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Dedicated to Paul Adrien Maurice Dirac

“The underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are completely known, and the difficulty is only that

the exact application of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods of quantum mechanics

should be developed, which can lead to an explanation of the main features of the complex

atomic systems without too much computation” – Dirac, P.A.M., 1929
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Abstract

Electronic structure calculations, especially those using density-functional theory have pro-

vided many insights into various materials properties in the recent decade. However, the

computational complexity associated with electronic structure calculations has restricted

these investigations to periodic geometries with small cell-sizes (computational domains)

consisting of few atoms (∼ 200 atoms). But material properties are influenced by defects—

vacancies, dopants, dislocations, cracks, free surfaces—in small concentrations (parts per

million). A complete description of such defects must include both the electronic structure

of the core at the fine (sub-nanometer) scale and also elastic and electrostatic interactions at

the coarse (micrometer and beyond) scale. This in turn requires electronic structure calcula-

tions at macroscopic scales, involving millions of atoms, well beyond the current capability.

This thesis presents the development of a seamless multi-scale scheme, Quasi-Continuum

Orbital-Free Density-Functional Theory (QC-OFDFT) to address this significant issue. This

multi-scale scheme has enabled for the first time a calculation of the electronic structure

of multi-million atom systems using orbital-free density-functional theory, thus, paving the

way to an accurate electronic structure study of defects in materials.

The key ideas in the development of QC-OFDFT are (i) a real-space variational formula-

tion of orbital-free density-functional theory, (ii) a nested finite-element discretization of the

formulation, and (iii) a systematic means of adaptive coarse-graining retaining full resolution



vii

where necessary, and coarsening elsewhere with no patches, assumptions, or structure. The

real-space formulation and the finite-element discretization gives freedom from periodicity,

which is important in the study of defects in materials. More importantly, the real-space

formulation and its finite-element discretization support unstructured coarse-graining of

the basis functions, which is exploited to advantage in developing the QC-OFDFT method.

This method has enabled for the first time a calculation of the electronic structure of sam-

ples with millions of atoms subjected to arbitrary boundary conditions. Importantly, the

method is completely seamless, does not require any ad hoc assumptions, uses orbital-free

density-functional theory as its only input, and enables convergence studies of its accuracy.

From the viewpoint of mathematical analysis, the convergence of the finite-element approx-

imation is established rigorously using Γ−convergence, thus adding strength and validity

to the formulation.

The accuracy of the proposed multi-scale method under modest computational cost, and

the physical insights it offers into properties of materials with defects, have been demon-

strated by the study of vacancies in aluminum. One of the important results of this study

is the strong cell-size effect observed on the formation energies of vacancies, where cells as

large as tens of thousands of atoms were required to obtain convergence. This indicates the

prevalence of long-range physics in materials with defects, and the need to calculate the

electronic structure of materials at macroscopic scales, thus underscoring the importance of

QC-OFDFT.

Finally, QC-OFDFT was used to study a problem of great practical importance: the

embrittlement of metals subjected to radiation. The brittle nature of metals exposed to

radiation is associated with the formation of prismatic dislocation loops—dislocation loops

whose Burgers vector has a component normal to their plane. QC-OFDFT provides an
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insight into the mechanism of prismatic dislocation loop nucleation, which has remained

unclear to date. This study, for the first time using electronic structure calculations, estab-

lishes vacancy clustering as an energetically favorable process. Also, from direct numerical

simulations, it is demonstrated that vacancy clusters collapse to form stable prismatic dislo-

cation loops. This establishes vacancy clustering and collapse of these clusters as a possible

mechanism for prismatic dislocation loop nucleation. The study also suggests that prismatic

loops as small as those formed from a 7-vacancy cluster are stable, thus shedding new light

on the nucleation size of these defects which was hitherto unknown.
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Chapter 1

Introduction

Electronic structure calculations (Martin, 2004) have provided great insights into various

aspects of materials properties in the last decade. Derived from first-principles (quantum

mechanics), electronic structure theories incorporate significant fundamental physics with

little empiricism. Therefore, these theories are transferable, and capable of predicting a

wide range of properties across various materials and external conditions. Studies on the

electronic structure of materials date back to the early 1940s and received a major boost

with the development of density-functional theory (Finnis, 2003; Parr & Yang, 1989) in

the 1960s. However, the growing computational power has brought these techniques to

the forefront in the last decade. Successes of electronic structure calculations include the

accurate prediction of phase transformations in a wide range of materials, and insights into

the mechanical, electronic, magnetic, and optical properties of materials and compounds.

Despite the success of electronic structure theories, the enormous computational effort

involved in these calculations essentially limits these theories to bulk properties of perfect

materials. However, defects play a critical role in determining the properties of materi-

als. These include dopants in semi-conductors to dislocations in mechanics to surfaces in

nano-structures. These defects occur at very small concentrations and have long-ranged

interactions. Therefore a complete and accurate description of such defects must include
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the electronic structure of the core of the defect at the fine (sub-nanometer) scale and the

elastic, electrostatic, and other effects on the coarse (micrometer and beyond) scale. This

in turn requires electronic structure calculations on systems containing millions of atoms,

or in other words electronic structure calculations at macroscopic scales. This has remained

an open challenge, and is the subject of this thesis.

To be precise, first-principle (quantum mechanics) calculations require a computational

effort that grows as N3n for a n−electron system. A full quantum mechanical description

of a system with just 4 electrons using a space discretization of just 100 points requires

the computation of eigenvalues and eigenfunctions of a 10012 × 10012 matrix, which is

intractable. This motivated electronic structure calculations (which are often also referred as

ab intio), of which density-functional theory (DFT) is the most popular. Though, electronic

structure calculations are relatively less expensive than first-principle quantum mechanical

calculations, the computational effort involved is large enough to restrict these investigations

to small cell-sizes (computational domains) on the order of hundreds of atoms. Thus, the

computational domains which are accessible to electronic structure calculations are orders

of magnitude smaller than those needed to compute materials properties with defects.

Various multi-scale schemes have been proposed to address this significant challenge,

among which upscaling methods (Rappe’ et al., 1992; Goddard et al., 2002) and embedding

schemes (Fago et al., 2004; Govind et al., 1999; Choly et al., 2005; Lu et al., 2006) are the

most popular. Multi-scale schemes where information is transferred from smaller to larger

length scales are referred to as upscaling methods. In such methods, electronic structure

calculations are used to fit interatomic potentials/force-fields and these potentials are then

used to compute materials properties on the macroscopic scale. On the other hand, the

philosophy behind embedding schemes is to embed a refined electronic structure calculation
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in a coarser molecular dynamic simulation, which in turn is embedded in a continuum the-

ory. Valuable as these schemes are, they suffer from a number of notable shortcomings. In

some cases, uncontrolled approximations are made such as the assumption of linear response

theory or the Cauchy-Born hypothesis. Others assume separation of scales, the validity of

which can not be asserted. Moreover, these schemes are not seamless and are not solely

based on a single electronic structure theory. In particular, they introduce undesirable over-

laps between regions of the model governed by heterogeneous and mathematically unrelated

theories. Finally, no clear notion of convergence to the full electronic structure solution is

afforded by the existing methods.

For all the above reasons, there is need for a seamless, multi-scale scheme to perform

electronic structure calculations at macroscopic scales with no ad hoc assumptions.

This thesis develops a seamless coarse-graining scheme that effectively overcomes the

present limitations of electronic structure calculations, without the introduction of spuri-

ous physics and at no significant loss of accuracy. We refer to the proposed approxima-

tion scheme as Quasi-Continuum Orbital-Free Density-Functional Theory (QC-OFDFT),

and this paves the way to electronic structure calculations at macroscopic scales. The

basic building blocks of the scheme are: a real-space formulation of Orbital-Free Density-

Functional Theory (OFDFT), based on finite-element bases; and a novel quasi-continuum

reduction of the resulting equations that resolves detailed information in regions where it

is necessary (such as in the immediate vicinity of the defect), but adaptively samples over

details where it is not (such as in regions far away from the defect), without significant

loss of accuracy. The use of finite-element basis enables consideration of complex geome-

tries, general boundary conditions and locally adapted grids. The quasi-continuum (QC)

approach effects a seamless coarse-graining adapted to the local structure of the solution.
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The QC reduction proposed here is novel in that it allows for subatomic oscillations in the

electron-density and electrostatic potential.

The proposed approximation scheme has the following defining properties: It adapts

the level of spatial resolution to the local structure of the solution, e. g., supplying higher

resolution near lattice defects and rapidly coarsening the resolution away from the defects; in

particular, the coarse-graining is completely unstructured and does not rely on periodicity.

Fully-resolved OFDFT and finite lattice-elasticity are obtained as special limits. The coarse-

graining is entirely seamless—as opposed to a patchwork of disparate and heterogeneous

models—and based solely on approximation theory; in particular, OFDFT is the sole physics

input to the calculations, and no spurious physics or ansatz regarding the behavior of the

system is introduced as a basis for—or as a result of—the coarse-graining. The nature of the

systems of interest is such that vast reductions in the size of the problem can be achieved

without appreciable loss of accuracy, thus effectively permitting consideration of systems

much larger than heretofore possible.

We present examples of electronic structure calculations on multi-million atom systems

and show, by a convergence analysis, that the full electron-density field can be obtained ev-

erywhere with negligible error and through modest computational means. We also demon-

strate through cell-size studies of defect properties in materials, the importance of QC-

OFDFT and electronic structure calculations at macroscopic scales. For instance, the mono-

vacancy calculations in aluminum have determined scaling relations that are indicative of

slow convergence with respect to cell-size. More telling still is the case of di-vacancies.

Whereas some di-vacancy systems are found to be repulsive for small cell sizes, in agree-

ment with previous calculations (Carling & Wahnström, 2000; Uesugi et al., 2003), the same

di-vacancy systems are found to be attractive for larger cell-sizes, in keeping with experi-
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mental observation (Ehrhart et al., 1991; Hehenkamp, 1994). Thus, in this case access to

large cell sizes changes the predicted physics not only quantitatively but also qualitatively.

Furthermore, as an application of the theory, we study the problem of radiation damage in

aluminum. Exposure to radiation leads to a rapid deterioration of the fracture toughness in

metals, and thus is a problem of great practical significance. This loss of fracture toughness

is associated with an increase in the density of prismatic dislocation loops—dislocation loops

with an out-of-plane component of Burgers vector—which are experimentally observed to

arise as the irradiation dose increases (Masters, 1965; Eyre & Bartlett, 1965, 1973; Bullough

et al., 1991; Kawanishi & Kuramoto, 1986; Horton & Farrell, 1984). The mechanism through

which these prismatic dislocation loops nucleate has remained unclear to date and is a

problem of active research.

QC-OFDFT has provided new insights into the phenomenon of vacancy clustering in

aluminum, and the mechanism of prismatic dislocation loop nucleation. We show for the

first time using electronic structure calculations that vacancy clustering is an energetically

favorable process. Moreover, through direct numerical simulations we observed that these

vacancy clusters collapse to form stable prismatic loops. These results suggest that vacan-

cies conglomerate to form vacancy clusters, which then collapse leaving behind a prismatic

dislocation loop. The results presented in this work are the first numerical confirmation,

using electronic structure calculations, of this mechanism of prismatic dislocation loop nu-

cleation. Also, we show that prismatic loops as small as those formed from 7-vacancy

clusters are stable, thus shedding new light on the nucleation size of these defects which

was hitherto unknown.

The thesis is organized as follows. Chapter 2 provides a brief overview of the electronic

structure theories. Chapter 3 describes the real-space finite-element formulation of orbital-
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free density-functional theory. Chapter 4 describes existence results for the real-space for-

mulation of OFDFT, and provides rigorous proofs of convergence for the finite-element dis-

cretization of the formulation using the mathematical technique of Γ−convergence. Chap-

ter 5 develops the quasi-continuum orbital-free density-functional theory. This chapter

describes the key ideas of quasi-continuum reduction, and demonstrates the accuracy and

importance of QC-OFDFT through studies on a mono-vacancy in aluminum. Chapter 6

reports studies on the phenomenon of vacancy clustering in aluminum, and the mechanism

of prismatic dislocation loop nucleation. Finally, we conclude in Chapter 7 with a short

discussion and consider the scope for future work.



7

Chapter 2

Overview of electronic structure
theories

A first-principle computation of materials properties using quantum mechanics under the

Born-Oppenheimer approximation (Finnis, 2003) involves the estimation of the electronic

wave-functions by solving the time-independent Schrödinger’s equation. This is an eigen-

value problem given by

Hψi = εiψi , (2.1a)

H =
N∑
i=1

−1
2
∇i

2 +
1
2

N∑
i=1

N∑
j=1
j 6=i

1
|ri − rj |

+
N∑
i=1

M∑
I=1

−ZI
|ri −RI |

, (2.1b)

ψ = ψ(x1,x2, ...xN ) , (2.1c)

where H is the Hamiltonian of the system which is comprised of the kinetic energy of

electrons and electrostatic interaction energy between electrons and nuclei; ψi denote nor-

malized, anti-symmetric electronic wave-functions, i.e., eigenfunctions of the Hamiltonian;

and εi denote the energy levels or eigenvalues of the Hamiltonian. Here, xi = (ri, si), ri ∈ R3

denotes the spatial coordinates and si the spin of the ith electron in the system; RI ∈ R3

represent the nuclear positions of the Ith nuclei in the system with a charge of ZI ; and N
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and M denote the total number of electrons and nuclei in the system.

Equation (2.1) suggests that the electronic wave-functions belong to a 3N dimensional

space, i.e, ψ ∈ R3N . This translates into a computational complexity that is so huge, that

it makes the computation of materials properties using quantum mechanics infeasible. To

get an order of magnitude estimate of this complexity, consider a material system with

100 electrons and consider a discretization of the real line, R, with just 100 points. A

first-principle calculation of this system, which involves solving the eigenvalue problem

given by equation (2.1), requires the computation of eigenvalues and eigenfunctions of an

astronomical 100300 × 100300 matrix. This problem is computationally intractable. In

a landmark paper in 1929 (Dirac, 1929), Paul Dirac had remarked that “The underlying

physical laws necessary for the mathematical theory of a large part of physics and the whole

of chemistry are completely known, and the difficulty is only that the exact application of

these laws leads to equations much too complicated to be soluble. It therefore becomes

desirable that approximate practical methods of quantum mechanics should be developed,

which can lead to an explanation of the main features of the complex atomic systems without

too much computation”. These various approximate methods developed over more than 5

decades constitute the theories of electronic structure. The most popular among them are

the Hartree-Fock method and density-functional theory, which are discussed below.

2.1 Hartree-Fock method

The Hartree-Fock method (Szabo & Ostlund, 1982) results from approximating the elec-

tronic wave-function with a Slater determinant, which respects the anti-symmetric nature

of the electronic wave-function. This approximation is given by,
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ψ(x1,x2, ...xN ) = det



ψ1(x1) ψ1(x2) ... ψ1(xn)

ψ2(x1) ψ2(x2) ... ψ2(xn)

. . . .

. . . .

ψn(x1) ψn(x2) ... ψn(xn)


.

This approximation reduces a wave-function in 3N dimensional space toN wave-functions

in 3 dimensional space which are computationally tractable. The approximation of the

electronic wave-function by a Slater determinant is equivalent to the assumption that the

electrons in the system interact with each other only through a mean field, thus effectively

ignoring the electron correlations.

The ground-state energy of a material system computed from the Hartree-Fock method

provides an upper bound to the actual ground-state energy of the system. In this regard,

the Hartree-Fock method has a useful variational structure associated with it. Exploiting

this variational structure, the Hartree-Fock method is extended to obtain a more refined

electronic structure theory, which is described by multi-configuration equations. Multi-

configuration equations are a generalization of the Hartree-Fock method, where a linear

combination of a number of Slater determinants is used to approximate the wave-function,

as against a single Slater determinant in the case of Hartree-Fock approximation. It can

be shown that as the basis of the single electron wave functions is increased to span the

complete Hilbert space, the multi-configuration equations reproduce the exact quantum

mechanical equations (Friesecke, 2003; Lewin, 2004).

Though the Hartree-Fock approach has been used quite extensively, over the course of last
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few decades the density-functional theory (DFT) of Hohenberg, Kohn, and Sham (Parr &

Yang, 1989; Finnis, 2003), which expresses the ground-state energy of the material system

in terms of the electron-density, has gained popularity for its accuracy, reliability, and

feasibility of electronic structure calculations on a wide range of materials.

2.2 Density-functional theory

Density-functional theory provides us with a framework to reformulate the problem of solv-

ing the Schrödinger’s equation of a N-electron system into a problem of estimating the

wave-functions and corresponding energies of an effective single-electron system. Density-

functional theory is based on a variational formulation, and is therefore very suitable for

ground-state calculations, though extensions to excited states are possible (Parr & Yang,

1989). The heart of density-functional theory lies in the work by Hohenberg, Kohn, and

Sham (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) who prove that “electron-density

as a basic variable is sufficient to describe the properties of a material system in its ground

state”. This is a remarkable and powerful statement, as it reduces the problem of solving

for a quantity (electronic wave-function) in 3N dimensional space to solving for a quantity

(electron-density) in 3 dimensional space. This very statement has revolutionized electronic

structure calculations, and has put density-functional theory in the forefront of electronic

structure theories. The fact that the ground-state properties of materials depend only on

electron-density is not difficult to verify. We start from a variational statement: The energy

of any system is always greater than or equal to its ground-state energy. Denoting the

ground-state energy by E0,

〈ψ|H|ψ〉 ≥ E0 . (2.2)
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Combining equations (2.2) and (2.1), and representing the kinetic energy of electrons by

T and the interaction between nuclei and electrons by Vext(ri), the variational statement

reads as

〈ψ|T +
1
2

N∑
i=1

N∑
j=1
j 6=i

1
|ri − rj |

+
N∑
i=1

Vext(ri)|ψ〉 ≥ E0 . (2.3)

As ψ(x1,x2, ...xN ) is normalized, the electron-density or the probability density of finding

any of the N electrons with arbitrary spin is given by,

ρ(r1) = N

∫
...

∫
|ψ(x1,x2, ...xN )|2ds1dx2..dxN . (2.4)

Combining equations (2.2) and (2.4), and noting that Vext(ri) is a local operator, we get

〈ψ|T +
1
2

N∑
i=1

N∑
j=1
j 6=i

1
|ri − rj |

|ψ〉+
∫
ρ(r)Vext(r)dr ≥ E0 . (2.5)

The last term in equation (2.5), which is the interaction of the external field with the

electrons in the system, is independent of the electronic wave-function and depends only on

the electron-density. However, the first term, which includes the kinetic energy of electrons

and the electron-electron interactions, depends on the wave-function. This dependence is

dropped by defining a new functional F (ρ), given by

F (ρ) = min
ψ→ρ

〈ψ|T +
1
2

N∑
i=1

N∑
j=1
j 6=i

1
|ri − rj |

|ψ〉 , (2.6)

where ψ → ρ denotes the minimization over all possible antisymmetric ψ which give rise to

a particular ρ. Thus the ground-state energy, and consequently the ground-state materials
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properties depend only on the electron-density. The ground-state energy is given by

E(ρ) = F (ρ) +
∫
ρ(r)Vext(r)dr +

1
2

M∑
I=1

M∑
J=1
J 6=I

ZIZJ
|RI −RJ |

, (2.7)

where the last term in equation (2.7) is the electrostatic repulsive energy between the nuclei.

Though it has been established that ground-state material properties depend only on

electron-density, the explicit functional form of F (ρ) defined in equation (2.6) is not known.

Density-functional theory is exact in principle, but the exact evaluation of F (ρ) is tan-

tamount to solving the Schrödinger’s equation. Hence, the functional F (ρ) is evaluated

approximately. An important step in this direction was taken by Kohn and Sham (Kohn &

Sham, 1965) by using the properties of a reference system of non-interacting electrons with

density ρ to write

F (ρ) = Ts(ρ) + EH(ρ) + Exc(ρ) , (2.8)

where Ts is the kinetic energy of non-interacting electrons, EH is the classical electrostatic

interaction energy (also referred to as Hartree energy), and Exc denotes the exchange and

correlation energy. Though the exact form of Exc is not known, good approximations of the

exchange and correlation functionals are available using local density approximations (LDA)

and generalized gradient approximations (GGA) (Koch & Holthausen, 2001; Ceperley &

Alder, 1980; Perdew & Zunger, 1981). In the Kohn-Sham scheme of things (KS-DFT), Ts(ρ)

is computed in an indirect approach by observing that the the Euler-Lagrange equations

corresponding to E(ρ) under the constraint
∫
ρ(r)dr = N are identical to that of a single-

electron Schrödinger’s equation in an effective mean-field. However, in this scheme of things,
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one would have to go through the computationally intensive calculation of estimating the

single-electron wave-functions in a self-consistent manner. This poses a serious limitation

in the attempt to solve systems of larger size and complexity. This limitation has inspired

studies on orbital-free forms of kinetic energy functionals, where Ts(ρ) is modelled.

Numerous efforts have been made to come up with explicit forms of Ts(ρ) without the

need to compute electronic wave functions; these are called orbital-free kinetic energy func-

tionals. The version of density-functional theory where Ts(ρ) is modelled using orbital-free

kinetic energy functionals is commonly referred to as Orbital-Free Density-Functional The-

ory (OFDFT). The earliest of the works in this direction date back to the Thomas-Fermi

model proposed in 1927 (Thomas, 1927; Fermi, 1927). Thomas and Fermi derived an explicit

representation of the kinetic energy using a local density approximation. The Thomas-Fermi

model approximates the kinetic energy of a system of non-interacting electrons with that

of a homogeneous electron gas and is given by

Ts(ρ) = CF

∫
ρ5/3(r)dr , (2.9)

where CF = 3
10(3π2)2/3. A major setback to the Thomas-Fermi approach was the Teller non-

bonding theorem for this class of functionals (Parr & Yang, 1989), which showed that the

Thomas-Fermi model does not predict binding in materials. This deficiency was corrected by

including in the kinetic energy functionals a term depending on the gradient of the electron

density. This correction led to a family of kinetic energy functionals called the Thomas-

Fermi-Weizsacker functionals (Parr & Yang, 1989), which are given by the expression

Ts(ρ) = CF

∫
ρ5/3(r)dr +

λ

8

∫
|∇ρ(r)|2

ρ(r)
dr , (2.10)
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where λ is a parameter. Different values of λ are found to work better in different cases

(Parr & Yang, 1989); λ = 1 and λ = 1/9 are the most commonly used values. There have

been considerable efforts (Wang et al., 1998, 1999; Choly & Kaxiras, 2002; Smargiassi &

Madden, 1994; Wang & Teter, 1992) to improve these orbital-free kinetic energy functionals

by introducing an additional non-local term called the kernel energy. These kinetic energy

functionals have a functional form given by

Ts(ρ) = CF

∫
ρ5/3(r)dr +

1
8

∫
|∇ρ(r)|2

ρ(r)
dr +

∫ ∫
f(ρ(r))K(|r− r

′ |)g(ρ(r′))drdr′ , (2.11)

where f , g, and K are chosen to satisfy known limits of exact Ts(ρ), and such that the total

kinetic energy functional exhibits correct linear response.

In the present work, we restrict ourselves to the Thomas-Fermi-Weizsacker functionals

for the purpose of demonstration, and would like to remark that the theory developed in

this thesis can be extended to include the non-local kernel energies by solving a Helmholtz

equation, as suggested by Choly & Kaxiras (2002). In the limit of slowly varying electron

densities and rapidly varying electron densities, the more sophisticated kinetic energy func-

tionals with kernel energy are found to reduce to the Thomas-Fermi-Weizsacker family of

functionals. Thus, the Thomas-Fermi-Weizsacker kinetic energy functionals are good mod-

els for systems whose electronic structure is close to that of a free electron gas, namely,

aluminum and simple metals.
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Chapter 3

Real-space finite-element
formulation of orbital-free
density-functional theory

Traditionally, density-functional theory calculations have been performed in Fourier-space

using plane-wave basis functions (Finnis, 2003). The choice of a plane-wave basis for elec-

tronic structure calculations has been the most popular one, as it lends itself to a com-

putation of the electrostatic interactions naturally using Fourier transforms. However, the

plane-wave basis has some very notable disadvantages: Most importantly, it requires pe-

riodic boundary conditions and this is not appropriate for various problems of interest in

materials science, especially defects. Second, a plane-wave basis requires the evaluation of

Fourier transforms which affect the scalability of parallel computation. Third, the plane-

wave basis functions are non-local in the real space, thus resulting in a dense matrix which

limits the effectiveness of iterative solutions; this in turn makes it very tricky to use these

calculations in multi-scale approaches, which often use real-space formulations to deal with

realistic boundary conditions. Although plane-wave basis has been the preferred choice in

this area, recently there have been efforts at performing density-functional calculations using

a finite-element basis in a periodic setting (Pask et al., 1999). Other real-space approaches

include GAUSSIAN (Hehre et al., 1969), FPLMTO (Wills & Cooper, 1987), SIESTA (Soler



16

et al., 2002), ONETEP (Skylaris et al., 2005), and CONQUEST (Bowler et al., 2006) based

on specific orbital ansatz or tight-binding.

In this chapter, a real-space formulation for orbital-free density-functional theory is pre-

sented and a finite-element method for computing this formulation is developed. Here, the

treatment is confined to the Thomas-Fermi-Weizsacker family of kinetic energy functionals

(Parr & Yang, 1989; Thomas, 1927; Fermi, 1927) for clarity; however, we show in the Ap-

pendix how the present approach can be extended to the more recent and accurate kernel

kinetic energy functionals (Wang et al., 1998, 1999; Smargiassi & Madden, 1994; Wang &

Teter, 1992).

An important difficulty in using a real-space formulation is that electrostatic interactions

are extended in real-space. To this end, we reformulate the electrostatics as a local vari-

ational principle. This converts the problem of computing the ground state energy to a

saddle-point variational problem with a local functional in real-space. We show that this

problem is mathematically well-posed by proving existence of solutions in a subsequent

chapter.

Since our formulation is local and variational, it is natural to discretize it using the finite-

element method. In doing so, we exploit an advantage of the saddle-point formulation

and use the same mesh to resolve both the electron-density and the electrostatic poten-

tial. The convergence of the finite-element discretization is rigorously established using the

mathematical technique of Γ−convergence in Chapter 4.

Numerical implementation of the formulation requires care, since the electron densities

and electrostatic potential are localized near the atomic cores and are convected as the

atomic positions change. Consequently, a fixed spatial mesh would be extremely inefficient

as we alternate between relaxing the electron-density and atomic positions. Therefore, we
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design a mesh which convects with the atomic position and obtain efficient convergence.

Further, the approach is demonstrated using three sets of examples: The first set of

examples are atoms. We begin with a hydrogen atom for which an analytic solution of

Schrödinger’s equation is known, but also consider other, heavier atoms. The second set of

examples are nitrogen and carbon-monoxide molecules, for which there are numerous careful

calculations. Our results show reasonable agreement for binding energies with experiments

and other calculations; however the computed bond lengths are rather poor. These errors

are the well-recognized consequence of the use of orbital-free kinetic energy functionals in

these covalent dimers, rather than our formulation and numerical method. The third set

of examples is a series of aluminum clusters ranging from 1 unit (face-centered-cubic) cell

to 9× 9× 9 unit cells (3730 atoms), and these demonstrate the efficacy and advantages of

our approach. First, being clusters, they possess no natural periodicity and thus are not

amenable to plane-wave basis. Second, since the boundaries of the clusters satisfy physically

meaningful boundary conditions, it is possible to extract information regarding the scaling

of the ground-state energy with size. Third, the finite-element method allows one to use

unstructured discretization, concentrating numerical effort in regions where and only where

it is necessary with ease and little loss of accuracy. Further, it allows us to adapt the

discretization to each atomic position.

The remainder of the chapter is organized as follows. Section 3.1 describes the real-space

variational formulation of orbital-free density-functional theory. Section 3.2 describes the

finite-element discretization of the formulation. Section 3.3 describes the details of numerical

implementation and Section 3.4 the examples. Section 3.5 summarizes the chapter with a

short discussion.
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3.1 Formulation

The ground state energy in density-functional theory is given by (cf, e. g., Finnis (2003);

Parr & Yang (1989))

E(ρ,R) = Ts(ρ) + Exc(ρ) + EH(ρ) + Eext(ρ,R) + Ezz(R), (3.1)

where ρ is the electron-density, R = {R1, . . . ,RM} collects the nuclear positions in the

system, and the different terms are explained presently.

Ts is the kinetic energy of non-interacting electrons. A common choice of this in orbital-

free density-functional theory is the Thomas-Fermi-Weizsacker family of functionals (Parr

& Yang, 1989), which have the form

Ts(ρ) = CF

∫
Ω
ρ5/3(r)dr +

λ

8

∫
Ω

|∇ρ(r)|2

ρ(r)
dr, (3.2)

where CF = 3
10(3π2)2/3, λ is a parameter, and Ω contains the support of ρ (crudely the

region where ρ is non-zero). Different values of λ are found to work better in different cases

(Parr & Yang, 1989). λ = 1 is the Weizsacker correction and is suitable for rapidly varying

electron densities, λ = 1/9 gives the conventional gradient approximation and is suitable

for slowly varying electron densities, λ = 1/6 effectively includes the 4th-order effects,

and λ = 0.186 was determined from analysis of large atomic-number limit of atoms. This

class of functionals makes computations of large and complex systems tractable, though

it does have limitations and improvements have been proposed (Wang et al., 1998, 1999;

Smargiassi & Madden, 1994; Wang & Teter, 1992). We confine our attention to the Thomas-

Fermi-Weizsacker family of functionals (3.2) for now for clarity. However, we explain in the
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Appendix that our approach can be extended to include the improved functionals.

Exc is the exchange-correlation energy. We use the Local Density Approximation (LDA)

(Ceperley & Alder, 1980; Perdew & Zunger, 1981) given by

Exc(ρ) =
∫

Ω
εxc(ρ(r))ρ(r)dr, (3.3)

where εxc = εx + εc is the exchange and correlation energy per electron given by,

εx(ρ) = −3
4
(
3
π

)1/3ρ1/3 (3.4)

εc(ρ) =


γ

1+β1
√
rs+β2rs

rs ≥ 1

A log rs +B + Crs log rs +Drs rs < 1

(3.5)

where rs = ( 3
4πρ)

1/3. The values of the constants are different depending on whether the

medium is polarized or unpolarized. The values of the constants are: γu = −0.1471,

β1u = 1.1581, β2u = 0.3446, Au = 0.0311, Bu = −0.048, Cu = 0.0014, Du = −0.0108,

γp = −0.079, β1p = 1.2520, β2p = 0.2567, Ap = 0.01555, Bp = −0.0269, Cp = 0.0001,

Dp = −0.0046.

The last three terms in the functional (3.1) are electrostatic:

EH(ρ) =
1
2

∫
Ω

∫
Ω

ρ(r)ρ(r′)
|r− r′|

drdr′, (3.6)

Eext(ρ,R) =
∫

Ω
ρ(r)Vext(r)dr, (3.7)

Ezz(R) =
1
2

M∑
I=1

M∑
J=1
J 6=I

ZIZJ
|RI −RJ |

. (3.8)

EH is the classical electrostatic interaction energy of the electron-density, also referred to as
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Hartree energy; Eext is the interaction energy with external field, Vext, induced by nuclear

charges; and Ezz denotes the repulsive energy between nuclei.

The energy functional (3.1) is local except for two terms: the electrostatic interaction

energy of the electrons and the repulsive energy of the nuclei. For this reason, evaluation

of the electrostatic interaction energy is the most computationally intensive part of the

calculation of the energy functional. Therefore, we seek to write it in a local form. To this

end, we first regularize the point nuclear charge ZI at RI with a smooth function ZIδRI
(r),

which has support in a small ball around RI and total charge ZI . We then rewrite the

electrostatic nuclear energy as

Ezz(R) =
1
2

∫
Ω

∫
Ω

b(r)b(r′)
|r− r′|

drdr′, (3.9)

where b(r) =
∑M

I=1 ZIδRI
(r). Notice that this differs from the earlier formulation by the self-

energy of the nuclei, but this is an inconsequential constant depending only on the nuclear

charges. Second, we replace the direct Coulomb formula for evaluating the electrostatic

energies with the following identity:

1
2

∫
Ω

∫
Ω

ρ(r)ρ(r′)
|r− r′|

drdr′ +
∫

Ω
ρ(r)Vext(r)dr +

1
2

∫
Ω

∫
Ω

b(r)b(r′)
|r− r′|

drdr′

= − inf
φ∈H1(R3)

{
1
8π

∫
R3

|∇φ(r)|2dr−
∫

R3

(ρ(r) + b(r))φ(r)dr
} (3.10)

where we assume that ρ ∈ H−1(R3). Briefly, note that the Euler-Lagrange equation associ-

ated with the variational problem above is

−1
4π

∆φ = ρ+ b. (3.11)
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These have an unique solution:

φ(r) =
∫

Ω

ρ(r′)
|r− r′|

dr′ +
∫

Ω

b(r′)
|r− r′|

dr′ =
∫

Ω

ρ(r′)
|r− r′|

dr′ + Vext. (3.12)

Substituting this into the variational problem and integrating by parts gives us the desired

identity.

This identity (3.10) allows us to write the energy functional in the local form,

E(ρ,R) = sup
φ∈H1(R3)

L(ρ,R, φ) (3.13)

where we introduce the Lagrangian

L(ρ,R, φ) = CF

∫
Ω
ρ5/3(r)dr +

λ

8

∫
Ω

|∇ρ(r)|2

ρ(r)
dr +

∫
Ω
εxc(ρ(r))ρ(r)dr

− 1
8π

∫
R3

|∇φ(r)|2dr +
∫

R3

(ρ(r) + b(r))φ(r)dr.

(3.14)

The problem of determining the ground-state electron-density and the equilibrium posi-

tions of the nuclei can now be expressed as the minimum problem

inf
ρ∈Y, R∈R3M

E(ρ,R) (3.15a)

subject to: ρ(r) ≥ 0 (3.15b)∫
Ω
ρ(r)dr = N, (3.15c)

where N is the number of electrons in the system and Y is an appropriate space of electron-
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densities. Equivalently, the problem can be formulated in the saddle-point form

inf
ρ∈Y, R∈R3M

sup
φ∈H1(R3)

L(ρ,R, φ) (3.16a)

subject to: ρ(r) ≥ 0 (3.16b)∫
Ω
ρ(r)dr = N. (3.16c)

The constraint of ρ ≥ 0 can be imposed by making the substitution

ρ = u2, (3.17)

which results in the Lagrangian

L(u,R, φ) = CF

∫
Ω
u10/3(r)dr +

λ

2

∫
Ω
|∇u(r)|2dr +

∫
Ω
εxc(u2(r))u2(r)dr

− 1
8π

∫
R3

|∇φ(r)|2dr +
∫

R3

(u2(r) + b(r))φ(r)dr

(3.18)

and the energy

E(u,R) = sup
φ∈H1(R3)

L(u,R, φ). (3.19)

With this representation, the minimum problem (3.15) becomes

inf
u∈X, R∈R3M

E(u,R) (3.20a)

subject to:
∫

Ω
u2(r)dr = N, (3.20b)
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and the saddle-point problem (3.16) becomes

inf
u∈X, R∈R3M

sup
φ∈H1(R3)

L(u,R, φ) (3.21a)

subject to:
∫

Ω
u2(r)dr = N, (3.21b)

where X is a suitable space of solutions for the square-root electron-density, which will be

made explicit in Chapter 4. The preceding local variational characterization of the ground-

state electronic structure constitutes the basis of the finite-element approximation schemes

described subsequently.

3.2 Finite-element approximation

We recall that finite-element bases are piecewise polynomial and are constructed from a

representation of the domain of analysis as a cell complex, or triangulation, Th (cf, e.g.,

Ciarlet (2002); Brenner & Scott (2002)). Often, the triangulation is chosen to be simplicial

as a matter of convenience, but other types of cells, or elements, can be considered as

well. Here and subsequently, h denotes the size of the triangulation, e. g., the largest

circumdiameter of all of its faces. A basis–or shape–function is associated to every vertex–

or node–of the triangulation. The shape functions are normalized to take the value 1 at

the corresponding node and 0 at all remaining nodes. The support of each shape function

extends to the simplices incident on the corresponding node, which confers the basis a local

character. In order to ensure convergence as h → 0, finite-element shape functions are

also required to be continuous across all faces of the triangulation and to represent affine

functions exactly. The interpolated fields Uh(r) spanned by a finite-element basis are of the
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form

Uh(r) =
∑
i

UiN
h
i (r) , (3.22)

where i indexes the nodes of the triangulation, Nh
i (r) denotes the shape function corre-

sponding to node i, and Ui is the value of Uh(r) at node i.

We shall denote by Xh the finite-dimensional linear subspace of X of functions of the form

(3.22), i. e., the span of the shape functions Nh
i (r). In problems governed by a minimum

principle, the Rayleigh-Ritz or best approximation corresponding to a given discretization is

obtained by effecting a constrained minimization over Xh. This constrained minimization

reduces the problem to the solution of a finite-dimensional system of—generally non-linear—

algebraic equations and generates a sequence of approximations Uh(r) indexed by the mesh

size h. A central problem of approximation theory is to ascertain whether the energy of

the sequence Uh(r) converges the ground-state energy of the system as h → 0 and, if the

problem admits solutions, whether the sequence Uh(r) itself converges to a ground-state of

the system. In view of (3.20) and (3.21), in the present setting the constrained problem

takes the form

inf
uh∈Xh, R∈R3M

E(uh,R) , (3.23a)

subject to:
∫

Ω
(uh(r))2dr = N (3.23b)

E(uh,R) = sup
φh∈Xh

L(uh,R, φh) (3.23c)

A full account of finite-element discretization with rigorous proofs of the convergence of the

approximations is presented in Chapter 4.
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3.3 Numerical implementation

We now turn to a numerical implementation of the variational formulation (3.21) described

in Section 3.1. We discretize the variational problem using a finite-element method and

use a nested sequence of iterative conjugate-gradient solvers to solve for the electrostatic

potential, electron-density, and atomic positions. For a given set of atomic positions, we

relax the electron-density, and for each electron-density, we relax the electrostatic potential.

An effective implementation of this procedure requires care with two aspects.

First, the electrostatic potential has to be solved on all space R3, while the electron-

density is solved only on a compact region Ω. Since all the charges are confined to Ω, the

electrostatic potential will decay better than 1/r, since we have charge neutrality. We take

advantage of this, and compute the electrostatic potential on a larger domain Ω′ satisfying

Ω
′ ⊃⊃ Ω, and impose zero Dirichlet boundary conditions on the boundary of the larger

domain. Typically, we use dia(Ω
′
) ≈ 102dia(Ω) in our calculations. Further, we coarsen

our mesh as we go away from Ω to keep the computations efficient and accurate.

Second, we anticipate that the electron-density and the electrostatic potential will be

localized near the atomic cores, and will be convected along with the cores as the atomic

positions change. In other words, we anticipate that the spatial perturbation of the electron-

density will be large as the atomic positions change, but the perturbation to be small in a

coordinate system that is convected with the atomic position. Therefore, with each update

of the atomic position we convect the finite-element grid, as well as the old electron-density

and electrostatic potential, and use this convected electron-density and potential as an

initial guess for the subsequent iteration.

We implement these two aspects in the following way by using two triangulations. We
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first construct a coarse or atomistic triangulation T of the large domain Ω
′

with K nodal

points located at {xi}Ki=1. This triangulation contains each initial atomic position as a node

so that it has atomic resolution in the small region Ω, and coarsens away from it. We

use a coarsening rate of r6/5, which is estimated to be optimal for a 1/r decay with linear

interpolation. The triangulation is generated automatically from Delaunay triangulation

of a set of points. This is shown in Figure 3.1. We now introduce a second triangulation

T′ which is a uniform subdivision of T repeated a certain number of times by using the

Freudenthal’s algorithm for a 3-simplex (Bey, 2000). This triangulation is sufficiently fine

to resolve the electronic charges and the electrostatic field, and is shown in Figures 3.2

and 3.3. At any step in the iteration, suppose ϕi : R3 → R3 denote the deformation of

Figure 3.1: Surface mesh of a sliced cubical domain corresponding to the triangulation T

the ith atom. We extend this deformation mapping to all nodes of the triangulation T by



27

Figure 3.2: Surface mesh of a sliced cubical domain corresponding to the triangulation T
′

setting it to zero for nodes that do not coincide with atomic positions, and then use a linear

interpolation to extend this deformation to Ω′:

ϕ(x) =
n∑
i=1

ϕiNi(x) (3.24)

where Ni is the shape-function associated with the ith node and n is the number of vertices

in the simplex associated with triangulation T. We use this deformation to deform the fine

mesh T′. Specifically, we define a new mesh T′ϕ with nodes

xϕa = ϕ(xa) =
n∑
i=1

ϕiNi(xa) a = 1, . . . , L (3.25)

where xa are the position of the nodes of the original triangulation T′ and L is the number
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Figure 3.3: Close up of Figure 3.2

of such nodes.

We use this mesh, T′ϕ, to discretize the electron-density and electrostatic potential. It

consists of 4-node tetrahedral elements and the interpolating shape functions are linear.

We use a 4-point Gaussian quadrature, which is second-order accurate. We solve the finite-

element equations using non-linear conjugate gradients with secant method for line search.

However, since the mesh is adapted to the updated atomic positions, and the electron-

density convected from the previous atomic position (by keeping the nodal values constant

while the mesh deforms) is used as an initial guess, the convergence is rapid. Finally, we

implement the computation in parallel using domain decomposition.

It is possible that the quality of the triangulation could deteriorate and the aspect ratio

of the elements become very small as the mesh deforms. To work around this, with each
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update of T′ϕ, we evaluate the minimum value of the aspect ratio (defined as ratio of the

radii of inscribed sphere to the circumsphere) amongst all elements, and re-mesh the region

with the nodes fixed if it is below a prescribed value.

3.4 Examples

The approach presented is demonstrated and tested by means of simulations performed on

atoms, molecules, and clusters of aluminum.

3.4.1 Atoms

The first test case is the hydrogen atom, for which theoretical results are available. We use

a value of λ = 1
3 , since it gives the best results. Figure 3.4 demonstrates the convergence of

our finite-element approach. We use N0 ≈ 100 elements for the initial mesh and have N08n

elements after the nth subdivision. It shows that the ground-state energy converges rapidly

as the number of subdivisions (i.e., the fineness of the triangulation) is increased. It also

shows that the ground-state energy of the hydrogen atom is computed to be -0.495 Hartree,

as against the theoretical value of -0.5 Hartree. Figure 3.5 shows the radial distribution

of the electron-density around the hydrogen nucleus. It is compared with the theoretical

solution obtained by solving the Schrödinger equation. The comparison is very good except

at the regions very close to the nucleus, where the simulations predict a slightly higher

electron-density. Figure 3.6 shows the radial probability distribution of finding the electron

as a function of the distance from the nucleus. We observe that the probability of finding

the electron is maximum at a distance of 1 Bohr from the nucleus, which agrees with the

theoretical solution.

To simulate atoms heavier than hydrogen atom, λ = 1
9—the conventional gradient cor-
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Figure 3.4: Energy of hydrogen atom as a function of number of uniform subdivisions of
triangulation T
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Figure 3.5: Radial distribution of electron-density for hydrogen atom
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Figure 3.6: Radial probability distribution of finding an electron around the hydrogen
nucleus, computed using OFDFT-FE

rection to Thomas-Fermi kinetic energy functional—is used. The ground-state energies

of various other atoms estimated from our simulations are tabulated in Table 3.1 under

OFDFT-FE, which denotes orbital-free density functional calculation using a finite-element

basis. The results obtained are compared with other electronic structure calculations (Tong

& Sham, 1966; Clementi et al., 1962), which include the Hartree-Fock approach and the

Kohn-Sham approach of density-functional theory using local density approximation for

exchange correlation functionals (KS-LDA). The ground-state energies are found to be in

good agreement with other electronic structure calculations and experiments.

3.4.2 Molecules

The next set of examples we consider are N2 and CO molecules. The ground-state energies

of these molecules are evaluated at various values of interatomic distances. Using this data,
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Table 3.1: Energies of atoms, computed by various techniques, in atomic units

Element OFDFT-FE KS-LDA Hartree-Fock Experiments
(Tong & Sham, 1966) (Clementi et al., 1962) (Tong & Sham, 1966)

He -2.91 -2.83 -2.86 -2.9
Li -7.36 -7.33 -7.43 -7.48
Ne -123.02 -128.12 -128.55 -128.94

Table 3.2: Binding energy and bond length of N2 molecule, computed by various techniques

Property OFDFT-FE KS-LDA Hartree-Fock Experiments
(Gunnarsson et al., 1977) (Cade et al., 1973) (Huber, 1972)

Binding energy (eV) -11.9 -7.8 -5.3 -9.8
Bond length (a.u.) 2.7 2.16 2.01 2.07

the binding energies and bond lengths of the molecules are determined. Figure 3.7 shows the

binding energy for N2 molecule as a function of the interatomic distance. The interatomic

potential energy has the same form as other popular interatomic potentials like Lennard-

Jones and Morse potentials. Tables 3.2 and 3.3 show the comparison of binding energies

and bond lengths of N2 and CO molecules predicted from our simulations with those from

other electronic structure calculations and experiments (Gunnarsson et al., 1977; Cade et

al., 1973; Hou, 1965; Huber, 1972). Binding energies are calculated using the standard

expression, binding energy = EAB − EA − EB, where EAB is the energy of the molecule

AB, EA, and EB are the energies of a single atoms A and B respectively.

There is reasonable agreement of our simulations with experiments in terms of the binding

energies. But there is a considerable deviation in the values of predicted bond lengths in

comparison to other calculations and experiments. We believe that this is due to the well-

understood limitation of the orbital-free kinetic energy functionals in the presence of strong

covalent bonds (Parr & Yang, 1989).
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Figure 3.7: Binding energy of N2 molecule as a function of interatomic distance, computed
using OFDFT-FE

Table 3.3: Binding energy and bond length of CO molecule, computed by various techniques

Property OFDFT-FE KS-LDA Hartree-Fock Experiments
(Gunnarsson et al., 1977) (Hou, 1965) (Huber, 1972)

Binding energy (eV) -12.6 -9.6 -7.9 -11.2
Bond length (a.u.) 2.75 2.22 2.08 2.13
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3.4.3 Aluminum clusters

The final set of examples we consider are aluminum clusters. We choose λ = 1
6 , which

was found to yield good results. The simulations are performed using a modified form of

Heine-Abarenkov pseudopotential for aluminum (Goodwin et al., 1990), which in real-space

has the form,

Vext =


−Zv

r , if r ≥ rc;

−A, if r < rc;

(3.26)

where Zv is the number of valence electrons, rc the cut-off radius, and A is a constant. For

aluminum, Zv = 3, rc = 1.16 a.u., A = 0.11 a.u.. Simulations are performed on clusters

consisting of 1× 1× 1, 3× 3× 3, 5× 5× 5, and 9× 9× 9 face-centered-cubic (fcc) unit cells.

The number of atoms in the cluster consisting of 9×9×9 fcc unit cells is 3730, and close to

6 million finite-elements are used in this simulation. It took more than 10,000 CPU hours

on 2.4 GHz Opteron processors for each simulation on the cluster with 9 × 9 × 9 fcc unit

cells to converge. Figures 3.8 and 3.9 show the contours of electron-density for a cluster

consisting of 3 × 3 × 3 fcc unit cells. Figure 3.10 shows the binding energy per atom as a

function of the lattice constant (size of the fcc cell) for the various cluster sizes, along with

cubic polynomial fits of the simulated points. We calculate the binding energy using the

standard approach; Ebind(per atom) = (E(n) − nE0)/n, where E(n) is the energy of the

cluster/unit cell containing n atoms and E0 is the energy of a single atom. An important

observation from these figures is the anharmonic nature of the binding energy.

The binding energies evaluated in these simulations include, along with the bulk cohesive

energy, the effects of surfaces, edges, and corners. A classical interpretation of these energies
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Figure 3.8: Contours of electron-density on the mid plane of an aluminum cluster with
3x3x3 fcc unit cells

Figure 3.9: Contours of electron-density on the face of an aluminum cluster with 3x3x3 fcc
unit cells



36

6.6 6.8 7 7.2 7.4 7.6 7.8 8

−3.5

−3

−2.5

−2

−1.5

−1

Lattice constant (a.u.)

B
in

di
ng

 e
ne

rg
y 

pe
r 

at
om

 (
eV

)

 Simulated points (1x1x1)
 Simulated points (3x3x3) 
 Simulated points (5x5x5)
 Simulated points (9x9x9)
 Cubic polynomial fit

Figure 3.10: Binding energy per atom as a function of lattice constant in a fcc cluster with
1× 1× 1, 3× 3× 3, 5× 5× 5 and 9× 9× 9 unit cells of aluminum atoms, computed using
OFDFT-FE

would suggest a scaling of the form

εn = εcoh + n−1/3εsurf + n−2/3εedge + n−1εcorn, (3.27)

where n represents the number of atoms, εcoh the cohesive energy of the bulk, εsurf the

surface energy, εedge the energy contributed by presence of edges, and εcorn the energy

resulting from the corners. Figure 3.11 shows the plot of binding energy per atom of each

cluster in the relaxed configuration as a function of n−1/3. The relationship is almost

linear, which supports the scaling relation given in (3.27). Further, it shows that cohesive

and surface energies dominate edge and corners even for relatively small clusters. Finally,

this scaling allows us to extract the bulk cohesive energy of aluminum from the binding

energies of the clusters.
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The values of the bulk modulus of these clusters are evaluated from the binding energy

calculations. Figure 3.12 shows the linear dependence of bulk modulus on n−1/3, implying

that bulk modulus can also be expressed as a scaling relation suggested by (3.27).
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Figure 3.11: Relaxed binding energies per atom of aluminum clusters against n−1/3

Table 3.4 shows the variation of the lattice constant with the cluster size. We do not

find significant dependence or a clear trend in the dependence of lattice constant on cluster

size. Table 3.5 shows a comparison of the bulk properties of aluminum obtained from

our simulations with other electronic structure calculations (Goodwin et al., 1990) and

experiments (Brewer, 1977; Gschneider, 1964). We have very good quantitative agreement

in terms of both cohesive energies and bulk modulus. The lattice constant of 9 × 9 × 9

cluster is 7.42, which is very close to that predicted by KS-LDA (7.44).

In all the simulations discussed so far, the ground-state energy calculations were per-

formed for fixed atomic positions. However, the formulation developed is capable of equili-



38

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
80

100

120

140

160

180

200

220

240

n−1/3

B
ul

k 
m

od
ul

us
 (

G
P

a)

 

 

Simulated points
 Linear fit

Figure 3.12: Bulk modulus of aluminum clusters against n−1/3

Table 3.4: Relaxed lattice constants of various cluster sizes, computed using OFDFT-FE
Cluster size 1× 1× 1 3× 3× 3 5× 5× 5 9× 9× 9

Relaxed lattice constant (a.u.) 7.26 7.27 7.39 7.42

Table 3.5: Bulk properties of aluminum, computed using various techniques

Bulk Property OFDFT-FE KS-LDA Experiments
(Goodwin et al., 1990) (Brewer, 1977; Gschneider, 1964)

Cohesive energy (eV) 3.69 3.67 3.4
Bulk modulus (GPa) 83.1 79.0 74.0
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Table 3.6: Comparison of properties of aluminum clusters Aln, n = 2, 3, 4, obtained
from OFDFT-FE calculations with other DFT calculations; G denotes the symmetry
group, Eb denotes the binding energy per atom (eV), Re denotes equilibrium distances
(a.u.)

n G OFDFT-FE AE (Ahlrichs & Elliot, 1999)
Eb Re/angle Eb Re/angle

2 D∞h -0.86 4.97 -0.78 4.72
3 D3h -1.24 5.06 -1.29 4.77
3 C2v -1.16 5.14 -1.22 4.91
4 D2h -1.38 5.22/71o -1.5 4.85/68o

4 C3v -1.31 -1.39

brating the nuclear positions and predicting the various stable configurations of atoms. To

this end, we perform simulations on small aluminum clusters to predict the binding energies

and the equilibrated structures of these clusters. Since the energy is non-convex with respect

to the positions of the nuclei, we start our simulations from various initial configurations

to predict the stable configurations of these clusters. We performed simulations on small

aluminum clusters consisting of two, three, and four atoms. Table 3.6 shows the results of

our simulations and a comparison with other DFT calculations (Ahlrichs & Elliot, 1999).

We successfully predict the various stable configurations of these clusters, and the binding

energies of these clusters are in good agreement with other calculations. However, there is

some deviation in the predicted geometry. This deviation could be attributed to the fact

that the bonding in these small aluminum clusters is covalent in nature and orbital-free

kinetic functionals are not very appropriate for systems with covalent bonds.
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3.5 Summary

We have developed a real-space finite-element formulation of density-functional calculations

based on orbital-free kinetic energy functionals to perform ground-state energy calculations.

This formulation addresses problems which are non-periodic in nature, like defects in solids,

which can not be treated accurately with existing techniques employing periodic boundary

conditions. The local structure of the finite-element basis aids parallel implementation,

and enables us to solve large systems with thousands of atoms effectively, which has been

demonstrated through simulations on large aluminum clusters.

The method was tested by carrying out simulations on atoms, molecules, and large clus-

ters of aluminum in fcc structure. We have also predicted some stable structures in small

aluminum clusters. The results from these simulations – which include energies of atoms,

binding energies and bond lengths of molecules, bulk properties of aluminum, and stable

configurations of small aluminum clusters along with their binding energies – are compared

with other electronic structure calculations and experiments. In most cases the agreement

has been very good, except in the case of molecules, where there is considerable deviation in

the bond length predicted. This can be attributed to the inability of the orbital-free kinetic

energy functionals to approximate the kinetic energy of non-interacting electrons well in

systems with strong covalent bonding.

This framework is developed with a larger goal in mind, which is to coarse-grain orbital-

free density-functional theory in a seamless atomistic-continuum formulation. This coarse-

graining is the topic of discussion in Chapter 5. Such a formulation is necessary to accurately

study defects in solids like vacancies, dislocations, and cracks, where the local structure and

long range elastic fields interact in a non-trivial manner.
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Chapter 4

Convergence analysis

Chapter 3 described the formulation of the ground-state energy of a system using orbital-

free density-functional theory as a local variational problem in real-space. Further, this

formulation was discretized and computed using a finite-element basis. As this real-space

formulation has a variational structure, it is of interest and importance to understand the

properties of this variational problem. In particular, one problem of importance is under-

standing whether the variational problem is well-posed: i.e., does there exist a minimizer

for the energy functional described by orbital-free density-functional theory? If the varia-

tional problem is well-posed, then a subsequent question of great importance is: does the

finite-element discretization converge for the class of functionals which describe orbital-free

density-functional theory? This chapter probes into these questions. Section 4.1 proves the

existence of minimizers for energy functionals which describe orbital-free density-functional

theory. Section 4.2 establishes the convergence of the finite-element discretization rigor-

ously, using the mathematical technique of Γ−convergence. This is a notion of convergence

of functionals introduced by De Giorgi & Franzoni (1975) (also see Dal Maso (1993) for a

detailed introduction) that has recently been used in a variety of multi-scale problems. In

the present context, consider a sequence of finer and finer finite-element approximations.

These generate a sequence of functionals, and we show that this sequence of functionals
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Γ−converge to the exact functional associated with our real-space formulation. While the

exact definition is technical, Γ− convergence states in spirit that solutions of the sequence of

approximate functionals converge to the solution of the exact functional. Further, Section

4.3 describes the convergence of the numerical quadratures introduced in the practical im-

plementation of the finite-element method. The results presented in this chapter establish

rigorously that the real-space variational problem described in Chapter 3 is mathemati-

cally well-posed, and the finite-element approximation used to discretize and compute the

formulation converges.

4.1 Properties of the OFDFT variational problem

We begin by establishing certain properties of the OFDFT variational problem that play

a fundamental role in the analysis of convergence presented in the sequel. To keep the

analysis simple we treat the electrostatics on a large but bounded domain with compact

support. To this end, we consider energy functionals E : W 1,p(Ω) → R of the form

E(u) =
∫

Ω
f(∇u)dr +

∫
Ω
g(u)dr + J(u)

J(u) = − inf
φ∈H1

0 (Ω)
{1
2

∫
Ω
|∇φ|2dr−

∫
Ω

(u2 + b(r))φdr},

where Ω is an open bounded subset of RN , with ∂Ω Lipschitz continuous. b(r) is a smooth,

bounded function in RN . We assume:

(i) f is convex and continuous on RN .

(ii) f satisfies the growth condition, c0|ψ|p − a0≤f(ψ) ≤ c1|ψ|p − a1, 1 < p < ∞, where

c0, c1 ∈ R+, a0, a1 ∈ R.
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(iii) g is continuous on R.

(iv) g satisfies the growth condition, c2|s|q−a2≤g(s) ≤ c3|s|q−a3, q≥p, where c2, c3 ∈ R+,

a2, a3 ∈ R.

Let F : W 1,p(Ω) → R and G : W 1,p(Ω) → R be functionals defined by,

F (u) =
∫

Ω
f(∇u)dr G(u) =

∫
Ω
g(u)dr.

We note that the growth conditions imply, |f(ψ)| ≤ c(1 + |ψ|p) and |g(s)| ≤ c(1 + |s|q).

Hence, it follows that, F (u) is continuous in W 1,p(Ω) and G(u) is continuous in Lq(Ω) (cf,

e. g., Remark 2.10, Braides (2002)).

Let X = {u|u ∈ W 1,p(Ω), ‖u‖L2(Ω) = 1} with norm induced from W 1,p(Ω). Let, 1
p∗ =

1
p −

1
N .

Lemma 4.1.1. X is closed in the weak topology of W 1,p(Ω) if p∗ > 2.

Proof. We can rewrite X as X = W 1,p(Ω)∩K, where K = {u ∈ L2(Ω)|‖u‖L2(Ω) = 1}. Let

(uh) ∈ X, uh⇀u in W 1,p(Ω). If p∗ > 2, then W 1,p(Ω) is a compact injection into L2(Ω).

Hence, uh→u in L2(Ω). Thus, 1 = ‖uh‖L2(Ω) → ‖u‖L2(Ω) Hence, u ∈ K and it follows that

X is closed in the weak topology of W 1,p(Ω).

In this section we establish the existence of a minimum point of the energy functional

E(u) in X. Let,

I(φ, u) =
1
2

∫
Ω
|∇φ|2dr−

∫
Ω

(u2 + b)φdr, φ ∈ H1
0 (Ω) u ∈W 1,p(Ω).
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Hence,

J(u) = − inf
φ∈H1

0 (Ω)
I(φ, u).

For every u ∈ L4(Ω), I(., u) admits a minimum. This follows from Poincaré inequality and

Lax-Milgram Lemma. Therefore,

J(u) = − min
φ∈H1

0 (Ω)
I(φ, u).

Lemma 4.1.2. J is continuous in L4(Ω).

Proof. If φu denotes the minimizer of I(., u), then for every u, v ∈ L4(Ω), we have,

∫
Ω
∇(φu − φv).∇ψdr =

∫
Ω
(u2 − v2)ψdr ∀ψ ∈ H1

0 (Ω).

Hence, from Poincaré and Cauchy-Schwartz inequality, it is immediate that,

‖φu − φv‖H1
0 (Ω) ≤ C‖u2 − v2‖L2(Ω) .

Continuity of J thus follows.

Let us denote by Hypothesis H, the condition, p∗ > max{q, 4}.

Lemma 4.1.3. If the Hypothesis H is satisfied, then E is lower semi-continuous (l.s.c) in

the weak topology of X.

Proof. We noted previously that F is continuous in W 1,p(Ω). As F is convex, it follows

that F is l.s.c in the weak topology of W 1,p(Ω) (cf, e. g. Prop. 1.18, Dal Maso (1993)). If

the hypothesis H is satisfied, then W 1,p(Ω) is a compact injection into Lq(Ω) and L4(Ω).

G is continuous in Lq(Ω), as noted previously, and from Lemma 4.1.2, J is continuous in
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L4(Ω). Hence, it follows that, G and J are l.s.c and thus E is l.s.c in the weak topology

of W 1,p(Ω). As X is a subset of W 1,p(Ω), it follows that E is l.s.c in the weak topology of

X.

Lemma 4.1.4. E is coercive in the weak topology of X.

Proof. If we establish the coercivity of E in the weak topology of W 1,p(Ω), the coercivity

of E in the weak topology of X follows from Lemma 4.1.1. We note that J(u)≥0. Hence,

E(u) ≥ c0‖∇u‖pLp(Ω) + c2‖u‖qLq(Ω) − (a0 + a2)Ω

≥ c0‖∇u‖pLp(Ω) +
c1
CqΩ

‖u‖qLp(Ω) − C = K(u) as p≤q

If the function K is bounded, then ‖u‖W 1,p(Ω) is bounded. As W 1,p(Ω) is reflexive (1 < p <

∞), it follows that K is coercive in the weak topology of W 1,p(Ω). Hence, E is coercive in

the weak topology of W 1,p(Ω) and from Lemma 4.1.1, E is coercive in the weak topology

of X.

Theorem 4.1.1. E(u) has a minimum in X.

Proof. It follows from Lemma 4.1.3, Lemma 4.1.4, and Theorem 1.15, Dal Maso (1993).

The orbital-free density functional under consideration falls into the class of functionals

being discussed with J(u) representing the classical electrostatic interaction energy. The

constraint on electron density is imposed explicitly through the space X. It is easy to check

that the energy functional satisfies conditions (i)-(iv) with p = 2, q = 10/3. As Ω ⊂ R3,

we estimate p∗ = 6. Hence, the hypothesis H is satisfied and all the results apply to the

specific energy functional.
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4.2 Γ-convergence of the finite-element approximation

Finite-element approximations to the solutions of the OFDFT variational problem are ob-

tained by restricting minimization to a sequence of increasing finite-dimensional subspaces

of X. Thus, let Th be a sequence of triangulations of Ω of decreasing mesh size, and let Xh

be the corresponding sequence of subspaces of X consisting of functions whose restriction

to every cell in Th is a polynomial function of degree k ≥ 1. A standard result in approxi-

mation theory (cf, e. g., Ciarlet (2002)) shows that the sequence (Xh) is dense in X, i. e.,

for every u ∈ X there is a sequence uh ∈ Xh such that uh → u. Let X1h
= {φ|φ ∈ H1

0 (Ω),

φ is piece-wise polynomial function corresponding to triangulation Th} denote a sequence

of constrained spaces of the space H1
0 (Ω). The sequence of spaces (X1h

) is such that ∪hX1h

is dense in H1
0 (Ω). We now define a sequence of finite-element energy functionals:

Eh(u) =


F (u) +G(u) + Jh(u), if u ∈ Xh;

+∞, otherwise;

where

Jh(u) = − min
φ∈H1

0 (Ω)
Ih(φ, u)

and

Ih(φ, u) =


I(φ, u), if φ ∈ X1h

,u ∈ Xh;

+∞, otherwise;

Then, we would like to establish convergence of the sequence of functionals Eh to E in a

sense such that the corresponding convergence of minimizers is guaranteed. This natural

notion of convergence of variational problems is provided by Γ-convergence (cf, e. g., Dal
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Maso (1993) for comprehensive treatises on the subject). In the remainder of this section,

we show the Γ-convergence of the finite-element approximation and attendant convergence

of the minima. We also extend the analysis of convergence to approximations obtained

using numerical quadrature.

To analyze the behavior of the sequence of functionals, Eh, it is important to understand

the behavior of Jh. We first note some properties of Jh before analyzing Eh.

Lemma 4.2.1. If uh→u in L4(Ω), then for any φh ⇀ φ in H1
0 (Ω), lim infh→∞ I(φh, uh)≥I(φ, u).

Proof. I(φ, u) = 1
2

∫
Ω |∇φ|

2dr−
∫
Ω (u2 + b)φdr. L.s.c of

∫
Ω |∇φ|

2dr in the weak topology of

H1
0 (Ω) follows from Prop 2.1, Dal Maso (1993). As uh→u in L4(Ω),

limh→∞
∫
Ω (u2

h + b)φhdr =
∫
Ω (u2 + b)φdr. Putting both the terms together we get,

lim infh→∞ I(φh, uh)≥I(φ, u).

Lemma 4.2.2. If uh→u in L4(Ω), then (Ih(., uh)) is equi-coercive in the weak topology of

H1
0 (Ω).

Proof.

I(φ, u) ≥ C‖φ‖2
H1

0 (Ω) − (‖u2‖L2(Ω) + ‖b‖L2(Ω))‖φ‖L2(Ω). (4.1)

Ih(., uh) ≥ I(., uh) ≥ I∗ where I∗(φ) = C‖φ‖2
H1

0 (Ω)
− K‖φ‖L2(Ω), K = suph ‖uh2‖L2(Ω) +

‖b‖L2(Ω). Since, uh → u in L4(Ω) and b is a bounded function, K is bounded. This implies,

I∗ is coercive in the weak topology of H1
0 (Ω). Thus it follows that, (Ih(., uh)) is equi-coercive

in the weak topology of H1
0 (Ω).

Theorem 4.2.1. If (uh) ∈ (Xh) is a sequence such that uh→u in L4(Ω), then Ih(., uh) ⇀Γ

I(., u) in weak topology of H1
0 (Ω).
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Proof. Let (φh) be any sequence 3 φh ⇀ φ in H1
0 (Ω). Ih(φh, uh) ≥ I(φh, uh). Hence,

lim infh→∞ Ih(φh, uh) ≥ lim infh→∞ I(φh, uh). But from Lemma 4.2.1, lim infh→∞ I(φh, uh) ≥

I(φ, u). Hence, lim infh→∞ Ih(φh, uh) ≥ I(φ, u). Now we construct the recovery sequence

from interpolated functions. Let (φh) be a sequence constructed from the interpolation

functions of successive triangulations such that φh → φ in H1
0 . As φh → φ in H1

0 (Ω),

‖∇φh‖L2(Ω) → ‖∇φ‖L2(Ω). Also, as uh → u in L4(Ω), limh→∞
∫
Ω (u2

h + b)φhdr =
∫
Ω (u2 + b)φdr.

Hence, limh→∞ Ih(φh, uh) = I(φ, u). This shows that, Ih(., uh) ⇀Γ I(., u) in weak topology

of H1
0 (Ω).

Theorem 4.2.2. If (uh) ∈ (Xh) is a sequence such that uh→u in L4(Ω), then limh→∞ Jh(uh) =

J(u).

Proof. Follows from Lemma 4.2.2, Theorem 4.2.1, and Theorem 7.8, Dal Maso (1993).

Lemma 4.2.3. Let uh⇀u in X, then lim infh→∞Eh(uh)≥E(u) if the hypothesis H is sat-

isfied.

Proof. We need to consider 2 cases.

Case1 : There is no sub-sequence (uhk
) such that (uhk

)∈Xhk

lim infh→∞Eh(uh) = +∞. Hence, lim infh→∞Eh(uh) ≥ E(u).

Case2 :∃ sub-sequence (uhk
) such that (uhk

)∈Xhk

Using Theorem 4.2.2, the proof for this case follows on the same lines as Lemma 4.1.3.

Theorem 4.2.3. Eh ⇀Γ E in weak topology of X if the hypothesis H is satisfied.

Proof. Let (uh) be any sequence 3 uh ⇀ u in X. From Lemma 4.2.3, it follows that

lim infh→∞Eh(uh)≥E(u).

Now let’s construct the recovery sequence. Let (uh) be a sequence constructed from the
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interpolation functions of successive triangulations such that, uh → u in X. From Theorem

4.2.2 and continuity of F and G, it follows that limh→∞Eh(uh) = E(u). Thus, Eh ⇀Γ E

in weak topology of X.

Lemma 4.2.4. (Eh) is equi-coercive in the weak topology of X if the hypothesis H is

satisfied.

Proof. Noting that Eh(u)≥F (u) +G(u) + Jh(u) and Jh(u) ≥ 0 if u ∈ Xh, the proof follows

on the same lines as Lemma 4.1.4.

Theorem 4.2.4. limh→∞ infX Eh = minX E if the hypothesis H is satisfied.

Proof. Follows from Lemma 4.2.4, Theorem 4.2.3 and Theorem 7.8, Dal Maso (1993).

4.3 Γ-convergence of the finite-element approximation with

numerical quadratures

Let f : Ω → R, Ω ⊂ RN , Ω bounded, be a function in Wn+1,1(Ω) and I =
∫
Ω f(r)dr. Define

the quadrature of I to be

Ĩ =
P∑
i=1

Cif(r(ξi))

where P denotes the number of quadrature points and C and ξ denote the weights and

quadrature points. If the quadrature rule is of nth order, then the values of C and ξ are

determined such that all polynomials up to degree n are integrated exactly. If the quadrature

rule is nth order, then the error due to the quadrature rule is given by

|Ĩ − I| ≤ KC
(n+1)
Ω

∫
Ω
|f (n+1)(r)|dr,
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where f (n+1) denotes the n+ 1th derivative of f and CΩ represents the size of the domain.

Define Ĩh as,

Ĩh(φ, u) =


Ĩ(φ, u), if φ ∈ X1h

, u ∈ Xh;

+∞, otherwise;

We rewrite Ĩh as

Ĩh(φ, u) = Ih(φ, u) + ∆Ih(φ, u),

where ∆Ih(φ, u) is a perturbation of Ih(φ, u) introduced due to numerical quadrature and

is given by

∆Ih(φ, u) =


Ĩ(φ, u)− I(φ, u), if φ ∈ X1h

, u ∈ Xh;

0, otherwise;

To estimate the error in the energy introduced due to the quadrature, we assume that the

family of triangulations (Th) are regular, affine and satisfy the inverse assumption (cf, e. g.,

Ciarlet (2002)). If the quadrature rule is nth order, then the error due to the quadrature

for φ ∈ X1h
and u ∈ Xh is given by

|∆Ih(φ, u)| ≤ Chn+1
0

∑
i

∫
ei

|Dn+1[
1
2
|∇φ|2 − (u2 + b)φ]|dr

≤ Chn+1
0

∑
i

∫
ei

{|Dn+1|∇φ|2|+ |Dn+1((u2 + b)φ)|}dr

≤ Chn+1
0

∑
i

∫
ei

{|Dn+1|∇φ|2|+ C1h
−n
0 |D(u2φ)|+ C2h

−n
0 |D(φ)|}dr,

(4.2)

where ei denotes the ith element and h0 is characteristic of the size of the largest element

in the finite-element mesh. The last inequality in (4.2) is obtained by using the inverse
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inequality (Ciarlet, 2002). We note that, as h → ∞, h0 → 0. Let k denote the degree of

polynomials used for finite-element interpolation.

Lemma 4.3.1. If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X, (n − 2k + 3) > 0,

p≥ 2 and the hypothesis H is satisfied, then (∆Ih(., uh)) is continuously convergent to the

zero function in H1
0 (Ω).

Proof. If φ /∈ X1h
, then by definition, ∆Ih(φ, uh) = 0. Hence, we need to consider only the

case where φ ∈ X1h
. If φ ∈ X1h

, then from (4.2),

|∆Ih(φ, uh)|≤Chn+1
0

∑
i

∫
ei

{|Dn+1|∇φ|2|+ C1h
−n
0 |D(u2

hφ)|+ C2h
−n
0 |D(φ)|}dr.

If (n− 2k + 3) > 0, then Dn+1|∇φ|2 = 0. Hence,

|∆Ih(φ, uh)| ≤ Ch0

∑
i

∫
ei

|D(u2
hφ)|dr + C1h0

∑
i

∫
ei

|D(φ)|dr

≤ Ch0{‖∇uh‖L2(Ω)‖uhφ‖L2(Ω) + ‖∇φ‖L2(Ω)‖uh‖2
L4(Ω)}+ C1h0‖∇φ‖L1(Ω)

≤ Ch0{‖∇uh‖L2(Ω)‖uh‖L4(Ω)‖φ‖L4(Ω) + ‖∇φ‖L2(Ω)(‖uh‖2
L4(Ω) + C2)}.

(4.3)

As the hypothesis H is satisfied, H1
0 (Ω) and W 1,p(Ω) are compact injections into L4(Ω) and

all the norms make sense. As, uh ⇀ u in X, it follows that norms ‖∇uh‖L2(Ω) and ‖uh‖L4(Ω)

are uniformly bounded. Hence, it follows that (∆Ih(., uh)) is continuously convergent to

the zero function.

Theorem 4.3.1. If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X, (n − 2k + 3) > 0,

p≥ 2 and the hypothesis H is satisfied, then Ĩh(., uh) ⇀Γ I(., u) in weak topology of H1
0 (Ω).
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Proof. Ĩh(., uh) = Ih(., uh) + ∆Ih(., uh). From Lemma 4.3.1, it follows that (∆Ih(., uh)) is

continuously convergent to zero. Hence, from Prop. 6.20, Dal Maso (1993), it follows that

Ĩh(., uh) ⇀Γ I(., u) in weak topology of H1
0 (Ω).

Theorem 4.3.2. If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X, (n−2k+3) > 0, p≥ 2,

N < 4 and the hypothesis H is satisfied, then limh→∞ infH1
0 (Ω) Ĩh(., uh) = minH1

0 (Ω) I(., u),

i.e. limh→∞ J̃h(uh) = J(u).

Proof. To show this we need to show that Ĩh is equi-coercive in the weak topology of H1
0 (Ω).

For φ ∈ X1h
, from (4.1) and (4.3),

Ĩh(φ, uh) ≥ Ih(φ, uh)− Ch0{‖∇uh‖L2(Ω)‖uh‖L4(Ω)‖φ‖L4(Ω) + ‖∇φ‖L2(Ω)(‖uh‖2
L4(Ω) + C2)}

≥ C1‖φ‖2
H1

0 (Ω) − C2‖φ‖L2(Ω) − C3h0‖∇φ‖L2(Ω) − C4h0‖φ‖L4(Ω).

Using Inverse Inequality, ‖φ‖L4(Ω)≤Ch
−N/4
0 ‖φ‖L2(Ω). Hence, we have,

Ĩh(φ, uh)≥C1‖φ‖2
H1

0 (Ω) − C2‖φ‖L2(Ω) − C3h0‖∇φ‖L2(Ω) − Ch
1−N/4
0 ‖φ‖L2(Ω) (C1 > 0).

If φ /∈ X1h
, then Ĩh(φ, uh) = ∞. Hence, for any φ we have,

Ĩh(φ, uh)≥C1‖φ‖2
H1

0 (Ω) − C2‖φ‖L2(Ω) − C3h0‖∇φ‖L2(Ω) − Ch
1−N/4
0 ‖φ‖L2(Ω) (C1 > 0).

As all the terms appearing with a negative sign are lower order, it follows that Ĩh is equi-

coercive in the weak topology of H1
0 (Ω). Hence, the result follows from Theorem 4.3.1 and

Theorem 7.8, Dal Maso (1993).
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Returning to the energy functional, lets define,

Ẽh(u) =


F̃ (u) + G̃(u) + J̃h(u), if u ∈ Xh;

+∞, otherwise;

If f is a polynomial function of degree d which satisfies the condition n− d(k − 1) ≥ 0 and

g
′
(u)∈L2(Ω), then for u ∈ Xh, we have the error estimate for a quadrature of nth order as,

|Ẽh(u)− Eh(u)|≤Chn+1
0

∑
i

∫
ei

|Dn+1[f(∇u) + g(u)]|dr + |J̃h(u)− Jh(u)| .

If f is a polynomial function of degree d which satisfies the condition n−d(k−1) ≥ 0, then

Dn+1(f(∇u)) = 0. Hence,

|Ẽh(u)− Eh(u)| ≤ Chn+1
0

∑
i

∫
ei

|Dn+1(g(u))|dr + |J̃h(u)− Jh(u)|

≤ Ch0‖g
′
(u)‖L2(Ω)‖∇u‖L2(Ω) + |J̃h(u)− Jh(u)| (Inverse Inequality).

(4.4)

Lets denote by hypothesis H2 the following conditions,

1. f is a polynomial function of degree d which satisfies the condition n− d(k − 1) ≥ 0.

2. If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X, then ‖g′(uh)‖L2(Ω) is bounded

uniformly.

3. N < 4.

4. n− 2k + 3 > 0.

5. p≥2.

Lemma 4.3.2. If (uh) ∈ (Xh) is a sequence such that uh ⇀ u in X, and hypothesis H and
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H2 are satisfied, then limh→∞{Ẽh(uh)− Eh(uh)} = 0.

Proof. Follows from (4.4), Theorem 4.2.2, and Theorem 4.3.2.

Theorem 4.3.3. If the hypothesis H and H2 are satisfied, then Ẽh ⇀Γ E in the weak

topology of X.

Proof. Let (uh) be a sequence such that uh ⇀ u in X. We then have 2 cases.

Case1 : There is no sub-sequence (uhk
) such that (uhk

)∈Xhk

lim infh→∞ Ẽh(uh) = +∞. Hence, lim infh→∞ Ẽh(uh) ≥ E(u).

Case2 : ∃ sub-sequence (uhk
) such that (uhk

)∈Xhk

lim infh→∞ Ẽh(uh)≥ lim infhk→∞Ehk
(uhk

)+lim infh→∞ (Ẽhk
− Ehk

)(uhk
) and by using Lemma

4.3.2 we get, lim infh→∞ (Ẽhk
− Ehk

)(uhk
) = 0.

Hence, lim infh→∞ Ẽh(uh)≥ lim infhk→∞Ehk
(uhk

)≥E(u) (from Theorem 4.2.3).

Now we construct the recovery sequence from interpolated functions. Let (uh) be a se-

quence constructed from the interpolation functions of successive triangulations such that,

uh → u in X. limh→∞ Ẽh(uh) = limh→∞Eh(uh)+limh→∞(Ẽh−Eh)(uh). But limh→∞(Ẽh−

Eh)(uh) = 0 from Lemma 4.3.2. Hence, limh→∞ Ẽh(uh) = limh→∞Eh(uh) = E(u). Hence,

Ẽh ⇀
Γ E in weak topology of X.

Lemma 4.3.3. If f is a polynomial function of degree d which satisfies the condition n −

d(k − 1) ≥ 0, p≥ 2 and N(max{0, p−1
p − 1

2}) < 1 then, Ẽh is equi-coercive in the weak

topology of X.

Proof. First we note the following property about quadratures. If A(u) =
∫
f(u), B(u) =∫

g(u) and f(u(r))≥g(u(r)) on Ω, then Ã(u)≥B̃(u). Hence, if u∈Xh, as Jh(u) ≥ 0 and
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q ≥ p we have,

Eh(u)≥
∫

Ω
{f(∇u) + C1|u|p − C2}dr

Ẽh(u)≥Q{
∫

Ω
{f(∇u) + C1|u|p − C2}dr}

where Q denotes the quadrature of the term inside the bracket. Hence,

Ẽh(u) ≥
∫

Ω
{f(∇u) + C1|u|p}dr− Ch0‖u‖p−1

L(2p−2)(Ω)
‖∇u‖L2(Ω) − C2

≥ c0‖∇u‖pLp(Ω) + C1‖u‖pLp(Ω) − Ch0‖u‖p−1

L(2p−2)(Ω)
‖∇u‖L2(Ω) − C2

≥ c0‖∇u‖pLp(Ω) + C1‖u‖pLp(Ω) − Ch
1−N(max{0, p−1

p
− 1

2
})

0 ‖u‖(p−1)
Lp(Ω)‖∇u‖L2(Ω) − C2 .

As N(max{0, p−1
p − 1

2}) < 1, ∃ a m such that ∀h > m,

Ẽh(u)≥K0‖∇u‖pLp(Ω) +K1‖u‖pLp(Ω) −K2

where K0 > 0, K1 > 0, K2 are constants independent of h. If u /∈ Xh, then Ẽh(u) = +∞.

Thus, the above expression is true for any u. It is now straightforward to show that (Ẽh)

is equi-coercive in the weak topology of W 1,p(Ω) and, from Lemma 4.1.1, equi-coercive in

the weak topology of X.

Theorem 4.3.4. If the hypothesis H and H2 are satisfied, and N(max{0, p−1
p − 1

2}) < 1,

then limh→∞ infX Ẽh = minX E.

Proof. Follows from Lemma 4.3.3, Theorem 4.3.3, and Theorem 7.8, Dal Maso (1993).
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For the orbital-free energy functional, it is easy to check that it satisfies the following

conditions:

1. f is a polynomial function of degree 2.

2. If (uh) ∈ (Xh), uh ⇀ u in X, then ‖g′(uh)‖L2(Ω) is uniformly bounded, which follows

from the continuity of g
′
and compact injection of X in L2q−2(Ω).

3. N(max{0, p−1
p − 1

2}) < 1 (as N = 3, p = 2).

Hence, if we choose an appropriate quadrature rule, all the results in this section will carry

over to the orbital-free energy functional under consideration. We note that for linear shape

functions a zero-order quadrature rule is sufficient for all the results in this section to carry

over. However for quadratic shape functions a second-order accurate quadrature rule is

necessary.

In Section 3.3, we noted that the finite-element discretization of the formulation was

implemented with linear shape functions using a second order accurate quadrature rule.

This quadrature rule satisfies the hypothesis H2, and thus we have rigorously established

the convergence of our discretization scheme.
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Chapter 5

Quasi-continuum orbital-free
density-functional theory

The real-space formulation of orbital-free density-functional theory and the finite-element

discretization of the formulation described in Chapter 3 is attractive, as it gives freedom

from periodicity, which is important in modelling defects in materials. However, simulations

on 9x9x9 aluminum cluster containing 3730 atoms took 10,000 CPU hours of computing.

This fact is very disappointing, but not surprising. Not surprising, because this is the com-

putational complexity of all electronic structure calculations. However it is disappointing,

because materials properties are influenced by defects—vacancies, dopants, dislocations,

cracks, free surfaces—in small concentrations (parts per million). An accurate understand-

ing of such defects must not only include the electronic structure of the core of the defect,

but also the elastic and electrostatic effects on the macro-scale. This in turn requires calcula-

tions involving millions of atoms well beyond the current capability. This chapter describes

a seamless multi-scale scheme to overcome this significant hurdle.

We present a method for seamlessly coarse-graining OFDFT that effectively overcomes

the present limitations without the introduction of spurious physics and at no significant

loss of accuracy. We refer to the approximation scheme as Quasi-Continuum Orbital-Free

Density-Functional Theory (QC-OFDFT). It is similar in spirit to the quasi-continuum ap-
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proach developed in the context of interatomic potentials (cf, e. g., Tadmor et al. (1996);

Knap & Ortiz (2001)) as a scheme to seamlessly bridge the atomistic and continuum length

scales. This bridging is achieved by adaptively selecting representative atoms and interpo-

lating the positions of other atoms using finite-element shape functions. The energy thus

becomes a function of the representative atom-coordinates only. As a further approximation,

cluster summation rules are introduced in order to avoid full lattice sums when computing

the effective forces on the representative atoms. With increasing number of representative

nodes and cluster sizes, the scheme converges at the expected theoretical convergence rate

of finite-element approximation (Knap & Ortiz, 2001).

A local version of the quasi-continuum approach based on the Cauchy-Born hypothesis

has recently been developed for density-functional theory (Fago et al., 2004). The Cauchy-

Born hypothesis finds formal justification in a theorem of Blanc et al. (2002) for deformation

fields that slowly vary with respect to the length scale of the lattice parameter, but breaks

down close to defect cores. In the context of DFT, the conventional QC reduction scheme

can be applied mutatis mutandis to describe the positions of the nuclei. However, the

electron-density and electrostatic potential exhibit subatomic structure as well as lattice

scale modulation, and therefore require an altogether different type of representation.

The QC-OFDFT method we introduce here has three important elements. First, we

formulate the OFDFT including all the electrostatic interactions in real-space, as described

in Chapter 3. Second, we implement this formulation using a finite-element method with

two nested discretizations, an atomistic mesh that describes the atomic degrees of freedom

and an electronic mesh that describes the electronic degrees of freedom. Importantly, in-

formation about subatomic electronic states are preserved either implicitly or explicitly at

each point in the material. Third, we adaptively refine the discretization where we need
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more resolution, while retaining a coarse description where that suffices. This refinement

is completely unstructured and guided solely by the problem with no a priori restrictions

(like periodicity).

We demonstrate our method by studying mono-vacancies and di-vacancies in aluminum

crystals consisting of a million atoms. We restrict our treatment of the orbital-free kinetic

energy functionals to the Thomas-Fermi-Weizsacker functionals (Parr & Yang, 1989). We

demonstrate in the Appendix that our approach may be extended to the more recent and

accurate non-local kernel functionals (Wang et al., 1998, 1999; Smargiassi & Madden, 1994;

Wang & Teter, 1992).

For a mono-vacancy, we show by a convergence analysis that the electron-density field

can be obtained everywhere with negligible error and through modest computational means.

Our results are close to the experimentally observed values, and provide insights into the

electronic structure at the core. At the same time, our results show that atomistic dis-

placement fields decay over very large distances, underscoring the long-range nature of the

underlying physics. This is significant for two reasons. First, it shows that long-range inter-

actions beyond those considered in previous calculations (Wang et al., 1998, 1999; Gillian,

1989; Mehl & Klein, 1991; Chetty et al., 1995; Turner et al., 1997) are important. Second,

it shows that errors previously attributed to the approximations of OFDFT may in fact be

an artifact of small periodic computational cells.

The remainder of the chapter is organized as follows. Section 5.1 describes the key ideas

associated with the quasi-continuum reduction and coarse-graining of orbital-free density-

functional theory. The expressions for the generalized forces corresponding to the formula-

tion are derived in Section 5.2. Section 5.3 describes the details of numerical implementa-

tion, and Section 5.4 reports studies on a mono-vacancy in aluminum.
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5.1 Quasi-continuum reduction

The problem of determining the ground-state electron-density and the equilibrium positions

of the nuclei using a finite-element discretization was described in Chapter 3 by (3.23) as,

inf
uh∈Xh, R∈R3M

E(uh,R) (5.1a)

subject to:
∫

Ω
(uh(r))2dr = N (5.1b)

E(uh,R) = sup
φh∈Xh

L(uh,R, φh). (5.1c)

We introduce three unstructured triangulations of the domain, as shown in Figure 5.1,

to provide a complete description of the discrete fields: i) a triangulation Th1 of selected

representative atoms in the usual manner of QC, which we refer to as the atomic-mesh;

ii) an everywhere subatomic triangulation Th2 of the domain that captures the subatomic

oscillations in the electron-density and potential, which we refer to as the fine-mesh; and

iii) a triangulation Th3 subatomic close to lattice defects and increasingly coarser away from

the defects, which we refer to as the electronic-mesh. We restrict the triangulations in such

a way that Th3 is a sub-grid of Th1 and Th2 a sub-grid of Th3 . We additionally denote by

Xh1 , Xh2 , and Xh3 the corresponding finite-element approximation spaces.

The full square-root electron-density and electrostatic potential are written as

uh = uh0 + uhc , (5.2a)

φh = φh0 + φhc , (5.2b)

where uh0 ∈ Xh2 and φh0 ∈ Xh2 are the predictors for square-root electron-density and
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(b)

(c)

(a)

Th1

Th3

Th1

Th2

Th3

Figure 5.1: Schematic sketch of meshes: (a) shows the triangulation of the lattice sites,
Th1 (atomic-mesh), where the mesh coarse-grains away from the vacancy (depicted by the
red dot); (b) shows the triangulation, Th3 (electronic-mesh), which is used to solve for the
corrections to the predictor of electronic fields; (c) shows the triangulation, Th2 (fine-mesh),
on which the predictor for electronic fields is computed. Both triangulations Th1 and Th3

coarse-grain away from vacancy, whereas Th2 is a uniform triangulation.
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electrostatic potential obtained by performing a local periodic calculation in every element

of Th1 . uhc ∈ Xh3 and φhc ∈ Xh3 are the non-local corrections to be solved for. The

predictor for the electronic fields is expected to be accurate away from defect cores, in

regions where the deformation field is slowly varying (Blanc et al., 2002). Hence, the non-

local corrections may be accurately represented by means of a finite-element triangulation

such as Th3 , namely, a triangulation that has subatomic resolution close to the defect and

coarsens away from the defect to become superatomic.

The minimization problem given by (5.1) now reduces to a minimization problem for the

non-local corrections and takes the form

inf
uh

c∈Xh3
, R∈Xh1

E(uh0 + uhc ,R) (5.3a)

subject to:
∫

Ω
(uh0(r) + uhc (r))

2dr = N (5.3b)

E(uh0 + uhc ,R) = sup
φh

c∈Xh3

L(uh0 + uhc ,R, φ
h
0 + φhc ). (5.3c)

In order to compute the predictor for electronic fields, we begin by performing a periodic

calculation in every element of Th1 . The resulting fields are not necessarily continuous at

the boundaries of the elements of Th1 . We overcome this deficiency and obtain conforming

(continuous) fields uh0 and φh0 over Th2 by performing an L2 → H1 map. To define this

mapping, denote by σ0,k the kth node of the triangulation Th2 . As Th2 is a sub-grid of Th1 ,

define an index set Ik which collects the element numbers of triangulation Th1 to which the

node σ0,k belongs. The map can now be defined as

Uk0 =
1

#Ik

∑
j∈Ik

Ũj(rk) k = 1, . . . , n2 (5.4)
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where n2 denotes the total number of nodes in Th2 , U
k
0 is the value of the conforming field

at the kth node, #Ik denotes the cardinality of the index set, and Ũj(rk) is the value of the

field at the kth node computed from a periodic calculation in element ej ∈ Th1 . Note that

this is simply the average value at a node of fields obtained from periodic calculations in

the different elements.

Since the predictor for electronic fields is defined on the uniformly subatomic mesh Th2 ,

it would appear that the computation of the system corresponding to the reduced problem

(5.3) has complexity commensurate with the size of Th2 , which would render the scheme

infeasible. In the spirit of quadrature rules in finite-elements (e.g., Ciarlet (2002); Brenner

& Scott (2002)), or summation rules in QC (Knap & Ortiz, 2001), we proceed to introduce

integration rules that reduce all computations to the complexity of Th3 . The precise form

of the integration rule for an element e in the triangulation Th3 is

∫
e
f(r)dr ≈ |e|〈f〉De (5.5)

where |e| is the volume of element e, De is the unit cell of an atom if such cell is contained

in e or e otherwise, and 〈f〉De is the average of f over De. Using (5.5), integration over the

entire domain can be written as,

∫
Ω
f(r)dr =

∑
e∈Th3

∫
e
f(r)dr ≈

∑
e∈Th3

|e|〈f〉De , (5.6)

reducing all computations to a complexity commensurate with the size of Th3 .

The integration rule (5.5) is designed to exploit the nature of the solution. As mentioned

previously, the predictor for electronic fields is expected to be accurate away from defect

cores where the deformation field is slowly varying. By way of construction of the meshes,
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this region also corresponds to large, superatomic elements of Th3 , where the computed

non-local corrections are very small compared to the predictor. Thus, the integrand of

equation (5.5) is a rapidly oscillating function with a very gradual modulation on the scale

of the element. Hence, equation (5.5), for regions away from the core of a defect, denotes the

zero-order quadrature rule for rapidly oscillating functions. For regions close to a defect, the

computed corrections to the predictor are large and thus the integration must be performed

exactly. The integration rule (5.5) is consistent with this requirement, as the elements of

Th3 close to a defect are subatomic and the integration rule is exact for these elements.

Equations (5.3)-(5.5) describe the QC-OFDFT method.

5.2 Forces

We solve the variational problem (5.3) using conjugate gradients. This requires the calcula-

tion of generalized nodal forces, defined as the variation of the total energy with respect to

φhc (correction to electrostatic potential), uhc (correction to electron-density), as well as the

configurational forces defined as the variation of the total energy with respect to the nodal

positions. The nodal forces associated with φhc and uhc are defined on triangulation Th3 and

the configurational forces of the nuclei are defined on Th1 .

The energy functional corresponding to orbital-free density-functional theory can be suc-

cinctly represented as

E(uh,R, φh) =
∫

Ω
f(uh,∇uh)dΩ +

∫
Ω

((uh)2 +
∑
i

Zibi)φh dΩ− 1
8π

∫
Ω
|∇φh|2 dΩ , (5.7)

where bi denotes a regularized nuclear charge with charge Zi on the ith node. The nodal

forces fkφ and fku corresponding to φhc and uhc respectively at the kth node of triangulation
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Th3 are given by

fkφ(uh,R, φh) =
δE(uh,R, φh)

δφhck
(5.8a)

fku (uh,R, φh) =
δE(uh,R, φh)

δuhck
. (5.8b)

Though these are defined on the nodes of triangulation Th3 , they have to be evaluated

using quantities defined on the finer mesh Th2 by taking advantage of the fact that Th2 is a

sub-grid of Th3 , and the finite-element shape-functions are linear. By definition,

fkφ(uh,R, φh) =
∫

Ω
((uh)2 +

∑
i

Zibi)Nh3
k dΩ− 1

4π

∫
Ω
∇φh.∇Nh3

k dΩ (5.9)

where Nh3
k denotes the shape function associated with node k of triangulation Th3 . As the

shape functions are linear and Th2 is a sub-grid of Th3 , N
h3
k (r) =

∑
a∈Th2

Nh3
k (a)Nh2

a (r),

where a denotes a node in Th2 and Nh2
a denotes the shape function associated with node a

of triangulation Th2 . Hence the expression for the nodal force given in equation (5.9) can

be rewritten as

fkφ(uh,R, φh) =
∑
a∈Th2

Nh3
k (a){

∫
Ω

((uh)2 +
∑
i

Zibi)Nh2
a dΩ− 1

4π

∫
Ω
∇φh.∇Nh2

a dΩ}

=
∑
a∈Th2

Nh3
k (a)f0a

φ (uh,R, φh) , (5.10)

where f0a

φ denotes the nodal force associated with φh on node a of triangulation Th2 . We

proceed similarly for fuφ .

Taking into account the cluster rules, defined by equation (5.5), we obtain the expressions
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for the generalized nodal forces:

fkφ(uh,R, φh) =
∑
e∈Th3

{Ce
′∑

a∈De

f0a

φ (uh,R, φh)Nh3
k (a)} k = 1, . . . , n3 , (5.11a)

fku (uh,R, φh) =
∑
e∈Th3

{Ce
′∑

a∈De

f0a

u (uh,R, φh)Nh3
k (a)} k = 1, . . . , n3, (5.11b)

where f0a

φ and f0a

u are the nodal forces associated with φh and uh on node a of triangulation

Th2 ; N
h3
k (a) denotes the value of the shape function associated with node k of Th3 at the

position of node a; Ce is a constant whose value is 1 if De = e, |e|
|De| otherwise; n3 denotes

the total number of nodes in Th3 ; and ′ over summation avoids double counting. Forces f0
φ

and f0
u corresponding to φh and uh, which are defined on Th2 , are computed using standard

routines for force calculations with finite-element basis.

We now turn to the configurational forces associated with the positions of the nuclei.

Though these appear to be non-local at first glance, we show that they can in fact be

evaluated locally. The derivation closely follows Thoutireddy (2002) and is based on ideas

widely used in Mechanics following Eshelby’s formulation of force on a defect (Eshelby,

1951).

For clarity of presentation, we begin with a single finite element triangulation (rather

than the three considered here). In this situation, the total energy is Ih1 + Ih2 + Ih3 where

Ih1 =
∫

Ω
f(uh,∇uh)dΩ,

Ih2 =
∫

Ω
((uh)2 +

∑
i

Zibi)φhdΩ,

Ih3 = − 1
8π

∫
Ω
|∇φh|2 dΩ,
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and uh, φh ∈ Xh. Note that

Ih1 =
∫

Ω
f(uh,∇uh)dΩ =

∑
e∈Th

∫
Ω̂
f(uh,∇uh) det

(
∂XM

∂X̂N

)
dΩ̂

where Ω̂ is the reference volume in isoparametric formulation and ∂XM

∂X̂N
is the jacobian of

transformation. Taking variations of I1 with respect to Xh, we have

δIh1 =
∑
e∈Th

∫
Ω̂

{
− δf

δu,J

[
n∑
a=1

uaN̂a,A
∂X̂A

∂XK
(
n∑
b=1

δXe
bKN̂b,B)

∂X̂B

∂XJ

]

+f(uh,∇uh)(
n∑
b=1

δXe
bKN̂b,B)

∂X̂B

∂XK

}
det
(
∂XM

∂X̂N

)
dΩ̂

=
∑
e∈Th

∫
Ωe

{
− δf

δu,J

[
n∑
a=1

uaNa,K

]
+ f(uh,∇uh)δKJ

}(
n∑
b=1

δXe
bKNb,J

)
dΩ

=
∑
e∈Th

∫
Ωe

{
− δf

δu,J
(uh,∇uh)uh,K + f(uh,∇uh)δKJ

}( n∑
b=1

δXe
bKNb,J

)
dΩ .

Similarly, note that

Ih2 =
∫

Ω

(
(uh)2 +

∑
i

Zibi

)
φhdΩ =

∑
e∈Th

∫
Ω̂

(
(uh)2 +

n∑
b=1

Zbbb

)
φh det

(
∂XM

∂X̂N

)
dΩ̂ .

Taking variations, we find

δIh2 =
∑
e∈Th

∫
Ω̂

(
(uh)2φh +

n∑
i=1

Zibiφ
h

)(
n∑
b=1

δXe
bKN̂b,B

)
∂X̂B

∂XK
det
(
∂XM

∂X̂N

)
dΩ̂

+
∑
e∈Th

∫
Ω̂

n∑
b=1

Zbbb(δφh) det
(
∂XM

∂X̂N

)
dΩ̂

=
∑
e∈Th

∫
Ωe

(
(uh)2φh +

n∑
i=1

Zibiφ
h

)
δKJ

(
n∑
b=1

δXe
bKNb,J

)
dΩ

+
∑
e∈Th

∫
Ωe

n∑
b=1

Zbbb

(
n∑
a=1

φaNa,K

)
δXe

bKdΩ .
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Similarly,

δIh3 = − 1
8π

∑
e∈Th

∫
Ωe

{
|∇φh|2δKJ − 2φh,Jφ

h
,K

}( n∑
b=1

δXe
bKNb,J

)
dΩ .

Collecting all terms, the configurational force on node b along the Kth direction is given by

f bKX =
∑
e∈Th

∫
Ωe

EKJNb,JdΩ +
∑
e∈Th

∫
Ωe

Zbbb

(
n∑
a=1

φaNa,K

)
dΩ , (5.12)

where

EKJ =

{
f + ((uh)2 +

∑
i

Zibi)φh −
1
8π
|∇φh|2

}
δKJ −

δf

δu,J
(uh,∇uh)uh,K +

1
4π
φh,Jφ

h
,K} .

Note that this expression is local.

We can generalize these calculations to our situation with three nested triangulations and

cluster rules. We find that the configurational forces on node j of triangulation Th1 in the

Ith direction is given by

f jIX (uh,R, φh) =
∑

e1∈Th1

∑
e2∈e1
e2∈Th3

{Ce2

′∑
a∈De2

f0aI

X (uh,R, φh)Nh1
j (a)}

j = 1, . . . , n1, I = 1, 2, 3 (5.13)

where f0aI

X is the configurational forces on node a of triangulation Th2 in the Ith direction

given by (5.12), and Nh1
j (a) denotes the value of the shape function associated with node

j of Th1 at the position of node a. Once again, this expression is local.
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5.3 Numerical implementation

We now turn to the numerical implementation of the QC-OFDFT scheme proposed. Tri-

angulation Th1 is obtained by a Delaunay triangulation of the lattice. The representative

atoms are chosen a priori such that the triangulation is atomistic close to the region of

interest and coarsens away as shown in Figure 5.2. Triangulations Th2 and Th3 are obtained

from Th1 using Fruedenthal’s subdivision algorithm (Bey, 2000). This ensures that Th2

and Th3 are sub-grids of Th1 . The subdivisions are performed such that Th2 is subatomic

everywhere but Th3 is subatomic close to the region of interest and superatomic away from

the region of interest, cf Figure 5.3. All triangulations consist of 4-node tetrahedral ele-

ments and the integrals are evaluated numerically using 4-point gaussian quadrature rules.

The nodal forces and configurational forces computed in section (5.2) are equilibrated in a

staggered scheme using non-linear conjugate gradients with secant method for line search.

Finally, we implement the computation in parallel using domain decomposition.

5.4 Mono-vacancy in aluminum

We study a mono-vacancy in aluminum as the test case for the proposed method. Vacancies

are an ideal test case as they often are dilute, and both the electronic core and long-

range elastic interactions are important. Also, vacancy calculations are often treated as

a benchmark to test various kinetic energy functionals (Wang et al., 1998, 1999). We

use the QC-OFDFT approach to investigate into a mono-vacancy in aluminum. Thomas-

Fermi-Weizsacker family of functionals with λ = 1/6 is used for the orbital-free kinetic

energy functional. All simulations are performed using a modified form of Heine-Abarenkov

pseudopotential for aluminum (Goodwin et al., 1990) and LDA treatment of exchange and
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(a) (b)

Figure 5.2: (a) Surface mesh of a sliced cubical domain corresponding to triangulation Th1 ;
(b) Close up of (a)

(a) (b)

Figure 5.3: (a) Surface mesh of a sliced cubical domain corresponding to triangulation Th3 ;
(b) Close up of (a)
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correlation functionals (Ceperley & Alder, 1980; Perdew & Zunger, 1981).

We consider a sample with a single vacancy subjected to Dirichlet boundary conditions,

which implies that all fields approach the bulk values at the boundary. We repeat our

calculations for samples of varying sizes, namely, samples nominally containing 4, 32, 256,

2,048, 16,384, and one million (1048576) atoms.

The coarse-graining inherent in our approach means that we use far fewer representative

atoms in the calculations. Figure 5.4 emphasizes the dramatic savings that this coarse-

graining offers. It shows the vacancy formation energy of a sample containing 16,384 nominal

atoms. As is evident from the figure, the calculations converge ostensibly beyond around

200 representative atoms, i.e., at an 80-fold computational savings. These savings improve

with size and enable the consideration of large samples at modest computational expense.
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Figure 5.4: Convergence of the vacancy formation energy with number of representative
atoms
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We now describe the results of a simulation concerned with a million-atom sample

performed with 1,017 representative atoms and in the order of 450,000 elements in the

electronic-mesh. The calculations take about twelve hours on forty-eight 700 MHz Alpha

processors. By an extrapolation of the convergence analysis just described, we estimate the

error in vacancy formation energy due to coarse-graining to be less than 0.01 eV. Figures 5.5

and 5.6 show the contours of the ground-state electron-density around the vacancy, while

Figures 5.7 - 5.10 show the contours of the electron-density correction (i. e., the difference

between the ground-state electron-density and the predictor estimate). Compared to the

predictor estimate, one sees a large correction close to the defect. As expected, there is a

depletion in the electron-density at the vacancy, and a small augmentation in the atoms

surrounding the vacancy is also evident, cf Figures 5.8 and 5.10. The vacancy formation

energy is computed to be 0.72 eV, which compares well with the experimentally measured

value of 0.66 eV (Triftshauser, 1975).

Figures 5.11 - 5.13 show the computed variation of the vacancy formation energy with

sample size. This variation is reported for two sets of calculations: one where the atomic

positions are held fixed (unrelaxed) in their nominal position, and a second where the atomic

positions are relaxed. The vacancy formation energy is found to follow a power law close to

n−0.5 in the unrelaxed case and n−0.55 in the relaxed case, where n is the nominal number

of atoms in the sample. This power-law behavior is an indication of the long-range nature

of the underlying physics. It is interesting to note that relaxation of the atomic positions

reduces the vacancy formation energy by 0.06 eV.

Figures 5.14 - 5.16 shows the radial displacement fields along 〈100〉 and 〈110〉 directions.

The fields have a long tail, another indication of the long-range nature of the field of the

vacancy. The maximum displacement occurs in the 〈110〉 direction and amounts to 0.6% of
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the nearest atom distance. This value is less than predicted in previous calculations using

Kohn-Sham DFT with periodic boundary conditions, where the maximum displacement

was estimated to be 1-2% of the nearest atom distance (Mehl & Klein, 1991; Chetty et al.,

1995; Turner et al., 1997). At this point there is no basis to decide whether the discrepancy

is due to the orbital-free formulation or the use of periodic boundary conditions.

Figure 5.5: Contours of ground-state electron-density around the vacancy on (100) plane
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Figure 5.6: Contours of ground-state electron-density around the vacancy on (100) plane

Figure 5.7: Contours of electron-density correction around the vacancy on (100) plane
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Figure 5.8: Contours of electron-density correction around the vacancy on (100) plane
(smaller range)

Figure 5.9: Contours of electron-density correction around the vacancy on (111) plane
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Figure 5.10: Contours of electron-density correction around the vacancy on (111) plane
(smaller range)
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Figure 5.11: Convergence of vacancy formation energy with sample size
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Figure 5.12: Scaling law for vacancy formation energy (unrelaxed atomic positions)
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Figure 5.13: Scaling law for vacancy formation energy (relaxed atomic positions)
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Figure 5.14: Radial displacement of atoms along 〈110〉 direction. The distance from vacancy
is listed in atomic units.
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Figure 5.15: Radial displacement of atoms along 〈100〉 direction. The distance from vacancy
is listed in atomic units.
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Figure 5.16: Radial displacement of atoms along 〈110〉 and 〈100〉 directions in a million
atom sample. The distance from vacancy is listed in atomic units.
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Chapter 6

Vacancy clustering in aluminum
and nucleation of prismatic
dislocation loops

The experimentally determined strength of materials is about one-thousandth their theo-

retical value. This huge discrepancy is explained by the presence of a high density of dislo-

cations in materials, which is typically around 106−1010 cm/cm3 (Weertman & Weertman,

1992). Dislocations in materials usually form during the solidification process, but they

are also nucleated due to ageing or irradiation. The embrittlement of metals subjected to

radiation is a long-standing problem in various applications, including nuclear reactors. As

the irradiation dose increases above a certain threshold, a significant population of pris-

matic dislocation loops (dislocation loops whose Burgers vector has a component normal

to their plane) has been experimentally observed to arise in metals (Masters, 1965; Eyre &

Bartlett, 1965, 1973; Bullough et al., 1991; Kawanishi & Kuramoto, 1986; Horton & Farrell,

1984). It is of considerable importance to study the mechanism by which these prismatic

dislocation loops nucleate as the formation of such defects results in a rapid deterioration of

material properties, especially fracture toughness. The embrittlement of metals subjected

to radiation is a practical problem assuming significant importance due to renewed interest

in nuclear energy.
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6.1 Vacancy clustering: An unresolved puzzle

It has been widely believed that vacancy clustering is a mechanism by which prismatic

loops are nucleated (Hirth & Lothe, 1968). Specifically, the vacancies diffuse and eventually

cluster on specific planes. Once there is a large enough planar cluster, the atoms on the two

faces collapse onto each other, leaving behind a prismatic dislocation loop. However, there

is no direct experimental observation of this process, and the theoretical investigations are

inconclusive. Recent molecular dynamics simulations (Marian et al., 2002) support the hy-

pothesized mechanism for iron, but these calculations were performed using Finnis-Sinclair

empirical atomistic potentials whose validity is uncertain in situations requiring breaking

and making of atomic bonds (Ackland et al., 1997). However, in contrast, calculations for

aluminum using density-functional theory (Carling & Wahnström, 2000; Uesugi et al., 2003)

show that di-vacancies—a complex of two vacancies—are either energetically unfavorable if

they are aligned along the 〈110〉 direction or barely favorable with negligible binding energy

if aligned along 〈100〉. If two vacancies can barely bind, it seems doubtful that they can be

stable and grow to form clusters that can turn into prismatic loops. However, on the other

hand, experimental interpretations (Ehrhart et al., 1991; Hehenkamp, 1994) suggest a very

high binding energy of di-vacancies and also indicate a high concentration of di-vacancies,

especially at elevated temperatures. Thus, the question of vacancy clustering being a fea-

sible process and a possible mechanism for prismatic dislocation loop formation has been a

point of debate and an unresolved issue.

A challenge in studying defects in solids, and especially vacancies, is their extremely

small concentrations. A typical concentration of vacancies in aluminum is a few parts

per million (Fluss et al., 1984). Therefore, any realistic calculation of vacancies and their
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interaction has to involve millions of atoms. Unfortunately, performing electronic structure

calculations with such numbers of atoms remained beyond reach till the recent development

of the Quasi-Continuum Orbital-Free Density-Functional Theory (QC-OFDFT) (Gavini et

al., 2007) described in Chapter 5. Hence, all previous numerical studies had computed the

di-vacancy binding energy in small periodic cells containing less than a hundred atoms. This

corresponds to an unphysically high concentration of vacancies, which is rarely—if ever—

realized in nature. There exists a possibility that the disagreement of previous numerical

calculations with experiments is a result of this unphysically high concentration of defects

considered in these calculations.

6.2 Di-vacancy: A QC-OFDFT study

We study di-vacancies in aluminum by performing electronic structure calculations using

orbital-free density-functional theory. Specifically, the kinetic energy functional is modelled

using the Thomas-Fermi-Weizsacker family of functionals with λ = 1/6. We use the modified

form of Heine-Abarenkov pseudopotential (Goodwin et al., 1990) for aluminum to model the

external field created by the nuclei and core electrons. The exchange-correlation effects are

treated using a local density approximation (Ceperley & Alder, 1980; Perdew & Zunger,

1981). These kinetic energy, psuedopotential, and exchange-correlation functionals have

been shown to correctly predict the bulk properties of aluminum (Gavini et al., 2007), as

well as properties of a mono-vacancy (Gavini et al., 2007) as described in Chapters 3 & 5.

A di-vacancy consists of two vacancies at positions a1 and a2 within a crystal. We have

conducted calculations with a million-atom specimen subjected to Dirichlet boundary con-

ditions representing bulk values as before. The calculations use up to 2001 representative

atoms (slightly smaller when the vacancies are close to each other), have 800,000 elements
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in the electronic-mesh and require 16-18 hours on sixty-four 700 MHz Alpha processors.

Figures 6.1 - 6.6 display representative results. Figures 6.1 and 6.2 show the contours of

the ground-state electron-density on (100) plane around a di-vacancy complex along 〈100〉

and 〈110〉. Figures 6.3 - 6.6 show the contours of electron-density correction around a

di-vacancy complex along 〈100〉 and 〈110〉. It is interesting to note that we observe os-

cillations in electron-density, which are clearly represented by Figures 6.4 and 6.6. These

oscillations in the electron-density are physical, and are counterparts of Friedel oscillations

for the Thomas-Fermi-Weizsacker kinetic energy functionals.

Figure 6.1: Contours of electron-density around a di-vacancy complex along 〈100〉

A property of primary interest in di-vacancy calculations is the di-vacancy binding energy.

To understand the nature of this binding energy, we repeat the above calculations for various

distances between the vacancies. Let Efv (n) denote the mono-vacancy formation energy for

a sample consisting of n nominal atoms. Similarly, let Ef2v(n;a1,a2) denote the di-vacancy
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Figure 6.2: Contours of electron-density around a di-vacancy complex along 〈110〉

Figure 6.3: Contours of electron-density correction around a di-vacancy complex along 〈100〉
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Figure 6.4: Contours of electron-density correction around a di-vacancy complex along 〈100〉
(smaller range)

Figure 6.5: Contours of electron-density correction around a di-vacancy complex along 〈110〉
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Figure 6.6: Contours of electron-density correction around a di-vacancy complex along 〈110〉
(smaller range)

formation energy of a system with two vacancies of sample size n positioned at a1 and a2.

Then, the di-vacancy binding energy is defined as

Ebind2v (n;a1,a2) = Ef2v(n;a1,a2)− 2Efv (n). (6.1)

Figure 6.7 shows the unrelaxed binding energy of di-vacancies along the 〈100〉 and 〈110〉

directions in a million-atom sample over a range of distances between the two vacancies.

Figure 6.8 shows the corresponding relaxed energies. These energies are negative, signifying

attractive interaction in both cases.

The binding energy for nearest-neighbor vacancies, or di-vacancy complex, is calculated

to be -0.23 eV in the 〈100〉 direction and -0.19 eV in the 〈110〉 direction, i. e., attractive in

both cases. This is in keeping with experimental estimates that place the binding energy of

di-vacancy complexes between -0.2 and -0.3 eV (Ehrhart et al., 1991; Hehenkamp, 1994). By
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Figure 6.7: Unrelaxed di-vacancy binding energy as a function of the distance between the
vacancies
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Figure 6.8: Relaxed di-vacancy binding energy as a function of the distance between the
vacancies
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contrast, recent computations, using periodic cells with less than hundred atoms (Carling

& Wahnström, 2000; Uesugi et al., 2003), predict that vacancies repel in the 〈110〉 direction

with a binding energy of 0.05 eV and attract in the 〈100〉 direction with a binding energy

of -0.04 eV.

To understand whether these discrepancies are, in effect, a small cell-size effect, we con-

sider samples of sizes n = 4, 32, 256, 2,048, 16,348, and one million atoms. Figure 6.9

shows the effect of cell-size on the binding energies of a di-vacancy complex along 〈100〉 and

〈110〉. It is observed from these results that there is indeed a strong cell-size effect on the

di-vacancy binding energies, especially in the 〈110〉 direction. Strikingly, the binding energy

changes sign from attractive for large cell-sizes to repulsive for small cell-sizes. This sug-

gests that the repulsive binding energies computed in (Carling & Wahnström, 2000; Uesugi

et al., 2003) are characteristic of small cell-sizes, and that in order to make contact with

experimental measurements such as reported in (Ehrhart et al., 1991; Hehenkamp, 1994)

much larger cell-sizes need to be analyzed.
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Figure 6.9: Binding energy of a di-vacancy complex(relaxed) as a function of cell-size
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6.3 Vacancy clustering and prismatic dislocation loop nucle-

ation

The QC-OFDFT calculations on di-vacancies in aluminum, presented in Section 6.2, are

in agreement with experimental observations. Importantly, they indicate a strong cell-size

(concentration) effect. Specifically, we found that 〈110〉 di-vacancies were repulsive for small

cell-sizes, in agreement with previous calculations (Carling & Wahnström, 2000; Uesugi et

al., 2003), and the same di-vacancies were attractive for larger cell-sizes corresponding to

realistic concentrations, with binding energies of -0.19 eV in agreement with experimental

measurements (Ehrhart et al., 1991; Hehenkamp, 1994). These results showed that elec-

tronic structure calculations do not rule out vacancy clustering in aluminum. Therefore, we

examine this mechanism further.

We begin by examining the binding energies of various quad-vacancies formed from a

pair of di-vacancies. The number of possible quad-vacancies that may be formed from a

pair of di-vacancies is very large. Thus we restrict our analysis to configurations such that

each vacancy has at least two other vacancies as nearest or second-nearest neighbors. We

shall justify this choice subsequently. This criterion results in 9 distinct configurations (up

to symmetry), 6 of which are planar vacancy clusters and 3 of which are non-planar. These

configurations are listed in Table 6.1.

The vacancy cluster binding energy of a n-vacancy cluster is defined as

Ebindnv = Efnv − nEfv ,

where Efv denotes the formation energy of a single vacancy and Efnv the formation energy

of the n-vacancy cluster. In the convention adopted here, negative value for binding energy
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Table 6.1: Vacancy binding energies for quad-vacancies formed from a pair of di-vacancies.
All possible quad-vacancies such that each vacancy has two other vacancies as nearest or
second nearest neighbors are considered. This table lists the structure of the quad-vacancy,
the positions of the vacancies in terms of the lattice parameter and their corresponding
vacancy binding energies.

Structure Positions of vacancies Vacancy binding energy (eV)
1 planar {100} (0,0,0), (a/2,a/2,0), (a,0,0), (a/2,-a/2,0) -0.52
2 planar {100} (0,0,0), (a/2,a/2,0), (a,0,0), (3a/2,a/2,0) -0.50
3 planar {100} (0,0,0), (a/2,a/2,0), (a,0,0), (a,a,0) -0.48
4 planar {100} (0,0,0), (a,0,0), (0,a,0), (a,a,0) -0.48
5 planar {110} (0,0,0), (0,a/2,a/2), (a,0,0), (a,a/2,a/2) -0.56
6 planar {111} (0,0,0), (0,a/2,a/2), (a/2,a/2,0), (a/2,a,a/2) -0.55
7 non-planar (0,0,0), (0,a/2,a/2), (a/2,0,a/2), (a/2,a/2,0) -0.53
8 non-planar (0,0,0), (a,0,0), (a/2,a/2,0), (a/2,0,a/2) -0.51
9 non-planar (0,0,0), (a,0,0), (a/2,a/2,0), (0,a/2,a/2) -0.50

denotes attraction among vacancies and a positive value denotes repulsion. The vacancy

cluster binding energies for the 9 configurations of quad-vacancies are given in Table 1.

Figure 6.10 shows the contours of electron-density for the quad-vacancy cluster with the

highest binding energy. This corresponds to configuration No. 5 in Table 6.1, which denotes

a planar quad-vacancy on (110) plane. Binding energies of each of these vacancy clusters

listed in Table 6.1 are computed using a computational cell consisting of a million atoms.

This corresponds to realistic vacancy concentrations of a few parts per million (Fluss et

al., 1984). The boundary conditions for all simulations are chosen such that the electronic

fields decay to bulk values on the boundaries of the sample. Numerical parameters were

chosen to keep the error in the formation energy due to discretization and coarse-graining

less than 0.01 eV.

It is interesting to observe that all the quad-vacancies considered have negative binding

energies, thus indicating that all these quad-vacancies formed from mono-vacancies are

energetically favorable. Further, they also have binding energies larger (in absolute value)
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Figure 6.10: Contours of electron-density around a planar quad-vacancy (Configuration No.
5 in Table 6.1) on (110) plane in a million atom sample. This planar quad-vacancy has the
highest binding energy among the various quad-vacancies considered.

than twice the computed di-vacancy binding energy of -0.19 and -0.23 eV for < 110 > and

< 100 > di-vacancies respectively. This indicates that pairs of di-vacancies are attractive

in all cases, and the quad-vacancies formed from a pair of di-vacancies are energetically

favorable too. These results suggest that quad-vacancy formation is an energetically feasible

process and that vacancies prefer to condense rather than split into mono- or di-vacancies.

This observation also justifies our restriction to 9 quad-vacancy configurations.

The cell-size used to simulate defects effectively sets the concentration of the defects. To

understand the effect of vacancy concentration on the feasibility of vacancy clustering, we

study the cell-size effect on quad-vacancy binding energy for the first configuration in Ta-

ble 6.1. This configuration represents a square shaped quad-vacancy on (100) plane, whose

electronic structure is shown in Figure 6.11. Figure 6.12 shows a strong dependence of the

vacancy binding energy on the cell-size. The quad-vacancy which is energetically favorable
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for large cell-sizes becomes unstable for small cell-sizes. Thus the predicted physics changes

not only quantitatively but also qualitatively with cell-size. This cell-size dependence shows

that vacancy clustering which is feasible at low and realistic vacancy concentrations becomes

unfavorable at high concentrations. Hence, in order to make contact with realistic material

behavior it is necessary to use cell-sizes on the order of millions of atoms.

Figure 6.11: Contours of electron-density around a planar quad-vacancy (Configuration No.
1 in Table 6.1) on (100) plane in a million atom sample.

The results in Table 6.1 also show that the configurations with the highest binding energy

(No. 5 and 6) are planar quad-vacancy clusters on {110} and {111} planes. Therefore, we

performed simulations on larger vacancy clusters on {110} and {111} planes, again using

cell-sizes with a million atoms. On the (111) plane, we studied a hexagonal cluster with

7 vacancies, and found two stable configurations. One of the stable configurations is a

non-collapsed state with a vacancy cluster binding energy of -0.88 eV, with a maximum
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Figure 6.12: Cell-size dependence of vacancy binding energy for the quad-vacancy given by
the first configuration in Table 6.1.

displacement of atoms on the order of 3.2% of the nearest-neighbor distance. Note that

this is larger (in absolute value) than 7/2 times the di-vacancy binding energy (-0.19 or

-0.23 eV depending on orientation). This means that the hexagonal cluster is stable against

dissociation into di-vacancies.

The second configuration is a prismatic loop where the atoms above and below the hexag-

onal vacancy disc collapse or move towards each other, leaving a dislocation line at the

boundary of the disc. Figures 6.13 and 6.14 show the atomic positions and the contours of

the electron-density on (001) and (111) planes of the collapsed prismatic loop. In particular,

the dotted lines in Figure 6.13 depict the collapse of the planes resulting in the prismatic

dislocation loop. The maximum displacement of atoms is around 44% of the nearest neigh-

bor distance, the Burgers vector is 0.44[110], and the dislocation plane is (111). These

results are consistent with experiments (Kuhlmann-Wilsdorf & Wilsdorf, 1960; Takamura

& Greenfield, 1961). Using transmission electron microscope (TEM) it was observed that
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prismatic loops form predominantly on a {111} plane with a 1/2〈110〉 Burgers vector. Fur-

ther, in these experiments, prismatic loops whose size is as small as 50 Å in diameter were

observed. While these are larger than our hexagonal prismatic loop formed from 7 vacan-

cies, it is impossible to detect a loop as it nucleates. Thus, the nucleation size of a prismatic

loops was hitherto unknown. The computed vacancy cluster binding energy for the pris-

matic loop is -1.55 eV which means that not only is this structure stable against dissociation

of di-vacancies, but that it is even more stable than the uncollapsed configuration.

Figure 6.13: Contours of electron-density on the (001) plane around a collapsed vacancy
prismatic loop with 0.44[110] Burgers vector and (111) habit plane. This prismatic loop is
formed by the collapse of a hexagonal vacancy cluster with 7 vacancies on the (111) plane.
The dotted lines represent the collapse of the adjacent planes around the vacancy cluster,
thus forming the prismatic dislocation loop.

On the (110) plane, we studied rectangular vacancy clusters with 6 and 9 vacancies. The



95

Figure 6.14: Contours of electron-density around the prismatic loop on (111) plane

computed binding energies for these vacancy clusters are -0.81 eV and -1.16 eV respectively.

The maximum displacement of atoms in these vacancy clusters is around 4% of the nearest-

neighbor distance. These clusters did not display any bi-stability, and collapse to prismatic

loops.

These results point to four important facts:

• Firstly, the binding energy of vacancy clusters on {110} and {111} planes in aluminum

increases with the size of the vacancy cluster. Also, considering mono-vacancies and

di-vacancies as fundamental building blocks, these vacancy clusters are all stable, i.e.,

vacancies prefer to condense rather than split into mono- or di-vacancies. To the best

of our knowledge, this is the first numerical confirmation from an electronic structure

perspective that vacancy clustering is energetically favorable.
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• Secondly, we observe from direct numerical simulation that the hexagonal vacancy

cluster on (111) plane collapses to form a prismatic loop. This establishes from elec-

tronic structure calculations that vacancy clustering and collapse of the planes sur-

rounding the vacancy cluster is a possible mechanism for the nucleation of prismatic

dislocation loops.

• Thirdly, our results point to the fact that vacancy clusters as small as 7 vacancies can

collapse to form stable prismatic loops on {111} planes.

• Finally, our results show the importance of studying defects in solids at realistic

concentrations.
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Chapter 7

Concluding remarks and future
directions

7.1 Summary

The present thesis developed a method, Quasi-Continuum Orbital-Free Density-Functional

Theory (QC-OFDFT), for systematically and adaptively coarse-graining Orbital-Free Density-

Functional Theory (OFDFT) in a manner that enables electronic structure calculations of

multi-million atom systems at no significant loss of accuracy and without the introduction

of spurious physics or assumptions, such as linear response theory or the Cauchy-Born hy-

pothesis. The method is seamless, i. e., OFDFT provides the sole input of the method

and does not resort to any form of transition to—or embeddings within—simpler theories,

such as empirical potentials or tight-binding models. Because finite element bases are used

to describe all fields, no restrictions on boundary conditions limit the applicability of the

method. In particular, non-periodic boundary conditions and general geometries can be

analyzed using the method. The coarse-graining is completely unstructured and can be

adapted to the solution, e. g., to provide full atomic resolution in the vicinity of a defect

core, and to rapidly coarse-grain elsewhere.

The method is in the spirit of previous “quasi-continuum” (QC) approaches (cf, e. g.,
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Tadmor et al. (1996); Knap & Ortiz (2001)) but differs from those earlier works in several

notable respects. The conventional quasi-continuum was devised in order to coarse-grain

the displacement field of an atomic lattice. By contrast, OFDFT requires the additional

representation of the electron-density and electrostatic potential. Also, in the conventional

QC formulations to date, the finite-element mesh is always coarser than the atomic lattice,

whereas in the present setting the electron-density and electrostatic potential must be re-

solved on a sub-lattice length-scale. We effect these representations by carefully nesting

three distinct finite-element interpolations spanning the sub-lattice and continuum length-

scales. The coarsest of these meshes, or atomic-mesh, is equivalent to a conventional QC

triangulation of representative atoms and coarse-grains the displacement field of the atomic

lattice. The electronic fields which require subatomic resolution are decomposed into a

predictor and a correction. The predictor for electronic fields, which requires subatomic

resolution, is computed on the finest of the three meshes, or fine-mesh, using local periodic

calculations in every element of the atomic-mesh. This predictor is known to be accu-

rate in regions away from the defects, where the deformation field is slowly varying (Blanc

et al., 2002). Thus, the corrections, which are non-local, are accurately represented by

the electronic-mesh that has subatomic resolution close to defects and increasingly coarse-

grains away from defect cores. The electronic fields are then determined by solving for the

non-local corrections in a variational setting. In order to avoid computational complexi-

ties of the order of the entire model (fine-mesh), we exploit the conceptual framework of

the theory of homogenization of periodic media to define quadrature rules of a complexity

commensurate with that of the electronic-mesh.

The convergence of finite element approximations in OFDFT has been rigorously proven

using the mathematical technique of Γ−convergence. Also, the convergence of QC-OFDFT,
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with increasing number of representative atoms, is demonstrated by means of numerical

tests. These tests show that the reduction in computational effort afforded by QC-OFDFT,

at no essential loss of accuracy with respect to a full-atom calculation, is quite staggering.

For instance, we have analyzed million-atom samples with modest computational resources,

giving us access to cell-sizes (computational domain) never before analyzed using OFDFT.

The examples presented in this thesis showcase the importance of having access to such

large cell-sizes. For instance, the mono-vacancy calculations in aluminum have determined

scaling relations that are indicative of slow convergence with respect to cell size. This is sig-

nificant for two reasons. First, it shows that long-range interactions beyond those considered

in previous calculations (Wang et al., 1998, 1999; Gillian, 1989; Mehl & Klein, 1991; Chetty

et al., 1995; Turner et al., 1997) are important. Second, it shows that errors previously

attributed to the approximations of OFDFT may in fact be an artifact of small periodic

computational cells. These issues are further highlighted by the di-vacancy calculations.

We find that the vacancies are attractive along both the 〈100〉 and the 〈110〉 directions.

Further, the binding energies we compute are in close agreement with those inferred from

experimental observations. However, these results differ from recent calculations (Carling &

Wahnström, 2000; Uesugi et al., 2003) which predict that vacancies repel along 〈110〉 direc-

tion. To understand this, we compute the di-vacancy interaction for various cell-sizes: We

find that the interaction changes sign from attractive for physically realistic sizes to repul-

sive for unphysically small sizes. This demonstrates that unphysically small computations

can lead to spurious results, and thus highlights the potential of the present method.

Finally, we demonstrated the physical insights that QC-OFDFT provides into materials

behavior by studying the problem of vacancy clustering and prismatic dislocation loop

nucleation in aluminum. We demonstrated, using large cell-sizes (∼ 106 atoms) describing
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a physically realistic vacancy concentration, that vacancy clustering is an energetically

favorable process. To the best of our knowledge, this is the first numerical confirmation

from an electronic structure perspective that vacancies prefer to condense. We also observe

from direct numerical simulations that vacancy clusters collapse to form stable prismatic

dislocation loops. This establishes vacancy clustering and collapse of these clusters as a

possible mechanism for prismatic dislocation loop nucleation. Also, we found prismatic

loops as small as those formed from 7-vacancy clusters are stable. This sheds light on the

nucleation size of these defects, which was hitherto unknown.

7.2 Discussion

The proposed multi-scale scheme, QC-OFDFT, which seamlessly transitions from a sub-

atomic length-scale (describing the electronic structure of core of the defects) to a con-

tinuum length-scale (describing the elastic and electrostatic effects through the electronic

structure at the macroscopic scale) has been built around the key-idea of unstructured

coarse-graining of basis functions. An appropriate formulation and a suitable choice of

basis functions – free of any structure – is required to realize this coarse-graining. The

combination of a variational real-space formulation, and the choice of a finite-element basis,

which confers a local structure to the formulation and is amenable to coarse-graining, are

the key ingredients that are used to effect the unstructured coarse-graining. It is important

to note that this is a significant departure from the existing implementations of electronic

structure calculations using a plane-wave basis, which are not amenable to coarse-graining.

Also an added advantage of a real-space finite-element formulation over a reciprocal-space

plane-wave formulation, is the freedom to consider general complex domains with arbitrary

boundary conditions and the ease of parallel implementation.
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The computational complexity associated with electronic structure calculations has lim-

ited these calculations to small systems on the order of utmost a few thousands of atoms.

However, most problems of interest, especially defects in materials, exhibit features on vary-

ing length-scales. The philosophy adopted thus far by most multi-scale schemes (Choly et

al., 2005; Lu et al., 2006; Govind et al., 1999) in describing these multi-scale problems is

to embed a more accurate and computationally expensive electronic structure calculation

inside a coarse continuum theory. Specifically speaking of defects, the region around the

defect (∼ 200 atoms) is described by electronic structure calculations, which is embedded

in a larger domain described by empirical potentials, which is further embedded in the

continuum described by field-theories. Thus, these multi-scale schemes describe the physics

on different length scales with disparate theories, and in effect introduce undesirable over-

laps between regions of the model governed by heterogeneous and mathematically unrelated

theories. Also, there is no clear notion of convergence. Another popular philosophy is to

transfer the information across scales using upscaling methods (Rappe’ et al., 1992; Goddard

et al., 2002). In such methods, electronic structure calculations are used to fit interatomic

potentials or force fields. These potentials are in turn used to compute materials properties

on macroscopic scales. However, in such upscaling methods, vital information is lost as it is

transferred to larger scales. Such schemes assume a clear separation of scales, the validity

of which is difficult to verify.

The proposed multi-scale scheme, described by QC-OFDFT, adopts an altogether differ-

ent philosophy. The whole domain of analysis is described by a single electronic structure

theory (OFDFT in this case), and the rest is approximation theory effected using a novel

quasi-continuum reduction of the resulting equations. The method is seamless, completely

unstructured, and does not introduce any ad hoc assumptions or spurious physics. Im-
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portantly, convergence of the quasi-continuum approximation is easily analyzed through

numerical studies, which show that the reduction in the computational effort afforded by

QC-OFDFT, at no significant loss of accuracy with respect to a full electronic structure

calculation, is quite staggering. Hence, the present work has opened a new avenue in the

field of computational materials science, where an accurate study of defects in materials is

possible through electronic structure calculations at macroscopic scales – a feat heretofore

not possible.

7.3 Future Directions

The work presented in this thesis opens up the possibility of studying a large range of defects

using electronic structure theories, which include void formation, dislocation nucleation,

surface reconstructions, phase transitions and stability of nano-structures. It also leaves a

number of challenges and scope for future work.

• A posteriori mesh adaption : There is scope to improve the QC-OFDFT method

by introducing an a posteriori mesh adaption into this scheme, which is necessary to

address issues like dislocation nucleation and emission, surface reconstructions, crack

propagation in materials, and others, where an a priori knowledge of the displacement

field and region of interest is lacking. A mathematical flavor to this work can include

error estimation of the quasi-continuum approximation, which is by far an open issue

and an important research problem.

• Evaluation of OFDFT functionals: The present method applies quite generally

regardless of the choice of OFDFT flavor, such as the particular choice of pseudopo-

tential, kinetic energy functional, generalized approximations, and others. The par-
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ticular choices made in the calculations presented here are mainly for purposes of

illustration. A considerable investment has been made, which continues at present,

concerning the development of versions of OFDFT that are increasingly accurate. The

accuracy of the various flavors of OFDFT are evaluated using benchmark results from

experiments, which include bulk properties like cohesive energies, elastic constants,

crystallographic properties, as well as defect properties (vacancy formation energies,

surface energies, etc.). Though bulk properties can be accurately computed using

the existing plane-wave implementations of OFDFT, an accurate calculation of defect

properties is beyond their reach. However, the present QC-OFDFT scheme, which

can accurately capture bulk as well as defect properties, can be used to evaluate the

accuracy of these various flavors of OFDFT. Such a study will have an important

practical significance.

• Development of QC-KS-DFT : Although OFDFT is computationally more tractable

and less complex than the Kohn-Sham version of density-functional theory (KS-DFT,

cf Chapter 2), its applicability is limited to metallic systems, whereas KS-DFT is

widely accepted as the most reliable and computationally feasible tool to model ma-

terials. Also, OFDFT provides insights only into the structural properties of materials.

The development of sophisticated active materials like ferroelectrics and a growing in-

terest in understanding and modelling these materials, calls for the use of KS-DFT as

the fundamental theory for modelling. Thus, the more important research direction

lies along the lines of developing a multi-scale model, QC-KS-DFT, with similar fea-

tures as QC-OFDFT but with KS-DFT as the input physics. Though the adaptive

real-space character of QC-OFDFT should prove useful in this endeavor, it requires

the computation of eigenvalues and eigenfunctions of large systems. Understanding
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the behavior of the eigenvalues and eigenfunctions in the thermodynamic limit of a

system with periodic potential will be a useful first step in this direction. Another

aspect of such a study, which will be useful in constructing an effective multi-scale

scheme with KS-DFT, is to understand how the eigenvalues and eigenfunctions change

with local perturbations.
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Appendix A

Kernel energies

In this appendix, we discuss briefly, how the variational real-space formulation of OFDFT

discussed in Chapter 3 can be extended to the family of kinetic energy functionals with

kernel energies. The functional form of kernel energies is given by

Tk(u) =
∫ ∫

f(u(r))K(|r− r
′ |)g(u(r′))drdr′ .

Different types of kernel energies differ through the functional forms of f and g. However,

most of them have same functional forms for f and g. To keep the analysis simple we

consider the case when f and g have the same functional form. Thus, the kernel energy can

be written as,

Tk(u) =
∫ ∫

f(u(r))K(|r− r
′ |)f(u(r

′
))drdr

′
.

Choly & Kaxiras (2002) propose a real space approach to evaluate these integral by approx-

imating the kernel in the reciprocal space by a rational function. Under this approximation,
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the kernel energy has a local form, given by,

Tk(u) =
m∑
j=1

1
2Cj

Zj(u) + (
m∑
j=1

Pj)
∫

Ω
f(u)2dr (A.1a)

Zj(u) = inf
wj∈H1

0 (Ω)

C

2

∫
Ω
|∇wj |2dΩ +

Qj
2

∫
Ω
w2
jdΩ + Cj

∫
Ω
wjf(u)dΩ j = 1, ...m (A.1b)

where, C is a positive constant, Cj , Qj are constants determined from a fitted rational

function with degree 2m. The minimization in (A.1) is well defined if C
CΩ

+Qj > 0, where

CΩ is the constant from Poincaré inequality. This can be easily verified using Poincaré

inequality and Lax-Milgram Lemma.

The common functional form of f used in the kernel energy is f = u2α. For this functional

form its easy to verify, following the same recipe used to treat the electrostatic interaction

energy from Sections 4.1, 4.2 & 4.3, that all the previous mentioned results hold if α < 2.

Other functional forms of f must be treated on a more specific level.
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