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Abstract

The application of Monte-Carlo simulations to study thermally excited time-
dependent phenomena is examined. The diffusion coefficient and the exponent for
domain growth for a square lattice gas experiencing equal and repulsive nearest-
neighbor and next-nearest-neighbor interactions are calculated for three different
dynamics: Kawasaki; Metropolis and energy-barrier. All three dynamics satisfy
detailed balance, but the diffusion coefficient is found to show a different tempera-
ture dependence for each. The growth exponents for Kawasaki and energy-barrier
dynamics are in close agreement, and larger than that for Metropolis dynamics.

This difference arises because the domain sizes reached were not sufficiently large.

In further Monte-Carlo simulations of the same lattice gas model using dyna-
mics which allow precursor-mediated migration, the growth exponent of fourfold
degenerate ordered (2x1) domains on a square lattice is found to be 1/2. If the
growth law is written as [ ~ At'/2, A is found to be proportional to D!/?, where D
is the diffusion coefficient of the adsorbed particle. Kawasaki dynamics simulations
at zero temperature are performed for the growth of (1/3x4/3)R30° domains on a
triangular lattice. The results show that the low temperature behavior is markedly
dependent upon the details of the lateral interactions and the range of the particle
hops. This latter result demonstrates the strong influence of a precursor state on

growth kinetics.

Monte-Carlo analysis of molecular beam reflectivity measurements of the
probability of molecular adsorption of ethane on the Ir(110)-(1x2) surface shows
that a precursor state can also be rather important in adsorption. We show that
the experimental data can be explained by adsorption occurring in two channels:
direct and precursor-mediated. In this case the precursor is an ethane molecule
trapped in a second layer on top of the first layer of molecularly adsorbed ethane.

From the simulations we were also able to calculate the energy barriers for diffusion
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and desorption of an ethane molecule in the precursor state.

Monte-Carlo simulations of a Langmuir-Hinshelwood reaction between two
interacting species were also performed. The parametrization of the reaction rate
coefficient that is implicit in an Arrhenius plot is examined. It is shown that the
effective energy barrier and preexponential factor obtained from an Arrhenius plot
show strong compensation when the overlayer configuration is strongly temper-
ature dependent. This can explain the anomalously high reaction or desorption

preexponential factors observed for some adsorbed systems.

It is also shown that a Langmuir-Hinshelwood reaction occurring between
two species, even when they are non-interacting, can lead to configurational effects.
Compact ‘islands’ consisting solely of either species 4 or species B are observed
in simulations. An order parameter which allows an analogy between the reacting
system @d magnetic systems to be drawn is defined. The reactivity of the catalyst

surface is inversely proportional to the ‘island’ size.
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INTRODUCTION

A surface can be considered to be a defect in a crystalline solid because the
three dimensional periodicity which exists within the bulk is lost in the surface
region. However, crystal surfaces still possess two-dimensional periodicity and their
structure can always be described in terms of one of the five two-dimensional Bra-
vais lattices along with a basis of atoms for each lattice point. Consequently, the
atoms at the surface of the crystal presents a two-dimensionally periodic array of
sites at which molecules can be adsorbed. In some cases, such as the adsorption of
rare gases, the binding energy between the adsorbed molecules and the substrate
is so weak that the structure of the adsorbed layer is independent of the substrate
structure. However, for adsorption of small molecules on transition metal surfaces
the two-dimensional periodicity of the array of adsorption sites means that adsorp-
tion can be modeled by a lattice gas. The basic elements of such a description are
the lattice type at which sites the particles are adsorbed, the lateral interactions
between the adsorbed particles and the chemical potential of the adsorbed species.

Having specified these, a Hamiltonian can be written as follows:

H= Y Jijcc;,
(i#3)

where ¢;, the site occupation variable, is unity if site ¢ is occupied and zero if it is

vacant and J;; is the interaction energy between two particles, one at site 1 and the

other at site 7. Knowing the Hamiltonian, the grand canonical partition function

for the adsorbed system can be written as

Z = ZZN°exp(—,3 Z Jijeicj),

(i#3)

where the first sum is over all the configurations ¢ of the lattice gas, 2 = exp(8pu)

is the fugacity and p is the chemical potential of the adsorbed species. The total
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number of adsorbed particles for configuration ¢ is equal to N,. Although a lattice-
gas system (and its equivalent Ising spin system) can be formulated rather easily, the
calculation of the partition function and, hence, the thermodynamic or mechanical
properties of the system is by no means an easy task (1). Many approximate
analytical methods have been developed to deal with this problem. The most widely
used are mean-field approximations. Various formulations of the renormalization
group method have also been used quite successfully to study lattice-gas (Ising)
systems, in particular, to provide the theoretical understanding of the universality

of critical properties (2).

For most adsorbed systems, however, it is most convenient and simple to use
Monte-Carlo sampling (3,4) to obtain exact values, at least in principle, for the
thermodynamic and mechanical properties. Mean-field approximations, although
quite useful qualitatively, generally give incorrect phase-diagrams, for instance.
Renormalization methods which are rigorously valid only in the vicinity of the crit-
ical point have also been used to calculate the entire phase diagrams of adsorbed
systems. However, they are inconvenient because generally, at each renormaliza-
tion, many new effective interactions are introduced and approximations have to be
used to avoid this. Monte-Carlo methods have been used with immense success in
many cases in which the lattice-gas system cannot otherwise be studied accurately.
It must be noted that we have been discussing equilibrium properties of adsorbed
systems. Although Monte-Carlo methods have also been widely used to investigate
the time evolution of an adsorbed system which is not in equilibrium, such use has
not been carefully examined. In contrast to molecular dynamics, which basically
performs numerical integrations of the equations of motion for each particle in the
system, the use of Monte-Carlo methods in studying systems which evolve in time
is based upon the numerical solution of a master-equation in which the transition
probabilities have to be specified. In Chapter 1 various ways of specifying these

transition probabilities are briefly, but carefully, examined.
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Although we begin with a study of the use of Monte-Carlo methods for time
evolving systems, this thesis is concerned mainly with the application of Monte-
Carlo simulations to understand some of the properties of adsorbed systems, in-
sofar as they are modeled by lattice gases. Since there are lateral interactions
between the particles of a lattice gas, the free energy of the system depends upon
the configuration of the particles on the lattice. A random distribution has the
largest entropy, but particular ordered distributions may have the lowest energy.
The equilibrium configuration of a lattice gas at any temperature is, therefore, ar-
rived at by a balance between these two opposing forces. Hence, when a lattice
gas is cooled below a particular temperature, it is possible for a transition to occur
from a disordered state to an ordered state. Such order-disorder transitions are
widely observed in adsorbed systems and the purpose of studying them is twofold.
Firstly, it is possible to obtain the strengths of the lateral interactions between the
adsorbed molecules by matching the experimental phase diagrams to the calculated
ones. Secondly, adsorbed systems provide the testing ground for the present un-
derstanding of phase transitions since much of the analytical or numerical work in
this area is done for two-dimensional systems, these being the simplest non-trivial
systems. Regardless of whether a phase transition occurs, the distribution of the
lattice-gas particles is frequently influenced strongly by the temperature and the
fractional surface coverage of the particles. This means that the local configuration
around a lattice-gas particle is quite dependent upon temperature and fractional
surface coverage. Since the particles interact laterally, different local configurations
will lead to different diffusion, adsorption, desorption or reaction rates. Understand-
ing this is important since these processes are the basic building blocks of catalytic
phenomena. We investigate the kinetics of domain growth and the influence of the

configuration of the adsorbed layer on reaction rate coefficients.

Using a lattice gas to model an adsorbed layer of molecules may be considered

to be a mesoscopic description of the system. It is not macroscopic because the
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position of each particle is followed. However, it is not microscopic because the
lattice gas particle that is used to simulation the adsorbate particle can, at best,
be considered to be the time-averaged position of the molecule adsorbed at a site.
The vibrations of the adsorbed molecule are not simulated, and the elementary
processes of adsorption, desorption, diffusion and reactions are not considered in
terms of the quantum mechanics of the electron wavefunctions that provide the
interactions between the adsorbed molecules and the substrate and between the
adsorbed molecules themselves. The process of diffusion, for instance, is simulated
by hops from one lattice site to the next, with the hops occuring at some specified
rate which, in principle, can be obtained from a more microscopic description. It
should be clear that the main role of an investigation at this mesoscopic level is an
elucidation of the importance of configurational effects. However, lattice gas models
can incorporate certain features of some dynamical processes. The adsorption of a
molecule onto a crystal surface does not necessarily occur in one direct step (5).
The impinging molecule may be trapped temporarily in a weakly bound precursor
well in which the binding is due to van der Waals forces before it reaches the
adsorption well in which a chemical bond is formed. Precursor-mediated adsorption
or diffusion, for instance, can be modeled by lattice gases. Indeed, one theme which
runs through our work is the simulation of processes in which a precursor channel

plays an important role.

We have seen that ordering of lattice-gas particles can occur because of the
lateral interactions that exist between them. When there are attractive lateral
interactions between the particles, it is possible to form ‘islands’ when the surface
is cooled below a transition temperature. However, it is also possible to obtain
similar ‘islands’ even in the absence of lateral interactions. These latter ‘islands’
are specific examples of the ‘dissipative’ structures that have been widely studied
in non-equilibrium transitions (8,7). Since a major purpose of our work is to study

the influence of the configuration of an adsorbed layer on processes important to
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catalysis, we also conduct an investigation of a Langmuir-Hinshelwood reaction
model in which the interplay between diffusion, adsorption and reaction results in
fractional surface coverage inhomogeneities. In our work we attempt to provide a
‘thermodynamic’ interpretation of the underlying kinetic forces that produce the

‘dissipative’ structure in the model.
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Chapter 1.

Dynamic Monte-Carlo with a Proper Energy Barrier: Surface Diffusion

and Two-Dimensional Domain Ordering

This chapter was published as a paper by H.C. Kang and W.H. Weinberg, in
The Journal of Chemical Physics, 90, 2824 (1989).
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ABSTRACT

A new model is presented and discussed that allows Monte-Carlo simulations
to be carried out with a proper energy barrier crossing. Results are presented for the
surface diffusion coefficient and the growth exponent of domain ordering of a half-
monolayer of adatoms experiencing nearest and next-nearest neighbor repulsive
lateral interactions (equal in magnitude), both on a square lattice. The results
are compared with those derived using both Kawasaki dynamics and a Metropolis
walk. The reasons why neither of the latter methods can be expected, in general, to

describe thermally excited, time-dependent phenomena are explained and discussed.



I. Introduction

Monte-Carlo simulations are widely used (1-3) to study both the dynamic
and the static behavior of systems with many interacting particles. In the investi-
gation of static behavior, the simulations can be used to generate the statistically
most important configurations. One commonly used algorithm is the Metropolis
walk (4), which samples the configurations as follows. From an initial configura-
tion, a new configuration can be generated, for instance, by a single spin flip in
an Ising model. The new configuration is accepted with probability unity if its
energy is less than that of the original configuration. Otherwise, it is accepted with
probability e (Br~F:)/ksT where E; and E; are the energies of the new and the
old configurations, respectively. Such algorithms search for the configurations of
lowest free energy. For studying static behavior, the sequence of configurations that
are generated need not correspond to the real evolution of the system towards the
state of lowest free energy. The problem of conversion from simulated time ¢, to

real time ¢, does not arise.

In studying dynamic behavior, however, the sequence of configurations gen-
erated by the Monte-Carlo procedures is meant to simulate the time-evolution of
the system, and, hence, it is important to know how to convert ¢, to ¢, in this
case. (Most Monte-Carlo studies have reported their results in terms of ¢,.) At the
very least, it is necessary to know that ¢, scales linearly with ¢,. Investigating the
dynamic behavior of a system by Monte-Carlo techniques is equivalent to approxi-
mating the actual behavior of the system by a stochastic process (1,2). Consider
the motion of adsorbed molecules on a crystal surface. This is often simulated by
a lattice gas, the particles of which migrate by hopping from one site on the lattice
to another. Frequently, the lattice-gas particles are only allowed to hop from their
original sites to vacant, nearest-neighbor sites. The lattice-coordination number
z is dictated by the symmetry of the crystal surface, and the lattice-gas particles
are allowed to interact with each other. A lattice-gas particle is picked randomly
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from an initial configuration. Then one of the z nearest-neighbor sites is picked
randomly. If the chosen nearest-neighbor site is occupied, the procedure is begun
again. If the chosen nearest-neighbor site is vacant, the probability w(c;,cs) of a
successful hop from the original site to the chosen site is computed and compared
to a random number 7 (0 < r < 1). The particle then hops if w(c;,cz) > 7; oth-
erwise, it remains at its original site. The configuration is changed from ¢; to cy
because of the hop. Each time a particle is picked, the time is increased by one
Monte-Carlo step (MCS). If we take 1/7 to be the attempt frequency, then the
real time corresponding to one MCS is 7 /N, where N is the total number of parti-
cles, assuming that each particle is excited once by the heat-bath, provided by the
crystal, in each time interval . This Monte-Carlo technique then is a method of

‘solving’ the master equation

dP(cs,t) _ ) w(Ci,Cf)P(Ci,t_) -y w(cfaci)P(C.fat), (1)

dt o T T

[ Ci
where P(c,t) is the probability distribution of configurations at time ¢. For the

Monte-Carlo dynamics to be consistent with detailed balance at thermal equilib-

rium, it i1s necessary that
w(ciy cf)Peg(ci) = w(cy, ¢i)Peg(ey), (2)

and

Poyfc) = 2 eap(~ H[c] /5T), (3)
where H is the Hamiltonian and Z is the partition function of the system, and P4
is the probability distribution of configurations at equilibrium. Detailed balance,

of course, does not completely specify w(c;, cy).
One choice of w(c;, cf), which satisfies detailed balance, is the Metropolis walk

(4), for which

wm(ciycp) = exp(—6E/kpT) for 6E >0,
(4)
=1 for éE <0,
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where §E = Hlcs] — H[c;]. Another common choice for w(c;,cy) for lattice-gas
systems with conservation of total number of particles is Kawasaki dynamics (5-
7), for which

wn(en o) = EPIE[2ksT) ®
k(Ci,cp) = exp(—6E/2kpT) + ezp(§E/2kpT)’

and Kawasaki dynamics also satisfy detailed balance. However, the dynamics of

thermally excited processes are properly described by
we(ci, cg) = exp[—Ep(ci,cf)/kpT], (6)

where Ep(c;,cy) is the energy barrier for a particle to hop, which changes the config-
uration from ¢; to c¢¢. This has been used in some previous Monte-Carlo simulations
of adsorbed gases (8-13). When using Kawasaki dynamics, 7 can be considered
to be a temperature-dependent quantity, e?/*8T /u where Q is an average energy
barrier that the particles have to surmount when hopping from site to site, and »
is the frequency of the frustrated translational motion parallel to the surface (1,2).
The quantity @ is temperature dependent because the configuration of the lattice-
gas particles is temperature dependent. However, with Kawasaki dynamics 7 is
normally taken to be the unit of time, and the temperature dependence of Q is lost
from the simulation. From this point of view, we can consider Kawasaki dynamics
to be a procedure for sampling which merely satisfies the detailed balance condition
for the equilibrium configuration distribution. On the other hand, w, is a physical
quantity: the probability of success for thermally excited barrier crossing. When

using we in a simulation, 7 would simply be 1/v.
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II. Results and Discussion
The probability w; can be regarded as resulting from a rescaling of w,. Con-

sider a particle hopping from site i to site j over an energy barrier, as shown in Fig.

1. The relationship between wy and we is
wk(Z)J) = Awe(iyj)a (7)

where

§E ll §E

A= lenpl g + g lean(p 1) + eop(— o), (8)

and ¢ is defined in Fig. 1. In an interacting lattice-gas system, the difference in
energy for each pair of sites will depend on the local configuration around the pair.
Thus there will be a specific value of A for each type of neighborhood in which a
pair of sites finds itself. In the case where there is no lateral interaction between
the particles of the lattice gas, there is only one value of A. In this case, even if
the microscopic events actually occur with probabilities w,, a simulation can be
done using Kawasaki dynamics. The real time is then ¢, = 7S/AN; whereas if
the simulation had been done with probabilities w,, then the real time would be
t, = 7S5/N, where S is the number of Monte-Carlo steps. In order to obtain the real
time, the time obtained using Kawasaki dynamics just needs to be multiplied by
the factor A, if the underlying dynamics are actually described by the probabilities
we. This, however, is not possible if there are lateral interactions and, hence, more
than one value of A.

Let us now compare the processes of hopping between sites i and j and sites j
and k. Generally, the three sites have different energies, and the values of A defined
by Eq.(8) for the pairs of sites (¢, ) and (7, k) are not equal. If we normalize w,(, ;)
with respect to w.(%,7) + we(j,), we find that

e i’i)e(j,i) = (i d) (®)
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Hence, Kawasaki dynamics rescale the probabilities of barrier crossing so that for
the barrier between any two sites (4,7), wi(7,5) + we(5,7) = 1, ¢f. Eq.(5). For
barriers where we(i,7) + we(J,7) > 1, the sum of the rates of hopping is decreased:;
whereas for barriers where we(%,7) + we(7,4) < 1, this sum is increased. As a
result of this rescaling, Kawasaki dynamics require shorter computational times for
simulating processes where the values of w, are very small. When the values of
we are very small, a ‘hop’ has to be attempted many times before it is successful.

Hence, computer time can become prohibitive.

In such cases, which occur when the temperature of the lattice gas is relatively
low, Monte-Carlo simulations should not be done by addressing particles at random.
Rather, all the possible hops should be grouped according to their values of we,.
Then a particular hop (a particular particle and a particular lattice direction) is
picked according to the relative probability P, = nqw,,q/zq NgWe g Where ng is
the number of possible hops in the gth group which has a probability of success
equal to we 4. This is done by generating a random number r such that 0 < » < 1.
The first value of s for which Z;___l P, > r is the group of hops that is selected.
One hop out of all the possible hops in the sth group is selected at random. The
configuration is changed each time a particular hop is picked. This algorithm for
Monte-Carlo simulations, where the probability of success of a hop is determined
before the hop is picked, rather than after, is called the ‘n-fold’ way (14). It makes
it feasible to do simulations, both dynamic and static, when the probability of a
change in the configuration is much smaller than unity. In the calculation of static
quantities, the configurational changes do not have to correspond to physical events.
It is only important that the transition probabilities which are used produce the
correct equilibrium solution of the the master equation, cf. Eq. (1). However,
for calculating dynamic quantities, the configurational changes correspond to real
events, such as the hopping of an adatom from one adsorption site to another.

Hence, for simulations of dynamic processes the choice of the time increment for
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each sampling step is crucial. The hop attempt frequency is 1/7, and the average
number of attempts that occurs before a hop in the gth group is successful is 1/w, 4.
Thus the time is increased by 7/ Nw, 4 for each hop in the gth group, where NV is the
total number of particles. The factor of 1/N occurs because each particle provides
a clock, but all the V clocks are running in parallel. We have used this procedure
to simulate the dynamics of domain ordering on a square lattice gas with equal and
repulsive nearest and next-nearest neighbor interactions. At a fractional coverage
of 0.5, the lattice gas forms fourfold degenerate (2x1) ordered domains below a
critical temperature given by kpT./¢ ~ 0.525 (15), where ¢ is the strength of the
lateral interactions. The values of the barriers Ey(c;,cs) are obtained from the

model (harmonic) potentials shown in Fig. 2, in which
E; = k(%/2 + a, (10)

and

Er =k - N)*/2+ay, (11)

where k is the force constant of the harmonic wells, a; and o are the heights of the
bottoms of the initial and final adsorption wells, ¢ is the coordinate for hopping,

and ) is the lattice constant. In this case,
a; = ¢Ni, (12)

where N; is the total number of occupied nearest and next-nearest neighbor sites,
i.e., the energy zero is the energy of an ‘ isolated’ adatom. The quantity Ey(c;,cy)
is the difference in energy between the point of intersection of E; and E; and the
bottom of the well described by F;. In our simulations, we have set kA% = 204 (18),
and we have studied diffusion of the lattice gas and the kinetics of domain growth
with Monte-Carlo techniques using wi and we. If A ~ 3 A, ¢ ~ 2 kcal/mol and
g~ 10 AMU, then kA? = 20¢ implies an adatom frustrated translational frequency

parallel to the surface of v ~ 72 cm™. We have also performed simulations with
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the Metropolis walk algorithm for the temperature regime where domain growth

OCCcurs.

The initial configurations are generated by randomly placing 5000 particles
on a 100x100 lattice, so that the effective initial temperature for all runs is infinity
and the fractional coverage is one-half. We performed 30 runs for each temperature
and obtained the mean-square displacement of the particles from the simulations
for 0.6¢/kp < T < 5¢/kp. After an initial period of time to allow the system
to “forget” its initial configuration, the mean-square displacement varies linearly
with time, with a slope proportional to the diffusion coefficient. The temperatures
are sufficiently high that the effect of the order-disorder transition (17) on the
diffusion behavior is not observed. We plot in Fig. 3 the logarithm of the slope
as a function of the reciprocal of the corresponding temperature in order to obtain
the effective energy barrier to diffusion. The asterisks are results from simulations
using wg, and the circles are results from simulations using w.. Since we used
only temperatures above the critical temperature, we did not observe a significant
variation in the energy barrier for diffusion. The average diffusion barrier obtained
using the probabilities w, varies from ~ 2.6¢ at the higher temperatures to ~ 3.0¢
at the lower temperatures. As the temperature is lowered, the probability of finding
local configurations which are energetically more favorable, and thus have a higher
diffusion barrier, becomes higher. Thus, the average diffusion barrier is expected
to increase slightly with decreasing temperature, even when the lattice gas is still
above the critical temperature for ordering. At an infinite temperature, where the
correlation length is zero, the average neighborhoods of a particle before and after
a hop are the same, and a; and ay are equal. With our model, this gives a diffusion

barrier of 2.5¢.

By the same argument, at an infinite temperature, Kawasaki dynamics would
show a zero energy barrier to hopping. Our results for simulations using Kawasaki

dynamics, indicated by the asterisks in Fig. 3, show that the average barrier tends
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to zero at high temperatures. However, the values obtained from simulations using
wy at finite temperatures cannot be easily interpreted since, as described earlier,
we can consider each wy to result from a rescaling of a corresponding w.. Using
the procedure described earlier for small w., ¢, is increased by 7/Nw, 4 for each
hop. If a simulation is carried out with this procedure but using the probabilities
Wk, the time increment for each hop is 7/Nwy 4. If, however, for each hop in the
simulations using wy, we increase t, by 74,/Nwg 4, we obtain the results shown by
the crosses in Fig. 3. The results are also shown in Table 1. The additional factor
of A, for each hop, the value of A; depending on the type of hop, means that the
correct time increment is used for each hop. As discussed earlier the probabilities
wy, are obtained by rescaling the values of w,(7,5) and w,(j,7) by we(,) +we(5,1).
For temperatures which are relatively low, each value of w, is very small, and this
rescaling increases the probability of hopping so that the diffusion coefficient is
higher when using Kawasaki dynamics. However, for temperatures which are suf-
ficiently high so that w,(i,7) + we(s,%) > 1, this rescaling would actually lower
the probability of hopping and, hence, lower the diffusion coefficient. This may be
seen by comparing the asterisks and the crosses in Fig. 3. The rescaled Kawasaki
results are in good agreement with those using the proper energy barrier at temper-
atures which are high compared to ¢/kp, with progressively greater disagreement
at progressively lower temperatures. This may be seen by comparing the circles
and the crosses in Fig. 3, and it is shown more clearly in Fig. 4 where we plot the
temperature dependence of D,/D., the ratio of the diffusion coefficient obtained
from using wy (and rescaling the time for each hop by 4,) to the diffusion barrier
obtained from using we. This behavior is observed because at high temperatures
the relative probabilities P, calculated from w, and from w;y, for each type of hop
are approximately the same. However, the lower the temperature, the greater the
difference between the value of P, calculated from w, and that calculated from wy.

This affects the time evolution since the moves are picked according to their relative
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probabilitites. Hence, as discussed earlier, in lattice-gas systems with lateral inter-
actions, simulations using Kawasaki dynamics are not equivalent to simulations
using we. Only when there are no lateral interactions can rescaling the time give
equivalent results. At sufficiently high temperatures, using Kawasaki dynamics is
approximately equivalent to using w. because 44 ~ 1/2, a constant regardless of
the local configuration. Simulations using the Metropolis walk would be expected

to also show similar deviations from simulations using w..

Lattice-gas diffusion has been investigated rather extensively by Monte-Carlo
methods. In some of these studies, the transition probabilities were computed by
considering the energy difference between the final and the initial configurations.
Both Kawasaki dynamics (17-19) and the Metropolis walk (20,21) have been used.
In other studies (8-13) the transition probabilities were computed by considering
the energy barrier between the final and the initial configurations. We have shown
here that the particular choice of transition probabilities influences the temperature
dependence of the diffusion coefficient. As was noted previously in studies where
Metropolis walk simulations were used to obtain the temperature dependence of the
diffusion coeflicient, these time-dependent Monte-Carlo simulations used a clock
the timescale of which is not known (21). If another set of transition probabilities
such as w, or wy were used, then the ratio of the calculated diffusion coefficients
at a specific temperature would depend on the ratio of the respective timescales.
This would not be an obstacle if the ratio were independent of the temperature.
However, we have shown that this is not the case, and that the experimentally
accessible temperature dependence of the diffusion coefficient for thermally excited
motion of adsorbed particles can be incorrectly computed if inappropriate transition
probabilities are used.

Kawasaki dynamics (5-7) have been widely used to study the kinetics of

domain growth (22-34). One of the major issues is the value of the growth exponent

z defined by I ~ t*, where [l is an average length scale of the ordered domains and ¢
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is the time. Since such simulations are for temperatures that are low compared to
¢/kp, it is very important to compare the results from simulations using wi and
w,. The results from simulations of lattice gas diffusion above have shown that the
ratio of the timescales for simulations using w. and wy, is temperature dependent,
i.e., we have shown that there is a temperature-dependent multiplicative factor
relating the timescales in simulations using we and simulations using wg. This
multiplicative difference between the timescales would not affect the isothermal
value of the growth exponent. However, it is not clear whether a linear relationship
holds between the timescales of Monte-Carlo simulations which use different values
of w(ci, cy). Under conditions where the simulations have reached equilibrium, this
is not an important consideration. In this case, the average value of the factor
A, cf., Eq.(8), is constant since the distribution of types of hops that are taken is
stationary. Hence, a linear relationship holds between the timescales of simulations
using we and those using wy or wy,. This is the reason for observing, in the diffusion
simulations discussed above, the same linear scaling of mean-square displacement
with time whether w, or w; was used. However, for simulations where the system
is far from equilibrium, the distribution of types of hops that are taken changes as
the simulations proceed. This is the case for simulations of domain growth. Since
z is the exponent of the time, the value of z obtained from simulations can be
accurate only if z is obtained in a regime of domain growth where the distribution
of types of hops that are taken in the simulations changes in concert with that in
a real system. We cannot compare simulations directly with a real system, but
we can compare the time evolution in simulations which use different transition
probabilities. This would determine whether or not the choice of the transition

probabilities is important for simulations of systems evolving towards equilibrium.

We have performed simulations at a temperature 7' = 0.3325¢/kp using wy,
wm and we. For the simulations for w, and w,,, we used a LxL = 100x100 lattice

and performed 40 runs. For the simulations for wy, we performed only 15 runs
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since reliable data are already available for this case (31). All simulations were
allowed to run sufficiently long that the final domain sizes are approximately L/3.
For the simulations using w, and w,,, we also performed five runs each on 200x200
lattices to ensure that “finite-size effects” do not influence the results. Time is
measured in Monte-Carlo steps, as usual, for the simulations using both Kawasaki
dynamics and the Metropolis walk. For the simulations using we, real time is
calculated explicitly, as discussed earlier. The results are shown in Figs. 5-8.
Simulations using Kawasaki dynamics for this system at the same temperature
have been performed previously, and our results for Kawasaki dynamics, which are
shown in Fig. 5, agree with those simulations (31). The growth exponent we
obtained using Kawasaki dynamics is zx ~ 0.34 & 0.01, where the uncertainty here
(and below) refers to one standard deviation in a linear least-squares fit to the
calculated data. This growth exponent is obtained from the data points between
the arrows indicated in Fig. 5. In Fig. 6 we show the results from simulations
using the Metropolis walk, where the data points between the arrows give a growth
exponent of z,, ~ 0.277 £ 0.007. (If all data points are included, the best fit gives
zm ~ 0.300 £ 0.008). Figure 7 shows the results from a single run using w., and
Fig. 8 shows the average of 45 runs using w.. The data points between the arrows
in Fig. 8 give z. ~ 0.32940.004. Just as we can regard wi(c;, cs) to be the result of
rescaling we(c;, cy) with respect to we(ci, cf)+we(cy, i), we can consider wm(ci,cy)
to be the result of rescaling we(c;,cy) with respect to maz|w.(c;,cs),we(cy,c;)].
Our results show that ¢, in the simulations using the Metropolis algorithm does
not scale linearly with ¢, in the simulations using Kawasaki dynamics. The values
of z; and z., however, are in rather close agreement. This means the value of z can
be affected by the type of transition probabilities that is used even though the total
particle number is conserved in all cases. This, as we suggested above, can arise
because the distribution of hops that are taken is changing in these simulations,

and they do not change in concert for simulations using different forms for w(c;, cy).
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We conclude that all interpretations of dynamic Monte-Carlo simulations must
be made with some care. For instance, the value of z = 1/3 has been suggested
for the system that we have studied on the basis of simulations using Kawasaki
dynamics (34). It was argued that this value results from the long-range diffu-
sion of lattice-gas particles from domain walls with excess local density to domain
walls with deficit local density. Clearly, the same long-range diffusion of lattice-gas
particles must also occur when a Metropolis walk is used. However, our results
indicate a significantly different growth exponent for the Metropolis walk. We can
conclude that with other constraints the same (such as the conservation law for the
total particle number and the degeneracy of the ground state), the choice of the
transition probabilitites can influence the value of z that is calculated. This can
be interpreted to mean that if the microscopic processes, in two otherwise similar
systems, have different forms for w(c;,ct), then the values of z could be different.
This serves to underscore in a dramatic fashion the importance of correctly con-
verting simulation time to real time, and this occurs naturally for thermally excited

processes when employing the proper energy-barrier model that we have developed.

III. Conclusions

In conclusion, we have demonstrated the importance of the choice of the tran-
sition probabilities in Monte-Carlo simulations. We find that the ratio of time scales
using different choices for w(c;, cs) is dependent on temperature and affects calcu-
lations of diffusion coefficients, particularly at low temperatures. We also find that
under non-equilibrium conditions the timescales using different choices for w(c;, cy)
do not necessarily scale linearly. This affects the calculation of dynamic quantities
such as the growth exponent of ordered domains using Monte-Carlo simulations. In
general, the correct growth exponent can be obtained only if the transition probabil-
ities that are used correctly describe the microscopic dynamics, which for thermally

excited processes have the form e~ Fs(cic2)/ksT  Gpecifically, we find that for the
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ordering of fourfold degenerate (2x1) domains on a square lattice, the growth expo-
nent obtained using the Metropolis walk is ., ~ 0.277, and is significantly different
from the value z. ~ 0.329 obtained from simulations using w, within the context
of an energy-barrier crossing model we have developed. The value of z. is quite
close to that of 23 (using Kawasaki dynamics) so that the non-linearity between the
timescales using w. and wy is not large, at least in the regime where the domain
growth exponents were obtained. However, as we have argued above, z. not zj
should be the correct growth exponent for the thermally excited process of domain

growth of adsorbed particles.
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K, T/ 50 D,

040 0.00675¢
0.00007

0.7 0.0178+0.0002

100 0.0486+0.0006

200 0.219+0.003

300 0.343+0.004

500 0.479+0.004

The diffusion coefficients are inunitsof A~ T o

24—

C

r

0.00751+

0.00009

0.0196+0.0003

0.00512+0.0005

0.218+0.002

0.34710.004

0.48410.005

Table 1.

1

0.189+0.017

0.213£0.003

0.273+0.003

0.367+0.004

0.395+0.006

0.403+0.003

The subscripts e. r and k denote energy-barmier, rescaled Kawasaki

and Kawasald, respectively.

The standard deviations are shown for each datum point.
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Figure Captions

Figure 1. Quantities used in Eq. (8) to rescale w, to wg, when hopping from site 3

to site j.

Figure 2. Model for diffusion barrier described by Eqs. (10) and (11). The bottoms
of the potential wells at the adsorption sites 7 and f are o; and oy, respectively. The
bottom of the potential well for an adsorption site with no nearest or next-nearest

neighbor adatom is the zero of energy.

Figure 3. Plot of InD vs. ¢/kgT, where D, in units of A?/7, is the slope of the
mean-square displacement of an adatom vs. time, i.e., the diffusion coefficient. The
quantity ¢ is the lateral interaction strength, A is the lattice constant, and 7 is the
inverse of the attempt frequency. The circles are data for simulations using w., the
asterisks are data for simulations using wy, and the crosses are data for simulations

using wi but with time rescaled as explained in the text.

Figure 4. Plot of D,/D. vs. kpT/¢. The quantity D, is the diffusion coeffi-
cient obtained for simulations using wy and rescaled time. The quantity D, is the

diffusion coefficient obtained for simulations using we.

Figure 5. Average of 15 Kawasaki dynamics runs for ordering of fourfold degen-
erate (2x1) domains on a square lattice at a fractional coverage of one-half and a
temperature of 0.3325¢/kp. The quantity ¢ is the lateral interaction strength. The
lattice size used is 100x100. The best fit for the growth exponent using the data
points between the arrows is z; = 0.34 + 0.01. This agrees well with the extensive

work of Sadiq and Binder who obtained a value of zx ~ 0.35 (30).

Figure 6. Average of 45 Metropolis runs for the same system as in Fig. 5. Forty

runs were done on a lattice of 100x100, and five runs were done on a lattice of
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200x200. For the domain sizes that were reached, no finite size effects were observed.
The best fit for the growth exponent using the data points between the arrows is

Tm = 0.277 £0.007. If all the data points are used, a best fit of z,, = 0.300 + 0.008

is obtained.

Figure 7. A typical single run using the energy-barrier model. The fractional
coverage is one-half and the temperature is 0.3325¢/kp, i.e., the same as in Figs. 5
and 6. The additional parameter necessary in these simulations is the force constant
of the model harmonic potential wells illustrated in Fig. 2. For our simulations,
we have set the force constant to be k = 20¢/)?%, where ¢ is the lateral interaction

strength and A is the lattice constant.

Figure 8. Average of 45 runs using the energy-barrier model, of which a typical
single run is shown in Fig. 7. (The simulation parameters are summarized there.)
Forty runs were done on a lattice of 100x100, and five runs were done on a lattice
of 200x200. For the domain sizes reached here, no finite size effects were observed.
The best fit for the growth exponent using the data points between the arrows is

z. = 0.329 £ 0.004.
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Figure 1
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Figure 2
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Chapter 2.

Kinetics of Precursor-Mediated Ordering of Two-Dimensional Domains

This chapter was published as a paper by H.C. Kang and W.H. Weinberg, in
The Physical Review B, 38, 11543 (1988).
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ABSTRACT

Monte-Carlo simulations have been carried out to study the kinetics of precursor-
mediated ordering of a lattice gas with nearest and next-nearest neighbor repulsive
interactions. We find that the growth exponent z is affected strongly by the rate
at which a precursor is deexcited into a chemisorbed state. If this rate is high, z is
close to the value obtained for conservation of density. If this rate is low, z is close
to the value for non-conserved density even though the total number of particles is

actually conserved. We conclude that the length of precursor ‘hops’ influences the

growth exponent.

PACS numbers: 68.35.F, 68.35.J, 68.35.R, 81.60, 82.65.M
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When an adsorbed system is quenched below an order-disorder transition
temperature, ordered domains begin to form. If the ground state is degenerate,
the local configurations at the boundaries between domains are not those with the
lowest free energy. To reduce the total free energy of the system, the lengths of
these boundaries are reduced, and the domain sizes become larger. In Monte-Carlo
studies of the kinetics of domain growth with lattice gas models, two types of
dynamics have been used widely: Kawasaki dynamics and Glauber dynamics (1-
3). In Kawasaki dynamics, which simulate closed systems, particles migrate from
one lattice site to a vacant nearest-neighbor lattice site. Glauber dynamics, which

simulate open systems, allow exchange of particles with an external reservoir.

By analogy to static critical phenomena, it has been proposed (4,5) and
observed (6-9) that at late stages of growth, when the domain sizes are much larger
than all microscopic lengths, the growth law has a power law form [~t*, where [ is
the length scale of the domains. The physics of domain growth is governed by only
one length scale: the size of the domains. One of the main goals in the study of
kinetics of domain growth is to determine the value of the growth exponent z and

to establish the factors that affect its magnitude.

For a square lattice gas that orders into a ¢(2x2) structure, the degeneracy is
p = 2, and the growth exponent is ¢ = 1/2, independent of whether Kawasaki or
Glauber dynamics are used (10-20).The situation, however, is not so clear for p > 2.
‘This occurs, for example, in the case of a lattice gas with equal repulsive nearest and
next-nearest neighbor interactions on a square lattice. In this case a (2x1) structure
with p = 4 occurs when the lattice gas is quenched below the transition temperature.
For a fractional coverage of 0.5, this transition temperature is 1/8:¢ = 0.525 (21),
where ¢ is the lateral interaction strength. Sadiq and Binder (22) have studied
this system in detail, showing that z ~ 0.35 for Kawasaki dynamics and z ~ 1/2
for Glauber dynamics. In the case of Kawasaki dynamics, they argued that domain

growth is governed by the diffusion of an excess (or deficit) fractional coverage at
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the domain walls. It was suggested that diffusion of the adsorbed particles from
regions of excess to regions of deficit fractional coverage is necessary for domain
growth, and that such a mechanism gives rise to ¢ ~ 1/3 (23). An investigation by
Vinals and Gunton (24) of a lattice gas model for hydrogen chemisorbed on Fe(110)
was not able, however, to verify this conjecture (22). This system has both a (2x1)
and a (3x1) phase. The (2x1) phase has degeneracy p = 2, and the (3x1) phase
has degeneracy p = 3. Although domain walls with excess fractional coverage exist
for both phases, it was found that ¢ = 1/2 for the (2x1) phase, whereas the value
of z ranged from ~ 0.14 to ~ 0.25 for the (3x1) phase. Hence, for p > 2 domain
growth is not well understood. Indeed, a recent Monte-Carlo study even suggested
that the Sadiq-Binder result of z ~ 0.35 is due to crossover from zero to the true

asymptotic value which is 1/2 (25).

These dynamical models have not heretofore considered the possibility of a
precursor state. In many real systems, however, precursor states are important
intermediates for surface diffusion (26), adsorption and surface reactions (27,28).
The preexponential factor for diffusion Dy of hydrogen adatoms on the Pt(111) sur-
face has been found experimentally (26) to be 1.0 cmm?-s™? (at a fractional coverage
of 0.24). If we take the lattice constant A to be 3.0 A and the vibrational frequency
parallel to the surface v to be 103 s~!, then the value of the preexponential for a
random-walk between sites is Dy = A2 /4 = 2.25 x 10~3cm?-s~1. The high experi-
mental value is strong evidence for the existence of a stable precursor particle that
executes many ‘hops’ before it is deexcited into a chemisorption state. Therefore,
we have investigated a lattice gas model with both a strongly bound chemisorption
state and a weakly bound, mobile precursor state. We consider a square lattice
gas with identical and repulsive nearest and next-nearest neighbor interactions in
order to compare with previous results that did not include a precursor state (22).
Here two possible adsorption states exist at each site on the lattice, a strongly

bound chemisorption state and a weakly bound precursor state. A particle in the
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chemisorbed state can only be excited into the precursor state at the same site.
On the other hand, a particle in the precursor state can experience one of the four
following fates: (1) It can be deexcited into the chemisorbed state at the same site
(if there is not another particle chemisorbed there already); (2) It can desorb from
the lattice (if the system is open); (3) It can migrate into the precursor state of a
nearest neighbor site; or (4) It can remain in the precursor state at the same site.
We allow adsorption from the gas phase into the precursor state at any site when

an open system is being modeled.

There are five microscopic processes the rates of which we have to consider:
excitation, deexcitation, migration, desorption and adsorption. The excitation-
deexcitation potential is modeled by two intersecting parabolae, as illustrated in
Fig. 1, where E; = k1(?/2 4+ a; and E; = k(¢ — (0)?/2 + a3, and the vari-
able { is the excitation coordinate with origin at the equilibrium position of the
chemisorbed particle. The model parameters are k;, ks, a1, az and ;. The zero of
energy is the bottom of the chemisorption well of an isolated particle. The bottom
of the precursor well is a2, and the bottom of the chemisorption well is given by
&1 = OnnNnn + PnnnlVnnn, where the subscripts indicate nearest and next-nearest
neighbor sites, IV is the number of occupied sites, and ¢ is the strength of the lateral
interaction. The top of the barrier is the point of intersection of the two parabolae.
The barrier heights for excitation E.,. and deexcitation F4., are therefore func-
tions of the local configuration of chemisorbed particles. We investigate only cases
where the precursor density is vanishingly small and hence need not consider the
interaction between precursor particles. We assume there is no interaction between
a chemisorbed particle and a precursor particle (28). Thus, «; is independent of
the local configuration of adsorbed particles. The migration and desorption barri-
ers of the precursor, Eniy and Eg4.,, are also assumed to be constants, independent
of the local configuration (28). If we take the ‘attempt frequency’ to be 7! for

each of the microscopic processes, the probabilities of success in each attempt is
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the appropriate Boltzmann factor. The probability of adsorption paq, is assumed
to be constant and is chosen according to the value of the probability of desorption

and the constraint of constant average fractional coverage.

The method we use differs from those used by previous investigators in two
ways. First, the probability of success of a microscopic event is calculated using
the proper energy barrier which has to be surmounted to go from the initial state
to the final state. This is in contrast to Kawasaki and Glauber dynamics where the
probability of success of an event is calculated using the difference in energy of the
initial and final states. It can be shown that the Kawasaki probability is in general
not equivalent to the probability calculated using the proper energy barrier, and
hence Kawasaki dynamics do not correctly describe the kinetics of barrier crossing
(29).

Second, the probabilities of success of the various microscopic processes vary
over many orders of magnitude. To carry out the simulation, we divide the micro-
scopic processes into a ‘fast’ group and a ‘slow’ group. The ‘fast’ group consists of
processes that a precursor particle undergoes, i.e., deexcitation into a chemisorp-
tion state, migration to a nearest neighbor precursor state, and, in the case of
open systems, desorption into the external reservoir. The choice of which event
in the slow group to pick during the simulation is made similarly to the ‘n-fold’
way (30). We group the slow excitation and adsorption events into classes i, each
corresponding to a probability p; of a successful attempt, and m; is the number of
potential events in each class 1. For instance, if there were a total of n; chemisorbed
particles with a particular environment such that the probability of successful exci-
tation were p;, then m; = n;. An event in class 1 is chosen with relative probability
R; = m;pi/ ), mip;. Having chosen an event in class ¢, the time is increased by
67 /p;i. The factor of six is due to the assumption of equipartition of energy, i.e., the
heat bath excites a chemisorbed particle with equal probability in six directions,

and only one of these can produce a precursor particle. Once a precursor particle is
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produced, it can either migrate, deexcite, desorb or remain where it is. Again the
attempt frequency in each of the six directions is the same, and the time increment
for each attempt is 7. The time is incremented by 7 even if the precursor remains
in its original location. The unitarity condition is (pdez + Pdes + 4Pmig + Po)/6 = 1,
where pge, is the conditional probability for successful deexcitation given that the
precursor is excited towards the surface and pge, is the conditional probability for
successful desorption given that the precursor is excited away from the surface.
Similarly, pmig is the conditional probability for successful migration in one of the
four possible directions for migration, given that the precursor is excited in that
direction. pg is the sum of the six conditional probabilities of failure. When the
precursor either deexcites or desorbs, we go to the slow events again and either

excite or adsorb another particle into the precursor state.

The values of the parameters used are summarized in the caption for figure 2.
Table 1 shows the probabilities of successful excitation of the chemisorbed particle
and deexcitation of the precursor particle for the extreme cases of zero and eight
repulsive interactions. We used the same temperature as Sadiq and Binder (22),
1/B8¢ = 0.3325; and we constrained a3/ to be equal to ten. If we assume a value
of 1.5 kcal/mole for the lateral repulsion, then the system has a temperature of 251
K, and the excitation energy of an isolated chemisorbed particle is 15.0 kecal /mole.
The probability of successful desorption is set equal to 0.3 for simulations in set
A and 0.06 for simulations in set B. The value of p.q4, is 4.32 x 10™° for set A
and 8.64 x 10~1% for set B. Sets C, D and E are closed systems. Each of the
sets of parameters shown in Table 1 utilized 20 runs each with a lattice size of
100 x 100 and 5 runs each with a lattice size of 120 x 120. We did not detect
any finite-size effects although this could be due to the similarity in size of the
lattices. The domain sizes were calculated by evaluating the area of each individual
domain and taking the average. The length scale as a function of time [(t) was then

obtained by taking the square root of the average area, and we did not let [(t) exceed
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~ L/3. Since our lattice sizes are only 100x100 and 120x120, there is a possibility
of our not having reached the asymptotic regime. However, our domain sizes are
comparable to those attained in (22) which we take as a benchmark. Initial random
configurations with a fractional coverage of 0.5, and periodic boundary conditions
were used. The growth exponents are shown in figure 1. These were obtained by
least-squares fitting of all the data points between the arrows. If 1/7 ~ 1013 s—1,
this corresponds to domain growth at 0.5 < ¢ < 200 s.

In Kawasaki dynamics, a particle that hops successfully then occupies one of
the nearest neighbor sites to the original site. In Glauber dynamics, a particle that
desorbs from the lattice has a uniform probability of attempting to readsorb on
each site of the lattice, thus allowing a more efficient search for domain configura-
tions of lowest free energy. In the precursor-mediated ordering described here, a
chemisorbed particle is first excited into the precursor state, after which it may ei-
ther deexcite into its original site, migrate to a neighboring site, or (in the case of an
open system) desorb. In the limit of strong coupling of the precursor to the lattice,
the distribution of sites into which it attempts to deexcite will be peaked sharply at
its original site. In this case, the search for the lowest free energy configurations is
even less efficient than with Kawasaki dynamics (where the distribution of sites is
composed of delta-functions at the nearest neighbor sites). In the opposite limit of
weak coupling of the precursor to the lattice where the probability of deexcitation
is low, the distribution of sites into which the precursor attempts to deexcite will
be more uniform over the lattice. When pmig >> pdez, the precursor particle can
be excited or deexcited into a site on the lattice at any distance from its original
chemisorption site. There is no constraint for deexcitation(readsorption) into the
nearest-neighbor site. Thus, the range for particle ‘hops’ becomes like what it is

when using Glauber dynamics, although the total density is still conserved.

This discussion can be quantified by considering the results for sets C, D and E
of Table 1 which are closed systems. The growth exponent obtained for this system
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by Sadiq and Binder (22) using Kawasaki dynamics is ~ 0.35. In set E, pges is
high (cf., Table 1), and « is less than the value obtained using Kawasaki dynamics.
This is the case in the experimentally obtained growth exponent of 0.28 + 0.05 for
O on W(110) which orders into (2x1) domains and may have a degeneracy of p = 4
(31). More stable precursors in sets C and D (cf., Table 1) increase the growth
exponent to values higher than expected for a closed system described by Kawasaki
dynamics. Sets A and B of Table 1 simulate open systems in which all parameters
except for the probabilities of adsorption and desorption are the same (and also
equal to those of the closed system of set C, cf., Table 1). The contribution of
particle exchange via adsorption and desorption is greater in set A and = ~ 0.5.
With a lower rate of desorption and adsorption, set B has a growth exponent that
is smaller than that expected for open systems (cf., set A) but greater than that of

an otherwise identical closed system (cf., set C).

To summarize, we have presented a description of precursor-mediated ordering
at surfaces, a situation that is expected to obtain in ‘real’ systems (26-29). Hence,
experimental values of the growth exponent can be used as a qualitative assessment
of the stability of the precursor state. For systems in which both surface migration
and particle exchange via desorption and adsorption occur, the experimental growth
exponent can be used to gauge the relative rates of these processes. Simulations of
a simpler model which still preserves the feature of precursor-mediated migration

are discussed in Chapter 2 of this thesis
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__C_t al/¢ Pezc Pdez
0 8.6798448 x 1014 1.0000000
A, B,C
8 1.1494297 x 104 0.0470738
0 2.6870601 x 1014 0.3095745
D
8 1.7452212 x 105 0.0071473
0 8.6798448 x 10-14 1.0000000
E
8 1.5827465 x 10—3 0.6481999

Table 1. Probabilities of success for excitation and deexcitation of an isolated
particle and one with eight nearest and next-nearest neighbor repulsive interac-

tions.
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Figure Captions

Figure 1. Model for excitation-deexcitation potential.

Figure 2. I(t) for each set has been multiplied by an offset factor, f for clarity. f
is 1,2,8,4,16 for sets A,B,C,D,E respectively. For sets A,B, and C k;{?/¢ = 20 and
k2¢3/$ = 10. For set D k1{2/¢ = 40 and k3¢(2/¢ = 10 . For set E k1¢2/¢ = 20 and

kzgg/gb:l .
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Chapter 3.

Domain Growth and Freezing on a Triangular Lattice

This chapter has been accepted for publication as a paper by H.C. Kang and W.H.
Weinberg, in The Physical Review B.
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ABSTRACT

We have performed Monte-Carlo simulations of domain growth at zero tem-
perature of a lattice gas with nearest-neighbor repulsive interactions on a triangular
lattice. Kawasaki dynamics were used with a fractional surface coverage of one-
third. We studied both the case in which the second nearest-neighbor interaction
is attractive and the case in which it is zero. The effect of increasing the range of
allowed hops from nearest neighbor to third nearest neighbor was investigated. We
find that domain growth freezes in the case in which the second nearest-neighbor
interaction is attractive and only nearest-neighbor hops are allowed. Domain freez-
ing is released when longer range hops are allowed or when the second nearest-
neighbor interaction is zero. Allowing only nearest-neighbor hops, the growth ex-
ponent when there is no second nearest-neighbor interaction is consistent with the
Lifshitz-Slyozov theory. We conclude that the range of particle hops is an important

parameter to consider when classifying growth kinetics.
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I. Introduction

The kinetics of domain growth in systems which have been quenched below
an ordering temperature T, has been studied widely (1). There has been consid-
erable interest recently in the kinetics of domain growth at zero temperature, with
particular focus on the freezing of domain sizes (2-8). A combination of Monte-
Carlo simulations and renormalization-group methods was employed (3) to study
the ferromagnetic Ising model, H = J,, Z(#j)“ 3;8; (7). Using Kawasaki dyna-
mics, it was found that the domain size freezes at zero temperature. A similar
method was used (4) to study the eight-state Potts model on a square lattice, with
the Hamiltonian H = Jp, E(#]-)“ bs:s; + Jnnn Z(z’#j),m. 8s:0; (8). Two ‘fixed
points’ at T' = 0 were found; ome is a freezing ‘fixed point’ for Jnnn/Jnn # 1,
and the other is the equilibration ‘fixed point’ for Jupn/Jnn = 1. It was con-
cluded that the attractive ‘fixed point’ for quenches to finite temperatures is the
equilibration ‘fixed point.” Another Hamiltonian which has been investigated is
H=J,, Z(#j)“ 3i3; + Jnnn Z(i;éj),.,.,. 8;3; on a square lattice with J,,, and Jnn
both positive. Using Glauber dynamics, it was found that for a = Jann/JInn < 1,
domain freezing occurs; whereas for a > 1, the growth exponent z is approximately
1/2 (5). At finite temperatures, the domain growth freezing is released. Using the
same Hamiltonian with & = 1, but using spin exchange dynamics, it was found that
the domain size freezes when only nearest-neighbor spin exchanges are allowed (8).

If second nearest-neighbor spin exchanges are also allowed, the freezing is released.

Some general conclusions concerning domain growth have been drawn from
these studies. It was suggested that the freezing of domain growth at zero temper-
ature implies that the growth law at finite temperatures below the critical temper-
ature is [ ~ Int (3). However, this has not been observed in simulations either for
(2x1) ordered domains on a square lattice (9) or for (1/3xy/3) (10) ordered domains
on a triangular lattice (11). The simulations of the growth of (2x1) domains on

a square lattice show [ ~ t*, with a temperature dependent z for temperatures
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close to zero. This temperature dependence has been interpreted in two different
ways. Sadiq and Binder (9,12) concluded that there is a ‘crossover’ from z = 0
at zero temperature to a finite value, probably z = 1/3, for all nonzero tempera-
tures. The temperature dependence that is observed in simulations is thought to
arise because the simulations have not yet reached the asymptotic regime in which
the true growth exponent would be observed, and the time it would take to reach
this asymptotic regime becomes longer as the temperature becomes lower. Using
a precursor-mediated mechanism for domain growth, it has been found that the
growth exponents obtained from Monte-Carlo simulations are strongly dependent
on the mobility of the precursors (13). It has also been found that the freezing
of the growth of (2x1) domains, using Kawasaki dynamics, on a square lattice at
zero temperature is released if second nearest-neighbor hops are allowed (6). The
growth exponent that was obtained is close to 1/2, and it was suggested that the
actual growth exponent for (2x1) domains on s square lattice is 1/2. It was argued
that the conflicting observations of Sadiq and Binder (9) resulted because their
simulations were not sufficiently long to probe the asymptotic regime. Since the
density is conserved in the simulations allowing second nearest-neighbor hops with
Kawasaki dynamics, the value of approximately 1/2 for the growth exponent of
(2x1) domains on a square lattice led to the conclusion (8) that density conserva-

tion is irrelevant for degeneracies greater than two.

Recent work (2) using a renormalization group method has proposed the clas-
sification of the growth kinetics of many systems in four classes. In class I, the only
influence temperature has on the growth kinetics is through the determination of
the correlation length and hence the width of the domain boundaries. In this class
the zero temperature kinetics for sufficiently long time scales and sufficiently large
length scales is the same as the finite temperature kinetics. In class II systems
domain growth freezing occurs when the temperature is zero, but the growth kinet-

ics follow a power law behavior at finite temperatures. Such behavior can result
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from a time scale 7 which depends strongly on the temperature in such a way that
T = 1oexp(—E/T), where taug is weakly dependent on the temperature T, and E
is a local barrier, independent of the domain length. In class III and IV systems,
the energy barrier E is dependent on the domain length and there is evidence for

logarithmic growth kinetics.

In this investigation we will investigate the zero temperature growth kinetics
for lattice gases with repulsive nearest-neighbor and either attractive or zero sec-
ond nearest-neighbor interactions on a triangular lattice and discuss the recently
proposed classification (2) as applied to these lattice gases. In previous work it
was found that the freezing of domain growth in the eight-state Potts model (4)
or the superantiferromagnetic Ising model on square lattice (5) is caused by the
impossibility of kink creation and annihilation for certain values of the interaction
parameters. Similar to the eight-state Potts lattice gas on a square lattice, we
find two stable ‘fixed points’ at zero temperature. One of them is a freezing ‘fixed
point,” and the other is an equilibration ‘fixed point.” These systems exhibit class
II behavior in the scheme proposed recently. (2). We find that freezing of domain
growth in the model we study here is caused by fluctuations in the local fractional
coverage which can result in the formation of locally stable configurations. These
‘defects’ then pin the domain walls or act as traps for excess local fractional cov-
erage, causing the freezing of domain growth. We also investigated the effect of
allowing hops of range longer than nearest neighbor. We used Kawasaki dynamics
(14), and in some simulations allowed not only nearest-neighbor hops but also hops
to second and third nearest neighbors. The freezing ‘fixed point’ is rendered unsta-
ble by allowing hops of longer range, as in the case of (2x1) domains on a square
lattice. Interestingly, we find a growth exponent ¢ of approximately 1/3 for the
equilibration ‘fixed point.” For this model, z = 1/3 was conjectured by Sadiq and
Binder (9).
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I1. Simulations

Since we used Kawasaki dynamics, the probability of a hop is given by

0, 6E>0
P={1/2, 6E=0 (1)
1, §E<0

where 6 F is the change in energy caused by the hop. Time is measured in Monte-
Carlo steps (MCS) per site. The Hamiltonian of the lattice gases that were simu-
lated is

H=J,, Z cicj + Jnnn Z cic;. (2)

(#5)nn (i#5)nnn
The occupation variable ¢; is unity if site 7 is occupied and zero if it is vacant.
The interaction strength of a particle with each of its nearest neighbors is Jy,.
The second nearest-neighbor interaction strength is Junn. We stipulate that J,,
is positive, i.e., the nearest-neighbor lateral interaction is repulsive, and the cases
Jann = 0 and Jpnn = —Jnn have been studied. The fractional surface coverage
used in all the simulations was 1/3, and at this fractional surface coverage the
equilibrium conﬁguration is a single (v/3xy/3) ordered domain with a degeneracy
p = 3. The phase diagram for Jonn = —Jnn has been obtained using Monte-
Carlo simulations (17). We allowed three different ranges of particle hops, namely,
only hops to nearest neighbors; hops to nearest and second nearest neighbors; and
hops to nearest, second and third nearest neighbors. Only hops to vacant sites
are allowed. We used lattices which are parallelograms with L sites on each side.
The sizes of the lattices used are commensurate with the (1/3x1/3) structure, and
periodic boundary conditions are employed. For each configuration, the individual
domain sizes were measured by counting the area occupied by each domain. The
average domain size is then calculated, and the square root of this average area is

taken to be the characteristic domain length I. For each set of parameters, thirty
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runs were performed on lattices of size LxL=99x99 and five runs were performed on
lattices of size LxL=201x201. This was done to determine whether the simulations
were affected by the finite lattice sizes. For the final domain sizes we obtained, no
finite-size effects were observed. Initial configurations were generated by randomly

populating the lattices.

II1. Results and Discussion

The results of the simulations employing the Hamiltonian of Eq. (2) with
Jann = —Jnn are shown in Fig. 1. Each curve is obtained from simulations in
which a different range of allowed hops is used. Curve A shows results from sim-
ulations where only nearest-neighbor hops are allowed; curve B shows results from
simulations in which hops up to second nearest neighbor in range are allowed; and
curve C shows results from simulations in which hops up to third nearest neigh-
bor in range are allowed. The asymptotic domain size for the simulations allowing
only nearest-neighbor hops is [ ~ 16, and it is independent of the lattice size. The
decrease in the growth exponent is perceptibly slower for curves B and C than it
is for curve A. Step-like increases in the domain size become apparent toward the
end of the runs for the simulations in which hops of up to third nearest neigh-
bor in range are allowed. As we will argue later, domain growth is not frozen if
hops of range greater than nearest neighbor are allowed. Simulations were also
performed employing the Hamiltonian of Eq. (2) with a weaker second nearest-
neighbor attractive interaction, Junn = —0.1J,,. In this case only simulations
allowing nearest-neighbor hops were performed. The results of these simulations
are shown in Fig. 2. The domain growth is frozen as in curve A of Fig. 1. The
asymptotic domain size is approximately 18, which is slightly larger (~ 10-15%)

than the aysmptotic domain size for Jppnn = —Jnn.

The results of simulations employing the Hamiltonian of Eq. (2) with zero

second nearest-neighbor attraction are shown in Fig. 3, where the curves are
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labelled according to their allowed hopping ranges as in Fig. 1. The domain growth
kinetics are well described by | ~ t*, with z asymptotically constant in time for all
cases. However, as shown in Fig. 3, the value of the growth exponent z increases as
the range of allowed hops increases. With only nearest-neighbor hops, the growth
exponent is £ ~ 0.33 £ 0.01. Increasing the range of allowed hops to include both
nearest-neighbor and second nearest-neighbor hops increases the growth exponent
to ¢ ~ 0.38 £ 0.01. Finally, also allowing third nearest-neighbor hops increases the
growth exponent to z ~ 0.4140.01. Each uncertainty reported here is one standard
deviation. The arrows in Fig. 3 indicate the range of data used to fit the growth

law for each case.

In Figs. 4(a-d) we show typical configurations that were obtained from the
simulations. Each of these configurations was obtained after 1350 MCS per site.
The configurations shown in Fig. 4(a-c) were obtained from simulations in which
there is an attractive second nearest-neighbor interaction Jonn = —Jpnn. The config-
uration shown in Fig. 4(a) is obtained from simulations in which only nearest-
neighbor hops are allowed, while the configuration shown in Fig. 4(b) is obtained
from simulations in which both nearest-neighbor and second nearest-neighbor hops
are allowed, and the configuration shown in Fig. 4(c) is obtained from simulations
in which nearest-neighbor, second nearest-neighbor and third nearest-neighbor hops
are allowed. These correspond to curves A, B and C in Fig. 1, respectively. The
configuration shown in Fig. 4(d) is obtained from simulations in which the sec-
ond nearest-neighbor interaction is zero, and hops of up to third nearest neighbor
in range are allowed. The configurations from simulations allowing only nearest-

neighbor or second nearest-neighbor hops are similar.

As the system is quenched to below T, (1/3x+/3) ordered domains form in re-
gions of the lattice where the local fractional coverage is 1/3. The degeneracy of this
structure is p = 3, and domain walls form between domains which are out of phase

with each other. The local configurations at the domain walls are not (1/3x+/3)
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superstructures, and the domains will grow to minimize such regions. With second
nearest-neighbor attraction, however, regions which have local fractional coverages
greater than 1/3 will phase separate into domains which are ordered (v/3x+/3) and
clusters which are ordered (4/3xy/3)* (10). Similarly, regions in which the local
fractional coverages are less than 1/3 will phase separate into ordered (v3x4/3)
domains and clusters of vacant lattice sites. This would be expected by considering
the phase diagram shown in Fig. 5 (17). The abscissa is the total fractional cov-
erage and the ordinate is the temperature. There is a cusp at the point where the
temperature is zero and the total fractional coverage is 1/3. The equilibrium state
at this point is a single ordered (1/3x+/3) phase, whereas on either side of this point
the equilibrium states consist of two phases. When the coverage is less than 1/3,
an ordered (v/3x4/3) phase is in equilibrium with vacant lattice sites, and when
the coverage is greater than 1/3, an ordered (v/3x+/3) phase is in equilibrium with
an ordered (\/§X\/§)* phase. Fluctuations- in the local fractional coverage cause
excursions into the two-phase regions of the phase diagram. At zero temperature,

these fluctuations are shown schematically by arrows in Fig. 5.

Consider the configurations shown in Figs. 4(a-c). These configurations
were obtained from simulations in which there is an attractive second nearest-
neighbor interaction between the lattice-gas particles. Clusters of particles showing
(v/3x4/3)* order as well as clusters of vacant lattice sites are clearly observed. These
‘defects,” which are locally stable, are formed via fluctuations in the local fractional
coverage as discussed above. It can be seen in Figs. 4(a-c) that some of the ‘defects’
are adsorbed at the interface between different (1/3x4/3) domains, whereas others
are completely embedded in a domain of one phase. For the domain size to grow
continuously, it must be possible for a particle to move away from a (1/3x+/3)*
cluster to regions where there is a deficit in the local fractional coverage. However,
to do so a particle must traverse regions which are ordered (1/3x1/3). The change

in energy due to a particle moving away from a (1/3x4/3)* cluster into an ordered
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(\/§X\/§) domain is positive, however, and the probability of such a move is zero
at T = 0. Similarly, the probability of particles moving from a region which is an

ordered (1/3x+/3) to fill a cluster of vacant sites is zero.

However, if hops of range longer than nearest neighbor are allowed, it becomes
possible for a cluster of ordered (1/3x+/3)* particles or a cluster of vacant lattice
sites to move as a whole even though no single particle may break away from it.
Therefore, in the late stages of the runs, the transport mechanism that enables the
domain size to increase is the diffusion of these ‘defects.” As a result of this, the
size of a domain will increase in steps of more than one particle each time a cluster
of ordered (v/3xv/3)* particles ‘collides’ with a cluster of vacant lattice sites. The
effect of such discontinuities can be clearly observed, toward the end of the runs, in
curve C of Fig. 1. Hence, even allowing only finite-range hops, domain growth is
not frozen so long as hops of range longer than nearest neighbor are allowed. The
diffusivity of the ‘defects’ is larger in the case in which third nearest-neighbor hops
are allowed than in the case in which second nearest-neighbor hops are allowed.
Thus, the configuration shown in Fig. 4(c) is more ‘aged’ than that shown in Fig.
4(b) even though both were obtained after the same number of Monte-Carlo moves
in the simulations. Consequently, the latter configuration shows a larger number
of smaller ‘defect’ clusters which are separated by shorter distances. It is possible
that both of curve B and curve C of Fig. 1 shows [ ~ t* behavior for long times.
However, our simulations are not sufficiently long to verify this. There is, however,
no reason to expect that z ~ 1/3 since the mechanism of growth is not diffusion of
single particles but rather of ‘defects,’ the sizes of which must increase with time,
and the diffusivity of which must decrease with size. With an infinite range of
allowed hops, particles can go from the (v/3xv/3)* clusters directly to the clusters
of vacant lattice sites. Since the change in energy for such a move is not positive,
the probability is not zero. Hence, with a range of allowed hops extending to infinite

distance, domain freezing does not occur.
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Since it is the second nearest-neighbor attractive interaction which is respon-
sible for the formation of the ‘defects,’ it is interesting to consider the case in which
this interaction is set to a weaker attraction or to zero. From the above consid-
erations, we expect that, for simulations in which only nearest-neighbor hops are
allowed, domain growth will be frozen as long as the second nearest-neighbor inter-
action i1s attractive. This is because the clusters of vacant lattice sites and the
clusters of particles in the ordered (\/§x\/§)* domains are locally stable as long
as Jnnn is negative. Furthermore, with only nearest-neighbor hops allowed, these
clusters are not mobile. The results shown in Fig. 2 support this conclusion. The

domain size is frozen at [ ~ 18.

With zero second nearest-neighbor attraction, clusters of (v/3x4/3)* and clus-
ters of vacant lattice sites are not locally stable. Consider the configuration shown
in Fig. 4(d), which is obtained from simulations in which the lattice-gas particles
have zero second nearest-neighbor interaction. In contrast to Figs. 4(a-c), we do
not observe clusters of ordered (1/3xy/3)* particles or clusters of vacant lattice sites.
Thus there are no ‘defects,’ as in the case of J,nn < 0, to pin the domain walls or to
trap excess or deficit local fractional coverage. Hence, domain freezing is released by
decreasing the second nearest-neighbor interaction to zero. It can be seen that the
boundaries between domains consist of walls with either excess or deficit fractional
local coverage, and it is interesting to note that the growth exponent is z ~ 1/3
for the case in which only nearest-neighbor hops are allowed, cf. curve A of Fig.
3. This value for the growth exponent was conjectured by Sadiq and Binder (9)
on the basis of their simulations which indicated that when there are domain walls
with excess or deficit local fractional coverage, the redistribution of the excess and
deficit density over a length scale of [ results in # ~ 1/3. Our results support this
conjecture. It has been suggested that the true density-conserved growth exponent
for (2x1) domains on a square lattice is ¢ ~ 1/2, and the values obtained by Sadiq

and Binder (9) resulted from a ‘crossover’ between ¢ = 0 and ¢ ~ 1/2 (6). For the



- 61 -

lattice gas that we studied, there is no freezing of domain growth at zero temper-
ature without second nearest-neighbor attraction. Thus, the simulation result of
z ~ 1/3 can be a true growth exponent and does not have to arise from a crossover

effect between z = 0 and z = 1/2.

For simulations in which J,,, = 0, increasing the range of allowed hops from
nearest neighbor to third nearest neighbor increases the measured growth exponent
from ~ 0.33 to ~ 0.41, cf. Fig. 3. This is similar to the increase in the growth
exponent from ¢ = 0 to ¢ ~ 0.5 that was observed for the ordering of (2x1) domains
on a square lattice when the range of allowed hops is increased from nearest neighbor
to second nearest neighbor (8). The latter result led to the conclusion that the
growth exponent for density-conserved growth is 1/2, regardless of the degeneracy
of the ground state. It was also suggested that earlier work (9) obtained z ~ 1/3
because of the influence of ‘crossover’ from z = 0 at zero temperature when only
nearest-neighbor hops are allowed, and that the simulations had not reached the
asymptotic regime where z = 1/2, this regime being reached faster when hops of
longer range are allowed (6). However, even for the case in which only nearest-
neighbor hops are allowed, we have found that domain growth for the Hamiltonian
with J,nn = 0 is not frozen at zero temperature. There is thus no possibility of a
‘crossover’ from z = 0 to z = 1/2 as the range of hops is increased. Hence, if the
density-conserved growth exponent is z = 1/2, even for p > 2, then this is the value
that would be observed even for the case in which only nearest-neighbor hops are

allowed. However, we actually observed z ~ 0.33.

Our results for the growth of (1/3x4/3) domains on a triangular lattice and
those obtained earlier (6,9) for the growth of (2x1) domains on a square lattice may
be interpreted better as follows. If there is a need for redistribution of either excess
or deficit local density then, as suggested by Sadig and Binder (9), the growth
exponent is £ ~ 1/3, allowing only nearest-neighbor hops. If the Hamiltonian

is such that freezing occurs at zero temperature, then the growth exponent at
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temperatures close to zero is affected by ‘crossover’ from z = 0 (9). Increasing
the range of allowed hops changes the mechanism of transport from diffusion to
evaporation-condensation. This is because the limit in which hops of all possible
lengths up to infinity are allowed in Kawasaki dynamics is equivalent to Glauber

dynamics (13).

For the simulations that we performed, the largest lattice size was 201x201,
and there is certainly some doubt as to whether the values of z obtained are the
asymptotic growth exponents. It is, however, suggestive that the growth expo-
nent obtained from simulations allowing only nearest-neighbor hops is in excellent
agreement with the Lifshitz-Slyozov result of £ = 1/3 for diffusion driven coarsening
during the late stages of phase separation in solid solutions (18,19). Furthermore,
it is not clear how a change in the length scale of the hops from nearest neighbor
to second nearest neighbor can produce a ‘crossover’ from z ~ 1/3 to ¢ = 1/2.
Therefore, we conclude that the growth exponent for density-conserved growth is
not 1/2, but changes continuously from z ~ 1/3 to 2 = 1/2 as the length of allowed

hops increases from nearest neighbor to infinity.

It is clear that the case in which J,nn = 0 falls into class I (2) systems, whereas
the case in which Innn = - r,,,. exhibits class II behavior. Without next nearest-
neighbor attraction the time scale of the lattice gas is not strongly dependent on the
temperature through and energy barrier. On the other hand, with next nearest-
‘neighbor attraction, the time scale is dependent on the temperature through an
energy barrier which is not a function of the domain size. Consider the configuration
space of the system. The local stability of clusters of vacant sites and clusters of
ordered (v/3xy/3)* particles imply that there are points in configuration space which
have energies lower than all other points that it can access if only nearest-neighbor
hops are allowed. Thus, in order for the system to ‘escape’ from such traps an
energy barrier, independent of the domain size, has to be overcome. Therefore, the

time scale for such a lattice gas would be strongly dependent on the temperature,
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and freezing occurs when the temperature is zero. Therefore, the triangular lattice
gas with Jpn = —Jnnn is a class I system (2) when only nearest-neighbor hops are
allowed. When hops of longer range are allowed, from any point in configuration
space there are always accessible points with lower or equal energies. Hence, freezing
does not occur, and the lattice gas is a class I system. Therefore, the range of
hops that is allowed for a lattice gas particle can subtly influence the dynamical
connectivity of points in configuration space, and is an important parameter to

consider in classifying growth kinetics.

IV. Conclusions

We have found that for a triangular lattice gas with a fractional surface cov-
erage of one third and with nearest-neighbor repulsions, the nature of domain
growth of (v/3x+/3) superstructures is sensitively dependent upon whether the sec-
ond nearest-neighbor interaction is zero or attractive. When the second nearest-
neighbor interaction is attractive, fluctuations in the local fractional coverage lead,
upon quenching to zero temperature, to the formation of locally stable clusters
with a (1/3xv/3)* superstructure (two particles per unit cell) and clusters of vacant
lattice sites. In simulations allowing only nearest-neighbor hops, single lattice-gas
particles cannot break away from the ordered (v/3xv/3)* clusters, and single vacant
sites cannot break away from the clusters of vacant lattice sites because both these

“clusters are locally stable. As a result, domain growth freezes. However, when
hops of range longer than nearest neighbor are allowed, the freezing is released. In
this case it is also true that single particles cannot break away from the ordered
(v/3x4/3)* clusters and single vacant sites cannot break away from the clusters of
vacant sites. However, both the ordered (\/§x\/§)"‘ clusters and the clusters of va-
cant lattice sites are mobile. This is because single particles at the boundary of an
ordered (v/3xv/3)* cluster can move along the boundary, by hopping from their orig-

inal sites to second nearest-neighbor sites, and still remain part of the cluster. Such
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hops, which do not result in a change in the total energy and hence have a proba-
bility of 1/2, are forbidden when only nearest-neighbor hops are allowed. Similarly,
single vacant sites can hop along the boundary of the clusters of vacant lattice sites.
Toward the end of the simulation runs that we performed, the ‘coalescence’ of these
‘defect’ clusters to form ordered (1/3x+/3) superstructures contributes significantly
to domain growth. In the classification of growth kinetics, it is thus important to
consider the range of hops that are allowed for lattice gas particles (or the range of
spin exchange for Ising systems). In the systems we have studied here, a change of
hop range from nearest-neighbor to merely next nearest-neighbor can change the

domain growth behavior from class I to class II in the scheme proposed in Ref. 2.

Without an attractive second nearest-neighbor interaction, domain growth is
not frozen even at zero temperature. We find a growth exponent of z ~ 1/3 when
only nearest-neighbor hops are allowed, in agreement with the conjecture by Sadiq
and Binder (9). It has been argued that the value of ¢ ~ 1/3 for the growth of
(2x1) domains on a square lattice results from a crossover effect between z = 0 at
zero temperature and z = 1/2 at finite temperatures (8). Our results indicate that
even without the freezing of domain growth at zero temperature, it is possible to
have a growfh éxponent of z ~ 1/3. In agreement with results for the growth of
(2x1) domains on a square lattice (8), we find that the observed growth exponent
depends on the range of allowed hops. However, we interpret this as a continuous

‘dependence of the growth exponent on the hopping range rather than a crossover
effect. This is more consistent because we do not observe domain freezing even in
the case in which we allow only nearest-neighbor hops. We also note that in the
case in which density is conserved (Kawasaki dynamics), allowing the range of hops
to be infinitely long causes the system effectively to evolve according to Glauber
dynamics, since simulations are always done on finite lattices. Therefore, 2 = 1/2
when the range of allowed hops is infinitely long, even though density is conserved.

We conclude that by increasing the range of allowed hops from nearest neighbor to
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infinity, the growth exponent changes from z ~1/3 to z = 1/2.
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Figure Captions

Figure 1. Results of simulations for domain growth with Junn, = —Jnn at 7' = 0.
The results from simulations with only nearest-neighbor hops allowed are plotted
as curve A. The results from simulations with nearest and second nearest-neighbor
hops allowed are plotted as curve B. The results from simulations with nearest,
second and third nearest-neighbor hops allowed are plotted as curve C. The ordinate
is the average domain length in units of the lattice constant, and the abscissa is the

time in units of Monte-Carlo steps per site.

Figure 2. Results of simulations for domain growth with J,n, = —0.1J,, at T = 0.
Only nearest-neighbor hops are allowed. The ordinate is the average domain length
in units of the lattice constant, and the abscissa is the time in units of Monte-Carlo
steps per site. Notice the freezing of domain growth at an asymptotic domain

length slightly larger than that of curve A in Fig. 1.

Figure 3. Results of simulations for domain growth with J,,, = 0 at T = 0. The
results from simulations with only nearest-neighbor hops allowed are plotted as
curve A. The results from simulations with nearest and second nearest-neighbor
hops allowed are plotted as curve B. The results from simulations with nearest,
second and third nearest-neighbor hops allowed are plotted as curve C. The ordinate
‘and abscissa are the same as those in Fig. 1. For curve B the average domain length
! has been multiplied by a factor of two, and for curve C [ has been multiplied by

a factor of four, so that the results can be presented more clearly.

Figure 4(a). Typical configuration at a time of 1350 MCS for simulations in which
only nearest-neighbor hops are allowed. The second nearest-neighbor interaction
is Junn = —Jnn. Note the clusters of ordered (1/3x/3)* particles and clusters of

vacant lattice sites. This map corresponds to curve A of Fig. 1.
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Figure 4(b). Typical configuration at a time of 1350 MCS for simulations in which
both nearest and second nearest-neighbor hops are allowed. The second nearest-
neighbor interaction is Jpnn = —Jnn. The clusters of ordered (\/§X\/§)"‘ particles
and clusters of vacant lattice sites are farther apart than in the configuration in
Fig. 4(a). The clusters are mobile in this case because second-nearest neighbor

hops are allowed. This map corresponds to curve B of Fig. 1.

Figure 4(c). Typical configuration at a time of 1350 MCS for simulations in which
first, second and third ﬁearest—neighbor hops are allowed. The second nearest-
neighbor interaction is Jpnn = —Jpnn. The clusters of ordered (\/§X\/§)* particles
and clusters of vacant lattice sites are farther apart than in the configurations in
Figs. 4(a,b). The mobility of the clusters is larger here than in Fig. 4(b). This

map corresponds to curve C in Fig. 1.

Figure 4(d). Typical configuration at a time of 1350 MCS for simulations in which
hops of up to third nearest-neighbor sites are allowed. The second nearest-neighbor

interaction is Jynn = 0. This map corresponds to curve C of Fig. 3.

Figure 5. Scherhatic of the f)hase diagram for the lattice gas with Jppnn = —Jnn
on a triangular lattice (17). The arrows indicate the fluctuations in the local
fractional coverage about a value of 1/3 at zero temperature, which could produce
“locally stable clusters of ordered (1/3x+4/3)* particles or locally stable clusters of
vacant sites. The three types of diagrams that are shown indicate local fractional

coverages of 2/3, 1/3, and zero.
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Chapter 4.

Precursor-Mediated Kinetics of Domain Growth

This chapter has been submitted as a paper by H.C. Kang and W.H. Weinberg, to
The Physical Review.
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ABSTRACT

Lattice-gas models that allow the influence of precursor states on the kinetics
of domain growth to be studied are presented and discussed. Monte-Carlo simu-
lations are performed on a square lattice with these models for the case of equal
and repulsive lateral interactions between nearest and next-nearest neighbors. The
dynamics used in the simulations incorporate the energy barrier that an adsorbed
molecule must surmount in order to migrate on a crystal surface. We find that
domain growth is well described by ! ~ At!/2, although during early stages of
growth smaller exponents may be observed. The growth exponent of 1 /2 holds
regardless of the mobility of the precursor. We also find that the coefficient A4 in
the growth law is proportional to the square root of the diffusion coefficient of the

adsorbate particles.
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1. INTRODUCTION

There has been, and continues to be, a great deal of interest in the kinetics
of domain growth (1-33). This represents an important problem in materials sci-
ence because the macroscopic properties of materials can be influenced strongly by
their microcrystalline structure. In the manufacture of microelectronic devices, for
instance, it is of interest to know how the lattice structure of an epitaxially grown
material develops layer-by-layer into its bulk lattice structure. It is also important
in surface science where the microscopic structure of an adsorbed layer influences
strongly the diffusion, desorption or reaction of the adsorbed molecules. Adsorbed
atoms or molecules can exhibit a wide variety of ordered overlayer superstructures
which result from the lateral interactions that exist between them. The observable
properties of the ordered overlayers provide a means of studying these lateral inter-
actions. Typically, when a layer of adsorbed atoms or molecules is quenched below
an order-disorder transition temperature, ordered domains begin to form, and the
ground state may be degenerate. Hence, even though within each domain the lo-
cal configuration is that with the lowest free energy, at the boundaries between
domains the local configurations are not the most favorable thermodynamically.
To reduce the total free energy of the system, the lengths of these boundaries must
be reduced, and hence the domain sizes become larger. By analogy to critical phe-
nomena, it has been proposed (5-7) and observed (14-16) that at late stages of
growth, when the domain sizes are much larger than all microscopic lengths, the
growth law has the power-law form [~t*, and the structure factor has the scaling
form S(g,t)~1?S(kl(t)). Here l is the length scale of the domains, d is the spatial
dimension of the system, g is the wave vector, and k is the wave vector relative
to the Bragg peak of the ordered superstructure. The size of the ordered domains
is accessible experimentally, and there have been several experimental studies of
the kinetics of domain growth using low-energy electron diffraction (27-32). There

have also been many investigations of domain growth using Monte-Carlo simula-
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tions (5-11,15-26), where the adsorbate particles are modelled by two-dimensional
lattice gases. One of the major goals in the study of the kinetics of domain growth
is to determine the value of the growth exponent z and to establish the factors that

affect its magnitude.

One of the factors upon which much attention has been focussed is the undér-
lying density conservation law that is supported by the dynamics used in the sim-
ulation of the ordering process. In studying the kinetics of domain growth in
lattice-gas models using Monte-Carlo simulations, two types of dynamics ilave been
widely used: Kawasaki dynamics and Glauber dynamics (34-36). The former sim-
ulates ordering in a closed system, while the latter simulates ordering in an open
system. In Kawasaki dynamics, particles migrate from one lattice site to a vacant
nearest-neighb'or lattice site, and domain growth occurs by means of this migration.
In Glauber dynamics, the system is allowed to exchange particles with an exter-
nal reservoir, and this is the mechanism by which domain growth occurs. When
Kawasaki dynamics are used, the system is said to evolve with conserved density,
whereas this is not so when Glauber dynamics are used. In the case of the latter,
the number of adsorbed particles is allowed to fluctuate, while the average density
remains constant with time. As a result of the conservation laws supported by
these dynamics, Glauber dynamics have been regarded as simulating the dynamics
of weakly adsorbed overlayers for which ve~E/#8T ~ 15~1 where E is the energy
‘barrier for desorption and v is the vibrational frequency along the direction of des-
orption, so that exchange of adsorbed molecules with the gas phase is facile. On
the other hand, Kawasaki dynamics have been regarded as simulating the dynamics
of strongly adsorbed overlayers for which ve E/#8T & 15~1, 50 that the exchange

of adsorbed molecules with the gas phase is not facile.

Another factor that can affect the ordering kinetics is the degeneracy of the
ordered structure. For a square lattice gas that orders into a (1/2x4/2)R45° super-

structure, the degeneracy is p = 2, and the growth exponent is z = 1/2, independent
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of whether the dynamics support conservation of density or not (1-3,8-13,17,18).
The situation is not so clear for p > 2 which occurs, for example, in the case of a
lattice gas with equal repulsive nearest and next-nearest neighbor interactions on a
square lattice (19). In this case, a (2x1) superstructure with p = 4 occurs when the
lattice gas is quenched below the transition temperature. For‘a. fractional coverage
of 0.5, this transition temperature is T, ~ 0.525¢/kp, where ¢ is the lateral inter-
action strength (37). Sadiq and Binder (19) have studied this system in detail,
showing that z ~ 0.35 for Kawasaki dynamics and ¢ ~ 1/2 for Glauber dynamics.
In the case of Kawasaki dynamics, they argued that domain growth is governed
by the diffusion of an excess (or deficit) fractional coverage at the domain walls.
It was suggested that diffusion of the adsorbed particles from regions of excess to
regions of deficit fractional coverage is necessary for domain growth, and that such
a mechﬁnism gives rise to  ~ 1/3. An investigation by Vinals and Gunton of a
lattice-gas model for hydrogen chemisorbed on Fe(110) was not able, however, to
verify this conjecture (20). This system has both a (2x1) and a (3x1) phase. The
(2x1) phase has degeneracy p = 2, and the (3x1) phase has degeneracy p = 3.
Although domain walls with excess fractional coverage exist for both phases, it
was found that z = 1/2 for the (2x1) phase, whereas the value of z ranged from
approximately 0.14 to approximately 0.25 for the (3x1) phase. Another recent
Monte-Carlo study has suggested that the Sadig-Binder result of z ~ 1 /3 is due
to a ‘crossover’ from zero to the true asymptotic value which is 1/2 (24). Using
Kawasaki dynamics, the growth exponent for threefold-degenerate (v3xv/3)R30°
domains was found to be 1/2 (38) even with only nearest-neighbor hops. These
simulations were performed with a triangular lattice gas with a nearest-neighbor
repulsive interaction and a next nearest-neighbor attractive interaction of equal

magnitude. At zero temperature domain growth is frozen in this system (39).

Most studies of the kinetics of domain growth have utilized either Kawasaki
or Glauber dynamics. These dynamical models do not allow for the possibility
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of a precursor state. In many real systems, however, precursor states are impor-
tant intermediates for surface diffusion (40); adsorption, desorption and reaction
(41-44); and island formation (42,45). An example is the diffusion of hydrogen
adatoms on the Pt(111) surface. At a fractional coverage of 0.24, the preexponen-
tial factor for diffusion is 1.0 cm?-s=1 (40). If the lattice constant X is 3 A and the
frequency of frustrated translational motion parallel to the surface is 1013 s, then
the value of the preexponential factor for diffusion for a random walk between sites
is Dy = A?v/4 = 2.2 x 107 3cm?-s~!. The large experimental value, compared to
that which would be expected for the case of single ‘hops,’ is strong evidence for
the existence of a stable precursor particle that executes many ‘hops’ prior to deex-
citation into a chemisorbed state. Therefore, we have investigated domain growth
in lattice-gas models which have both a strongly bound, chemisorbed state and a

weakly bound, mobile precursor state at each lattice site.

2. MODEL

We have performed Monte-Carlo simulations of two models, referred to as
model I and model II. In both models two adsorption states exist at each site :of
the lattice: a strongly bound chemisorption state and a weakly bound precursor or
physically adsorbed state. A chemisorbed lattice-gas particle can only be excited
into the precursor state at the same site. On the other hand, a lattice-gas particle
in the precursor state can either be deexcited into the chemisorbed state at the
'same site if there is not another particle already chemisorbed there, desorb from
the lattice if the system is open, or migrate to the precursor state of a nearest-
neighbor site. We allow adsorption from the gas phase into the precursc;r state
at any site when an open system is being modelled. There are five microscopic
processes the rates of which we have to consider: (1) excitation from a chemisorbed
state to a precursor state at the same site; (2) deexcitation from a precursor state
to a chemisorbed state at the same site; (3) migration from a precursor state at

any site to the precursor state at a nearest-neighbor site; (4) desorption from a
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precursor state; and (5) adsorption into a precursor state.

In model I the excitation-deexcitation potential is modelled by two intersecting

parabolae (48),

Ey = k1(?/2 4 ay,
and Ey = ka(¢ — 0)?/2 + aa,

as may be seen in Fig. 1. The well described by Ej; is the chemisorption well, and
that described by E; is the precursor well. The top of the barrier is the point of
intersection of the two parabolae, and the barriers for excitation E... ‘and deex;:i-
tation Eg., are the differences in energy between this point of intersection z;.nd the
bottoms of the chemisorption and preéursor wells, respectively. The variable ( is the
excitation coordinate with the origin at the equilibrium position of the chemisorbed
particle. The equilibrium position of a particle in the precursor state is (o. The
parameters k; and k; are, respectively, the force constants of the chenﬁsorption well
and the precursor well; and the energies of the bottoms of these wells are a; and
ag, respectively. The role of the lateral interactions, which we assume exist only
between chemisorbed particles, is to shift the chemisorption potentia.l of a particle
according to the lattice-gas configuration of its neighborhood. This shift in the
chemisorption potential is modelled by a3 = ¢nnNnn + PnnnNnnn, where ¢, and
@nnn are the strengths of the nearest and next-nearest neighbor lateral interactions,
“and N, and Npn, are the number of occupied nearest and next-nearest neighbor
sites. The zero of energy is thus chosen to be the bottom of the chemisorption
potential for a lattice-gas particle with no nearest or next-nearest neighbors, i.e.,
an isolated lattice-gas particle. The energy barrier for excitation is therefore a
function of the local configuration of the chemisorbed particles. The height of the
bottom of the precursor well o, is taken to be constant, i.e. we have assumed that
only chemisorbed particles experience lateral interactions, whereas precursor parti-

cles do not. Although this may not be valid in general, we investigate only cases in
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which the precursor density is vanishingly small, and hence do not need to consider
the interaction between two precursor particles. We assume that the interaction
between the precursor particles and the chemisorbed particles may be neglected
since most lateral interactions are mediated by the substrate, and the coupling of
the precursor particle to the substrate is weak. The migration and desorption bar-
riers are B,y and Eg.,, and they are assumed to be constant, independent of the
local configuration. The probabilities of success for each attempt of a microscopic
event are assumed to be given by the Boltzmann factors with the respective energy

barriers, i.e.,

Pezc — exp(_Eezc/kBT)9
Pdez = exp(_-Edez/kBT)y
Pmig = exp(_Emig/kBT)7

and

Ddes = CXP(—Ede,/kBT).

The probability of adsorption is also a constant which depends on the pressure of
the gas-phase reservoir and the trapping probability into the precursor state. In
our simulations of open systems, the probabilities of adsorption and desorption are

chosen so that the time average of the fractional coverage is maintained constant.

We studied a square lattice gas with equal nearest and next-nearest neighbor
repulsive interactions, i.e., ¢nn = Pnnn = ¢. The domain growth kinetics for this
model have been studied by Sadiq and Binder using both Kawasaki and Glauber
dynamics (19). At a fractional coverage of 0.5, the critical tempefature is T, ~
0.525¢/kp (37), where the strength of the repulsive lateral interaction is given
by ¢. We simulated the lattice gas at a temperature of T = 0.3325¢/kp, i.e.,
T/T. ~ 0.633. This temperature was chosen to be equal to the temperature that

was used by Sadiq and Binder in their simulations (19), allowing direct comparisons
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to be made between Kawasaki and Glauber dynamics and our model for precursor-

mediated ordering.

The energy of the bottom of the precursor well was chosen to be 10¢. For
model I we simulated systems in which k;{? = 20¢ and systems in which klgg =
40¢. If the reduced mass of the adsorbed particle is © = 10 AMU, the lateral inter-
action strength is ¢ = 5kcal/mol, and the displacement between the equilibrium
positions of the chemisorption well and the precursor wellis (¢ =1 A , then these
values for the force constants correspond to frequencies of approximately 343 cm™1!
and 485 cm ™, respectively, for the vibrational motion of the chemisorbed particle
perpendicular to the surface of the solid. Similarly, the assumed force cénstants
of the precursor well, k2{Z = ¢ and k2(? = 10¢, correspond to frequencies of
approximately 77cm™! and 243 cm™!, respectively, for vibrational motion of the
precursor perpendicular to the surface. The values of the force constants of the
model excitation-deexcitation potentials for each set of simulations are summarized

in Table 1.

Since the lateral interactions are restricted to equal nearest and next-nearest
neighbor chemisorbed particles, a chemisorbed particle can have one zof nine differ-
ent values for the probability of successful excitation, depending on the number of
nearest and next-nearest neighbor occupied sites that it possesses. Similarly, there
are nine different values for the probability of successful deexcitation of a precur-
~sor particle. The probabilities of success of excitation and deexcitation for each
particular local configuration are summarized in Tables 2 to 4. These are given by
the Boltzmann factors with the energy barriers for excitation E.;. and deexcita-
tion Fg4.s, respectively. The probabilities of success of migration, desorption and
adsorption are also summarized in Table 1. For these microscopic events we choose
the values of the probabilities of success directly, rather than choosing the values
for the energy barriers and then calculating the corresponding Boltzmann factors.

The probabilities of adsorption into and desorption from the precursor state are
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chosen so that the average fractional coverage on the surface is § = 0.5. The prob-
abilities of all possible microscopic events that each precursor particle can undergo
are normalized according to (pdez + Pdes + 4Pmig + Po)/6 = 1, where pg is the sum
of the probabilities of failure of deexcitation, desorption, and migration in each of

the four different directions.

Model II is a simpler model which has the same essential features as model
I, i.e., a precursor state in which the particle is mobile and a chemisorbed state
in which the particle is not mobile are present. The probability of excitation of a

chemisorbed particle is again given by

Dexe = exp(_Eezc/kBT)’

but now E.. is simply set equal to Ep—@nnNnn—PnnnNnnn, where Ej is the‘energy
barrier for excitation of an isolated chemisorbed particle. For all the simulations
of model II that we performed, we set Ey to be equal to 8¢4. Again both lateral
interaction strengths are equal (#nn = dnnn = @) and repulsive, and the system was
simulated at the same temperature T', approximately equal to 0.6337%, as in model
I. With these parameters, the probability of successful excitation of a chemisorbed
particle ranged from 3.55 x 10~!! to unity for each attempt. The probability of
deexcitation is set equal to a constant, pges,rr, independent of the neighborhood
into which the precursor particle attempts to deexcite. The probability of migration

is also set equal to a constant, pmig rr. These probabilities are normalized such that

Pdez 1T + 4Pmig, 11 = 1,

i.e., model II was only used to examine closed systems.

Precursors are frequently observed in real adsorbed systems (40-43). These
lattice-gas models enable us to study the consequences resulting from the pres-
ence of a precusor state on the kinetics of ordering (45). By varying the ratio

of deexcitation probabilities to excitation probabilities, the precursor can be made
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to be either ‘long-lived’ or ‘short-liw}ed.’ This is done in model I by varying the
force constants of the chemisorption and precursor wells, which in turn detérmine
the magnitudes of the energy barriers for excitation and deexcitation, as discussed
earlier in this section; and in model II by varying the ratio of the probability of
deexcitation to migration. Therefore, it is possible to vary the average number of
hops n, taken by a precursor particle prior to its deexcitation, which turns out to
be an important factor in determining the growth kinetics. We also allow in model
I both migration of adsorbed particles and exchange of adsorbed particles with an
external gas reservoir to occur simultaneously. This is in contrast to both Kawasaki
dynamics where only particle migration occurs and Glauber dynamics where only
adsorption and desorption occur. We can therefore vary the effective contributions
to the ordering process due to particle migration (spin exchange in the language of
spin systems) and particle adsorption and desorption (spin flip in the yla.zngua.ge of

spin systems).

3. ALGORITHM AND DYNAMICS

The probabilities of success of the various microscopic events in model I are
shown in Tables 2 to 4.. It can be seen that these probabilities vary over many
orders of magnitude, and thus a conventional Monte-Carlo simulation would not be
practical. We use an approximation to circumvent this problem of diversity of time
'scales. The deexcitation rates are much higher than the excitation rates, which
implies that at any instant there are either none or only one precursor particle.
We can justify this statement with a simple kinetic argument which leads to the

following expression for the fraction of precursor particles:
(m)/N = /(1 +¢).

Here (n) is the average number of precursor particles, N is the total number of

particles (5000 for most of our runs), and e is the ratio of an average probability of
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excitation to an average probability of deexcitation. As the lattice gas is quenched
below the critical temperature, the initial, random configurations form ordered
(2x1) domains separated by walls from ordered (2x1) domains of other phases.
The types of walls which can occur are illustrated in Fig. 2(a-f). To obtain an
estimate for ¢, we need to consider only the local configurations within the ordered
domains and those at the domain walls. Within the ordered (2x1) domains, the
local configurations are thermodynamically the most favorable. This, however, is
not the case at the domain walls. Thus, precursor particles are formed mainly by the
excitation of particles chemisorbed at the domain walls. The local configuration
that gives rise to the largest value for € is the type of wall shown in Fi'g. 2(a).
However, the walls in Fig. 2(a,b) are quite unfavorable thermodynamically and do
not occur after a short transient period. This was also observed in the simulations
by Sadiq and Binder (19). Of the remaining types of walls, the one with the largest
value of € is shown in Fig. 2(c). At this typé of wall, there are chemisorbed particles
which have a total of four nearest and next-nearest neighbors. Using Table 4, which
corresponds to the set of force constants that gives rise to the highest concentration
of precursor particles, the value of € for the local configuration at these types of
walls is approximately 1.4 x 1078, Therefore, we expect to find, at most, only one

precursor particle at any instant of time, i.e., with this numerology (n) = 5 x 1075,

Since the concentration of precursor particles is extremely low, the simula-
‘tions can be carried out with two time scales. Excitation and adsorption (when
open systems are simulated) are much slower events compared to migration, deex-
citation and desorption (when open systems are simulated). For the slow processes,
an adsorption event or an excitation event is chosen according to its relative prob-
ability, as in the ‘n-fold’ way (47). We shall discuss in detail, presently, how this
choice is made and by how much the time is incremented for each Monte-Carlo step.
Once either one of these slow events occurs, there is a particle in a precursor state.

The interaction of the precursor particle with the heat bath is then modelled as
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follows. There are four directions in which the precursor particle may migrate, each
corresponding to each direction on the square lattice. The precursor particle may
also desorb or deexcite. Hence, there are six ‘directions’ available to the precursor
particle. We assume that the heat bath excites the precursor particle with equal
probability in each of these directions. Having chosen the direction of excitation,
the probability of success of that event is then compared to a random number be-
tween zero and one. Only if the probability of success is larger than or equal to
the random number does the event occur. This procedure is succinctly expressed
in the normalization condition which we discussed in the previous section. It is
repeated until the precursor particle either deexcites into a chemisorbed state or
desorbs into the external gas-phase reservoir. Then we return to the slow time scale,
and another precursor particle is generated by either excitation of a chemisorbed

particle or adsorption from the external reservoir.

With 771 equal to the frequency with which the heat bath excites the pre-
cursor particles, and the probabilities of success for migration, deexcitation and
desorption as defined earlier, the time increment for each step in the fast time scale
is simply 7. Typically, 7! ranges approximately from 5 x 1012s~1 to 1 x 101351,
To calculate the time increment for each slow time-scale step, we group the slow
events of excitation and adsorption into classes 2, each corresponding to a probabil-
ity of success p; for each attempt; and m; is the number of potential events in class
.1. For instance, if there were a total of n; chemisorbed particles with a certain type
of neighborhood such that the probability of success of excitation were p;, then
m; = n;. For adsorption, m; = L?, the total number of lattice sites, all of which
are able to receive a particle from the external reservoir. Then an event in class 1

is chosen with relative probability

R; = m;p;/ E m;p;.

Having chosen an event in class 7, the time is increased by 67/p;. The factor of six
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is due to the assumption that the heat bath excites a chemisorbed particle with
equal probability in six directions, and only one of these directions can produce a
precursor particle. For adsorption, as we have mentioned earlier, the probability is
chosen so that the average fractional coverage is maintained at 0.5. Corresponding
to each particular value of p,4,, a rate at which gas-phase particles are impinging
upon the surface can be calculated, taking into consideration the factor of six that
we have introduced to model the excitation. Thus, the simulations are performed
as a series of slow events, widely separated in time, each of which is followed imme-
diately by a series of fast events which terminate long before the next slow event

occurs.

In model II, the algorithm is similar. The chemisorbed particle which is to be
excited into the precursor state is chos;en by considering the relative probabilities R;
as above. The time is incremented by 67/p; for each excitation of a chemisorbed
particle from class i. Once there is a precursor particle, it is allowed either to
migrate to a nearest-neighbor site or to deexcite. A random number r between
zero and one is generated and compared to pdez,r1. If 7 is greater than Pdez, 11 the
particle is moved to a randomly chosen nearest-neighbor site. Otherwise, the site
in which the precursor is located is checked for its occupancy. If the site is not
already occupied by a chemisorbed particle, then the precursor is deexcited into it.
If the site is already occupied by a chemisorbed particle, then the precursor particle
‘remains where it is and the procedure is repeated. As in the algorithm for model

I, the time is incremented by T for each deexcitation or migration event.

4. RESULTS AND DISCUSSION

For each of the sets of parameters for model I shown in Table 1, 20 runs on a
lattice of size (100x100) and five runs on a lattice of size (120x120) were performed.
Periodic boundary conditions were used. For each set of simulations, the average

domain size in units of the lattice constant is plotted as a function of time in units
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of r in Figs. 3 and 4. For each of the curves A through J in Figs. 3 and 4, the
parameters used in the simulations have been summarized in the correspondiﬁg row
in Table 1. Although we did not observe any finite-size effects in the simulations
of model I, this could be due to the similarity in size of the two lattices that were
employed. For the simpler model II, we were able to perform longer simulations
on larger lattices. We performed simulations in which Pdez, 11 = 0.5, Pdez,11 = 0.8
and pgez,77 = 0.9. Lattices of size (400x400) were used and we performed five runs
for each value of pgez,rr. The domain size as a function of time is shoﬁrn in Fig.
5, with the domain size in units of the lattice constant and the time in units of
7. In the simulations, we allowed the average domain size to grow until it reached
~ L/3, which is comparable to the average sizes obtained in simulations by Sadiq
and Binder (19). Each of the initial configurations was generated by popula.tving the
lattice At randomly selected sites until a fractional coverage of 0.5 was reached. For
each set of parameters, the data points between the arrows (relatively late stages of
growth) were fitted by a least-squares procedure to obtain the growth exponents.
The values obtained are shown on the corresponding curves in Figs. 3 to 5. If
1/7 ~ 1013571, this corresponds to domain growth at 0.5 < ¢ < 200 s for model
I and 107® < t < 1 s for model II. Experimentally, the initial conﬁgurations can
be obtained by adsorbing molecules on a solid surface at very low temperatures so
that the random configurations are frozen-in. The simulations then correspond to

raising the temperature suddenly, allowing the particles to migrate.

The results of Sadiq and Binder (19) indicate that Kawasaki dynamics give
a value of ~ 1/3 while Glauber dynamics give a value of ~ 1/2 for the growth
exponent for this system. The difference between these two dynamics, as mentioned
earlier, is that Glauber dynamics allow particle exchange, but Kawasaki dynamics
do not. Hence, Glauber dynamics have frequently been associated with systems
in which adsorption and desorption occur, and Kawasaki dynamics with systems

in which only particle migration occurs. Thus, Glauber dynamics are frequently
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considered to simulate the dynamics in weakly (physically) adsorbed systems, while
Kawasaki dynamics are frequently considered to simulate the dynamics in strongly
(chemically) adsorbed systems. In real adsorbed systems, however, it is obviously
possible that adsorption and desorption occur along with particle migration on
the surface. For domain sizes which are not extremely large, it is not certain
that the observed growth exponents for open systems are equal to 1 /2. Indeed,
our simulations show that it is possible to observe growth exponents smaller than
1/2 for open systems. Consider the results for sets A, B and C in Fig.‘ 3. The
parameters for these sets of runs are all the same except for the rates of adsorption
and desorption. It is clear that for the domain sizes accessible to our simulations
the growth exponent decreases from ~ 1/2 to ~ 1/3 as the rate of partlcle exchange
with the external reservoir decreases. Consider the ratio of the rate of exchange of
particles between the precursor state and the external gas reservoir to the rate of
exchange of particles between the precursor state and the chemisorption state. The
results from the simulations in sets A, B and C show that as this ratio increases,
the growth exponent z tends to the value given by Glauber dynamics‘. The same
effect is observed by comparing set D with set E, and by coniparing set J with set
H. In each pair the parameters controlling the values of pezc and pge are' the same
for both sets. However, sets D and J are open systems while sets E and H are
closed systems. The observed growth exponents are higher for the open systems
_than for the closed systems. It is probable that as the domains get extremely large,
the growth exponent observed for open systems tends to 1/2, regardless of the ratio
of the rate of adsorption and desorption compared to the rate of migration. There
are two possible ways in which this can occur. If the rate of domain growth due to
particle migration decreases faster with domain size than the rate of domain growth
due to particle adsorption and desorption, then when the domains are sufficiently
large, domain growth is due mainly to adsorption and desorption, even when the

probability of particle exchange between the precursor state and the gas phase is
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smaller than the probability of particle exchange between the precursor state and
the chemisorbed state. In this case the growth exponent of open systems will show
a crossover from 1/3 to 1/2 when the domain size is sufficiently large that the
contribution due to particle migration becomes very small. The results of sets A
and B would then indicate that for the domain sizes reached in the simulations
this crossover has occurred for set A but not for set B. However, it is also possible
that the growth exponent for a closed system is also 1/2 and not 1/3, and that for
two otherwise identical systems the growth exponent reaches its asymptotic limit
earlier for an open system than for a closed system. Hence, the observed growth
exponents for systems in which the rates of adsorption and desorption are higher
would be larger because these systems would be closer to the asymptotic limit even

though the domain sizes are the same.

A gradual increase in the observed growth exponent also occurs when the
‘lifetime’ of the precursor increases. It can be seen that as the allowed length of
hops in a simulation using Kawasaki dynamics tends to infinity, the simulation
is effectively being performed with Glauber dynamics. As the Ufetime’ of the
precursor increases, the precursor parficle is able to probe a larger area of the lattice
prior to its deexcitation. Therefore, precursor-mediated migration is a physically
realistic dynamic, which in the limit of infinite precursor ‘lifetime’ becomes Glauber
dynamics. As the ‘lifetime’ of the precursor increases, the observed growth exponent
“also increases. This can be seen by comparing set F with set I, and set H with set
G. Sets F and I have the same values of p.,. and pg... However, Pmig for set F is
twice as large as pmig for set I. A similar comparison holds for sets H and G. In both
cases, the simulations in which the value of pn, is larger gives the luéer observed
growth exponent. These results indicate that the exponent for the growth of (2x1)
domains on a square lattice is probably 1/2. That the observed growth exponent
is less than 1/2 for sets I and G could be an indication that the asymptotic Limit

has not been reached for these simulations. The experimental growth exponent for
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oxygen adatoms on W(110), which orders into (2x1) domains which may have a
degeneracy of p = 4, is ¢ ~ 0.28 + 0.05 (28,31). This could be due to the same
effect that we see in our simulations. In order to verify that the growth exponent

is 1/2, we have performed simulations of model II on larger lattices.

Note that although the essential features of precursor-mediated migration
is preserved in model II, the details of the dynamics are (iuite diﬁ'erent because
in model II the probability of deexéitation of a precursor into a vacant site is
independent of the neighborhood of the site, and the probability of excitation of
a chemisorbed particle is computed differently. Regardless of these vdiﬁ'er‘ences,
however, the equilibrium distribution of the configurations of the chemisorbed pz;.r—
ticles is the same for both models because the Hamiltonians for the two models
are identical. The results presented in Fig. 5 show that the growth exponent for
(2x1) domains on a square lattice is 1/2 even for closed systems. This result has
been suggested by previous simulations of the same system using Kawasaki dyna-
mics and allowing next nearest-neighbor hops (24). Our results show that even
for pdez,rr = 0.9, which gives an average of approximately 0.222 step taken by a
precursor particle prior to deexcitation, the growth exponent of 1/2 is observed. It
is not clear why this value of the growth exponent is observed in model II even for
domain sizes of only 10 lattice constants, while for some sets of parameters used in
model I the observed growth exponent is not 1/2 even though domain sizes of up
to approximately 30 lattice constants are obtained. This, however, must be due to

differences in the details of the dynamics.

If we fit the simulation results with I/ ~ At'/2, we observe that Ath‘é value of A
increases as pde., 71 decreases, i.e., as the probability of migration of the precursor
particles increases. The values of A obtained from the simulations are (3.16 &
0.20) x 10~%, (1.58 £ 0.10) x 10~5 and (1.05 = 0.10) X 10~ for pg., 11 equal to 0.5,
0.8 and 0.9, respectively. The quantity A is in units of lattice constant per 71/2.

It is rather interesting that the ratio of the values of A, namely, 3.16 : 1.58 : 1.05
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for the three values of pgez,rr agrees rather well with the analogous ratio of the
square root of the average number of hops taken by a precursor par;ticle prior to
deexcitation. This latter ratio, obtained from the simulations, is approximately
2.01/2 : 0.51/2 ; 0.2221/2 (48). This can be understood as follows. Obviously,
the quantity A has the dimensions of the square root of a diffusion t:oefﬁcilent, as
has been found in the Lifshitz-Allen-Cahn theory for phase coarsening (4). We,
therefore, consider the diffusion coefﬁcient of the adsorbate particles. A particle in
the precursor state executes a random walk. Hence, the mean square displacement
(s?) experienced by a particle from the time it is excited from a chemisorbed state
to the time it becomes deexcited back into a chemisorbed state is proportional to
the average number of steps n, taken by a precursor>particle, because n, plays
the role of time for the random walk executed by each precursor particle. If we
consider the excitation of a particle into a precursor state, its migration and then
its subsequent deexcitation into a chemisorbed state to be a single ‘hop’ of variable
length ), then X is equal to (s2)!/2 and, therefore, proportioﬁal to nl/?. Since the
diffusion coefficient in the random walk approximation is D ~ I'A2, where Tis the
rate of hopping and A is the hop length, it can be seen that the diffusion coefficient
of the adsorbate particles is proportional to n,. Thus, A must scale as n?. In
model II, the probability of deexcitation of a precursor particle is independent of
the neighborhood of the chosen site. The only constraint is that the site must
“not already be occupied. In the more complicated model I, the probability of
| deexcitation differs from one vacant site to another, depending on the neighborhood
configuration. Hence, a random walk approximation is expected to apply better
to model II than to model I. Therefore, it is not obvious that the scaling relation
A ~ D'? is applicable to model I or to a model in which particles migrate not
through .a precursor state but from one chemisorption site to a nearest-neighbor

chemisorption site.
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5. CONCLUSIONS

We have investigated the kinetics of ordering of a model adsorbate syétem
which has four degenerate (2x1) ordered phases on a square lattice. ‘The use of
dynamical models which have a precursor state enables us to study the influence
that precursor-mediated migration has on the growth kinetics. We find that in the
limit of large domain size, the growth law is I ~ At*, where z is 1/2, regardless of
the mobility of the precursor particles. The observed growth exponent is, however,
affected by the size of the domains reached in the simulations. If the large domain
limit is not reached, smaller values of the growth exponent are observed. This
limit is reached earlier in time for systems which have a higher ratio of thé rate of
particle exchange with the gas phase to the rate of particle migration on the lattice.
For simulations of model II, which reach the large domain limit, we were able to
extract values of A from the results. It was found that A is proportional to the
square root of the average number of steps n, taken by a precursor particle prior
to deexcitation. This latter quantity is proportional to the diffusion coefficient D
of the adsorbate particles in model II. A similar result might not be expected to

hold for particle migration by nearest-neighbor hops.
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Values of parameters used in simulations.
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0.3
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4.32 x 10—°
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a1/¢ Peze Pdex
0 8.68 x 1014 1.00
1 1.70 x 10~12 0.96
2 3.03 x 1011 0.85
3 4.99 x 10710 0.69
4 7.45 x 10~° 0.51
5 1.00 x 10~7 0.34
6 1.20 x 10~® 0.20
7 1.26 x 10~5 0.10

8 1.24 x 104 0.05

Probabilities of success for excitation and deexcitation for

sets A, B, C, D and E at temperature T' = 0.3325¢/kp

Table 2
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a1/é Pezc Pdez
0 2.69 x 10714 0.310
1 4.09 x 10713 0.232
2 5.97 x 10~12 0.168
3 8.31 x 1011 0.116
4 1.10 x 10~? 0.076
5 1.38 x 108 0.047
6 1.61 x 10~7 0.027
7 1.75 x 108 0.015
8 1.75 x 1075 0.007

Probabilities of success for excitation and deexcitation for

sets F and I at temperature T = 0.3325¢/kp.

Table 3
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a1/¢ Peze Pdez
0 8.68 x 1014 1.00
1 1.75 x 1012 0.99
2 3.50 x 1011 0.98
3 6.91 x 10710 0.96
4 | 1.35 x 1078 0.93
5 2.60 x 10~7 - 0.88
6 4.89 x 108 0.82
7 8.98 x 1073 0.74

8 1.58 x 103 0.65

Probabilities of success for excitation and deexcitation for

sets G, H and J at temperature T = 0.3325¢/kp.

Table 4
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Figure Captions

Figure 1. Excitation-deexcitation potential for model I.

Figure 2. Types of domain walls for ordered (2x1) domains on a square lattice.

Figure 3. The results of simulations of model I for parameter sets A through E in
Table 1. The value of I(t) for each set has been multiplied by an offset factor, f, for
clarity. The value of f is 1, 2, 4, 8 and 16 for sets A, B, C, D and E, respectively.
For each of these sets, k1({/¢ = 20 and k2(%/$ = 10; ¢ is in units of 7; and [ is
in units of the lattice constant. The growth exponents are shown beside éach line
and were evaluated by a least-squares fit to the data delimited by the arrows. The

uncertainties represent one standard deviation.

Figure 4. The results of simulations of model I for parameter sets F through J in
Table 1. The value of I(t) for each set has been multiplied by an offset factor, f, for
clarity. The value of f is 1, 2, 4, 6 and 16 for sets F, G, H , I and J, respectively.
For sets F and I, k1(3/¢ = 40 and k2{%/$ = 10. For sets G, H and J, k;(2/¢ = 20
and ky(2/¢ = 1. The value of ¢ is in units of 7; and [ is in units of the lattice
constant. The growth exponents are shown beside each line and were evaluated by
a least-squares fit to the data delimited by the arrows. The uncertainties represent

one standard deviation.

Figure 5. The results of simulations of model II for pg.. rr ranging from 0.5 to 0.9.
Each plot is labeled with its corresponding value of pgez, 11 and the best least-squares
fit value of the growth exponent which was evaluated using the data delimited by
the arrows. Each of the quoted uncertainties is one standard deviation. The domain

size is in units of the lattice constant, and the time is in units of .
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Energy of isolated
chemisorbed particle

Figure 1. Model for excitation-deexcitation potential
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Chapter 5.

Molecular Adsorption of Ethane on the Ir(110)-(1x2) Surface:

Monte-Carlo Simulations and Molecular Beam Reflectivity Measurements

This chapter has been submitted as a paper by H.C. Kang, C.B. Mullins and W.H.
Weinberg, to The Journal of Chemical Physics.
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ABSTRACT

Experimental results, obtained using a molecular beam reflectivity method,
for the probability of molecular physical adsorption of ethane on the Ir(110)-(1x2)
surface are presented. We analyze these results using Monte-Carlo simulations and
show that molecular adsorption can occur either “directly” or through a precur-
sor state in which an ethane molecule is trapped in a second layer of molecularly
adsorbed ethane with subsequent migration to a vacant site. From the Monte-Carlo
simulations, we are able to establish that the energy barrier for the desorption of an
ethane molecule from the precursor state is approximately 4.5 kcal/mol. ‘We also
find that the energy barrier for diffusion of an ethane molecule on top of a mono-
layer of ethane molecularly adsorbed on the Ir(110)-(1x2) surface is approximately
3.7 kcal /mol.
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1. Introduction

The adsorption of a molecule from the gas phase onto a solid surface does
not necessarily occur in one direct step. The impinging molecule may be trapped
temporarily in a weakly bound precursor well before it reaches the adsorption well.
For example, a physically adsorbed molecule could be a precursor to either molec-
ular or dissociative chemisorption (1). Likewise, condensed molecules in a second
layer could be precursors to adsorption on the surface, depending on the rela-
tivje rates of migration in the second layer and desorption from the second layer
(1). The concept of such precursor states, first proposed by Langmuir (2,3), is
rather important in understanding the kinetics of a variety of surface phenomena.
If, for instance, chemisorption is mediated by a precursor state in which the ad-
sorbing molecule accommodates thermally to the surface, then the probability of
chemisorption would be strongly affected by the surface temperature. This would
not be true if chemisorption occurs directly, i.e. without passing through a pre-
cursor state. Descriptions of the kinetics of precursor-mediated adsorption have
been presented by Becker (4,5), Ehrlich (6) and Kisliuk (7); and they have been
reviewed by Weinberg (1). There have been important refinements of these macro-
scopic approaches by treating the microscopic configurations of the adsorbed layer
in a statistical manner (8-14). Monte-Carlo modeling, taking into account the
microscopic configuration of the adsorbed layer around each adsorbed molecule,
~and hence the lateral interactions by which each molecule is influenced, has also
been formulated (13). In this paper we present evidence demonstrating that the
molecular physical adsorption of ethane on the Ir(110)-(1x2) surface can be under-
stood by drawing upon the concept of a precursor to molecular adsorption. We
show that molecular adsorption can occur directly when an ethane molecule im-
pinges upon the bare iridium surface or indirectly when an ethane molecule impinges
upon already molecularly adsorbed ethane. The “extrinsic” precursor in this case

is the mobile ethane molecule trapped on top of a layer of molecularly adsorbed
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ethane (15). We will refer, hereafter, to an ethane molecule in this precursor state
as a trapped molecule, and an ethane molecule in the molecularly adsorbed state
as a (physically) adsorbed molecule. The experimental results, which are obtained
from reflectivity measurements performed using a molecular beam apparatus, are
shown to be well described by Monte-Carlo simulations of a model which ‘takes into

account the two pathways delineated above.

2. Experimental and Algorithmic Details

Measurements of the probability of molecular adsorption of ethan¢ on the
Ir(110)-(1x2) surface have been made using the reflectivity method of King and
Wells (12), employing a molecular beam apparatus that will be described in detail
elsewhere (16). Briefly, the apparatus consists of a thrice differentially pumpéd,
supersonic nozzle molecular beam source and an ultrahigh vacuum scattering cham-
ber. Low-energy electron diffraction optics, Auger electron spectroscopy and an
jon gun are mounted on the scattering chamber for obtaining and checking sur-
face cleanliness and order. A quadrupole mass spectrometer is also mounted on
the scattering chamber for thermal desorption mass spectrometry, reflectivity mea-
surements and beam time-of-flight measurements. The source chambers contain
the nozzle, a high-speed shutter and a chopper for beam modulation, as well as
apertures for beam collimation. Beam energies are varied by a combination of
.seeding and variation of nozzle temperature and are measured by time-of-flight
techniques. Both the scattering chamber and the third-beam chamber are pumped
by turbomolecular pumps; the other two beam chambers are pumped by diffusion
pumps. The iridium crystal is mounted on a manipulator which provides precise
alignment. The manipulator is liquid nitrogen cooled, providing rapid cooling of
the sample to below 80 K. The sample temperature is determined by a 0.003 in.
W/5%Re-W/26%Re thermocouple spotwelded to the back of the crystal.

The partial pressure Pg of ethane, at time ¢, in the scattering chamber is
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used as a measure of the flux of ethane molecules that do not adsorb. Hence, the
probability of adsorption at time ¢ is (Ps — Pg)/Ps, where Ps is the partial pressure
of ethane in the chamber due to scattering from a saturated surface. Both Pr and
Ps are corrected for a small effusive component of the flux (16). This technique is
particularly useful in measuring the adsorption probability as a function of time or
coverage. The surface temperature T, was maintained constant at approximately 77
K for all the measurements reported here. The experiments were performed with
beam energies E; ranging from approximately 2.2 kcal/mol to 10 kcal/mol, and
with incident angles §; ranging from 0° to 45°. The incident energy and angle for
each experiment are summarized in Table 1. For normal kinetic energies E,-cos20,-
greater than approximately 8 kcal/mol, there is a non-zero component of direct
dissociative chemisorption in the adsorption at 77 K (16). As shown in Table 1,
experirﬁent f has a normal kinetic energy of approximately 8.5 kcal/mol and, hence,
has a small component of direct dissociative chemisorption. The initial probability
of dissociative chemisorption under these conditions is approximately 0.03, and
this has been ignored. We can also ignore desorption of the molecularly adsorbed

ethane, which only occurs at temperatures above 100 K (17).

The Monte-Carlo simulations are carried out as follows. The surface is mod-
elled by a square lattice of size 400x400. Each site is allowed to be in one of three
possible states: the site can be vacant; the site can be occupied by a molecularly
“adsorbed particle; or the site can be occupied by a molecularly adsorbed particle
and a particle trapped in the precursor state. A site s on the lattice is selected at
random. If it is occupied by a trapped particle, then the particle is allowed either
to hop to a nearest-neighbor site or to desorb. The choice is determined as follows.
The trapped particle has a probability of 1/5 of attempting to move in each of five
directions: the four lattice directions in the plane of the surface and the direction
into the gas phase. If one of the lattice directions is chosen, the trapped particle

successfully moves to the nearest-neighbor site in that direction with a probability
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of prm. If the direction into the gas phase is chosen, the trapped particle successfully
desorbs with a probability of pg. If the site s that is chosen is vacant, or is occu-
pied by only a molecularly adsorbed particle, then a particle from the gas phase
impinges upon it with a probability of ps. If the site s is vacant, then the imping-
ing particle is molecularly adsorbed with a probability po. If the site s chosen is
occupied by a molecularly adsorbed particle, then the impinging particle is trapped
with a probability p;. Upon completion of this procedure, the time is increased
by one Monte-Carlo step, another site is selected at random, and the procedure is
repeated. When a gas-phase molecule impinges upon a trapped molecule the situ-
ation becomes more complicated than when it impinges upon either a vacant site
or on top of a layer of adsorbed ethane. The trapped molecule may gain sufficient
energy to desorb along with the impinging molecule, or the impinging molecule may
be scattered from the trapped molecule and become trapped itself while desorbing
the previously trapped molecule. However, we have simply neglected such events
because the fractional coverage of the trapped ethane is vanishingly small most of
the time, and even though it increases when the fractional coverage of adsorbed
ethane approaches unity, the saturation value is less than approximately 0.06, as

will be seen later.

The quantity measured in the reflectivity experiments is the partial pressure
of ethane as a function of time. From the Monte-Carlo simulations, we obtain the
‘values of n; the number of particles impinging upon the lattice, and n, the number
of particles “reflecting” from the lattice in each Monte-Carlo step/site. The quantity
n, includes both the particles that impinge upon and fail to be adsorbed molecularly
or trapped, and the previously trapped particles that desorb from the lattice. The
quantity that is obtained from the reflectivity experiments is (n; —n,)/n;. It should
be noted that this is equal to the quantity n,/n;, where n, is the number of particles
molecularly adsorbing per Monte-Carlo step/site, only when the number of trapped

ethane molecules in the second layer at any instant of time is vanishingly small.
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There are five parameters in the simulations, namely pg, p1, pPm, pqs and Ps.

The value of py used in the simulations is obtained from the zero-coverage limit of
the experimentally measured probability of molecular adsorption (18). This is the
probability with which an ethane molecule accommodates and adsorbs molecularly
on the bare Ir(110)-(1x2) surface. At a particular surface temperature, it is strongly
dependent on the energy of the incident beam of ethane. For the results that are
presented here, the beam energy varies from ~ 2.2 kcal/mol to ~ 10 kcal/mol, and
the corresponding values of py vary from ~ 0.95 to ~ 0.45 at a surface temperature
of 77 K. The value of p;, the probability of accommodation of an ethane molecule
on top of a physically adsorbed layer of ethane, is clearly larger than py due to
a better match of masses, facilitating momentum transfer, and the existence of a
softer potential than in the case of a collision with the bare iridium surface (1‘8-
20). In principle, both py and p; are dependent on the beam energy. On the
other hand, in our model p,, and pg must not be dependent on the beam energy
because the trapped particle is assumed to be completely accommodated thermally
to the surface. In the experiments the surface temperature is kept constant at
approximately 77 K. Hence, for the simulations to be consistent physically, it is
necessary that the same values of p, and pq successfully describe the experimental
results at all beam energies. We choose pp, to be unity, and vary the ratio of py/pm.
As a result, we have set the time-scale of the simulation to be the time-scale for
a trapped ethane molecule to hop from one site to the next. The parameter p;
is the probability, in each Monte-Carlo step, that a a gas-phase molecule impinges
upon each site. This parameter can, in principle, be determined from an accurate
measurement of the flux of ethane in the molecular beam used in the experiments. If
each Monte-Carlo step corresponds to a real time of 7,., then the incident lux would
be ps/7r site=?s=1. A crude estimate of this flux in the experimental measurements
is 0.1 07 1s™1, where o is the area occupied by one adsorbed ethane molecule when

the surface is covered by one monolayer of ethane at 77 K. This is because the
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experiments take approximately 10 s, and, as shown below, the final fractional
coverages are only slightly greater than one monolayer. In the simulations, however,
we used a range of values of py and chose the value that best fits the experimental

results, cf. Table 1.

3. Results and Discussion

Before we compare the simulations with the experimental results, we discuss
the simulation in the limiting case where p; is set equal to zero, i.e., the limit
of infinitesimally small flux. When p; is zero no particles can be added onto the
lattice from the gas phase because py is the probability of a gas partiéle impinging
on each site of lattice per Monte-Carlo step. In this case the simulation cannot be
carried out as we have discussed above. With p; = 0, the Monte-Carlo procedure
discussed above will not allow the number of particles on the surface to increase,
because gas-phase particles impinge on the lattice with a probability of Pf per
Monte-Carlo step per site. Hence, no new particles can be introduced onto the
lattice with this procedure. When the flux is infinitesimally small, then any particle
that impinges on the surface will have already adsorbed molecularly or desorbed
before the next particle impinges on the surface. Hence, particles will have to be
introduced one at a time onto the surface. Then the time in the simulations is not
measured as before. In this case, the time is linearly proportional to the nﬁmber
“of particles that are introduced onto the surface, regardless of the number of hops
that each trapped particle takes before it desorbs or adsorbs. This is in contrast
to the simulation procedure for the case in which py is not zero, where the time is
increased by one Monte-Carlo step each time an attempt is made to hop, desorb or
trap a particle. The simulations for py = 0 are done as follows. First, we determine
the probability of molecular adsorption for a fixed coverage on the surface, and then
we increase the coverage on the surface. The probability of molecular adsorption

is determined by introducing test particles one at a time and counting the fraction
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that adsorbs molecularly. If a test particle impinges on a vacant site, then molecular
adsorption occurs with a probability of py. If the test particle impinges on a site
which already has a molecularly adsorbed particle, then it traps with a probability
of p;. A trapped particle is allowed to attempt a move in one of the four lattice
directions or in the direction into the gas phase. Each of these directions is picked
with a probability of 1/5. An attempted hop to a nearest-neighbor site is successful
with a probability of p,,. If the test particle attempts to move into the gas phase,
it desorbs with a probability of ps. A test particle is allowed to migrate on the
lattice by nearest-neighbor hops until it either desorbs or reaches a vacant lattice
site whereupon it immediately adsorbs molecularly. Then the next test pé.rticle is
introduced. In order to obtain the probability of molecular adsorption at z;. constant
coverage, the configuration on the lattice is not updated even if a test particle
molecularly adsorbs. For each datum point we introduce 2000 test partiéles. The
configuration on the lattice is updated as follows. A certain number of test pa:ticies
are introduced, again one at a time. However, now the positions of the test particles
which adsorb molecularly are recorded. A test particle which adsorbs ‘m'olecularly
into a site at which an earlier test particle had adsorbed is not counted. After N
particles have been introduced, the configuration is updated by using the recorded
positions of the molecularly adsorbed test particles. Time is increased by N/FL?,
where F is the flux from the gas phase in units of site"!s~! and L? is the number
~of sites on the lattice. For our simulations we used N = 1600 so that we obtain
the adsorption probabilities for every fractional surface coverage increment of 0.01.
The procedure is then repeated with the new configuration. It should be noted
that the time increment is not dependent upon the actual number of migration
steps that are taken by the test particles, since the time for each migration step is
inﬁniteéima]ly small compared to that between subsequent particle impingements

on the surface when py = 0.

The physical situation to which simulations with py = 0 can be applied is
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when the rate at which particles from the gas phase impinge upon the surface is
much smaller than 1/7, where 7 is the lifetime of a trapped particle. When the
fractional coverage of molecularly adsorbed particles is not high, a trapped particle
can find a vacant site in a time interval 7 such that 1/7 is much smaller than the
rate at which particles impinge on the surface. In this case the quantity (n; —n,)/n;
obtained from the simulations in which py is not zero would be equal to the fraction
of molecularly adsorbed test particles in the simulations in which py = 0. In the
simulations using py = 0, the lifetime of the trapped particles is infinitesimally
small compared to the time between which particles impinge on the surface from
the gas phase. Therefore, there is no accumulation of trapped particles. This
means that the simulations in which py = 0 model the situation when a second
adsorbed layer is not allowed. As a result, by comparing such simulations with
experifnental results, it is possible to infer the accumulation of a second adsorbed
layer. Since both desorption and migration occur infinitely fast on the timescale
of the particle flux onto the surface, it is not possible to establish, via comparison
with experimental results, the absolute rates of desorption and migration. This,

however, can be done with the simulations in which py is not zero.

The results of the reflectivity measurements are plotted as crosses in Figs. 1
and 2. The ordinate has been labelled as the probability of adsorption although
for the experimental data it really corresponds to the quantity (n; — n,)/n;. As
‘mentioned earlier, this is equal to n,/n; only when the incident flux is extremely
low. The abscissa is the time in units of 0.1 s. The experiments were not all per-
formed with the same value of the incident angle ;. Thus, even though the beam
intensities are the same for all the experiments, the incident fluxes are not. In
order to correct for this we have scaled the time by cos§;. Although it‘would be
interesting to perform the experiment at lower surface temperatures (this would
give us an independent estimate of the difference between the desorption and mi-

gration barriers discussed below), we were not able to cool below the temperature
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of liquid nitrogen. However, it should be noted that for this particular system, the
temperature of ~ 77 K is optimal. At higher temperatures the fractional coverage
of the second layer and hence the ‘tail’ in the experimental data would not be so
large, and at lower temperatures it might become necessary to consider the accu-
mulation of more than two layers of ethane on the surface. A smaller ‘tail’ would
lower the accuracy of the Monte-Carlo analysis, and the accumulation of multilay-
ers would render it necessary to introduce additional parameters to describe the

third or fourth layers and hence complicate the simulations.

The parameters that were fitted to the data are p;, p4/pm and pg/ p,,...' As ex-
plained earlier, po is obtained directly from the experimentally measured adso;rption
probability at zero coverage. The parameters which best fit the experimental data
are summarized in Table 1 where each row refers to the correspoﬁd.ingiy labelled
curves in Figs. 1 and 2. The results of simulations in which p; = 0 are shown by
the lines in Fig. 1, while the results of simulations in which py is not zero are shown
by the circles in Fig. 2. Since the second layer does not accumulate until the first
layer is close to saturation, the optimal values of p; and py/pm can be determined
from simulations in which py is zero. The values of p; used for each beam energy
are shown in Table 1. It should be noted that these values are all rather close to
unity, although there is a dependence on the beam energy as would be expected.
Having determined the values for p; and pg/p, that best fit the experimental data
‘except for values of the coverage close to saturation of the first layer, the same
values of p; and p4/pm are used in simulations in which p; is varied. In this sys-
tematic way, we have determined that the value of pg/p., is ~ 0.005 and the value
of ps is ~ 6 x 1075, Note that the relationship between the incident flux and Pf
is given by F = py/7,. Thus, the simulations in which p; = 0 are simulations of
experiments in which the incident flux is infinitesimally small on the time scale for
migration or desorption. These simulations are sufficiently sensitive that significant

deviations between the experimental data and the simulation results are observed
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if pa/pm is set less than 0.001 or greater than 0.01. Similarly, deviations between
the experimental ‘tail’ and the simulation results are apparent if Dy is set greater
than ~ 1 x 1074 or less than 1 X 10~5. From Fig. 1 it can be inferred that at 77 K a
second layer of ethane accumulates on the surface (at least at coverages where the
first layer is nearly saturated). This is indicated by the ‘tail’ in the ’experi‘menta.l
data which is not seen in the simulation results in which p; = 0. It is possible that
such a ‘tail’ can result from an equilibrium between the first monolayer of étha.ne
and the gas phase rather than the second layer with the gas phase. However, the
desorption barrier for a molecularly adsorbed ethane molecule from the Ir(110)-
(1x2) surface is approximately 7.5 keal/mol (17). As will be seen below, this “4ail’
indicates equilibration between the gas phase and a layer of adsorbed ethane with
a desorption barrier of 4.5 kcal/mol. Hence, the ‘tail’ in the experimental data is
much too long to be accounted for by deso;ption from the first monolayer. From
Fig. 2 it can be seen that by simply allowing p; to be non-zero, the simulations
can produce the ‘tail’ observed in the reflectivity experiments. The accompanying
accumulation of particles in the second layer in these simulations is shown in Fig.
3. The equilibrium second-layer coverage for the simulation parameters used is

approximately 0.057.

By comparing the experimental data with the simulations in which Py is not

zero, it is possible to determine the real time 7, that corresponds to each Monte-
"Carlo step/site. In many simulations, it is convenient to use =1, the reciprocal of
the frequency of the frustrated translational degree of freedom parallel to the sur-
face, as the time scale so that each Monte-Carlo step corresponds to an attempted
hop. However, we have set p,, to be unity so that the time scale in these simula-
tions is not the time scale of the frustrated translational motion. Rather, it is the
time scale at which successful hops occur. Therefore, 7, can be much larger than
v~! of which the latter has a typical value of approximately 10~13s. The rate of
desorption of a trapped particle is ps/5 per Monte-Carlo step. The factor of 1/5
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arises from allowing a trapped particle to attempt to move with equal probability
in each of five directions, as discussed above; and desorption is allowed in only one
of these directions. Hence, the rate of desorption from the second layer of ethane
is given by Ry = pa/57,. Similarly, as mentioned earlier, the flux inci(ient upon
the surface is given by ps/7,. For each value of the beam energy, the values of the
incident flux and the values of the energy barrier for desorption from the Second
layer E; are summarized in Table 1 (21). The simulation results presented in Fig.
2 are from simulations in which py = 6 x 10~%. As mentioned earlier deviations
between the experimental ‘tail’ and the Monte-Carlo ‘tail’ begin to be apparent
for ps greater than 1 x 1074, the simulation results showing a longer ‘“tail’ than is
observed experimentally. This analysis indicates that the fluxes used in the reflec-
tivity measurements are constant to approximately 20 percent, which is physically
reasonable. This uncertainty in the value of flux is from the uncertainty in the value
of 7. This same 20 percent uncertainty in 7, implies an uncertainty of approﬁ-
mately 50 cal/mol in the value of E4 but, as noted earlier, there is a much gréafer
uncertainty due to the lack of information concerning the preexponential factor for
desorption (21). For the simulation results shown in both Figs. 1 and 2, the value
of pa/pm is 0.005. This is the ratio of the probability of success of desorption to
the probability of success of migration. Hence the difference between the respective
energy barriers §E = Eg4 — E,, is approximately 800 cal/mol, assuming that the
preexponential factors for these two processes are equal. If the preexponential fac-
tor for desorption is larger than that for migration, as might be expected, then 6 E
would be somewhat larger than 800 cal/mol (22). Simulations were also performed
for pa/pm = 0.01 and p4/pm = 0.001 to estimate the sensitivity of the fit. These

runs allow us to conclude that the uncertainty in § E is approximately 200 cal/mol.

In our model the fractional coverage of ethane in the first layer increases
through both direct and precursor-mediated adsorption. In direct adsorption all

vacant sites on the lattice have equal probabilities of being impinged upon by an
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incident molecule. However, the probability that a trapped ethane molecule reaches
a vacant site is not the same from one vacant site to another. In our simulations,
the only lattice sites with a nonzero probability of being reached by aetrapp:ed
ethane molecule are those that have at least one occupied nearest-neighbor site.
Therefore, ‘islands’ of molecularly adsorbed ethane form as a result of precursor-
mediated adsorption. The adsorbed layer of ethane, hence, consists of ‘islands’
due to precursor-mediated adsorption and randomly distributed ethane molecules
due to direct adsorption. We have stipulated that the adsorption of a previously
trapped ethane molecule occurs with unit probability when the molecule reaches a
vacant site during its migration. We have assumed that this is the case because an
ethane molecule trapped and thermally accommodated in the precursor state can
be considered to be equivalent to an ethane molecule in an incident molecular beam
which has an extremely low incident energy. The probability of direct adsorption
po for the latter case is very close to unity, as shown by the experimental data. If,
however, a trapped ethane molecule is adsorbed with a probability lower than unity
when it reaches a vacant site, as might occur if adsorption from the precursor state
were activated, then the configuration of the adsorbed layer would become more

characteristic of a random distribution of ethane molecules.

It is also possible to use the Kisliuk approach (7) to treat the adsorption
kinetics in our model. In this approach the probability of occupancy, for each site
“sampled by the trapped ethane molecule, is assumed to be equal to the fractional
coverage. The actual configuration of the adsorbed layer is, hence, approximated by
a random configuration in calculating the probability of adsorption. The probability
that a trapped ethane molecule reaches a vacant site before it desorbs is dependent,
however, upon the configuration of the adsorbed layer. An ethane molecule that
is trapped on top of the center of an ‘island’ of adsorbed ethane is less likely to
reach a vacant site than another ethane molecule that is trapped near the edge

of an ‘island.” The former type of molecule will also have a lower probability of
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reaching a vacant site compared to a trapped molecule in the Kisliuk approach.
However, a molecule that is trapped sufficiently close to the edge of an ‘island’ will
have a higher probability of reaching a vacant site than a trapped molecule in the
Kisliuk approach. Thus, the probability of adsorption calculated using the Kisliuk

approach will be different from that obtained from the simulations.

The probability of adsorption as a function of coverage for the simulations
with py set equal to zero is compared with calculations using the Kisliuk approach
in Fig. 4. The ordinate is the probability of adsorption, and the abscissa is the
fractional coverage. In Fig. 5 the time dependence of the probability of a.dgorption
from the simulations and from the Kisliuk approach are compared. The ordinate
is again the probability of adsorption, while the abscissa is the time in units of
0.1 s. The simulation results, which are for the parameters in row d of Table 1,
are denoted by the lines in these figures. The dots are the results calculated by
the Kisliuk approach using the same parameters. For the probability of adsorption
P(0), the Kisliuk approach gives

PO) =2+ 021 — 0 — 22) + (0 ~ 2}/ (- - 0),

'm dm
where ¢, the pioba.bility that a precursor particle hops to a nearest-neighbor site

relative to the total probability of hopping and desorption, is equal to ipm/ (4pm +

2pa). The dependence of the fractional coverage upon time is calculated from

[ 7

where f is the incident flux.

The probability of adsorption as a function of the fractional coverage is the
same for both the simulations and the Kisliuk approach when the fractional cover-
age is low. This is to be expected since the ‘islands’ formed in the simulations are

not large at this stage. However, for fractional coverages above approximately 0.6,
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the effect of using a random configuration in the Kisliuk approach becc;mes appar-
ent. The probability of adsorption calculated using the Kisliuk approach is higher
than that obtained from the simulations. This indicates that the probability of a
trapped ethane molecule reaching a vacant site is lower than that which is obtained
when a random configuration is assumed. As mentioned earlier, a higher probabil-
ity of reaching vacant sites is computed for molecules trapped at the edge of the
‘islands’ when the actual configuration on the surface is used than when the ran-
dom configuration assumed in the Kisliuk approach is used. However, for molecules
trapped near the center of the ‘islands,’ this probability is lower when computed
with the actual configuration than when computed with a random conﬁguration.
When the fractional coverage is high and the ‘islands’ are large, the latter effect
dominates. Consider a circular ‘island’ with a radius of . Then mole!cules trapped
at a site (within the ‘island’) which is less than a distance ! from the edge of the
‘island’ reach a vacant site at the edge with a probability that is greater than that
obtained using the random configuration approximation in the Kisliuk approach.
Those that are trapped at a site farther than a distance ! from the edge have a
probability of reaching a vacant site that is lower than the probability obtained
using the Kisliuk approach. Then the number of sites for which it is ‘favorable’
for the trapped molecules to reach a vacant site increases as » while the number
of sites for which it is ‘unfavorable’ increases as r2. Hence, it is reasonable for
‘the probability of adsorption obtained from the simulations to be less than that
calculated using the Kisliuk approach. Since the value of the parameter [ increases
when the trapped molecules become more mobile, the difference in the probability
of adsorption seen in Fig. 4 will be less if the trapped molecules are even more

mobile than we have found, and conversely.

4. Conclusions

We have analyzed molecular beam reflectivity measurements by Monte-Carlo
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simulations of a model in which ethane adsorption can occur through two routes: a
direct molecular adsorption pathway, and a precursor-mediated adsorption pathway
in which the precursor is an ethane molecule trapped above a previously adsorbed
ethane molecule. We have performed simulations for the limiting case in which the
flux incident upon the surface is infinitesimally small, and also for cases in which
this flux is not zero. It is possible to infer from the discrepancy between the ‘tail’ of
the experimental data and the simulations with infinitesimally small flux that some
accumulation of a second layer of ethane occurs. The simulations with non-zero
flux allow us to determine the real time corresponding to each Monte-Carlo step
in these simulations. Thus, it is possible to determine the rate of desofption of
ethane from the second layer and hence the energy barrier for this process. This is
approximately 4.5 & 0.3 kcal/mol, and the barrier to migration of trapped ethane
molecules is approximately 3.7 & 0.2 kcal/mol. The saturation coverage for the
second layer is approximately 0.06 relative 1-;0 the saturation coverage of the first

monolayer at 77 K.

It is difficult to imagine a simpler and yet more intuitively reasonable model
that would give rise to the experimentally observed maximum in the probability
of adsorption. The essential ingredient in the model is the physically reasonable
assumption that an incident ethane molecule accommodates better if it impinges
on a previously adsorbed ethane molecule than if it impinges on the bare iridium
'surface. It should be noted that the use of a square lattice to simulate the Ir(110)-
(1x2) surface, which is a rectangular lattice, is acceptable. The probable anisotropy
of the Ir(110)-(1x2) surface to diffusion need not be considered because the hopping
of trapped ethane molecules occurs on top of a layer of molecularly adsorbed ethane,
which probably presents an isotropic surface to a trapped ethane molecule. The
validity of using a square lattice is also indicated by the good agreement obtained.
It is gratifying that using values of py obtained from experiments, values of p; that

are consistent with the beam flux, and assuming (reasonably) that p; ~ 1, it is
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possible to describe the probability of adsorption for the entire range of surface
coverage from zero coverage to saturation using only a single value of pg/pm. This
single value of pg/pm also describes the data obtained using beams of different
incident energies, and is physically consistent with the idea that the trapped ethane

molecules are completely accommodated thermally to the surface.
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The values of E4 are calculated from R4 = k&o)exp(—Ed/ kpT), where k‘(io) is
assumed to be 1013 51, If k‘(10) is assumed to be 10'* s~1, the corresponding
values of E4 would be about 0.4 kcal/mol greater than the values indicated in
Table 1. A related issue is the use of the factor of 1/5 in choosing the direction
of motion of the trapped ethane. If a trapped molecule can move toward the
surface and then be reflected into the gas phase, a factor of 1/6 would be more
appropriate. This would imply that the probability of successful desorption
pa that we have used is twice as large as it should be, and that the desorption
energy barrier Ey is approximately 0.1 kcal/mol lower than the value reported
in Table 1.

For example, if the ratio of the preexponential factors kso) / kS,‘,’) were equal
to 100, then § E would be equal to 1500 cal/mol, and E,, would be 3.0 & 0.2
kcal /mol.



Set E;
a 2.2
b 3.7
c 5.2
d 6.6
e 10.0
f 10.0

Values of parameters used in simulations and experiments. The energy of the beam
E; is in units of kcal/mol and the incident angle 6; is in degrees. The energy barrier
for desorption isin units ef kcal/mol and the fluxes in units of s~ o~ for each beam
energy, where o is the area occupied by a molecularly adsorbed ethane molecule
in a saturated first layer on the Ir (110)-(1x2) surface at 77 K. The probability
of adsorption on the clean surface (in the limit of zero coverage) is pg, and the
probability of trapping on top of an adsorbed ethane molecule is p;. The value of
Pd/Pm, where pq is the probability of success of an attempted desorption event and

Pm is the probability of success of an attempted hop by a trapped particle, is 0.005

- 131 -

Table 1
0; Po
0 0.95
45 0.90
45 0.83
0 0.68
45 0.50
22.5 0.45

for all th_e simulation results shown here.

y41
1.00

1.00
0.97
0.96
0.95
0.95

Eq
4.55
4.57
4.53
4.52
4.53
4.55

Flux
0.087
0.077
0.102
0.107
0.104
0.085
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Figure Captions

Figure 1. The crosses indicate experimental data, and the lines indicate results
from simulations in the zero-flux limit. The abscissa is time in units of 0.1 s. For
each experiment, the time has been multiplied by cos;, where 6; is the angle of
incidence in order to normalize the area of the surface upon which ethane molecules
are incident. The parameters for each figure can be found in the corresponding rows

of Table 1.

L d

Figure 2. The crosses indicate experimental data as in Fig. 1. The circles indicate
results from simulations in which the value of p;, and thus the flux which is equal to
pf/Tr, is not zero. The abscissa for the Monte-Carlo data has been converted from
Monte-Carlo steps/site to real time. The conversion factor 7, gives the number
of seconds in real time to which each Monte-Carlo step/site corresponds. This, as
explained in the text, enables an absolute determination of the desorption rate from

the second layer. The units for the abscissa are 0.1 s.

Figure 3. Simulations in which p; is not zero enable a second layer of particles to
accumulate. The fractional coverage of this second layer is shown here as a function
of time which, as in Fig. 2, has been converted from Monte-Carlo steps/site to real

time.

Figure 4. The dependence of the probability of adsorption upon the fractional
coverage of adsorbed ethane is plotted here. The line indicates the results from
simulations in which p; is equal to zero, and the dots indicate the results of cal-
culations using the Kisliuk approach, as discussed in the text. The abscissa is
the fractional coverage of adsorbed ethane, and the ordinate is the probability of

adsorption.
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Figure 5. The probability of adsorption as a function of time is plotted here. The
line indicates the results from simulations in which py is equal to zero, and the dots
indicate the results of calculations using the Kisliuk approach, as discussed in the
text. The abscissa is time in units of 0.1 s, and the ordinate is the probability of

adsorption.
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Figure 2 ¢
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Chapter 6.

Role of Local Configurations in a Langmuir-Hinshelwood Surface Reaction:

Kinetics and Compensation

This chapter has been submitted as a paper by H.C. Kang, T.A. Jachimowski and
W.H. Weinberg, to The Journal of Chemical Physics.
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ABSTRACT

We have used Monte-Carlo sampling to calculate the rate coefficient for a
Langmuir-Hinshelwood reaction between species A and B on a square lattice. The
experimental situation that is simulated is the reaction between a preadsorbed over-
layer of species A with species B. The preadsorbed overlayer of A is allowed to
equilibrate prior to the adsorption of B. Upon the adsorption of B, the initial
reaction rate is calculated assuming that A is irreversibly adsorbed and immobile,
and that equilibrium between adsorbed B and gas-phase B is established much
more rapidly than the timescale of the reaction between A and B. Reaction is
allowed only between nearest-neighbor AB pairs. We examine the parametrization
of the reaction rate coefficient into an effective activation energy and an effective
preexponential factor. We find that correlations between nearest-neighbor particles
affect the reaction rate coefficient significantly. We also find that if the distribution
of local configurations of nearest-neighbor pairs of reactant particles changes with
temperature, the corresponding Arrhenius plot is non-linear. The effective acti-
vation energy and the effective preexponential factor vary strongly with the frac-
tional coverage of A and show a large compensation effect, similar to that observed
experimentally in many desorption and surface-reaction systems. We conclude that
variations in the distribution of local configurations of pairs of reactant molecules
as a function of temperature and fractional surface coverage can be responsible for

these experimentally observed compensation effects.
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1. Introduction

The configuration of an overlayer of adsorbed molecules on a surface is gener-
ally a function of the fractional coverage and the temperature of the surface. Like-
wise, the kinetics of a surface chemical reaction can be strongly dependent upon the
local configurations of the reactant molecules, as well as a function of the fractional
coverage of the reactants and the temperature. The important role of the overlayer
configuration of the reactant molecules on a catalytic surface has been established
by many experimental investigations (1-7). Similarly, the influence of the overlayer
structure on the kinetics of thermal desorption has also been demonstrated (8-13).
Much work in this area has also been carried out using Monte-Carlo simulations
(14-28) and mean-field approximations (29-41). In particular, the formation of
adsorbate ‘islaﬁds’ due to lateral interactions and their effects on the kinetics of
a bimolecular Langmuir-Hinshelwood reaction have been investigated extensivély
using Monte-Carlo simulations (14,15). An important feature of these simulations
is that it is possible to obtain the correlation between the sites occupied by pairs
of reactant molecules in Monte-Carlo simulations. As a consequence of the lateral
interactions that exist between adsorbed molecules, the magnitude bf these pair
correlations may deviate from the values for a random distribution of molecules on
the surface. For instance, with attractive nearest-neighbor interactions, the cor-
relation between nearest-neighbor pairs of molecules is greater than when there
are no lateral interactions. Such effects arising from lateral interactions have been
referred to as ‘topological’ effects (14,15). The energy barrier to reaction for each
pair of reactant molecules depends upon the configuration of their neighboring sites,
since each of the molecules in the reacting pair experiences lateral interactions with
the molecules in the neighboring sites. The energy of the transition’state for the
reaction may also be affected by the configuration of the neighboﬁhg sites, but
the change in the energies of the reactant molecules and the transition state are,

in general, different because the lateral interactions experienced by the reactant
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molecules are different from those experienced by the transition state. Hence, the
energy barrier to reaction is dependent upon the number of occupied neighboring

sites. This has been referred to as an ‘energetic’ effect (14,15).

In Monte-Carlo simulations the positions of each of the particles on the surface
are known. Therefore, it is possible to separate easily ‘topological’ effects from
‘energetic’ effects, in distinct contrast to the situation that obtains in laboratory
experiments. In analyzing experimental data it is convenient to write the reaction

rate per unit surface area as
F = fiVexp(~AE), W

where f is the probability of finding a pair of molecules per unit surface area in a
suitable configuration for reaction, e.g., in nearest-neighbor sites on the surface and
B is defined to be 1/kpT, where T is the temperature of the surface. Indeed Eq.
(1) can be considered to be merely a formal parametrization of the reaction rate
into an effective ‘topological’ factor f, an effective preexponential factor k(®) and
an effective activation energy E. Generally, f, k(°) and E are each dependent upon
the fractional coverages and the temperature of the surface. It is, therefofe, not
easy to extract the temperature and coverage dependence of each of these factors

from experimentally measured reaction rates.

If we consider all the different types of local configurations in which a nearest-
neighbor pair of molecules can be found, we can write the total reaction rate per
pair of nearest-neighbor sites on the lattice as a sum of the reaction rates of the
elementary bimolecular reactions occurring between each pair of reactant molecules,

ie.,

F= Z fiviexp(—BE;), | (2)

where v; is the ‘attempt’ frequency and E; is the activation energy to reaction for a

pair of nearest-neighbor reactant molecules in a local configuration of type i. In the
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simulations that we performed we set the ‘attempt’ frequency for all local configu-
rations to be constant and equal to 9. The distribution of local conﬁgurafions of
nearest-neighbor pairs of reactant molecules is given by the probability of ﬁﬁding a
nearest-neighbor pair of reactant molecules per pair of nearest-neighbor sites on the
lattice f; for each i. The sum of f; over all 7 is the probability of ﬁndihg a pair of
reactant molecules in each pair of nearest-neighbor sites. It is usually the case that
when Eq. (2) is reduced to the parametrization which is implicit in Eq. (1), each
of the macroscopic quantities f, k(°) and E are determined by all the microsocpic
quantities f;, v; and E;. In particular, it is usually not possible to parametrize the
reaction rate in the form of Eq. (1) without including the influence of the distri-
bution of overlayer configurations on the quantities E and k(°). One case in which
this is possible is when the ‘attempt’ frequency and the activation energy are not
dependent on the type of local configurations. However, as a consequence of the
lateral interactions between adsorbed molecules, this is not generally true. Hence,
the values of k(®) and E obtained when Eq. (1) is used to analyze experimental
data include not only the effects due to the dynamics of the elementary bimolecular

reaction but also the effects due to the statistics of the overlayer configuration.

In this paper we will show that by using the parametrization suggested by
Eq. (1) it is possible to observe a compensation occurring between the variation of
k(®) and E with coverage when the distribution of local configurations, given by the
quantities f;, changes significantly with temperature. Numerous experimental (8-
13) and theoretical (29-41) studies have been conducted on similar a compensation
effect in thermal desorption. Experimental studies (8-13) have indicated that the
preexponential factor for desorption is generally not constant with ;:overage and
may vary by up to eleven orders of magnitude. The change of the preexponential
factor with coverage generally occurs in the direction which compensates for the
change in the desorption activation energy. Mean-field approximations of lattice

gases have been used to model this behavior (29-41). The energy barrier and
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the preexponential for the desorption of CO from the Ru(001) surface has been
shown to be well described by mean-field approximations in which the overlayer
undergoes a transition from a disordered lattice gas to an ordered (v3xv/3)R30°
domains when the coverage is 1/3. The anomalously high preexponential factor
for desorption which is observed when the coverage is increased to close to 1 /3 can
be considered to arise from the large decrease in the overlayer entropy when the
ordering transition is approached. A recent review of the work in this area may be
found in Ref. 40. In this paper we show that compensation can arise because of the
parametrization implicit in Eq. (1) when the distribution of the local configurations
of the overlayer in the neighborhood of a pair of reacting molecules changes with

temperature.

2. Model

Without loss of generality we choose to model the following parﬁculaf exper-
imental situation. The surface is exposed to species A until the fractional coverage
has reached a desired value. The overlayer configuration is allowed to equilibrate,
and the gas-phdse A is pumped away. The surface is then exposed to species B,
and the initial reaction rate is measured. As the reaction proceeds, the coverage of
A on the surface decreases due to consumption by the reaction. The coverage of

"B will, in general, also change as a result of both the change in the coverage of A
and the reaction itself. As a consequence the overlayer configuration will change.
The reaction rate at any time will be strongly dependent on the overlayer config-
uration at that time, and this, in turn, is determined by the rate of ‘relaxation of
the configuration of the overlayer. In this paper we do not attempt to simulate
this complicated situation, but rather we focus on the initial reaction rate. We
simulate the case in which the rates of adsorption and desorption of species B are

much greater than the reaction rate. Hence, by the time the reaction “begins”
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equilibrium has already been established between gas-phase B and adsorbed B, i.e.
we avoid having to consider the effect of a transient due to the adsorption of B. In
other words, we assume that species B is quite mobile on the surface. On the other
hand, we set the diffusion rate of species A to be zero in order to avoid .ha.ving
to consider the effect of relaxation of the preadsorbed overlayer of 4. A similar
situation occurs, for instance, during the oxidation of CO on the Pt(110)-(1x2) sur-
face (42). In this case, CO is rather weakly bound to the surface compared to the
oxygen and is considerably more mobile than the oxygen atoms (which have been
preadsorbed and equilibrated). However, it is probably the case that the oxygen
overlayer configuration can relax on the time scale of the reaction, and any initial
reaction rate calculated using a model which does not permit this relaxation will
probably be too high. This is because relaxation of the overlayer will drive the
adsorbed oxygen into configurations with higher binding energy. However, as will

be seen, this does not qualitatively affect the conclusions that are drawn here.

We use a lattice gas to simulate species 4. First, a square lattice is pof)ulated
to a specific fractional coverage with particles of species 4. We used lattices of
size (100x100) in all our simulations. These particles are allowed to interact with
each other through nearest- and next;nearest-neighbor interactions of strength E,,
and Ej,nn, respectively. The values used in the simulations are E,, = 2 kcal /mol
and Ennn = 1 keal/mol. In the simulations, the fractional coverage of A ranged
from 0.1 to 0.6, and the temperature ranged from 300 to 400 K. For theseiateral
interaction strengths, fractional coverages and temperatures, the equilibrium phase
for the preadsorbed overlayer of A4 is a disordered lattice gas (43). Indeed, this sit-
uation is chosen to be somewhat similar to the conditions in a recent experimental
study of CO oxidation in which no overlayer low-energy electron diffraction spots
were observed (42). It should be noted, however, that steady-state reaction rates
between CO and oxygen were measured in the experiments; whereas here only the

initial reaction rates upon adsorption of species B onto a preadsorbed overlayer of
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species A are modeled. In those experiments, the fractional coverage of CO ranged
from approximately 0.25 to approximately 0.003. Although it is possible to use a
lattice gas to model species B also, we find it more convenient for the range of frac-
tional coverages that we wish to study to assume a Langmuir-adsorption isotherm
for species B, and to allow the interspecies interaction E4_p to be expressed by
requiring a different binding energy for B at each adsorption site, depending upon
the local configuration of the site. We allow an interspecies interaction E4_pg only
between nearest-neighbor 4B pairs. The values of E4_p used in the simulations
are —2, —1, 0, 1, and 2 kcal/mol, where negative interaction strengths indicate an
attractive interaction and positive interaction strengths indicate a repulsi%re inter-

action. We assume that particles of species B do not interact with each other.

The probability that each site n is occupied by a particle of species B is

determined by
Padexp(BE4,n)
n = 4 3
P 1+ padaexp(ﬂEd,n) ’ ( )

where Ey,, is the desorption barrier for species B from site n, p,q is the probability

of adsorption for a gas phase molecule incident upon the surface and the qu#ntity
a is the ratio of the rate at which particles of species B are impinging upbn each
site of the lattice to the preexponential factor for desorption. The value of Ein
for an isolated molecule of species B is chosen to be 36 kcal/mol in order to agree
with the experimentally measured value for CO desorption from Pt(110) at low
fractional coverages. For a site which has N4 nearest-neighbor particles of species

A, the desorption energy barrier for species B is given by
Ed,'n = Ed - NA-EA—B) (4)

where N4 is the number of nearest-neighbor sites of n occupied by particles of
species A. The value of a used in the simulations is 1 x 10728, If the probability of
adsorption p,q is unity and the preexponential factor for desorption of B is assumed

to be 1 x 10714 s~ then this value of a corresponds to a pressure of approximately
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3x10718 torr. This pressure is necessarily quite low because we have chosen to allow
the gas-phase B to equilibrate with the adsorbed B, and we want the range of the
equilibrium fractional coverage of B to include very low values. If the interspecies
interaction E4_p is zero and the temperature ranges from 300 to 400 K, then the

fractional coverage of B ranges from approximately 5 x 10~7 to approxirﬁa.t‘ely 0.6.

The simulations were carried out by allowing the particles of spéciés A to
equilibrate on the surface. In order to ensure that a sufficiently large number of
Monte-Carlo steps have been performed so that the configuration of the pread-
sorbed A has equilibrated, we monitor the energy of the lattice gas and sample
the configurations only when the average energy has reached a constant asymptotic
value. For each set of parameter values, we sampled 100 different configurations
which had been obtained by using this procedure. Recall that the equilibrium phase
for A for the lateral interaction strengths, coverages and temperatures used in the
simulations is a disordered lattice gas. Hence, there are no complications arising
from the slow dynamics associated with ordered domain growth. For the same
reason, the (100x100) lattice that we used is almost certainly sufficiently la.rge to
avoid finite-size effects although we did not verify this explicitly.

After it has been established that the configuration has equilibrated,: the prob-
ability of occupancy by species B of each vacant site p, is calculated using Eq. (3).
Then the reaction rate per nearest-neighbor pair of sites on the lattice is calculated

by performing the sum

F= (ZL)_2 Z a'mPannexp(—:BEf‘,mn)’ | (5)

m,n

where m.and n denote a pair of nearest-neighbor sites, and L is the length of each
side of the square lattice in units of the lattice constant. The occupancy of a site m
by species A is denoted by oy,, which has the value zero when the site is vacant and

the value unity when it is occupied by a particle of species A. The energy barrier
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for reaction for a pair of particles, A situated at site m and B situated at site n, is

given by Er my. This is determined by the local configurations of the pair by
Er,mn = B, — NnnEnn - NnﬂnEnnn - EA—B(MB + NA)" ' (6)

where E, is the energy barrier for reaction for an isolated nearest-neighbor pair of 4
and B. The ‘attempt’ frequency for the same pair is given by v;nn. The Quantities
Nnn and Npny, are, respectively, the number of nearest-neighbor and next-nearest-
neighbor sites of m occupied by particles of species 4. Similarly, N4 is the number
of nearest-neighbor sites of n occupied by particles of species 4. The quantity Mp
is the sum over the nearest-neighbor sites of m of the probability of occupancy by a
particle of species B at each of these sites. In computing Mp and N4 the particle
of species A in site n and the particle of species B in site m are not counted. Recall
that we have assumed no interactions between pairs of particles of species B. The
reaction barrier for an isolated pair is chosen to be 22 kcal/mol, again to reflect a
typical experimental value for CO oxidation on platinum. We can also obtain the
distribution of nearest-neighbor AB pairs from the simulations. We denote this by
fi as in Eq. (2). In order to extract a rate coefficient k from the reaction rate in
Eq. (5), we divide by the quantity

N, = (2L)? Z OmPn, (7)

mmn

-where m and n are nearest-neighbor pairs of sites. This sum is simply the prob-
ability of finding a nearest-neighbor AB pair per nearest-neighbor pair of sites on
the lattice. Another reaction rate coefficient, ko can also be obtained by dividing
the reaction rate by 20,40, i.e. the probability of finding a nearest-neighbor AB
pair per nearest-neighbor pair of sites on the lattice, if the distribution of particles

were random.

We have assumed that only AB pairs of which are nearest neighbor to each

other can react. This is not necessarily the case in a real surface chemical reaction,
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even if the surface were well modeled by a square lattice because the d;istance
between the reactant molecules probably has to be less than one lattice constant
for reaction to occur. This, however, will not change the nature of the results since
the important factor here is the distribution of the local configurations around a
reacting pair, and not whether these pairs can be considered to be nearest-neighbor
pairs. If we assume that the ‘attempt’ frequency v, factor is independent of the
local configuration and is given by vy s™1, then the reaction rate coefficient k is the
probability per vy~! s of an AB product molecule leaving a nearest-neighbor pair
of sites on the lattice, given that the nearest-neighbor pair of sites is occupied by
a particle of species 4 and a particle of species B. A similar interpretatioﬁ applies
to ko. More importantly, we have not built into the model a preexponential factor

which changes with the local configuration and compensates for changes in E, nm.

3. Results and Discussion

The results for the reaction rate coeflicients k and ko are shown in Figs. 1(a)-
(e) and in Figs. 2(a)-(e), respectively. The data points are plotted as cn'cles, and
the lines are merely guides to the eye. Each of these curves is an Arrhenius plot of
the reaction rate coefficient at the fractional coverage of 4 which labels it. In each
figure we have noted the value of the lateral interaction E4_p between species A
and species B that is used in the simulations. The difference between k and ko
“can be seen immediately by comparing the corresponding curves in Figs. 1(a)-
(e) and Figs. 2(a)-(e). This arises from a non-random distribution of particles
on the lattice. The fact that the distribution on the surface is not random can
be observed clearly by plotting the ratio N,./20,40p as a function of temperature.
This is shown in Figs. 3(a)-(c) in which each curve is a plot of N,/2040p as
a function of temperature for values of the interspecies lateral interaction E4_p
equal to 2 kcal/mol, zero and —2 kcal/mol. A value of unity for the quantity

N, /20 460p implies a random distribution of particles on the surface. We have not
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shown the results of simulations for which E4_g =1 kcal/mol and simuiatibns for
which E4_p = —1 kecal/mol, but the trends are the same as in Figs. 3(b) and 3(c)
respectively. Again, the lines are merely guides to the eye. Each curve is labeled
by the fractional coverage of A used in the simulations. As expected, a repuisive
interaction between A and B decreases the probability of finding nearést‘-néighbor
AB pairs and an attractive interaction between A and B increases that probability.
However, even though there is a significant difference between the values of k and
ko at each temperature and fractional coverage of A, the trends in each of the
Arrhenius curves in Figs. 1(a)-(e) are the same as the corresponding curve in Figs.
2(a)-(e). This is important since the quantity N, is not experimentally aécessible,
and in analyzing experimental data the reaction rate coefficient ko is frequently
used. At least for the model investigated here, the use of kg rather than k does
not lead to qualitatively d.ifferent behavior of the parameters E and k(%) extracted
from the Arrhenius plots. It should also be noted that the Arrhenius plots in Figs.
(la-c) and Figs. 2(a)-(c) are rather well approximated by straight lines, whereas
those in Figs. 1(d,e) and Figs. 2(d,e) are not (vide infra). | '

The reaction rate, when written in the form of Eq. (2), clearly separates the
dependence for each type of local configuration into a ‘topological’ factor f; and an
‘energetic’ factor E;. We have noted earlier that in our simulations the preexponen-
tial factor »; for each type of local configuration has been set equal to a constant
“vg. Indeed, E; and v; may be more accurately termed dynamic factors because, for
a given local environment the values of E; and v; are determined by the dynamics
of the elementary bimolecular reaction. On the other hand, f; may be more accu-
rately termed a thermodynamic factor, since it is determined only by the st#tistics
of the overlayer. Such a clear separation is possible only when the tfmesca.les of .
the dynamics of the elementary reaction and the dynamics that govern the relax-
ation of the overlayer configuration are vastly different. Generally, the bimolecular

reactions occur on a much shorter timescale than the relaxation of the overlayer
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configuration. However, even when this is the case in order to obtain a complete
picture of the effect that the statistics of the overlayer configuration has on a surface
reaction, it is necessary to be able to measure separately the ‘topological’ factors
and the energetic ‘factors.” This separation can easily be achieved in a computer
simulation, but it is not readily performed in an experiment. Indeed, the difficulty
of experimentally obtaining, for instance, the nearest-neighbor pair correlation cou-
pled with the parametrization implicit in Eq. (1) render the interpretation of the

quantities £ and k(°) obtained from an Arrhenius plot difficult.

Using the parametrization deﬁped by Eq. (1) it is possible to extract the
effective activation energy F and the effective preexponential factor k(%), Note tHat
we have simply set the preexponential factors v; for all types 6f local conﬁ'gura.tions
to be equal to vy. In the simulations, we set vy equal to umty Therefore,l values
of k(%) of unity would be considered ‘normal.’ The values of E obtained from sim-
ulations in which E4_p is zero, from simulations in which E4_p = 2 kca.l/mol
and from simulations in which E4_g = —2 kcal/mol are plotted as functions of
the fractional surface coverage of 4 in Figs. 4(a)-(c), respectively. For eacﬁ value
of E4_p, we have obtained the values of E and k(%) for three different ranges of
temperatures. For the temperature range of 300 to 340 K, the résults are plotted as
circles; for the temperature range of 340 to 360 K, the results are plotted as crosses;
and for the temperature range of 360 to 400 K, the results are plotted as squares.
‘The lines are guides to aid the eye. The corresponding results for the preexponen-
tial factor k(%) are plotted in Figs. 5(a)-(c). Consider first the case in ‘which we
have set the interspecies lateral interaction E4_p to be zero. The results %or this
case are shown in Figures 4(a) and 5(a). Note that even though E4_jp is zero, there
are repulsive lateral interactions between the particles of species A. Hence, if the
distribution of the particles on the lattice were completely random, the activation
energy for the elementary bimolecular reaction should decrease linearly with the

fractional coverage of A. At zero fractional coverage of 4, the activation energy
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will be 22 kcal/mol; and at a fractional coverage of A of 0.8, it will be 12 kcal/mol.
Hence, if the overlayer configuration were random the activation energy in this
case would be given by a straight line from 22 kcal/mol at zero coverage to 12
kcal/mol at a fractional coverage of 0.8. As may be seen in Fig. 4(&), the value
of E does not decrease so fast as would be expected if the particles were randomly
distributed on the surface. This indicates that even though the equilibriuﬁx phase
for the preadsorbed overlayer of A is a disordered lattice gas, there is some cor-
relation between the positions of the sites occupied by the particles of species A.
This correlation is such that the nearest-neighbor sites to a particle of species 4
are not so likely to be occupied by another particle of species A as would obtain if
there were no correlation. This is to be expected since the lateral interactions bet-
ween particles of species A are repulsive. As the fractional coverage of A increases,
the difference between the activation energy expected and the activation energy
observed becomes less because the lattice becomes more crowded and the differ-
ence between the actual configuration on the surface and a random distribution
diminishes. Hence, the configurational entropy of the overlayer is less than the
entropy for a random configuration but approaches this latter quantity when the

fractional coverage of 4 increases.

If we now consider the case in which the lateral interaction between A and
B is repulsive, we obtain the results plotted in Figs. 4(b) and 5(b). Again, at low
fractional coverages of A, the observed activation energy is higher than the acti-
vation energy which would be expected if the overlayer configuration were random
and if there were no interspecies lateral interactions. However, values of the acti-
vation energy given by the straight line between 22 kcal/mol at zero coverage and
12 kcal/mol at a fractional coverage of 0.8 is higher than the observed activation
energy for fractional coverages of A above 0.4. This is due to the interspecies lateral
repulsion of 2 kcal/mol used here. In this case the value of E at low fractional cover-

ages of A depends more strongly on the temperature than the case in which E4_p
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is zero. If we recall that here the lateral interactions between A and B are repulsive,
the temperature dependence can be understood. As the temperature is raised, the
coverage of B decreases, because of a higher desorption rate, but the Boltzmann
factor for the interaction energy of an AB nearest-neighbor pair increases. The first
factor tends to decrease the average number of nearest-neighbor particles of species
B for each particle of species A while the second factor tends to increase this num-
ber. The temperature dependence of the activation energy observed in Fig. 4(b)
can be understood as arising from the competition between these two factors. The
activation energy at a fractional coverage of A of 0.1 is lowest for the temperature
range of 360 to 400 K. For the temperature range of 340 to 360 K, the activation
energy is highest, and it decreases by a small amount for the temperature range of

360 to 400 K.

For both the case in which E4_p is zero and the case in whic‘hb E,;_B =2
kcal/mol, the trends in the effective activation energy can be understood simply
in terms of the average local configuration. However, we have not considered the
trends in the effective preexponential factor k(°) which, has a much Smaller range
of values in these cases than in the case in which E4_p = —2 kcal/mol. Also
note that all the values of k shown in Figs. 5(a) and 5(b) are close to ﬁnity, in
contrast to some of the values of k(®) shown in Fig. 5(c). Considering the effective
activation energy plotted in Fig. 4(c) and the effective preexponential factor plotted

“in Fig. 5(c), it can be seen that large variations in both E and k(%) as a function
of the fractional coverage of A occurs and the variations in k(%) compensate for the
variations in E. Indeed, the results for the temperature range of 340 to 360 K give
typically observed ranges of variations of E and k(°) for CO oxidation reactions on
the late transition metal surfaces. The effective activation energy decreases from
approximately 26 kcal/mol at a fractional coverage of A of 0.1 to approximately 9
kcal/mol at a fractional coverage of A of 0.6. At the same time the preexponential

factor decreases from approximately 102y, to approximately 10~ 7y, over the same
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fractional coverage range of A. The quantity vo is the ‘normal’ preexponential
factor for the elementary bimolecular reaction between an adsorbed particle of 4
and an adsorbed particle of B. This is in rather close agreement with the observed
compensation effect in the oxidation of CO on Pt(110)-(1x2) (43). However, it can
be seen that for the temperature range 300 to 340 K, the value of E that is obtained
from the Arrhenius plots has a value as high as approximately 46 kcal/mol when
the fractional coverage of A is 0.1. For the same temperature range, it can be seen
in the Arrhenius plot of Fig. 1(e) that a high effective activation energy and a high
effective preexponential factor are also obtained for a fractional coverage of A of

0.2.

If we consider local configurations of a nearest-neighbor AB pair the highest
activation energy E; that is possible is 32 kcal/mol. In order to explain the anoma-
lously high value of E obtained for the case in which E4_p = —2 kcal/mol, it is
necessary to compare the distribution of local configurations for the three different
values of E4_p. In Figs. 6(a)-(c) we plot these distributions as a function of the
lateral interaction energy. In each of these figures, we plot the distributions at
various temperatures obtained from simulations in which the fractional co*rerage of
A is 0.4. The temperatures range from 320 to 400 K. Each curve is labeled with its
corresponding temperature, and each figure is labeled with the value of E4_p used
in the simulations. Each distribution is the result of only one simulation. It can be
seen that while the distributions in Figs. 6(a) and 6(b) do not change significantly
with temperature, the distribution in Fig. 6(c), the case in which E4_p = —2
kcal/mol, changes very significantly indeed with temperature. As the temperature
is steadily decreased, a steadily larger fraction of nearest-neighbor AB pairs can
be found in local configurations for which the activation energy E; is high. This
is due to the increased adsorption of particles of species B as the temperature is

decreased. Similar features are observed for the distributions at other values of the

fractional coverage of A.
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From Eq. (2), it is clear that a temperature dependence in the distribution
of local configurations will give rise to a temperature dependence in k (or ko)
which arises solely from ‘topological’ effects. This can be clarified by approximating
the distribution of local configurations by delta-functions. For instance, iVVG c#n
approximate the distribution at 400 K by a delta-function at an activation'ener.gy
of 24 kcal/mol and the distribution at 340 K by a delta-function at 27 kéa.l/mole.
If these two data points were used in an Arrhenius plot, as shown schematically in
Fig. 7, the effective activation energy F is approximately 44 kcal/mol. This value
is higher than the maximum activation energy that can be expected by considering
only the lateral interactions between the particles. The discrepancy is due to the
‘extra’ temperature dependence that is introduced into the Arrhenius plot as a
result of the temperature dependence of the distribution’of local configurations
observed in Fig. 6(c). The corresponding effective preexponential factor k(%) is
approximately 7 x 101%. Therefore, it is clear that intrepreting the quantity
k(®) as an ‘attempt’ frequency can be quite incorrect when there is a tenipera,ture
dependence of the overlayer configuration. Such a temperature dependence can
result in an observed value of k(%) which is much larger than the ‘normal’ value of

1035~ simply because of the use of the Arrhenius parametrization in Eq. (1).

The distribution of local configurations is approximately independent of the
temperature for the simulations in which E4_p is either zero or repulsive and, thus,
the ‘average’ activation energy in each of these cases is approximately independent
of the temperature. When the interspecies interaction is zero, both the effective
activation energy F and the effective preexponential factor decreases vivith‘ coverage,
although the change in E is dominant. The change in k(°) is less than one order
of magnitude from the highest value to the lowest value. Howevef, as we have
discussed earlier, the configuration of the preadsorbed overlayer of A is not fa.ndom

‘but tends towards randomness as the fractional coverage of A is increased. Thus, at

low fractional coverages of A the configurational entropy of the overlayer is higher
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than the value that would be expected if the configuration were random. Therefore,
there would be a decrease in the preexponential factor as the fractional coverage
is increased. This effect is not large because the change in the configuration of the
overlayer is not large, and accounts for the general trend, observed in Fig. 5(a), of

!

k(®) decreasing with an increase in the fractional coverage of A.

When the interspecies interaction E4_p is repulsive, we have noted the slight
temperature dependence that arises in the activation energy at low fractional cov-
erages of A. Consider the results for the temperature range of 300 to 340 K by
comparing the corresponding curves in Figs. 4(a) and (b). The activation energy
is lower in Fig. 4(b) than in Fig. 4(a) for all fractional coverages as a feéult of
the interspecies repulsive interaction that occurs for Fig. 4(b). If we consi;ier the
fractional coverages of 0.1 and 0.2, it can be seen the difference in the activation
energy is larger for the fractional coverage of 0.1. This is to be expected‘ because
at a fractional coverage of 0.1, the number of nearest-neighbor particles of species
A for each site is lower and, consequently, the probability of occupﬁtidn of each
vacant site (after preadsorption of 4) by a particle of species B is h.ighér. There-
fore, there is a larger number of nearest-neighbor particles of species B for each
particle of species A at a fractional coverage of 0.1 than at a fractional coverage
of 0.2. Now, assume that the effective preexponential that is obtained for the case
in which E4_p is zero is the same at these two fractional coverages. Then the

_decrease in the activation energy E implies that at both fractional coverages the
intercept on the ordinate of the Arrhenius plot is lower for the case in which E4_g
is repulsive than for the case in which it is zero. But the decrease in the intercept
for the fractional coverage of 0.1 is larger. Thus, there is an increase in the value
of k() when the the fractional coveré,ge of A increases from 0.1 to 0.2, as seen in

Fig. 5(b). Similarly, the trend at higher fractional coverags can be understood.

The range of the variation in the effective preexponential k(°) that is observed

in Figs. 5(a) and (b) is at most one order of magnitude. This is not the case,



-172 -

however, when E,4_p is attractive since in this case the local distribution is a
strong function of the temperature. The Arrhenius plots for simulations with these
attractive values of the interspecies interaction would thus be expected to be rather
nonlinear as was noted earlier and can be seen in Figs. 1(a)-(e) and Figs. 2(a)-
(e). Hence, we conclude that it is the variation of the overlayer éonﬁgﬁration
which gives rise to the compensation effect that we have observed in the simula-
tions for which E4_pg = —2 kcal/mol, cf. Figs. 4(c) and 5(c). The results from
these simulations are qualitatively the same as the results of simulations for which
Es_p = —1 kcal/mol, and the same conclusion applies for that case as well. A
compensation effect is observed in both these cases because of a change in the dis-
tribution of local configurations, the latter of which is caused by an increase in
the fractional coverage of species B ﬁhen the temperature is reduced. In Fig. 8
we sho;vv schematically the general situation in which a compensation eﬁ'éct :dfising
from the temperature dependence of the overlayer configuration can be expected.
In a steady-state bimolecular reaction, the fractional coverages of both reacting
species are constant. If the reaction rate constant is measured over a range of tem-
peratures, the Arrhenius plots of such results are shown by the solid liiles a and
b, where each line denotes the results obtained at constant fractional coverages of
the reacting species. For the case in which there is no temperature dependence of
the overlayer configuration and, consequently, no temperature dependence of the
effective activation energy at a fixed fractional coverage, the effective preexponential
factors obtained by extrapolation of the two lines a and b will be the same. We have
ignored a possible dependence of the configurational entropy of the overlayer on the
fractional coverage which may lead to a small compensation effect as was observed
for the case in which E4_p is zero. If, however, there is a temperature dependence
of the ovérla.yer configuration then the effective activation energy is expected to
change with temperature for each Arrhenius plot. The Arrhenius plots that would

be expected to be obtained in this case is denoted by the curves a* and b*. We have
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assumed that at high temperatures, the temperature dependence is smaller than at
low temperature so that the curves ¢* and b* asymptotically approach the straight
lines a and b respectively. If there is a stronger dependence of the activation energy
on the temperature for the case denoted by line @ than for the case denot]ed by
line b, then a compensation effect can be observed as the extra.poila.tibnsj denoted
by the dotted lines show. We would expect from thermodynamic considerations
that the lower activation energy indicates an overlayer conﬁguratioh which Has a
lower correlation between the positions of the particles, i.e. a configuration which is
‘more’ random. The overlayer configuration in this case would be expected to show
a smaller temperature dependence than an overlayer configuration in which there
are stronger correlations between the particle positions. Therefore, in Flg 8 we
expect the temperature dependence to be greater for the case denoted by a than for
the case denoted by b. Thus, in general, when there is a temperature dependence
in the activation energy, we would expect it to result in a compensation effect. The
same effect can also be expected to occur for desorption from an overlayer consist-
ing of only one species. Judging from the extremely large variation of the effective
preexponential factor and the effective activation energy that we have obtained for
Es_p = —2 kcal/mol, the magnitude of this attractive interspecies lateral inter-
action is evidently larger than the lateral interaction between CO molecules and
oxygen atoms on the Pt(110)-(1x2) surface (42). However, we conclude that the
typically observed compensation between E and k(°) in numerous experimental
studies (8-13) can result from the dependence of the overlayer statistics upon the

temperature of the system.

As we noted earlier, we have focussed on the initial reaction rate and have
not allowed the configuration of the preadsorbed A to relax. These constraints on
the simulations should not affect the conclusions drawn here, however, bécause by
allowing the adsorbed overlayer to relax, the distribution of local configurations will

still be a function of temperature and coverage. Indeed, as the temperature and
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coverage are changed such that the equilibrium phase of the system changes from
a disordered lattice gas to an ordered phase, the change in the distribution of local
configurations will be even larger than in our simulations which did not allow the

configuration of species A to relax when B is adsorbed.

4. Conclusions

We have investigated using Monte-Carlo sampling a La.ngmuir‘-HinsheIWOOd
reaction between two species A and B, of which A is irreversibly adsorbed to the
surface and immobile, whereas B is mobile and can desorb from the surface at
the temperatures of interest. In the simulations, which are performéd on square
lattices, nearest-neighbor and next-nearest-neighbor lateral interactions a.fe allowed
between pairs of particles of species:A. Nearest-neighbor lateral interactions are
allowed between AB pairs, but pairs of particles of species B are assumed not to
interact with one another. These features, while not essential to the conclusions
drawn, were chosen to be typical of the important catalytic reaction between CO
and oxygen on the platinum metals. From the simulations we were able to calculate
the reaction rate and to extract reaction rate coefficients. We obtained two different
rate coeficients & and ko, the former of which is the reaction rate divided by the
number of nearest-neighbor AB pairs, while the latter of which is the reaction
rate divided by the expected number of nearest-neighbor AB pairs if the particle

“distribution on the lattice were random. Although the values of k and ko differ
significantly because of the non-random distribution of particles of the lattice, it
was found that the trends in k and kg as a function of temperature and coverage are
similar. From Arrhenius plots of the reaction rate coefficient R, we extracted the
dependence of the effective activation energy E and the effective preexponential
factor k(®) as a function of the coverage over various temperature ranges. We
observed that in the cases in which the distribution of the local configurations

around a nearest-neighbor AB pair changes significantly with temperature, there



-175 -

is a compensation effect between E and k(°). We conclude that this behavior is
typical of systems in which the overlayer configuration changes with temperature
and coverage, and that such changes generally result in the compensation between
the variations of E and of k(°) with coverage that is observed in both surface

chemical reaction (43) and thermal desorption (8-13).
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Figure Captions

Figure 1(a)-(e): Arrhenius plots for the reaction rate coefficient k are shown here.
The abscissa is the reciprocal of the temperature in units of K~!. The ordinate is
k, which is the probability per v, ! s of a product molecule AB leaving a nearest-
neighbor pair of sites on the lattice, given that the nearest-neighbor pair of sites is
occupied by a pair of reactant particles A and B. The interspecies lateral interaction
E4-p is shown in each panel, and each curve is labeled with its corresponding
fractional coverage of A. For all simulations, the lateral interactions for pairs of
particles of species A are 2 kcal/mol for nearest-neighbor pairs and 1 kcal/mol for
next-nearest-neighbor pairs. The data points are denoted by circles and the lines

are guides to the eye.

Figure 2(a)-(e): Arrhenius plots for the reaction rate coefficient ko are shown here.
The abscissa is the reciprocal of the temperature in units of K1, The ordinate is
ko, which is the probability per v s of a product molecule AB leavihg a nearest-
neighbor pair of sites on the lattice divided by the probability that: the nearest-
neighbor pair of sites is occupied by a pair of reactant particles A and B if the
particle distribution on the surface were random. The interspecies lateral interac-
tion E4—p is shown in each panel, and each curve is labeled with its corresponding
fractional coverage of A. For all simulations, the lateral interactions for pairs of
‘particles of species A are 2 kcal/mol for nearest-neighbor pairs and 1 kcal/mol for
next-nearest-neighbor pairs. The data points are denoted by circles and the lines

are guides to the eye.

Figure 3(a)-(c): The ratio of N, to 2646p is plotted as a function of temperature.
Each curve is labeled by the fractional coverage of A4, and the intersi)ecies lateral
interaction E4_p is shown in each panel. For all simulations, the lateral interactioné
for pairs of particles of species A are 2 kcal/mol for nearest-neighbor pairs and 1

kcal/mol for next-nearest-neighbor pairs. The data points are denoted by circles
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and the lines are guides to the eye.

Figure 4(a)-(c): The effective activation energy E for reaction obtained from the
Arrhenius plots in Fig. 1. The abscissa is the fractional coverage of species 4 and
the ordinate is the effective activation energy in units of kcal/mol. The activation
energy for reaction for an isolated pair of reactant particles has been set equal to
22 kcal/mol. The interspecies lateral interaction E4_p is shown in each panel.
For all simulations, the lateral interactions for pairs of particles of species 4 are 2
kcal/mol for nearest-neighbor pairs and 1 kcal/mol for next-nearest-neighbor pairs.
Each curve is labeled by the range of temperature of the data points used to extract

the effective activation energy. The lines are guides to the eye.

Figure 5(a)-(c): The effective preexponential factor k° for reaction obtained from
the Arrhenius plots in Fig. 1. The abscissa is the fractional coverage of species A
and the ordinate is the logarithm (base ter) of the effective preexponential factor
in units of vy, the preexponential factor for the elementary bimolecular reaction.
The interspecies lateral interaction E4_p is shown in each panel. For all simu-
lations, the lateral interactions for pairs of particles of species A are 2 kcal/mol
for nearest-neighbor pairs and 1 kcal/mol for next nearest-neighbor pairs. Each
curve is labeled by the range of temperature of the data points used to extract the

effective activation energy. The lines are guides to the eye.

Figure 6(a)-(c): The distribution of local configurations for nearest-neighbor AB
pairs of particles is plotted as a function of the lateral interaction energy. The dis-
tribution has been normalized to unity. The interspecies lateral interaction strength
is shown in each panel, and each curve is labeled by the temperature at which th¢
distribution is obtained. Each distribution is the result of only one simulation. The

lines are guides to the eye.

Figure 7: A schematic diagram of the effect of the temperature dependence of

the activation energy for the case in which E4_p is —2 kcal/mol. The abscissa
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is the reciprocal of the temperature and the ordinate is the natural logarithm of
the reaction rate constant. We have approximated the distribution of activation
energies E; by a delta-function at 27 kcal/mol at a temperature of 340 K and a delta-
function at 24 kcal /mol at a temperature of 400 K. The two circles denote the results
of the simulations, and the line labeled a indicates the Arrhenius construction to
obtain the effective activation energy and the effective preexponential factor for this

temperature range given the two data points.

Figure 8: A schematic diagram of the reaction rate constants over a range of tem-
peratures at two different fractional coverages. The abscissa is the reciprocal of the
temperature and the ordinate is the natural logarithm of the reaction rate cbnstant.
The lines labeled a and b are the reaction rate constants, each at constant but dif-
ferent fractional coverages of the reacting species, when there is no temperature
dependence of the overlayer configuration. The curves labeled a* and b* are the
reaction rate constants when there is a dependence of the overlayer configuration
upon the temperature. As we argue in the text, the temperature dependence is
generally greater for the case denoted by a than for the case denoted by b. The

Arrhenius constructions indicated by the broken lines show a compensation effect.
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Figure 2(a)
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Figure 2(c)
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Figure 2(d)
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Figure 7
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Figure 8
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Chapter 7.

Reactant Segregation in a Langmuir-Hinshelwood Surface Reaction.

This chapter has been submitted as a paper by H.C. Kang, M.W. Deem and W.H.
Weinberg, to The Journal of Chemical Physics.
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ABSTRACT

We have performed Monte-Carlo simulations of a Langmuir-Hinshelwood reac-
tion between two species A and B adsorbed on a square lattice. Adsorption of each
species occurs when a gas-phase molecule, either 4 or B, impinges upon a vacant
lattice site. The probability that a molecule impinges upon and adsorbs successfully
into a vacant lattice site per unit time is p,/2 for both species. Desorption is not
allowed and the surface reaction is allowed to occur only between nearest-neighbor
AB pairs. For each nearest-neighbor AB pair, the probability of reaction per unit
time is p,. Particles of both species are allowed to migrate by hopping to vacant
nearest-neighbor sites, where the probability of a hop per unit time is p,,. In all
these simulations we have set p,, to be unity, and varied p, from 0.01 to unity.
We have also set p, = p,/5 for all the simulations in order to maintain moderately
low fractional surface coverages. ‘Islanding’ of each type of particle occurs even
for the lowest value of p,.. For the range of values of p, used, the ‘islands’ grow
to a finite steady-state size. We also found that the ‘islands’ that are formed are
not fractal. It is possible to define quantities describing the process of ‘islanding’
which are analogous to the order parameter and the temperature in thermal phase
transitions. We find that the exponent for the order parameter in this model is a

mean-field exponent.



- 207 -

1. Introduction

Recently, there has been considerable interest in Monte-Carlo simulations of
surface reactions (1-14). The essential difference between Monte-Carlo simula-
tions and the rﬁore traditional statistical or kinetic (15-21) approaches to studying
surface reactions is that in Monte-Carlo simulations the exact microscopic config-
urations of the reacting particles on the surface are used, whereas in the earlier
approaches this information is integrated over and approximated by macroscopic
averages of, for instance, the number of nearest-neighbor reactive pairs. The qua-
sichemical approximation has also been used to calculate the rates of reaction and
desorption of interacting lattice gases (22-26). In such calculations an approxi-
mation is made in order to account for nearest-neighbor pair correlations. Clea.rly,
when the adsorbate particle density is not homogeneous, i.e. when there is ‘island-
ing,’ the microscopic configurations will be important in determining the rates of
reactions occurring on the surface. One of the reasons for the formation of ‘slands’
or ordered superlattice structures in the adsorbed layer is the existence of lateral
interactions, either through the substrate or directly between the adsorbed parti-
cles. When this occurs, thermally driven order-disorder phenomena can occur also,
and the configuration of the overlayer is strongly dependent upon the temperature
and the fractional surface coverage of the adsorbed particles. However, even when
‘there are no lateral interactions between the adsorbed particles, the configurations
of the adsorbed particles can be quite different from the spatially random occupa-
tion of sites that might have then been expected. Such spatial inhomogeneities can
result from kinetic phase transitions (27,28) and, in the context of surface chem-
ical reactions, have been investigated recently by both Monte-Carlo simulations

(29-33) and mean-field methods (34).

One surface chemical system which has been investigated is the following
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Langmuir-Hinshelwood reaction scheme:

A(g) +V — A(a), (1)
B;(g) + 2V — 2B(a), (2)

and
A(a) + B(a) — AB(g), (3)

where (g) denotes gas-phase particles, and (a) denotes adsorbed particles. Vacant
sites on the surface are denoted by V. In the limiting case of infinitely fast reaction
with zero desorption and diffusion, this reaction system has been studied by Monte-
Carlo simulations (29) and mean-field approximations (34). The key pa.r.a.meter
under these conditions is the rate of adsorption y4 of A(g) relative to tl;e rate
of adsorption (1 — y4) of By(g). The Monte-Carlo simulations found that reactive
steady states are stable only in the range 0.389 < y4 < 0.525 (29). When yA is less
than approximately 0.389, the surface poisons with B, the poisoning being a second-
order transition. On the other hand, when y, is greater than approximately 0.525,
the surface poisons with A, the poisoning in this case being a first-order transition.
The mean-field calculations, at the level of site and pair-approximations, accurately
reproduce the position of the first-order transition. Although the second-order
transition is not described so well, higher level approximations would probably be
satisfactory (34). The nature of poisoning in this system has recently been studied
.under conditions where desorption is allowed, and these results will be reported

elsewhere (35).

Another Langmuir-Hinshelwood reaction system which has been investigated

using Monte-Carlo simulations (31-33) is the following:
A(g) +V — A(a), (1)

B(g) +V — B(a), (4)
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and

A(a) + B(a) — AB(g). (3)

It has been shown that a reactive state is stable only when y4 is 0.5 (32,33). Even
in this reactive state, with infinitely fast reaction and no desorption, the ‘islands’ of
A and B never reach a finite steady-state size, i.e. these ‘islands’ grow indefinitely
with time. Monte-Carlo simulations performed on a (1000x1000) lattice showed that
after 6000 Monte-Carlo steps per site the ‘islands’ of 4 and B, although compact
in the core, have a boundary that is not compact (32). A fractal dimension of
approximately 1.8 was reported, and it was suggested that the ‘islands’ do not
have a dimension of two because of the cascade of length scales that result from
clusters of all sizes connecting to form a large ‘island.” This Langmuir-Hinshelwood
system has also been simulated with infinitely fast reaction and non-zero desorption
with Monte-Carlo techniques on lattices of size (32x32) (31). It was found that for
sufficiently high desorption rates the stable surface configuration is one in which the
fractional coverages of 4 and B are equal. Presumably, the sizes of the ‘islands,’ if
they are formed at all, are not large. However, for sufficiently low desorption rates,
the stable configuration on the surface is one in which there is a preponderance of

either 4 or B,

The ‘islanding’ that occurs in the Langmuir-Hinshelwood systems described
above are the result of kinetic phase transitions. In order to observe such spatial
“inhomogeneities in the fractional surface coverage, it is necessary that there be
fluctuations which allow the system to ‘probe’ its neighborhood in configurational
space. The source of the fluctuations in these simulations is the stochastic nature
of the adsorption and reaction events. In analogy to thermal phase transitions in
Ising systems, reaction corresponds to a ferromagnetic interaction since it is the
surface chemical reaction that removes unlike nearest-neighbor particle pairs from
the lattice and favors the ‘islanding’ of like particles. This increases the degree of

order in the system. In this paper we attempt to include a source of disorder in the
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description of the system. This is accomplished by allowing the particles to diffuse
on the surface. A competition occurs between reaction which leads to ordering and
diffusion which leads to the decay of spatial inhomogeneities. A higher ratio of
the rate of reaction to the rate of diffusion would be expected to lead to a greater
degree of order. We study the influence of this competition on the surface chemical

reaction rate.

2. Algorithm and Finite Size Effects

| The surface is modeled by square lattices of sizes ranging from (50x50) to
(300x300). Periodic boundary conditions are used, and we always begin with a
completely vacant lattice. The simulations take into account adsorption, reaction
and diffusion. Two types of molecules, A and B, are present in the gas phase,
and each type of molecule is adsorbed onto a single lattice site with a probability
of ps/2 in each Monte-Carlo step; Ounly nearest-neighbor pairs of AB can react,
and the probability of reaction is p, in each Monte-Carlo step. Both types of
particles can migrate on the surface by hopping from one lattice site to a vacant
nearest-neighbor lattice site. The probability of migration is p,, in each Monte-
Carlo step. The simulations are performed as follows. First, a site is picked at
random. If the site is occupied, then one of its four nearest-neighbor sites is picked
at random. If the nearest-neighbor site is vacant, then the particle in the site picked
~first hops into this nearest-neighbor site with a probability of p,,. If the nearest-
neighbor site is occupied with a particle of type different from that occupying the
site picked first, then reaction occurs with a probability of p.. If the two particles
are of the same type, the configuration is not altered and the procedure is repeated
from the beginning. If the site picked first is vacant, then a particle of type A
is adsorbed there with a probability p,/2 and, similarly, a particle of type B is
adsorbed there with a probability of pa /2. In the results presented here, time is in

units of Monte-Carlo steps/site, one Monte-Carlo step/site being LxL iterations of
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the above procedure, where (LxL) is the size of the lattice used.

Desorption is not allowed in this model. Hence, any finite-sized lattice that
becomes completely occupied by particles of either type A or type B will be poi-
soned irreversibly. This, however, need not be the case for a finite-sized sublattice
embedded in an infinite lattice. Simulations have been performed on (LxL) lattices
with periodic boundary conditions in order to study the behavior of (LxL) sublat-
tices embedded in an infinitely large lattice. In order to ensure that the simulations
are performed on sufficiently large lattices that this goal is realized, it is necessary
to check for finite-size effects. In particular, we examine the effects arising from
the poisoning of a finite-sized lattice. Consider the process of adsorption. Since a
particle of either type 4 or type B is chosen with equal probability, the difference
n4 —np between the number of type 4 particles adsorbed n4 and the number of
type B particles adsorbed np can be treated as a random walk. The total number
of adsorption events nr plays the role of time in this case. Since the simulations
always start with completely vacant lattices and each reaction involves one 4 and
one B particle, we obtain Ny —~ Ng = ny —np, where N4 and Np are the numbers
of particles of type A and type B, respectively, on the lattice at any particular time.
For an infinitely large lattice which is initially vacant, the probability of occurrence

of a configuration in which N4y — Ng = N after np adsorption events is given by
P(6N,nr) = (1/27n7)  2exp[—(6N)? /2n7). (5)

However, for an (LxL) lattice, where L is finite, irreversible poisoning of the entire
lattice implies that the random walk is performed in a domain with perfectly ab-

sorbing walls situated at §V = +L2 = +z. This is described by

P(§N,n7) =271 E exp(—v?m?nr/82%)cos(vré N/2z), (6)

v=1

where the sum is over odd integers v.
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By comparing these two expressions for P(§N, nr), the effects of the ﬁﬁite
size of the lattices can be assessed. We plot these equations in Fig. 1, where in each
plot the abscissa is (N4 — Np)/L? and the ordinate is the probability of occurrence
of such a state. The size of the finite lattice is L? = 2, and the total number of
adsorption events nr is indicated for each plot. We begin to observe finite size
effects, i.e. deviations between the two equations, for lattices of size smaller than
approximately (100x100). The values of ny used in calculating the curves in Fig. 1
are 4000 L2. In all our simulations, the runs are allowed to reach 4000 Monte-Carlo
steps/site; hence in the simulations the number of adsorption events is smaller than
that used in obtaining the results of Fig. 1. Consequently, the effect of the finite
size of the lattice is even less pronounced in the simulations that are presented in

the next section.

3. Results and Discussion

A. Deflnitions and Lattice Size Effects

In the limit of infinitely fast diffusion and an infinitely large lattice, the steady-
state fractional surface coverages are given by 84 = 5 = 6 and 4p, 0% = p,a(1 — 26).
In the simulations that we performed, p, was set equal to p,/5. With this choice,
the fractional surface coverages in the limit when p,, is infinitely larger than p,
are 4 = 6p ~ 0.179. This ratio of p,/p, is chosen so that a moderately low
coverage is obtained in the limit of infinitely fast diffusion. If a higher probability
of adsorption were chosen, the possible formation of percolating .‘islla.nds’ when
the ratio p,/pm is increased would have to be considered (32). In the limit of
infinitely fast diffusion, the particles on the surface are ‘well-mixed’ and the rate of
reaction for each site is 4p,040p per Monte-Carlo step/site. When p,./p, — o0, on
the other hand, the configurations of particles on the surface are not homogeneous.

‘Islands’ consisting of each kind of particle form and grow indefinitely, i.e. any finite
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region of an infinitely large surface will ultimately become poisoned by particles of
either type A or type B (32). In order to quantify the behavior of this System
between the limits of p,/pm = 0 and p,/pm — oo, we define an order parameter
¢, where ¢ = (Nasa + N — Nag)/(Naa + Npp + Nap). The quantitj Nxy
is the number of nearest-neighbor pairs of particles of type‘ XY. The value of
¢ is zero when the particles occupy sites selected at random and tends to unity
when ‘islands’ of each type of particle become infinitely large. The order paranieter
that we have defined can be regarded as a “chemical” analogue of the magnitude
of the magnetization of a ferromagnetic solid. In addition to monitoring ¢ and
hence the degree of order of the lattice-gas configuration, it is also of pfactical
interest to study the dependence of the reaction rate on the value of p, /Pm. We
define a quantity I = (Na4 + Ng)/(Nap + Nav + Ngv), whe;e V denotes a
vacant site. This quantity is the ratio of unreactive occupied nea,rest-neighbof
pairs to potentially reactive nearest-neighbor pairs. If the ‘“islands’ that are formed
have a dimension of two, then [ is the ratio of the total area occupied by the
‘islands’ to the total length of the boundaries of the ‘islands.” Hence I would be
proportional to the length scale of the ‘islands’ in the configuration. As mentioned
above, when the rate of migration of the particles is infinitely larger than the rate
of reaction (and a.dsprption), the surface configuration is ‘well-mixed.” When this
is the case, Ngyq = 2L20?4, Npp = 2L2023 and Nap = 4L20,40p; and, as discussed
cearlier, 04 = 0p ~ 0.179 when p,/p, = 5. Thus, in the limit of p,/pm = 0, the
order parameter ¢ is zero and the quantity [ is approximately 0.1225. Hence, for
Pr/Pa = 5 the value of I would range between 0.1225 and infinity, the latter limit

being reached when p,/pm — oo and the ‘islands’ grow indefinitely large.

We performed simulations in which pn,, was set equal to unity and p,/p,, was
varied from 0.01 to unity. Unless otherwise stated, the simulations were performed
on lattices of size (200x200). For the case in which p,/pm = 1, we performed
simulations on lattices of size (50x50), (100x100), (200x200) and (300x300). The
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values of [ as a function of time in Monte-Carlo steps/site for each of these lattice
sizes are plotted in Fig. 2. Each of the curves in Fig. 2 is the average of the results
from ten simulation runs. On a lattice which is sufficiently large that the ‘islands’
are not affected by its finiteness and by the consequent irrevérsible poisoning that
a finite lattice can undergo, the value of ! would be smaller than on a lattice in
which this latter phenomenon affects the simulations. Therefore, when the lattice
size used in the simulations is too small, we can expect the observed value of [
to be too high, i.e. a smaller lattice is more likely to poison complétely than a
larger lattice. As may be seen in Fig. 2 finite-size effects begin to be apparent for
lattices of size (100x100). The finite-size effect for the (50x50) lattice is very clearly
observed. This observation of finite-size effects for lattices of sizes (50x50) and
(100x100) is consistent with the simple analysis discussed in the previous section.
Typic:ﬂ configurations from these simulations are shown in Figs. 3(a.-§d). Each
empty square denotes a particle of type A and each filled square denotes a f)a.rticle
of type B. Blank regions are vacant sites. For the simulation runs from which these
configurations were obtained, the average fractional surface coverages of A and B
are shown in the corresponding figure. These average coverages were obtained
by averaging the coverages at every tenth Monte-Carlo step/site l;etweén 2000
Monte-Carlo steps/site and 4000 Monte-Carlo steps/site for each simulation run.
It can be seen in Figs. 3(c) and 3(d) that the length scale of the inhomogeneity in
the fractional surface coverage is certainly larger than 50 lattice units. This is an
indication that lattices of size (50x50) are not sufficiently large. The average surface
coverages of A and B are seen to be quite different from each other.‘ Indeed the
particular run from which the configuration in Fig. 3(a) is obtained is siowly being
poisoned by particles of type B. These observations apply to va. lesser extent to the
lattices of size (100x100). The results presented in Fig. 2 and a visual inspection of
Fig. 3 indicate that lattices of size (200x200) are sufficiently large that finite-size

effects are avoided in simulations for which p,/pm = 1. In the simulations that we
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performed, p,/pm was varied between 0.01 and unity. Since the length scale of the
spatial inhomogeneities of the fractional surface coverage increases with increasing
values of p, /pm, (200x200) lattices, which do not show significant finite size effects
in simulations for which p,/pm = 1, are sufficiently large for the simulations at the

other, smaller values of p,/ppm,.

B. ‘Islanding’ and Reactivity

Typical configurations for five different values of p,/p. are shown in Figs.
4(a-e). As in Figs. 3(a-d) an empty square denotes a particle of type A and a
filled square denotes a particle of type B. Blank vacant regions are vacant sites.
The values of p, and p,, are shown for each of these conﬁgura.tidns. We also
show the average coverage for the particular simulation runs from which the con-
figurations were obtained. These averages, as in Figs. 3(a-d), were obtained by
averaging the coverages at every tenth Monte-Carlo step/site between 2000 Mbnte—
Carlo steps/site and 4000 Monte-Carlo steps/site. The configurations shown in
Figs. 4(a-e) were obtained at a time of 4000 Monte-Carlo steps/site after startiﬁg
the runs. The initial configuration for all these simulations i§ a completely vacant
lattice. These cbnﬁgurations provide a qualitative picture of the increase in length
scale of the inhomogeneities in the fractional surface coverage at constant p,, = 1
when p, is increased from 0.01 in Fig. 4(e) to unity in Fig. 4(a). The distribution of
‘particles on the lattice in Fig. 4(e) is uniform, at least upon mere visual inspection,
whereas the distribution in Fig. 4(a) is clearly not uniform. If we had set p,/p, to
be larger than 1/5, the ‘islands’ would have been more apparent visually. However,
we did not do this in order to avoid possible percolation of the ‘islands.’ Even if this
did not occur, ‘island’ sizes larger than those obtained in the results presented here
would require larger lattice sizes in order to avoid finite-size effects. Hence, consid-
eration of such effects would be neccesary if simulations with larger values p,/pa

are attempted. The time dependence of the quantity [ for each of these simulations
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is shown in Fig. 5, where each plot is labeled with its corresponding value of p,/py,.
The value of I for p,/pm = 01is lp ~ 0.1225. Each curve in Fig. 5 is the avérage of
[ for ten simulation runs on (200x200) lattices. As would be expected, inci‘easing
Pr/Pm increases the length scale of the ‘islands.’” When p, = 1 and 117,,, = 0, oniy
reaction and adsorption can occur. As a result, the ‘islands’ increase in size indefi-
nitely. In the limit of infinitely fast diffusion, there can be no spatial iﬁhomogeheity
in the surface coverage, and, hence, no “slands’ can be formed. Our simulations
investigate the change in this behavior when p,/p., is increased slightly from zero.
In particular, it is not clear whether the transition from no ‘isIa.nding’ to ‘islanding’
occurs at pr/pm = 0 or at some finite value of p,/pn,. Although it cannot be seén
from an inspection of the configuration in Fig. 4(a), it is clear from Fig. 5 that
even at p,/pm = 0.01 the configuration is not totally random since the value of [ is
larger than lo. This indicates that it is more probable, albeit only slightly, to find
nearest-neighbor particles of the same typé in the configuration in Fig. 4(a) than
in a configuration in which the particles are distributed randomly on the surface.
Thus, the transition from a random distribution to ‘islanding’ probably occurs at
Pr/Pm = 0. Even when the probability of a particle hopping from one site to a
nearest-neighbor vacant site is one hundred times larger than the probability of
reaction of a nearest-neighbor pair, the configuration on a catalyst surface may not
be completely random, and some correction has to be made to macroscopic kinetic
‘equations which assumes that the reaction rate is proportional to ,85. Note that

this is so even when there are no lateral interactions.

When p,/pm — o0, the ‘islands’ grow indefinitely large, and the reactivity of
the catalytic surface diminishes to zero with increasing time. In this case, any finite
sized surface will become completely poisoned by either 4 or B. It is interesting to
ascertain whether the transition from a random distribution to ‘islanding’ can result
in steady-state ‘islands’ of finite size when the parameter p,/pm is not infinitely

large, i.e. when the adsorbed molecules can diffuse. Although the quantity [ is not
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the size of the ‘islands,’ it is a measure of their length scale. As may be seen in
Fig. 5, l apparently reaches a steady value after approximately 2000 Monte-Carlo
steps/site. It should be noted that as the ‘islands’ become larger, the rate of growﬁh
would be expected to slow down. Therefore, in the case in which p,/ p;,, = 1; which
produces the largest ‘islands’ in our simulations, / might still be incre;).sing slowly
at 4000 Monte-Carlo steps/site. However, for this case the rate of adsorption of
particles at each site is approximately 0.1 per Monte-Carlo step/site. Note that this
is not equal to p, because not all the sites on the lattice are vacant. Hence, there is
on average one complete turnover of particles on the entire lattice every ten Monte-
Carlo steps/site. Actually, only the boundaries of the ‘islands’ are reactive, so that
the turnover rate for each of these sites is even higher. Since this is the rate which
governs the motion of the boundaries of the ‘islands’ and, hence, their growth, the
value of [, which does not change appreciably between 2000 Monte-Carlo steﬁ;s/ site
and 4000 Monte-Carlo steps/site, is probably rather close to its steady-state value.
Therefore, we can conclude that for finite values of p,/pm,, the sizes of the ‘islands’
that are formed are finite. It should be noted that finite-size effects woula set in
if these simulations were allowed to run for an indefinitely long time. In that case
the entire lattice would at some point in time become poisoned with either A or B.
This, however, would be an artifact of the finite size of the lattice, and care has to
be taken, as demonstrated earlier, to ensure that the simulations are not performed

for such long times that this affects the results.

In these simulations, the reaction rate was also monitored by counting the
number of AB pairs that actually reacted and were removed from the surface. In
order to quantify the deviation of this measured reaction rate N, ﬁoin the réaction
rate No that would be observed if the configuration on the surface were ‘well-mixed,’
we plot the dependence of N,./Ny on p,/pm in Fig. 6. Even for the sma.llést value
of pr/pm, which is 0.01, there is a deviation from the ‘well-mixed’ limit. Frequently,

rate coefficients for second-order surface reactions are calculated assuming that the
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reaction rate is proportional to §405. However, even when there are no iateral
interactions, it is necessary in systems such as the one simulated here to check and
correct for deviations that result from nearest-neighbor pair correlations ﬁrising
from the chemical reaction itself. A decrease in the reaction rate as a result of
‘islanding’ is not the sole effect of an increase in p,. As the ‘islands’ form and the
reaction rate decreases, there is an increase in the fractional surface coverage of
both A and B. This increase in 84 and 0p results because as p, is increased the
adsorption probability p, increases (36) while the reactivity per pair of adsorbed
A and B particles decreases. The increase in surface coverage is the same for the
two types of particles, and the average value of (§) = (84 + 65)/2 is plotted as a
function of p,/pm in Fig. 7. These values of (f) are the average of ten runs for
each value of the parameter p,. If one wishes to calculate the catalytic reactivity of
the surface, it is necessary to normalize for the increase in reaction rate dﬁe;to this
increase in the fractional surface coverages of A and B when p,/pm is increased.

This is achieved by dividing N, by N,.

When p,/pm is increased, the reaction rate tends to deprease because of the
formation of ‘islands.’ In order to clarify further the effect of ‘islanding’ on the
catalytic reactivity of the surface, we plot in Fig. 8 the dependeﬁce of N,./N,
upon the steady-state value of [~ obtained from Fig. 5. We have defined [ =
(Naa+ NBB)/(NaB + Nav + Npy) and, as discussed earlier, if the ‘islands’ have
‘a dimension of two, then [ is proportional to the length scale of the ‘islands.’ Since
the reaction can occur only at the boundary of an ‘island,’ the reaction rate must
be proportional to the product of two factors: the number of ‘islands’ per unit
area of the surface and the average length of the boundary of each ‘isl:a.nd.’ When
the ‘islands’ that are formed have a dimension of two, the first factor is inversely
proportional to the square of the length scale of the ‘islands,’ and the second factor
is directly proportional to the length scale of the ‘islands.” When this is the case,

the reaction rate would be inversely proportional to the length scale of the ‘islands.’
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It is clear from the results presented in Fig. 8 that N, /N, is proportional to [~1.
Therefore, we conclude that the ‘islands’ formed have a dimension of two. The
scaling relation N,/Ny ~ I~! is observed in all cases except for the datum point
obtained from simulations in which we set p, = 0.01. The conﬁgura.tioﬁ seen in
Fig. 4(a) is a typical configuration for this case. We have noted that even for
this value of p,/pm, the distribution of particles on the surface is nof random since
the steady-state value of [/l; is slightly greater than unity. However, the ‘islands’
formed in this case probably contain too few particles for I to be proportional to
their length scale, i.e. the continuum limit is not yet reached. The conclusion that
the ‘islands’ that are formed in our simulations have a dimension of two is rather
different from the results of recent Monte-Carlo simulations which y1elded a fracta.l
dimension of approximately 1.8 for ‘islands’ that are formed in the limit in wh.lch
reactmn is infinitely fast and diffusion is not allowed (32). However, the cores of
the ‘islands’ that were formed there are in fact compact (32). In companng our
results with the results obtained with infinitely fast reactmn and no dJﬂ'usmn, two
facts should be considered. First, it should be noted that in our simulations steady
states with ‘islands’ of finite sizes are obtained, whereas, in the latter case, the
‘islands’ grow indefinitely with time. Second, the fractional surface covérages in
our simulations reach a steady-state value. This value becomes progressively larger
as pr/pm increases, and for p,/p, = 1.0 it is given by 84 = 6 ~ 0.239. The
dependence of the fractional surface coverage upon p,/p,, is shown in Fig. 7. The
fractional coverage in the case where reaction is infinitely fast increases continuously
with time. As a consequence of the finite steady-state size of the ‘islands,’ it is
not unreasonable that the effective surface tension produced by the reaction of
unlike nearest-neighbor pairs drives the shape of the ‘islands’ to a structure with a
dimension of two. On the other hand, when the fractional coverage is sufﬁciéntly
high, percolation of the ‘islands’ can occur. This will cause a cascade of length

scales that result from the coalescence of clusters of all sizes. The consequence of
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this is the formation of fractal ‘islands.” This was suggested previously to explain
the fractal dimension of approximately 1.8 that was found (32). If we extrapolate
our results to large ! using the scaling relation N,/Ny ~ [-1 (cf., Fig. 8), we find
that the reaction rate goes to zero at some finite value of /. This clearly cannot be
physically meaningful, since the reaction rate would not be zero unless the limit of
infinitely large ! were reached. Therefore, at some value of / larger than the values
that we obtained in our simulations, the scaling N,./Ny ~ 7! must break down.
Indeed, the actual reaction rate would be higher than that which is predicted by this
scaling. This can be explained by the occurrence of percolation, as was suggested

for the case in which p,/pm is infinitely large (32).

C. Order Parameter
{

The order parameter at steady state as a function of p,./p, is plotféd. as cir-
cles in Fig. 9. Since ‘islanding’ occurs whenever p,/pp, is ﬁonzero, we see>that
the order parameter goes to zero at p,/pm = 0. We also plot in Fig. 9 the curve
¢ = k(pr/pm)'/?, where k is a constant equal to 0.607. Therefore, for values of
Pr/Pm up to unity, the results of the simulations are consistent with the scaling
¢ ~ (pr/pm)*/?. Although the formation of ‘islands’ in this system is due to kinetic
phase transitions and not due to thermal phase transitions, it is informative to
compare the quantity ¢ of this Langmuir-Hinshelwood reaction system to the order
parameter in thermal phase transitions, for example, in magnetic materials or in
binary alloys. In the case of a ferromagnetic solid the order parameter is the mag-
netization. Since increasing the reaction rate increases the size of the ‘islands’ and,
hence, the degree of order in the system, we can compare increasing the parameter
Pr/Pm of the Langmuir-Hinshelwood system to decreasing the temperature in a
system which can undergo a thermal phase transition. We have also noted that
‘islanding’ occurs as soon as p, / Pm is raised above zero. Hence, if we make the cor-

respondence (T — T') < pr/pm, where T, is the critical temperature of the thermal
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system, we obtain ¢ ~ (p,/pm )P, where G is the exponent for the order parameter
in a system undergoing a thermal phase transition. The mean-field value of 1 / 2 is
obtained for the exponent 8. Our simulation results, theréfore, suggest that the
‘islanding’ behavior can be described by a mean-field theory. This is, perhaps, not
too surprising. A mean-field calculation, at the level of only pair-approximations,
has been shown to agree rather well with Monte-Carlo simulations of the Langmuir-
Hinshelwood system in ref. 29. This is true in particular insofar as pfedictions of
the position of the first-order poisoning transition are concerned. The formz;.tion of
‘islands’ as p,/pm is increased from zero would not be dependent upon lohg-fange
collective effects if it is well described by a mean-field theory. The assertion that
this ‘islanding’ behavior is of a mean-field nature is based on the validity of the
correspondence (T, — T') < p,/pm and m « ¢. It remains to be seen whether
a mean-field calculation can describe the properties of the system when p, /Pm is

close to zero.

4. Conclusions

We have investigated, using Monte-Carlo simulations, the reactivity of a sur-
face catalyzed Langmuir-Hinshelwood reaction that is described by the following

model:

A(g) +V — A(a),
B(g) +V — B(a),

and

A(a) + B(a) — AB(g).

Since the adsorption steps are irreversible, it is important to consider possible
finite-size effects in the simulations. We find that lattices of size (200x200) are
sufficiently large for simulations in which up to 4000 Monte-Carlo steps/site are
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allowed. For simulations of longer duration, larger lattices would have to be used;
however, for this investigation (200x200) lattices are adequate. Although we have
performed simulations only on square lattices, we do not expect the results we have
presented here to be affected qualitatively by a change in the lattice symmetry. It
is possible, however, that if ‘island’ percolation indeed occurs at a high fractional
surface coverage, the coverages and the corresponding values of p, and p,,; at which
it occurs would be dependent on the lattice symmetry. The pafameteré in ou;‘ model
are pr, Pm and p,, the probability of successful reaction of a nearest-neighbor AB
pair, the probability of successful hopping of an 4 or B particle to a nearest-
neighbor vacant site, and the probability of successful adsorption of a pa.rtiéle into
a vacant site, respectively. In all of our simulations, pq is set equal to p,/5, and pm
is set equal to unity. The range of values of p, used in the simulations is from 0.01
to unity. We observed that ‘islanding’ occurs even for the lowest value, 0.01, of Pr-
Hence, ‘islanding’ probably occurs whenever p,/p,, is nonzero. This means that
the surface coverage of reactants in nrany bimolecular surface reactions may not
be spatially homogeneous, even in the absence of lateral interactions. Therefore,
in order to extract accurate rate coefficients from experimental measurements, it
is necessary to correct for this deviation from a random distribution of adsorbed
molecules. We also find that the ‘islands’ are finite in size for values of p, /Pm less
than unity and p, = p,/5. Above this value of p,, the fractional surface coverages

‘may be sufficiently high for percolation to occur.

A ‘qua,ntita.tive measure of the ‘island’ size is | = (N4 + Npp)/(Nap +
Nav + Npy). The simulations indicate that N, /Ny scales as l"lh, where N, is
the observed reaction rate and Ny is the reaction rate that would be observed if
the adsorbed particles were randomly distributed on the surface. We have argued
that the ‘islands’ are compact, i.e. they do not have a dimension lower than two.
This scaling fails when p, and, consequently, I become too large, and this failure can

possibly be due to the occurrence of percolation since the surface coverage increases
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with p, (32). For values of p,./pn, close to zero, we find that the order parameter,
which is defined as ¢ = (Naa + N — Nap)/(Nas + Nap + N4B), scales as
(pr/Pm)!/?. Arguing that p,/p, corresponds to T — T in magnetic systems, we
propose that this indicates the mean-field nature of the ‘islanding’ phenomenon in

this system.
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Figure Captions

Figure 1(a-d). The abscissa is the difference §N between the number of particles
of type A and the number of particles of type B. We have divided this difference
by the number of lattice sites (LxL). The ordinate is the probability P(6N,nr) of
finding a configuration with the difference in the number of particles §N after ny
adsorption events. Assuming a lattice of size (LxL) embedded in an infinitely large
lattice, P(6N,nr) is given by the circles [Eq. 5]. The line indicates the P(6N,nr)
distribution if the lattice were a finite one of size (LxL) [Eq. 6]. The size of the

lattice and the number of adsorption events are indicated in each figure.

Figure 2. The dependence of the quantity [ on time is shown where the abscissa is
time in units of Monte-Carlo steps/site and the ordinate is I. The parameters used
here are p, =1 and p,, = 1. Each curve is labeled with the size of the lattice used

in the simulations.

Figure 3(a-d). These are typical configurations obtained from simulations in which
pr =1 and p,, = 1. The configurations were obtained after a time of 4000 Monte-
Carlo steps/site. The size of the lattice is shown on each figure. An empty square

denotes a particle of type A, and a filled square denotes a particle of type B.

Figure 4(a-e). These are typical configurations obtained from simulations in which
Pm = 1 and p, ranges from 0.01 to 0.8. The lattice size is (200x200) for all these
configurations. The configurations were obtained after a time of 4000 Monte-Carlo
steps/site. An empty square denotes a particle of type A4, and a filled square denotes
a particle of type B.

Figure 5. The dependence of ! upon time for all the simulations are shown here.
The abscissa is time in units of Monte-Carlo steps/site and the ordinate is I. The

parameter p,, = 1 for all these curves, and p, ranges from 0.01 to unity. Each curve
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is labeled with its value of p,. Note that the value of [ in the case of infinitely fast
diffusion [y is indicated in the figure by an arrow. Each curve is obtained from an

average of ten simulations on (200x200) lattices.

Figure 6. The dependence of the quantity N,/No upon the value of p,/pm is shown
here. The abscissa is p,/p,, and the ordinate is N, /No, where N, is the reaction
rate and Ny is the reaction rate which would be observed if the particles were

randomly distributed on the surface.

Figure 7. The dependence of the average fractional surface coverage (8) = (64 +
68)/2 upon p,/pm is shown here. The value of () for each value of DPr/Pm is
obtained from an average of ten simulation runs. The averages of 84 and fp are

equal and, if plotted here, would fall on the same curve.

Figure 8. The relationship between the reaction rate and the quantity ! is shown
here. The abscissa is [=! in units of lo_l, where Iy is the value of ! when the
fractional surface coverages are 64 = fp ~ 0.1791, and the particles are randomly
distributed. The ordinate is N,./Ny, i.e., the reaction rate normalized by the reac-
tion rate that would be observed if the particles were randomly distributed.

Figure 9. The dependence of the order parameter ¢ upon the value of p,/pn, is
indicated by the circles. The line is the curve ¢ = 0.607(p,/pm)!/? and shows for
values of p,/pm between zero and unity that the simulation results are consistent
with the scaling ¢ ~ (pr/pm)!/?. When p,/pm is increased further, causing an
increase in the surface coverage, this scaling is expected to breakA down beyond

some value of py/pm.
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Figure 3(a)
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Figure 3(b)
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CONCLUSIONS

We can divide our work into four sections. The first section reports our ex-
amination of the use of Monte-Carlo methods for simulating time-evolving systems.
This is contained in Chapter 1. The second section, contained in Chapters 2 to 4,
is the study of the kinetics of domain growth. The third section discusses the re-
sults of simulations performed with the purpose of studying the influence of lattice
gas configurations on the kinetics of reaction and adsorption. This is the content
of Chapters 5 and 6. The fourth section, contained in Chapter 7, is the study
of adsorbate ‘islanding’ which can occur in Langmuir-Hinshelwood reactions. Our

conclusions for each section are as follows:

Section 1

The proper choice of the transition probabilities in Monte-Carlo simula.fions
is rather important if dynamic properties such as the diffusion coefficient are to
be accurately calculated. As shown in Chapter 1, the use of Kawasaki dynamics
implies that the rate of the thermally excited microscopic processes, such as par-
ticle hops from site to site, is increased. However, the rates of the same process
occurring in d.iﬁ'erent loéa.l configurations are increased by different amounts. In
particular, in the case of diffusion, we have shown that for different choices of the
transition probabilities there is a different temperature dependence of the calcu-

‘lated diffusion coefficient. This is true even though it is required that the different
choices of transition probabilities all satisfy detailed balance and lead to the same
equilibrium configurations. Thus, in using Monte-Carlo methods to simulate dy-
namic (as opposed to static) phenomena, it is necessary to use the proper transition

probabilities if quantitatively accurate answers are needed.
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Section 2

We find that the exponent for growth of (2x1) domains on a squa,re‘ laftice
is 1/2, regardless of the mobility of the precursor. However, in the early stages‘of
domain growth, the effective growth exponent is smaller than 1/2. It is important
to realize this when experimental measurements of domain growth a.re. performed.
This is because the coherence width of the electron beams usually achievable in low-
energy electron diffraction, the tool currently used in such studies, is .on the order of
only about 100 A. Hence, the domain size which can be measured may not be suffi-
ciently large for scaling to occur. The inevitable presence of defects, such as steps,
on the surface of the crystals will also limit the size of the overlayer domains that
can be grown. If we write the growth law as I ~ 4#1/2, the simulations show that A
obeys the scaling relation A ~ D!/2, This result was obtained from simulations of
a model in which particle migration is precursor-mediated but may not be be appli-
cable to models in which particle migration occurs by nearest-neighbor hops. The
Lifshitz Allen-Cahn theory which is applicable to curvature-driven domain growth
predicts the same scaling. '

The growth of ordered (1/3xv/3)R30° domains on a triangular lattice was also
simulated. Two lattice gas models were used. The particles of the first interact
with each other through nearest-neighbor repulsion and next nearest-neighbor at-
traction of the same magnitude. The particles of the second interact with each other
only through nearest-neighbor repulsion. Growth kinetics at zero temperature were
simulated using Kawasaki dynamics and allowing hops of various ranges. We find
that, in the case in which only nearest-neighbor hops are allowed, domain growth
is frozen in the lattice gas with next nearest-neighbor attractive interactions, but it
is not for the lattice gas with only nearest-neighbor repulsive interactions. We also
find that increasing the range of the allowed hops to include next nearesf-neighbor
hops prevents domain growth in the former lattice gas model from becoming frozen.

Domain growth in this case, however, occurs as a result of the diffusion of ordered
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(v/3x+/3)*R30° domains and domains of vacant lattice sites. Since the nature of
domain growth in this system is strongly dependent upon the hop length, at low
temperatures domain growth in adsorbed systems which form ordered domains of

the same symmetry will be strongly influenced by the presence of precursor states.

One of the issues in the area of domain growth is whether the degeneracy
of the ground state of the lattice gas affects the growth exponent. For twofold
degenerate ground state simulations and theories, such as the Lifshitz Allen-Cahn
theory, all show that the growth exponent is 1/2. Although previous simulations
seem to indicate an exponent of 1/3 for the growth of the fourfold' degenerate
(2x1) domains on a square lattice, our simulations have shown that it is 1/2. We
have also investigated, at finite temperatures, growth of the threefold degenerate
(v/3x4/3)R30° for which the zero temperature behavior is reported in Chapter 3.
We find a growth exponent of 1/2. Therefore, we conclude that the growth exponent
is probably not dependent upon the degeneracy of the ground state.

Section 3

In Chapter 5 the molecular adsorption of ethane on the Ir(llO)-(}xé) surface
was studied. Monte-Carlo simulations were used to analyze molecular beam re-
flectivity measurements of the probability of adsorption. We show that molecular
adsorption can occur directly when an ethane molecule impinges upon the bare
-iridium surface or indirectly when an ethane molecule impinges upon a previously
adsorbed ethane molecule. The “extrinsic” precursor in this case is the mobile
ethane molecule trapped in a second layer on top of the first layer of molecularly
adsorbed ethane. As the fractional surface coverage of ethane increases, the ‘islands’
of the adsorbed ethane molecules in the first layer increases in size. Using Monte-
Carlo methods it is easy to simulate the diffusion of the ethane molecules trapped
on top of such ‘islands’ properly accounting for the change in the probability of such

a trapped ethane molecule migrating to the edge of the ‘island’ with a change in the
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‘island’ size. It is possible from fitting the simulations to the experimental results
to obtain the energy barrier for desorption Ejge, of an ethane molecule trapped on
top of a first layer of ethane molecularly adsorbed on the Ir(110)-(1x2) surface.
It is also possible to obtain the energy barrier for diffusion Egifs of the trapped
ethane molecule. We find that Ede, is approximately 4.5 kca.l/ mol and that Eg;zy
is approximately 3.7 kcal/mol. '

In Chapter 6 we simulate the Langmuir-Hinshelwood reaction between two
laterally interacting species. We investigate the utility of using the Arrhenius
parametrization in analyzing the reaction rate coefficient. The importance of the
configuration of the reacting adlayer of particles is clearly demonstrated. In Ipa.rticu-
lar, we show that a strong temperature dependence of the adlayer configuration can
lead to a compensation effect between the effective energy barrier and the eﬁ'ectife
preexponential factor obtained from an Arrhenius parametrization of the réaction
rate coeflicient. Therefore, we conclude that the compensation effects frequently
observed experimentally may be due, in part, to the temperature deﬁeﬁderﬂce of the
adlayer configuration. This will explain the anomalously high reaction or desorption

preexponentials that have been observed experimentally in many cases.

Section 4

In this final section we investigate the adsorbed molecule ‘islanding’ that
results not from lateral interactions but from the process of reaction itself. A
Langmuir-Hinshelwood reaction between particles of species A and B is simulated.
Desorption is not allowed, and the adsorption rates for 4 and B are equal. “Isla.nid-
ing’ occurs because reaction takes place between nearest-neighbor AB pairs, and
therefore reduces the probability of configurations in which the particles of the two
species are ‘mixed.” The probability of forming ‘islands’ of particles of only one
species is increased. In order to quantify the process of ‘islanding,” we defined an

order parameter ¢ and a quantity I, the latter of which we show to be proportional
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to the ‘island’ sizes for non-fractal ‘islands.” We find that ‘islanding’ is controlled
by the ratio of the probability of migration p,, to the probability of reaction pr and
that it occurs for all non-zero values of p,/pm. We show that the ‘“islands’ formed
in our simulations have a dimension of two so that the reactivity of the catalyst
surface is inversely proportional to I. We also find that the order parameter, which
is a chemical analogue of the magnetization in a ferromagnetic material, scales as
(Pr/Pm)*/?. If we make the correspondence between T. — T and Pr/Pm and between
the magnetization m of a ferromagnet and the order parameter ¢ of our system,
this scaling relation implies that ‘islanding’ in the Langmuir-Hinshelwood reaction
model that was simulated can be described by a mean-field model. It is, therefore,
not due to a collective behavior of all the particles in the system as in the critical
behavior of magnets or fluids. At higher fractional coverages than is reached in our
simulations (approximately 0.24), percolation is expected to occur, and this would

change the nature of our conclusions.



