Selecting weights in the H, optimization problem is an important part of H,, optimal
control that requires engineering judgement and experience.

Until recently, the only method available to solve the four-block general distance
problem has been the one introduced by Doyle [5]. That method results in controllers
with large orders compared to the plant order. A new method, recently introduced
by Glover and Doyle [14], Doyle et al. [6] solves the problem in sub-optimal case and
requires solving two Riccati equations for each 7 level. An important property of this
solution is that it gives controllers with the same degree as the plant. The solution we
present in this thesis also requires solving two Riccati equations but the controllers we
obtain have at least three times the degree of the plant. This is because state space
realizations of the controllers are not minimal realizations. Further analysis is necessary
to eliminate the nonminimal modes.

On the other hand, satisfactory methods were available to solve the one-block problem
for the last few years (see for example [3], [4], [9], [12], [27])-

For the four-block GDP a complete solution for the optimal case was not available.
We present the first complete solution to the problem in this thesis. It is a direct
generalization of the one-block case and is obtained from the method we developed for

the suboptimal case.
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1.1 Contributions of the Thesis

There are four chief contributions of this thesis:

1. Proof of H, — H,, Equivalence in the Single Input Single Output (SISO)
case:

We proved that H,, optimization is equivalent to H, optimization, that is, Wiener-
Hopf optimization, in the sense that there exists a weighting function, which is generically
unique, such that weighted H, optimization results in the same compensator. The
weighting function has an interesting interpretation as the worst-case signal for H,
optimization. This result means that the worst-case signals are not sinusoids, which do
not belong to H, but that they are signals in Ha.

2. An elementary solution for Nehari’s problem:

An elementary solution that is inspired by the H, — H, equivalence has been intro-
duced for both optimal and suboptimal cases. This approach considerably simplifies the
theory behind the one-block problem.

3. Equivalence of the four-block problem with the one-block problem:

We proved that the four-block problem can be transformed into an equivalent one-
block problem by using a result by Glover [12] based on the Positive Real Lemma [1].
This fact reduces the difficulty involved in solving the four-block problem almost to
the level of difficulty involved in the one-block problem. Using this result, we obtain
a parameterization of all suboptimal solutions for the four-block GDP, which requires
elementary mathematics.

4. Optimal solution for the four-block problem:

We present the first complete solution to the four-block GDP in the optimal case,

using our idea of transforming the four-block problem into a one-block problem. This is



4

one of the most useful results of the idea of transforming the one-block problem into a

four-block problem.

1.2 Summary of the Thesis

Chapter 1. Introduction.

Chapter 2. Mathematical Background.

This chapter covers the notation we use, some information on normed spaces, linear
time-invariant systems and stability theory. Also covered in this chapter is an expla-
nation, in some detail, of the motivation for the H., optimal control theory and basic
theorems of H,. A statement of the Positive Real Lemma is also given.

Chapter 3. Equivalence of H; and H,, Optimization - The SISO Case.

An iterative procedure for the “optimal weight”, which is inspired by L#wson’s algo-
rithm [19)], is introduced. It is proven that this iteration converges and has essentially a
unique limit. The limit of the algorithm is the optimal weight. Some connections with
existing results are discussed.

Chapter 4. A Simple Solution to the H,, Optimization Problems: the
One-Block Problem.

This chapter presents a new method to obtain a parameterization of all solutions
for the one-block problem. First a parameterization of all solutions for the suboptimal
problem is obtained, and then the solution for the optimal case is obtained by taking

limit.
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Chapter 5. A Simple Parameterization of All Solutions for the Four-Block
Problem - The Suboptimal Case.

We prove in this chapter that the four-block problem is equivalent to the one-block
problem. We transform the four-block problem into a one-block problem and solve the
one-block problem. Finally, we identify a subset of the set of solutions to the one-block
problem, which is a parameterization of all solutions to the four-block problem.

.Chapter 6. A Simple Parameterization of All Optimal Solutions for the
Four-Block GDP.

Optimal solutions of the four-block GDP are obtained using the approach of Chapter
5. Different types of optimality are discussed and solutions are given. Some examples
are given to illustrate the different cases.

Chapter 7. Examples.

We give two examples to illustrate our method.

Chapter 8. Conclusion.



Chapter 2

Mathematical Background

In this chapter we give a review of the definitions and the results that are necessary to

understand this thesis. Some of the good sources of references are [5], [9], [12].

2.1 Table of Symbols

R the real numbers

Rnxm the set of n X m matrices with real elements
C the complex numbers

Cy the complex right half-plane

C- the complex left half-plane



CnXm

A#

trace(A)

Ai(A)

oi(A)

p(A)

llll

4]

the set of n X m matrices with complex elements

transpose of a matrix A

complex conjugate transpose of matrix A

the sum of the diagonal elements of matrix A

the i’th eigenvalue of matrix A

the i’th singular value of matrix 4

the spectral radius of matrix A

Euclidean norm of vector z in R™ or C™

induced Euclidean norm of matrix 4 in R™*™ or C™*™  (supjjy=1 [|4z]| )

space of functions of a complex variable that are bounded on the

Jjw axis

space of functions of a complex variable that are analytic in C; and

bounded on the jw axis



L,

ByHq,

R (as a prefix)

GDP

SISO

MIMO

IGlleo

space of functions of a complex variable that are analytic in C_ and

bounded on jw axis

space of functions of a complex variable that are square integrable on

the jw axis

space of functions of a complex variable that are analytic in C} and

square integrable on jw axis

space of functions of a complex variable that are analytic in C_ and

square integrable on jw axis

the set of functions in H, that satisfy a norm bound vy 7

restricted to be rational (RH.,, RH3, etc. )

the General Distance Problem

Single Input Single Output

Multiple Input Multiple Output

SUP R Omaz(G(jw))
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IGll2 [51;; oty trace(G"‘(jc«))G(j(.‘.v))do.)]l/2

F(J,Q) J11 + J12Q(I — J22Q)~1J21 (lower fractional transformation)
F.(J,Q) J22 + J21Q(I — J11Q)~YJ12 (upper fractional transformation)
G~(s) GT(-s)

o i’th Hankel singular value

T'a the Hankel operator with symbol G(s)

[G(s)], projection of G(s) € Ly to Heo

[G(s)] projection of G(s) € Lo, to H3

In m X m identity matrix

N lime—o (ATA+ 1) AT
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2.2 Norms, Singular Values

For a vector in C™ or R", the Euclidean norm is defined by

Izl :=< z,z >/ (2.1)
where < z,y >, the inner product, is given by

<z,y>:=z"y. (2.2)
For a matrix A € C™*" the induced 2-norm is given by

All2 = 2.3
llA4ll2 "rglflsﬁllflmll (23)

where z € C™. The singular values of a matrix A € C™*"™ are given by
o = [\ (A* Q)2 (2.4)

where ); are the eigenvalues of A*A for ¢ = 1 to min{m, n}, and nonnegative squareroot

is taken. It can be shown that
|All2 = Omaz(A4). (2.5)
The spectral radius of A is given by
p(4) = max|ri(4)|. (2.6)
For any m X n matrix A, there exists a singular value decomposition (SVD) given by
A=UxVT (2.7)

where ¥ is an m X n matrix defined by

o; if i=j
Y= ' (2.8)
0 otherwise

and U and V are unitary matrices of dimension m X m and n X n, respectively.
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2.2.1 Time Domain Spaces; Ly[—00,00], L;[0, 00}, Ly[—00,0]

Consider a signal z(t) defined for all time, —00 < t < o0, and taking values in C™".

Consider the set of all z(.) such that

lell+= [ [ hetonar] < o (29)

where ||.|| denotes the previously defined norm on C”. The set of all such signals is the

LeBesgue space La[—00,00]. This space is a Hilbert space with the inner product

<z,y>i= / * (D). (2.10)

—00
The set of all signals in Ly[—00,00], which equal zero for almost all ¢t < 0, is a closed

subspace, denoted L,[0, 00]. Its orthogonal complement is denoted Ly[—o0,0].

2.2.2 Frequency Domain Spaces; L;, Hy, Hi, Lo, He

Consider a function G(jw) that is defined for all frequencies, —00 < w < 00, takes values
in C™™ and is square-integrable with respect to w. The space of all such functions is

denoted L, and is a Hilbert space under the inner product

(>}

<G,F >:= %/wtrace[G*(jw)F(jw)]dw. (2.11)

The norm on L; will be denoted ||G]|,.
H, is the space of all functions that are analytic in C;, take values in C™*™, and

satisfy the uniform square-integrability condition

o 1/2
IGll2 == [sup %/ trace [G™(e + jw)G(e + jw)] dw] < o0. (2.12)
>0 —00

€
This makes H; a Banach space. It is customary to consider the limiting values of
G(s) € H; for ¢ — 0. So henceforth we regard H; as a closed subspace of the Hilbert

space L,. The orthogonal complement complement Hy of Hy in L is the space of
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functions G(s) with the following properties: G(s) is analytic in C_, takes values in

C™*™ and the supremum

o0
sup trace [G*(e + jw)G(e + jw)]dw A (2.13)
<0 J—0o0

is finite. Again, we regard H3 as a closed subspace of L. (More detailed explanation
can be found in [5] or in [9].)

An n x m complex-valued matrix F(jw) belongs to the space Lo, if and only if
Omaz (F(jw)) is essentially bounded (bounded except possibly on a set of measure zero).

Then the L, norm of F is defined to be
| Flloo := ess sup Omaz (F(jw)). (2.14)

This makes L, a Banach space.
The space of H, consists of functions F(s) that are analytic in C,, take value in

C™*™ and are bounded in C, in the sense that
SUP Opmaz (F(8)) < 00. (2.15)
aEC+

2.15 defines the Hy, norm of F. We again consider the limit values of H,, as a closed

subspace of the Banach space L.
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2.3 Linear Time-Invariant (LTI) Systems

Throughout this thesis we work with linear time-invariant systems. One way of express-

ing a linear time-invariant system is the state-space representation:

= Az + Bu
y=Co+Du | (2.16)
z(0) = zo

where A, B, C, D are constant matrices. z is called “the state vector,” u “the input
vector,” y “the output vector” and z¢ is “the initial state” of the system. Unless otherwise

stated we take zo = 0 and we denote (2.16) by

A|B
(2.17)

C|D

(2.17) also represents a linear mapping from u to y:

LTI
—>

System y

The representation (2.16) is not unique; for example, for any nonsingular matrix T

there exists another representation of g:

4 =T ATz + T 'Bu
(2.18)
y=CTz+ Du
where the only difference between (2.16) and (2.18) is the state vector z; the input-
output behavior of both systems is exactly the same. These two systems are called

input-output equivalent systems.

The output, y, can be given in terms of u as follows:

y(1) = /0 t CeAt=") Bu(r)dr + Du(t). (2.19)
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The degree of a system is the dimension of the state space, which is the same as the
dimension of A. One natural question is: “ Could we possibly find another representation
with a lower dimensional A matrix such that we would have the same input-output

behavior?” This question brings us to the cbncepts of controllability, observability and

A|B
minimality of a representation [16]. is a controllable realization iff there is
Cc|D
no A and z # 0 such that
eTA = AT (2.20)
eTB=0 (2.21)

are both satisfied (this is the PHB test for controllability [16]). If for some A there exists

z # 0 such that (2.20) and (2.21) are both satisfied, then A is called an uncontrollable

A
mode of the realization. If all of the uncontrollable modes of are stable (i.e.,
C|D
Re[)] < 0), then the realization is called a stabilizable realization. Similarly,
c|D
A|B
a quadruple is an observable realization iff there is no A and = # 0 such that
C|D
Az = Az (2.22)
Cz=0 (2.23)

are both satisfied. If for some A there exists a £ # 0 such that (2.22) and (2.23) are

both satisfied, then A is called an unobservable mode of the realization. If all of the

A

unobservable modes of are stable, then the realization is called a detectable
C|D

realization.
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If a realization is both controllable and observable, then it is a minimal realization

(i.e., a realization with a minimum number of states).

The transfer function of a system is given in terms of its realization as follows:

A|B
G(s) =

Cc|D
C(sI - A)"'B + D.

(2.24)

Remark 2.1 In this thesis we use the terms “transfer function” and “transfer matriz,”

both meaning matriz-valued functions of a complex variable s.

For an antistable system (i.e., all of the modes in C,), the controllablility and the

observability gramians are defined as follows:

L. = / % e(-A) g BT (-4T0 gy
0

L= / * e(cATYOT Ce(-Ab) gy,
0

It is easy to verify that P and @ satisfy the following Lyapunov’s equations:

AL.+ L. AT = BBT
ATL, +L,A=CTC.
Lemma 2.1 [12]
If Re[A;(A)] > 0 Vi, then

L. > 0 if and only if (A, B) is controllable,

L, > 0 if and only if (A, C) is observable.
For an antistable G(s) the Hankel singular values of G(s) are defined as

3i(G(s)) := {Mi(LcLo)}/?

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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where by convention 0;(G(s)) > 0i+1(G(s)). We should note that the Hankel singular
values of a transfer function are input-output invariant, i.e., independent of the realiza-
tion.

A realization is called a balanced realization [21] if
L. = L, = T = diag(01,02,...,0n). (2.30)
For an antistable transfer function G(s), the largest Hankel singular value o7 is also
called the Hankel norm of G(s).
2.3.1 ~-Inner, v-Co-Inner, y-Anti-Inner, y-Anti-Co-Inner Transfer Func-
tions

Definition 2.1 A stable transfer function G(s) with no more columns than rows is v-

inner if G~(s)G(s) = v2I.

Definition 2.2 A stable transfer function G(s) with no more rows than columns is v-

co-inner if G(s)G™(s) = v*1.
Definition 2.3 An antistable transfer function G(s) is y-anti-inner if G(—s) is v-inner.

Definition 2.4 An antistable transfer function G(s) is y-anti-co-inner if G(—s) is v-

co-inner.

Definition 2.5 A square transfer function G(s) € RL is v- all-pass if G(s)G™(s) =

G~(s)G(s) = 7*I,

The following lemma provides a state-space characterization of real, rational, inner trans-

fer functions.
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Lemma 2.2 [5]

An (anti) stable, rational transfer function G(s) with a minimal realization

A|B

G(s) = is v-(anti)-inner iff
Cc|D
ATL,+ L,A=CTC (2.31)
DTc -BTL,=0 (2.32)
DTD =4I (2.33)

We have a dual lemma about v-co-inner transfer functions.

Lemma 2.3 [5]

An (anti) stable, rational transfer function G(s) with a minimal realization

A|B
G(s) = is v-(anti)-co-inner iff

C|D
AL.+ L.AT = BBT (2.34)
DBT -CL.=0 (2.35)
DDT =4I (2.36)
A|B
If we use the fact that is a minimal realization, we conclude the following:
C|D

1- L. < 0 and L, < 0 if G(s) is v-inner or y-co-inner.
1- L > 0 and L, > 0 if G(s) is y-anti-inner or y-anti-co-inner.

We have a similar lemma for y-all pass functions.

Lemma 2.4 [12]

A square transfer function G(s) € RL., with a minimal realization G(s) =
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is v-all pass if and only if

AL .+ L. AT = BBT (2.37)
ATL,+ L,A=CTC (2.38)
L,L.=~%I (2-39)
DBT —-CL.=0 (2.40)
DTc-BTL,=0 (2.41)
DDT = DTD = 4*I. (2.42)

Proofs can be obtained by simple state-space manipulations and are given in [5] [12]
(The notation v-(anti)-inner and 7-(anti)-co-inner are new. When v = 1 we simply say

(anti)-inner, (anti)-co-inner).

Remark 2.2
If we multiply a function by an.(anti-) inner, (anti-) co-inner function, the Lo, norm

and the Ly norm do not increase.

Definition 2.6 A stable transfer function is called outer if it has constant rank in C,.
Definition 2.7 An antistable function is called anti-outer if it has constant rank in C_.
Remark 2.3 An (anti)- outer function can have zeros on the jw- azis.

Definition 2.8 An inner-outer factorization of a function G(s) € RH, is a factoriza-

tion
G(s) = Gi(s)Gu(s)

where G(s) is inner and Go(s) is outer.
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The following theorem is given in [9] and a full treatment of the problem can be found

in [31].
Theorem 2.1 Fvery transfer function in RH., has an inner-outer factorization.
The following corollary is an immediate result of Theorem 2.1.

Corollary 2.1 FEvery transfer function in RHZ, has an anti-inner anti-outer factoriza-

tion.
We have introduced the above definitions to be able to perform inner-outer-like fac-

torization for antistable functions, which we frequently use later in this thesis.

2.3.2 Rules of Manipulation in State Space

We summarize some of the basic state-space rules of manipulation [5], [9].

Al|B
—t—|:=C(sI-A)'B+D
Cc|D
A|B T"ATIT“B
| C|D CT | D
. - =1
A|B A—BD"ICIBD“
| C|D -D-1C | D!
A|B AT | -CT
Cc\|D BT | D

A | By As | B2

Gi1(s)Ga(s) =
C, | Dy C, | D,
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A, B,C; | BiD,

Ci DiC, | DiD2

= B102 Ag BlDz

D,C; C, | DiD;

Ay O B
A | By Ay | By
+ = 0 A2 Bg
Cl D, Cz D,
C, C, |D1+D;
Al Q Bl Al 0 B] - XBQ
0 A2 B2 = 0 A2 B2 (2.43)
G C; D Ci CiX+C, D

where X solves

AIX—XA2+Q=0,

2.4 Linear Fractional Transformations

Consider the feedback system in Figure 2.1. P(s) and A(s) are LTI transfer functions

) Piy(s) Pra(s)
and P(s) is partitioned as P(s) = . The transfer function from u to

Pyi(s) Paa(s)
y is

Fy (P(3), A(S)) := Paz(s) + Pa1(s)A(s) (I = Py1(s)A(8))™! Pya(s) (2.44) |
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2

b, P

y (-._.__ P21 P22 u

Figure 2.1: An upper linear fractional transformation.

where the subscript u stands for upper.

Similarly, consider Figure 2.2. The transfer function from u to y is
Fi(P(s), K(s)) := P11(8) + Pr2(8)K(s) (I - Pn(.s)K(s))"1 Py(s) ' (2.45)

where [ stands for lower.

2.4.1 Interconnection of Linear Fractional Transformations

An important property of Linear Fractional Transformations, LFT, is that any inter-

Ju Jiz
connection of LFT’s is again an LFT. Suppose J = ' . Then Figure 2.3
Jn J2
represents the following algebraic relation:
FI(PaFl(J’Q)) = F(T,Q). (2.46)

Similarly,

Fu(J, Fu(P,A)) = Fy (T, A) (2.47)
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v € P, P, u

P, P

o

Figure 2.2: A lower linear fractional transformation.

where
( T Ths
T =
\ To1 T2
( Py + PigJin (I = PopJiy) ! Py Piy(I = JuPa)™ Jp2
\ J21 (I = PyaJ11) ™! Py J22 + Ja1 P2 (I = Ju1Paz) ™t Jha

(2.48)
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g

o

Figure 2.3: Interconnection of linear fractional transformations.

Given a unitary matrix U, then we have the following fact:
Lemma 2.5 If F(s) € BH, then
K(s) = Fi(U,F(s)) € BH. (2.49)

Proof: First, we prove that || K|l < 1 for all F(s) € BH,,. We can represent (2.49) by

the following equations:

=U (2.50)
Vg = F(S)yz. (2.51)
Since U is unitary we have

lloallZ + llv2ll? = llwaliZ + llwallz- (2:52)
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Substitute (2.51) in (2.52) and use the fact that || Fys|l2 < || Flleo||y2ll2. We then have

llosll3 + IF N3 llw2ll3 2 Nlysli + llv:ll3. (2.53)
From (2.53) we have
lloall3 — Nsall3 = (2 = IIFlIZ)lw2ll3 2 0, since || Flloo < 1. (2-54)

We conclude that

llvallz < [lvall2 (2.55)
for all v;. This implies that

IF(U, F)floo = sup 1222 <4, (2.56)
vi€EH2 ”v1“2

The fact that K(s) € Hy follows from the small gain theorem and from the fact that

K (s) does not have any poles on jw-axis, since ||[K|lo < 1. l

2.5 Internal Stability

In this section we briefly review the notion of internal stability [5], [22].

Consider the block diagram in Figure 2.2, which represents the two equations

€ Pii(s P]z(s) v
= ule) , u=Ky. (2.57)

Y Py1(8) Pra(s) u

The feedback system is well-posed if the transfer function from v to e exists and is proper.

Theorem 2.2 [5]

The feedback system in Figure 2.2 is well-posed if and only if det(I + P3(00)K(00)) # 0.

Definition 2.9 (Internal stability)

Consider Figure 2.4 and the transfer function T(s) : ( of of ) — ( el €T ):
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Figure 2.4: Internal stability.

s)K(s))™? -G(s {(s)P(s))7!
T(s) = (I+ P(s)K(s)) G(s) (I + K(s)P(s)) ; (2.58)
K(s)(I- P(s)K(s))™ (I+ K(s)P(s))™

the feedback system is called internally stable if and only if T(3) € Hoo.

Consider again Figure 2.2. We have the following theorem regarding internal stability

of the system:

Theorem 2.3 [5]

Consider a minimal realization of the system P(s):

A B, B,
P(S) = Cl Dll Dl2 . (2.59)
I C2 | D1 Dy |

There ezists a feedback controller K (s) such that the feedback system in Figure 2.2 is

internally stable if and only if (A, B) is stabilizable and (C, A) is detectable.
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|
2! Px(s)

2 +
K(s) i 4& v2

Figure 2.5: Internal stability of a linear fractional transformation.

Theorem 2.4 [5]
If (A, B,) is stabilizable and (Cs, A) is detectable, then the feedback system in Figure 2.2

is internally stable if and only if the feedback system in Figure 2.5 is internally stable.

2.6 Parameterization of All Stabilizing Controllers

A pair of transfer functions N(s), M(s) € Hy, with the same number of columns is right

coprime if there exists X (s), Y(s) € Ho such that

X(s)M(s)+Y(s)N(s)=1. (2.60)
Similarly, a pair of transfer functions N(s), M(s) € Ho with the same numbér of rows
is left coprime if there exists X(s), Y(8) € Hoo such that

M(s)X(s)+ N(s)V(s) = I. (2.61)
Every real-rational transfer function G(s) has a right/left coprime factorization; i.e., it
can be expressed as G(s) = N(s)M~1(s) = M~Y(s)N(s) such that (2.60) and (2.61) are

satisfied.
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A parameterization of all stabilizing controllers, K'(s), for Figure 2.2 is given in the

following theorem.

Theorem 2.5 [5]
Given right/left coprime factorizations of Pp(s) = N(s)M~Y(s) = M~Y(s)N(s) and
a stabilizing controller Ko(s) := Uo(s)Vy (s) = V5 1(s)Uo(s), then the set of all proper

controllers achieving internal stability for the feedback system (Figure 2.5) is given as

follows:
K(s) = (Uo(s) + M(s)Q(s)) (Vo(s) + N(s)Q(s))™" (2.62)
= (Va(s) + Q) (5)) ™ (Tos) + Q(s)H1(s)) (2.63)
= F(J(),Q(s) (2:64)
with

s V(s
J(s) = Kols) — Vo7(e) (2.65)
Vo '(s) =V5'(s)N(s)
where Q(s) € Hy, and det[(I+ VO“INQ) (oo)] # 0.

In the following theorem we give the parameterization of all stable transfer functions

from u to y in terms of a free parameter Q(s) € Heo.

Theorem 2.8 [5]
The set of all closed-loop transfer functions from u to y (Figure 2.2 ) achievable by an
internally stabilizing proper controller is given by
H(s) = F(P(s),K(s)) = Puu(s) + Pra(8)K(s) (I — Pa()K(s))™",  (2.66)
where K(s) is an internally stabilizing and proper controller
= Ti(s)+ Tr2(s)Q(s)Taa(s), Q(s) € Heo and det(I + D2Q(o0)) # 0

(2.67)
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where

Tn(s) = Pu(s) + Plz(s)Uo(s)M(s)le(s) (2.68)
Tiz(s) := Pra(s)M(s) (2.69)
Ty(s) = M(s)Pa(s)- (2.70)

In the following lemma we give a state-space solution for all the necessary parameters

in Theorem 2.5 and Theorem 2.6.

Lemma 2.6 [5], [24]
Given F and H such that A+ By F and A+ HC, are stable matrices, i.e., matrices with

all the eigenvalues in C_, then we have the following state-space solutions:

A+ ByF B, —-H

F I 0 (2.71)

M(S) Uo(s)

N(s) Vo(s)

C2 + Dy F Dy 1

A+ HC, —(B2+HD22) H
F | I 0 (2.72)

Cz —D22 I

Vo(s) —Uo(s)

—N(s) M(s)

A+ B,F+HCy+ HDoF' | —H B, + HDo,

J(s) = F 0 I (2.73)

—(C2 + D2 F) I —Dy
Lemma 2.7 [5]

A state-space realization for T(s) is

T(s) = Tui(s) Tha(s) (2.74)

Tgl(s) 0
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A+ B F -HC, —HDy By
0 A+HCy, | B+ HDy 0
= . (2.75)
C1+ DyoF C, Dy Dy
0 C, Dy O
Given a Hamiltonian matrix
A -R
H = R (2.76)
-Q -AT
where R = RT >0, Q = Q7, the notation
X = Ric(H) (2.77)

means that X is the unique stabilizing solution of the Algebraic Riccati Equation, (ARE),

associated with H (i.e., A — RX is a stable matrix) [5]. The ARE is given by
ATX+ XA-XRX+Q=0. (2.78)

If we pick F and H in a particular way, we obtain a very useful parameterization in

which

Nya(s) 1= Tia(s)Rp?, (2.79)
with Rp := D%;Du, is inner and

Nay(s) 1= R5*Tn(s), (2.80)

with Rp := D3, D3, is co-inner.
First, assume that Pj3(s) and Pp;(s) do not have transmission zeros on jw-axis

(including c0). This guarantees Rp > 0 and Rp > 0. Define D, := (D;2). and



30

Dy :=(Dg1)1, where

D, DT = 1 - Dy,R;' DY, ‘ (2.81)
DID, = I- D} Ry Dys. (2.82)
If we pick
F = —Rp\(DLC1 + BT X) (2.83)
H = —(B\D}, + YCHRS! (2.84)
where
X = Ric 4= B3 DL ~BiRp By : (2.85)

T
-cIp,DIC; - (A- B.Rp'DECh)

i ‘ . .
A - B,D}LRp'C -CTRp'C

Y = Ric (4- B.0h A5 C) 27D : (2.86)

-BTDTD B - (A-BiDLRFC,)

b

then Nja(s) is inner and Ngy(s) is co-inner.

Finally, we have

F(P(s),K(s)) = Fi(T(s),Q(s)) (2.87)
= Tu(s) + Tha(s)Q(s)T21(s) (2.88)
= Tu(s) - Miz(s) (~RE’Q(s)RY?) Naa(s) (2.89)
= Tu(s) = Niz(s)Q(s)Naa(s) (2.90)
where
Q(s) == -RY*Q(s)RY* € Ho. (2.91)

Since both the ||.]|2 and ||.]|cc norms are unitarily invariant, we have the following

equalities for any Q(s) € Hoo (o = 2 or o0):
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IT11(8) = N12(8)Q(8)N21(8)lle =

. )
Q(s) 0} [ Nu(s)
= |Tu(s) - ( Nix(s) Nu(s) ) 8 ~21
0 Nis) ]
e d) o)
_ 12(8) Tu(S)( N..;i(s) NI(S) ) - L]
N7 (s) 00 } o
_ Ri1(s) - Q(s) Rua(s) (2.92)
R21(S) R22(s) o
where
R R Np
R(s) = 11(3) 12(8) = 12(6) Tll(s) ( N’;i(s) NI(S) ) : (2.93)
Ra1(s) Raz(s) N1(s)
) . N2 (s)
Ni(s) and N1 (s)are matrices such that ( Nix(s) Ni(s) ) and | | aresquare
Ni(s)

and inner matrices.
The following theorem provides a state-space realization of R(s) in terms of the
original plant parameters. R(s) is completely unstable; i.e., all the poles in the open

right half plane.

Theorem 2.7 [5]
R(s) = Ri(s)Ra(s) (2.94)

where

- -

—(A+ B:F)T | (¢, +DppF)T -XH

Ry(s) = —(BzRBl/z)T (D12R51/2)T 0 (2.95)

-pTc xt DT 0

L e
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—(A+ HC)T ~(Rp*Cy)T YiB DT

Ry(s)=| €Y + Dui(By + HDy)T Du(Rz_)l/an)T Dy, DT

51/2
0 RY 0
(2.96)
Remark 2.4 If we assume D;; = 0 then it follows Theorem 2.7 that the “D” term of
R(s) = Ri(s)Ra(s) is equal to zero. Safonov and Limebeer [26] have shown that we

can always achieve Dy; = 0 (and more) via “loop shifting”. Therefore, without loss of

generality, we can assume R(o0) = 0.

2.7 Some Standard Feedback Control Problems and H

Optimal Control

2.7.1 Nominal Stability

Consider the block diagram in Figure 2.6. We generally think of P(s) as the nominal,
i.e., unperturbed plant, while A represents the allowable perturbation or uncertainties
in the plant. The word plant is used in a general fashion here, since it might as well
include the feedback compensator. The objective of this analysis is to determine the
effects of model uncertainity on the closed-loop feedback system after a compensator
has been designed and connected to the open loop plant, so P(s) will generally describe
the nominal closed-loop system. A is assumed to be stable, A € RH., and norm-
bounded by 1. The A generally has a block diagonal structure with many blocks. If the
actual plant uncertainity A is not equal in magnitude to 1 at all frequencies, we simply
construct a frequency-dependent weighting function W(s) such that opax(W(jw)A) <1

for all frequencies, and absorb W(s) into the nominal plant.
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n

Pu(G,K) Pa(G,K)

u;

Y2 ( Pg] (G,K) Pzz(G,K) U3z

Figure 2.6: Generic Control System with Uncertainty.

If A has a block diagonal structure, assuming it as a full block one can lead to
conservative results. In order to take advantage of the block diagonal structure, the
structured singular value analysis [5] needs to be used.

The input-output behavior of the perturbed system with a particular perturbation
A is simply F,(P(s),A). To determine whether the nominal system is stable, we can

check the stability of Fy,(P(s),0). But F,(P(s),0) = Pyy(s); therefore,
the closed-loop system is nominally stable <=> Pp;(s) is stable. (2.97)

In Section 2.6 we explained how to find all controllers that internally stabilize a given

nominal plant.
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2.7.2 Robust Stability

A much more interesting problem is whether the feedback system in Figure 2.6 remains
stable for all A € Hy with ||Allw < 1. The answer is the following: The feedback

system in Figure 2.6 is stable for all A € BH,, if and only if
IPialloo < 1. (2.98)

In the synthesis of a robustly stabilizing controller we need to find a controller, K(s),
which nominally stabilizes the system and satisfies (2.98). The system is called robustly

stabilizable if and only if

min P, <1l 2.99
K(s), stabilizing” 1lleo ( )

A K(s) that achieves the minimum in (2.99) is called a maximally robust controller [13].
We observe that finding the optimally stabilizing controller is an H,, optimization

problem.

2.7.3 Nominal Performance Problem

Good performance for a feedback regulator usually means that the change in the regu-
lated output is small for large changes in the system input (the sensitivity minimization).
In other words, the performance is good if the closed-loop transfer function is small at
all frequencies. Many control problems can be stated in this way by appropriately defin-
ing the input and the output of the system (tracking, etc.) and by adding appropriate
weights reflecting our goals for the design, which requires engineering judgment. In this
thesis we do not deal with the problem of selecting the weights; we assume that the
weights have been selected and the problem has been brought into the standard frame-
work. In the nominal performance problem, we need to find a controller, K(s), which

internally stabilizes the system and satisfies
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IM]leo < 1 (2.100)

where M(s) is an appropriately defined transfer function. We define the standard nom-
inal performance problem in terms of Figure 2.6. In the nominal case (i.e., A =0 ) we

have nominal performance if
1Poa(E)]loo < 1. (2.101)

The H, optimal control problem is to to find a controller, K (s), to minimize || P32(X)||oo;

ie.,

o e . 2.102
K(s), Stabilizing” 22( )”oo ( )

The robust performance problem is defined as follows: Find a stabilizing controller,

K (s), such that we have satisfactory performance for all possible A [5].

2.8 Hankel Operators, Nehari’s Theorem

We define the Hankel operator in discrete time for convenience. T represents the unit
circle on the complex plane.

Assume that G(z) is bounded on the unit circle and has the power series expansion

A .
> Gt (2.103)

t=-—00

We have the following definitions:

Definition 2.10 (Multiplicative Laurent Operator)
The multiplicative (Laurent) operator Ag generated by G(z) is defined as
AG : LQ(T) — LQ(T) (2104)

f— Acf=Gf. (2.105)
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Definition 2.11 (Hankel Operator)

The Hankel operator ' generated by G(z), is defined as

TG : Hy(T) — H3(T) (2.106)

f—Tof = (Pupho)f = [Gf]. . (2.107)

A matriz representation of Ag is

( . . . \

Gy G2 G_3
G_2 G_3 G_4

G.s G_y G_s . . .
H= (2.108)

which is an infinite Hankel matriz.

It can be shown that [12] if G(2) is a rational transfer function, then
rank(H) = McMillan degree of G(z).
The following theorem is one of the fundamental theorems of H,, optimization.

Theorem 2.8 [5], [9], [23] (Nehari’s Theorem)

Consider the following minimization problem,

Yo: |G - @Qlloo- (2.109)

= min
Q(z)€Hw(T)

Then

70 = ||Tgl| (2.110)

and the minimum is achieved by some Q(z) € Ho(T).
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Remark 2.5 If we use the bilinear transformation

z_s—l
Ts+1
and define
s—1
F(s) '—G(s+1)’

then G(z) and F(s) have the same McMillan degree and the same Hankel singular values
[12]; therefore, solving the H, optimization problem in discrete time or continuous time

does not make any difference. In this thesis, we work with continuous time systems.

Remark 2.6 If G(s) € RHZ, then ||Tg|| = p"/*(L.L.).

2.9 Positive Real Functions, Spectral Factorization

In this section we give some basic facts about the Positive Real Lemma. Reference [1] is

an excellent source for more details.

Definition 2.12 An m X m matriz Z(s) of real rational functions is positive real if
1) All elements of Z(s) are analytic in Cy.

2) Z(s)+ ZT(3) >0 in Cy.

Lemma 2.8 (Youla’s Spectral Factorization Lemma) [32] Let Z(s) be an m x m positive
real rational matriz, with no elements of Z(s) possessing a pure imaginary pole. Then

there exists an r X m matrizc W(.) of real rational functions of s satisfying
Z(s)+ ZT(=s) = WI(-s)W(s) (2.111)

where 1 is the normal rank of Z(s)+ ZT(—s), i.e., the rank almost everywhere. Further-

more, W(s) has no elements with a pole in Re(s) > 0, W (s) has constant rank in Cy,
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and W(s) is unique within left multiplication by an arbitrary, real, constant orthogonal

matriz.

Lemma 2.9 (Positive Real Lemma) [1]

Let Z(.) be an m x m matriz of real rational functions of a complezr variable s, with

A|B
Z(0) < oo. Let be a realization of Z(s) with (A, B) controllable. Then

C|D
Z(s) is positive real if and only if there ezist real matrices P, L, Wy, with P positive

semi-definite, symmetric, such that

ATP+ PA=-LLT (2.112)
PB=CT - LW, (2.113)
WIW, = D+ DT. (2.114)

(The number of rows of Wy and number of columns of L are unspecified, while all other

dimensions are automatically fired.)

Lemma 2.10 Ezistence of a Spectral Factor [1]

A|B
Let Z(s) be a positive real matriz of rational functions with Z(o0) < oo. Let
C|D

be a realization of Z(s) with (A, B) controllable, and assume that all conditions in the

statement of the positive real lemma hold. Then the transfer matriz

A| B
W(s) = (2.115)
LT | W,

is a spectral factor of ZT(—s) + Z(s) in the sense that

Z(s) + ZT(-s) = WT(=s)W(s).
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Lemma 2.11 (A Special Solution of the Positive Real Lemma Equations) [1]

Let Z(s) be a positive real matriz of rational functions of s, with Z(00) < 0o. Suppose

A|B
that is a realization of Z(s) with (A, B) controllable, and R := D + DT q

C|D

nonsingular matriz. Then a solution to the spectral factorization problem
Z(s) + ZT(-s) = WT(—s)W(s)
is given as follows:

Wo = VR!/? (2.116)

L= (cT+ PB) RV (2.117)

where P is given by

A—- BR™IC —BR1BT
P = Ric ) (2.118)

-CTR-'¢ -(A-BRrR'0)T
If R is not invertible we have the following lemma to solve the Positive Real Equations,

(2.112)- (2.114).

Lemma 2.12 (A solution for the positive real equations when R is a singular matriz)[2]

Let Z(3s) be a positive real matriz of rational functions of s, with Z(c0) < oco. Suppose

A|B
that is a realization of Z(s) with (A, B) controllable. Then a solution to the

C|D
spectral factorization problem

Z(s) + ZT(=s) = WT(—s)W(s) (2.119)

is given by the following algorithm:
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1) Transform the continuous time positive real function Z(s) = into a
D
. - [ 3 Ad d . g .
discrete time positive real function Zj(2) = via the bilinear transformation
Cq | Dy

s = [a(z — 1)]/(2 + 1) for a positive constant a. This results in

Ag = (al — A) Yol + A) (2.120)
By =V2a(al - A)'B (2.121)
CT = V2a(aI - AT)1CT (2.122)
Dy= D+ C(al — A)"'B. (2.123)
2) Find
®:= lim_&(n) (2.124)

where ®&(n) is determined recursively by
8(i+1) = AT®(:)As~[AT®(i)By+CT )[BT ®(i)By+Da+ DT [AT8(:) B+CT)T(2.125)

initialized by ®(0) = 0.

3) Calculate N from
NTN = BT®#B,; + Dy + DJ. (2.126)

4) Then a solution for the spectral factorization problem (2.119) is given as follows:

Al B
W(s) = (2.127)

LT | W,

where
1

L= —=(al~ A)AT®B, + CT)(BY8By + Dy + DD)INT (2.128)

1
Wo= N — ——N(BT®B, + Dy + DT (4T®B, + CT)TB. (2.129)

V2a
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Remark 2.7
1) It is not neccesary to have (C, A) observable in Lemma 2.12. If(C, A) is observable
then ® is also invertible.

2) Lemma 2.12 is valid for both R singular and nonsingular.

Next, we prove the following important theorem.
Theorem 2.9 Given any G(s) € ByRH,, then the spectral factorization problem
Z5(8)Zo(s) = v2I — G~ (s)G(s) (2.130)

always has a solution. The solution is given as follows:

Zo(s) = il (2.131)

LT | W,

where L and Wy satisfy

WIWo = v - DTD (2.132)
ATP + A= -LLT (2.133)
PB=L,B-CTD - LW, (2.134)

with

ATL,+L,A=CTcC.

A|B
Proof: Let us take a realization G(s) = with (A4, B) controllable and A a
C\|D

matrix with all the eigenvalues in C_. Then
VI — G~ (8)G(s) = Z(s) + Z™(s) (2.135)

where
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A | s

Z(s) = (2.136)

(v*1-DTD) /2
Z(s) is obviously a positive real function [1]. From Positive Real Lemma we obtain the
equations (2.132)- (2.134). B

In case Wy in (2.132) is invertible the spectral factor, Zo(s), is given by the following

lemma:

Lemma 2.13 [1]

If Wy is invertible then the L that corresponds to a spectral factor is obtained from
L=—(PB+CTD)yw;! (2.137)

where

A - B(WWIWo)-1DTC _B(WIW,)-'BT
P = Ric |- (2.138)
—CT(I + DWIWo)'DTIC (A - B(W{Wo)~1DTC)

The following remark provides a method to solve the spectral factorization problem

when W, is singular.

Remark 2.8 If Wy in (2.132) is not invertible we obtain the solution via Lemma 2.12.

The calculation goes as follows:

A|B

1) Given G(s) € ByHy, with a controllable realization , we first calculate Z(s)
C|D

as given by (2.136).

2) Apply Lemma 2.12 to Z(s) (i.e., replace C by BTL, — DTC) to get the solution.
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Chapter 3

Equivalence of Hy and H

Optimization- The SISO Case

Consider the scalar H,, optimization problem

Ein =gl (3.
where r(s) is a given scalar function in RHZ. We have indicated in Section 2.7 that
many interesting control problems can be redgced to problem (3.1). In the following
paragraphs we give a short review of the solution for the scalar case, which can be found
in [9].

First assume that we are given a minimal realization for r(s) € RH3
A|B

r(s) = . (3.2)
cio

(Without loss of generality we can assume that 7(s) does not have any factor in RH;

if it has any such factor, we can add it to ¢(s).)

Theorem 3.1 [9]

The following algorithm provides the unique solution, q(s), for problem (3.1).
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1) Solve the equations
AL+ L AT = BBT (3.3)
ATL, + L,A=CTC. (3.4)

2) Find the mazimum eigenvalue 0? of L.L, and the corresponding eigenvector w.

3) Define
[ Alw
f(s) = (3.5)
| C |0
[ -AT o7 Low
9(s) = (3.6)
| BT 0
4) Calculate
q(s) = r(s) — o1f(s)/9(s). 3.7)

Note that (f(s), g(s)) is called a Schmidt pair for the Hankel operator with symbol

7(s), and we have the following equations [12]

T,g=o0.f (3.8)
Ilf=o01g (3.9)
IiT,g = olg. (3.10)

From Nehari’s theorem we know that the minimum achievable error in (3.1) is ||T,|| = 0;.

The following theorem gives an important property of the solution:

Theorem 3.2 [9]

The solution of problem (8.1), q(s), is unique and for this unique solution the error
E(s) = r(s) — ¢(s) is o1 all-pass.

So much for the review of problem (3.1); in the next section we calculate the weight that

achieves Hy- H, equivalence.



45
3.1 Solving for the Optimal Weight

We now consider the weighted H; optimization problem

in ||W[r- 3.11
soin, Wi —dllz (3.11)

where W(s) € RLo, and r(s) € RHj3 are given functions. Problem (3.11) has a very
simple solution since L, is a Hilbert space; namely, we obtain the solution by projection.

The calculation goes as follows:

IW(s) [r(s) = a()) 113 = Wo(s) [r(s) = a()II3 =

= [[Wo(s)r(s)l- + [Wols)r(s)4 = Wo(s)a(s)lI3

= [[Wo(s)r(s)I-1I3 + [Wo(s)7(s)]+ = Wo(s)a(s)]I3- (3.12)
Therefore,
q(s)rgngw W (s)[r(s) — a(s)llz 2 IWo(s)r(s)]-ll2 : (3.13)

and the lower bound is achieved in (3.13) if we pick

[Wo(s)r(s)], = Wa(s)a(s) (3.14)

or

q(s) = [Wo(s)r(s)]y. /Wo(s) (3.15)

where W,(s) is the outer, i.e., the stable and minimum phase, part of W(s). Note that

every W(s) € RL,, has an all-pass outer factorization

= n=(e)ni(s) _
O = T -

(n_(s) d:(s)> (n:(s) n+(s)) _
n=(s)d_(s) ) \d=(s) d4(s)

= Wa(s)Wy(s)
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where subscript (-) indicates a polynomial with zeros in C; and the subscript (+) indi-
cates a polynomial in C_, i.e., a Hurwitz polynomial. W,(s) is the all-pass part of W(s)
and W,(s) is the outer part of W(s) [10].

Note that the ||.]|co and ||.||2 are invariant under multiplication by an all-pass function.

In this chapter we show that given an Hy, optimization problem (3.1), there exists a
unique weight W (s) such that the solution of the weighted H, problem (3.11) also solves
problem (3.1) , and furthermore, we calculate the optimal weight (in [28] we treated the
same problem with a different approach).

The motivation for the H,- H,, equivalence comes from Lawson’s algorithm [7], [19],
[20] which basically states that: in a finite set Z that consists of N distinct points, there
exist a sequence of best weighted least-squares approximations, which, under suitable
conditions, converge to the best Chebysev approximation to f on Z.

We generalize the idea behind Lawson’s algorithm to our case. We propose the fol-

lowing algorithm for the solution of the problem.

1) Pick any initial outer weight Wy(s) € RHa.

2) Update the weight according to the rule
Wieya1(s) = [Wi(s)r(s)]Z . (3.16)

8) If Wi41(s) is outer, then continue else goto Step 2.

4) If Wiy1(s) = AWi(s) then the optimal weight is Wi (s) and the optimal solution is

q(s) = [W(s)r(s)ly /W(s) (3.17)

else goto step 2

end.
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Some Remarks about the algorithm
1) If we multiply Wi(s) by a scalar, it does not affect the solution, ¢(s). In a numerical

procedure we need to do some scaling in Step 2.

2) In some cases, in the initial steps of the algorithm we obtain weights that have right
half-plane zeros; this is the reason why we have Step 3, so that we can avoid taking the

outer part in Step 4.

3) The algorithm always converges, as we prove, to a generically unique limit, which

is an outer weight.

4) The denominator polynomial of Wi(s) is completely determined after the first it-
eration; namely, it is the mirror image of the denominator polynomial of r(s). We can

see this fact from Step 2 as follows: Pick the initial weight Wy(s) = 5%{-:—}, where ng(s)

N8
r(8)?

witz polynomial. Then calculate [Wy(s)r(s)]_ = [%ﬁﬂ_ = ii(%, where a(s) is a

polynomial with a degree less than the degree of d,(s). Then we have

and do(s) are Hurwitz polynomials. We also have r(s) = where d}(s) is a Hur-

Wa(s) = [Wo(s)r(s)[T = gf(-;l) (3.18)

From (3.18) the proof of the claim is apparent.

From this observation we conclude that we need only to determine the numerator
polynomial of the weight; i.e., the iteration is performed over the numerator coefficients
after the first iteration. If the degree of d,.(s) = n, then we need to determine only n
parameters to find out what W(s) is. We use this observation and make an educated

guess for the weight in state-space representation of 1W(s) and we pick
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—-A|B
Wi(s) = (3.19)
wf [0

where wy, is a column vector that needs to be determined in order to fully determine
W(s), the optimal weight. wy has n parameters, the same as the degree of freedom left
in the optimal weight after we have fixed the denominator polynomial. Also note that
all of the poles of (3.19) are at the mirror images of the poles of r(s).

5) For the limiting weight (later we will call it the optimal weight), the error E(s) =
r(s) — ¢(s) is A-all-pass. Namely,

E(s)=r(s)—q(s) = [W(v';)zs(; I _ A%;ﬁ; ), (3.20)

which follows from Step 4 of the algorithm. The error is obviously A-all-pass (for scalar
functions the necessary and sufficient condition for a function to be all-pass is that the

numerator and the denominator polynomials must be mirror images of each other.

3.2 The Limit of the Algorithm

We start with Step 4 of the algorithm. Assuming that we have a w; such that Wi(s),
which is given by (3.19), has all the zeros in C_.

We now implement the algorithm; the calculation is given as follows:

—A|B A|B
Wi(s)r(s) =
| wi [0 ClO
-A BC | 0
= 0 A | B
wf 0 0




= +
wli | 0 -wfL |0
then we have
A |B
Wi(s)r(s)l- = (3.21)
-wfL|0
and from (3.21) we have
o - B
Wia(s) = [Wi(s)r(s)]Z = (322)
wfL |0
where L solves
AL+ LA+ BC =0. (3.23)
From (3.23) we obtain
wi,, = wiL. . (3.24)
If we repeat the iteration ! times we get
wf,, =wl L. (3.25)

We realize that (3.25) is the power iteration that is used to calculate the largest eigenvalue

and corresponding eigenvector of the matrix L. Therefore, we generically have
Wiyl — W (3.26)

where w is the eigenvector corresponding to the largest eigenvalue of L. (The algorithm
would not converge if the largest eigenvalue were complex, which is not the case as we
will prove shortly; the algorithm would not converge to the largest eigenvalue if thé
orthogonal projection of the initial vector wy to the subspace generated by the largest
eigenvalue, i.e. by the corresponding eigenvector, is zero).

We sum up these observations in the following lemma.
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Lemma 3.1

The limiting weight of the iteration is given by

W(s) = il (3.27)

wl |0

where w is the eigenvector of L corresponding to the largest eigenvalue and L is given by

(3.28). The limiting weight is unique if the largest eigenvalue of L has multiplicity one.

Lemma 3.2

In the SISO case we have

L.L,= L2 (3.28)

Proof: First note that if we make a coordinate change in state space by z = Tz, we

AlB
have = [T-'AT,T-'B,CT,0), L.L, — T~'L.L,T, L — T-'LT. These

clo
relations imply that if (3.28) is satisfied in some coordinate system, then it will be

satisfied in any coordinate system. We prove it for the balanced realization. First note
that in the case of balanced realizations, we have L, = L, = ¥ =diag(o1,02,...,0,). In
the SISO case for balanced realizations we have the following equalities [30]
C =BTR (3.29)
A= RATR (3.30)

where R is a diagonal matrix having 41 or —1 as diagonal entries. We now use relations

(3.29) and(3.30) in (3.23). We get the following equation,
AL+ LRATR+ BBTR=0 (3.31)

and from (3.31) we get
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ALR+ LRAT + BBT = 0. (3.32)

If we compare (3.3) and (3.32), we conclude that in case of balanced realization, in the

SISO case, we have L, = ¥ = —LR = L,. This implies that
L=-YR=-RX. (3.33)

From (3.33) we conclude the result. W
The following lemma gives the relation between the Schmidt pair and the limiting

weight:
Lemma 3.3

9(s) = W(s) (3.34)

f(8) = —sign(Apez) W™ (8) (3.35)
where Apq. 18 the largest eigenvalue of L.

Proof: We have g(s) = g7(s) since g(s) is a scalar function; then we have

9(s) = (3.36)

Consider balanced realizations as before. Since w has to satisfy L?w = o?w, then we

conclude that w = (1,0,0,..0)T. Therefore, 'wTEUI— ! = wT and we finally have
-A|B
g(s) = = W(s). (3.37)
Next, consider f(s)

f7(s) = (3.38)
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If we use the the relations (3.29) and (3.30) we get

f7(s)

An immediate result of Lemma 3.3 is the following corollary:

Corollary 3.1

and therefore,

—RAR | —~RB

T

w 0

—-A |B

Awis). m
o1

N ONN A0
OO

W"‘(s)v

q(S) = 'I‘(S) -A W(S)

is the optimal solution of the problem (3.1).

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.47)

This completes the proof of the claim that the algorithm we proposed converges to the

optimal solution to (3.1). Next we will state an obvious fact as a lemma.
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Lemma 3.4 For a solution q(s) the optimal weight is unique.

Proof: Assume that there are two weights that give the same solution, ¢(s). We then

have

E(s) = AVV‘;}:((;)) = ,\V‘;?:((:)); (3.48)
from this we obtain

WIN('S) - Wl(s) (3.49)

Wi (s) ~ Was)
Since Wj(s) and Wy(s) are both stable and minimum phase, then %ﬁ-} is a stable
function, i.e., analytic in C. Similarly, %&} is analytic in C_. Then we conclude that
(3.49) can be satisfied if and only if Wy(s) = kWy(s). B

3.2.1 Interpretation of the Optimal Weight

Consider the following block diagram:

W (s)

. K(s) 4 P(s) —>
+ e(s)

Figure 3.1: Disturbance rejection problem.

For a given W(s) € RH,,
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min e 3.50
K(s),stabilizing lell ( )

is a weighted H,- optimization problem. We define
e(s) := (14 P(s)K(s))" W(s) (3.51)

where K (s) internally stabilizes the feedback system in Figure 3.1. If we use Youla’s

parameterization lemma we get
e(s) = (A(s) — B(s)g(s)) W(s) (3.52)

where A(s) and B(s) are functions determined by P(s). Problem (3.50) can be trans-

formed into a problem as in (3.11), and the basic steps are as follows:

min el2 = min A—B)Wl, =
K(s), Stabilizing” l2= min I )W

i ™o o = i —i4
q(s)xgngwll(AB, )Wz ﬁ(,i‘e‘%‘Hw”(" W2

where B;(s) and B,(s) are the inner and outer factors of B(s), respectively, and §(s) :=
B,(s)q(s)-
Now consider the following problem,

llell2 }
min SUp T o (3.53
K(s),St&blllZlng{W(s)eRHz [W]|2 )

Using the same arguments as before we get

min sup efla. = min sup Ir = 9 Wiz . (3.54)
K(s),stabilizing | ws)erm, IWll2 | d()€RHw |werH,  [[W]l2
By definition of the L, norm we have

wp  LC =Wl

=Ir = 4lloo. (3.55)
web T =l

Therefore, we conclude that the optimal weight is the worst-case signal for problem
(3.54). This shows that the worst-case signals for H,, problems are not necessarily

sinusoids, but they are signals which belong to RH>.
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3.2.2 An Example

Consider Figure 3.1 with
s—1

Ple)= 53

and suppose that we want to minimize the peak of the sensitivity transfer function

1
1+ P(s)K(s)’

S (8) =
which is the transfer function from W to e, over the set of stabilizing controllers K(s).
It is easily verified that all admissible S(s), the set of S(s) parameterized by stabilizing

controllers, can be parameterized as

S(s) = 2.5§1—1.2) (s —(;)§.31;20.2)q(s) ’ (3.56)

for ¢(s) € Hoo. Minimizing the peak of the sensitivity transfer function is then equivalent

with
o n, lir=Qlle (3.57)
where
r(s) = 2.5(s+ 0.2)
s—1
and
_ S+ 0.2
Q(s) = ZE52400)

A minimal state space realization for r(s) is

1] 1
r(s) =
3|25

This gives L = —1.5. Therefore, the minimum achievable error is g7 = 1.5. Since 7(s) is

a first-degree transfer function W(s) does not have any finite zeros and it is
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1
‘ID(S) = m.
Therefore, the optimal sensitivity can be found from

llwS]l2 (3.58)

where minimization is over the set of all stabilizing controllers. Note that according to
the interpretation of the optimal weight following Section 3.2.1 results, w(s) = 1/(s + 1)

is the worst input signal for the system in Figure 3.1 for the input-output pair (W, e).
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Chapter 4

A Simple Solution to Hy
Optimization Problems: the

One-Block Problem

When we attempt to generalize the result of Chapter 3, namely, that there exists a
W(s) € RH; such that ming(,)erH,, | X ~ Qlloc and that ming(y)era,, |[W (X - Q) |l2
has the same solution and the error is all-pass, we fail, because, it turns out that maxi-
mum eigenvalue of L.L, does not always have enough multiplicity. As we will see in the
following section, if we give up the idea of having a strictly proper H, weight and try to

generalize all-passness of the error, we get a solution.

4.1 A Solution for the One-Block-Suboptimal Problem

Consider the antistable rational m X m system
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A|B

R(s) = (4.1)
C|D

such that (A, B) is controllable and (C, A) is observable. The one-block problem is

defined as follows : Given a v, find a @ € RHy, such that
IR - Qllo < - (4.2)

From Nehari’s theorem we have v > ||T'g||.

Throughout this chapter we will consider the suboptimal case; i.e., ¥ > ||T'g|]. Taking
R(s) to be square does not entail any loss of generality. This is because adding zero rows
or columns to R(s) does not change the Hankel norm of R(s), and the solution is later

obtained by a compression, which does not increase the norm. Now consider some

A | B
W(s) = - € RH,, with W=1(s) € RH,, which will be specified later. We
G| 1
obtain:
RW = [RW]_ + [RW], (4.3)
RW = {[RW]_ + D1} + {[RW]_ - D} (4.4)

where D; will be determined later. Define

U :=[RW]_ + D (4.5)

V := [RW], - Di. (4.6)
From (4.4), it follows that
R(s) = E(s) + Q(s) (4.7)
where

E(s):=U(s)W™1(s) (4.8)
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Q(s) := V(s)W™(s).

(4.9)

Now we have the error and the solution of (4.2) in terms of W(s) and D;. Let us require

E(s) to be y-all-pass; i.e.

E~(s)E(s) = E(s)E~(s) = v%I

(4.10)

and that Q(s) € RH. At this point it is clear that we need the factor D, for E(s) to

be v-all-pass.

If we use the definition of E(s) given by (4.8) in (4.10), we get
W™ (8)U~(s)U(s)W1(s) = 42I.
This is satisfied if and only if
U~(s)U(s) = Y*W™(s)W(s).

We first calculate U(s) and V(s) as follows:

A|B Ay |B1
RW =
| C I D Ci | I
A 0 B-X1B;
= 0 Al Bl [}
C CX:+DC D

where the second equality is obtained via the similarity transformation

where X satisfies

AX1 - XA+ BC; =0.

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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From (4.13) we obtain

-
A'B—X131
U=
o
A l B
V =
_CX] +DC, | D—- D,

We next calculate the quantities W™~ (s)W(s) and U~(s)U(s).

—Af

-cf A | By

W~(s)W(s) =
Bf

I CIII

-AT -cfc, | -cf

= 0 AT B,

| sFa | 1

[ 4T 0 | -cT-x.B, |
= 0 AT B,

| Bf B{X:+C I |

The second equality is obtained through the similarity transformation

I X,
T2 = )
0 I

where X, satisfies
ATX, + X4, + C1TCy = 0.

From (4.18) we obtain

—AT | -CT - X, B,
W~(s)W(s) = +

BT 0

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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A l B,

(4.21)
Bf X, + Cy I I
A similar calculation gives
—-AT | —-CTD; - X3(B - X1 By)
U~(s)U(s) =
| (B-X1B))T | DID,
A B-X\B
, (4.22)
i (D?C + (B - XlBl)TXs) 0
where X3 satisfies
ATX3+ X34+ CTC =0. (4.23)

Now we impose the condition (4.12), which is satisfied if and only if ( since the only

freedom left is in similarity transformations),

Ay = -AT  (429)
v2B; = —CTD, — X3B + X3X1B; (4.25)
BTX,+C =BT - B,Tx,T (4.26)
D\TD, = I (4.27)

(4.27) implies
D, :=~Up (4.28)
where Up is a unitary matrix. If we combine (4.26) with (4.15) and (4.20), we conclude
C, = BT (4.29)
Xo=-X1=L. (4.30)

and also, by definition,



62

From (4.25) we get

B, = -N(7)[CTD, - L,B]
where

N(y):= (v - LL) ™.

Summarizing, we have

W -AT | -N(y)(CTD; - L,B)
BT l I
v - A I B - L.N(y)(CTD, - L,B)
o s
- [T l —N(y)(CTD, - L,B)
| —CL.+ DBT D - D,
where D) is defined through (4.28). From (4.34) we can easily get
W(e) = —(A-A)T | N(y)(CTD, - L,B)
BT l I

where A is defined as
A= B[D,TC - BTL,| N7(v).
We can now calculate Q(s) as:

Q(s) = V(s)W1(s).

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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From (4.39)
-AT -AT N()(L,B - CTDy)
Q= 0 —-(A-A)T —N(7)(LoB - CTD,)
DBT - CL. (D-D,)BT D - D,
-AT 0 0
= 0 -—-(Aa-A)T —N(7)(L,B - CTD,)
DBT-cCL, CL.- D\BT D-D,
(4.40)
where the second equality follows from the similarity transformation
I -1
T= (4.41)
0 I
A realization for Q(s) is then
Aq | Bg
Q(s) = =
| Co | Do
(A= A)T | N(y)(CTD, - LoB)
= , (4.42)
CL.- D,BT l D-D,

with parameters Ag, Bg, Cq, Dg defined in an obvious way. E(s) is then y-all-pass
by construction. We need to check to see if Q(s) is stable. To this end, we prove the

following lemma.

Lemma 4.1 For any D, with 0pmqe(Dy) < v, Q(s) given by

Qo) -AT + N(y)(C*D, - L,B)BT | N()(CTD, - L,B)
S =
i CL.- D,BT I D - D,
Ag | Bg
- | =2 (4.43)
| Cq | Dg
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is stable.

Proof: Ag satisfies the following Riccati equation :
AQ(N(7)Lo) + (N(1)Lo)AD + BoBG + N(v)CT(v*I - D\D{)CN™(7) = 0.(4.44)

Since ¥ > p(LoL;)and N(v)L, > 0, we conclude that Ag has all its eigenvalues in the
closed left half plane (see [12], Theorem 3.3). Therefore, the only kind of unstable modes
we may have are on the jw axis.

Claim 1: There are no uncontrollable modes on jw axis.
We prove this claim as follows: Assume that (Ag, Bg) has an uncontrollable mode

A = jw; then we have
2TAg = jwzT (4.45)
zTBg = 0. (4.46)
If we use the definition of Ag and (4.46)in (4.45), we conclude that
2T(—AT) = jwzT, (4.47)

but this contradicts the fact that A has all of its eigenvalues in the right half plane. We
conclude that Q(s) does not have any uncontrollable modes on the jw axis.
Claim 2: There are no controllable modes on jw axis.

Proof of Claim 2: Assume that Ag has an eigenvalue on the jw axis; then we have
2T Ag = jwzT (4.48)
ALT = —juT (4.49)

since Ag is a matrix with real elements. Multiply (4.44) by zT from left and Z from

right; then we get
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2T (BgB%) 7 + 27 (N(7)CT(v*I - D, D] )CNT(7))Z = 0. (4.50)
From Equation (4.50) we conclude that
zTBg = 0. (4.51)

(4.48) together with (4.51) implies that there is an uncontrollable eigenvalue on the jw
axis, which contradicts Claim 1.
Claim 1 and Claim 2 together imply that Ag does not have any modes on the jw

axis. Therefore, Ag has all of its eigenvalues in left half plane. |

4.2 Parameterization of All Solutions to the One-Block

Problem

In [9] a parameterization of all the solutions to (4.2) is given. We use the same notation
as in [9] for comparison. In the previous section we obtained a solution to (4.2), which

gives a v all-pass error,
E(s) = U(s)W~1(s) (4.52)

where W(s) and U(s) are given by (4.34) and (4.35). If we appropriately group the

expressions for U(s), W(s) and V(s), we get
U = Li(y,8)D1 + La(7,9) (4-53)
W = L3(v,8)D1 + L4(7, 5) (4.54)

V = —Ls(v,8)D1 + Le(7, s) (4.55)
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where Dy = vU, U any unitary matrix and

A|-L.N(y)CT
Li(y,$) := (4.56)
i C I
A|¥’NT(v)B
Ly(v,8) := (4.57)
¢l o
-AT | N(n)CT
Ls(v,s) := (4.58)
I -BT 0
—~AT | N(y)L,B
Ly(7,s):= (4.59)
| BT I
-AT N(7)CT
Ls(v,s):= (4.60)
DBT - CL. I
—AT N(y)L.B A
Le(v,8) := . (4.61)
| DBT - CL, D

From here on we will drop the v and s in the notation of L;(¥, s).

Definition 4.1 A given error function E(s) is ¢alled “admissible”, for R(s), if and only

if for some Q(s) € Heo, E(s) = R(s) — Q(s) satisfies || Elloo < 7.

In this section we will parameterize all possible solutions for (4.2). The parameter-
ization is easily obtained from the solutions we obtained in Section 4.1. Let a given

admissible error function E(s) be expressed as
" E(s) = U(s)W™Y(s) = [L1Y(s) + Lo][LaY(s) + L]} (4.62)
for some Y(s) € Hy. Then we obtain

Q(s) = V(s)W(s) = [-LsY (s) + Le)[LaY (s) + L4]™* (4.63)
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from Q(s) = R(s) — E(s) and straightforward algebra.

We will need the following result in the sequel:

Lemma 4.2 [L,Y(s)+ L2][LsY(s) + La)™" and[-LsY (s) + Le] [L3Y(s) + L4]™" do not
have any right half-plane pole, zero cancellation for any Y (s), i.e. if L3Y(s)+ L4 has a

right half-plane zero it will be a right-half plane pole for Q(s) and E(s).

Proof: Assume the contrary; i.e., for some Y (s) (not necessarily stable ) LY (s) + Ly
has a zero at some g with Re{so} > 0, but Q(s) is stable; i.e., there is a pole zero

cancellation for Q(s) at s = sp. Then there exist a nonzero vector v such that

[L3Y (so) + L4]v = 0. (4.64)
Since Q(so) is a finite matrix, we have

Q(s0)[L3Y(s0) + LsJv = 0. (4.65)
Finally, from (4.63) we obtain

[-LsY(so) + Le]v = 0. (4.66)

Note that 2 := Y(so)v # 0; otherwise, (4.64) implies L4v = 0, which contradicts the fact
that L7! is stable. (The fact that L7'(s) is stable follows from Lemma 4.1; i.e., take
D; = 0 and consider the fact that L7!(s) and Q(s) in (4.42) have the same “A”.)

Then we have
Lyz+Lyv = 0, s=sg (467)
—Lsz+ Lev = 0, s=so. (4.68)

Next we solve for v from (4.67) and substitute in (4.68). We get the following necessary

condition for (4.64) to be true:
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[L5 + L3L4'1L3] z = 0, for some s = sg, with Re{so} > 0. (4.69)
Define
H(s):=Ls+ LeL7'Ls. (4.70)

In (4.69), again we made use of the fact that L' is stable. After a straightforward

calculation we get the following state-space realization for H(s):

—AT _ T T
H(s) = A" - N(y)L,BB | N(v)C

(4.71)
CL. | I

H(s) has a right half-plane zero if and only if H ~1(s) is unstable. From (4.71) we obtain

—AT — N(y)L,BBT + N(y)CTCL, | N(y)CT
HY(s) = (4.72)
CL, I I
By using (2.27) and (2.28) in (4.72) we get
~N(7)ATN (4 IN 7)CT
) - (VATN=(7) | N(v)
T |
[ —AT CT
i CLcN('r)| 1
= LT(s). (4.73)

We conclude that H~1(s) is stable, which contradicts (4.69) and the original assumption
that v # 0 and that there exists an sg, with Re{sg} > 0.

Similarly, we can show that LY (s) + L, and L3Y(s) + L4 do not have any right
half-plane, pole zero cancellation. Il

We will need the following lemma for the next theorem.
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Lemma 4.3

LYLy -y L3Ls =1 (4.74)
LTLg = 72L;L4 : (4.75)
LyLy- (/)L Ly =1 (4.76)

Proof: The proof of Lemma 4.3 follows by direct verification. Il

Theorem 4.1 ||E|lec < 7 if and only if |Y||oo < 7 and ||E|lc = v if and only if

¥l = -

Proof:

Assume det (L3Y (jw) + L4) # 0, Vw. Otherwise || E||coc = 00. Then we have the following
equivalent statements:

1Ello <

~

721 — E~(jw)E(jw) > 0 , Yw.

—

¥2I — [(L3Y + Lg)7 Y7 (L1Y + L2)~ (LY + Ly) (L3Y + L4)-1 >0, Vw.

—~

[(LsY + La)~(LaY + L)y = (LY + Lo)™(LY + L3)] > 0, Yw.

<

—Y~(LyLy = ¥’ L3 La)Y = Y™ (LY Ly = 72 L3 La) + (L3 L1 = Y’LYL3)Y + (2L L4 -
LyL3) >0, Vw.

A

By using (4.74), (4.75) and (4.76)

VI = Y~ (jw)Y (jw) 2 0, V.
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=
“Y”oo <. |

It is immediate from the proof of Theorem 4.1 that
Corollary 4.1 E~(8)E(s) = v <= Y~ (s)Y(s) = 7*I.

We next prove that for any Y € B,Hs , (4.63) gives a stable solution. Later we
will prove that actually this set covers all solutions of (4.2). First, we need the following

lemma:
Lemma 4.4 ||L7 L3l < 1/7.
Proof: From (4.63) with Y(s) = D, and (4.43) we get:
Q(s) is stable if and only if [L3D; + L4]™" is stable. (4.78)
Stability of Q(s) is guaranteed for all D; by Lemma 4.1 . Then we have :
[23'LsDy + 1] - (4.79)
is stable for all D; such that ¢,.(D1) < 7, and the result follows. Il
Theorem 4.2 For ||[Y || < 7, Q(s) given by
Q(s) = V(s)W™Y(s) = [-LsY(s) + Le} [LaY (s) + Ly ™" (4.80)
is stable if and only if Y(s) € He .
Proof: From (4.63) and Lemma 4.2 we have that Q(s) is stable iff W~1(s) is stable.
WY(s) = [LaY(s) + L4) ™" (4.81)
is stable if and only if

(L3 Lav(s) + 1] (4.82)



71
is stable, noting that L3 is stable. Since ||Y|l < 7, [LZ‘L3Y(3) + I]-1 is stable if
and only if Y(s) € He. This last statement follows from the Nyquist stability criterion
and from Lemma 4.4. W

The only remaining task is to prove that (4.63) actually gives all admissible solutions.

Theorem 4.3 All admissible E(s) are obtained from:
E(s) = [L1Y(s) + La)[LaY (s) + L4 (4.83)
for Y(s) € ByHy .

Proof: For a given admissible E(s), we solve for Y(s) from Equation (4.83). The result
is

Y(s) = = [L1 — E(s)La]"" [L2 — E(s)L4]. (4.84)
|E]loo < 7 since E(s) is admissible, and from Theorem 4.1 we conclude that |[Y||c < 7.

From Theorem 4.2, Q(s) is stable if and only if Y(s) is stable.

We summarize the results in the following theorem:

B
Theorem 4.4 Given a G(s) € RHy, with a minimal realization G(s) = , @
C|D
parameterization of all solutions, Q(s), satisfying the norm bound that
IG - Qllc £ (4.85)
is given by
Q(s) = (=LsY(s) + Le) (LaY (s) + L)~ (4.86)

with Y (s) € ByHo.

The following lemma gives the parameterization of all solutions as a usual linear

fractional transformation.
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Theorem 4.5 The parameterization given by Theorem 4.4 can also be represented by

the linear fractional transformation

Q(s) = Fi(H(s),Y(s)) (4.87)

where

~N(7) (1?AT + LAL:) | —N(7)L,B N(y)CT
) < oL D g . (4.88)

BT I 0

b o

Proof: From (4.86), we have

Q(s) = (—LsY(s) + Le) (L3Y (s) + L4) - (4.89)
By using the matrix inversion lemma, we obtain:

(Ls¥(s) + L)~ = 131 = L7'La (T + Y(s)L5"Ls) Y(9)L7%. (4.90)
By substituting (4.90) in (4.89), we get

Q(s) = Lol - (s + LeL3 L) ¥(s) (I - (—L3'Ls) ¥(s)) ™ I3, (4.91)

Next it is a matter of straightforward algebra to show:

Hyi(s) Hia(s) LeL7' —(Ls+ LeL;'L3
e) M = (s ! ) (4.92)

Hai(s) Haols) Ly! ~L;'Ls

By calculating the quantities in (4.92), the result follows. Il

4.3 Parameterization of All Optimal Solutions to the One-

Block Problem: the Optirﬁal Case

In this section we obtain a parameterization of all optimal solutions to the one-block

problem by calculating the limiting value for ¥ — oy of the suboptimal solution set.
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When we take the limit v — o3, the only difficulty appears because (63I1-L,L.)
becomes singular.

Consider the equations corresponding to (4.88):

uy
i = -N(1)(AT + LAL)s + N ( —1,B cT ) (4.93)
ug
CL. D -1\ w
Y= x4+ . (4.94)
BT I o ug

After we multiply both sides of Equation (4.93) by N~1(v) we get

Uy
N7Yy)e = —(¥*AT + L, AL)z + ( ~L,B CT ) . (4.95)
Uz
Equation (4.95) does not have any singularity for ¥ = o, any more. This is the main

idea behind the derivation of all the optimal solutions for Nehari’s extension problem.

In this section we use the balanced realization and related partition given as follows:

A Aje oI, 0 al, 0 AT, A BB B;Bf
+ =
As; Az 0o 0 I AT, AL B,BT B,BT
(4.96)
A’{l A’zrl 011,- 0 + 0’11,- 0 Au A12 C'{Cl CITCQ
AT, AL 0 0 Az A cfc, cfc,
(4.97)
In this coordinate system
1
Ney=| 77 (4.98)
-1
0 I
where
T, := %I - T2, (4.99)

T:=T,,. (4.100)
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The following lemma provides a parameterization of all solutions to the Nehari’s exten-

sion problem.

Theorem 4.8 A parameterization of all solutions for Nehari’s extension problem is

given by
Q(s) = Fi(Ho(s), Y(s)) (4.101)

where Y(s) € B,, Hs, and where

- Ao -1 (016 Uo— $1B2) T-'CT My -
Ho(s)=| ¢,%, - 01UoBT D-ale -M , (4.102)

| mBf M, AUT |

and

Uo := C1(BT) (4.103)
My:=1I-CC) | (4.104)
M;:=1I-B!B, (4.105)
Ao:= —T7 (o24%, + £145,%1 - 01CTUoBY) . (4.106)

Proof: This result is obtained by using the balanced realization in (4.95) and (4.94).

For 4 = oy from (4.95) we get

0 _ o2(AL + An) o0 (alA%} + A1221) Ty N
Tz, o1 (01A71r2 + E11‘121) v2AL + £142,% T3
—0’131 ClT Uy
+ ) (4.107)

—21B2 Cél' Ug

From (4.96) and (4.97) we can observe that

(23] (A:lrl + All) = BlBIT = C]TCI (4.108)
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01A’§r1 + AnEl = BlBgT (4.109)

1AL + £145 = CTCy. (4.110)

If we substitute (4.108)- (4.110) in (4.107), we obtain

0 01B, BT 0181 BT z,
= - +
FZ.IQ UlczTcl sT + U%Ag; + E]A2221 T2
—0’1B1 ClT U1
+ : (4.111)
—21B2 Cér Uz
From (4.111) we obtain
0 U]BIB'ir 0’1B1Bg 1
= - +
Tq all“lC;Cl sl + r-t (G’%Ag; + 21A2221) To
—0‘1B1 CT /5]
+ ! : (4.112)

. Y1B, I“IC«:;" U2

Equation (4.112) consists of one algebraic and one dynamic equation in the unknowns
z1 and z,. First, we solve for z; in terms of z3, u; and uz from the algebraic equa-
tion and then substitute the solution in the dynamic equation. We make the following
modification to take care of problems that could appear when B, BT is not invertible.

Define
ac := ¢ 4+ B, BY. (4.113)

We replace the term BlBlT in (4.112) by a.; then we have £, and &, instead of x, and
z9. Note that if we take the limit as ¢ — 0, we have #; — z; and £ — z,. After

some straightforward but lengthy calculation we get

Ac I~ (6,CTa;'B; — £1B:) TI-CT (I - Cra7iCT)
H(s)=| ,%, - 01a7!B, BT D-o01a7'B; —(I-Cia7'CY)
BT — BT a7'B, BT I-Bla7'B +Bfa7icT

(4.114)
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where
Ac = =T (624L, + $1422%1 — 01:CF Cra7 BB ). (4.115)

Observe that

lim o'B; = (BTt (4.116)
lim o7'CT = C]. (4.117)

After we use (4.116) and (4.117), we conclude the result. Il
Let us calculate Uy, M;, and M; in terms of SVD’s of B; and C;. From 4.108 it

follows that By and C; have SVD’s given as follows:

(50 0

B, =U 173 (4.118)
\ 0 0
(5 0

cr=v| ™ " |vZ C(4119)
\ 0 0

It is easy to prove that

;1o
Bl=vg| ™° uT (4.120)
0 0
oo
cl=v] ™ vE. (4.121)
0 0
We then have
( -1
o 0 =5l o
Uo=C(BD =BT = ve| °  |vTu| ™° vI
0 0 0 0
(I 0
= Vc Vi (4.122)
\ 0 0

Similarly
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i (0 0\ T
M, =1-CC| =V Ve
\0 I )
t (00) .
M;=I-B|B,=Vp Va.
\0 I
Uo M,
Lemma 4.5 U=
M, Ug

ts an orthogonal matriz.

Proof: Substitute (4.122), (4.123), (4.124) in the definition of U. We get

Ve V, g'

Vs VE

Ve O 0

0 Vg 0

\0

0

I

(00} )
Ve 00 v
\0 I/

(1 o)

Vs ro 173
\0 0/ )

00\
0 I Vi o
I0 0o V&
0 0 )

(4.123)

(4.124)

(4.125)

We see that U is obtained by multiplying three orthogonal matrices, which means that

U itself is an orthogonal matrix. M

Lemma 4.8 K(s) = 0,F;(U,Y(s)/01) satisfies the following relations for every Y(s) €

B, Hy :
K lloo = 01
01B; = CTK(s)

01Cy = K(s)BT.

(4.126)
(4.127)

(4.128)
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Proof: From the definition of K(s) we have
| K lleo= 01 || Fi(U,Y(5)/01) lloo - (4.129)

From Lemma 2.5 it follows that Fi(U,Y(s)/o1) € BHy since Y(s) € Byy Ho, and U
is unitary. Therefore, we have K(s) € By, Heo.-
If we substitute K(s) in (4.127), we get

CTE(s) =oiCT [Uo+ MY (s)/or(I - UTY(s)[o1)™ M)

(4.130)
= 01 [CTUo + CT MY (s)/0r(I - UZY (s)/01) 1My .
Let us calculate CTUg and C{ M; using SVD’s:
- ( Yo 0 \ T I 0
clfu, = U Ve 173
\ 0 O / 00
(5, o)
=U Vi
\ 0 0)
= B . (4131)
Y0 O 0 0
cIMy, = U V&V V& =o. (4.132)
0 0 oI
Therefore, we conclude that
01B; = CT K (s). (4.133)

Similarly, we first show that UpBT = C; and M;BY = 0 to obtain 0,C; = K(s)Bf.

Lemma 4.7 The following two sets are equal

Set 1:
1)K (s) € By, Hoo (4.134)
i)o1 By = CTK(s) (4.135)

ii1)0,Cy = K(s)BF (4.136)
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Set 2:
K(8) = o1Fi(U,Y(8)/01) with Y(s) € Bsy Heo. (4.137)

Proof: We show that for every K (s) in Set 1 there exists a Y(s) in Set 2; then together
with Lemma 4.6 we conclude the result.

Use SVD’s in (4.135)
To 0
o U VE=U VEK(s). (4.138)

From (4.138) we get

Lo
(011 — VEK(s)Vp) = 0. (4.139)
0 0

Define

3 K1(s) Kias :
£ = An() —12() . w10)
Kgl(s) IX’22(S)

After we substitute (4.140) in (4.139), we get

Eo 0 O’]I —Kll(s) —fl’lg(s)
" =0. (4.141)

0 0 —Kzl(s) 0’1],2 - firgg(s)

From (4.141) we conclude that I;’n(s) = 011, and that 11’12(3) = 0. Similarly, from
(4.136) we conclude that Kz (s) = 0.

Therefore (4.134), (4.135) and (4.136) are satisfied if and only if

o1l 0
K@) =Ve| vk (4.142)

0 F(s)
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where F(s) € By, Hx. On the other hand, we have

Y(s)

g1

0’1.F1(U,Y(8)/0‘1) = o0 (U0+Ml

(1= U3Y (5)/o)™ Ma)

(

= o,V¢ ! ° VE
\ 0 Laz(s) + Lar(s)({ = L1a(s)) ™ L1z(s)
e ).

= Vo Vi (4.143)
L0 Fu(L(s),])

where
L(s) = L1i(s) Li2(s) o VgY(s)VB. (4.144)

o1

La(s) Laa(s)

It is easy to verify that F, (L(s),I) = F 0

I

0 I

I 0 |>L(s)|. From Lemma 2.5 we

0 0

conclude that Fy, (L(s),I) € BHy. Therefore, every element of Set 2 is an element of

Set 1. Conversely, from (4.142) and (4.143) we conclude that for every element in Set 1

we can find an element in Set 2 (elements of Set

1 are parameterized by F(s) € By, Heo;

for every F(s) pick L2a(8) = F(s)/o1, L12(s) =0, Ly;(s) = 0 and Lq,(s) = I).

Theorem 4.7 An alternative representation of the optimal solution is given as follows:

Q(s) = Fi(To(s), K(s)) (4.145)
with
[ _r- (a’f’A,}; + E1/12231) -r-'y,B, r-1ct -
To(s) = CoEn D -I (4.146)
BT I 0 _
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where

K(8) € By, Hoo (4.147)

01B; = CTK (s). ‘ (4.148)
Proof: It is obtained by direct verification; namely,
Q(s) = Fi(Ho(s),Y(s)) = Fi(To(s), Fi (J,Y(s))). (4.149)

Corollary 4.2 If we pick

— 0 0 T
Y(s) = Ve vZ (4.150)
0 F(s)
or
o011, 0 .
Y(&)=Ve| VI (4.151)
0 F(s)

with || F ||oo< 01,

we cover all the possible optimal solutions. In particular, if we take

0‘1],-1 0
Y(s)= Vo Vi, (4.152)
0 F(s)
we have
K(s) =Y(s) = o1 Fi(U,Y(s)/o1). (4.153)

Proof: Immediate from the previous lemma. W

Remark 4.1 The solution Q(s) = Fi(To(s), K'(s)) together with conditions || K || < 01

and 01 By = C{ K(s) is ezactly the same solution given in Glover [12].
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Chapter 5 |

Parameterization of All Solutions

for the Four-Block GDP: the

Suboptimal Case

The GDP is defined as follows: Given a minimal realization for R(s) € RHZ

my mp

R(s): ni Ru(s) Rm(s) - Cl
N9 R21(s) Rzz(s)

and a v, find a Q(s) € Hy such that

Ry —Q Ry

Ry R,

<7

(> o]

is satisfied.

A B, B,
Dy Dy,
I C2 | D21 Do |

(5.1)

(5.2)

Without loss of generality we take ny = my. If ny # 'ml then we add some 0 rows

or columns to R(s) to get a R(s) that satisfies n; = m;. Note that adding 0 columns or
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rows does not change the norm. We solve the problem for R(s) and get the solution to
the original problem by compression.

We choose a v such that

Ry;
v > 9R = max Il Ray Rz lloo ¢ - (5.3)
R,

oo

Necessity of (5.3) is obvious from (5.2).

5.1 Equivalence of the Four-Block Problem with the One-

Block Problem

In this section we prove that obtaining a parameterization of all solutions, Q(s), for the
four-block problem (5.2) is equivalent to solving a special one-block problem of larger
dimension. This will be clear by the end of this section.

First, we quote a theorem from [12], the proof of which is based on the f’ositive Real

Lemma.

Theorem 5.1 (see [12], Thm. 5.2 ) Given a rational pxm, transfer function G(s) €

A|B
RLo, of McMillan degree n with a minimal realization such that
C|D
IGlleo < 75 (5.4)
then there ezist
. Dy D2
D := (5.5)
Dy

(p+m)x(p+m)

B:= ( B, B ) (5.6)
nx(p+m)
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T (5.7)

(p+m)xn

such that, given
H(s):=D+C(sI- A)'B, (5.8)

then H(s) is y-all-pass; i.e. H™(s)H(s) = ~%I.

i Ri1—Q Ry i )
Lemma 5.1 Given < 9, we can always obtain a square matriz
Ra1 Ra
o)
E(s):
A 0 Bx By Bl B2
0 Ag B, B,, Bg 0
C: -C —dyy —di2  —dis d14

Es=| = " (5.9)

Cy —Cq | —da —d2 —da3 day

Ci —Cq | —dzn =ds; Dnn—Dg D

C, 0 dyg  dy Dy Dy,

such that E is v- all-pass. ( The partition is defined such that dz4 and d4; are square

matrices.)

Ag | Bg :
Proof: If (5.2) is satisfied for a given Q(s) = , then we have
' Cq | Do
A 0 By B,

Ri1:1(8) — Q(8) Rias 0 A B 0 »
n(s) = Qs) Ruxs) | Q Q . (5.10)

Ry (s) Raa(s) Ci =Cq | Duui—Dq Dr2

C, O Dy Do,
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Ry1(s) — Q(s) Raz(s)

By applying Theorem 5.1 on , we get
R21(s) Ry3(s)
A 0 B B, B B,
0 Ag B, B, Bg O
E(s) = z —Cq | —dn —di2 —di3 dy4
Cy —Cq | —dn —d2 —da3 day
Ci —Co | —-dam —ds» Dnn—Dqg D
i C: 0 da de Dxn D2,
/ Z11(8) — Qui(s)  Zia(s) — Qu2(s) Zas(s) — Q13(s) Z1a(s) \
| Za(s) - @u(s) Zaa(s) - Qua(s) Zaa(s) — Qas(s) Z24(s)
Zu(s) — Qa(s) Zs(s) — Qa2(s) Ru(s)—Q(s) Riafs)
\ Zyu(s) Zp(s) Rx(s) Raa(s)

(5.11)

|
We now assume that for a given R(s) and Q(s), E(s), which is given by 5.11, has

already been calculated according to Lemma 5.1.
First consider E~(s). Note that E(s) is y-all-pass i{ and only if E~(s) is y-all-pass.
Z14(8)

Z24(s)
know that every transfer matrix has an inner-outer factorization [31] . The outer factors

Next, we calculate the outer factors of and ( Za1(s) Zaz(s) ) . We

are defined as follows:

~

Z10(s) := outer part of

Z14(S)

Z34(s)

) = spectral factor of { (

Z14(S)

Z24(S)

214(8)

Za4(s)

(5.12)
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Zy0(s) := outer part of ( Za(s) Zals) )~
= spectral factor of{( Z41(8) Zaa(s) ) ( Z4(8) Zg(s) >~} (5.13)

Since E~(s) is v- all-pass then we have

( 214(8) \
Z24(8)
(Zﬁ(s) Z34(s) Riy(s) R;z(s)) =71 (5.14)
Ry2(s)
\ Fax) )
and
( Z3(s) )
Z3(s)
( Z1(s) Za(s) Ra(s) Raa(s) ) 42 =L (5.15)
R%(s)
\ R%(s) )
From (5.14) we obtain
5 Zho(s) Zy4(s) Z14(s) 21 Ry2(s) Ry2(s) (5.16)
1041 S)= = - A 0.
224(8) Z24(3) Rzz(s) Rgg(s)

(5.16) is a spectral factorization problem and Z;0 is the spectral factor.

Another way of looking at (5.16) is as follows: (5.16) is equivalent to

~

Z10(s) Zio(s)
Ryo(s) Rya(s) | = 1. (5.17)
Rzz(s) Rzz(s)
Z30(9)
This means that Gy3(s) := Ryy(s) | is 7-anti-inner. In state-space,

Rzz(s)
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A By
Co | ws
Gi2(s) = (5.18)
C, | Dy
I Cz | D2 |
where
A | B,
X13(8) := Z1o(s) = [— (5.19)
Co | u13

Similarly, for X3;(s) we obtain the condition that G1(s) := ( Xa(s) Ra(s) Rzfs) )

is y-anti-co-inner. In state-space
r

A By B, B;
Ga(s) = (5.20)

C2| Un Dy Do

where

A | Bo
X31(s)= —

Csz | ua

(5.21)

Remark 5.1 Since Z10(s) is a spectral factor, then X13(s) = ZTp(s) is an anti-outer

function. Similarly, X3,(s) s an anti-outer function.

We use Lemma 2.2 and Lemma 2.3 to calculate By, Co, u3; and u;3 so that Go(s) is
v-anti-inner and Gg;(8) is y-anti-co-inner. First we apply Lemma 2.2 on G;2(s) given
by (5.18) and solve for X;3(s):

From (2.33)
ulquiz + D5 Dy; + DL, Dyg = 421 (5.22)

From (2.31)
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ATL,+ LoA=CICo+ CTCy + CTC,. (5.23)
From (2.32)
Co
(o, DL, DL,)| ¢, |- BiLo=0. (5.24)
C

From (5.22) we solve for u;3:

ulyuys = © := y2I — D}, Dy5 — DL, Dy,. (5.25)
Note that © > 0 from (5.3). From (5.24) we solve for Co:

Co = —ugf (D5,C1 + DL,C, - BT L,). (5.26)

If we substitute Cg in (5.23), after rearrangement, we obtain the following Riccati equa-

tion for L,:

[A+ B0 (D5Cy + DLCy)|” Lo+ Lo [4 + B,07 (DECy + DEC)]

~L,B,07'B] L, - (T ¢f) + o' (%, D%) = 0.
(5.27)

We need to take a symmetric, positive-definite solution of (5.27) such that
A+ B,0Y(DLC, + DL,C,) — B,01BT L, is a matrix with all the eigenvalues in Cy.
This condition is equivalent to having X3(s) anti-outer (i.e., Z;10(s) outer). (We get
exactly the same solution if we apply the spectral factorization theorem on (5.16) [1],
[9].)

Similarly, to calculate X3;(s) we apply Lemma 2.3 on G2;(s) given by (5.20). Simi-

larly from (2.34), we obtain
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AL, + L.AT = BoBY + BB + B,BY. (5.28)

From (2.35), we obtain

Bf
Cile~ (us Dn Dw )| BT |=0. (5.29)
B
From (2.36), we get
usul; = & := 421 — Dy DI, — D52 DY, (5.30)

where ® > 0 by (5.3). Also By is given by
Bo = — (B D, + B.DE, - LeC ) w3/, (5.31)
where L, is a symmetric, positive definite solution of another Riccati equation:

[4+ (BiDE, + B.DE,) 871Cs) Lo+ Le [4 + (B DF, + BoDR) 872Gy)

. I0 DI . BY
—L.CT®1C,L, - (By By) + ®~" (D21 D22) =0.

0 I D%, BT
(5.32)
such that A + (B; DL, + B,DL)®C; — L.CT3C; is a matrix with all the eigenvalues in

C4. This condition is equivalent to having X3}(s) anti-stable.

Remark 5.2 Notice that the anti-outer factors Xy3(s) and X31(s) are independent of
the solution, Q(s). They depend only on v, the optimality level, and R(s). This is an

essential observation for the results that follow.
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Define the anti-inner factors as follows:

Zy; Z14(s)
! := inner factor of ( , (5.33)
Zyi Z24(s)
and
( Yy; Yo ) := co-inner factor of ( Zu(8) Zg(s) ) ) (5.34)

. Zy;
where both " | and ( Yi: Ye ) are antistable functions. We have the following
Zyi
anti-inner-outer factorizations:

Z14(s) Zy;
= X13(s) (5.35)

Z24(3) Zai
( Zu(s) Zg(s) ) = Xa1(s) ( Yy Y ) (5.36)

We are now ready to state one of the most important theorems of this thesis:

Theorem 5.2 Given R(s) and Q(s) with minimal realizations

A B, B,
R(s) = Cy Dy Dia ' (5.37)
i C2 | Dy Dj ]
Aq | Be
Q(s) = (5.38)
| Cq | Dq

satisfying

Rui(s) — Q(s) Riafs)

Rzl(s) Rzz(s)

<7, (5.39)

we can always find Q11(s), Q12(s) and Q2:(s) such that

"X - Q"w = (5.40)
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where
A By B | B,
Ci 0 0 u
X(s) = () 13
Cy 0 Dy | D2
| C2 | usm Da | Da

Q(S) = Qzl(s) Q(s)

\ 0

0

/Qu(s) Q12(s) 0

0

0

Xu(S) X12(8)

le(s) Ru(s)

X13(8)

ng(s)

X31(s) R21 (8)

Rzz(s)

(5.41)

(5.42)

Z14(S)

Proof: The proof is obtained starting from E(s) in (5.11). Instead of

substitute (5.35) and instead of ( Z3(s) Zaa(s) ) substitute (5.36).

Define

( Z3i(s)

Vi(s) = 0

\ 0
( Y7 (s)
Y)Y (s
VR(S) - 2;( )

0

\ 0

Z3(s) 00

0

0

(=]

(=]

I

0

I

0

0

I

Z24(8)

(5.43)

(5.44)

and note that ViV = I, ViVg = I. Then, |[VLEVR|lw < IVilloollEllool|VRlleo =

|E|looc = . If we study Vi(s)E(s)VR(s), we conclude that the last block-column and
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the last block rows have norm equal to 7.

It is easy to see that

A By B | B,

0 0 Uu13
Co 0 0 Uu13
X(s)=[VL(S)E(S)VR(S)I-+| 0 Dy | D2 |=

Cy 0 Dy | D2

C, uz1 D2 | Do

(5.45)
Define
0 0 Uis R
. Qi(s) 0
Q(s) = [VL(‘S)E(S)VR(S)]-{- - 0 Di1 | Dy2 = (5'46)
0 0
uzi Do | D22
. 0
and observe that Q(s) = ( 0o I ) Q1(s) . N
I
An immediate result of Theorem 5.2 is the following result:
Theorem 5.3 Given R(s) with minimal realization
A | B B
R(s)=1 ¢, | D1y D2 |- (5.47)

Cy | Day Do

Ry1(s) — Q(s) Riz(s)

all the solutions satisfying < 7 for any given v can be
R () Raa(s)
obtained by the following steps:

i) Given R(s) and 7, calculate X (s).
ii) Find all the solutions satisfying || X — Q'|l, < 7.

iii) Find the subset of the set Q', which has the form
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a@=| 4 % (5.48)
0 0
Then
0
Q(3)=(0 I O)Q(s) I (5.49)
0

where all the partitions are made to conform with the partition on R(s).

5.2 All Solutions to the Four-Block GDP

In this section, we characterize the set of all solutions of the Nehari extension problem
(5.40), which are of the form (5.48). According to Theorem 5.3, this set of solutions
gives the set of all finite dimensional solutions for the four-block GDP.

Note that L, and L. solving the Riccati Equations (5.27) and (5.32), respectively,
also give the observability and controllability grammians of G(s) (see (5.23) and (5.28)).

A solution for (5.39) exists if and only if both of the following inequalities hold:
721 1= p[Lo(7)Le(7)] | (5.50)
Y 2 1R (5.51)

It can be shown that +; is a nonincreasing function of 4 [8]. Thus, if (5.50) is not
satisfied, 4 is increased until this is so. Note that 7o, the minimum achievable error in
(5.39), is obtained when (5.50) and/or (5.51) are satisfied as an equality. 7o is computed
by means of a bisection procedure. Each time we update v we need to solve the two
Riccati Equations (5.27) and (5.32) again since they also depend on 7. In this chapter

we solve the case when v > 7, the suboptimal case. When v > 7, is satisfied, we
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get the parameterization of all solutions for (5.40) from (4.63); i.e., the problem can
then be treated as a one-block problem. It is necessary, however, to identify in this

parameterization the solutions of the form in (5.48).

Theorem 5.4 Given appropriately constructed, i.e., as in Theorem 5.2,

A By B, | B,

Co 0 0 u13

X(s)= = , (5.52)
C|D Ci 0 Dy | D2
| C; | um Dn | Dy |
the solutions of
X - Qlle <7 (5.53)
which are of the form
) Q:(s) 0
Q(s) = : (5.54)
0 0
are given by (4.63) when and only when Y (s) € ByHy is of the form
y1a(s) yi2(s) ws
Y(8)=| ya(s) yo(s) D1z |- (5.55)

u3z; Dy; Do

Theorem 5.4 provides a parameterization of all solutions to the four-block GDP in terms

y11(s)  w12(s)
of Yi(s) = 11 12
y21(s) y22(s)
Proof: First partition Y (s), W(s) and V(s) conformally with G(s):

Y(s) = Yi(s) Yia(s) ’ (5.56)

Ya1(s) Y22(s)
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(
W(s) =: Wule) Wasls) and (5.57)
\ Wai(s) Waz(s)

V(s) = [ Vals) als) ) , (5.58)
| Var(s) Vaals)
where from (4.54) and (4.55) W(s) and V(s) are given by

W(s) = LsY(s)+Ls

= BT (sI+ A7) N(7) (LB -CTY(s)) +1 (5.59)
V(s) = -Ls¥(s)+Le

= (DBT - CL)(sI+ A7) N(3) (LB - CTY(s)) + D= Y(s).

(5.60)

From (5.29) and (5.60) we obtain V1(s) = ((ug Dy ) — Y21(s) and Vaa(s) = Daz —

Y22(s). From (4.63) we have
Q(s)W(s) = V(s). (5.61)

By making use of the fact that Q(s) has to be as in (5.54), we get the following identity:

Qu(s)W11(s) Qu(s)Wia(s) Vi(s) Viz(s)
- . (5.62)
0 0 Vai(s)  Vaa(s)

From (5.62) we conclude that V21(s) = ( yg; Dy ) — Y21(s) = 0 and V32(s) = Dz —
/22(s) = 0. We then have Y21(s) = ( 43, Dy )» Y22(8) = D22, and Y(s) is of the form:

Yiu(s) Yi(s)
Y(s) = . (5.63)

uzn Dxn D2
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We next determine Y;2(s). From (5.61) together with (5.59) and (5.60), we get

Q)BT (sI+ A7) N(7) (LB - CTY(s)) + Q(s) =

= (DBT = CL) (sI+ A7) N(7) (LB~ CTY(s)) + D= Y(s).  (564)

If we calculate the last columns of both sides of this equality and use (5.24), we get the

following equation:
—Q(s)BT(sI+AT)-1N(y)CTYO(s) = —(DBT-CL.)(sI+AT)"1N(7)CTYo(s)-Yo(s),(5.65)

where Yp(s) is defined by

U13
Yia(s) -
Yo(s) := Di2 , (5.66)
0
and from this we get
(Q(s)La(s) + Ls(s)) Yo =0 Vs. (5.67)

For (5.67) to be true, we must have either Yo(s) = 0, Vs or H(s) = Q(s)L3(s)+ Ls(s) =
0, Vs. Since H(oo) = I, we have to have Yp(s) = 0, Vs. Then, from (5.66) we conclude

that

u13
Yia(s) = . (5.68)
Dy2
Therefore, we showed that Y (s) necessarily has the form in (5.55). Next we show that

if Y(s) is as in (5.55), then Q(s) from (4.63) is of the form (5.54). From (5.59) together

with (5.24), we get

W(s) = Wuls) 0 (5.69)

Wal(s) I
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From (5.60), (5.24) together with (5.29), we get

V(s) = Yuls) 0 (5.70)
0 0

Then from (5.69), we get

~1(g
W-1(s) = Wi (s) °1. (5.71)
—War(s)Wk(s) I

From (5.70) and (5.71), we conclude that

0 = vigwi = | OTRE 0 (5.72)
0 0
which has the desired form. l
Once we have Q(s), we calculate a solution to the original problem Q(s), by taking
the subblock of Q(s) corresponding to Rji(s) in X(s). From Theorem 5.3 it follows
that all such finite dimensional solutions are covered by the parameterization given by
Theorem 5.4.

The following lemma gives a complete parameterization for Yj(s) so that Y(s) in

(5.55) is as required in Theorem 5. First we define yp and vp,, as follows:

D

12
vp := maz , " D,y Dso (5.73)
Dy, ®
o0
YDyy := Omax(D22) (5.74)

Lemma 5.2 With the parameters defined as in Section 5.2, for a given ¥ > vp, the

y11(s)  v12(s) o
complete set of € H, satisfying

y21(8)  y22(s)
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v(s) wz(s) was

v21(8) y22(8) Di2 =7 (5.75)
u3) Dyy Do, -
is given by
yu(s) y2(s) -Df, o0
- U(v) V() (5.76)
ya(s) y22(s) 0 m(s)

where m(8) € Hoo with ||m|lec £ 7. U(7) and V(7) are defined through the following

singular-value decompositions:

u13

-1/2
Z, = (721— D§2D22) (5.77)
Ds2
Im2
= U(v) , (5.78)
0
-1/2
Z2 = (721— D22D%12) ( U3y D21 ) (5.79)
= (£, o)V (5.80)
where
-1/2 _ -1/2
N (I - DL, Dz,) ~uzZ DT, (I + Diz(ufyu1s)~' DE,) (5.50)
)= :
-1/2 -1/2
D1z (I - DL, Dy,) (I + Dyp(ufyu13)~1DE,)
-1/2 _ _ -1/2
V(y)= uf; (v - DzDF,) ~u3) Dy (I + D (usnvdy)~ Dn) (5.82)
- -1/2 -1/2 )
D, (v*I - D»»DE,) (I+ Df(us1udy)"' D)

Proof: The solution can be obtained as

y11(s) v12(s) 1/2 1/2
=-2:D5Z + (I - 2,27 2 M(s) (1- 2 z,) (583

y21(8)  y22(s)
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where M (8) € Hy, with ||M||co < 7. Z; and Z; are given by (5.77) and (5.79) (for proof

of this fact see, for example, [5]). The Equations (5.78) and (5.80) follow from the fact

that
zrz, = 1,,

2,2 = I,,.

(5.84)

(5.85)

The result is simply obtained by using (5.78) and (5.80) in (5.83). We obtained (5.81)

and (5.82) by inspection. l
Lemma 5.3 Parameterization of all Y(s) is given as follows:

Y(s) = Ti(7)Yo(s)T+(7)

where
1/2
( -Df, 0 | (+*1- DED2)
Yo(s) := 0 m(s) 0
1/2
\ (72.[ - D22D:2T2) 0 D22
[ () 0
Ti(v) :=
\ 0 I
VI(y) 0
T(y) ==
0 I

Proof: From (5.77) and (5.78) we obtain

2 T 1/2
uU13 vl — D3, D22

=U(7) ( )
Dia 0

From (5.79) and (5.80), we obtain

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)
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( us Do ) = ( (v21 - 0220;2)1/ 2 )VT(v)- (5.91)

We then substitute (5.76), (5.90) and (5.91) in (5.75) to get (5.86). H

y11(s) w12(s) ws

Lemma 5.4 An alternative solution of the set of Y = v21(8) w22(s) D2 €

unn  Da(s) Da
B, H, is given as follows:

Y(s) = Uy + U2 M(s)Us (5.92)
where M(s) € ByHo,. We have the following definitions:

—~u13DL(y2I = D3 D) 'uzy  —wisDEH(73 = DaDL) 'Dyy wis
Ur = | —Dy3DL(¥*I - D32 D) tug —D13DL(4*1 — D2;DH) Dy Dy

U3y Dy, Ds,

(5.93)
I-—- u13(72I - D%D22)—lu{3 —u13(72I - Dg;Dzz)—IDg;
Uz =| <=Dya(yI = DL,Dyg) " 'uT, I - Dyy(y2I — DL, D1p) DY, (5.94)
\ 0 0
( TI- u%}(‘sz— Dgng'z)'lu;;l —u?;l('sz - DQQD;Z)—lDz] 0

Us = . (5.95)
\ —D%(¥*I = Dp2D)tusy I - DI (¥ - D2 DL)"'Dyy 0

Proof: From (5.83), we have

—ZyDL,Zy + (I = Zy ZD V2 M(s)(I - ZT Z5)'/?
Y = D12 . (5.96)

U3y D21 D22
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For M(s) = 0 we have

U3
-2,0%,2,

Ul = D12

uz;u Dy D22

(5.97)
(I - 2,252
U, M(s)Us = M(s) ( (I-2T2Z,)Y? o ) (5.98)
0
(I -7 ZT)1/2
U = ! (5.99)
0
Us = ( (I-272Z:)'* 0 ) : (5.100)
Substitute the definition of Z; and Z,
( uis \ :
ZDpZy = (1 - DRDR)Y D51 - D)™ (D )
\ Duz )
( 13 T (02 T \-1
= D22(7 I- D22D22) ( U3y _D21 . (5.101)
\ D1z )
Substitute 5.101 in 5.97 to get U;. From 5.101, we obtain 5.93.
I-2:Z20YI-2,2]y=1-22,2F + 2,27 2, 2] (5.102)
From (5.102), it follows that
(I-2.ZTYI - 2,27y =1-22,2 + 2,2F = I - 2,Z]. (5.103)

Therefore

(I-2,2D*=1- 2,2 (5.104)
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Similarly
(I-2F2,)'? = 1 - 2] 2,. (5.105)

The rest of the proof is obtained by simply substituting the definitions of Z; and Z; into

5.99 and 5.100. W

Remark 5.3 The parameterization given by Lemma 5.4 does not break down when uy3
or/and ugz; are singular, but it does break down if we have ¥o = Yr = p = Omaz(D22).
The parameterization given by Lemma 5.3 makes use of the fact that u;3 and uz, are

nonsingular and eztracts the redundancy in M(s).
The following lemma connects Q(s) to m(s) as a usual lower fractional transformation.

Theorem 5.5 The solutions for the four-block problem, Q(s), are given by a linear

fractional transformation on m(s) as follows:

Q(s) = Fi (T(s), m(s)) (5.106)
where
At | Br :
T(s):= (5.107)
Cr | Dr
with
Ar = —N(7) (12 AT + L AL - CTMoBT) (5.108)

. 2 = :
Br:= N(7) < (-COTDQT2 +Cf (v1 - DpDE)" ) VA - LB Cf ) (8.109)

- 1/2
CiL: — Un(y) (—D%BOT + (‘721 - D;zDzz) Bg)
Cri= (5.110)

Bf
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Dy + Un(7)DLVE(Y) =Uz(7)
V() 0

We have the following definitions:

Dr:

(Eo B )==(Bo B, )V(7)

(ez er)=(ct cr)vew

1/2
-D}, 0 | (1 - DL, Dx)
Mo := 0 0 0
1/2
(1- D2DE) " 0 Dy

Proof: The proof follows from the following observations:

0
a9 =0 10)a@| 1|,

0

Q(s) = Fi(H(s), Y(s)),

Y(s) = Ti(v)Yo(s)T+(7),

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)
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0
Yo(s)= Mo+ | 1 | m(s) ( 0 I 0 ) (5.120)
0
We see that (5.117)-(5.120) are linear fractional transformations. We obtain the result

by using the rules to calculate
Fi(P(s), F1(J(s), Q(s))) = Fi (T(s),Q(s))- (5.121)

The calculations are omitted being straightforward but lengthy. W
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Chapter 6

Parameterization of All Optimal
Solutions for the Four-Block

GDP

In this chapter we deal with the optimal solutions of the four-block GDP. Given R(s),
obtaining the optimal solutions consists of three steps: First, we calculate the optimal
v, Yo- Secondly, we need to calculate u;3, uz;, Co, and Bg, which completely determine
X(s) in (5.41) for a given ¥ = 5o. Finally, we calculate the parameterization of all

optimal solutions for the one-block problem

_min || X - Qlleo (6.1)
Q(s)EH

and in the parameterization we restrict Y(s) as in (5.53).
Let us now address each step in more detail. o is calculated by a numerical search.
We start the search by taking ¥ = ygr; Yr is defined by (5.3). A summary of the different

cases that can arise follows.
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I) Optimality of the inertia type: If we have o > YR, we call this case optimality of
the inertia type since optimality is related to the Hankel norm of X(s) as in the one-
block case. This case is very much like the one-block problem (Theorem 4.5) and no
extra complications appear.

IT) Optimality of the Parrot type: If we have yg > p*/? (Lo(7r)Lc(7R)), then 7o = ¥,
this case is called optimality of the Parrot type since the lower bound for Parrot’s theorem
is achieved. There are two possible cases:

ITa) We can have strict inequality, yr > p*/?(Lo(7R)Lc(7R))- In this case obtaining
the optimal solutions do not require a special treatment since N(yg) is not singular;
therefore, optimal solutions do not drop in degree.

ITb) We can have equality, yr = p'/2(L,(7r)Lc(7R)). Calculation of the solutions is
similar to case I (optimality of the inertia type).

Calculation of uy3, u3;, Co, and By involves solving two spectral factorization prob-

lems:

X73(8)X13(8) = 721 — Ri3(s)Raa(s) — Ryy(s)Raa(s) 2 0 (6.2)

X351(8)X31(s) = 72T = Ru(s)R31(s) — Raz(s)R35(s) 2 0 (63)

such that X73(s) and X3;(s) are minimum phase; i.e., they have constant rank in Cj,
and also (5.24) and (5.29) are satisfied. When 7o > yp the desired X;3(s) follows from
(5.25)- (5.27) and X3,(s) follows from (5.30)- (5.32). If v = vp existence of the desired
Xi3(s) and/or X3;(s) is not clear. A sufficient condition for existence of the desired
X13(8) is that (A, B;) is controllable. Similarly, a sufficient condition for existence of the
desired X3;(s) is that (Cz, A) is observable. If these sufficient conditions are satisfied
then the solution is guaranteed by Theorem 2.9 and a solution can be obtained as it is

explained in the following lemma.
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Lemma 6.1
R

Ify > 2 and (A, By) is controllable then the spectral factorization problem (6.2)
R
oo
A | B
always has a solution X;3(s) = such that (5.24) is satisfied.
Co w3

Proof: We use Remark 2.8 to obtain the solution. Define

A B,
Ry4(s)
G(s) = = Cl D12 ’
Rzz(s)
Cy; | D2

which is a controllable realization by assumption. We then apply the steps in Remark 2.8.
|
X31(s) can be obtained by a dual argument if (C3, A) is observable. Alternatively,

by taking the transpose of (6.3) we can reduce it to an equation of the form (6.2).

Remark 6.1 From Remark 2.4, we know that without loss of generality we can assume
R(o0) = 0, which implies yp = 0. Therefore, we can always avoid having v = vp via
loop shifting [26]. Therefore, we do not have to deal with the problem of having v = vp

since it can always be avoided.

y1i(s) w2(s) w3

The problem of parameterizing all Y(s) = y21(s) y22(s) Dy | € ByHoo takes

uzy  Dau(s) Do

a different nature in optimality of the Parrot type. There are three different cases (with
the definitions of v¢, YR, 7p and vp,, as in Chapter 5):
1) 90 = Yr > vp : In this case we can apply Lemma 5.3 or Lemma 5.4 to obtain the

solution. For this reason this case is very much like the inertia-type optimality.
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2) % = 7R = YD > YD,, : In this case Lemma 5.3 is not valid any more since u;3
and/or ug; are singular. Lemma 5.4 can be used to obtain the solution.

3) Yo = YR = YD = YD,, : Neither Lemma 5.3 nor Lemma 5.4 can be used to obtain
the solution in this case. A new method needs to be introduced, taking into account the
fact that (yol — ngD%;) is singular.

In the rest of the chapter we assume that the spectral factorization problems (6.2)

and (6.3) are solved ( therefore, By, Co, u13 and us; are known).

6.1 Optimality of Inertia Type

As we mentioned before this case is similar to the one-block problem.

Consider X(s), which is given by (5.41) and related equations. From Section 4 we
know how to obtain the set of optimal solutions such that || X — Q||co is minimized.
The set of solutions is given by Theorem 4.6 (or Theorem 4.7) in Section 4.3. We will
adopt Theorem 4.7 for the optimal case for convenience. In this section we assume that
Yo > 7R has already been calculated, X (s) has been obtained, and a balanced realization
for X(s) has been obtained. We define the following partition on G(s) corresponding to

the balanced realization for the “optimal case” conforming with the notation of Chapter

4:
An Ajp
A= (6.4)
Ay Ag
B Boy By Bn
B = ) = = ( Bo Bl Bz ) (65)
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Co1 Co2 Co
C=(01 éz) Cu Cz [T ]| G
Ca Co2 C;
0 0 | wis
D:i=| 0 Dy |Dy
uzg1 Dz | D22

We need to find the set of m(s), such that Y (s) given by (5.86), satisfies:

0'1B1 = C’?Y(S)

016'1 = Y(S)B?

The following lemma charecterizes such m(s).

Lemma 6.2
1B, = CTY (s)

is satisfied if and only if
01B11 = CLm(s)

is satisfied, where

( Boay Bn ) = ( Byy Bny )V("l)

(ez ez )=(ct ez )vion.

Proof: If we substitute (5.86) in (6.10) we get

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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-Dj, 0 (031 - D32D22)1/2
o1 (501 Bn 321) = (égi Ch Cgl) 0 m(s) 0 (6.14)
(631 — D22 DY, Yz I Dy

Equation (6.14) implies that (6.10) is satisfied if and only if

. . 1/2
01Bg; = —Cg;Dg'Q + Cle (U?I - D22D{2) ’ (6.15)
Ul«éll = C'lTlm(s), (6.16)
and

- 1/2
Gan = Cgi (0‘?1 - D%;Dzz) + Cg’ngz. (617)

In the following, we prove that (6.15) and (6.17), which are independent of m(s), are
always true. We can then conclude that (6.10) is equivalent to (6.11).

From (5.29) we have

Bj,
1Cn~(us Du D )| BE | =0 (6.18)
B,
and from (5.24) we get
u13
o183 — ( ct cf cf ) Dy, | =0. (6.19)
Do,

If we utilize (5.90) in (6.19), we obtain (6.17). Equation (6.15) is proved as follows:

(6.15) is satisfied if and only if

/

. 1/2 - 1/2
01Bor (031 - Dy DL,) " = ~CL DL, (021 - D22DE) " + €} (021 - D2DE) . (6.20)

Equation (6.20), in turn, is satisfied if and only if
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/2
DL, + CF, (031 - D»DT,) . (6.21)

N 1/2 ~ 1
018 (631 - DnoDE) " = ~C% (v*I - DL,Dy)
From (6.17) we have
AT T 2 T -1/2
COl = (0‘1321 - C21D22) (O’II - D22D22) . (6.22)
Similarly from (6.12) and (6.18) we conclude that

BOI = (0’10{1 - B21Dg2) (U%I— D22D3‘2)_1/2 .

(6.23)
If we use (6.22) and (6.23) in (6.21), we get
T TY _ T T T 2 T

01 (01021 - B21D22) - (U]BQ] - 021D22) D22 + 021 (UII - D22D22) . (6.24)
It is easy to see that (6.24) is satisfied, which implies that (6.15) is satisfied. W
Lemma 6.3 Bu.élTl = éirléu.

Proof: Since we are using balanced realization, we have
BBT = CT¢,. (6.25)

From (6.25) we have, by definition,

Bj; Co
(BOI Bn le) Bf, =(COT1 cL C;-’I) Cu |- (6.26)
B3, Can

From (6.26), we have

Bg, Con ’ ’
( Boi Bn ) = ( cd ci ) + C3Ca1 — Bn By, (6.27)
Bf, Cn
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From (6.27), we have

T Co
=(cg o )UEenuTE) "
Bf} Cn

+C1,Ca1 — By B

( Boy Bn )V("I)VT(UI)

Finally, from (6.28), we conclude

BBl - CLCyy = CECo — By BL, + CL,Ca1 — BB,

(6.28)

(6.29)

We substitute (6.22) and (6.23) in (6.29), after some straightforward calculation, we

conclude that

C3Co1 — BBy, + C§,C — BuBj, =0,
which completes the proof. M
Lemma 6.4 m(s) € B,, Ho, satisfies

01B11 = CLm(s),

if and only if

0 F(s)

with F(s) € By Heo. Vg, and Vi = are defined through the following SVD’s:

-~ ( Erlxrl 0 \ T

Bu =: Uo VBu
\ 00y
( \

- z:1' Xr 0

CT =: U, T v
\ 0 0y

where 71 := rank{By;} = rank{Cy}.

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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Proof: Expressions (6.33) and (6.34) are justified by Lemma 6.3. If we use (6.33)
and (6.34) together with the condition ||m||c < o7 in (6.31) we conclude the result. Wl

The solution is given by the following theorem:

Theorem 6.1 The set of all solutions, Q(s), for the four-block problem is given as a

linear fractional transformation on m(s) as follows:

Q(s) = Fi (J(s), m(s)) (6.35)

such that m(s) € B,, Ho, satisfies

U]B]l = C'ﬂm(s), (636)
where
Ay | By
J(8) := (6.37)
Cy Dy
with
1, 24T 2T %7
AJ = -I'" (al A22 + 21A2221 - C2 MO(GI)B2) (6.38)

- ~ 2 ~
By:=TI-1 ( (_cg;pg; +Ch (031 - D20E,)” )Vg(al) - By CL ) (6.39)

. 1/2
( C1251 + Uai(01) (DZTZBJ2 ~ (031 - DL, D) B§;>
Cy:= (6.40)
\ B,
( TyT
Dy + Un(01)D3yVai(01)  —=Usa(o1)
Dj:= 2 . (6.41)

\ Vi(o1) 0

We have the following definitions:

( Boz By ) = ( Boy By, )V(”l) (6.42)



114

Proof: The proof follows from the following observations:

0
Q(s)=(010)@(s) |,

0

Q(s) = KR (To(s),Y(S)) ’

where
[ -r-! (ang; + 21142221) -T-'5,B, 1-1¢T
To(s) = Coh D -I
- AT I o

e

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

which is obtained by applying Theorem 4.7 to the system given by (6.4), (6.5), (6.6) and

(6.7) as a one-block problem. We also have

Y(s) = Ti(7)Yo(s, 01)T+(7)s

0
Yo(s,01) = Mo(on)+ | 1 m(s)(o I 0)-

0

(6.49)

(6.50)
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We see that (6.46), (6.47), (6.49) and (6.50) are linear fractional transformations. We

obtain the result by using the rules to calculate

Fi(P(s), Fi(T(s), Q(s))) = Fi (J(5), Q(9))- (6.51)

The calculations are omitted being straightforward but lengthy.

6.2 Optimality of the Parrot Type

As we explained before we can have two different cases.

1) If yr > p/*(L,(YR)Lc(7R)), then N(7R) is not singular; therefore, to obtain the
set of optimal solutions, we use Theorem 4.5.

2) If g = pY/*(Lo(YR)L(7R)), then N(4R) is singular and we apply Theorem 4.7 to
get the optimal solution for the problem.

After we obtain the solution for the one-block problem, we need to identify the

Qi(s) 0

subset of the solutions elements of which have the form . As we explained
0 0

before, identifying such a subset amounts to finding the parameterization of all ¥;(s) =

v11(s8)  y12(s)
€ H, such that

y21(8)  ¥22(s)
y11(s) y12(8) w3
Y(8)=| y(s) wn(s) D1z | € BrrHoo (6.52)
uz1  Da(s) Da
There are three different cases, depending on the values of Dy, Dg; and Djg, that lead
to three different kinds of solutions:
1) Y0 = vr > 7p : In this case parameterization is simple and is given by Lemma 5.3

or Lemma 5.4.
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2) Yo = YR = YD > 7D,, : In this case parameterization can be obtained by
Lemma 5.4.
3) Yo = YR = YD = YD,, : In this case Lemma 5.3 and Lemma 5.4 both fail, and a

special solution is necessary. In the following lemma we solve this problem.

6.2.1 Parameterization of All Solutions, v, = yp,,
From (5.77), (5.83) and (5.79) we have the following solution:

y11(s) w12(s
1(s) 12(e) = —Z\ D52, + (I - 2, ZTV\2M(s)(I - ZF Z,)V?  (6.53)

y21(s) y22(s)

where Z; and Z,; satisfy

u13
Z\(v*1 — D}, D) = (6.54)
Dy,
(1= DD 2 = ((ugy Dy )- (6:55)
¥Xp O
For simplicity assume, without loss of generality, that Doy = ;
0 7ol
¥p O
Otherwise find the SVD of Dqy; Dy = Up VE.
0 70Is
p 0
Lemma 6.5 IfD22 = s
0 7013
ulguiz = v2I — D,Dy3 — DL Dy > 0 (6.56)

and

usmuly = v2I — Dy DI, — D3, DL, > 0 (6.57)
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are all true, then we necessarily have

u13 up 0
_ (6.58)
Dy, da 0
and
up dy
( uz Dn ) = . (6.59)
0 O

Proof: Follows by direct calculation from (6.56) and (6.57). l

. y11(s) y12(s)
After we use Lemma 6.5, the problem reduces to finding such

ya1(s) y22(s)
that

Y1 % 0
Y21 Y22 din 0
< (6.60)
Uag d21 ED 0

and this problem reduces to solving

Y Y2 w

ya1 Y22 diy | S0 (6.61)

ua dyn Xp

Since (731 -z DE%) is not singular, we can use Lemma 5.4 to get the solution. Conse-

quently we have the parameterization of all solutions as in cases 1 and 2.
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Chapter 7

Examples

In this chapter we give two examples to illustrate some points.

7.1 Example One

The example below illustrates how we get the sub-optimal case and the several different
kinds of optimal cases. Example is designed to be fairly simple to make the point clear.

Consider

R(s) = R11(s) Ria(s) Y I R (7:62)

Ry1(s)  Raa(s)

0 0 al
A|B
such that is a minimal realization for Ry;(s).
C|D
After we calculate the imbedding, we get

AT, +L,A=CTC

AL.+ L.AT = BBT
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uz = w1z = /72 —a?l

Co=0 and By =0.
Notice that L, and L. are independent of y. We have

1R = ||

Pllz(LoLC) = IT Ry, |-

The minimum achievable norm is given by

Yo = max{||Tr, |l , |af} -

In the sub-optimal case we have ¥ > 4o. There are three possible kinds of optimality:
1) 70 = IRy, || > || (Optimality of inertia type),
2) 70 = |a| = ||Tr,, || (Optimality of the Parrot type),
3) 70 = |a| > ||TRr,, || (Optimality of the Parrot type).

Notice that the solution to this problem can be obtained by inspection.

Remark 7.1 This example shows that we do not need to have (A, Bz) controllable

and/or (C3, A) observable to obtain the solution using our method.

7.2 Example Two

In this section we give a nontrivial, but still workable by hand example to illustrate
computational flow of the solution.

Consider the following four-block problem:

- -

1 {11

Ru S R S
R(S) = ( ) 12( ) = 1 01 . (763)

Ryi(s) Ra(s)
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We want to find the optimal solution(s) to the problem.
Solution: First we need to find the optimal error. We have
YTR=7D=1

Therefore, 1 is a lower bound for the optimal error. We next calculate u;5 and u3;: We

have

®=uguf =42-1

0= ufauls =~%2-1,
which results in

U3 = Uz = \/72 - 1. (7.64)
From equation (5.27), we get

L2-292L,+ 4% = 0. | (7.65)
From (7.65), the following desired solution is obtained:

Lo=v = /2 - 1. (7.66)

From equation (5.32), we obtain

292 -1

From (7.67), we get

72 -05

L= .
c 72_-1

(7.68)

The optimal value for 7 is obtained if conditions ¥3 — Lo(70)Lc(70) = 0 and 40 > 1 are

both satisfied. In order to determine the optimal value, we need to solve

5-05
Lol = (73 -V - 73) 770—2_—1— = %%. | (7.69)
0
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The solution of (7.69), 7o, is approximately equal to v = 1.19149, which is greater than

1. Therefore the minimum norm is
70 = 1.1945. ‘ (7.70)
We next calculate By and Cp to complete the imbedding. We easily obtain

Bo = —me, (7.71)

Co=+v1-1- 1. (7.72)

o -

1
i s !
JE-1-— 0 0 -1
X(s)=| V7 T o : (7.73)
1 o o0 1
| 0 V-1 1 0 |

Next we find a balanced realization. Finding a balanced realization is equivalent to

finding a scalar ¢ such that the following realization of X(s) has L. = L, = L:

(= -1 1}
X(s) = V18-1-7 0 0 V-1 | (7.74)

t 1 0 0 1

0 vi-11 0

We obtain
298 -1
t= 4 . (7.75)
\J (B - D1+ (/18- 1= 70)?]
We have
2 _ 2_1_ 2
L \J - D1+ NEEEEE] 76
.
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From (5.81) and (5.82) we obtain

¥-1  _L
U7)=V(y) = i M (7.77)
1 -1
~ ~
We then have
7 Yo
By =-—2— (7.78)
ty/1é-1
Cn =t (7.79)

The value of the free parameter satisfying the condition
voB11 = Cim (7.80)

is obtained as

2
Yo
m=—-——=0 (7.81)
2y/7¢ -1
Finally the optimal solution is
Q(s) = Fi(J(s), m(s)) = Fi(Dj, m) = constant (7.82)

as expected. A little calculation results:

1 2 _ 1- 2
Q(s) = (12 - 1)\I v 2’:’3 — 1 _ 0.3522. (7.83)
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Chapter 8

Conclusion

In this thesis it is shown that SISO H,, optimization problems are equivalent with
weighted H, optimization problems. The optimal weight has been calculated and is
proven to be unique. To obtain the solution, an iterative procedure is introduced and its
limit calculated. This result established a direct link between the Ho, optimal control
and Wiener-Hopf control theories. The weight can be interpreted as the worst case signal
for the H, optimization problem.

An elementary method is introduced to obtain a parameterization of all solutions to
the one-block, general distance problem.

We prove that the four-block problem can be transformed into a one-block problem in
a very simple way. We give a parameterization of all solutions to the four-block problem
for both optimal and suboptimal cases.

Doyle et al. [6] has given a state space solution for the H,, optimization problem
which does not involve the Youla parameterization. They show that some of the solutions
in the set they characterize have the same degree as the plant itself. In our solution,

since we address the problem in the frequency domain, the controllers we get seem to
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have at least three times the degree of the plant. Obviously, since both methods solve
the same problem , some of the controllers obtained by our approach must be non-
minimal. Minimality property of the controllers obtained via our method remains to be
investigated and is the subject of current research.
In the case of Parrot type optimality, we face a singular spectral factorization prob-

lem. Good numerical algorithms are needed to solve this special, spectral factorization

problem.
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