
Investigations of a Discrete Velocity Gas

Thesis by

David Benjamin Goldstein

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1990

(Submitted October 27, 1989)

11

©1990

David Benjamin Goldstein

All Rights Reserved

111

Dedicated to my parents

IV

Acknowledgments

I wish to express my gratitude to my advisor, Professor Bradford Sturtevant

for his early support and continuing encouragement and advice throughout the span

of our research. I would also like to thank Dr. Gene Broadwell for many hours of

fruitful discussion in a field in which his ideas led the way.

Wen-King Su deserves my special thanks for his most generous patience in

explaining the intrigues of C programming and parallel processing and for making

a stubborn computer work when needed.

I owe a debt of gratitude to my friends at GALCIT for their inspiration

both personally and professionally. Notable thanks go to Kazunori Kawasaki, Balu

Nadiga and Dr. Takaji Inamuro for penetrating discussions and tangible contribu­

tions to the research effort.

Eternal thanks to my mother and father, grandparents, and siblings for their

untiring confidence and support during my studies.

And especially, I would like to thank my wife Michal who provided an ongoing

source of motivation and endured my late nights with the "machine" with great

tolerance.

I wish to express my gratitude to the Submicron Systems Architecture Project,

Department of Computer Science, Caltech, for providing computer facilities and

expert advice.

V

Abstract

A new model of molecular gasdynamics with discrete molecular velocity com­

ponents has been implemented for parallel computation. When the suitably nor­

malized velocity components can take only integer values and time is discretized

for digital computation, the particles travel between a regular array of points m

physical and velocity space, and the gas is called a "lattice gas." Calculations of

molecular motions are thereby simplified. The outcome of binary collisions between

particles is determined by reflections about axes of symmetry in the center-of-mass

frame of reference. The procedure speeds calculations of collisions. Of interest is the

insight the discrete model provides into complex physical behavior and the effect

that physically realistic simplifications have on the accuracy and speed of parallel

calculations of a flow.

The equiiibrium state of a discrete-velocity gas and the influence of limited ve­

locity resolution are explained. It is found that the equilibrium velocity distribution

functions of the present model agree with those of the discrete Boltzmann equation

at very low velocity resolution and the continuous-velocity Boltzmann equation at

higher velocity resolution. The time development of non-equilibrium velocity dis­

tribution functions is presented. The model is applied to unsteady flows involving

strong shock waves, heat transfer between solid surfaces, and unsteady shear layer

development.

When the model is applied to gas mixtures, numerical experiments show that

the required number of values of each component of molecular velocity depends

strongly upon the mass ratios of the particle species involved. However, fewer

than ten values of each velocity component are necessary to produce results of

satisfactory accuracy in calculations of a shock wave in a single species gas. A

unique, self-adaptive mesh for parallel computation, used either for the present

Vl

lattice gas model or earlier direct simulatio.n Monte Carlo (Bird, 1976) models, is

described. The mesh balances the load between the processors of the multicomputer

and maintains the cell size at approximately a fixed number of local mean free paths

throughout the flow field.

Contents

Copyright

Dedication

Acknowledgements

Abstract

List of Figures

List of Tables

List of Symbols

1 Introduction

1.1 Motivation

1.2 Previous Work

1.3 Present Approach.

1.3.1 Model

1.3.2 Method

1.4 Outline of Present Work

2 Theory

2.1 Classical Theory

vu

ii

iii

iv

V

X

XVI

xvii

1

1

1

6

6

7

8

10

10

Vlll

2.1.1 Boltzmann Equation

2.2 Discrete Velocity Model

2.2.l Collisions

2.2.1.1

2.2.1.2

Collision Dynamics

Higher Order Symmetries

2.2.2 Multi-Species Collisions . .

2.2.2.1 Velocity Sub-grid

2.2.3 Features Of Lattice Gases .

3 Method

3.1 Direct Simulation Monte Carlo Method

3.2 Integer Direct Simulation Monte Carlo Approach

3.2.1 Discretization of Phase Space ..

3.2.1.1

3.2.1.2

3.2.1.3

Velocity Discretization

Spatial Lattice . . .

Collision Outcomes

3.2.1.4 Boundary Conditions

3.3 Implementation for Parallel Processing .

3.3.1 Adaptive Mesh

4 Simulations of a Uniform Gas

4.1 Equilibrium State of a Discrete Velocity Gas

4.2 Relaxation to Equilibrium

4.3 Multi-Species Relaxation .

5 One- and Two-Dimensional Applications

5.1 Normal Shock Wave Simulation

10

12

13

13

20

23

26

29

33

34

38

38

38

39

41

44

44

48

51

51

61

64

76

76

IX

5.2 Multi-Species Normal Shock

5.3 Heat Transfer Between Solid Surfaces

5.4 Two-Dimensional Shear Layer .

5.5 Performance Comparison

6 Conclusion

6.1 Summary

7 Bibliography

A DSMC/IDSMC Program User's Guide

A.l Overall Program Outline .

A.2 The Host Program

A.2.1 Beginning the Process

A.2.2 Receiving Data from the Cube

A.3 The Cube Program

A.3.1 Beginning a Simulation

A.3.2 The Basic Direct Simulation Algorithm

A.3.3 Details of Several Subroutines .

A.4 Running the Code

A.4.1 Determining the Values in 2d.def .

A.4.2 Determining the Values in dat.

B Program For The Host

C Program For The Cube

81

83

93

98

100

101

106

115

115

118

118

119

121

121

122

123

133

133

134

138

158

X

List of Figures

1.1 Two Broadwell models: (a) single-speed particles move only along

Cartesian axes, (b) single-speed particles move at 45° to axes. 2

1.2 HPP and FHP cellular automata models with sample pre- and post-

collision states. 4

2.1 Binary particle collision between identical hard-sphere particles m

the center-of-mass reference frame, viewed in the collision plane. 14

2.2 Points on collision circle. Reflections about 0/1, 1/1, and 1/0 are

possible. Parity: EE (Even Even), Relative velocity: (-2,4). Lines

of symmetry are dotted. .

2.3 Points on collision circle. Reflections about 0/1, 1/1, and 1/0 are

possible. Parity: 00, Relative velocity: (-1,3). Lines of symmetry

are dotted.

16

18

2.4 Points on collision circle. Reflections about 0/1 and 1/0 only are

possible. Parity: EO, Relative velocity: (-2,3). 19

2.5 Points on collision circle. Reflections about 0/1 and 1/0 only are

possible; reflection about 1/1 is degenerate. Parity: 00, Relative

velocity: (-3 ,3) . 20

2.6 Points on collision circle. ReflectioRs about 0/1 and 1/0 are degen­

erate. Parity: EO, Relative velocity: (0,3). 21

Xl

2.7 Points on collision circle. Reflections about 0/1, 1/1, 1/0, 2/1, and

1/2 are possible. Parity: 00, Relative velocity: (-7,9). Lines of

symmetry are dotted. . .

2.8 Each value indicates the number of points in the quarter of the plane

22

that lie on a circle centered at (0,0) and that pass through the given

point. Lines of slope 1/3, 1/2, 1/1, 2/1, and 3/1 are also shown. . . 24

2 .9 The number of the discrete points in one octant on all spheres whose

radius is less than 50. 25

2.10 Multi-species collision. Mass ratio = 2. Center-of-mass velocity

(cmv): (4,3¾), and (0,0) on sub-grid. Relative velocity: (3,4). Main-

grid values are in bold. 27

2.11 Occupied sites in velocity space. Symbols A, B, and C are described

in the text. 31

3.1 Lattice points and cell boundaries in physical space. Cells a and b

are the same size but contain different numbers of lattice sites. . . . 40

3.2 Density profile superimposed on node mesh for a typical piston prob­

lem. Left-hand wall is impulsively accelerated as a piston into the

fl.ow at t = 0 creating an unsteady shock wave. Note how the node

(and, thus, the cell) size decreases through the shock. 4 7

4.1 Histogram of the angle of rotation, X, of the relative velocity vector

in each collision. The solid line is the theoretical distribution for

64,000 collisions. Particle temperatµre is RT = f q2
• Bin width = 0.5°. 53

4.2 Histogram of the angle of rotation where the particle temperature is

RT = 201.3q2 . Bin width = 0.5°. 54

xii

4.3 Probability of a null (0° or 180°) collision occurring in a single species

equilibrium gas at different temperatures. 55

4.4 Velocity component distribution function normalized to a maximum

value of 1. The solid line is the theoretical distribution normalized

to cover the same area as the discrete distribution. The particle

temperature is RT = f q2
• • ••

4.5 Velocity component distribution function for RT = 20l.3q2 • Note

the change in scale from figure 4.4

4.6 Velocity component distribution function normalized to a maximum

value of 1. The bar graph is the IDSMC solution and the open circles

are the solutions to the discrete Boltzmann equation of Nadiga at

RT = 0.2738q2
, U = 0.

4.7 U velocity component distribution function for a translating gas.

The bar graph is the IDSMC solution and the open circles are the

solutions to the discrete Boltzmann equation of N adiga at RT

2 -0.2743q , U = 0.0306.

4.8 DSMC method. Development of velocity distribution function his­

tograms. Initial bimodal distribution spreads to form a Maxwellian.

Equilibrium Maxwellians are also drawn in the last row. First row is

time zero, second after 1 coll./ particle, the third after 2 coll./ particle,

56

57

59

60

the last after 10 coll./ particle. 62

4.9 IDSMC method. Development of velocity distribution functions. Ini­

tial bimodal distribution spreads to form a Maxwellian. Equilibrium

Maxwellians are also drawn in the last row. First row is time zero,

second after 1 coll./particle, the third after 2 coll./particle, the last

after 10 coll./particle. 63

Xlll

4.10 DSMC and IDSMC methods. Development of velocity distribu­

tion functions after O (first row), 1 coll./particle (second row) and

7 coll./particle (third row). DSMC = histogram (bin width /
0
q),

IDSMC = bar. RT= l.82q2• • • • • • • • • • • • • • • • • • • . • . • 65

4.11 DSMC method. Development of velocity distribution functions in a

two species gas. Bimodal distribution (mass 1 = solid lines, mass

3 = dotted) spreads to form a Maxwellian. RTtotal = 65q2
• First

row is time zero, the second after 1 coll./particle, the third after 2

coll./particle, the last after 10 coll./particle. 67

4.12 IDSMC method. Development of velocity distribution functions in

a two species gas. Bimodal distribution (mass 1 = solid lines, mass

3 = dotted) spreads to form a Maxwellian. RTtotal = 65q2
• First

row is time zero, the second after 1 coll./particle, the third after 2

coll./ particle, the last after 10 coll./ particle. 68

4.13 DSMC method. Development of velocity distribution function his­

tograms in a gas of mass ratio 10 after O (first row) and 1 colli­

sion/ particle (second row). Mass 1 = solid lines, mass 10 = dotted.

RTtotal = 76q2
, • , , , • 70

4.14 IDSMC method. Development of velocity distribution functions in a

gas of mass ratio 10 after O (first row) and 1 collision/ particle (second

row). Mass 1 = solid lines, mass 10 = dotted. RTtotal = 76q2
• • • . • 71

4.15 The average number of discrete points on all spheres in collisions

between mass ratio 10 particles with a relative speed less than 40.

Note change in scales from figure 2.9. 72

XIV

4.16 Histogram of the angle of rotation, x, of the relative velocity vector in

each multi-species collision in an equilibrium gas. The solid line is the

theoretical distribution for 53,937 collisions. Particle temperature is

RT = 76q2
• Bin width = 0.5°. Note the two scales along the ordinate. 73

4.17 IDSMC method. Development of velocity distribution functions in a

gas of mass ratio 10 after 0 (first row) and 1 collision/particle (second

row). Mass 1 = solid lines, mass 10 = dotted. 0° deflection multi­

species collisions are repeated. RTtatal = 76q2
• 60,000 particles are

used

5.l Ms = 2.12 Shock wave density and temperature profiles. Also shown

75

are the up/ downstream thermal velocity distribution functions. . . . 77

5.2 Ms = 2.13 Shock wave density and temperature profiles. Also shown

are the up/ downstream thermal velocity distribution functions. 79

5.3 Ms = 2.12 Pxx variation through shock. 81

5.4 Ms = 2.01 Shock density profiles. Mass ratio = 2. Number den-

sities are equal. Upstream, RTio = ll.l8q2 and RTho = 5.59q2
•

Downstream, RTn = 23.25q2 and RTh1 = 11.62q2 • Also shown are

up/downstream thermal distribution functions (m = 2: dotted lines

and bars, m = 1: solid lines and bars). 84

5.5 Ms = 2.84 Shock density profiles. Mass ratio = 5. Number den­

sities are equal. Upstream, RTio = 8.25q2 and RTho = l.66q2
•

Downstream, RTz 1 = 27.77q2 and RTh1 = 5.55q2
• Also shown are

up/ downstream thermal distribution functions (m = 5: dotted lines

and bars, m = 1: solid lines and bars). 8.5

xv

5.6 Temperature distribution at early times - heat transfer between par­

allel walls. Wall temperature ratio = 2, 4 collision times.

5.7 Temperature distribution at equilibrium - heat transfer between par­

allel walls. Wall temperature ratio = 2.

5.8 Error in particle number flux from an equilibrium gas through a

boundary at an angle O versus velocity resolution. * indicates simu­

lation conditions for figures 5.6 and 5.7

5.9 x - t plot of particle paths for speed 1, 2, and 3 particles originating

from the lattice sites nearest the surf ace. Where paths cross at a

lattice site, particles of the respective speeds will coexist for one time

step

5.10 Mixture Fraction, 600 steps ..

5.11 Mixtnre Fraction, 1200 steps.

5.12 Mixture Fraction, 3200 steps.

5.12 Mach Number, 900 steps. .

5.14 Mixture Fraction, 300 steps.

5.15 Mixture Fraction, 300 steps. IDSMC - DSMC

5.16 u velocity profiles through the shear layer obtained with DSMC

(lines) and IDSMC (symbols) at 159 mean free paths from the left

hand boundary.

A.1 Flow chart for program in each node. Subroutine names appear in

i'talics and variable names in bold . ..

86

87

89

92

94

. 94

94

94

94

94

97

116

xvi

List of Tables

3.1 Sample from the top of the look-up table 42

5.1 Conditions for simulation of figure 5.1 78

5.2 Conditions for simulation of figure 5.2 80

5.3 Conditions for simulation in figure 5.4 82

5.4 Conditions for simulation in figure 5.5 82

5.5 Conditions for simulation in figures 5.6 and 5.7 87

5.6 Conditions for simulation of the shear layer. .. 95

XVll

List of Symbols

CA

DSMC

IDSMC

mfp

b

c' m

c'

c

d

F

f

J

k

Cellular Automata

Direct Simulation Monte Carlo

Integer Direct Simulation Monte Carlo

Mean Free Paths

Impact parameter

Most probable speed

Relative collision speed

Root mean squared thermal velocity

Mean thermal speed

Vector velocity

Particle diameter

Single particle velocity distribution in phase space

Number density of particles in velocity space

Ratio of time step to collision time

Boltzmann constant

m

N

n

p

Pxx

q

R

r

s

T

f)..t

V

(X, Y, Z)

(f)..x, f)..y, f)..z)

(u,v,w)

XVlll

Ratio of cell size to mean free path

Shock Mach number

Particle mass

Number of particles in a small volume of physical space

Particle number density in physical space

Pressure

X or normal component of the pressure tensor

Unit particle speed

Gas constant

Location in physical space

Slope of symmetry axis

Temperature

Time step

Time increment for one collision

Specific volume

Candidate point in velocity space

Cartesian direction

Cell dimensions

Velocity components

(x, y, z)

(3

X

,\

V

p

a

T

0

() *

Oo

()'

()"

XIX

Cartesian position

The inverse most probable speed

Rotation angle of relative velocity during collision

Lattice spacing

Mean free path

Collision frequency

Density

Collision cross section

Mean free time

Angle between boundary and VW plane

Collision solid angle

Post collision quantity

Upstream or equilibrium quantity

Fluctuating quantity

Inverse collision quantity

1

Chapter 1

Introduction

1.1 Motivation

The objective of the present research is to develop discrete-velocity molecular models

that simplify the continuous-velocity model of molecules and make the computation

of molecular motions more easily applicable to both rarefied and high density flows.

The discrete-v.elocity model, in which particle velocity components take on o_nly

discrete values (e.g., integers), is distinguished from the more physically realistic

continuous-velocity molecular models by its elegant simplicity. Implemented with a

method for directly simulating particle motions, discrete-velocity models represent

complex physical phenomena that can be explored without the difficulty of having

to solve the continuous-velocity Boltzmann equation.

1.2 Previous Work

The Boltzmann equation, an integro-differential equation, describes the evolution of

the number of molecules having a given velocity in a flowing gas. Evaluation of the

collision integral, which describes the gain and loss of particles from each velocity

class, is particularly difficult. The equations of radiative transport, which are similar

to the Boltzmann equation, can be greatly simplified by supposing that light travels

along discrete rays or streams (Chandrasekhar, 1960), thus reducing the equations

2

/

(a)

/
/

/I
/

I

/

/
I.

(b)

/

'/ I
/

/

I I
I /

I
I I

Figure 1.1: Two Broadwell models: (a) single-speed particles move only along

Cartesian axes, (b) single-speed particles move at 45° to axes.

to a set of coupled differential equations. That assumption leads to the discrete

ordinate method used to compute radiation transport through matter (Duderstadt,

1979). Gross (1960) suggested the possibility of applying a discretization approach

to the Boltzmann equation and Broadwell (1963 and 1964a, b), citing such ideas,

developed a model of a molecular gas in which particle velocity components are

discrete; the molecules can move only with velocities ci, which belong to a finite set.

The evolution of each point in velocity space can then be described by a differential

equation. Broadwell used two different discretizations of velocity space; in one the

particles move with unit speed in the six directions parallel to the Cartesian axes

and in the other they move in the eight directions along lines at 45° to the axes

(figure 1.1). Particle collisions (where particles of type (ci,cj) become particles of

type (ck,ci)) were modeled by probabilistic scattering rules that were incorporated

into the gain and loss terms of the equation. The collisions, which exactly conserve

3

mass, momentum, and energy, occur between particles that lie on diametrically

opposite sides of a unit sphere centered at the origin of velocity space. Broadwell

studied shock wave structure and low Mach number Couette and Rayleigh flows; in

both cases, unexpectedly good correspondence between the extremely simple model

and more refined theory was found. For this model, Caflisch and Papanicolaou

(1979) have since derived Euler and Navier-Stokes equations and Caflisch (1979)

has investigated shock wave profiles. A general discussion of discrete-velocity gases,

including the Broadwell model, is given in the monograph by Gatignol (1975) and

the review paper by Piatkowski and Illner (1988), with particular emphasis on the

mathematical subtleties. Recent studies of the discrete-velocity Boltzmann equation

have investigated the relationship between the resulting continuum fluid transport

coefficients and their corresponding continuous-velocity values (McNamera, 1988)

and have greatly expanded the volume of velocity space that can be considered

(Inamuro, 1989).

If space and time are discretized, a discrete-velocity model with only a few

velocities may be simulated as a cellular automaton (CA). In such a simulation, par­

ticles travel along links between lattice sites in space and collide with other particles

encountered at those sites. Consider a pair of two-dimensional models as examples,

namely, the so-called HPP model (Hardy, de Pazzis,_ and Pomeau, 1973, 1976) with

single-speed particles on a square lattice, and the FHP model (Frisch, Hasslacher,

and Pomeau, 1986) with speed O and 1 particles on a triangular lattice. Figure 1.2

indicates the different collision possibilities. The circles drawn for the sample bi­

nary collisions are centered at the collision center-of-mass velocity and indicate the

points that are possible post-collision velocities that conserve mass, momentum,

and energy. (The shaded circles for the three particle collisions indicate the region

of velocity space that contains such points. However, since in this work we are con-

Before After

HPP model

(i)

(ii)

(iii)

(iv)

4

8 co
(}) 8

Before After

FHP model

Figure 1.2: HPP and FHP cellular automata models with sample pre- and

post-collision states.

5

cerned with models of dilute gases, ternary collisions are not considered further.)

The circles have a diameter equal to the relative speed between the colliding parti­

cles. Of course, for the collision to yield discrete velocities, the outcome possibilities

are limited to a few points on the circles. In the HPP model all possible circles are

of a single diameter, signifying a single type of binary collision, whereas in the FHP

model the circles are of three different sizes. Not all collision rules in the FHP

model conserve energy during a collision (e.g., FHP collisions (iii) and (iv), which

lead to a change of the diameter of the collision circle). The simplicity of the set

of collision rules that specify collision outcomes generally restricts the CA models

to low velocity resolution, that is, only a few velocities. Also, for technical reasons,

an exclusion principle requiring that two particles may not occupy the same point

in phase space, is applied to each lattice site. CA simulations model an inherently

compressible gas, but generally they have been applied in the low Mach number,

incompressible limit, and collision models and particle densities with the lowest

practical viscosity have been of primary interest (Henon 1987, Frisch et al., 1986).

CA methods have been applied to several problems, including: shear flow

between parallel plates (Kadanoff, 1987), shock waves (Nadiga et al., 1989), the

Rayleigh problem and flow over a flat plate normal to the flow (Long et al., 1987),

and flow about a cylinder (Doolen, 1988). The advantages of the CA are that sim­

ulations can be performed quickly using Boolean algebra and may even be directly

computed in specialized hardware. The drawbacks are that the methods may not

be more efficient than conventional finite difference techniques for continuum flows

and may not yield results consistent with the Navier-Stokes equations; low resolu­

tion of phase space can lead to spurious conservation laws (Zanetti, 1988b) and to

anisotropy of the stress tensor (Frisch et al., 1986).

To simulate a gas temperature that is independent of flow velocity it 1s nee-

6

essary to consider particles having more than one speed. Yet few discrete-velocity

models beside those of Nadiga et al. (1989) and Inamuro (1989) include multi-speed

particles. A purpose of the present work is to measure the accuracy of compress­

ible flow simulations with discrete-velocity models having different levels of velocity

resolution.

1.3 Present Approach

1.3.1 Model

A general model of a multi-speed discrete-velocity gas and a method for its imple­

mentation are presented in the next sections. The molecular models treated in this

work were introduced by Goldstein et al. (1989), where the Broadwell model was

generalized, a:o.d by Goldstein and Sturtevant (1989). In Broadwell's model, one

type of collision and one particle speed were considered, whereas, in the present

treatment, all collisions which exactly conserve mass, momentum, and energy are

considered and any discrete particle velocity is possible. The collision model is dis­

cussed in terms of the points that lie on the intersections of the collision spheres

and a discrete-velocity grid, and of the symmetries that relate to those points. The

discretization of velocity space permits the discretization of particle positions onto

a lattice in physical space and, thus, creates a variety of models that can bridge

the gaps between the most basic discrete-velocity models, cellular automata, and

continuous-velocity approaches. Multi-species particle interactions and diffuse and

specular boundary conditions are also considered. The issues involved are (1) how

can one practically model collisions between multi-speed particles, (2) what are the

effects of the microscopic particle velocity resolution upon the macroscopic flow field

quantities, (3) can a spectrum of discrete-velocity models bridge the gap between

7

the most crude single-speed models and the continuous-velocity approach, and (4)

can a discrete-velocity model be developed that is general enough to incorporate

common real gas effects?

1.3.2 Method

Several recent applications have highlighted the need for further understanding of

and a practical method for solving gas dynamic flows in the rarefied and transitional

flow regimes. Interest in flows around satellites (Guernsey, 1986) and high altitude

hypersonic vehicles (Bird, 1986), in rocket exhaust plumes (Hermina, 1988), and

within vacuum chambers (Inamuro, 1989b) has emphasized the shortcomings of

present models. These flows may involve gas chemistry, radiation, unsteadiness,

phase change and complex geometry. In rarefied flows, no adequate finite difference

approach is available because the full integro-differential Boltzmann equation is in­

tractable. A direct particle simulation with the correct treatment of physics and a

phenomenological treatment of the chemistry at the microscopic level is currently

the best available method for such flows, but a molecular method can be extremely

inefficient for calculating continuum flows due to the detail with which the calcula­

tions are made. Nevertheless, for the reasons stated above and also because it often

happens that some parts of a flow field are rarefied while others are not, there has

always been interest in extending the application of molecular simulation methods

well into the continuum fl.ow regime.

The methods of this work are patterned after the Direct Simulation Monte­

Carlo method (DSMC) of Bird (1963, 1976). Such methods do not solve an explicit

finite difference Boltzmann equation so the computational mesh can be independent

of the coordinate system, and the calculation of fl.ow over complex bodies may be

significantly simplified. Complex molecular models can be incorporated as well

8

to account for radiation, chemistry, and phase change. The present method is

implemented with a unique self-adaptive mesh of cells for efficient computation on

multi-computers.

The DSMC has previously been limited mainly to computation of rarefied

flows by the substantial computational time required. Moderately complicated su­

personic flows have been successfully simulated when the computational domain

has been divided into sub-regions that could be computed separately (Hermina,

1988). Such a sub-division is impractical if the flow is subsonic or unsteady and

the complete flow field must be simulated at once. Also, the grid required for com­

plicated three-dimensional flows can be time consuming to generate. The present

research investigates simplifications of the molecular models and methods that ad­

dress these limitations. Emphasis is upon the influence of simplifications on the

accuracy and speed of calculation and on the reduction of the memory demands

upon the computer.

1.4 Outline of Present Work

In chapter 2, the theoretical underpinnings of the Boltzmann equation are briefly

discussed. The present model is then described based on the physics of binary

particle collisions both for identical particles and for particles having an integer mass

ratio. Symmetries in the collision frame of reference are used to clarify the model

and show how such general collisions can produce all possible discrete velocities.

Chapter 3 outlines three approaches that have been used to solve the Boltz­

mann equation and introduces the basic ideas of the direct simulation particle

method. A rapid way to compute the collisions involving a look-up table is discussed

and extended to handle a gas of particles that have different masses. The relation-

9

ship between velocity and spatial resolution is explained and realistic boundary

conditions are described. The concurrent computer used for simulations is briefly

described and the algorithms for implementing the discrete-velocity and DSMC

methods are detailed.

The effects of velocity resolution are then examined in following chapters

through simulation and comparison to theoretical solutions or numerical solutions

obtained with the standard DSMC method. The first simulations in chapter 4 in­

volve the equilibrium states in a uniform stationary or translating gas. The velocity

distribution functions and collision angle distribution are compared to theory. Next,

a non-equilibrium distribution function is observed as it relaxes toward equilibrium;

the process is compared to a DSMC simulation for particles having both the same

and different masses. The discrete-velocity method is then applied to several flows

in chapter 5. One-dimensional simulations of shock waves and heat transfer are

examined followed by a two-dimensional unsteady shear flow used to demonstrate

the application of the method for a complicated problem. Several conclusions about

the model and its implementation are drawn in chapter 6. The computer code and

instructions detailing its use are in the appendices.

10

Chapter 2

Theory

2.1 Classical Theory

In classical theory, a gas is considered to be made up of many chaotically moving

particles. If the distance between the particles is significantly greater than the

particle diameter then the gas is dilute and particle collisions are almost exclusively

binary. Even if the particle number density is as high as that in the atmosphere

at sea level, the distance between molecules is several times greater than their

diameters, and the gas is still dilute. If there are no external force fields, the

particles change their velocities only when they collide with each other or with a

flow field boundary. In a small volume of space containing N particles, if dN is the

number of particles in the velocity space c to c + de, then dN = N/(c) where J(c)

is the distribution function. That is, f de is the probability that a given particle at

some point in space will have a velocity between e and e + de. f is normalized so

that its integral over all of velocity space is unity. From f, it is possible to compute

all the macroscopic variables of interest. For example, u = J uf (c)de.

2.1.1 Boltzmann Equation

The single-particle velocity distribution of a large number of identical particles in a

phase space consisting of velocity space, physical space, and time can also be defined

11

as F(c, r, t) = nf (c), where n is the particle number density. Molecular chaos in

a dilute gas implies that this function is sufficient to describe the probability of

finding two particles in a given configuration.

The evolution off is described by the integro-differential Boltzmann equation,

(Chapman and Cowling, 1952). The terms on the left-hand side represent the rate

of change of the number of molecules in an element of phase space dcdr and the

convection of such molecules by c through the surface of the spatial element d:r.

The right-hand side is an integral representation of the effect of collisions upon nf.

The double primed terms represent collisions that scatter particles of class c' and

c~ into c and c1, a gain, while the unprimed terms represent particles scattered out

of c and c1 , a-loss. er is the relative particle speed, a is the collision cross section,

and O is the collision solid angle for this class of collisions. The formulation can

be extended to include mixtures of gases and molecules that have various internal

degrees of freedom (Chapman and Cow ling, 1952).

It is possible to consider the velocity space to be discretized into a set of veloc­

ities, ci, whose distribution is given by Ji (Broadwell, 1963). A discrete Boltzmann

equation can then be written for each velocity type i as

(2.2)

where Ai incorporates the effects of a, er, and 11, and nAi is a collision frequency.

The left-hand side is essentially the same as in equation 2.1 but particles only

travel with the discrete velocities Ci. The right-hand side is a summation over all

velocity pairs that can produce or eliminate particles of type i through inverse and

forward collisions. Whereas, in a continuous-velocity description a collision can

12

produce an infinite variety of outcomes, it will be shown shortly that an important

effect of discretization is to reduce the variety of possible collisions for each particle

pair. Broadwell solved this coupled set of differential equations for a single-speed

model in which the velocities lie in the six directions parallel to the Cartesian

axes or in the eight directions along lines at 45° to the axes (figure 1.1). The

cost of explicitly solving the more general equation is proportional to the square of

the volume of velocity space considered, as for the continuous-velocity Boltzmann

equation, although the proportionality constant may be substantially smaller. The

object of the present research is to indirectly solve the discrete Boltzmann equation

by computing the motions of discrete-velocity molecules.

2.2 Discrete Velocity Model

What does it mean to describe molecules that only lie at discrete points in velocity

space? An immediate consequence of the discretization is that the velocity compo­

nents are quantized with the unit of velocity, q. Hence, the distribution of particle

velocities is not continuous but approximates the distribution function, f, as a se­

ries of delta functions. In any given problem, whether q is 'small' or 'large' depends

on the characteristic thermal speed of the molecules, for example, the rms thermal

velocity,

(2.3)

where R is the gas constant and T is the local temperature. For high-temperature

gases, the velocity distribution function is 'wide,' and many molecular speeds occur,

so q is small compared to Cs. For cold gases, the velocity distribution function is

'narrow,' so only a few molecular speeds occur, and q may be of the order of cs·

In early discrete-velocity models, and with cellular automata, the variety of

13

collision possibilities is limited and the number of molecular velocities is fixed. There

is only a small range of temperatures in which such models produce realistic solu­

tions and, for practical problems, the velocity distribution function is always narrow.

In a gas for which the collision dynamics and molecular speeds are unrestricted and

all discrete-velocity collisions that conserve mass, momentum, and energy are al­

lowed, the width of the distribution function can increase more realistically with

increasing temperature.

2.2.1 Collisions

2.2.1.1 Collision Dynamics

In this section the mechanics of collisions between discrete- or integer-velocity

molecules are described. It is required that in every collision mass, momentum, and

energy are exactly conserved. For simplicity, collision dynamics are discussed for a

twerdimensional gas (all particle velocities lie in a plane). By a generalization to

three-dimensions, all of the results presented are obtained with a three-dimensional

model of a gas. Only the interaction of hard-sphere molecules is treated. Discussion

of collisions between particles of differing mass is deferred until the next section.

A binary elastic collision between identical particles is drawn in the center-of­

mass reference frame in physical space in figure 2.1. -Particles i and J approach each

other with a projected separation between their centers of b, the impact parameter.

As viewed in this collision plane, the impact scatters the particles through an angle

x. If the mass of each particle is assumed to be unity, linear momentum conservation

leads to,

(2.4)

where Cm is the velocity of the center-of-mass and the starred terms represent the

14

b

Figure 2.1: Binary particle collision between identical hard-sphere particles in the

center-of-mass reference frame, viewed in the collision plane.

15

post-collision state. Energy conservation is .described by,

(2.5)

The relative velocities before and after the collision are

(2.6)

and

(2.7)

These equations can be combined to show that

(2.8)

and, hence, that c; = Cr- Therefore, the consequence of exact momentum and

energy conservation is that the relative velocity vector after the collision has the

same magnitude and is simply rotated by the collision angle x about the center-of­

mass velocity.

In a discrete-velocity gas, as in a continuous-velocity gas, the probability of

a collision between two particles randomly selected from a small region of space is

proportional to their relative speed. Figure 2.2 shows a simple quantitative example

of a collision in velocity space in which one of the identical colliding particles initially

has velocity (ui, vi) = (4q, q) and the other (Uj, Vj) = (2q, Sq). The relative velocity is

the vector difference between these two velocities and the center-of-mass velocity lies

at the center of the relative velocity vector. In a continuous-velocity gas, all points

on a large circle centered at the center-of-mass velocity and of a diameter equal to

the relative collision speed are equally likely post-collision results. Candidates for

outcome discrete velocities in the example of figure 2.2 lie at the intersections of the

velocity lattice with the large circle and are indicated by small open circles. If one

16

s = 1/0 s = 1/
Vf-----~--~---+---~--~-~/

/
/

/
/

_/
Vjl-------t----Jill::__--+---==&:---~f------j

/

u­J

/

u

Figure 2.2: Points on collision circle. Reflections about 0/1, 1/1, and 1/0 are

possible. Parity: EE (Even Even), Relative velocity: (-2, 4). Lines of symmetry

are dotted.

17

colliding particle is fast and the other is slow, as might occur in a high-temperature

gas, the relative velocity will be large, so the diameter of the circle defined by the

relative velocity vector will be large, and there might be many possible outcome

velocities. By this method, velocities are automatically redistributed between the

different regions of velocity space as required by the local temperature and collision

dynamics.

In two-dimensions four different cases must be considered depending on the

parity of the components of the relative velocity vector. In figure 2.2 both com­

ponents are even (e.g., (-2q, 4q), designated even-even or EE). In this case, the

center-of-mass velocity falls on a lattice point in velocity space. If the parity is EE,

generally there are four possible pairs of output velocities (including that in which

the initial velocity vectors are simply interchanged with no apparent change on the

figure). The three pairs that are different from the input pair can be constructed by

reflections about the vertical, the 45°, and the horizontal axes through the center­

of-mass velocity. The three axes are designated by their slopes: 1/0 (vertical), 1/1

(45°), and 0/1 (horizontal).

If both components of the relative velocity are odd (designated odd-odd or

00, figure 2.3), the center-of-mass falls at the center of a unit cell of the lattice in

velocity space, and, again, four outcome pairs obtained by the same reflections as

above are possible. On the other hand, when the relative-velocity components are

of opposite parity (EO, figure 2.4) , the center-of-mass velocity falls on the edge of

a unit cell in velocity space, so no reflection about the 1/1 axis occurs, and only two

outcome pairs are possible. In the EE and 00 cases, the relative velocity vector can

lie at 45° (see the example in figure 2.5) . In this case, there are only two outcome

pairs possible. On the other hand, in the EE and EO configurations, the relative

velocity vector can be vertical or horizontal (figure 2.6). In such a situation, with

18

s = 1/0 s = 1/1
_/

1-----.------,----t---.------.------/--<',

/
/

/
/

/

,/
Vj l------1----:::41~=!=:::::::"8::----+------J

/

---------- ---- ---- - s = o / 1

u

F£gure 2.3: Points on collision circle. Reflections· about 0/1, 1/1, and 1/0 are

possible. Parity: 00, Relative velocity: (-1,3). Lines of symmetry are dotted.

19

s = 1/0
!

----- ------- - ---------- -- s = o / 1

u

Figure 2.4: Points on collision circle. Reflections about 0/1 and 1/0 only are pos­

sible. Parity: EO, Relative velocity: (-2,3).

20

s = l/0 · s = 1/1
V ---.----,---.----+--~--~--.---/

U· J U· t

/

/
./

/

- ------ --s = 0/1

u

Figure 2.5: Points on collision circle. Reflections about 0/1 and 1/0 only are pos­

sible; reflection about 1/1 is degenerate. Parity: 00, Relative velocity: (-3,3).

EE, there are only two outcome pairs, while with EO, there is only one possible

outcome - the same as the input.

2.2.1.2 Higher Order Symmetries

At higher relative velocities, i.e., with greater velocity resolution, reflections about

other axes can be made so more possibilities for outcomes arise. For example.

the circle defined by a squared relative speed of 130q2 intersects components (7 q,

9q) and (3q, llq), which cannot be obtained from each other by reflections about

21

s = l/0
Vf-----,----+-----.---~--~

U·. i,J u

Figure 2.6: Points on collision circle. Reflections about 0/1 and 1/0 are degenerate.

Parity: EO, Relative velocity: (0,3).

V

v­J

j l

/

I
I
// ---

I
I

I
--- rf-

I

J \ /

-1✓ /\
I

/
/

/
/

/
/

l--L---

v-
/

A ~
/
I

--- ---

/

_,...-/

/
/

/

X
'"" / /
---1-
,'

/

U· J

[\
\

/
/

/
/

/

I
I

I

I'----...

L---

22

s = 1/0 s = 2/1 s = 1/1
i I /

I I /

i /

I
I

/
i ... ; /

!
--------~

/

I I /

I I [X ! / /
/

! /
'~- ,,,.,,,,..-

! / /

s = 1/2

! I / / / \
I _,...-

r\ I /

\ ! I / /

I / ,/ _,,, _,...-

)R /

---- ---- ---- ---- --- --- --- --
/ '

s = 0/1
/

\ / I
/ I

I i '\
I \ /

/ i \ ,/ I\

i \ V i

i -----= ~
"Jf'J"""

I
;
i
i -u

Figure 2. 7: Points on collision circle. Reflections about 0/1, 1/1, 1/0, 2/1, and 1/2

are possible. Parity: 00, Relative velocity: (-7,9). Lines of symmetry are dotted.

23

1/0, 1/1, or 0/1 (see figure 2.7). Both of these points lead to 4 possible outcome

pairs so there are a total of 8 possible outcome pairs for these input configurations.

These outcomes, however, can be constructed from either input point by reflection

about the additional axes of slope 1/2 and 2/1. In general, as the length of the

relative velocity vector increases, symmetries about lines of slopes given by ratios

of increasing values of whole numbers (e.g., 1/3, 2/3, etc.) arise. The number of

points in a quadrant that are intersected by the circle about the origin that passes

through that point are indicated on the relative velocity lattice in figure 2.8. The

boxed-in points are those that participate in symmetries more complex than 0/1,

1/0, and 1/1. If the relative velocity falls along an axis of symmetry, the possible

outcomes are correspondingly reduced, and the case is degenerate. In a three­

dimensional velocity space, there are 23 = 8 parity cases, each possessing slightly

different symmetry possibilities and degeneracies.

As the above discussion suggests, the number of possible collision outcomes

increases rapidly as the velocity resolution increases. Figure 2.9 is a plot of the

number of integer points in one octant of space intersected by the spheres with

radii from 1 to 50. It is clear that with sufficiently large relative velocity many

points on the collision spheres are available.

2.2.2 Multi-Species Collisions

The previous discussion has concerned only collisions between identical particles.

If the particles have different masses, the collisions are not as simple; the center­

of-mass velocity lies closer to the velocity of the more massive particle and not

necessarily on an integer or half-integer velocity grid location. The geometry is

again most easily seen in a two-dimensional example (figure 2.10). To conserve

energy and momentum, each particle velocity after the collision must remain on

24

V
s = 3/l s = 2/1

20 s = 1/1

19 2 []JG] 8] 2 z,:
18 ~l 2 2{] 2·,2· 22
11 Gl 2 2 [] 2 f]J CID 2_.~ · 2

16 .. 2 []8} 2 2:.' 2 8}.2 2 2 [ill[]} :
15 .. 2 2 2 2 [] 2 2:.·GJ 2 [ill 2 2 2·

14 -- 2 [}]GJ 2 Eil 2 _:2 Gl 2 2 2 GJGJ .. Y ·
13 [] 2 2 []· 2 Ql .. 2 2 [] 2 QJ 2 []J .[] 2 --

12 -Ql 2 2 :-2 Cfil .~-r 2 2 {]J 2 8J .i 2 GJ 2 [lJ
11 2 8]8}_ ·2 2_.:'2 []JG} 2 8] .. f.·8]8} 2 2 8]
10 - 2 2 2..-:' 2 [1l 2 2 2 -2 _Cfil{~ 2 2 2 {]l 2 - 2 - •- s = 1/2

9 2 GJ .2 2 2 2 GJ GJ _ .. :t' 2 2 Cill Bl 2 2 2 Bl-
8 (] 2 /2 .2 2 [l} 2· __ ,{.[]] 2 [}} 2 2 GJ[fil .,2·· ·2 2 .. ·

7 · []} ~;'(2_:·[1] 2 [1J ::-1:· 2 [fil 2 [] 2 ~--'2'. : ~ []}[]} 2

6 2 2 .. i. 2 2 __::i".G]f]} 2 2 ~: . 2··[]} 2 2 2 []},,2· 2
s = l/3

s . 2 _, .. 2_./2 2 {]J 2 2 2 2 ~r 2 ClJ 2 []§J<2·· 2 2 2

4 - --2_,··i-Cfil·::;{- 2---2--BJ-.. -rr · 2 -2 2-- 2:Cil-- 2----2---2-GJGJGJ
3 i:' 2 _.{'cfil 2- ... -2:···2)~----2· ·ftfil 2 2 GJ 2· [] 2 2 GJ
2 -./.2· _.-1. ~-----2<:i-... -2-::-2-·· -2 [] 2 QJ 2 2 uJ -2- [] 2 -2 Gl
1 /.-:\:: ---~::)i,··2-: ·2 2· [fil[!} 2 2 2 8] G} 2 2 2 8) []} 2

._ ·_::-. -
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 U

Figure 2.8: Each value indicates the number of points in the quarter of the plane

that lie on a circle centered at (0,0) and that pass through the given point. Lines

of slope 1/3, 1/2, 1/1, 2/1, and 3/1 are also shown.

Number of Points

on 1 / 8 Sphere
130

120

110

100

90

80

70

60

50

40

30

20

10

0
0 500

25

1000 1500 2000
Radius2

2500

Figure 2. 9: The number of the discrete points in one octant on all spheres whose

radius is less than 50.

26

the circle, centered at the center-of-mass velocity, which passes through its own

pre-collision velocity; the more massive particle's velocity remains on the smaller,

inner circle while the lighter particle's velocity must lie on an opposing point on

the large, outer circle. As for a single species collision, in three dimensions the

particle velocities lie on spheres instead of circles and all of the discrete points on

the spheres are assumed to be equally probable post-collision results.

To create outcome velocities that are integer-valued, the particles must have

integer masses; non-integer masses generally lead to only a single intersection of

the collision spheres with the velocity axes. At present, only the more restrictive

case, in which the ratio of the particle masses is also an integer, is treated. This

restriction allows collisions to be performed with a simple change of coordinates, as

described below.

2.2.2.1 Velocity Sub-grid

In a discrete-velocity collision, there exists a sub-grid of points in velocity space on

which the center-of-mass velocity may lie. For example, if the particles are iden­

tical (a mass ratio of one), the sub-grid points lie on integer or half-integer sites

corresponding to the relative velocity components being of even or odd parity, re­

spectively. If the particle mass ratio is 2, the sub-grid points lie on integer multiples

of q/3 as indicated by the intersections of the dotted lines in figure 2.10. In general,

the spacing between the sub-grid sites is q/(m1 + m2); hence, the higher the mass

ratio, the finer the sub-grid.

The sub-grid is used in place of the m~in grid to find the points on the small

sphere of the heavy particle. In the sub-grid coordinate system whose origin lies on

the center-of-mass velocity, the coordinates of the heavy particle velocity are the

same as the relative velocity between the heavy and light particles on the main grid.

27

V 8 13
12
11

7 10
9
8

6 7
6
5

Vj 5 4
3
2

4 1
0
-1

3 -2
-3
-4

2 -5
-6
-7

Vi 1 -8
-9

-10
0 -11

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0 1 2 3 4 5 6 7 8

U·
'

U· J u

Figure 2.10: Multi-species collision. Mass ratio= 2. Center-of-mass velocity (cmv):

(4,3¾), and (0,0) on sub-grid. Relative velocity: (3,4). Main-grid values are in bold.

28

For example, in figure 2.10 the relative velocity between the particles (i.e., Um=2 -

U m=I) is (3,4) as are the coordinates of the heavy particle in the sub-grid system.

The other points on the sub-grid circle can be found by the reflections described

earlier for a single species collision. However, the only such points that are valid

post-collision values, are those that also lie on the main grid, e.g., (4q, 2q), (5q, 5q)

and (3q, 5q) in this example. Thus, to find the points on the circles, the points in

the sub-grid system are found and those that do not also fall on the main grid are

rejected. When an acceptable velocity has been found for the heavy particle, the

corresponding value for the light particle lies on the opposite side of the outer circle

[(4q, 7q), (2q, lq) and (6q, lq), respectively].

In contrast to single species collisions, effective multi-species collisions with

low velocity resolution can be impossible because the smallest inner sphere on which

there can be more than one point is a sphere of radius ½ q, corresponding to a

relative speed equal to about one half of the mass ratio. Modeling higher mass

ratios requires higher velocity resolution to avoid creating a gas with no effective

inter-species collisions.

Bellomo and de Socio (1982, 1983) and Bellomo and Monaco (1984) also de­

scribed a multiple species discrete-velocity gas based on Broadwell's six velocity

model. In that model each particle type travels with a single speed that is propor­

tional to the inverse of its mass; hence, the momentum of each particle is the same.

In contrast to the present model, collisions only occur between pairs of particles

having a stationary center-of-mass and thus collisions simply rotate the relative

velocity vector about the origin of velocity space. Those collisions are represented

by terms on the right-hand side of a discrete-velocity Boltzmann equation. Such

an approach is not suited for the multi-speed model discussed in the present work,

however.

29

2.2.3 Features Of Lattice Gases

Several fundamental differences exist between the present model and other discrete­

velocity models. All such models begin from the same premise; particle velocity

components only have discrete values. All solve a form of the discrete Boltzmann

equation, either by analytic solution (Broadwell) or by direct particle simulation

(CA and, as will be discussed in the next chapter, the present model). Previous

models have been limited to low velocity resolution. To include more velocities in

Broadwell's model would introduce more equations with many more collision terms

on the right-hand side (Inamuro, 1988-1989a) while, in the CA models, a greater

variety of collisions produces unwieldy rule sets. The present model, however, per­

mits all collisions that conserve mass, momentum, and energy, and can thereby

incorporate any level of velocity resolution.

New velocities can be created in all of the models. For example, if a homo­

geneous gas with velocities equally distributed between u = ±lq is followed as it

relaxes toward equilibrium, the different models would perform as follows: in the

HPP (cubic lattice) model the first collisions would scatter particles into V (and

W) = ±lq, thus creating velocities that were not originally present. As those col­

lisions continue, the inverse collisions that deplete V (and W) would increase until

equilibrium is reached. No speed other than lq would occur because such collisions

are not included in the model. Similarly, for the FHP model, collisions create the

other four equal-speed velocities (five, if one includes speed Oq). In the nine velocity

model of Nadiga et al.(1989), speed Oq and y2q particles are created by collisions

between orthogonally moving speed lq particles. The rule set for the nine-velocity

model incorporates this new type of collision and is thus more general than earlier

models.

30

The rules in the present model are less restrictive; indeed, any point in the

discrete-velocity space is possible and may be reached through some sequence of

collisions. Consider the following sequence of collisions that produces high-speed

particles from a group of low-speed particles. All particles are again initially given

velocities u = ±lq. Suppose the first collision occupies (Oq, lq) and (Oq, -lq) (refer

to figure 2.11 as a guide). Another collision occurs, this time [(Oq, lq) and (lq,Oq)]

produce [(Oq, Oq) and (lq, lq)] thus occupying two further points in velocity space.

There are now three speeds present (Oq, lq and vf2q). Similar collisions could also

have occupied (-lq, lq), which can then collide with (lq, lq) particles to produce

particles with the velocity (2q,Oq). (lq,2q) can then be reached by collisions be­

tween (Oq, 2q) and (lq, lq). To continue, similar collisions would occupy (Oq, 2q)

which can, in turn, collide with particles at (2q, Oq) to occupy (2q, 2q), which has

a speed of ,/sq, and so on. A small square region of velocity space can thus be

occupied (figure 2.11).

It can be proved by induction that it is possible to build a sequence of such

collisions that will occupy every point in velocity space. Consider unoccupied sites

(u, v) along the center of the right edge of the square of velocity space already

occupied (indicated by an A in the figure). (u, v) can be reached by a collision of

the type [(u- lq,v-lq) and (u- lq,v + lq)], which yields [(u,v) and (u-2q,v)].

Sites adjacent to the corner of the square (given by a B) can then be reached by

[(u-lq,v) and (u,v-lq)], yielding [(u,v) and (u-lq,v-lq)]. Finally, the corners

(indicated with a C) can be reached by that same type of collision, [(u - lq, v) and

(u,v - lq)] yielding [(u,v) and (u - lq,v - lq)]. The original square can, layer by

layer, be expanded to fill all of a two-dimensional velocity space while a similar

process on the faces of a cube can fill all of three-dimensional space.

An analogous procedure in a continuous-velocity model would eventually lead

~s ~4 ~3 ~2 ~1
0

31

u

Figure 2.11: Occupied sites in velocity space. Symbols A, B, and C are described

in the text.

32

to all of velocity space being occupied with a Maxwellian distribution of particles.

The equilibrium distribution in a discrete-velocity gas can .also be found (N adiga,

1989 and Inamuro, 1988-1989a); it corresponds well with a simple Maxwellian except

at the lowest velocity resolution. New velocities are not created during the solution

of a particular problem; all velocities are naturally present at some level in an

equilibrium gas with sufficiently general collision rules, and the circumstances of

the problem to be solved simply alter their distribution.

33

Chapter 3

Method

A method for applying the model of a discrete-velocity gas to solve complicated

problems is presented in this chapter. The collision integral in the continuous­

velocity Boltzmann equation (eqn. 2.1) is extremely difficult to evaluate for flows of

practical engineering interest, i.e., three dimensional flows with multiple gas species.

Three approaches, however, are worth mentioning. The first makes assumptions

about the form off, the second attempts to solve the exact Boltzmann equation,

and the third replaces the Boltzmann equation with a simpler model equation. In

the Lees (1959) moment method a form of f is written in terms of a multi-sided

Maxwellian distribution function representing particles emitted by the different flow

field boundaries. Moments of the Boltzmann equation are taken to generate a set of

ordinary differential equations that can then be solved more readily. This approx­

imate method is both mathematically complex an~ produces solutions that may

depend on the assumptions made about f. In a second approach, not widely used,

the left-hand side of the exact equation is numerically evaluated by a direct finite

difference method and the collision integral on the right-hand side is approximated

by a Monte Carlo technique (Nordsieck & Hicks, 1967). Steady state solutions are

obtained by an iteration procedure from an assumed initial condition. The method

is costly and is generally applied to one-dimensional flows. In the third approach

(Bhatanagar, Gross, & Krook, 1954), the collision term of the Boltzmann equation

34

is modeled by the expression nv(f0 - 1), where vis a collision frequency, and lo is

the local equilibrium Maxwellian. Thus, nv l represents the.loss term while nv lo is

the gain. This model of the gain assumes that the number of molecules scattered

into c and c1 is that which would be found from an equilibrium gas with the same

velocity and temperature as l. While the model is correct in the collisionless and

continuum limits, its validity in the transitional regime is not assured.

None of these methods has proven acceptable for application to flows in which

departures from equilibrium are large, for example shock waves, or to flows closer

to equilibrium with real gas effects and complex geometry. In fact, the most widely

used method bypasses explicit solution of the Boltzmann equation and instead com­

putes the flow by directly simulating the motions and collisions of representative

molecules. It is called the direct simulation Monte Carlo (DSMC) method and was

introduced by Bird (1963 and 1976).

3.1 Direct Simulation Monte Carlo Method

The present discrete-velocity model is implemented with a method patterned after

the DSMC. In the conventional DSMC, a small sample of molecules (typically tens

to hundreds of thousands) is taken to represent a flowing gas. The DSMC is a

stochastic method and it requires many simulated particles to provide a smooth

representation of the distribution function. Fewer particles are needed to pro­

duce adequate values of the integrated macroscopic quantities that are generally

of greater interest. Space is divided into sampling cells whose size (~x, ~Y, ~z)

is small compared to the mean free path .X, and time is discretized into steps ~t

that· are smaller than the mean molecular collision time r. Only binary collisions

are treated, so the gas is, by definition, dilute. Particles within a cell are randomly

35

selected to collide through an acceptance/rejection scheme that forces the probabil­

ity of a collision to be proportional to the relative collision speed. A collision time

counter in each cell insures the correct collision rate and tracks the cell's progress

relative to that of other cells. For the simulation of single species particles there is

only one time counter that is incremented by

(3.1)

after each collision and collisions continue until the cell time exceeds the global flow

time. This procedure can be shown after many collisions to lead to the correct

collision rate (Bird, 1976). The particle cross section is normalized to be

1
a=---

no>.o\/'2·
(3.2)

The subscript O refers to the initial equilibrium state. When a binary mixture of

species is considered, this normalization must be altered. Four separate cell time

counters tab can he used, one for each type of collision (Bird, 1976). Expanding

upon the procedure of equation 3.1, tab is then incremented by l:!..tcab'

1 1
D..tc b = --- + ----

a NanbaCr NbnaaCr
(3.3)

for each a,b type of collision. For example, type 1,2 collisions are performed until t 12

exceeds the fl.ow time at which point another type of collision is considered. From

the definition of the mean free path for hard sphere particles in a binary gas (Bird,

1968), the particle cross section is found to be

1 1 1
a=--[---===+-----===] (3.4)

>.oNo\/'2 1 + ~J½(l + ~) 1 + ~J½(l + ~) ·

The subscripts 1 and 2 refer to individual particle species of mass m.

Thus, the Monte Carlo game is played twice; once for the selection of the colli­

sion pair and again for the outcome of the collision. In the selection of collision pairs,

36

the distribution of relative velocities is not known a priori for a non-equilibrium gas.

Known distributions are used, however, for the selection of collision impact param­

eter, b, and azimuth angle, o:; b is chosen to be uniform between O and d/2 (half

the particle diameter) and o: to be uniform between O and 21r.

After all the cells have completed their collisions, the particles are moved in

free flight to locations appropriate for the beginning of the next time step. The

resulting computed flow may be unsteady but if the flow does settle down to a

steady state, a smooth solution may be obtained as an ensemble average of several

late time states of the initial flow. The value of any macroscopic quantity in a cell

is found by averaging over the values carried by the particles of the cell. Hence, the

statistical scatter in the quantity declines as the inverse square root of the number

of particles is considered.

The DSMC has significant advantages over other methods primarily because

evaluation of the complex collision integral is replaced by the calculation of many

representative collisions, a procedure that turns out to be more efficient. In contrast

to the other methods, the cost of the collision calculations does not depend on the

volume of velocity space considered but only on the number of particles involved.

The free flight translation of the particles during the movement phase replaces the

evaluation of the left-hand side of the Boltzmann equation. While other methods

must maintain the distribution function for all of velocity space at each point in

physical space, the DSMC must only retain several tens of particles in each cell.

During a DSMC simulation the distribution function does not need to be recon­

stituted from the individual particle velocities; only moments of the distribution

function are usually determined.

The DSMC method has some significant disadvantages as well. For low Knud­

son numbers, the physical properties (mass, position, velocity, etc.) for many parti-

37

des must be stored in computer memory thereby limiting the size of the simulation.

For complicated problems, the computational time can become excessive if the cell

size and time step values are kept less than). and r as is required. While exceeding

these values has generally been found to simply smooth the flow field gradients, an

otherwise correct solution of the Boltzmann equation is not then assured. It has

also been found that the DSMC is not easily implemented to take full advantage of

vectorization, which is essential for efficient use of today's most powerful comput­

ers (McDonald and Baganoff, 1988). Central to the collision cycle is a procedure

in which particle pairs are randomly selected and subjected to various tests; both

the selection and testing processes inhibit vectorization. Much of the rest of the

method, however, can be vectorized (Usami et al., 1989, McDonald and Baganoff,

1988, Feiereisen, 1989, Woronowicz and McDonald, 1989). Conversely, the DSMC

is a prime candidate for parallel processing because individual particles are moved

independently, there are no long range interparticle forces, and collision partners

are drawn only from the same locality.

An early version of the DSMC was adapted to massively parallel computation

by writing a new code (Kawasaki, 1985) in the C programming language1 for Cal­

tech's cosmic computing environment. In the cosmic environment a computation is

defined in terms of interacting processes that may reside on a host computer or a

parallel processor (Su, 1985 and Athas, 1988). The present research version of the

parallel DSMC has been considerably improved and is now run on the Intel iPSC/1,

iPSC /2 or the Symult 2010 computers. Though the molecules are presently treated

as elastic hard spheres, the phenomenological models of real-gas effects that have

1 The C language is now the most appropriate for these applications because massively parallel

computation is still in the early stages of development and Fortran compilers generally have not

been highly developed or are not available.

38

been developed at other institutions (Borgnake and Larson, 1975, Bird, 1968-1983,

Hermina, 1986) could easily be incorporated in the future.

3.2 Integer Direct Simulation Monte Carlo Approach

The discrete-velocity or integer DSMC (IDSMC) method is similar to the DSMC,

but the velocity components of the particles are defined as integers. Although, in

principle, the number of values that the velocity components can assume is infinite,

in practice, one byte (8 bits) provides enough velocity resolution for flows of a single

species gas even up to hypersonic Mach numbers.

3.2.1 Discretization of Phase Space

3.2.1.1 Velocity Discretization

Initially the velocity resolution is, in effect, set by the choice of the cell size, .6..x,

compared to the distance traveled by a particle of unit speed q in time .6..t, which

shall be called the spatial lattice spacing 6. As in the DSMC, .6..t/r = J and .6..x/>..

= / must both be somewhat smaller than unity. Furthermore,

.6..x

6
.6..x l >..

q.6..t J qr . ' J q
(3.5)

where c' = ~cs is the average thermal speed.· Then for l ::::::: J , if 6 is small

compared to .6..x, q must be small compared to 2. Thus, the velocity resolution

improves as the cell contains more lattice sites. In practice, .6..x and .6..t are chosen

on the basis of >.. and r in the region of highest expected density and temperature

in the flow under consideration. 2 In a typical example, if 6 = 0.l>..0 , .6..x = 0.5>..0 ,

2 When, as in the present work, the mesh is coarsened during the calculation in low density regions

to keep l roughly constant, the right-hand side of Eq. (3.5) increases because l/j, not ""ci / q, increases.

Therefore, in this case, the velocity resolution does not increase.

39

b.t = 0.2r0 , so that l = 0.5 and;"= 0.2, and, from (2.3), 2 = 2q, so RT= fq 2
• On

the other hand, if b is halved (to = 0.05A0) and b.t increased so that l = J = 0.5,

then c' = lOq, and the initial temperature is 25 times higher. In any application,

the dimensional value of q can be chosen to obtain the desired dimensional value of

the reference temperature T, e.g., 300K.

When a mixture of species is considered, the velocity resolution is found from

the definition of the mean collision rate per molecule to be,

(?_ / = (i_)2no2 ±_ no 1 . (3.6)
q b.t u 2 m 1n1 + m 2n2 [n12 IT+ 2n1n2. /m1+m2 + n22 IT]2 V m1 V m1 m2 V m2

3.2.1.2 Spatial Lattice

A further consequence of the discretization of the velocity components is that if

particles are initially distributed in space on a regular array aligned with the axes

of the co-ordinate system at points with spacing b, then the particles remain on

the array for all time, and the gas is a lattice gas. By positioning the particles on

the lattice, the spatial resolution is coarsened to a level consistent with the velocity

resolution, and the calculation of particle motion is simplified; particle translations

during the motion phase are obtained simply by counting lattice sites. Because the

particle locations are integer numbers, storage requirements are also reduced. Any

number of particles can co-exist at a lattice site, in contrast to the CA method

where the number of particles at a site is limited by an exclusion principle (see, for

example, Frisch et al. 1986).

In the IDSMC, the coarse DSMC mesh of cells is superimposed on the fine

lattice, and particles are·drawn as candidates for collisions from all the lattice sites

within a cell. This hierarchy is seen in figure 3.1. If there are many lattice sites

per cell, the discretization of space onto the lattice is no longer significant. At a

minimum, there must be at least one lattice site in a cell in order that there be

40

b lattice site

· a• ..---:i..------ cell boundary
--+-+--+---ir---+--+--

Figure 3.1: Lattice points and cell boundaries in physical space. Cells a and b are

the same size but contain different numbers of lattice sites.

any particles there. In the IDSMC, as in the DSMC, a record is kept of the cell

in which every particle resides, at the expense of additional storage. Because the

cell boundaries may not have any simple relationship to the lattice spacing, two

cells of the same size may contain a different number of lattice points (for example,

cells a and b in figure 3.1). It is therefore necessary to take the cell volume to

be proportional to the number of lattice sites in the cell in order that the time

increment for each collision (equations 3.1 or 3.3) is properly computed.

It is worth noting that the integer-velocity method causes a minimum relative

velocity, q, between two colliding particles. Thus, the amount the cell time counter

can be incremented after a low-energy collision is limited by equations 3.1 or 3.3.

In a continuous-velocity gas a particular.Iy low-speed collision can yield large time

increments that can, if not compensated for, effectively shut down a cell for long

periods and make an unsteady calculation inaccurate because the cell cannot then

adapt to changing flow conditions.

41

To conserve angular momentum it has been suggested (see Meiburg, 1986 and

Bird, 1987) that particles be drawn for collisions from small sub-cells within each

cell. The lattice sites in each cell of the IDSMC can be used in place of sub-cells;

collisions between particles not residing at the same lattice site could be rejected

so that angular momentum is exactly conserved in each collision. This procedure

has not been implemented in the present study. Of course, if there is only one

lattice site per cell there is no need to reject particle pairs. Further implications of

restricting collision pairs to individual lattice sites are discussed in chapter 5.

3.2.1.3 Collision Outcomes

It was pointed out in section 2.2.1.2 that the number of possible collision outcomes

can be large and the algorithm for finding all of them for a given relative velocity is

complicated. Therefore, it is more efficient to do the calculation once and store the

results in a look-up table for use during the Monte Carlo calculations. Table 3.1

gives the first few entries of such a look-up table. This table contains the coordinates

of the integer points on spheres centered at (u, v, w) = (0,0,0) with different values of

the radius squared. Before using the table to compute a collision between particles

of the same mass, the velocities of the collision partners are transformed into the

relative velocity frame, and the square of the relative speed is found. The outcome

relative velocity of the same magnitude is chosen with uniform probability from

the table under the condition that the parity of the components of the pre- and

post-collision relative velocity vectors is the same. Then the final velocities are re­

transformed into the lab frame. It is interesting to note that spheres corresponding

to impossible collisions (e.g., squared radius = 7) are not intersected at all by the

lattice.

The look-up table is also used to find the points on the inner sub-grid sphere

42

Radius 2 Number of Points Coordinates of Points on Sphere

on Sphere

0 1 (0,0,0)

1 6 (-1,0,0) (0,-1,0) (0,0,-1) (0,0,1) (0,1,0) (1,0,0)

2 12 (-1,-1,0) (-1,0,-1) (-1,0,1) (-1,1,0) (0,-1,-1) (1,1,0)

(0,-1,1) (0,1,-1) (0,1,1) (1,-1,0) (1,0,-1) (1,0,1)

3 8 (-1,-1,-1) (-1,-1,1) (-1,1,-1) (-1,1,1) (1,-1,-1)

(1~1,1) (1,1~1) (1,1,1)

4 6 (-2,0,0) (0,-2,0) (0,0,-2) (0,0,2) (0,2,0) (2,0,0)

5 24 (-2,-1,0) (-2,0,-1) (-2,0,1) (-2,1,0) (-1,-2,0) (2,1,0)

(-1,0,-2) (-1,0,2) (-1,2,0) (0,-2,-1) (0,-2,1) (2,0,1)

(0,-1,-2) (0,-1,2) (0,1,-2) (0,1,2) (0,2,-1) (2,0,-1)

(0,2,1) (1,-2,0) (1,0,-2) (1,0,2) (1,2,0) (2,-1,0)

6 24 (-2,-1,-1) (-2,-1,1) (-2,1,-1) (-2,1,1) (-1,-2,-1)

(-1,-2,1) (-1,-1,-2) (-1,-1,2) (-1,1,-2) (2,1,1)

(-1,1,2) (-1,2,-1) (-1,2,1) (1,-2,-1) (2,1,-1)

(1,-2,1) (1,-1,-2) (1,-1,2) (1,1,-2) (2,-1,1)

(1,1,2) (1,2,-1) (1,2,1) (2,-1,-1)

8 12 (-2,-2,0) (-2,0,-2) (-2,0,2) (-2,2,0) (0,-2,-2) (2,2,0)

(0,-2,2) (0,2,-2) (0,2,2) (2,-2,0) (2,0,-2) (2,0,2)

Table 3.1 Sample from the top of the look-up table

43

m a multi-species collision. As described in section 2.2.2.1, outcomes corresponding

to points not lying on the main velocity grid are rejected. If the mass ratio is large,

most points on the sub-grid sphere will not lie on on the main grid, and many

trials may be rejected. This is expensive. The following simple algorithm is used

to minimize that cost: a candidate point (Vx, Vy, Vz) is randomly chosen on the

sub-grid sphere from the look-up table, and its X component is examined. If the X

component lies on the main grid (i.e., (Vx,, 1 - Vx) modulus[sum of particle masses]

= 0), it is acceptable, and the Y and Z components are tested in turn. If the X

component did not lie on the main grid, its sign is changed (it is reflected through

the X = 0 plane), and it is retested. If the X component is now acceptable, the

procedure is continued with the Y and Z components being tested in the same way.

If Vx is still unacceptable, the candidate point is rejected, and a new point is selected

from the table. Even if the mass ratio is as high as 10, this algorithm runs only

slightly slower than the single-species algorithm. If separate look-up tables were

used for each mass ratio, this rejection process could be avoided, but the memory

consumed by the tables might be prohibitive. With the rejection method, a single

look-up table can be used for all mass ratios.

The table presently used has entries for spheres up to a radius of 38, a total

of 30,415 values. Each value requires three bytes fo! storage (one for each velocity

component) and two bytes are needed for the square of the relative speed that is

used for the reference index; hence, the table would consume about 94 kilobytes.

Because memory requirements of this magnitude are a matter of concern for users

of many present-day parallel-computing machines in which the processors do not

share memory, only the entries for the octant (u, v, w) 2: 0 of each sphere are stored.

The selected outcome configuration of a collision is reflected across the planes u = 0,

v = 0, and w = 0, each with 50 percent probability. This procedure reduces the

44

size of the look-up table to 1/8 of that needed for the full sphere, at the expense of

a small increase in computational time. Because a look-up table is used, the cost of

computing collisions does not vary with the velocity resolution;3 higher resolution

simulations simply require a larger look-up table.

3.2.1.4 Boundary Conditions

Flow boundaries, which for the calculations presented here are straight and parallel

to lattice axes, are taken to lie midway between lattice points so that particles may

not reside exactly on a boundary. Boundaries that pass through lattice points,

however, are also possible. Specular wall collisions are treated in the same way

as in the conventional DSMC, by reflecting the particle trajectory across all wall

segments necessary to insure that the particle at the end of the time step is inside

the flow field, and by reversing its normal velocity after each reflection. For diffuse

wall collisions, the velocity components of the emitted particles are chosen from the

equilibrium integer distribution (cf. fig. 4.4) corresponding to the wall temperature.

The trajectories of colliding particles approaching and departing from walls are

calculated exactly, but, after the collision, the particle is placed at the nearest

lattice site.

3.3 Implementation for Parallel Processing

The integer direct simulation method is well suited for implementation on parallel

processors because even twerdimensional flow simulations require substantial com­

putational effort. For example, in the problem discussed in chapter 5, section 4,

3 For multi-species collisions with the single look-up table, the collision cost varies with the prob­

ability of rejection of unacceptable points. That probability depends somewhat on the velocity

resolution.

45

simulation of 3200 time steps, with four million particles, and 100,000 computa­

tional cells is required. Three different parallel computers available at the Cal­

tech Computer Science department are suitable for such calculations. They are a

128-processor Intel iPSC/1, a 16-processor iPSC/2 or a 192-processor Symult 2010.

Each processor or node in the iPSC/1 contains an independent microcomputer with

its own central processing unit (Intel 80286/80287), communications control, and

512 kbyte of local memory. Each node is connected directly to seven others with a

hypercube topology and to an external system manager. Together, the nodes are

referred to as the "cube." The cube manager is an Intel system 310 supermicro­

computer that, in turn, is connected via an Ethernet to a SUN workstation. The

SUN acts as the "host" and runs the program that controls the cube. The nodes

communicate by messages sent and received under program control. Although the

iPSC /2 has fewer nodes, each node has four megabytes of memory and uses an Intel

80386/80387 central processing unit that is about eight times faster than that in the

iPSC/1. The inter-node connections are in the form of a four-dimensional hyper­

cube and each node is also connected to a cube manager. The nodes in the Symult

also contain three or four megabytes of memory and use Motorola 68020 / 68881 cen­

tral processing units. Thus, the iPSC/2 and Symult nodes are nearly equivalent.

The nodes in Symult are connected with a mesh network although, for the present

simulations, the message passing time is so small that the machine is used as though

the connections were in the form of a hypercube. The iPSC/1 was used for most of

the parallel computations although the Symult was used for the largest simulations.

In the simulations, the rectangular physical space of the flow field is divided

into rectangular sub-domains, each being allocated to a single node (figure 3.2).

The sub-domains contain equal numbers of computational cells each of which, in

turn, contains about the same number of particles. When during the calculation

46

a particle moves from the domain of one node to that of another, it is sent as a

message. If the node domains are sufficiently large, particles travel only to nearest

neighbor nodes in one time step, and message path lengths are minimized when a

Grey-code.4 is used to map the physical domain onto the hypercube topology.

It should be noted that other solutions have been proposed for creating a

parallel version of the DSMC. In one case (Furlani, 1989), the background calcula­

tion is done on the host but the particles are passed to available processors for the

time-consuming move and collide phases of the computation. This method has the

advantage that the processors share the work evenly but the severe disadvantage

that, for larger simulations, the host quickly becomes overwhelmed as a manager,

and the efficiency suffers. Another possibility is called scattered decomposition or

random decomposition (Fox et al., 1988). Cells of particles are assigned randomly

to processors with the assumption that, while some cells require much computation,

some require little and, on average, each processor has about the same workload.

This scheme could be inefficient because of the heavy message traffic involved ex­

cept in machines for which message passing is truly an insignificant expense. Also,

it would be necessary for each processor to determine exactly where to send each

particle; hence, the position of each cell in the flow must be known by all proces­

sors and the computational mesh may consume much memory. A third, perhaps

obvious, possibility becomes reasonable if each processor has several megabytes of

memory. In this case an ordinary sequential program that computes the entire flow

field at once can be run in each processor and the final output ensemble averaged.

The advantage would be that a sequential code could be run with minimal alter­

ations and with near perfect load balancing. The disadvantage is that the size of

the problems that could be simulated is limited.

4 See Appendix A.2.

47

~
piston

~
~

\J & ... -.A ·~ I.A - hj' A• A .._ .. ,. - .A
~ ,.. ,v • ' V, ... - ... v l I "' ., .. 'II" vv·v

□ Initial Node Size Initial Cell Size

Figure 3.2: Density profile superimposed on node mesh for a typical piston problem.

Left-hand wall is impulsively accelerated as a piston into the flow at t = 0 creating

an unsteady shock wave. Note how the node (and, thus, the cell) size decreases

through the shock.

48

With the present division of the flow field, and because the flows of interest

are unsteady, each region of the flow must be computed simultaneously. When a

particle is sent between processors, it must arrive at the correct time. Hence, the

processors proceed with lock-step synchronization; each processor checks that its

neighbors are at the same point in the calculation before it proceeds with the next

time step. Such regimented coordination is not inefficient if an adaptive mesh of

cells maintains about the same average workload in each processor.

3.3.1 Adaptive Mesh

In all parallel computations reported in this work, an adaptive grid of nodes was

used. The grid is remeshed in the vertical and horizontal directions to maintain the

average number of particles in the rows and columns of nodes constant. Remeshing

has four significant advantages: (i) it balances the work load among the nodes; (ii)

it maintains the number of particles per cell and the cell size, measured in local

mean free paths, approximately constant; (iii) it compensates for rapidly changing

boundary geometry; and (iv) it balances the number of particles in each node, so

that the total number of particles used can be maximized. In flows with strong

temperature differences, the high temperature areas of the flow have fast moving

particles and a high collision rate because the time increment per collision is small

(eqns. 3.1 and 3.3). Those regions require the calculation of many more collisions

than others, and remeshing based solely on particle number density will lead to

some nodes being underutilized. Of course, the remeshing scheme can be easily al­

tered to balance other quantities between processors, such as mean pressure or even

computational time, but the features (ii), (iii), and (iv) might then be sacrificed.

For simulations without rectangular symmetry, for example flow about a body

in the center of the field, a body-fitted grid would probably be more efficient than

49

a rectangular grid (Bird, 1986). A regular rectangular grid (in which the columns

and rows of the mesh remain aligned) does not necessarily place the computing

effort where it is most needed. However, the programming time to generate the

rectangular mesh is less than that required to create a more complicated mesh and

the adaptive mesh permits a useful exchange of some computational time for a gain

in programmer efficiency. In the future, the method used for remeshing could be

generalized and applied to meshes of other shapes.

To remesh the whole flow field at once either requires clever coordination to

determine the node boundaries locally, or a single processor (node zero) to compute

the entire mesh on its own. The latter procedure is chosen in the present work

because it is simpler and is directly applicable to a sequential version of the code.

Nonetheless, a substantial portion of the remeshing computational load is performed

in parallel. Each node in the bottom row of the mesh passes its particle number

density distribution to the immediate neighbor above. The receiving node adds

in its own particle number density distribution and passes the sum further up the

column of nodes. The top row of nodes similarly accumulate the data as they pass

the distribution to the left to node zero. With the accumulated distribution, node

zero creates the new mesh and passes it back to the other nodes. Periodically, just

before the complete flow field data is to be sent to the host, the host creates and

stores a mesh so that the ensemble averaged data in the host always refers to the

correct mesh.

The number of particles required per column of nodes is found simply by

summing the entries of the particle number density profile and dividing by the

number of nodes per column (see figure 3.2). The mesh generating algorithm in

node zero begins at the left side of the flow field and establishes the left boundary

of the first column of nodes. It then sums the values of the particle number density

50

profile in the X direction into a counter. When the counter exceeds the desired

number of particles in the first column of nodes, the new right boundary for that

column is found by interpolating between the two nearest X locations in the profile

and then the counter is reset. The process subsequently continues from that point;

particles are counted and a node boundary placed whenever a sufficient number of

particles are found to fill a column of nodes. The procedure is analogous in the

vertical direction.

The final mesh then simply consists of two small vector variables containing

the left, right, top, and bottom locations of each column and row of mesh nodes.

Each cell's location need not be known by all nodes. When a node receives a new

mesh, it re-sorts its particles into its own new grid of cells and sends off those

particles that belong to other nodes.

Within each node the sorting of particles into cells is simplified if all the cells

are of the same size and if they lie in a regular array (a constant number of rows and

columns). The disadvantage of this arrangement is that the cells do not change size

within a node to compensate for significant density gradients that can occur there.

In principle, the cells within each node could be remeshed to better adjust the cell

dimensions to the local mean free path. Such a fine scale remeshing, however, would

require the exchange of more data with the host and would consume more time.

51

Chapter 4

Simulations of a Uniform Gas

Discrepancies between results obtained with the discrete-velocity and continuous­

velocity methods may be due either to errors in discrete-velocity particle convection

or collisions, that is, an improper discrete representation of either the left or the

right-hand side of the Boltzmann equation. Investigation of collisions and convec­

tion separately yields physical insight into the implications of the discrete-velocity

approximation: and may point to procedures that overcome the errors.

In this chapter are presented the calculations of three test problems that

exhibit features of the discrete-velocity model in a spatially uniform gas. Only the

collision process is considered. In the first example, the equilibrium state of an

integer velocity gas is determined. The process of the relaxation of a single-species

gas to equilibrium is examined in the second case and relaxation of a binary gas

mixture is considered in the third. A discussion of the effects of discretization on

the convection of particles is given in chapter 5.

4.1 Equilibrium State of a Discrete Velocity Gas

It is clear from figure 2.9 that for collisions with large relative velocities, typical

of gases having moderate velocity resolution, a great number of dynamic interac­

tions is possible. On the other hand, at relatively low temperatures, where fewer

52

velocities are common, the number of possible outcomes is reduced. An important

question is whether the discrete representation is qualitatively similar to the con­

tinuous representation or whether serious anomalies arise. Figures 4.1 and 4.2 are

histogram distribution functions of the rotation angle of the relative velocity vector

in an equilibrium three-dimensional IDSMC gas at two different temperatures. The

figures are based on data obtained by allowing 32,000 identical particles in a box to

collide 64,000 times, a technique similar to the one originally used by Bird (1963).

The box contains just one computational cell, and the calculations are performed

on a small sequential computer. There is no need for a time counter. The solid lines

are theoretical sine distributions appropriate for a hard-sphere continuous-velocity

gas and are normalized to include the same number of collisions.

In the low temperature case (fig. 4.1), certain discrete collision angles x (i.e.,

0, 90°, etc.,) occur often, and their resulting distribution does not resemble that of

a continuous-velocity gas. To a certain extent, the frequent occurrence of particular

angles compensates for the absence of neighboring values. There are, however, more

occurrences of ineffective or null deflections (x = 0° and 180°) than would account

for the lack of small non-zero deflections.1 In low speed collisions there simply are

few reflection symmetries and there is a high probability of degenerate collisions.

The probability of null collisions occurring in an equilibrium single species gas

decreases with increasing velocity resolution (figure 4.3) because the average size of

the collision spheres increases (i.e., the mean relative collision energy = 2kT). Null

collisions effectively distort the time and collision counters because the counters are

incremented although nothing is changed. Detailed tailoring of the distribution ·of

collision angles with an acceptance/rejection method was tried but was found to slow

1 When the particles are identical, a 180° deflection is also a null collision.

No. Colls.

8000

7000

6000

5000

4000

3000

2000

1000

0.0
0.0

53

45 90 135

Rotation angle (deg)

180

F£gure 4.1: Histogram of the angle of rotation, X, of the relative velocity vector

in each collision. The solid line is the theoretical distribution for 64,000 collisions.

Particle temperature is RT = f q2
• Bin width = 0.5°.

No. Colls.

800

700

600

500

400

300

200

100

0
0

54

45 90 135

Rotation angle (deg)

180

Figure 4.2: Histogram of the angle of rotation where the particle temperature is

RT = 201.3q2
• Bin width = 0.5°.

Probability of

null coll.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0

55

40 80 120 160
RT

200

Figure 4.9: Probability of a null (0° or 180°) collision occurring in a single species

equilibrium gas at different temperatures.

56

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
-5 -4 -3 -2 -1 0 1 2 3 4 5

Velocity

Figure 4.4: Velocity component distribution function normalized to a maximum

value of 1. The solid line is the theoretical distribution normalized to cover the

same area as the discrete distribution. The particle temperature is RT = f q2
•

57

1.0 ,----,--,---.......--...-7 -----.-----.-7---.--...----~-~

0.9

0.8

0.7 ~

0.6 L..

0.5

0.4

0.3

0.2

0.1

0.0

i

J

I

,
,

)

.J

j

j

J "

I

,

-50 -40 -30 -20 -10 0

.

I\

I\

10 20 30 40 50

Velocity

Figure 4.5: Velocity component distribution function for RT = 20l.3q2
• Note the

change in scale from figure 4.4

58

the simulation substantially. Another possibility, discussed later with respect to

multi-species collisions, is to consider a portion of the null collisions to be ineffective

and simply not increment the collision counter when they occur.

In the high temperature example (fig. 4.2), the continuous distribution is

well modeled except, again, for an excessive number of null collisions. It is not

clear a priori whether the random choice of outcome intersections of the relative

velocity sphere with the lattice produces an adequate distribution of collision angles,

because on any given sphere the lattice points are not distributed uniformly. The

correspondence found between IDSMC scattering angles and the theoretical sine

distribution at high temperatures applies only to the mean gas, not to collisions of

a specific relative energy. As will be seen in chapter 5, at low temperatures (i.e.,

low velocity resolution), the excess of null collisions has the effect of artificially

increasing the diffusivity of the gas, while at moderate to high temperatures, the

effect on macroscopic quantities is not noticeable.

The velocity distribution function itself provides a more direct means for eval­

uating the effects of velocity discretization. The IDSMC method produces the

correct equilibrium solution to both the discrete Boltzmann equation at very low

velocity resolution and to the continuous Boltzmann equation at higher resolution.

The sampled distribution of discrete U velocity components at high and low tem­

peratures in an equilibrium gas, figures 4.4 and 4.5, is seen to be in agreement with

the theoretical Maxwellian velocity distribution function for a continuous-velocity

gas. As few as nine discrete-velocity components are enough to reproduce the

Maxwellian distribution, e-f3
2

u.
2 (/3 = l / v'2RT), with a high degree of accuracy.

In the lowest temperature state (figures 4.6 and 4.7), the simulated distribution

function is instead compared to a numerical solution for the equilibrium state of a

discrete-velocity gas (Nadiga et al., 1989). In both a stationary gas and translating

59

1.0 rr---..-----,e-----..:,-------r---,--~....,,

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

)

0.0 ..._ __ ...,___ __ ...,___ __ ...,___ __ _..__ ___ _ __._.

-3 -2 -1 0 1 2 3

Velocity

Figure 4.6: Velocity component distribution function normalized to a maximum

value of 1. The bar graph is the IDSMC solution and the open circles are the

solutions to the discrete Boltzmann equation of Nadiga at RT= 0.2738q2, U = 0.

gas, the simulated distributions are the same as Nadiga's solution, except that in

the Monte Carlo calculations there is some inherent noise.

By varying different portions of the collision process, particularly the symme­

try of the points on the collision spheres, it was found that equilibrium distributions

are insensitive to the correctness of the process. A more appropriate measure is the

relaxation of the velocity distribution function in a highly non-equilibrium gas.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
-3

)

-2 -1

60

)

0 1 2 3

U velocity

Figure 4. 7: U velocity component distribution function for a translating gas. The

bar graph is the IDSMC solution and the open circles are the solutions to the

discrete Boltzmann equation of N adiga at RT = 0.27 43q2
, U = 0.0306.

61

4.2 Relaxation to Equilibrium

To observe the relaxation of a non-equilibrium gas, 90,000 particles are simulated in

a box consisting of one computational cell. The particles are initially given integer­

valued velocity components and are distributed bimodally as indicated in the top

rows of figures 4.8 and 4.9. The x-component molecular velocities are distributed

in two narrow bands (each with RT ~ 10q2
) about u = ±25q, while the y- and z­

component velocities have only one peak of the same width. As for the equilibrium

states discussed earlier, the fluid is uniform in these calculations, and all particles

in the box may collide with a probability proportional to the relative speed. Only

the collisions and velocities are calculated. The particles have no specific position

so their movements are not represented. In figure 4.8, the distributions of the

DSMC calculation are plotted as histograms with bin size q, while in figure 4.9

the spikes represent the accumulated data at the corresponding discrete values of

velocity. Although in the DSMC calculation the initial distribution contains only

integer-valued components, after the first collision, the velocities become decimal

numbers.

The molecular velocities are sampled after 1 (second row), 2 (third row), and

10 collisions per particle (fourth row). It can be seen that in both of the calcu­

lations of figures 4.8 and 4.9, the initial bimodal shape evolves into a Maxwellian

distribution with temperature RT = 218q2 in all three directions (indicated by the

solid curves in the bottom row), and that the IDSMC results are essentially the

same as the DSMC results even in the non-equilibrium state. Using the Bhatana­

gar, Gross, & Krook (1954) model of the Boltzmann equation for a discrete-velocity

gas, Broadwell (1963) showed that the equilibrium distribution has the form of a

U velocity
1.0 .---~----..... JI__,,

0.8

Row 1 0.6

0.4

0.2
j \

0.0 _40 -20 0
) \
20 40

1.0 ...----------

0.8

Row 2 0.6

0.4

0.2

62

V velocity
1.0----.-------.

0.8

0.6

0.4

0.2
) \

0.0 _40 -20 0 20 40

1.0 ...----~-----.

0.8

0.6

0.4

0.2

W velocity
1.0 ..--------.------..

0.8

0.6

0.4

0.2
) \

0.0 _40 -20 0 20 40

1.0 ...----~---

0.8

0.6

0.4

0.2

o.o -40 -20 0 20 40 o.o -40 -20 0 20 40 o.o -40 -20 0 20 40

1.0 ..---/---,,/,.,,,,,....---,
0.8

Row 3 0.6

0.4

0.2

1.0-----=------
0.8

0.6

0.4

0.2

1.0 ..-------~---

0.8

0.6

0.4

0.2

o.o -40 -20 0 20 40 o.o -40 -20 0 20 40 O.O -40 -20 0 20 40

1.0---....,..,..-----.,

0.8

Row 4 0.6

0.4

0.2

1.0 ,----....,.,..-----,

0.8

0.6

0.4

0.2

-20 0 20 40 o.o -40 -20 0

1.0 .---------,.x,,-----,

0.8

0.6

0.4

0.2

-20 0 20 40

Figure 4.8: DSMC method. Development of velocity distribution function his­

tograms. Initial bimodal distribution spreads to form a Maxwellian. Equilibrium

Maxwellians are also drawn in the last row. First row is time zero, second after 1

coll./particle, the third after 2 coll./particle, the last after 10 coll./particle.

U velocity
1.0 .----.-.---.......,..____,,

0.8

Row 1 0.6

0.4

0.2

1.0 .----,-,.---....,,....---.

0.8

Row 2 0.6

0.4

0.2

1.0 -------,..,------.

0.8

Row 3 0.6

0.4

0.2

1.0

0.8

Row 4 0.6

0.4

0.2

63

V velocity
1.0 -----------

0.8

0.6

0.4

0.2

W velocity
1.0 -----------

0.8

0.6

0.4

0.2

o.o -40 -20 0 20 40 o.o -40 -20 0 20 40

1.0 .------,,-------,,

0.8

0.6

0.4

0.2

1.0 .-------,,,-------,,

0.8

0.6

0.4

0.2

1.0 .-----...,,,.,..------.

0.8

0.6

0.4

0.2

1.0 --------------

0.8

0.6

0.4

0.2

1.0 .-------=------.

0.8

0.6

0.4

0.2

1.0 .-------=-------,,

0.8

0.6

0.4

0.2

Figure 4 .9: ID SMC method. Development of velocity distribution functions. Initial

bimodal distribution spreads to form a Maxwellian. Equilibrium Maxwellians are

also drawn in the last row. First row is time zero, second after 1 coll./particle, the

third after 2 coll./particle, the last after 10 coll./particle.

64

Maxwellian, i.e., for a two-dimensional stationary gas,

ni ex exp[-A(u/ + v/)], (4.1)

where the subscript ()i refers to the class of particles with discrete-velocity com­

ponents ui and vi. In the high temperature limit, A becomes (2RT)- 1
• Thus, the

distributions shown in the bottom row of figure 4.9 are expected.

If the velocity resolution of the gas is too low, however, there are few points on

the discrete-velocity collision spheres, many collisions are null, and the gas relaxes

too slowly. This incorrect relaxation rate is due both to the velocity discretization

and to the present collision model which incorporates a random choice of points on

the collision spheres. The result can be seen in the combined DSMC and IDSMC

results of figure 4.10. The individual modes of the initial bimodal distribution have

a low temperature of RT = 0.5q2 and are separated by only 4q at u = ±2q. The

DSMC particles are assigned floating point velocities and are sorted into bins of

size 1~q in the histograms. One hundred forty thousand particles are used. The

W component is not shown because it is the same as V. In the discrete solution it

is seen that after one collision per particle there are still too many particles with

u = ±2, not enough with u = ±l, and the V distribution is not sufficiently broad.

Both methods, however, eventually produce the same equilibrium state after seven

collision times (third row).

4.3 Multi-Species Relaxation

A similar relaxation of a non-equilibrium velocity distribution function occurs in a

two--species gas. Consider a spatially uniform gas in which one group of particles

moves with u = +10 and has a mass of 3, while another group moves with u = -10

and has a mass of 1. Thirty thousand particles are used, 15,000 of each species.

65

U velocity

1.0---------.----.....-----..

0.8

0.6

0.4

0.2

1.o.,----""7"'1'rs;-,::;;,r--.....------..

0.8

0.6

0.4

0.2

1.0..-------,------,---......-----,,

0.8

0.6

0.4

0.2

V velocity

1.0..------,-----.-------..

0.8

0.6

0.4

0.2

1.0---------

0.8

0.6

0.4

0.2

1.0..------,----.---......----,,

0.8

0.6

0.4

0.2

Figure 4.10: DSMC and IDSMC methods. Development of velocity distribution

functions after 0 (first row), 1 coll./particle (second row) and 7 coll./particle (third

row). DSMC = histogram (bin width 1~q), IDSMC = bar. RT= l.82q2
•

66

At time zero the molecules of each species are in equilibrium with molecules of the

same species but not the other; the distribution function of the light particles is

considerably wider than that of the heavy particles because the width varies as

✓kT /m. The mass 1 particles have a temperature of kT /m = 15q2 while the mass

3 particles have kT / m = 5q2• The overall gas temperature is RT = 65q2
• In

figure 4.11, the results of the DSMC relaxation processes in the U and V directions

are shown as histogram distributions with a bin width of lq. Figure 4.12 shows the

results of the same simulation carried out with the IDSMC method.

It can be seen that the initially separate groups merge together to form two

overlapping peaks of greater width. Because energy is exactly conserved in each

collision, the overall gas temperature remains constant, while the temperature of the

individual species' increases as seen by the greater width of each band. Because most

of the momentum is carried by the heavy particles, the light particle U distribution

function moves toward the heavy particle distribution function. The V distribution

function simply broadens with time. The W distribution is the same as V and is

not shown.

The IDSMC reproduces the DSMC results well although slight differences can

be seen after one collision per particle; the heavy particle distribution function of the

IDSMC model has not moved quite as far to the left as in the DSMC model. This

discrepancy is caused by the frequent occurrence of null collisions during low-speed

inter-species encounters. Poor inter-species coupling is a manifestation of the same

influence of velocity resolution as seen in the single species gas except that, with a

mass ratio of three, the size of the collision sphere is effectively reduced to one third

of that for equal mass particles. This effect is greatly exaggerated if the mass ratio

is higher. In figures 4.13 and 4.14 a second comparison is made but here the mass

ratio is 10 and the overall temperature is slightly higher (RT = 76q2
). Only the

67

U velocity
1. ~~-..-~---. .. --.....

,,',
''

0 '' . : :
': .,

0.

0. •,

0. ',

0.

o.

1.(l---~-TC:n-~.....,

0.

0.

0.

0.

V velocity
1. 1,--~----..----......

0.

0.

0.

0.
',

o. -30-20-10 0 ', 10 20 30

1. \.--~--....--~

0.

0.

0.

0.

1. 1,--~-----,,,,--,--.....,

0.

0.

0.

0.

1. \,..--~----~-

0.

0.

0.

0.

o. -30-20~~0 0 ~6 20 30

Figure 4.11: DSMC method. Development of velocity distribution functions in a

two species gas. Bimodal distribution (mass 1 = solid lines, mass 3 = dotted)

spreads to form a Maxwellian. RTtotal = 65q2
• First row is time zero, the second

after 1 coll./particle, the third after 2 coll./particle, the last after 10 coll./particle.

68

U velocity

0.

0.

0.

0.

" "' "'
"'"
Hltf
11, ..
HUI
"'"

1111111
lltlfll
1111111
IIIIHI

111111111
lllflffH
lllllffll

0--30-20-10 o ~:~:~ 20 30

0.

0.

0.

0.

0·-30-20-10 o
1.

0.

0.

...

10 20 30

l
0. l

0.

o._ 0-20-10 o 10 20 30

0.

0 .

0 .

0.

V velocity

o.n_.,..,,.... __ ..Jlll!!IIW!!!Wl~10__,,2~0---,130

1

0.

0.

0.

0 .

0.

0.

0.

0.

0. - 0-

ii

-

Figure 4.12: IDSMC method. Development of velocity distribution functions in

a two species gas. Bimodal distribution (mass 1 = solid lines, mass 3 = dotted)

spreads to form a Maxwellian. RTtotal = 65q2
• First row is time zero, the second

after 1 coll./particle, the third after 2 coll./particle, the last after 10 coll./particle.

69

first collision time is shown. With such a high mass ratio, there are so few points on

the heavy particle collision spheres that most of the inter-species encounters result

in null collisions, and the integer distribution function obviously relaxes too slowly.

Figure 4.15 shows the number of possible outcomes from a collision between a

mass 1 and a mass 10 particle versus the square of the relative collision speed. The

average, rather than the total, number of outcomes is plotted because the number

depends on the location of the collision spheres on the velocity grid and not simply

on their size. On each sphere there is, at a minimum, one pair of points - the

original pair. For a mass ratio of 10, the minimum collision speed for there to be

more than one pair of points on the sphere is y16lq, a value somewhat larger than

half of the mass ratio.2 Noting the change of scale between figures 2.9 and 4.15, it

is clear that there are dramatically fewer points on inter-species collision spheres.

The distribution of collision angles found in the collisions between mass 1 and

mass 10 particles in an equilibrium gas at RT = 76q2 is plotted in figure 4.16. Of

the 100,000 collisions performed, 53,937 of them occurred between particles having

different masses. The huge number of 0° deflections dominates the distribution.

Also note that the other angles are no longer symmetrically distributed about 90°.

For a simulation with a single species discrete-velocity gas, it is not difficult

to use sufficient velocity resolution to reproduce DSMC results. This procedure

becomes progressively more difficult, however, for simulations with high species

mass ratios because of the large look-up table needed. To alleviate this problem,

it may be useful instead to specifically eliminate 0° collisions, thereby changing the

definition of a collision and of the collision time. Figure 4.17 shows results from

a simulation with the same initial conditions as figure 4.14; however, if a multi-

2 Only for odd mass ratios is the minimum relative velocity exactly half the mass ratio plus ½q.

70

U velocity V velocity

1.0 ,, 1.0 ,.
::

0.8 :: 0.8
0.6 ri 0.6
0.4 .. 0.4 '
0.2

;: ·:
0.2

. .,

0.0_35 -21 -7 7 21 35 0.0_35 -21 -7 7 21 35

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0_35 -21 -7 7 21 35 0.0_35 -21 -7 7 21 35

Figure 4.13: DSMC method. Development of velocity distribution function his­

tograms in a gas of mass ratio 10 after 0 (first row) and 1 collision/particle (second

row). Mass 1 = solid lines, mass 10 = dotted. RTtotal = 76q2
•

71

U velocity V velocity

1.0 1.0

.
0.8 0.8

...
0.6 ... 0.6
0.4 ... 0.4

... .1111m1

0.2 0.2

.11 1111,

llltl

,1) ll1i lllllh

0.0_35
IIIJUI

0.0_35 -21 -7 7 21 35 -21 -7 7 21 35

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0_35 -21 -7 7 21 35 0.0_35 -21 -7 7 21 35

Figure 4.Lf.: IDSMC method. Development of velocity distribution functions in a

gas of mass ratio 10 after 0 (first row) and 1 collision/particle (second row). Mass

1 = solid lines, mass 10 = dotted. RTtotal = 76q2
•

Average No. Points

On Sphere
7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0
0 200 400

72

600 800 1000 1200
Radius2

1400 1600

Figure ,4.15: The average number of discrete points on all spheres in collisions

between mass ratio 10 particles with a relative speed less than 40. Note change in

scales from figure 2.9.

No. Colls.

35000.0

28000.0

300.0

200.0

100.0

0.0
0

73

45 90 135

Rotation angle (deg)

180

Figure 4.16: Histogram of the angle of rotation, X, of the relative velocity vector in

each multi-species collision in an equilibrium gas. The solid line is the theoretical

distribution for 53,937 collisions. Particle temperature is RT = 76q2
• Bin width =

0.5°. Note the two scales along the ordinate.

74

species collision is null, another multi-species pair is chosen to collide. The collision

counter is incremented only after an effective collision has occurred. With the 0°

collisions eliminated, the tendency of the remaining angles toward large deflections

causes the IDSMC distribution to relax more rapidly than is desired. It is diffi­

cult to strike a balance between the extremes of either permitting or eliminating

0° collisions because the angle distribution that occurs depends on the particular

velocity distribution of the gas. Such a scheme, however, takes the same compu­

tational effort to obtain a given result as simply performing more collisions and it

is therefore not pursued further. For effective high mass ratio gas simulation, high

velocity resolution is required.

75

U velocity V velocity

1.0 1.0

0.8 . 0.8

0.6 ... 0.6

0.4 0.4
0.2

IUfl

0.2 JIIII
IIIU
IUlt

.iii Iii
0.0_35

1111111

35 o.o_35 -21 -7 7 21 -21 -7 7 21 35

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0_35 -21 -7 7 21 35 o.o_35 -21 -7 7 21 35

Figure 4.17: IDSMC method. Development of velocity distribution functions in a

gas of mass ratio 10 after 0 (first row) and 1 collision/ particle (second row). Mass 1

= solid lines, mass 10 = dotted. 0° deflection multi-species collisions are repeated.

RTtotal = 76q2• 60,000 particles are used.

76

Chapter 5

One- and Two-Dimensional Applications

Simulations more complicated than those of the equilibrium states or relaxation

processes described in chapter 4 will clarify implications of the discrete-velocity

model. In this chapter simulations of shock wave structure, heat transfer between

parallel plates, and shear layer growth phenomena are used to enumerate some of

the macroscopic features of the IDSMC, particularly features related to the con­

vection of discrete-velocity particles. The performance of the DSMC and IDSMC

methods on different machines is discussed. The simulations are performed as two­

dimensional calculations - particles have positions (xi, Yi) while the velocities remain

three-dimensional as (ui,vi,wi)- One-dimensional results are obtained by averaging

the two-dimensional data over the width or height of the test volume. Such aver­

aging is equivalent to ensemble averaging many separate one-dimensional runs in

which only the x particle positions are updated.

5.1 Normal Shock Wave Simulation

To rigorously test the discrete-velocity method, its solution for the structure of

strong shock waves is first compared with t-he DSMC solution. For this purpose,

calculations are carried out on a parallel processor using comparable codes with the

same time step, cell size, etc ..

77

0.
0.
0.

-DSMC

0.
0 IDSMC

0.

RT= 3.53q2

1.0 ------ 1.0
RT = 1.57q2

0.8

0.6
0.4

0.2

0. ~.....__.....__......__......__......__......__.;:,,:,:, ____ _.i 0.8
-10 -8 -6 -4 -2 0 2 4 6 8 10 0.6

o.o--c...J...j.-'--4,,,.J...J.-l-1-,J::~ o.
Velocity distribution O.
function downstream 0.

of shock o.

0.3
0.2
0.1

-DSMC

0 IDSMC

0. l4-~---------"'--..__......._~-.-c...-1
-10-8 -6 -4 -2 0 2 4 6 8 10

X
-:x

0.4

0.2
0.0,__...::J..,.~..,J.--i,~~

Velocity distribution
function upstream

of shock

Figure 5.1: Ms = 2.12 Shock wave density and temperature profiles. Also shown

are the up/downstream thermal velocity distribution functions.

78

Time step Cell size Part./ cell Sites/mfp # Particles

O.lro 0.5). 500 20

Table 5.1 Conditions for simulation of figure 5.1

Figure 5.1 shows the normalized density and temperature profiles obtained by

the DSMC (solid line) and the IDSMC (points) for a normal shock wave of strength

M 8 = 2.12 in a perfect hard-sphere gas of identical particles. The space coordinate

is normalized with the upstream mean free path. The discrete Maxwellian distri­

butions of molecular thermal velocities (bar plot), corresponding to the measured

uniform states upstream and downstream of the shock, together with the continuous

Maxwellians (solid curves), are shown for comparison. The calculation is carried out

in a nonsteady frame; the left wall of a box is impulsively accelerated to a constant

speed of 2q at time t = 0, and the shock profile is sampled after 300 time steps (138

million collisions). The simulation conditions are given in table 5.1. Thirty-two

processors of the Symult 2010 multicomputer are used. It can be seen that excel­

lent agreement with the continuous-velocity DSMC model is achieved starting with

only 5 values of each velocity component. In the uniform gas behind the shock, 9

values of each component are found. Similar simulations were performed with the

DSMC method alone at different Mach numbers and compared to those done by

Bird (1970, 1976, and 1988). The results were the same, thus confirming that the

DSMC is correctly implemented.

Figure 5.2 shows results from a similar problem, but with the upstream tem­

perature 4 times smaller and the piston speed half as large as above. In this case,

the velocity resolution is poor, so the discrete calculation does not agree as well

with the continuous-velocity result. Note that in the upstream and downstream

RT= 0.88q2

1.0 .-----,.....-~..--.,

L.£..1..
P2-p1

79

1. Jr1"l!!~~~-,--..,..---,--,---,---,.~

0.

0.
0.

0.

-DSMC
0 IDSMC

RT= 0.39q2

1.0 ...----..---~----.

0.8

0.6

0.4

0.2

0. JLL.---'--......_......___.___.___._--=---....... 0.8
-10-8 -6 -4 -2 0 2 4 6 8 10 0.6

0.0 t.f.'-',.-.J--4.....--...---!-~

T-T1
T2-T1

X
A

1. ~""-~--,r-,--..,..---,--,---,---,.--,,

0.

Velocity distribution
function downstream 0.

-DSMC
0 IDSMC of shock. 0.

0.1 o oo

o_(l',1-__.___.___._...._..__....._.....;:;. __ -mi

-10 -8 -6 -4 -2 0 2 4 6 8 10
X
~

0.4

0.2
0.0 '-,,--l--f.,.

Velocity distribution
function upstream

of shock

Figure 5.2: Ms = 2.13 Shock wave density and temperature profiles. Also shown

are .the up/ downstream thermal velocity distribution functions.

80

Time step Cell size Part./ cell Sites/mfp # Particles

O.lro 0.5.\ 500 10 5.12*106

Table 5.2 Conditions for simulation of figure 5.2

states the equilibrium distribution functions are well represented, but inside the

nonequilibrium shock discrepancies are evident. As discussed in chapters 2 and

4, the particle diffusivity is too large because there are just a few possible veloc­

ities and zero deflection collisions occur too often. The hot downstream particles

diffuse toward the front of the shock, and the shock becomes too thick. This is

a macroscopic manifestation of microscopic differences between the collision terms

in the continuous and discrete Boltzmann equations, although possible effects of

the convection of particles cannot be absolutely eliminated. Where in figure 5.1

the maximum slope thickness of the IDSMC density profile is 5% greater than the

DSMC result, in figure 5.2 the IDSMC solution is 8% thicker. Perhaps, however,

this greater discrepancy is still small enough for crude engineering calculations if a

low resolution simulation is otherwise desirable.

A sensitive test of the absolute accuracy of shock structure calculations is

obtained by plotting the normal component of the pressure tensor, Pxx = pu'2 ,

against the specific volume, v. By integrating the x-momentum equation,

du dPxx
pu- = --

dx dx
(5.1)

it is found that 0
;~2 should be a straight line - the Rayleigh line. In figure 5.3, Pxz,

normalized by its upstream value, which by definition is the upstream pressure, is

plotted versus p0 / p for the same shock calculations as presented in figure 5.1. The

cluster of points at (1, 1) is from samples near the upstream end of the shock and the

cluster near (5.40, 0.42) is from the downstream end. In the calculations reported

81

6.0

Pxx/Po
5.0

4.0

3.0

Rayleigh Line
2.0

DSMC

1.0
0 IDSMC

0.0
0 0.2 0.4 0.6 0.8 1.0

Po/ P

Figure 5.3: Ms = 2.12 Pxx variation through shock.

here, the cell size and time step are optimized in a trade-off between spatial and

temporal resolution and computational time to achieve the performance indicated

in the figure; larger values would have resulted in an S-shaped curve that deviated

from the straight Rayleigh line. The figure shows that, with the same time step

and cell size, the IDSMC and the DSMC give comparable performance.

5.2 Multi-Species Normal Shock

The accuracy of the IDSMC method is sensitive to the species mass ratio in a

binary gas as it is to the velocity resolution· in a single species gas. In this section

the structures of shock waves in binary gases with mass ratios of two and five are

compared. In the simulations each species, considered alone, has sufficient velocity

82

Time step Cell size Part./ cell Sites/mfp # Particles

0.113ro 0.5.X 200 40 3.1*106

Table 5.3 Conditions for simulation in figure 5.4

Time step Cell size Part./ cell Sites/mfp # Particles

0.08r0 0.5.X 200 40 3.1*106

Table 5.4 Conditions for simulation in figure 5.5

resolution to produce accurate results. Yet, because of the small effective size of

the collision spheres in the mass ratio = 5 collisions, many such collisions are null

and discrepancies with the DSMC method occur. The test Mach numbers are

chosen so that the mass five particles have velocity resolution (RTho :::::: l.6q2 and

RTh1 > 3.5q2
) which was found sufficient to produce good results in figure 5.1.

Figure 5.4 shows a comparison of density profiles for the integer and continuous­

velocity methods in a M 8 = 2.01 shock wave. Upstream, there are equal numbers

of both species; the mass ratio is 2. The parameters in table 5.3 are chosen to

obtain the desired velocity resolution. The left wall speed is 4q and the profiles are

sampled at time step 640 {170 million collisions) (figure 5.5). All 128 processors of

the iPSC/1 are used. The upstream and downstream thermal velocity distribution

functions are shown beside the wave for both the light (solid lines) and the heavy

particles (dotted lines). The density profiles (lines) are the heavy, light, and mean

DSMC values, while the symbols represent the corresponding quantities obtained

with the ID SMC. Both methods show the separation of the species within the wave

characteristic of the highly non-equilibrium conditions. The correspondence be-

83

tween the methods is good although there are small differences near the leading

edge of the wave where the velocity resolution is not as high as it is downstream.

The maximum slope thickness of the IDSMC mean density profile is 8% greater

than the DSMC profile. It must be noted that the current version of the DSMC

produces a Mach 10 wave, in a gas of 10 percent mass 10 particles, which is only

about 2/3 as thick as that obtained by Bird (1976). The reason for the discrepancy

is unknown.

For comparison with the mass ratio 2 case, consider a shock in a gas with a

particle mass ratio of 5 but in which the maximum velocity resolution for the light

species remains essentially the same (figure 5.5). The integer model produces a 32%

thicker shock due to insufficient coupling during heavy /light collisions, rather than

to inadequate velocity resolution for either species taken on its own. In fact, many

heavy /light collisions are completely ineffective because the relative speed of the

mass 5 and 1 particles did not exceed the value of 3q (= ½q + ½ the mass ratioa),

which is the lowest speed for an effective collision. The high mass ratio results in a

decrease in the number of points on the small collision spheres of the mass 5 particles

during multi-species collisions and, thus, increased diffusivity. Substantially greater

velocity resolution would be required for an adequate number of points to occur on

the collision spheres in collisions between particles of such disparate masses.

5.3 Heat Transfer Between Solid Surfaces

Heat transfer between parallel plates is discussed in this section. In order to demon­

strate the application of a diffuse boundary condition in a lattice gas and to provide

an example in which the effect of velocity discretization on the left hand side of the

Boltzmann equation is readily apparent, both the unsteady time development and

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0.0

-6

•
□ Heavy Particles

0 Mean

0.8
0.6
0.4

0.2

5
Downstream Thermal
Distribution Function

-4 -2

84

0

DSMC

Light Particles

Heavy Particles

Mean

0.8
0.6

0.4

0.2
0.0 .,__.......,......._,.._...,.

Upstream Thermal
Distribution

\ ·, Function
'

._. 2-.~
'•,,_ o-•.•

2 4 6

Figure 5.,1: M 8 = 2.01 Shock density profiles. Mass ratio= 2. Number densities are

equal. Upstream, RT,,0 = ll.18q2 and RTho = 5.59q2
• Downstream, RT,,1 = 23.25q2

and RThl = 11.62q2 • Also shown are up/downstream thermal distribution functions

(m = 2: dotted lines and bars, m = 1: solid lines and bars).

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-7

•
□

0

-~ ... •··.
[j] ...

IDSMC

Light Particles

Heavy Particles

Mean

1.0 ...---,.,....--....

0.8
0.6
0.4
0.2

Downstream Thermal
Distribution Function

-5 -3 -1

85

...

1

....
', .

DSMC

Light Particles

Heavy Particles

Mean

1.0 ...-------,

0.8
0.6
0.4
0.2

i
' ' : '

\ .o.o_1
\ Upstream Thermal · ..

·, Distribution
'. .

• Function

··-<.
• • _ .. _ ..

3 5 7

Figure 5.5: Ms = 2.84 Shock density profiles. Mass ratio = 5. Number densities are

equal. Upstream, RT,,0 = 8.25q2 and RTho = l.66q2 • Downstream, RT,, 1 = 27.77q2

and RTh1 = 5.55q2
• Also shown are up/downstream thermal distribution functions

(m = 5: dotted lines and bars, m = 1: solid lines and bars).

T-T1
T2-T1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 1 2

86

----- IDSMC, RT0 = 0.392q2

- IDSMC, RT0 = 6.28q2

0 DSMC

3 4 5 6 7 8 9 10

X / ..\o

Figure 5.6: Temperature distribution at early times - heat transfer between parallel

walls. Wall temperature ratio = 2, 4 collision times.

the steady state solutions are examined. Initially, both plates are at the same

temperature and, at t = 0, the right hand wall is raised to twice the ambient tem­

perature. All of the particles are identical. The spacing between the walls is 10

mean free paths. Although this configuration involves flat surfaces parallel to the

lattice axes, the simulation method can be extended to curved surfaces as well.

Figure 5.6 presents the temperature distribution after four collision times for

both the DSMC and the IDSMC methods. The two curves for the IDSMC approach

correspond to simulations with initially high velocity resolution (RT0 = 21rq2
) and

low resolution (fl,T0 = 0.392q2) while the circles represent the DSMC results. In

T-T1
T2-T1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0

0 1

87

IDSMC, RT0 = 0.392q2

IDSMC, RT0 = 6.28q2

DSMC

2 3 4 5 6 7 8 9 10

X / ,\o

Figure 5. 7: Temperature distribution at equilibrium - heat transfer between parallel

walls. Wall temperature ratio = 2.

Resolution Time step Cell size Part./cell Sites/mfp # Particles

high 0.2To 0.5,\ 60 20 5.1*106

low 0.lro 0.5,\ 200 10 2.6*106

Table 5.5 Conditions for simulation in figures 5.6 and 5. 7

88

the DSMC and high resolution IDSMC simulations, 20 time steps (10.5 million

collisions) are calculated to reach 4 collision times. In the low resolution case 40

time steps (5.6 million collisions) are calculated. With sufficient resolution, it is

clear that the integer method reproduces the continuous-velocity results well, but

that low velocity resolution leads to insufficient heat transfer at the wall as seen by

the depressed temperature throughout the domain.

When the gas reaches equilibrium there may be differences between the high

and low resolution integer solutions because of null collisions as well as due to the

different heat flux from the walls. Null collisions cause a decrease in the slope of the

temperature profile so that, from the equilibrium state alone, it is not clear which

effect causes the discrepancy with the high resolution calculation. Figure 5. 7 shows

the steady state solution where the low resolution profile has greater temperature

slip than the high resolution profile at the cold boundary where the resolution is

lowest. To obtain these profiles a total of 102 million collisions are calculated.

The DSMC and high resolution profiles have the distinct curve and inflection point

that have been found by others as well (Sone, 1989). Near the hot wall, the velocity

resolution improves and the low resolution IDSMC solution corresponds better with

the high resolution and DSMC results. Inamuro, applying his method, which is

also based on the concepts of points on spheres in a discrete-velocity space, obtains

similar results for the equilibrium state (Inamuro, 1989a).

Profiles for the small temperature ratio of 1.05 were computed with the present

DSMC method and produced the same temperature jump as found by Sone (1989),

thus providing further assurance that the DSMC method is implemented properly.

Applications in the linear regime, with their small amplitudes, suffer from substan­

tial noise and will not be discussed further.

The low heat transfer at the wall in a discrete-velocity gas is due to a decreased

E = 1 _ FluXdiscret,
FluXcontinuou•

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 1 2

89

• 0 = 0°

0 = 34.4°

0 = 45°

---------------- -
3 4 5

c'm = fiJiT

Figure 5.8: Error in particle number flux from an equilibrium gas through a bound­

ary at an angle 0 versus velocity resolution. * indicates simulation conditions for

figures 5.6 and 5. 7

90

particle flux to the wall (suggested by Inamuro). The particle flux error across a

flow boundary at an angle 0 with respect to an X or Y axis of the velocity lattice

in an equilibrium gas, is plotted in figure 5.8. The error E is defined as

~i>boundar11 ~J=~oo ~t~00 [i cos(O) - J sin(O)]f (i,i, k)q3

E = 1 - f+oo f+oo r+oo-;:, f(-;:,)d-;:,
-oo -oo Jo Cnormal C C

(5.2)

The summation in the numerator represents the discrete-velocity number flux. The

integral in the denominator is the continuous-velocity number flux. The continuous

distribution function, f (c'), is simply a Gaussian while the discrete distribution

function, f (i, j, k), is found from the discrete Boltzmann equations (Inamuro, 1989a)

for c~ less than 1.2 and from a Gaussian distribution at higher temperatures. d m

is the most probable thermal speed, and thus corresponds to the width of the

distribution function. The error initially falls off with increasing velocity resolution

but falls less rapidly at higher temperatures.

A boundary parallel to the velocity lattice (0 = 0) has the largest flux error;

hence, for the computation of a flow around a curved shape, it is simple to determine

the velocity resolution needed to keep the error below a desired level. With low

velocity resolution, a substantial number of particles move parallel to the boundary

(or nearly so) and thus never cross it. For example, if e = 0, particles with u = 0,

which represent the region of velocity space -;1 < u < ~1 and -oo < v < +oo,

never cross the boundary and hence, never directly feel its presence. In a continuum

velocity gas, no particles have a precisely zero normal velocity component.

That there should be a disparity between the discrete and continuous-velocity

solutions solely due to an error in particle convection is not unexpected. Consider

the collisionless form of the Boltzmann equation,

(5.3)

which has the simple solution f(x, t) = finit(x-t/c) in one dimension. An imprecise

91

representation of the initial distribution function, finit, introduced by a discrete­

velocity representation, can cause "streaming" or "ray" effects for particles having

the same velocity in an expanding flow.

The small oscillations of the low resolution temperature profiles (figures 5.6

and 5. 7) are not noise but result from a collisionless phenomenon caused by the

discretization of space, velocity, and time in a gas in which particles may move

with more than a single speed normal to a surface. Before they collide with other

particles, those particles leaving the walls with the same normal discrete-velocity

will travel along straight, parallel, and uniformly spaced particle paths in an x - t

plane (figure 5.9). Where such paths cross at a spatial lattice site, particles of

different speeds coexist and there may be a substantial periodic variation of the

macroscopic quantities (density, velocity, pressure, etc.).

In the heat transfer problems, the Knudson number is 0.1 so particles reflected

from a wall may not be deflected by collisions until they are well into the flow. Some

low speed collisions do not effectively alter the particle path because it is possible

that, even if the v and w components are altered in the collision, the u components

of the velocity will remain unchanged. Periodic macroscopic waves can thus extend

across the small domain. The low resolution solutions were computed with 10 sites

per mean free path and a cell size of half a mean free path. Hence, each value of

temperature plotted in figures 5.6 and 5.7 represents an average over about 5 lattice

sites. The data are not smooth because 5 sites contain a few oscillation periods and

the average of a periodic function over such a small number of cycles is sensitive to

the exact number of periods considered. For realistic simulations, each cell should

contain enough sites (perhaps 10 or more) to obtain smooth macroscopic results

and to ensure that the space-velocity correlation induced by a boundary does not

cause an incorrect sampling of velocities during collision calculations.

92

t

X

Figure 5.9: x-t plot of particle paths for speed 1, 2, and 3 particles originating from

the lattice sites nearest the surf ace. Where paths cross at a lattice site, particles of

the respective speeds will coexist for one time step.

93

5.4 Two-Dimensional Shear Layer

An unsteady two-dimensional simulation both demonstrates the feasibility of com­

puting a complicated problem on a parallel processor and provides assurance that

moderate velocity resolution is sufficient for successful use of the IDSMC. A rectan­

gular region 320 mean free paths wide by 480 high is considered (figure 5.10). The

left and right boundaries are periodic; any particle passing out through one side

is re-injected through the other. The horizontal boundaries are specular reflectors.

The ambient gas temperature, RT0 , is 27fq2
• At time zero there is a sinusoidal divi­

sion midway through the fl.ow with a peak to peak amplitude of six percent of the

flow field height. A velocity perturbation is created by placing 100 point vorticies

along the interface and creating the particles in each cell with a mean velocity, due

to the vorticies, calculated at the center of the cell. The mean velocity far from the

layer is nearly horizontal although slight rarefaction and compression waves may

result from small initial inclinations of the flow. The particles throughout the flow

have the same mass but are labeled to indicate whether they originated above or

below the initial shear layer. Each stream moves with Mach number 0.6; hence,

the relative Mach number is 1.2. The cell size is initially taken to be 1.0>.0 wide

and 1.5).0 high because the Mach numbers involved are low, and the smallest ex­

pected features should be several times greater than >.0 after the initial shear layer

has begun to diffuse. Because the temperature rise (and, thus, the change in the

collision frequency) in all regions of the flow is expected to remain small, the time

step is chosen to be 0.4r0 • There are 800 cells per processor for each of 128 proces­

sors on the Symult 2010. The simulation continues for 3200 time steps (2.9 billion

collisions) with data being saved after every 100 steps. Remeshing occurs every 8

steps.

IDSMC - DSMC

\0
.p.

95

Time step Cell size Part./cell Sites/rnfp # Particles

0.4ro 1 X 1.5.\o 40 10 4.1*106

Table 5.6 Conditions for simulation of the shear layer.

In figures 5.10 - 5.12 the mixture fraction of particles that began on either

side of the shear layer is shown as well as one in every 92 velocity vectors. Black

represents unmixed fluid while yellow represents a 50:50 mixture ratio. The color

bar is at the top of the figure. Individual cells are difficult to distinguish but the

domains computed by each processor are outlined with thin black lines. As soon

as the simulation begins, the shear layer diffuses rapidly and very weak compres­

sion and rarefaction waves propagate away from the layer. The particles near the

perturbation have about 20 velocities available (±10 in each direction) while those

further away have about 16. A low Mach number simulation is more difficult to

achieve than one at a high Mach number because the amplitude of the pressure,

density, temperature, vorticity or Mach number (figure 5.13) 1 perturbations does

not rise much above the noise and because so many time steps are required for the

flow to change substantially. The mixture fraction is the least noisy quantity.

As discussed in chapter 3, remeshing is based on the particle number densities.

In this simulation, however, the quantity balanced between the processors is a

combination of the particle number density and the mean mixture fraction of the

two particle types. This causes the mesh to become smaller in the regions of greatest

mixing where a fine mesh is desirable. At the final time shown (figure 5.12) the cells

in the center are about 1 mean free path wide by 0.96 high while those far from the

region of shear are about 1 by 1.86 mean free paths.

1 Colors (blue - > yellow) indicate a scale of Mach number from zero to one.

96

As time increases, the initial perturbation at first appears to grow as the

shear layer rolls up. Yet a substantial rolling motion never develops before the

perturbation is damped out by viscosity. The Reynolds number based on the per­

turbation wavelength and a single stream Mach number is only 316. Other similar

simulations have indicated that the close proximity of the horizontal walls probably

did not damp the wave as much as did the viscosity. Because the relative Mach

number is low and no shocks are seen, the damping is also probably not due to

compressibility effects (Papamoschou, 1986). 2

The same simulation is carried out using the DSMC method and the results

of the two methods are compared after 300 time steps in figure 5.14. It is clear that

the IDSMC does not produce any noticeable asymmetries in the flow. In fact, if the

DSMC results are subtracted from the IDSMC results and the difference plotted

(figure 5.15), it is clear that that difference is simply due to random fluctuations

within the shear layer. Outside of the layer, the two particle types are not yet

mixed and there are no fluctuations. A more quantitative comparison can be made

by comparing profiles of the u component of velocity along a specific section through

the fl.ow. In figure 5 .16 is shown a u profile slicing through the shear layer with

a column of cells located at X = 159.A0 • The IDSMC and DSMC results appear

essentially the same. Although the noise level of the IDSMC method has not been

specifically quantified, it appears essentially the same as that of the DSMC. Thus,

with sufficient velocity and spatial resolution it seems that asymmetries introduced

into the Navier-Stokes equations by the lattice gas representation are not significant.

2 A simulation in a flow field ten times larger with cells also ten times larger, did produce a more

substantial roll-up. Such a large cell size, however, is probably unrealistic.

y />.

480

360

240

120

0

-3.0 -2.0 -1.0

97

0.0 1.0 2.0

0

0

0

u/q

3.0

Figure 5.16: u velocity profiles through the shear layer obtained with DSMC (lines)

and ID SMC (symbols) at 159 mean free paths from the left hand boundary.

98

5.5 Performance Comparison

By declaring the molecular velocity components to be one byte long, provision for

256 different values of velocity in the multicomputer used for the present calcula­

tions, allows 2.3 times more particles to be treated in a two-dimensional flow than

when the particle velocities are stored as real numbers. With real numbers, the

storage per particle is 23 bytes (12 for the 3 components of velocity, 8 for 2 posi­

tions, 2 for the particle index, and 1 for the particle type), while with the IDSMC

method it is 10 bytes (3, 4, 2, and 1). Thus flows with Reynolds numbers 2.3 times

greater can be calculated. Clearly, because many fewer than 256 velocity values

may be necessary, this result could be improved if the velocities were stored in a

more compact manner. For example, if only 5 bits were used for velocities, 10 bits

for positions, and 2 bits for the type, the improvement could, in principle, be 3.5

times.

By design, the IDSMC computes primarily with integer arithmetic and the

DSMC with floating-point arithmetic; hence, comparison of the relative speed of

the two methods may be machine dependent. In the calculations of relaxation to

equilibrium reported in Chapter 4, in which only collisions in one large cell are

calculated and the particles are not moved, the IDSMC ran about 3 times faster

for single species collisions and 2 times faster for multi-species collisions than did

the DSMC on a sequential SUN 3/60 microcomputer. This gain results from the

relatively slow square roots, random number generation, and trigonometric func­

tions required in the DSMC computation. On the other hand, the simulations that

were run on the Intel iPSC multicomputer did not show the same relative perfor­

mance improvement for the IDSMC: the single species shock showed a 10 percent

improvement, the binary gas shocks had 23 percent, and the heat transfer showed

99

no gain. On the Symult, the shear layer simulation showed a 40 percent gain. The

relative time each method spent computing collisions remained basically the same

as on the SUN. The differences between the parallel and the sequential simulations

reflect the proportion of time spent performing collisions. The differences may also

reflect the relative performance of the machines for floating point and integer arith­

metic. The efficiency of the parallel computation is defined as one minus the ratio

of the time spent performing parallel processing tasks (i.e., sending and receiving

particles) to the total computational time. On the iPSC and Symult, both codes

generally ran with an efficiency of 70 to 80 percent. On the Symult the maximum

rate of collisions, using the IDSMC on 128 nodes for the shear layer problem, was

222 million per hour. In view of the fact that the codes have not yet been optimized

for speed, it is clear that more work needs to be done to select definitive bench­

marks. Improvements can be made to both the DSMC and the IDSMC codes, .but

the relative performance could remain the same. Nonetheless, the modest improve­

ments in computational time and memory usage realized on the multi-computers

with the IDSMC, allow such particle simulations to be extended further toward the

continuum flow regime.

100

Chapter 6

Conclusion

A discrete-velocity model of particle motion in rarefied flows has been studied the­

oretically and through numerical experiments. The investigation was motivated by

a desire to understand the fundamental physics of a discrete-velocity gas and by

the need to link discrete-velocity molecular models to accepted continuous veloc­

ity models. A new molecular model has been developed to permit such a linkage

and has been implemented in the integer direct simulation Monte Carlo method on

multi-computers for large scale calculations. The method may also be an acceptable

engineering tool to extend particle simulations toward the continuum flow regime.

The most important conclusions are

• a computational model, accommodating arbitrary particle velocity resolution,

multi-species gases, and diffuse boundary conditions, has been developed;

• moderate velocity resolution is needed to accurately simulate non-equilibrium

flows;

• averaging macroscopic quantities over several spatial lattice sites is necessary

to avoid "ray" effects;

• lattice gas methods can be successfully applied to rarefied flows;

101

• the new integer method, as well as the standard DSMC method, can be effi­

ciently implemented on multi-computers.

A summary of the main results follows.

6.1 Summary

An integer velocity model of molecular gasdynamics has been developed and im­

plemented with a direct particle simulation. In the model, each particle possesses

integer velocity components (u, v, w) and may collide with other particles. During

such a binary collision, mass, momentum, and energy are exactly conserved by de­

termining post-collision particle velocities from the symmetry reflections between

points on a sphere in the center-of-mass frame of reference. Multi-species collisions

involving two separate spheres and a velocity sub-grid are described. High veloc­

ity resolution leads to larger spheres and a large variety of collision possibilities.

Through the collision process, all velocity space is filled although the distribution

of velocities found depends on the nature of the problem being solved.

The DSMC method is the present state of the art for computing rarefied or

transitional flows of real gases around complex geometries. When this method is ap­

plied to the discrete-velocity model, each particle resides at a lattice site in space and

hops among the sites during the movement phase of the computation. During the

collision phase, particles are temporarily held at the lattice sites and are randomly

chosen to collide from among the sites contained within each computational cell. For

each selected particle pair, the relative speed is used to access the possible outcome

relative velocity from a look-up table. In a hard-sphere continuous-velocity gas,

the distribution of the relative velocity orientation is spherically symmetric. Hence,

the look-up table contains the points on the surface of spheres in a discrete-velocity

102

space and one of those points is chosen randomly as the post collision relative veloc­

ity. This concept of points on a sphere and how to compute or find them efficiently

is central to the discrete-velocity method.

After the model and method were described, a numerical experiment rather

than a theoretical approach was pursued to examine the model's range of valid­

ity. A theoretical investigation would have been impractical because it could not

be used for applications far from equilibrium. The numerical experiments involved

four different types of problems: (i) demonstrating the equilibrium state for a sim­

ulated discrete-velocity gas and comparing the result with theory; (ii) proving the

correspondence between the IDSMC and DSMC results for unsteady simulations

of distribution function relaxation where no exact theory exists; (iii) showing the

effective equality of macroscopic quantities using the IDSMC and DSMC methods

for one-dimensional shock wave and heat transfer simulations; and (iv) establishing

the agreement between the DSMC and IDSMC for a complicated two-dimensional

flow field.

It was found by simulation that the discrete velocity distribution function

for an equilibrium gas agrees with the continuous-velocity Gaussian distribution at

moderate to high velocity resolution and the solution obtained from the discrete

Boltzmann equation at low resolution. The simulation of the distribution of colli­

sion angles, X, explained the effect of reduced velocity resolution on the diffusivity

of a gas. Whereas in a high temperature gas with good velocity resolution the distri­

bution of x closely approximates the theoretical ½sin(x) value, at low temperatures

many particles are scattered through either zero or 180 degrees. Such null collisions

do not provide an exchange of energy or momentum between identical particles

and thus allow many particles to diffuse too far through the gas before they collide

effectively. The large number of null collisions result from there being few points

103

on the small collision spheres of low speed collisions from which to choose. This

paucity of points is due to the reduction of reflection symmetries available and the

increased importance of degenerate symmetries on small collision spheres.

The relaxation of a bimodal distribution function that might characterize a

region of a flow with extremely high shear was then discussed. Because no the­

oretical solution is available, the IDSMC simulation was compared to a DSMC

simulation with the same initial conditions. It was found that if a gas is made of

identical particles or particles of similar mass, the discrete-velocity method repro­

duces the continuous-velocity results accurately if moderate velocity resolution is

used. If, however, the particle mass ratios are large, there are few points in relative

velocity space that lie on the small collision spheres of the heavy particles, and

substantially greater velocity resolution would be needed for the integer results to

be acceptable. A simple correction to the model that ignores null collisions was

found to improve the results but did not change the fundamental problem of the

null collisions. Together, the equilibrium and relaxation problems demonstrated the

effect of discretization on collisions and, thus, on the right-hand side of the discrete

Boltzmann equation.

To clarify the implications of the microscopic details of discrete-velocity par­

ticle collisions and motions on the macroscopic quantities in a flow, an unsteady

shock wave was simulated and profiles of the density and temperature through

the shock were compared with DSMC results. A shock wave is a severe test case

because it involves highly non-equilibrium flow. Other authors have shown that

the DSMC method accurately reproduces experimental results obtained in shock

tubes and low density wind tunnels (Pham-Van-Diep, et al., 1989) when the correct

inter-molecular potential is used. The present version of the DSMC was found to

reproduce published computational profiles for a single species hard sphere gas and

104

was thereby concluded to be a correct implementation of the method although there

remains some question about the multi-species portion of the code. A more accu­

rate representation of molecular diameters with the Variable Hard Sphere method

(Bird, 1983) was superfluous to the investigation of velocity discretization and was

not included. Thus, both the IDSMC and DSMC results can only be compared

directly to other hard sphere computations but not to experiments.

For the shock waves, moderate velocity resolution was found to be necessary

for the IDSMC to reproduce the DSMC results. Low resolution led to greater

viscosity than is realistic and, thus, to thick shock waves in a single species gas. In

a binary gas the velocity resolution would have to be increased over that of a single

species gas by an amount approximately proportional to the species mass ratio in

order to obtain the correct viscosity. The shock wave simulations demonstrated the

effect of velocity resolution on the right-hand side of the Boltzmann equation ..

The heat transfer problem provided insight into the effect of low velocity res­

olution on particle convection. It was found that decreased velocity resolution leads

to lower heat transfer at a diffuse wall while, with sufficient resolution, the heat

transfer is correct. The low resolution error is due to an incorrect flux of particles

to (and, hence, from) the wall and can thereby imply an error in any flux related

quantity, for example, pressure. Also, it is necessary to average macroscopic quanti­

ties over 10 or more lattice sites to smooth the space-velocity correlations introduced

by the boundaries of a multi-speed discrete-velocity gas. During a diffuse scattering

event, the reflected particle's position is rounded to the nearest lattice site. This is

a good approximation provided the lattice spacing is substantially less than a mean

free path. The diffuse wall model also provides a way to compute a lattice gas flow

about a curved surface which would be difficult to simulate as discrete segments

between lattice sites. The continuous surface can simply be treated with floating

105

point math and appear as a uniformly diffuse surface on all but the tiny lattice

spacing scale.

The final problem involved a complicated two-dimensional flow that was used

both to prove the applicability of direct simulation particle methods on a multi­

computer and to demonstrate that, in at least one complex flow, the unrealistic

terms a lattice gas introduces into the N avier-Stokes equations are insignificant if

sufficient velocity resolution is used. The simulation covered several different areas

where a problem might have been expected: vorticity diffusion in compressible

flow, unsteady curved compression and rarefaction waves, species diffusion, and

a real flow instability. The IDSMC and DSMC produced the same results. While

many possibilities were obviously not examined, enough were examined to engender

confidence that, by using moderate velocity resolution, any anisotropic effects of the

discretization are not important for practical problems.

Certain portions of the discrete-velocity model must be expanded to make

the method more generally useful. Non-integer species mass ratios should be incor­

porated with the same type of velocity sub-grid described above. Internal degrees

of freedom can be introduced by changing the radii of the collision spheres during

some collisions and molecular chemistry can be simulated by introducing three-body

collisions. A more accurate representation of molecular diameters can be incorpo­

rated with the Variable Hard Sphere model. However, in future applications in

the rarefied regime the DSMC should be adequate where the IDSMC would intro­

duce unnecessary complications. In the completely continuum regime, the unaltered

IDSMC probably cannot compete with a continuum gas computation. Thus, the

practical use of these integer concepts should probably be limited to transitional

flow computations.

106

Chapter 7

Bibliography

107

References

[1] Athas, W. C., and Seitz, C. L., 1988, Multicomputers: Message-Passing Con­

current Computers. Computer, 21, (8), Aug., 9-24.

[2] Bellomo, N., and de Socio, L. M., 1982, On the Discrete Boltzmann Equation

for a Binary Gas. Progress in Aeronautics and Astronautics - 13th International

Symposium on Rarefied Gasdynamics, July, ed. 0. M. Belotserkovskii, 1269-

1275.

[3] Bellomo, N., and de Socio, L. M., 1983, The Discrete Boltzmann Equation for

Gas Mixtures. A Regular Space Model and a Shock Wave Problem. Mech. Res.

Comm., 10, (4), 233-238.

[4] Bellomo, N., and Monaco, R., 1984, Molecular Gas Flow For Multicomponent

Gas Mixtures: Some Discrete Velocity Models of the Boltzmann Equation and

Applications. German-Italian Symposium on the Applications of Mathematics

in Technology, 396-412. March 26-30, Rome, Italy.

[5] Bhatnager, P. L., Gross, E. P., and Krook, M., 1954, A Model for Collision

Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One­

Component Systems. Phys. Rev., 94, 511-525.

[6] Bird, G. A., 1963, Approach to Translational Equilibrium in a Rigid Sphere

Gas; Phys. Fluids, 6, 1518.

108

[7] Bird, G. A., 1968, The structure of normal shock waves in a binary gas mixture.

J. Fluid Mech., 31, 657-668.

[8] Bird, G. A., 1970, Aspects of the Structure of Strong Shock Waves. Phys.

Fluids, 13(5), 1172-1177.

[9] Bird, G. A., 1976, Molecular Gas Dynamics, Clarendon Press, Oxford.

[10] Bird, G. A., 1980, Monte-Carlo simulation in an engineering context. Progress

in Aeronautics and Astronauti"cs - Twelfth International Symposium on Rar­

efied Gasdynamics, July 7-11, 1980, 239-255.

[11] Bird, G. A., 1983, Definition of mean free path for real gases. Phys. Fluids,

26 (11), 3222-3223.

[12] Bird, G. A., 1986, Direct Simulation of Typical ATOV Entry Flows.

AIAA/ ASME 4th Joint Thermophysics and Heat Transfer Conference June

2-4, 1986, Boston, MA.

[13] Bird, G. A., 1987, Direct simulation of high-vorticity flows. Phys. Fluids, 30(2),

364-366.

[14] Bird, G. A., 1988, private communication.

[15] Borgnakke, C., and Larsen, P. L., 1975, Statistical Collision Model for Monte­

Carlo Simulation of Polyatomic Gas Mixture. J. Comp. Physics, 18, 405-420.

[16] Broadwell, J. E., 1963, Study of Rarefied Shear Flows by the Discrete Velocity

Method. Space Technology Laboratories, Inc. report 9813-6001-RU000.

[17] Broadwell, J. E., 1964a, Study of rarefied shear flow by the discrete velocity

method. J. Fluid Mech., 19(3), 401-414.

109

[18] Broadwell, J. E., 1964b, Shock Structure in a Simple Discrete Velocity Gas.

Phys. Fluids, 7(8), 1243-1247.

[19] Caflisch, R. E., 1979, Navier-Stokes and Boltzmann Shock Profiles for a Model

of Gas Dynamics. Comm. on Pure 8 Appl. Math, 32, 521-544.

[20] Caflisch, R. E., and Papanicolaou, G., 1979, The fluid dynamic limit of a

nonlinear Boltzmann equation. Comm. on Pure 8 Appl. Math, 32, 589-616.

[21] Chandrasekhar, S., 1960, Radiative Transfer, Dover Publications, NY.

[22] Chapman, S., and Cowling, T., 1952, The Mathematical Theory of Non­

Uniform Gases. Cambridge Univ. Press.

[23] Doolen, G., 1987, Lattice Gas Methods for Solving Partial Differential Equa­

tions. Lecture at 3rd SIAM Conj. on Parallel Processing for Scientific Comput­

ing, Los Angeles, Dec. 2.

[24] Duderstadt, J. J., and Martin, W.R., 1979, Transport Theory, John Wiley &

Sons.

[25] Feiereisen, W. J., 1989, Three Dimensional Discrete Particle Simulation of an

ATOV. Presented at the Thermophysics Conference, Buffalo, NY, June 12-14

1989. AIAA paper: 89-1711.

[26] Frisch, U., Hasslacher, B., Pomeau, Y., 1986, A Lattice Gas Automaton for the

Navier Stokes Equation. Phys. Rev. Letters, 56, (7), April, 1505-1508.

[27] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D., 1988,

Solving Problems on Concurrent Processors. Prentice-Hall, NJ.

110

[28] Furlani, T. R., and Lordi, J. A., 1989, A Comparison of Parallel Algorithms

for the Direct Simulation Monte Carlo Method: Application to Exhaust Plume

Flow Fields. Rarefied Gas Dynamics: Theoretical and Computational Tech­

niques. ed. E. P. Muntz, 118, In Proceedings of 16th International Symposium

on Rarefied Gas Dynamics, Pasadena, CA, 1988. Progress in Aeronautics and

Astronautics. 227-244.

[29] Gatignol, R., 1975, Theorie cin/tique des gaz a r{partition discrJte de vitesses,

Lecture Notes in Physics, 36, Springer-Verlag, Berlin.

[30] Goldstein, D., Sturtevant, B., and Broadwell, J. E., 1989, Investigations of the

Motion of Discrete-Velocity Gases. Rarefied Gas Dynamics: Theoretical and

Computational Techniques. ed. E. P. Muntz, 118, In Proceedings of 16th Inter­

national Symposium on Rarefied Gas Dynamics, Pasadena, CA, 1988. Progress

in Aeronautics and Astronautics. 100-117.

[31] Goldstein, D., and Sturtevant, B., 1989, Discrete Velocity Gasdynamics Simu­

lations in a Parallel Processing Environment. Presented at the Thermophysics

Conference, Buffalo, NY, June 12-14 1989. AIAA paper: 89-1668.

[32] Gross, E. P., 1960, Recent Investigations of the Boltzmann Equation. Rarefied

Gas Dynamics: Proceedings of the First International Symposium held at Nice,

Pergamon Press.

[33] Guernsey, C., March 24, 1986, Application of the Direct Simulation Monte

Carlo Method to Rocket Exhaust Plume Analyses. JPL Interoffice memoran­

dum.

[34] Hardy, J., de Pazzis, 0., and Pomeau, Y., 1973, Time evolution of a two­

dimensional model system. Invariant states and time correlation functions. J.

111

Math. Phys., 14(12), 1746-1759.

[35] Hardy, J., de Pazzis, 0., and Pomeau, Y., 1976, Molecular dynamics of a

classical lattice gas: Transport properties and time correlation functions. Phys.

Rev., 13 (5) 1949-1961.

[36] Herron, M., 1987a, Isometric Collision Rules for the Four-Dimensional FCHC

Lattice Gas. Complex Systems, 1, (3), 475-494.

[37] Herron, M., 1987b, Viscosity of a Lattice Gas. Complex Systems, 1, (4), 763-789.

[38] Hermina, W. L., 1986, Monte-Carlo Simulation of High Altitude Rocket Plumes

with Nonequilibrium Molecular Energy Exchange. AIAA/ ASME ,I.th Joint

Thermophysics and Heat Transfer Conj., Boston, MA. June. 1-17.

[39] Hermina, W. L., 1988, Direct Simulation Monte-Carlo Model for Space Vehicle

Plume Environments. Sandia Report SAND88-8827, 1-30.

[40] Hilts, P., 1985, Discovery in Flow Dynamics Might Aid Car, Plane Design.

Washington Post, Nov. 19.

[41] d'Humieres, D., Lallemand, P., and Shimomura, T., 1985, Lattice Gas Cellular

Automata, A New Experimental Tool For Hydrodynamics. LA-UR preprint,

85-4051, submitted to Phys. Rev. Let ..

[42] Inamuro, T., 1988-1989a, private communication.

[43] Inamuro, T., 1989b, Numerical Studies on Evaporation and Deposition of a

Rarefied Gas in a Closed Chamber. Rarefied Gas Dynamics: Physical Phenom­

ena. ed. E. P. Muntz, 117, In Proceedings of 16th International Symposium

on Rarefied Gas Dynamics, Pasadena, CA, 1988. Progress in Aeronautics and

Astronautics. 418-433.

112

[44] Kadanoff, L. P., McNamera, G., and Zanetti, G., From Automata to Fluid

Flow: Comparisons of Simulation and Theory.

[45] Kawasaki, K., 1985, Monte Carlo Calculation of the Flow of Granular Materials.

Engineering thesis, Calif. Inst. of Tech ..

[46] Lees, L., 1959, A kinetic theory description of rarefied gas flows. GALCIT

Hypersonic Research Project 15.

[47] Long, L. N., Coopersmith, R. M., McLachlan, B. G., 1987, Cellular Automatons

Applied to Gas Dynamic Problems. Presented at AIAA 19th Flu£d Dynamics,

Plasma Dynam£cs and Lasers Conference, June 8-10, Honolulu, Hawaii.

[48] McDonald, J. D., and Baganoff, D., 1988, Vectorization of a Particle Simula­

tion Method for Hypersonic Rarefied Flow. AIAA Thermophysics con/., San

Antonio, TX. June. AIAA paper: 88-2735.

[49] McNamera, G. R., and Zanetti, G., 1988, Using the Boltzmann Equation to

Simulate Lattice Gas Automata. Phys. Rev. Let., 61, Nov. 14, 2332-2335.

[50] Meiburg, E., 1986, Comparison of the molecular dynamics method and the

direct simulation Monte Carlo technique for flows around simple geometries.

Phys. Fluids, 29(10), 3107-3113.

[51] Nadiga, B. T., 1988-1989a, private communication.

[52] Nadiga, B. T., Broadwell, J.E., and Sturtevant, B., 1989, Study of a Multi­

Speed Cellular Automaton. Rarefied Gas Dynamics: Theoretical and Compu­

, tational Techn£ques. ed. E. P. Muntz, 118, In Proceedings of 16th International

Symposium on Rarefied Gas Dynamics, Pasadena, CA, 1988. Progress in Aero­

nautics and Astronautics. 155-170.

113

[53] Nordsieck, A., and Hicks, B., 1967, Monte Carlo Evaluation of the Boltzmann

Collision Integral. In Proceedings of 5th Symposium on Rarefied Gas Dynamics,

Oxford, England. Rarefied Gas Dynamics, ed. C. L. Brundin, Academic Press,

695-710.

[54] Papamoschou, D., 1986, Experimental Investigation of Heterogeneous Com­

pressible Shear Layers. PhD thesis presented at Calif. Inst. of Tech ..

[55] Pham-Van-Diep, G., Erwin, D., and Muntz, E. P., 1989, Nonequilibrium Molec­

ular Motion in a Hypersonic Shock Wave. Science, 245, Aug., 624-626.

[56} Platkowski, T., and Illner, R., 1988, Discrete Velocity Models of the Boltzmann

Equation: A Survey of the Mathematical Aspects of the Theory. SIAM Review,

30, (2), 213-255.

[57] Sone, Y., Ohwada, T., and Aoki, K., 1989, Heat Transfer and Temperature Dis­

tribution in a Rarefied Gas Between Two Parallel Plates: Numerical Analysis of

the Boltzmann Equation for a Hard Sphere Molecule. Rarefied Gas Dynamics:

Theoretical and Computational Techniques. ed. E. P. Muntz, 118, In Proceed­

ings of 16th International Symposium on Rarefied Gas Dynamics, Pasadena,

CA, 1988. Progress in Aeronautics and Astronautics, 70-81.

[58] Su, W., Faucette, R., and Seitz, C., 1985, C Programmers Guide to the COS­

MIC CUBE. Computer Science dept. technical report 5203:TR:85, Calif. Inst.

Tech ..

[59] Usami, M., Fujimoto, T., and Kato, S., 1989, Monte Carlo Simulation on Mass­

Flow Reduction due to Roughness of a Slit Surface. Rarefied Gas Dynamics:

Space-Related Studies. ed. E. P. Muntz, 116, In Proceedings of 16th Interna-

114

tional Symposium on Rarefied Gas Dynamics, Pasadena, CA, 1988. Progress

in Aeronautics and Astronautics, 283-297.

[60] Woronowicz, M. S., and McDonald, J. D., 1989, Application of a Vector­

ized Particle Simulation in High-Speed Near-Continuum Flow. Presented at

the Thermophysics conference, Buffalo, NY, June 12-14. AIAA paper: 89-1665.

[61] Zanetti, G., 1988a, The Hydrodynamics of Lattice Gas Automata. PhD thesis,

University of Chicago dept. of Physics.

[62] Zanetti, G., 1988b, The Macroscopic Behavior of Lattice Gas Automata.

115

Appendix A

DSMC/IDSMC Program User's Guide

This is intended to be a discussion of the programs used to simulate rarefied gas­

dynamics on the Intel iPSC/1 Hypercube computer at Caltech. The description

should be thorough enough to enable a new user, who is familiar with the C pro­

gramming language, the general layout of a distributed memory message passing

computer, and DSMC computations, to run, and perhaps modify, the basic pro­

grams. All programs were meant to be run under the Cosmic Environment for the

iPSC/1 computer, although they can utilize the Reactive Kernel as well.

A.I Overall Program Outline

There are separate programs residing on the host computer (generally a SUN 3/60)

and the cube. The host acts essentially as a manager while the majority of the

simulation is computed by the cube. Within the cube the fl.ow field is divided

among the processors; each receives a rectangular sub-domain. Each processor

then divides its sub-domain among equally sized computational cells around which

the Monte Carlo simulation is based. The particles in a node collide within these

cells and move between cells.

At the end of each time step those particles that pass beyond the bounds of

their present processor are sent as messages to neighboring processors. Periodically,

116

* ... Unique for parallel implementation l
+ ... Unique to IDSMC Initializing Subroutines
-... Unique to DSMC setup(*,!)

!. .. Common to IDSMC and DSMC cube_getdat(!)

I

neighbors(*(lj
make1UT +)

Ens amble Average For
Create ~articles

initia(!)
Nrun Runs resettcal (!)

Send Sampled Data
To Host

sample(Q
send_outf ,!)

zero(!)

Move, Sort And
Collide Particles

Repeat For Nstep move_ptf!J
Time Steps recv_ok(,1/:

send_pt(*, !/:
send_ok(*,.')
reseUocal(fJ

coll(+,-)

Remesh Tiehf~wfield
rems .

Sample nd Send
Data To Host

sample(Q
send:..outf ,!)

ze (/)

Repeat For Nprint
Printouts

F£gure A.1: Flow chart for program in each node. Subroutine names appear in

italics and variable names in bold.

117

the boundaries separating the processors are moved in order to balance some quan­

tity between the processors, such as the number of particles or the computational

time. The boundaries, however, remain regular so that nodes and cells always are

aligned in rectilinear rows and columns.

The code is the same for both the DSMC and IDSMC methods except for

the collision subroutine. In fact, both simulations begin with exactly the same

initial conditions of particles having integer velociti~s and residing at lattice points

m space. In the DSMC simulation the particles quickly collide and take on a

continuum of velocities and positions.

In figure A.1 the overall organization of the cube program is outlined. As in

the remainder of the discussion, the program/subroutine names are italicized and

variable/parameter names are given in boldface.

Upon receiving the start-up data from the host, the cube program calls some

initializing subroutines. Results from separate runs are ensemble averaged to in­

crease the number of particles per cell and reduce the noise. At the beginning of

each run the cube program creates particles and sends macroscopic flow field data

to the host for storage. It then moves the particles, sorts them into the appropriate

nodes and cells and collides them. Periodically, the cube remeshes itself and, more

infrequently, the host creates or retrieves a mesh for the cube before the cube sends

out the next set of flow field data.

What follows are details of the host and cube programs and the important

subroutines they contain.

118

A.2 The Host Program

The host program writes and reads data to and from disk; the cube program only

prints out an occasional status message and passes results to the host. The host

program begins by reading from disk the flow field parameters and passing them

to the cube. Periodically, the cube and the host interact in order to pass out the

results, which are then saved on disk in files called safestep and safemesh. Between

those times, however, the host remains idle. Because results are saved periodically,

the run can be terminated at almost any time and another run begun with only a

minimal loss of information. Not every particle position and velocity can be saved

as there is insufficient disk space, but the macroscopic quantities of each cell are

retained. Thus, the program must be restarted from time zero.

A.2.1 Beginning the Process

Let us proceed through the host program (appendix B) and describe the function

of each portion. The main driving program is called hostmain. All communication

with the cube and all subroutine calls occur from here. Nearly all of the global

variables are defined in files host-2d.h and 2d.def, which are included at the top of

hostmain and each subroutine. At the beginning of hostmain the message descrip­

tors are defined that are later used to send and receive messages from the cube.

Like all variables used throughout the code, these descriptors should have names

that are indicative of what they do or contain. Host-main's first subroutine calls

initialize some variables, read the parameters from the dat file and create the first

mesh. These data are converted to the cube format (Su, 1985) and sent as a mes­

sage to node zero, which passes them on to the other nodes. The data are then

converted back to the host compatible format.

119

A.2.2 Receiving Data from the Cube

The run can now begin in earnest. If this is a restart of an earlier simulation, the

previous run would have already saved some data and some meshes on disk and

these must now be read so that the position of a cell in physical space is the same

from run to run. If this is the first run, a new mesh is generated. The correct mesh

is sent to the cube. The host then sends a 1please send your data' signal to node

zero and waits for node zero to respond. As a safety feature, the host program will

only wait for one hour before it gives up and assumes something went wrong in the

cube. If it receives data before the hour is up, the host converts the data to host

format and continues to ask the other nodes, in sequence, for their data. When

all of the data for time zero have been received the host accumulates them with

the old data (if they exist) in the subroutine acum and then writes them to disk in

subroutine write-safety.

The host has now completed the first cycle. However, a conflict arises. The

host must send a mesh to the cube just before the sending out of data so that

the accumulated data for a given time step always refer to the same mesh. Yet if

the host were to create every mesh, much host/cube interaction would be required,

which would be slow both due to slow communication over the ethernet and to the

host itself being slow. This conflict is resolved by having node zero create the mesh

every cremesh time steps. The mesh during each run is then necessarily different

between host remeshings because the flow field is slightly different. However, just

before the cube is to send out a new data set, it passes the host the information

it needs to make a mesh. The host then makes a mesh if none already exists or

reads an old mesh from disk. The host sends whichever mesh it chose back to the

cube where each node resorts its particles onto the new mesh before it sends out

120

the macroscopic data. Therefore, the cube generally is free to run and remesh on

its own. The host's procedure is seen in the next dozen lines of code in hostmain

where the host receives the X and Y number density profiles and the cube's most

recent mesh and returns a new mesh to the cube.

The host then enters the subroutine read-safety where it may read in another

old data set and mesh in preparation for the next time it receives output data. The

program concludes when the host has received the last data set from the cube.

To summarize the functions of the subroutines called by hostmain:

• Host-set finds the characteristics of the cube with which the host is working.

• Host-getdat opens the dat file and reads in all of the flow field parameters for

the run.

• Host-dat computes several values from those parameters.

• Makechain creates the first mesh, which is assumed to be uniform because the

initial number density distribution is usually uniform. Makechain also sets the

components of the accumulated output matrix to zero.

• Grey is used to map a two- dimensional grid in physical space onto the hyper­

cube computer architecture so that nearest neighbor sub-domains of physical

space are also nearest neighbor processors in the hypercube. This feature is

used to reduce the path length traveled by messages.

• (Host}mkmesh is the host-based program that creates a new mesh. It is nearly

the same as the cube-based (cube)mkmesh, which is discussed below.

121

A.3 The Cube Program

A.3.1 Beginning a Simulation

The cube's code (appendix C) contains the heart of the DSMC/IDSMC methods.

As in the host's code, there is a single central driving program, cube-main. Most

of the variables are specified as external variables and are described in 2d.h, which

is included at the beginning of cube-main and each subroutine. Most variables are

actually defined in 2dcube. 2d.def defines some further quantities that are used in

2dcube and 2d.h to dimension arrays.

As soon as the cube program is spawned to a node, cube-main calls the sub­

routine setup that receives the startup data sent from either the host or a lower

numbered node, and passes the data on to the current node plus one. Setup then

calculates the same quantities as in host-set (above) as well as each node's location

in the grid of nodes and how many nearest neighbor nodes each has. Cube-main

then calls cube-getdat, which calculates several variables (as in host-dat, above),

places the host- generated mesh into the cube mesh, and computes the location of

the cells in the node. Neighbors, the next subroutine called, creates a small vector

containing the node numbers of the eight or so adjacent nodes.

Cube-main next initializes the three random number generators. Rand pro­

vides a floating point random number between O and 1. Ranbits supplies as many

random bits as are requested. Ran-int-le provides a random integer less than or

equal to what is specified and greater than or equal to zero. If the IDSMC is be­

ing used, cube-main will also call make-LUT to create the relative velocity look-up

table.

122

A.3.2 The Basic Direct Simulation Algorithm

With the preliminary computation complete, the runs can begin in the cube. First,

new particles are created in initia based on the specified initial conditions. The

look up table is then re-ordered in scramble(} to insure randomness. Each particle

is sorted into the correct cell in reset-local. Send-ok tells neighboring nodes that the

current node is ready to receive particle message packets. The initial macroscopic

cell quantities are found in sample and are sent out to the host in send-out. Zero

resets the array used to send out the macroscopic data. All of these subroutines,

used only once at the beginning of each run, do not take much time.

The subsequent subroutines, however, are executed during every time step and

consume most of the computational effort. The sequence of events in each processor

is as follows: move all particles according to their present velocity components and

account for particle/boundary interactions in move-pt. If all of the nearest neighbor

processors are ready (checked in recv-ok), send them (in send-pt) any particles that

have moved beyond the sub-domain covered by the present node. Receive any

particles sent from other nodes in recv-pt. Send a 'ready to receive again' signal

to the neighbors in send-ok. Reset all particle indices in reset-local to account for

the newly sent or received particles. In coll perform all particle collisions. Finally,

every cremesh time steps, or just before the macroscopic data is to be sent out to

the host, create a new mesh with cube-remesh. Every nstep time steps accumulate

the data and send it out to the host with the subroutines sample, send-out, and

zero.

This completes the description of the startup and move/collide cycles inher­

ent· to the direct simulation method. The description does, however, gloss over a

fair amount of complexity in the individual subroutines, several of which are now

123

discussed more fully in the order in which they are first called.

A .3.3 Details of Several Subroutines

• Make-LUT(}. Make-LUT is only called if the IDSMC method is being run

and thus it is attached to the end of the IDSMC version of coll. Make-LUT

creates the relative velocity look-up table for the points in the first octant of a

sphere (u, v, w 2: 0). Make-L UT first calculates the number of points on each

sphere within the octant and stores those values in the vector Enum[]. It then

allocates memory for a pointer to all points on each sphere, accounting for the

fact that some spheres have fewer points than others and, thus, require less

memory. It organizes those points such that consecutive points on each sphere

in the table are placed in 1 group or 3, according to their parity. (See the

description of coll below for further detail.) Finally, by calling scramble(), it

scrambles the table while maintaining the parity ordering. Scramble() insures

that any bias created during the construction of the table is removed.

• Initia. Initia is called at the beginning of every run to create new particles.

The initial temperature and, thus, the velocity resolution of the gas is found

from the parameters of the specified flow: the mean free path, time step, and

species mass ratios and concentrations. In order that flows computed with the

DSMC and IDSMC are directly comparable, exactly the same initial particles

are created in both types of simulation. Hence, initia next computes the equi­

librium integer velocity distribution function for each species and stores it in

temp-array[][] as an array of integers that are scaled to 213
(for moderate

resolution but saving storage space). The width of each distribution function

is also found and stored as temp-width[]. Initia then over-writes the node's

124

mesh with the mesh received from the host. In a somewhat convoluted manner,

to account for a possibly non-uniform initial density distribution, the number

of lattice sites and particles in each cell are found. The cell time counters and

reference maximum relative velocities are set. In every cell each particle is then

placed individually at a lattice site, given a mass, (either 1 or mass-h, with a

probability proportional to perc-h, the percentage of heavy particles), and as­

signed an integer velocity drawn by acceptance/rejection from the distributions

in temp-array[][].

• Move-pt. Move-pt is called during every time step to move the particles through

space with their current velocity. It is only in this subroutine that parti­

cle/boundary interactions occur. Although the particles may obtain positions

beyond the limits of their present processor, they are not sent to the other

processors until cube-main calls send-pt.

In move-pt, after the locations of the left-hand wall (the piston) and any ob­

stacle are determined, particles are individually translated. If the boundaries

are to be specular the process jumps far down in the subroutine to a portion

termed "simple step." There, a particle's position is updated and any specular

collisions with a horizontal boundary are performed by reflecting the particle

position and reversing the normal velocity component. Then, if the particle's

path has carried it through any of the (always specular) vertical surfaces, it is

again reflected. To conserve momentum, twice the piston velocity is added to

a particle reflected from the piston face.

If, however, the horizontal boundaries are to be diffuse, particle movements

become complicated. In this case, the particle's initial position and velocity

are saved in temporary variables and the time until the first impact on either

125

the top or bottom surface is found. . If that time is greater than the time

step then the particle will not impact at this time and the process jumps

down to "simple step." Otherwise, a collision will occur shortly. In that case,

the particle is moved to the surface and the time remaining to that particle's

time step is found. If the particle had been moving up and is thus sitting

on the upper surface, three components of its emitted velocity are found (via

acceptance/rejection) from the distribution functions saved in temp-array[][].

The normal (-v) velocity component is taken from a different distribution than

the parallel components. If the particle sits on the lower surface, its emitted v

velocity is similarly positive. If the simulation is with the DSMC method, the

particle velocities are drawn from the correct continuous velocity distributions.

Finally, the code drops down below "simple step" where the particle is moved

off the surface a distance corresponding to its newly assigned velocity and

the time remaining in the time step. If this is an IDSMC simulation, the

new position is rounded to the nearest lattice site. The particle may then be

specularly scattered off the vertical surfaces if it is so destined.

• Send-pt. Send-pt sends particles that have been moved beyond the bounds of

their present processor to neighboring processors. Generally, a processor cov­

ers a sub-domain several mean free paths in each dimension so only a small

percentage of particles will leave a processor during each time step. In order

to reduce the time required to send particles, send-pt has become fairly com­

plicated. It begins by checking whether a particle is to be sent to another

processor either to the right or the left. If so, and if the flow field is "flow

through" and the particle has passed beyond the flow field limits, the parti­

cle's position is corrected by adding or subtracting the flow field width. The X

126

location of the processor to receive the particle is then found by checking one

column of nodes to the right, then one column to the left, then two columns to

the right, and so on. The procedure in the vertical direction is similar except

that the top and bottom boundaries are never "fl.ow through."

If the particle is to be sent from the processor, it is copied into a particle

sending structure and removed from the sending node's inventory before its

departure. It can be sent either as a single particle or as a member of a group.

If the receiving node is not one of the eight or so nearest neighbor nodes,

the particle is sent alone with a flag indicating that it came from a distant

node. The occurrence of such a very fast particle should be extremely rare if

the processors cover a sufficiently large spatial domain. The vast majority of

the particles are only sent to nearest neighbor nodes. If the particle sending

structure is filled with PTSENT particles, it is immediately sent with a flag

indicating that it is not the last such structure of particles to be sent in this

time step. Particles are sent in such groups to reduce the total number of

messages that must be sent (saving time) and to reduce the size of the message

queue that would have to be allocated to allow for the large memory overhead

associated with sending many small messages. Finally, after all particles have

been placed into sending structures and/ or se!_lt, a final structure is sent to all

nearest neighbors with a flag informing them of this fact. Distant nodes are

not so informed, however.

• Recv-pt. Recv-pt is the subroutine correspondin~ to send-pt that receives in­

coming particle packets. Recv-pt continues to receive particles until it receives

a signal from each of the nearest neighbor nodes that it has sent all particles

appropriate to that time step. Upon receiving a particle packet, recv-pt checks

127

the flag to see if the packet is from a. distant node or a neighbor which will

still be sending other packets. In either case it does not count the packet to­

ward fulfilling the signal that all packets have been received. It can happen

that a particle is received from a distant node but that the receiving node

boundaries have moved beyond the particle position since it was sent. This is

extremely rare and the particle is totally discarded. Normal packets are un­

packed into individual particles and the total number of particles in the node

is incremented.

• Coll. Coll is the subroutine where all binary particle collisions occur. It is two

separate subroutines, in fact, for the DSMC and IDSMC implementations. The

correct version is simply swapped into place before the program is compiled.

The beginnings of both versions are similar and are discussed together.

Both versions compute collisions in those cells in which there are two or more

particles of the appropriate mass. Collisions are performed separately for each

of the four collision types in a binary gas mixture. Two different particles are

chosen randomly from among the particles of the correct type within the cell.

The particles' relative velocity components and the sum of the squares of the

components is found and the collision cross section computed. An account is

kept of the highest relative speed found in the last 20 collision attempts and,

every 20 collisions, the cell's maximum relative particle speed is decremented

by an amount that is half the difference between its present value and the

maximum within the last twenty collisions. This procedure compensates for

the situation where the fluid within a given cell may cool with time and the

actual maximum relative velocity decline appreciably. It also slowly dissipates

the effect of a rare, extraordinarily fast collision. In every collision attempt,

128

however, the cell's maximum relative speed is updated if it is less than the

collision value. The particles chosen are then rejected for collision if they lie

on opposite sides of a flow field obstacle or if the square of their relative speed,

normalized by the cell's maximum relative speed squared, is not sufficiently

high when compared to the square of a random number. The relative speed

itself is not used because it saves time to delay calculating the costly square

root until after all possible rejections have occurred. Once a pair has been

accepted for collision the appropriate cell time counter and the total collision

counter are incremented.

If the particles have a different mass coll calls a subroutine, dijf-species-collision(},

to perform the collision. The DSMC and IDSMC versions perform the actual

collisions differently both for the same and different species particles. These

procedures are discussed separately below.

In the DSMC version the collision is performed by the method Bird (1976)

describes. The impact parameter and scattering azimuth angle are chosen ran­

domly. With these, the post-collision relative velocity is computed. Together,

these operations are the slow portion of the DSMC collision as they contain

four slow function calls: rand(), sqrt(), sin(), and cos(). Next, the center of

mass velocity is found and, together with the relative velocity, the post collision

particle velocities are finally computed. If the particles had different masses the

operations would have been similar except that the computation of the center

of mass velocity and the final particle velocities would utilize conservation of

momentum to find the correct values.

In the IDSMC version the actual collision is computed very differently. When

the particles are identical, coll first computes twice the center of mass velocity,

129

(u2cmv, V2cmv, W2cmv), which is an integ.er vector. The parity of the vector is

found and is defined as par:

par = 0 if U2cmv and V2cmv have the same parity ((o,o) or (e,e)) but W2cmv is

different,

par = 1 if U2cmv and W2cmv have the same parity but V2cmv is different,

par = 2 if W2cmv and V2cmv have the same parity but U2cmv is different,

par = 3 if U2cmv' V2cmv and W2cmv have the same parity.

The value of the vectors' parity indicates how far over in the look up table the

list of the valid post collision relative velocities begins. If par = 3, all entries

are valid. If par = 0, only the first third of the entries are valid. If par = 1,

only the second third of the entries are valid and thus the list reference pointer

is shifted. over so that the point chosen will come from the middle third of. the

look up table. If par = 2, only the last third is valid and the list reference

pointer is shifted two thirds of the way over. To save memory, only points

in one octant of a sphere are stored in the look up table. Thus, to obtain

points uniformly distributed through all octants, the point chosen is reflected

randomly across the planes U2cmv' V2cmv' and W2cmv = 0.

The above look up table procedure is equivalent to the slow portion of the

DSMC collision process. Once the relative velocity vector is obtained, the post

collision particle velocities are easily found from the center of mass velocity.

If the particles have a different mass, diff-spec£es-co/lision(} is called. All points

on the sphere of the heavy particle tb.at lie on the sub-grid are considered

possible candidates for the post-collision relative velocity. Some, and perhaps

many, of the points must be rejected, however, because while they are points

on the sphere on a sub-grid they do not lie on integer points on the regular

130

velocity grid. A point is randomly chosen and the rejection process is carried

out efficiently as follows: Each velocity component is considered independently

in turn. The u component is reflected randomly across the u = 0 plane.

If it lies on an integer location on the main grid, it is accepted. The test

for its acceptability includes a modulus check, which is computed once and

stored in a small vector. If u fails the test, it is reflected across the u = 0

plane (to become -u) and is again tested. If it passes, it is accepted, but if

it again fails, the whole point, (u,v,w), is rejected and a new point chosen.

When each component individually passes the test the whole point is finally

accepted. The ratio of accepted to rejected points depends on the mass ratio

of the particles involved. Again, once the relative velocity is obtained, the post

collision particle velocities are found simply from conservation of momentum.

The long division that is required is computed once and stored in another small

vector.

In both the DSMC and IDSMC versions of coll, the collision process will con­

tinue until the cell time in each cell in the node is brought up to the overall

flow time.

• Cube-remesh. Cube-remesh is called from cube-main to remesh the grid of

nodes every cremesh time steps or just before the host is to be sent the

macroscopic data. Cube-remesh begins by calling subroutine send-out-scale,

which accumulates the density profiles into vectors called xscale[] and yscale []

and sends them to node zero. The other nodes wait for node zero to send back

the new mesh. Upon receiving the mesh, each node computes the new size and

locations of its cells and then goes through the subroutine sequence recv-ok,

send-pt, recv-pt, send-ok, and reset-local to resort the particles onto the new

131

mesh. This sequence is essentially the same as that carried out by cube-main

after each movement of the particles.

• Send-out-scale. Send-out-scale is a complicated subroutine designed to effi­

ciently accumulate the number density profiles into node zero. It is worth

noting here that if another positive quantity, such as the number density of a

single species or the particle temperature, is substituted for the number density

in send-out-scale, the mesh created will be such as to balance that quantity

between the nodes. It is assumed that there is a rectangular field of nodes.

Each node begins by summing all of the particles in each row and column of

cells it contains into the two vectors myxscale[] and myyscale [], which span

the width and height of the entire field of cells. If a node is in the bottom row

it then accumulates its myscale[] data into the scale[] sending structures and

passes the structures to the node above. The other nodes wait for that data,

accumulate it with their own data, and again pass the combination on to the

node above. Nodes in the top row wait for data from the nodes below and to

the right and then pass their accumulated data to the node to their left. Ulti­

mately, having received data from the node below and the node to the right,

node zero adds in its data and the flow field profiles are complete. The process

of accumulating the data is thus performed with moderate parallelism. If the

host is to create the mesh, node zero sends the host the profiles and the present

mesh and awaits the new mesh. Otherwise, node zero calls cube-mkmesh to

create the mesh. In either case, node zero finally distributes the new mesh to

all the other nodes before returning from send-out-scale.

• Cube-mkmesh. Cube-mkmesh is the subroutine that actually scans the accu­

mulated profiles to create the new mesh. It begins by calculating where the

132

left-hand flow field boundary, the piston, lies. It then sums all of the entries

in the xscale [] profile to find the total number of particles (or whatever the

profile contains) in the flow field and the number of particles to be placed in

each column of nodes. Then, xscale [] is scanned to find the first non-zero

entry, which should occur at a location coinciding with the most recent po­

sition of the piston. The left-most new node boundary, local-xmark[O], is

always placed at the present location of the piston. Cube-mkmesh then begins

summing particles (into sum) for the new first column of nodes by scanning

along xscale[] until it can proceed no further without sum overfilling that col­

umn. The right-hand boundary for the column is then found by interpolating

between the boundaries of the column of cells which would cause an overflow.

Sum is corrected and the next column of nodes is considered. No entries in

xscale[] beyond the first few should be zero and the right-hand side of the

flow field should not be reached before all particles have been accounted for.

The right-hand boundary of the right-most column of nodes is always placed

exactly on the flow field boundary.

The mesh in the X direction is smoothed hremesh times. Smoothing con­

sists simply of averaging the width of each column of nodes with that of its

neighboring columns. Smoothing is necessary to alleviate an oscillation that

was found to occur behind strong unsteady shocks which pass from regions

with small cells into regions with large cells. In a smoothed mesh the cell size

changes gradually through the shock, but there can be a memory and work

load imbalance between processors because a smoothed mesh will not exactly

reflect the actual number density profiles. A smoothed node just downstream

of a shock may cover too large of a domain and become flooded with particles.

133

The procedure for remeshing in the vertical direction is the same as in the

horizontal direction except that the top and bottom flow boundaries remain

fixed and there is no need to search for the first non-empty row of cells (all

should contain particles). Also, the mesh is presently not smoothed in the Y

direction.

A.4 Running the Code

That completes the description of the different subroutines. This guide concludes

with a discussion of how to actually run the program using the IDSMC method to

compute a shock wave passing over an obstacle.

A.4.1 Determining the Values in 2d.def

First, it is necessary to put the IDSMC version of the collision routine in place

of coll. Then, set the dimensions of the arrays to be used as seen in 2d.def in

appendix B.

The values shown are as they would appear in the file. PTSENT is sized

such that each particle package is of a length corresponding the maximum message

length that can be sent as a single unit in the Intel iPSC/1 (about 31 for the DSMC

and 60 to 70 for the IDSMC). NXCELL and NYCELL are the number of cells in

the X and Y directions, respectively, in each node. NM is the maximum number of

particles permitted in each node and must be reduced if the DSMC version is used,

because each particle would consume more space. NNODES is the number of nodes

to be used and NDXMAX and NDYMAX are the number of nodes in the X and Y

directions. LATICE and VTYPE are set to 1 as flags indicating that the particles

are to remain on a lattice and that they have integer velocities. It is possible to

134

run the program with the particles having integer velocities but not traveling on

the spatial lattice. In that case, their positions must be defined as floats and they

may be created in initia at any point in space. A gas constant, GAMMA, of 1.667

corresponds to a gas of hard smooth spheres having three (VELDIM) translational

degrees of freedom. Setting the maximum look up table sphere radius, LUTRAD,

as 38 is adequate for a moderate velocity resolution simulation but it should be

larger for higher resolution or some high speed collisions will exceed the size of the

table. Remember, however, that the memory consumed by the table varies as the

cube of the sphere radius. The three typedef lines are used to define what variable

type are the velocities, positions, and times.

A.4.2 Determining the Values in dat

2d.def must b.e complete before either the host or the cube programs are compiled.

The flow field parameters in the dat file (also in appendix B), however, are read by

the host program during the run and may be changed at any time prior to that.

In the dat file each variable name is placed directly below its value. The whole

calculation is repeated for runmax runs to obtain a smooth ensemble averaged

answer. Nprint is the number of times during each run that data is to be saved

on disk. Each file may be long (10 to 10000 kbytes) so there must be sufficient

disk space available. N step is the number of time steps between each incidence

when data is so saved. Ncx and ncy are the number of cells in the X and Y

directions in each node, respectively, and must be less than or equal to NDXMAX

and NDYMAX. Mc is the initial number of particles in each cell. It should be large

enough that the more rarefied species (if there is more than one) always has at least

20 or so particles per cell to ensure that the time counter is incremented properly.

It should also be small enough so that at no time will any node have to contain

135

more than NM particles. In considering this second qualification, the anticipated

flow field, remeshing, and statistical fluctuations must all be considered as potential

causes of a node becoming swamped. Seed is the random number generator seed

and should be a moderately sized integer.

Xm-glob and ym-glob are the physical right and top boundaries of the flow

field. They should be half integers for the IDSMC but may be any floating point

number for the DSMC. The left and lower boundaries are similarly specified as x­

left and y-bot. The size of the flow field should be such that each node's domain is

at least a few mean free paths in both directions so that in one time step it is very

unlikely that a particle will jump completely over a node. The field should also be

sized so that, together with the number of cells in each node and the number of

nodes, the cells come out as a desired size for the simulation planned. Finally, for

the IDSMC, the flow field must be large enough that, no matter how the cells move

around and change size during remeshing, at no time will any column or row of cells

contain no lattice sites. That is, the width and height of each cell must always be

greater than one.

Dtm is the time step. For the DSMC method it may be a float but for a

lattice gas it must be an integer (which is invariably 1). Lam-zero is the size of a

mean free path, (the number of lattice sites per mean free path in the ID SMC), and

is used to determine the initial particle velocity resolution. Ts-ratio is the ratio of

the time step to the mean collision time in the quiescent initial fluid. It too is used

to determine the initial particle velocity resolution. It should be sized so that in

the hottest portion of the flow to be calculated, where the collision rate is highest,

the ratio is still somewhat less than one. For example, if the temperature behind a

shock is expected to be about four times the initial temperature, ts-ratio should

be about half of the 0.5, which should be adequate in a flow with no significant

136

temperature rise.

Tw is the temperature ratio of the top surface to the bottom surface and

it may be a floating point number. Uw is the X velocity of the top and bottom

surfaces; it should be an integer for an IDSMC simulation. U-enter is the speed

with which the piston will move to the right. For the DSMC it may be a floating

point number but for the IDSMC it should be an integer or a half-integer because

the particles that rebound from the piston face do so with twice the piston velocity

added to their reflected velocity and the final velocity must be an integer. Di.ff is a

flag used in the subroutine move-pt to indicate whether the horizontal surfaces are

to be specular (< 0) or diffuse (~ 0).

Obst-ht is the height of the obstacle that is placed in the flow. It is set to zero

for simple undisturbed flows and to a height less than the flow field height otherwise:

The obstacle X location is given in obst-a, which should be a half integer for the

IDSMC. The obstacle has no thickness and may lie anywhere within a cell. Pstop

is the X location where the piston will abruptly stop moving. It should be a half

integer location in the IDSMC. It must also be somewhat to the left of the obstacle

position and the right hand flow boundary to avoid a catastrophic squeezing of the

flow.

Hremesh is the number of times the mesh is smoothed. If hremesh is set

to zero the mesh will not be smoothed. The more the mesh is smoothed the worse

the load balancing effect of remeshing becomes. Generally, an hremesh value of

1 or 2 is used for high Mach number shocks to allow the mesh at some location to

begin to adapt to the presence of the shock before it arrives. Without smoothing,

a significant oscillation in the macroscopic quantities can occur behind the shock.

Cremesh is the number of time steps that occur between remeshings within the

cube. For dynamic flow fields it should be 1 or 2 while for more sedate flows it can

137

be 10 or more. If remeshing is not sufficiently frequent and the flow gets far ahead

of the mesh, when remeshing finally does occur, huge numbers of particles will be

passed between nodes and some nodes' message queues may become saturated and

the program may hang. Time-avg is the number of printouts after which no new

saf estep files are created and the following results are accumulated into the last

such file. This allows for time averaging of an initially unsteady flow (i.e., the heat

transfer problem), which later becomes steady.

Mass-h is the mass of the heavy particle species. The light species is always

assumed to be of mass 1. Mass-h can be any positive value for a DSMC simulation

but must be a fairly small integer for a moderate to low velocity resolution IDSMC

simulation. A safe rule is that the light gas velocity distribution function at equilib­

rium should be mass-h times as wide as what would be needed for a single species

gas or there may be too few possible collisions between the light and the heavy

particles. Perc-h is the initial percentage of heavy particles. When a particle is

created, a random number is compared to perc-h to determine if the particle is to

be heavy or light; hence, the value of perc-h can be any floating point value. It

should not be much smaller than 0.05 or larger than .95, however, or there will be

so few of the rare species that the time counter will not be incremented properly

during a rare species collision. Dia-rat is the ratio of the diameters of the heavy

to the light particles.

That concludes the description of the program. To run the compiled version

simply get the proper sized hypercube with "getcube 7 ipsc cosmic," spawn the

cubemain code with "spawn cubemain -1 0" and execute the host program with

"ho,stmain."

138

Appendix B

Program For The Host

File name: Page:

2d.def 139

<lat 140

host-2d.h 141

host-main.c 143

host-set.c 146

host-getdat.c 147

host-dat.c 148

host-rnkchain.c 149

acum.c 150

host-mkmesh.c 151

grey.c 155

pr-safety.c 156

139

2d.def

/ • fn 2d. def are defined several quantities used as flags or to
• dimension arrays in host_2d.h, 2d.h and 2dcube.c.
•;

#define
#define
#define
#define
#define
#define

MAXNAM
MAXPRT
PTSENT
l\i'XCELL
NYCELL
NM

60
50
31
6
6
10000

128
16
8

/ • Max. number of characters in a line in dat • /
/ • Max number of printouts per nrun • nprint • /
/ • Max # of particles sent in a given message • /
/ • Max allowed number of x-cells per node • /
/ • Max allowed number of y-cells per node*/
j• Max allowed number of particles per node • /

/ • -max of - 6,/20 for DSMC, 26,000 for !DSMC • /
/ • Max number of nodes that will be used • /
/ • Number of nodes in x- direction • /
/ • Number of nodes in y- direction • /

2d.def

#define
#define
#define
#define
#define
#define
#define
#define
typedef
typedef
typedef

NNODES
NDXMAX
NDYMAX
LATICE
VTYPE
GAMMA
VELDIM
LUTRAD

1 / • Latice = 1 for pts. to remain on lattice, 0 otherwise • /
I
I 666
3
38

char veltype;
int postype,
int timetype;

Oct 1 17:94 1989

/ • Vtype is velocity type, 1 = integer, 0 float • /
/* Ratio of specific heats • /
/ • Number of random velocity components simulated • /
/ • The max radius of L UT sphere • /

Page 1 nf '!d d,-f

dat 140 dat

1 10 30 6 6 150 973
runmax nprint nstep ncx ncy me seed
1000.5 1000.5 1.0 10.00 0.2 1.00 1.00
xm_glob ym_glob dtm lam zer ts rat lat_sp lat_jump
0. 1. 0. 1.
uw Tw u init u enter
-1.0
diff
400.4 500.5
obs ht obs a
400-:-5 0. 0 2 100
pstop temp hremesh cremesh time_ avg
0.5 0.5 1. 0. 1.
x left y_bot mass h perc_h dia rat

Mar 23 13:04 1989 Page 1 of dat

141

host_2d.h

/ • Host 2d.h is included with the host program to define the
• global variables. Many of the variables have the same name
• as in the cube program and are not described again.
•;

#include <std1oh>
#include <mathh>

#include "2d.def"

FILE *datptr;

short dim,s1ze,chsize,cwsize;
long tot field mo!;
float pi2; sq2;
float xrn, yrn, chx, chy, time;

struct rneshlong {
/ • these contain the accumulated number of particles in the rows and

• columns of cells of the whole flow field just before re-meshing
*/

},

long xscale[NDXMAX~CELL + 1/;
long yscale[NDYMAX•NYCELL + Ij;

struct meshlong scale;

struct meshfit {
float xrnark[NDXMAX+Ij, ymark[NDYMAX+lj,

/ • xmark and ymark contain the , new' node positions the mesh should
• take and are sent down to the cube
•;

} mesh[MAXPRT];

struct outsht { / • Integer variables output from the cube • /
short npart[NXCELLl[NYCELL];
short npart_h[NXCELLl[NYCELL];

/ • short nul/1; May be needed when there are odd numbers
in NXCELL and NYCELL, like 5x5 but not for 2x20

•;
},

struct outfit { / • Floating pt variables output from the cube * /
float cellx[NXCELL], celly[NYCELL];
float vx[NXCELLl[NYCELL];
float vy[NXCELLl[NYCELL];
float kinen[NXCELLl[NYCELL];
float kinenx[NXCELLj[NYCELL];
float kineny/NXCELLJ/NYCELL],
float kinenz NXCELLj NYCELL],

},

struct output {
struct outsht s;
struct outfit f;

out[NNODES/;

struct acoutlng {

},

long npart[NXCELLl[NYCELL[;
long npart_h[NXCELL][NYCELLJ;

struct acoutfit {

Mar 28 20:05 1989

host_2d.h

Page 1 of host_:!d.h

142

host_2d.h host_2d.h

},

float cellx[NXCELLJ, celly[NYCELLi,
float vx[NXCELL]INYCELLj,
float vy[NXCELL]/NYCELL),
float kinen[NXCELLl[NYCELL];
float kinenx[NXCELL] [NYCELLJ,
float kinenyJNXCELLJ[NYCELLj,
float kinenz[NXCELLJ [NYCELLJ,

struct acoutput { / • Accumulated variables, longs and floats • /
struct acoutlng I;
struct acoutflt f;

acout[NNODES];

struct heading {
short numruns, numsteps;

} acum_header, mesh_header;

/ • Input variables • /
struct insht {

},

short nprmt, nstep, seed;
short me, runmax, ncx, ncy;
short hremesh, cremesh, time _avg;

struct inflt {

},

float xm _glob, ym _glob, x Jeft, y _bot, mass_h, perc _h, diameter _!atio;
float Tw, uw, u init, u enter, me enter;
float lamda _zero,- ts _!atio, lattice _space, lattice _Jump;
float dtm, d1ff;
float obs_height, obs_a;
float pstcp, temp;
float nodehe1ght[NDYMAX + !J, nodew1dth[NDXMAX + lJ;

struct mput {

} in;

struct insht d;
struct inflt f;

Nov 16 16:211989 Page 2 of host_,'d h

143

host_main.c host_main.c

/ • This is the primary host program which is responsible for: inputing the
• run data, sending the run data to the cube, receiving and storing the

actual output data periodically, creating/ recovering a new mesh and
sending it down to the cube and finally printing out all the accumulated
data.

•;
#include <stdioh>
#include <signal.h>
#include <cube /cosmic h>
#include "host_2d.h"

char dat[j = {"dat"},

alarmed() { fprintf(stderr,"Alarm clock Received\n"); exit(--l), }

main()
{

FILE 'safestrm;
char fname[80j;
short nrun, outnp;
short i, rrr;
extern short cwdirn;
MSGDESC in d;
MSGDESC out ini d;
MSGDESC out-step d,
MSGDESC pis sd; -
MSGDESC new mesh,
MSGDESC last cube mesh,
MSGDESC outjcale]"d;

signal(SIGALRM,alarmed);

/ • Here are defined the message descriptors • /
/ • which are used in the Cosmic system • /

sdesc (&m_d, 0, 0, 0, &in, sizeof(in));
sdesc (&out_Jni_d, 0, 0, 0, 0, sizeor(struct output));
sdesc (&out_step_d, 0, 0, 0, 0, sizeof'(struct output));
sdesc (&pls_sd, 0, 0, 100, 0, O);
sdesc (&new _mesh, 0, 0, 12345, 0, sizeor(struct meshflt));
sdesc (&last_cube_mesh, 0, 0, 12345, 0, sizeof'(struct meshflt));
sdesc (&out_scale_Jd, 0, 0, 1717, &scale, sizeof(struct rneshlong));

/ • These describe what the descriptors consist of • /

cosmic_Jnit(HOST,O);
host -?et();
host _getdat();
host _dat();
mkchain();

/ • Necessary to use cosmic kernal • /
/ • Here are calculated the cube's dimensions • /
/ • Now read in run data from file , dat' • /
/ • Calculate some parameters from the data • /
/ • Create the first mesh. • /

/ • Here are initialized data in the host • /

htocs(&in.d, sizeor(struct msht)/sizeor(short));
htocf(&in.f, sizeor(struct inflt) /sizeof(float));

/ • Convert the input data to cube format • /
sendb(&in_d); / • Send the input data to node zero who will pass

• it on to the other nodes. • /
ctohs(&in.d, sizeof(struct insht)/sizeor(short));
ctohf(&in.1, sizeof'(struct inflt)/sizeor(float));

/ • Convert the input data back to host format • /

/ • Loop over sample sets, for run max runs • /
for (nrun = O; nrun < in d runrnax,) {

alarmed

main

Oct 1 17:94 1989 Page 1 of ho.st_maln. c

host_rnain.c

mkcham();
ror (rrr

Oct 1 17:94 1989

144 host_rnain.c

/ • Just to be sure • /
1; rrr- && nrun < m.d.runmax; nrun-r+) {

printf("\nRun number %hd\n", nrun); fflush(stdout),
time = 0.,
outnp = 0; /' This ,·s the output number '/

/ • ff it exists, read in acum data for
• first time step from the file
• to accumulate new data in
• addition to old data. • /

sprintf(fnarne, "safestep.%d" ,outnp);
if((safestrm = fopen(fname,"r")) I= NULL) {

fread ((char •)&acum_header,sizeof(acum_header), l ,safestrm);
!read ((char •)acout,sizeof(acout), l ,salestrm);
f close(saf estrm);

/ • If it exists, read in mesh
• data for first time step '/

mesh header numsteps = -l.;
sprinti(fname, "safemesh");
if((salestrm = lopen(fname,"r")) I= NULL) {

}

fread ((char •)&mesh _header,sizeof(mesh _header), l ,safestrm);
!read ((char •)mesh,sizeof'(mesh), l ,safestrm);
lclose(safestrm);

pnntf("ached.nrs=%d, mhed numst= %d\n",
acum_header numruns, mesh_header numsteps);

fflush(stdout);

/ • Now, receive data at time
for (i=0; i<NNODES; i++)

pis sci.node = i,
sendb(&pls_sd);

0 from each node • /

/ • Send signal to node i that

}

• host is ready to receive
• data • /

out mt d type = 1 + 20000;
outJnCd bu! = (char •)&out[i),
alarm(3600), recvb(&out_Jnt _d); alarm(0);

; • In case nothing is received within
• 1 hour, terminate run in failure. • /

ctohs(&out[ij.s, sizeof(struct outsht) /sizeof(short));
ctohf(&out[ij.f, sizeof(struct outfit) /sizeof(float));

/ • Convert cube data to host format. • /

acum(); / • Accumulate received data in acum array • /
writeJ,afety(outnp); / • Write received results to disk • /
alarm(3600); recvb(&outJ,cale_rd), alarm(0);

/ • Receive two mesh scaling vectors within an hour
• or end in failure '/

ctohl(&scale,sizeof'(struct meshlong) /sizeof(long));
j • Convert scaling vectors to host format • /

last_cube_mesh buf = (char •)&mesh[tv1A..XPRT-J.j;
alarm(3600); recvb(&last _cube _mesh); a!arm(0);

/ • Receive the mesh the cube last
• generated into the last mesh(/
• space availible, always.
•j

ctohf(&mesh[MAXPRT-41, sizeof(struct meshflt) /sizeof(float));
/' Convert cube· s mesh to host format • /

ror(i=0; 1<cws1ze, t++)
m.f.nodew1dth[i) mesh[MA..XPRT-lj .xmark[1j,

for(i=0; i<chs1ie; 1-,.+)
m I nodehe1ght[1j meshiMA..XPRT-1).ymark[ij,

main

Page 2 of host_mn1n r

host_main.c 145 host_ma1n .c

/ • Update nodexxx, used in host mkmesh. c • /
mkmesh(outnp+ I). / • .\fake a new mesh-,;
htocf(&mesh[lj, sizeof(struct meshflt) /sizeof(float));

/ • Convert new mesh to cube format • /
new _mesh buf = (char •)&mesh[Ii.
sendb(&new mesh). /' Send new mesh to noae zero •;
ctohf(&meshT!J. sizeof(struct meshflt) /sizeof(float));

/ • Convert new mesh back to host format • /
read~afety(outnp); / • read in data accumulated

• from files for safe keeping • /

/ • In the following section the same procedure as used above for time O is used to receive
• data from the cube, make meshes and store the data so the comments are
• not repeated.

/ • nprint prints per run • /
for (outnp = I, outnp < (m.d.nprint + I); outnp++)

time = outnp • m.d.nstep • in.f.dtm;
/ • Here, receive data at other times from each node • /
for (1=0; i<NNODES; 1++) {

pis sd.node = 1;
sendb(&pls_§d);
out step d type = 1 + 20000;
out-step -d buf = (char •)&out[i],
alarm(36O0);
recvb(&out step d).
alarm(0), - -

ctohs(&out[1).s, sizeof(struct outsht)/sizeof(short));
ctohf(&out[1j.f, sizeof(struct outflt)/sizeof(float)),
}
acum(),
write _safety(outnp),

) • Write the ;ust accumulated results to disk • /
ii'(outnp I= m d.npnnt) {

alarm(3600); rec vb(&out _scale ..Id); alarm(0);
ctohl(&scale,sizeof(struct mesh long) /sizeol'(long));
last_cube_mesh buf = (char •)&mesh[MAXPRT-Ij;
if(outnp I= m d nprmt) {

alarm(3600);
recvb(&last _cube _mesh);
alarm(0),
/ • Receive two mesh scaling vectors within

• two hrs or end in failure • /
ctohf(&mesh[MAXPRT-1:,

sizeof(struct meshflt) /sizeof(float));
for(i=0, i<cws1ze. 1+-"-)

inf nodew1dthi11 mesh[MA..XPRT-Ij xmark[ij;
for(i=0, i<chs1ze. 1++)

m.f nodehe1ght,d mesh[MA.XPRT-li.ymark[ij;
mkmesh(outnp+l). ·
htocf(&mesh[outnp+ l j aizeof(struct meshflt) /sizeof(float));
new _mesh buf = (char ')&mesh[outnp+ Ij;
il'(outnp I= m d npnntl oendb(&new_mesh);
ctohf(&mesh[outnp+ li sizeol'(struct meshflt) /sizeof(float));
read_Jafety(outnp). / • read in data accumulated

• from files for safe keeping • /

cosmic _exit(0);

.ma·m

Mar 22 11:97 1989 Page 3 of ho.st_main r

host_set.c 146

/ • This subroutine calculates characterisfrcs of the Cube to which
• Host will send data
'/

#include <cube/cosmic h>
#include "host_2d.h"

short chd1m, cwd1m:

host _set()
{

int I, I,

dim = cubedim(),
size = I < < dim,
chsize = NDYMAX;
cws1ze = NDXMAX;

J = NDYMAX;

/ • Cube dimension, i. e, 64 nodes, dim = 6 • /

/ • cube - height - size, num of nodes • /
/ • cube - width - size, num of nodes • /

for(i=O; 1(1&!); i++, i>>=l){}
chdim 1; / • cube - height - dimension • /

j = NDXMAX,
for(1=0; i(J&!); 1++, J>>=l){)

cwdim = 1, / • cube - width - dimension • /

host_set.c

host_set

Mar 28 20.-U 1989 Page 1 of host_sel r

host_getdat.c 147 host_getdat.c

/' This subroutine opens the data file and reads and writes on a output file '/

#include <cube/cosmic h>
#include "host_2d h"

host _Jsetdat{)
{

char dumjMAXNAM),
extern char dat[j, printr[];

if ((datptr = fopen(dat, "r")) NULL) {
print!("Cant open %s\n", dat);
exit(1),

}
fscanf(datptr, "%hd\ t%hd\ t%hd\t%hd\ t%hd\t%hd\ t%hd\n",

&m.d.runmax, &in.d.nprint, &in.d.nstep,
&m.d ncx, &m.d ncy, &in.d.mc, &ind seed};

pnntf(" runrnax=%3hd nprint=%3hd nstep =%3hd
in.d.runmax, m.d nprint, m.d.nstep);

pnntf(" ncx=%3hd ", m.d.ncx);
pnntf("ncy=%3hd me =%3hd seed=%3hd\n",

ind ncy, in.cl.me, m.d.seed);
fgets(dum, MAXNAM, datptr);

fscanl(datptr, "%f\t%1\t%f\t%f\t%f\t%1\t%f\n", &m l.xrn_glob, &in.1.ym_glob,

host_getdat

&m .f dtm,&in. f .lamda _zero,&in f. ts _Fatio,&in L lattice _space, &in. f .lattice.Jump),
printf("xm __glob=%5 .21 ym _Jslob=%5.2f dtm=%5 .41\n",

in.f .xm_Jslob, in.1.ym_glob, m.f.dtm);
prmtf(" lamda _zero=%5 21 ts 3at10=%S 21 lattice _space=%5 21 lattice .J ump=%.S 21\n",

m.f.lamda _zero, m f.ts 3at10,in !lattice _space,m I.lattice _Jump);
fgets(dum, MAXNAM, datptr);

fscanf(datptr, "%l\t%f\t%f\t%f\n",
&m.f uw, &in.fTw, &m f.u_mit, &in.f.u_enter);

prmtf("uw = %5 21 Tw = %5 21\n", in.f.uw, in.1.Tw);
pnntf("u.Jnit = %5.4f u_enter = %5.41\n", in.I U_Jrnt, m f.u_enter);
fgets(dum, MA.XNAM, datptr);

fscanf(datptr, "%1\n", &m.f.diff);
pnntf(" diff = %5.2f\n", in.fd1ff);

fgets(dum, MAXNAM, datptr);
fscanf(datptr, "%f\t%f\n", &in.f.obs_height,&in.f.obs_a);
print!(" obs _height= %3 lf obs _a=%3 lf\n", in.I.obs _height,in.f .obs_a);

fgets(dum, MAXNAM, datptr);
!scan!(datptr, "%f\t%f\ t%hd\ t%hd\ t%hd\n",

&in.I .pstop,&in. f. temp, &in. d hremesh,& in.d. cremesh,&m d .time _avg);
printf("pstop = %3.lf temp = %3 3f hremesh = %d cremesh = %d time_avg %d\n"

in. f. pstop, m. L temp,in .d.hremesh,in. d.cremesh, in.d time _avg);

fgets(dum, MAXNAM, datptr),
fscanf(datptr, "%f\t%f\t%f\t%f\t%f\n",

&in.1.xjeft, &in.Ly _bot, &in.fmass_h, &in f.perc_h, &m.fdiameter_Fatio);
printf("xJeft =%2 2!, y _bot =%2.2f, mass_h =%2 21, perc_h =%2.21 diam ratio =%2 2f\n\n"

in.f xJelt, in.l.y _bot, m f mass_h,m l.perc_h, m.f.diameter_Fatio);

printf("Final number of coll1S1C,n times = %1\n",
inf ts_ratio'{float)m d.nstep'{float)in.d.nprmt);

fflush(stdout);

Mar 28 20:12 1989 Page 1 of host...getd,Lt r

host_dat.c
148

/ • This subroutine calculates several parameters from data • /

#include <cube/cosmic h>
#include "host_Zd.h"

host _dat()
{

pt2 2 ' 3 14159;
sq2 sqrt(2.);
xm (in.f.xm_glob-in.f xJeft) / cwsize;
ym (in f ym _glob-m Ly _bot) / chs1ze;
chx xm / in.d.ncx;
chy = ym / in.d ncy;

Oct 1 17:35 1989

host_dat.c

host_dat

Page 1 of host_dat. c

host_mkchain.c
149

host_mkchain.c

#include <cube/cosmic h>
#include "host 2d.h"

mkchain()
{

int 1, m, i, nx, ny;

/ * Here host calculates a first mesh which is passed to the cube.

*/
in f nodehe1ght[O) = m.f y _bot; / * The bottom of the field * /

for (i=O; 1<=cws1ze; i++)
mesh[O).xmark[1) = in.f.nodew1dth[i) = rn f.xJeft + (float)1 * xm,
/ * The mesh is evenly spaced in the x direction initially * /

for (i=O; i<=chsize; i++)
mesh[O).ymark[i) = in.f.nodehe1ght[i) = in f.y _bot + (float)i * ym,
/ * The mesh is evenly spaced in the y direction initially * /

/ * This is to zero the acout matrix.. * /
for (1 = O; 1 < chsize; i++) {

for (j = O; J < cws1ze; J ++) {
m = who(J,i); / * Node /' m considering * /
for (nx = 0, nx < rn d ncx, nx++) {

for (ny = O; ny < m.d ncy; ny++) {
acout mJ I npart[nx)[ny) = 0,
acout m! lnpart_h[nx)[ny) = 0,
acout ml f vx(nx)[ny) = 0,
acout mj f vy[nx)[nyl = 0.,
acout mj f kmen[nx) nyj = 0,
acout mj f kmenx[nxj[ny) 0,
acout m1'· f kmeny[nx)[ny) = 0 ,
acout m f.kmenz[nxj[nyj = 0,

mkchain

Oct 1 17:35 1989 Page 1 of host_mkcha,n c

acum.c
150

/ • This subroutine accumulates data output from the cube every
• nprint time steps. These values, for a given time, are
* written to disk i'n write _safety. 1 /

#include <cube/cosm1ch>
#include "host 2d h"

acum()
{

short 1, J, m. nx, ny;

ror (1 = O; i < chsize, 1++) (/ • For each row of nodes... • /

acum.c

acum

for (J = O; J < cwsize; j ++) (/ • For each co/mn of nodeo.. • /

Mar 28 20:17 1989

m = who(i,i); / • Node I'm considering • /
for (nx = O; nx < in.d.ncx; nx++) {

acout[m).f.cellx[nx) = out[m).f.cellx[nx);
for (ny = O; ny < in.d ncy; ny++) (

/ • For each cell (nx/(nyj.... • /
acoutlm .1.npart[nx)lny) += out[ml.s.npart[nx)lny);
acout m l.npart_h[nx]lny) += out m) .s.npart _h[nx)[ny);
acoutlm .f.vx[nx)[ny) += out[m) f.vx[nxJlny),
acout m f.vy[nx)[nyl += out[m) f.vy[nx)lny),
acout m f.kinen[nx) ny) += out[m).f.kinen[nx)lnyj;
acoutlm f.kmenx[nx) [ny) += out[mj.f.kmenx[nx)lnyj,
acout ml f.kmeny[nx)lnyl += out[mj.f.kmeny[nx)lnyj;
acout m .f kmenz[nx)lny += out[mj f .kmenz[nx) jnyj;
acout[m f.celly[nyj = out[mj f.cellyfny);

Page 1 of acu111 r

host_mkmesh.c
151

host_mkmesh.c

! • This routine creates a new mesh based on the particle distribution
• sent up from the cube. This routine is nearly the same as that used
• within the cube, cube mkmesh. c, which is more fully commented . . / -

#include <cube/cosmic h>
#include "host 2d.h"

float dif Jocal _xmark(NDXMAX + 1\,
float temp _xmark(NDXMAX+ ti;

mkmesh(outnp)
short outnp;

int i, J, k, i begm, k begm, dum;
int numpercolmn, numperrow, sum;
float cellwidth, cellheight, stuf, pistonpos;
float const;

il'(outnp <= mesh_header numsteps) {
pnntf("In host_mkmesh, went to'leave mesh alone· ,ountp=%d,header=%d\n",
outnp, mesh_header.numsteps);
ffl ush(stdou t);
goto leave_mesh_a!one;

j • So that only one set of meshes
• is used • j

p1stonpos = in.f.x left + ((outnp-1.) •in.d.nstep +
m d.nstep) • m.fu_enter • in fdtm,

if(pistonpos > in f. pstop) p1stonpos = in. f pstop;
printf(" piston at %f\n" ,pistonpos); fflush(stdout);

tot field mol = 0 ,
for(i=O; 1<NDXMAX*in.d.ncx; i++) tot_field_mol += scale.xscale[i],
numpercolmn = (long)(tot_field_mol) / NDXMAX + 0 5;

/ * # of particles
in one column of nodes • /

numperrow = (long)(tot_field_mol) / NDYMAX + 0 5,
/ • # of particles

in one row of nodes • /

for(i=O; i < =cwsize; i++) { / • xscale is searched for its first non-zero
member and the mesh is started just 2
cells before there • /

cellwidth = (in.f.nodewidth(1+l) - in.f nodewidth[1))/in d.ncx;
for(k=0; k< in.d.ncx; k++) {

ir(scale.xscale(k + i *in d.ncx) > 0) {
const = k - 2; ir(const < O) const = 0,
mesh(outnp).xmark[O) = inf nodew1dth(i)+ const*cellw1dth;
if(k == 0 && 1 I= 0) mesh(outnpj.xmark(Oj = m.fnodew1dth(1;

(in.fnodew1dth(i]-in.f.nodew1dth(i-1)) /in d.ncx;
if(k == O && 1 == o) mesh(outnp].xmark[O/ = in.f nodew1dth[O/;

if(mesh(outnp) xmark(O/ > 1n f pstop) {
mesh[outnp) xmark[Oj = in.f.pstop,
print("Mesh beyond pstop(?), k= %d, 1 = %d\n" ,k,1),
for(J=O; J < 10; JT+)
print("The first few xscales were, %d, %d\n",

1,scale xscale[j/);

mkmesh

Mar 28 20:17 1989 Page 1 of host_mkmeshr

host_mkmesh.c 152 host_mkmesh.c

}

}
mesh[outnpj.xmark[0j = p1stonpos;
i_begm = 1; k_begm = k, / • these contain the

locat1·on of the first
nonzero column • I

goto found_x_begm;

found_x_begin·

sum = 0;
J = l;
mesh[outnpj xmark[0j = pistonpos;
printf("ln HOST, p1stonpos = %f\n",pistonpos);
for(1=1_begin; i<cwsize; 1++) { /* now begin counting particles and

setting down a node boundary when sum
> = numpercolumn • /

cellw1dth = (in.f.nodew1dth[i+lj - in.f.nodewidth[ij)/m d ncx;
for{k=k _begin; k < in.d.ncx; k++) {

k begin = 0,
if(scale.xscale[k + i *in.d.ncxj == 0) {

}

mesh[outnpj .xmark[i) = in.f.nodewidth[1j+ k •cellw1dth,
printf("Scale.xscale = 0 early \n");
goto done_with_x;

if(numpercolmn >= sum + scale xscalelk + 1 •m d ncxl)
sum += scale.xscale[k + 1 •m.d.ncxj;
ir(i==cws1ze-l && k==in.d ncx----l) {

}

stuf = scale xscale\k + i *in.d ncxj /
(floa.t)(numpercolmn / m.d.ncx);

if(stuf < 1.) stuf = 1,
mesh[outnp[xmark[Jj = m.f.nodewidth[1j+

(1n.d.ncx-l .+stuf) •cellw1dth;

else {
stuf (floa.t)(numpercolmn---sum) /(float)

(numpercolmn / m.d.ncx),
/ • stuf is the linear interpol.
to the locat. of the node end • /

mesh[outnp) .xmark[i I = in.fnodewidth[i! +
((floa.t)k. +stuf) 'cellwidth;

ir(k == k_begm)
ir(i I= 0) mesh[outnpj.xmark[ij =

m.fnodewidth[ij + stuf
'(m.f nodew1dth[i)---m f nodewidth\i-lj) /m.d.ncx;

else mesh[outnpj.xmark[ij =
in.I nodew1dth[1j + stuf
'(in.f.nodew1dth[i+lj---in f.nodewidth[ij) /ind ncx;

j += l;
sum = scale xscale[k.+i •ind ncx) - (numpercolmn---sum),

/ • sum is reduced by the # of
parts. taken by the last node • /

}
done with x:

- - mesh[outnp] .xmark[cws1zej = rn.f xm ___glob;

for(1=0; i<cws1ze; i++) di!Jocal_xmark[i)
mesh[outnpj xmark\i+lj - mesh[outnpj.xrnark[ij,

... mkmesh

Mar 28 20:17 1989 Page 2 of host ___ mkme-<h r

host_mkmesh .c

153

/ • Now smooth this mesh by smoothing the areas of the nodes • /

for(J=O; i<rndhremesh; J++) {
for(1=l; 1<cws1ze-l; 1++) temp--'xmark[1! =

0.3333 "(d1f Jocal _xmark[HI+ dif Joe al _xmark(1j+d1f Jocal_xmark(1+ l j),

d1fjocalymarkfOI = (d1fJocal_xmark[O! + d1fJocal_xmark[ll) • OS;
d1f Jocalymark cws1ze-1) =

(difjocal--'xmark[cwsize--c!) + d1fJocal_xmark[cws1ze-2!) • 0 5;
for(1=l; 1<cws1ze--cl; i++) difJocal_xmark[iJ = temp_xmark(1),

for(i=I, i<cws1ze; i++) mesh(outnp!.xmark(1! =
mesh[outnp].xmark[i-11 + di/ Jocal_xmark[i-11,

host_mkmesh .c

.. mkrnesh

/ • Now the same things are done in
the Y direction • /

i_begin

sum = O;
J = l;

k_begrn O;

for(i=i _begin; 1 < chsize; 1++) {

} .
done_with_y

cellhe1ght = (rn.f.nodehe1ght(i+l!-mf nodehe1ghtl,1J) /rn d ncy;
for(k=k_begin; k<in.dncy; k++) {

k begin = O,
if(scale yscale!k + i •in.d.ncy] ==

mesh[outnpJ ymark[J!
0) (
m fnodehe1ght[i]+

k •cellheight,
goto done_w1th_y,

}
if(numperrow > = sum + scale yscale[k + 1 *in.d.ncyJ)

sum += scale yscale[k + 1 •m d ncyl,
if(i==chs1ze-l && k==m d ncy-!) {

}
else

stuf = scale yscale[k + 1 'in d ncy] /
(float)(numperrow / m.d ncy);

if(stuf < 1 J stuf = l ,
mesh[outnpl ymark[il = rn f nodeheight[1j+

(m d ncy-l +stuf) •cell height;

stuf = (float)(numperrow--,;um)/(float)
(numperrow / 1n d ncy);

mesh[outnpj ymark[JI = m f nodeheight(1J+

if(k ==

+= l,

((float)k+stuf) 'cellhe1ght,
k begm)
il'(1 1= 0) mesh[outnp[ymark[J[

1 □ f nc,dehe1ght11i + stuf
"(,n f nodehe1ghti1i-

1 □ f nodehe1ght!H !) /ind ncy,
else mesh:outnpj ymark\Jf =

in f nodehe1gh tp] + stuf
"(in f n,:,dehe1ght(1 + l[-
m f nodehe1ghti1!)"/m d ncy;

sum scale yscale!k+1 •111 d ncy! - (numperrow - sum);

Mar 28 20:17 1989 Page 9 of ho.st_mkme.sh.c

host_mkmesh .c 154 host_mkmesh.c

mesh[outnpJ .ymark[chs1zeJ = m.f.ym_glob,

if(LATICE == !) {

leave_ mesh _alone:

for(i=0;

}
for(i=0;

for(i=0; 1<•=cws1ze; i++)
if(mesh[outnpj xmark(ij ==

(int)mesh(outnpl xmark[11) mesh[outnpj xmark[1j += 01,
for(1=0; 1 < =chs1ze, 1++)

if(mesh[outnpj ymark(1j ==
(int)mesh[outnpj.ymark:i/) mesh[outnpj.ymark[1J += 0.01;

/ • Note that the mesh is not smoothed in Y • /

1 < =cwsize, 1++) { / • node width is updated with new mesh to
be sent down to the cube * /

m.f.nodew1dth[ij = mesh[outnpj xmark[i);
if(i<cwsize) for(k=0; k<in.d.ncx; k++)

scale.xscale[k+i •rn d ncxJ = O;

1<=chs1ze; 1++) {
m.f.nodehe1ght[iJ = mesh[outnpJ ymark[ij;
if(i<chs1ze) for(k=0, k<rn d ncy, k++)

scale yscale[k+1 •rn d.ncyJ = O;

dum = chs1ze, if(cwsize > dum) dum = cwsize;
for(i=0; 1<=dum; 1++) {

}

if(1 <= cwsize && 1 <= chs1ze)
printf("HOST 1 = %d, xmark = %1, ymark = %1\n",

i,meshloutnpj xmark[,j,mesh[outnpj.ymark[ij);
else if(i > cws1ze)

pnntf("HOST i = %d, xmark = , ymark %1\n",
1,mesh[outnpj .ymark[1 j);

else if(i > chs1ze)
printf("HOST i = %d, xmark = %1, ymark \n",

1, mesh/outnpj. xmark[i I);

fflush(std out);

.mkme.sh

Oct 1 17:96 1989 Page 4 of host_mkme.sh c

grey.c
155

/' These two subroutines, the same in both the host and the cube, are
• used to find a node number from i'ts x,y location, or visa versa.
•;

#include <cube/cosmic h>

grey _bin(n J
short n,
{

int 1;

/ • calculate binary code from grey code • /

for(1 = n; n > >= I, 1 ·=n);
return(1),

who(x,y)
short x;
short y;
{

extern short cwdim;

/ * calculate node# =who(x,y) from node location • /

x=(x · (x >> 1)) + ((y · (y >> 1)) << cwdim);
return(x);

Mar 28 20:21 1989

grey.c

grey_bin

who

Page 1 nf grey r

pr_safety.c 156

/ • This subroutine writes or reads to/ from disk the accumulated output data.

'/

#include <cube/cosmic h>
#include "host 2d.h"

write _safety(outnp)
short outnp;
{

FILE 'saf estrm,
char fname\801,
int file _write, try _open;

file write = outnp;
if(outnp >= in.d time_avg) file_write = in.d.time_avg;

/ • That is, accumulate ail data for output numbers greater
• than time _avg into the safestep file # =time _avg
•;

acum header.numruns = O;
sprmtf(fname, "safestep.%d" ,file _write);
if((safestrm = fopen(fname,"r")) I= NULL) {

fread ((char •)&acum_header,sizeof(a.cum _header), l,safestrm),
fclose(safestrm),
/ • Find # of runs at this tz'me which 1s in header • /

/ • Put new acout data in place of old • /
try open = O;

open safestep: -
- sprintf(fna.me, "safestep %d",file_write);

if((safestrm = fopen(fname,"w")) == NULL) (
try open += I,
pnntf("can't open %s, have tried %d time(s) \n",

fname, try _open);
if(try_open > 5) exit(!);
else {sleep(60), goto open_sa.festep,}
/ • This is a safety mechanism in case system is slow • /

acum header.numruns += I,
fwnte((char •)&a.cum _header,sizeof(acum _header), l,sa.festrm);
fwnte((char *)acout,sizeof(acout),1,sa.f estrm);
fflush(safestrm);
fclose(safestrm);

/ • Put new mesh data in place of old • /
try _open = O;
if(outnp > mesh header.numsteps) {

printf("Trying to save mesh, outnp=%d, heade,-numstep=%d\n",
outnp, mesh_header numsteps);

open ,3afemesh:

fflush(stdout);
mesh_header.numsteps = outnp,

sprintf(fname, "safemesh"),
if((safestrm = fopen(fname,"w")) == NULL) {

try open += I,
printf("can 't open %s, have tned %d t1me(s) \n",

fname, try _open);
ir(try_open > 5) ex1t(l);
else {sleep(60), goto openyafemesh;}

pr _safety .c

write_saf ety

/ • This is a safety mechanism in case system is slow • /

Mar 28 20:21 1989

}
fwrite((char •)&mesh_ header,sizeof(mesh _header), l,safestrm);
fwrite((char ')mesh,sizeor(mesh), l ,sa.festrm);

Page 1 of pr_safety. c

pr _safety .c 157

ffl ush(safest rm),
fclose(safestrm);

read _safety(outnp)
short outnp;
(

FILE 'saf estrm;
char fname[80],
int i, j, nx, ny, m;
int file _read;

file _read = outnp+ l; if'(outnp+ 1 > = in.d time _avg) file _read = in.d. time _avg,
/ • if it exits, read in data for next time step • /
sprintf(fname, "safestep %d" ,file_Jead);
if'(outnp '= in.dnpnnt && (safestrm = fopen(fname,"r")) '= NULL) {

fread ((ch&r •)&acurn_header,sizeof(acum_header), l,safestrrn);
fread ((ch&r *)acout,sizeof'(acout), l,safestrm);

else

for

/close(safest rm);

/ • This is to zero the acout matrix... • /

(i = O; i < chsize; 1++) {
for (J = O; j < cws1ze; J++) {

m = who(J,i);
for (nx = O;

for (ny

/" Node I'm considering "/
nx < in.d.ncx; nx++) {
= O; ny < m.d ncy, ny++) {
acout(m .Lnpart[nxj[nyj = 0,
acout m I npart_h[nx][nyj = 0,
acout m f vx[nxj\ny) = 0,
acout m .fvy[nx![nyl = 0,
acout m ./.kinen[nxJ[nyJ = O.;
acout m f.kinenx\nxJlnyj O,
acout m f.kineny[nx)[ny) 0;
acout mj.fkmenz[nx)!nyj = 0,

pr _safety .c

. wrzte_saf ety

read_saf ety

Oct 1 17:53 1989 Page !2 of pr_-,afety. r

158

Appendix C

Program For The Cube

File name: Page:

2d.h 160

2dcube.c 165

cube-main.c 166

setup.c 168

grey.c 169

cube-getdat.c 170

neighbors.c 172

initia.c 173

reset-local.c 178

send-ok.c 179

sample.c 180

send-out.c 183

zero.c 184

159

move-pt.c 185

recv-ok.c 189

send-pt.c 190

recv-pt.c 193

coll.c (IDSMC version) 195

coll.c (DSMC version) 203

cube-remesh.c 208

send-out-scale.c 209

cube-mkmesh.c 211

random.c 216

ranbits.c 222

ran-int-le.c 223

makefile 224

2d.h 160

/ • In this file, 2d.h, are declared the global parameters used in
• the Cube based program. Each is given a short descriptr'on.

2d.h is included at the beginning of each subroutine.
•;

#include <math.h>

#include "2d.def"

extern int En um[!+LUTRAD •LUTRAD);
/ • # of points on spheres in L UT
•;
extern struct Epoint { char Ex, Ey, Ez,) *pE[j;
/ • The Look Up Table, L UT, for integer collisions
•;
extern unsigned char number _Jn_J,;roup[I +LUTRAD 'LUTRADl[3);
/ • Used to sort LUT based on parity of components
•;
extern char heavy Jite_mod[l, heavy J1te_div[j;
/ • Used in multi mass coils to save a bit of time

• doing % operation or long division • I
extern short step type;
/ • For-lock step coordination between nodes
•;
extern
;•
extern
extern
;•
•;

short node,
node # • /

short locx;
short locy;

Node number in x and y directions

extern short chsize;
extern short cwsize;
/ • Number of nodes in x and y directions
•;

extern short msg rt;
/ • Number of nearest neighbor nodes to route data to
•;

extern short neighbor[8j;
· I• The node numbers of those neighbors

•;
extern
extern
extern
;•

short npart[NXCELLJ[NYCELL],
short npart _h[NXCELLJ [NYCELLJ,
short npsum[NXCELLl[NYCELL\,

npart(nx//ny/ = no. particle in cell
•
•
•

npart h = number of heavy particles in cell
npsum(nx/(ny/ = summation by columns to nx, ny-1

index of first particle in cell
•;

extern
;•
extern

/* • ..
•;

short vrmaxcount[NXCELLJINYCELLJ,
used in coll to track when vrm_sq(/(/ was last

int lcr[J;
lcrfnmol/ = particle label related to storage of

particle quantities - assigned to a particle
during initial problem setup

temp_w1dth[], temp_w1dth_d1v2ii, temp[[;
temp _array/4[[101[;

incremented • /

extern int
extern int
;•
•
•

temp_width(/ = width of !DSMC Gaussian at some temp.
temp_width_div2(/ = 1 /2 width of !DSMC Gaussian at some temp .
temp _array(/(/ = The Gaussians at some temp .

•;
extern char mass_of _type[],

Oct 1 17:59 1989

2d.h

Page 1 of 2dh

2d.h
161

The mass of each type of particle.

extern long 1n1 totmol;
extern long totmol;
/ * ini totmol = the initial total number of partz'cles created ,·n node

• totmoT = the current total number of partz'cles in node
• (MUST ALWAYS BE LESS THAN NM)

extern long num_mass[j;
/ • the number of particles in each mass group.
•;

extern long tot field mol;
/ • totJield_mol total # molecules in whole field
•j

struct meshlong {
/ • these contain the accumulated number of particles in the rows and

• columns of cells of the whole flow field just before re-meshing

} '

long xscale[NDXMAX*NXCELL + !);
long yscale[NDYMAX•NYCELL + Ij;

extern struct meshlong scale;

extern float pi2, sq2;
/ • pi2 = 2 ' PI

• sq2 = sqrt(!!)
•I

I

extern
;•
•
•;

extern
j•
•
•
•;

float xm, ym;
xm size of node region in x direction
ym = size of node region in y directi'on

float chx, chy, cell vol;
chx = cell dimension in x--,lirection

chy = cell dimension in y--,lirection
cell vol = cell volume

extern float cxs;
/ • cxs = hard sphere collision cross secti'on
•;

extern
;•
•;

extern
/*
•;

float um, vmw;
vmw = most probable molecular speed @ wall temp

float Ind;
fnd = unnormalized undisturbed gas number density

extern float vrO;
/ * vrO = 1st approx to relative speed ,n undisturbed gas
•;

extern timetype time;
/ * time = flow time
•;

extern
extern
;•
• ..
•
•

float ct[4) [NXCELL) [NY CELL), vrm _sq[:--..x:CELL/ [1' rCELLj,
float recentvrmax _sq[NXCELL) \NY CELL!.

ct///nx//ny/ = cell time
vrm_sq/nxffnyj = maximum relative speed squared

xsectmax is the max(sum of the cross sections of two particles)
recentvrmax_yq is the most recent i·alue of the

relative mean velocity squared

e:x;tern float rand();

extern postype ptx[j, pty[l;

Oct 117:59 1989

2d.h

Page ;! of :;r/ h

2d.h

extern
extern
1•
I

veltype ptvx(), ptvy(J. ptvziJ;
char type[),

162

These are the vectors/ arrays containinq
velocities and masses of the particles.

the positions,

struct particle {
postype x;
postype y;
veltype vx;
veltype vy;
veltype vz;
unsigned char type;

} ,
extern struct particle "ppt(],

extern struct particle sent recv {
int num_sr; / •-number sent or received • /
struct particle pt3 r(PTSENT); / • particle Sent or Received • /

} pmesg_sr(j;
/ • This is the structure to be Sent/ Recved to the neiqhbors
•j

struct meshflt {
float xmark(NDXMAX+l), ymarkiNDYMAX+I!,

/ • these contain the new' node heiqhts and widths sent down from the
• host. • /

},
extern struct meshflt mesh;

struct

• I I

/*

'/

;•
•

'/
},

output { / • Structure of data output to the host • /
short npart(NXCELL)(NYCELL);
short npart _h(NXCELL)INYCELL],

npartfjfj = accum no. parts in cell
npart_h//(/ = accum no. heavy parts in cell

short nulll; null needed when NXCELL8NYCELL are odd, same in host
to account for different formats in cube and host

float cellx(NXOELL], celly[NYCELL),
cellx// = X coord of cell center

cellyf j = Y coord of cell center

float
float
float
float
float
float

vx[NXCELL)[NYCELLj;
vy(NXCELL] (NYCELLj;
kinen[NXCELL)(NYCELL);
kinenx(NXCELL) INYCELLJ;
kineny[NXCELL) NYCELLj;
kinenz(NXCELLJ [NYCELLJ;

vxfjf/ = accum u velocity in cell
vy//(/ = accum v velocity in cell
kinenff fj = accum trans enerqy in cell
kinenxf/f/ accum x trans enerqy zn cell
kinenyf/ff accum y trans enerqy in cell
kinenzf/f/ accum z trans enerqy ,n cell

extern struct output out,

/ • Input variables comming from the host • J
struct mput {

short nprint;
short nstep;
short seed;

2d.h

Oct 1 17:53 1989 Page 3 of .'d h

2d.h 163

short me;
short runmax;

nprint = number of printouts per run
nstep = number of time steps per printout
me = initial no. parts per cell
rnnmax = number of runs for ensemble averaging

short ncx ,
short ncy;

ncx = number of cells in x direction
ncy = number of cells in y direction

short hremesh, cremesh;
/ • hremesh = amount of smoothing of mesh

• cremesh = # of time steps between each cube meshing

;•
•

•
•
•;

short time avg;
- Used to indicate if code should switch to time averaging
instead of ensamble averaging after time_avg printouts.

float xm_glob;
float ym_glob;

xm_Jlob = size of global region in 1 direction
ym_Jlob = size of global regi·on in y direction

float x left;
float y =bot;

x left = location of left hand side of fiow field
y_bot = location of the bottom of the fiow field

float mass h, perc h, diameter ratio;
- mass h = the mass of the heavier specfrs (light assumed
perc h ~ the initial percent of heavy species present.
diameter ratio = the diameter ratio of heavies to lites .

- (not presently used)

float Tw;
float uw;

Tw = wall temperature divided by initial temperature
uw = wall velocity

float u init;
float u -enter;
float lamda _zero,
float ts ratio;
float lattice space;
float lattice Jump;

/ • u init = a free velocity variable.
t u enter = speed of piston
• lamda zero = initial mfp in neutral gas.
• ts_!atio = ratio of time step (dtm) to initial coll time.
• lattice space distance between lattice sites.
• lattice]ump = how far a vel= 1 particle can move in one dtm.

float dtm;

1)

•;
;•
•;

dtm time step for calculation, mean upstream colhsion times

float diff;

/* diff = 0. -> rough wall with above parameters set
diff = 1. -> diffuse wall - molecules emitted at

wall temp

float obs_he1ght, obs_a,

Oct 1 17:59 1989

2d.h

Page 4 of 2d. h

2d.h
164

•;
float pstop,

float temp,

obs refers to some obstacle in the flow. Height is its height
and obs a its X location

pstop the z position at which the piston will stop

a temporary or free variable

float nodeheight[NDYMAX + lj, nodew1dth[NDXMAX + !],
/ • nodeheightfO/=y height of the bottom of the lowest node while

} ;

• nodeheight(l/ is the y height of the top of that node, etc ..
• nodewidth(Oj z position of the LHS of the leftmost node while
• nodewidth(l/ is the z position of the RHS of that node, etc ..
•;

extern struct input rn;

Oct 1 17:54 1989

2d.h

Page 5 of :!d h

2dcube.c 165

/ • Here is where most global uariable.s are actually defined. • /

#include <cube/cosmic h>

#include "2d.h"

#define PI 3 141593

int Enum[I+LUTRAD'LUTRADj,
unsigned cha.r number _m_Jsroup\ !+LCTRAD *LUTRAD)\3J;
struct Epoint *pE!LUTRAD 'LU TRAD+ I);
short step type;
short node~
short locx;
short locy;
short chsize,
short cws1ze;
short msg rt;
short neighbor[8j,
short npart\NXCELL]!NYCELL],
short npart_h[NXCELLj\NYCELL),
short npsum\NXCELL[\NYCELL],
short vrmaxcount\NXCELLJ \NY CELL);
char mass_of_type[4/;
char heavyjite_modl401), heavyjite_d1v[401/,
int icr\W,,1),
int temp_w1dth[4J, temp_w1dth_div2\4I;
int temp_array[4j[l01J;
long ini totmol;
long totmol; •
long num_mass[4j;
long tot_fieldy10I;
t1metype time;
floa.t p12;
float sq2;
floa.t xm;
float ym;
float chx;
float chy;
float cxs;
float cell_vol;
float vmw;
float fnd;
floa.t vr0;
float ct\4l[NXCELLj\J\.'YCELLj;
float vrm _sq\NXCELLJINYCELL],
float recentvrmax ~q\NXCELL) INYCELLj;
float rand();
postype ptx[NM), pty[NM];
veltype ptvx\NMj, ptvy[NMI, ptvzlNMJ,
char type[NMJ;
struct particle *pptil);
struct particle sent recv pmesg_sr\9/;
struct meshflt -mesh,
struct meshlong scale;
struct output out;
struct input in;

Oct 1 17:43 1989

2dcube.c

Paqe 1 of f!dcube.c

cu be_main. c 166 cube_main.c

'• This is the main program for the Cube: each node has an identical copy
Each receives data from a neighborinq node and, in turn, starts
running the (!nteqer) Direct Simulation Monte Carlo calculation. In every
nstep time steps. updated output is sent to Host.
This output sending happens nprint times in each of runmax runs. , :

I

#include <cube/cosm1ch>
#include "2d h",

unsigned long tt1me[20j, / • array used to track time spent in each subroutine • /
floa.t numbercl, numberc2, numbercl2, Jumper;

/' # of collisions (of each type), jumper = # parts. jumping more than 1 node • /

main() main
{

float tottime, efficiency;
int nrun, np, ns, i, minutes[201,
unsigned int seed;
long seedbits, ran _!nt _seed;

numbercl = numberc2 = numbercl2
for(1 = O; i < 20; i++){

tt1me[1J = 0;
minutes[i) = 0;

) /' Set these to zero '/

Jumper tott1me efficiency

setup(); / • Establish cube and my node parameters and receive
• initial data from Host • /

cube_11etdat(); / • Calculate some flow and particle parameters • /
neighbors(); / • To find who adjacent nodes are • /

seed = m seed + 3737 + mynode();
seedbits 2762 + in.seed + mynode(),
srandom(seed);
set _ranbits(seedbits); ranbits(300);
ran_mt_seed = 1948 + in.seed + mynode(), set~an_jnt(ran_.!nt_seed);
for(i=l, 1<1000; 1++) ran_!ntje(!O0OO);

0,

/ • Random #s seeds have to be initialized in each node • /

if(VTYPE == 1) {
make LUT();
if(node == 0) pnnt("VTYPE = %cl, running IDSMC code", VTYPE);

else

for (

if(node == 0) print("VTYPE = %cl, running DSMC code", VTYPE);

nrun = 0; nrun < in runmax, nrun++) { / • B,egin first/ next run • /
time = 0 ·
initia{); '
if(VTYPE ==

/ • Creates initial particles in each cell • /
1) {scramble(), m1t_heavy Jite();}

/' To be sure it ,s freshly mixed '/

resetJocal(); / • puts global and local ID on all particles • /
step _type = 0; / • {re)-initialize step _Jype for new run • /

send_ok();

sample();

/ • sends signal(ready to receive particles) to
neighbor nodes. Signal from the neighbor
nodes will be received at the 1st recv _ok()
in the following loop. • /

/ • calculates macro properties for each cell • /

Oct 1 17:49 1989 Page 1 of cube_main c

cube_main.c

send_out(),
zero();

167
cube_main.c

.main
/ • sends output(macro propertz"es) to the Host • /
/ • rez"nz"tz"alz"ze macro sample() matrz"x• /

/ • Now begz"n to loop over the tz"me steps and
• the tz"mes data z"s sent out to
• the Host • /

for (np = O; np < m.nprmt, np++) { / • data sent out once each nprz"nt • /
for (ns = O; ns < m.nstep; ns++) { / • z"ncrement one tz"me step•/

if((locx 0) && (ns == 0)) {
tott1me = efficiency = O;
for(i=O; 1<20; i++) tott1me += ttime\ij;
if(tottime > 0.) efficiency = I. - (float)(tt1me[l2]+tt1me[4J

+ttime[!4]+ttime[8)+tt1me[9J+ttime[I lj+tt1me\ 16)) / tott1me;
prmt("nprint= %d npart= %Id numl= %4.0f, num2= %4.0f, numl2= %4.0f, jump= %2.0f, eff=%2 2f",

np, totmol, numbercl, numberc2, numbercl2, 1umper,effic1ency),

.'vf ar 28 20:31 1989

}

/ • Send out some z"nteresting data
• from first column of nodes • /

time = (np * in.nstep + ns + I) • m dtm;

step type = np
move_pt();
recv _ok(),

send _pt();
recv _pt();

send_ok();

/ • Actual time of calculation •;
• m.nstep + ns + I,

/ • moves all particles in in. dtm • /
/ • recez"ve signal(ready to rece1·ve

particles) from neighbor nodes • /
/ * sends particles to nez"ghbors • /
/ • recei"ves particles from neighbor

nodes until receives end-i;ignal • /
/ * sends signal(ready to receive pis)

to neighbors. This signal will be recvd
at recv_ok(} in the next step(ns)
in this loop • /

resetjocal(); / • puts global and local ID on all parts. • /
coll(); / • perform the collisions in each cell • /
if(ns % in.cremesh==O II ns==m.nstep-1) remesh(ns,np);
/ • Every cremesh time steps the cube should remesh.

• In addition, on the time step just before the data
• is to be sent out to the Host the Host is given
• (in send_out_scale) a chance to create the mesh • /

sample();
send out();
zerc{f

/ • Same as before • /

step type += I;
recv :::ok();

Page 2 of cube_ma1r1 r

setup.c 168 setup.c

/ • This subroutine is only called once. It establishes the cube dimensions,
• where each node is and how many neighbors each node has.

This routine is much like host set. c for the host.
•;

#include <cube/cosmich>
#include "Zd.h"

short chdim, cwdim;

setup()
{

int i, i;

short dim;
short size;
MSGDESC in d;
sdesc(&in_ d,O,o,°O,&in,sizeof(in));

node = mynode();
dim = cubedim();

/ • My specific node number, 0 -> 127 • /
/ • Cube dimension, 6 or 7, say • /

size = 1 < < dim;
recvb(&in_d); / •
if((in_d.node = node +

Receive data from node above me or Host ,J f' m O • /
1) '= size) sendb(&rn_d);

;• Send data on to node below me if I'm not last node • /

chsize
cwsize

NDYMAX; / • The number of nodes in X direction • /
NDXMAX; / • The number of nodes ,n Y direction • /

J = chs1ze;
for(i=O; l(J&l); 1++, j>>=l){}

chdim i, / • The dimension of the cube in X; ie,

J = cws1ze;
for(i=O; i(j&l); 1++, j>>=l){)

cwdim = i; / • The dimension of the cube 1n Y • /

B for 8 nodes • /

/ • Each node already knows its node# as its ID. We have to give the
• location coordinate to each node such that its adjacent node# is one
• bitwize different. The following two equations calculate those locations
• for given node whose # is given by mynode{) above.
•j
locx = grey _bin(node & (cws1ze - l)); / • =0 for leftmost node • /
locy = grey _bin((node > > cwdim)); / • =0 for top node • /

/ • Calclate number of message routings for send ei recv, that is, the number of
• nodes immediately adjacent to me.

For a closed loop system where particles never leave the flow field
only the top and bottom nodes have a different # of neighbors.

msg_rt = 8;
if ((locy 0) 11 (Joey == (chsize - 1))) msg_It = 5; /' Node on top or bottom• I
if ((!ocy == 0) && (locy == (chs1ze - 1))) msg_It = 2; / • Only 1 row of nodes • /

setup

Oct 1 17:96 1989 Page 1 of setup. c

grey.c
169

/ • These two subroutines, the same in both the host and the cube, are
• used to find a node number from its x,y location, or visa versa.
•;

#include <cube/cosm1c h>

grey _bin(n)
short n,
{

int i;

/ * calculate binary code from grey code * /

ror(1 = n; n > >= I; 1 ·=n);
return(i);

who(x,y)
short x;
short y;
{

extern short cwdim;

/ * calculate node# =who(x,y) from node location * /

x=(x · (x >> 1)) + ((y • (y >> 1)) << cwd1m);
return(x);

Oct 111:43 1989

grey.c

grey_b£n

who

Page 1 of grey r

cube_getdat.c 170

/ • Here are calculated several cell or particte parameters. This routine
• is very aimilar to host dat. c

'I

#include <cube/cosmic h>
#include "2d h"

cube _getdat.()
{

int 1;
float PI;
float d1a_ratio, ma.ss_rat, num_rat, k,

Pl = 3 14159;
p12 2 • Pl;
sq2 sqrt.(2.);
xm (m.xm_glob-in.xjeft) /

ym (m.ym_glob-in.y _bot) /

chx xm / m ncx;
chy ym / rn.ncy,
cell vol = chx • chy,

cwsize;
/ • node width for average field node • /
chsize;
/ • node height for average field node•/
/ • cell width for average cell • /
/ • cell height for average eel/ • /

cube_getdat.c

cube_getdat

/ • Here the cell volume must be the same in every
• node so that the particle cross sections are
• the same. • /

fnd = ID.mc / cell_vol; / • particle density '/

cxs .= I. / (sq2 • Ind • m.lamda_zero);
/ • The X-tJect1on if identical particles • /

if'(in.ma.ss_h > I && in perc_h > 0) {
/ • ff particles have differ. masses • /

if(node == 0)
pnnt(" Single mass particle cross section 1s %1" ,cxs);

dia ratio = in.diameter ratio;
ma.ss_rat = 1/inmass_li;
nurn rat = in.perc h/(1.--rn.perc h);
k =-(!. + 2.*d1ajat10 + dia_jat1o*diaJatio)/4.,
cxs = (1 /fnd/1D.lamda_zero)•

(L/(sq2 + nurnJat'k'sqrt(l+massJat)) +
I. /(sq2 + (I /num_rat) *k 'sqrt{!+(!. /mass_rat))));

if(node == 0)
print{"Multi..3pecies particle cross section is %f" ,cxs);

ID! totmol in.me • in.ncx • ID.ncy,
/ • Initial total num of molecules per node • /

/ • Set mesh to that sent down by the Host • /
for(i=0; i<=cwsize; i++) mesh xmark[1] = ID nodewidth[i);
for(i=0; 1<=chs1ze; i++) mesh.ymark[1j = ID nodehe1ght(1I;

chx
chy =

for(i=0;

for(i=0;

Oct 1 17:49 1989

(mesh.xmark(locx+ 1\--mesh.xmark[locx]) /in ncx;
(mesh.ymark[chsize--locy]--mesh.ymark[chs1ze--iocy--l]) /in ncy;

/ • These are now the actual dimensions
• of a cell whereas above, chz and chy were
• dimensions just used to ca/cu/ate ·
• the particle size which must
• be common to every node.
•;

1<m.ncx; i++) out.cellx[ij = chx ' (0 5+1) +
mesh xmark1locxj;

i<in.ncy; 1++) out.celly(1] = chy • (0 5+1) +

Page 1 of cube_getdat. c

cube_getdat.c 171 cube_getdat.c

. cube_getdat
mesh.ymark[chs1ze--locy-l],

/ • Locate centers of the cells for output • /

vmw = sqrt(in.Tw); / • for wall temperature • I

for(i=O; 1<8; i++) pmesg_sr[1j.num_;;r = O;

Oct 1 17:44 1989 Page 2 of cube_getdat.c

neighbors.c
172

/ • This routine finds 'my' neighboring nodes, nqht if , f' m, in the middle
• and 5 if 'rm' on the top or bottom. They are stored in array
• neighbors(msg_!t/.
• Neighbors is only executed once.
•;

#include <cube/cosmic h>
#include "2d.h"

neighbors()
{

int i = O;

if ((Joey

}
if ((Jocx

else
ir (!ocx

else
if (Joey

Oct 1 17:58 1989

+ 1) < chs1ze){ /' ff I have a node above me ... •j
ne1ghbor[i++) = who(Jocx,(Jocy + 1)),
if ((Jocx + 1) < cws1ze) / • If there· s 1 to my right... • /

neighbor[!++) = who((Jocx + 1),(Jocy + l));
else ne1ghbor[i++) = who(0,(Jocy + 1)),
if (Jocx > 0) / • ff there· s 1 to my left, and so on... • /

neighbor[i++J = who((Jocx - !),(Joey + 1)),
else neighbor[i++J = who((cwsize - !),(Joey + l));

+ 1) < cwsize)
neighbor\i++I = who((Jocx + !),Joey);

neighbor[1++J = who(0,Jocy);
> 0)

neighbor\i++I = who((locx -1),locy);
neighbor[i++J = who((cwsize - !),Joey);
> O){

ne1ghbor[1++J = who(locx,(locy - !));
if ((locx + 1) < cwsize)

neighbor[i++I = who((locx + l),{locy - l));
else neighbor[i++] = who(0,(Jocy - I)),
if (locx > 0)

ne1ghbor[i++J = who((locx - l),(iocy - l));
else nerghbor[i++) = who((cws1ze - l),(locy - 1));

neighbors.c

neighbors

Page 1 of neighbor< ,,

initia.c 173

i • This routine initializes the positions and velocities of all of the
• particles in the node. Provision has been made to run cases with
• different initial mean kinetic temperatures and a different mean density in

• some cells. This is the subroutine to be altered 1/ a different initial
• condition is sought. Each particle created is placed
• randomly wrUin each cell (at a lattice site)
• and is given a temperature drawn from an integer
• Gaussian distribution. • /

#include <cube/cosmic h>
#include "2d h"

extern unsigned long tt1me/j,
float RTemp, RTm1x;

initia()
{

int ii;
int nx, ny, 1, J, k, m, numpart, howmany yer _cell, extrayer _row;

int numyer_cell, num_sofar;
int num sites m x, num sites m v;
int a, b; - - - - -
unsigned int t1mO,
float beta, mverse _beta, num yer _row[l'<'YCELL];
float particle_rnass, vel,
float const,
float xh, xi, yh, yl, x low site, y lc,w site;
float CV, m avg, m I, m2, di, d2,- dx,- no, nl, n2, brack, lam;
float nu 12,- nu 21, nu 11. nu 22,
float cbar=O, - - -

timO = clock();

RTemp = 05'025'(3.141593)'
(m lamda _zero •m ts _ratio /m lattice _space /in lattice _Jump)
'(m lamda_zero•m ts_ratio/rn latt1ce_space/in lattice jump);
/ • That is, for a lattice gas, the temp is initially set as

• RTo.
•;

inverse_beta = sqrt(2. • RTemp), ; • That is, 1/beta •j
vrO = 3. • sqrt.(2. /314159) • inverse _beta;

/ • vrO should be > highest initial relative velocity • /

il'(node == 0) pnnt("IN INITIA, RTemp(of mass ls) = %f",RTemp);

if(in perc_h > O _&& m.mass_h '= I) (
m_avg = 1. + in.perc_h'(in mass_h - 1.),

/ • The average particle mass. • /
ml = l.; / • .'vfass of light species • /
m2 = in mass_h • ml, / • Mass of heavy species • /
cv = (in xm__glob-m.xjeft)'(m ym__glob-m y _bot)

/in.ncx/in.ney /NDYMA.'C/'.\/DXMAX;
/ • Average initial cell volume • /

n2 in.pere _h *in me /cv; / • Number density of heavies • /
nl in.me'(!. - m.pere_h)/cv, /' Number density of lights •j
nO in.me /cv; / • .Vumb er density • /
dl sqrt(cxs/3.141593), /* Diameter of tight species •j
d2 in.diameter _Iatio • d 1, / • Diameter of heavy species • /
dx 0.5 • (dl + d2); / • Average of two diameters • /
brack = (2.jn0)'(2 *dl*dl.<rll*nl'sqrt(2 /ml)+

nl *n2 '(d I +d2) '(d!+d2) 'sqrt((m !-,.m2) /ml /m2) +
2.*d2'd2*n2*n2'sqrt(2 /m2)).

RTmix = (in.ts_rat1o•m.ts_rat10/in dtm/m dtm)•
2. /3141593 /m_avg /brack ;brack.

Oct 1 17:58 1/J89

initia.c

initia

Page 1 of initia. c

initia.c 174 initia.c

/ • R •T of the gas mixture • /
lam (I /3.14159/(nl+n2))'(nl/(sqrt(2.)"nl'dl*d! +

n2'((dl+d2)'(dl+d2)/4)'sqrt(l +ml/m2)) +
n2/(sqrt.(2.)*n2*d2*d2 + nl '((dl+d2)'(dl+d2)/4.)*
sqrt(! +m2 /ml))).

/ • Mean free path in the mixture • /
RTemp = RTmix •m_avg/ml, / • R •T of light species • /
inverse_beta = sqrt(2 • RTemp); ;• That is, 1/beta */
vrO = 3. • sqrt(2. /3 14159) • mverse_beta,

nu 12
nu -21
nu 11
nu)2

/ • vrO should be > highest initial relative velocity • /

2. 'sqrt(.3 142) *dx 'dx 'n2 'sqrt(2. 'RTemp '(m l+m2) /m 1 /m2);
2. 'sqrt(3.142) •dx •ctx 'nl 'sqrt(Z. 'RTemp '(ml+m2) /ml /m2);
2. 'sqrt.(3 142)~1 *d! *nl 'sqrt(2. "RTemp'(ml+ml)/ml /ml);
2. 'sqrt.(3.142) *d2 *d2 *n2 'sqrt(2. "RTemp '(m2+m2) /m2 /m2);

/ • 4 different collision freqs • /

if(node == 0) pnnt("IN INITIA, RTm1x=%f, lam0=%f, ce!l_vol=%2.4f, RTemp=%f",
RTm1x,lam, cv,RTemp);

. initia

if(node == 0) prmt("ml=%2.3f, m2=%2.3f, d!=%2 3f, d2=%2.3f, nl=%2.3f, n2=%2.3f, m_avg=%2 3!, br~
ml ,m2 ,d l ,d2, n 1, n2, m _avg, brack);

if(node == 0) pnnt("nu_12 = %!, nu_21=%f, nu_ll=%f, nu_22=%f",
nu 12, nu 21, nu 11, nu 22),
} - - - -

mass_of_type[0I = 1;
mass_of_type[ljl = m mass_h;
mass_of_type[2 = 1,
mass_of_type[3j = 1,

/ • Consider only a binary gas. • /

/ • We now may create the different distribution functions. If
• the gas contai·ns 2 species only 2 distributions are
• needed, 1 for each species. l/, however, the gas
• is of one species but the fl.ow boundaries are diffuse
• 4 are needed, !! are full Gaussians and 2 are the
• nomal VDF, a Gauss,·an multiplied by the normal component.
• Multi--,;pecies and diffuse walls can't be done at
• the same time in this version.
• So, for multi--,;pecies:
• m = 0 -> Gaussian for mass = 1 particles
• m = 1 -> Gaussian for mass = in.mass_h particles
• And, for diffuse boundaries:
• m O -> Gaussian for wall at temp = 1
• m 1 -> Gaussian for wall at temp = 1 *in. Tw
• m 2 -> v•Gaussian for wall at temp = 1
* m S -> v•Gaussian for wall at temp = l*in.Tw

*/
for(m=0; m<=l; m++) { j• Use for(m=O; m< =S; m++) for diffuse bndrys '/

i~m == 0) particle_mass = 1; else part,cle_mass = m mass_h;
beta = 1. / sqrt(2.*RTemp / (float)mass_of_type(m!),
ir(m == I II m == 3) beta = I / sqrt(2 'RTemp •m Tw); / • for heat transfer ' 1

ir(m < 2)ror(1=0; 1<=100; 1++) {
/* For DF in free space place the value {O -> 8191} (to save space; into

• the array appropriate for that species * /
vel = i - 50,
if((-beta)*beta;,,,eJ ;,,,eJ < --<i0.) temp_array:mJi1j = 0;

else temp_array[mJ(ij = (int)(0 5 -,.. 8191 ' exp((-beta)'beta'vel'vel));
}
else { / * For the DF for the normal velocity component • /

const = beta * sqrt(2.0) * exp(0 5),
for(t=0; 1<=100; i++) {

vel = 1 - 50.,

Oct 117:581989 Page f! of in1/1,1 r

initia.c
175

initia.c

.initia
temp _arrayim]l1j (int)(O.S + 8191 *const'!abs(vel)*exp((-beta)'beta"vel "vel));

}
if(temp_array[mJIOj > 0)

pnnt("WARN[NG, temp_array is too narrow, temp_array[%d)/Oj=%d\n".m,temp_array[mJ[Oj),
for(1=0; 1<=lOO; i++) {J = i; if(temp_array/mlliJ > 0) break; }
ternp_w1dth_div2/rnj = (50 - J);
temp_ w1dth/mj = 2 '(50 - J);

if(node == O)pnnt("temp_width[%d) = %d , beta = %f, mass=%f\n",
m, temp_width(mj, beta, mass_oi_type/mj);

numpart = O;

/ * The width and half width of the DFs will be used
• when drawing velocities from the DF. • /

totmol = ini _totmol;
/ • Number of particles counted so far • /
/ • ([nitial)Total num of molecules • /

/ • Update node boundaries with host mesh • /
for(i=O; i<=cwsize; i++) mesh xmark/1) = in nodewidth[i);
for(i=O; i<=chs1ze; 1++) mesh.ymark(ij = m.nodeheight/i);
chx = (mesh.xmark\locx+lj~esh.xmark/locx/)/m.ncx;
chy = (mesh.ymark chsize--Jocy]~esh.ymark chsize--Jocy-ll) /in.ncy;

/ • Calculate center of cell locations * /
for(i=O; 1 < m.ncx; i++) outcellx/ij

chx • (0.S+i) + mesh xmark[locxj,
for(i=O; i < m ncy; 1++) out.celly[1j

chy • (0.5+i) + mesh.ymark[chsize--Jocy-l);

for (ny = O; ny < m.ncy; ny++) {
num__per_Iow/nyj = inmc • in ncx;

/ • This is the # of particles
• per row of cells within my node. • /

for (ny = O; ny < in.ncy; ny++) {
num sofar = O; / • # placed so far • /
yh ~ (intX(outcelly[nyj + 0.5 • chy)/in.dtm) • in.dtm,
yl = (int)((out.cellyinyj - 0.5 • chy)/in.dtm) • in.dtm;
for (nx = O; nx < in.ncx; nx++) {

/ • From here...... • /
/ * particles only on latice sites. • /
xh = (intX(outcellxlnxj + 0 5 • chx) /in.dtrn) • in dtm;
xi = (int)((out cellx/nxj - 0 5 • chx) /in.dtm) • in.dtrn;
num .Jlltes _]Il _x = (int)((xh;:I) /in.dtrn);
num sites in_y = (intX(yh--yl)/in.dtm);
if(num_s1tes...1n_x"num_s1tes...1n_y == o) goto· no_particles_here;

Oct 1 17:58 1989

if(xl out cellx[nx) - 0 5 • chx) xjow _J31te = xi;
else x low site = xi + l;

if(yl == out celly[nyj - 0.5 • chy) y Jow _site = yl,
else y Jow _site = yl + l;

nurn__per_cell = num_per_Iow/nyj / in.ncx;
/ * The lowest (int) number per cell * /

extra_per_Iow = num_JJer_i:owlnyj-
(float)(m.ncx •num_JJ·er _cell) + 0.5;

/ • # needed more than the lowest for
• a. full row. • /

howmany_per_cell = num_JJer_cell;

Page 3 of initia.c

initia.c

no yart1cles _ hefe'
a= b;
}

}

176
initia.c

/ • Actual # which w,11 be created ,n

• this current cell. • /
const = (float)(nx+l)'(float)extra_per_.Iow /(float)m.ncx;
if(const > num_sofar) { / • put 1 more pt in this cell • /

how many yer _cell++;
num_sofar++;

/' .. to here is a way to even out the
• initial pt distribution ,f each
• row doesn't get an evenly divis-
• ible # of particles. • /

for(ii=O; ii<4, 1i++) ct[i1l[nxl(nyj = rand() • 2. • chx • chy /
(howmany _per _cell • how many yer _cell • cxs • vrO);

/ • Set cell time randomly for each spec. • /
vrm..3q[nxl[ny) = 2. ~rO;

/ • Set max relative pt velocity to
• twice the mean value. • /

recentvrmax_sqlnx)lny] = 0, / • Initialize • /
vrmaxcount[nxj ny) = O;
for (J = O; j < howmany yer _cell; j++) (

/ • Now, create particles. • /
k = numpart; / • To save space... • /
numpart++;

/ • Place them at sites. • /
a = ran_1ntje(num_s1tes_1n_x--l);
b = ranjntje(num_s1tes_1n_y--l);
ptx[kj x Jow _site + a *in.dtm;
pty[kj = y Jow ...:31te + b*in.dtm;

/ • Assign a mass to them. • /
m = O; lf(rand() < in.perc_h) m = 1,
type[kj = m,

/ • Assign a velocity component. ;, /
for(1 = ran_mtje(temp_width[mj);

. initia

ran bits(13) > = temp _array[mj[i--temp _width_d1v2[mj,SOi,
1 = ran--2ntje(temp_width[ml));

ptvx(k! = Hemp_w1dth_div2[mj,
for(1 = ran__!ntje(temp_width(mj);

ranb1ts(13) > = temp _array[mj(i--temp _w1dth_div2[m[+SO[,
i = ranjntje(temp _width[m)));

ptvy[k) = i--temp_width_div2[mj;
for(! = ranjntje(temp_width[m));

ran bits(13) > = temp _array[m[[i--temp _w1dth_div2[mj-,-SO!,
1 = ranjntje(temp _width[m!));

ptvz[kl = Hemp_width_di~2[mj;

if(VELD!M == 2) ptvz(kj = O;

cbar += (ptvx\kj "ptvx(kj + ptvy[kj *ptvyik) + ptvz[k[+ptvz[ki).

totmol = ini totmol = numpart,
tot field mol ~ numpart;
if(node ~= O)print("N times particle speed squared = %!" ,cbar);

ttime[l) +=(unsigned int)((unsigned int)clock()--timO);

Oct 1 17:58 1989 Page 4 of inltla.c

initia.c 177 initia.c

. in·ltia

Mar 91 21:07 1989 Page 5 of iTilti,1 -

reset_local.c 178

/ • This routine resets some of the global variables like npart,
• lcr and npsum.
'/

#include <cube/cosmic h>
#include "2d h"

reset Jocal()
{

int nx, ny, nmol,
int m;
int number;
float rnvchx, invchy;

mvchx
invchy =

0.9999 / chx;
0.9999 / chy;
/ • These . 9999s were used to prevent the

• possibility of a DSMC particle landing
• exactly on the far edge/ boundary of a
'/

node

ir(LATICE I= 0) { invchx = 1. / chx; rnvchy

for (nx = O; nx < in.ncx, nx++) {
for (ny = O; ny < mncy; ny++) {

npart[nxj[nyj = O;
}

} / • Set npart(/(/ to zero. • /

for nmol = O; nmol < totmol , nmol++) {

/ chy;}

nx = (ptx[nmolj - mesh.xmark[locxl) • mvchx;
ny = (pty[nmol) - mesh ymark[chsize - locy II) • invchy,
npart[nxJ!nyj += I;

/ • Compute correct number of particles per cell • /

m = O;
for (nx = O; nx < m ncx; nx++) {

for (ny = O; ny < mncy; ny++) {
npsum[nx)[ny) = m;

}

m += npart[nx[[ny);
npart[nx[[ny[= O;

} / • Calculate correct index of 1st particle in each cell • /

for (nmol = O; nmol < totmol; nmol++) {
nx = (ptx[nmolj - mesh.xmark[locxj) • invchx;
ny = (pty[nmol) - mesh.ymark[chsize - locy - II) • invchy;
npart[nxl[ny] += I;

/ • Re-compute npart • /
number = npsum[nxj[nyj + npart;nx)[ny[- I;
lcr[number) = nmol; / • Find lcr J index • /
/ • Index of first particle in cell (nx//ny/ is

npsum/nz//nyj.
Index of last particle in cell /nxjfny/ is
npsum(nz//ny/ + npart/nx//ny/ - 1 . • /

Mar 31 21:08 1989

reset_local.c

reset_local

Page 1 of reset_local.c

send_ok.c 179

/ • This routine sends a signal to all of the neighboring nodes that it is ok to
• send "me" messages containing the particles.
• I I

#include <cube/cosmic h>
#include "2d.h"

extern unsigned long tt1me[];

send_ok()
{

int i;
unsigned int tim0;
MSGDESC sd_ok;

tim0 = clock();
sdesc (&sd_ok, 0, 0, 0, 0, 0);
sd _ok type = step _type + I;

for(i=0; i < msg rt; i++){
sd_ok node = neighbor[ij,
sendb(&sd_ok);

ttime[12] +=(unsigned int)((unsigned int)clock()--t1m0);

Oct 1 18:08 1989

send_ok.c

send_ok

Page 1 of send_ok r

sample.c
180

/ • This routine samples the individual particle data to create the macroscopic data which it
• places in array out ... to be sent out to the host.
•;

#include < cube /cosmic.h>
#include "2d.h"

extern unsigned long ttime[j;

sample()
{

int nx, ny;
int I, nmol;
unsigned int t1mO;
veltype xvel, yvel, zvel;

timO = clock();

for (nx = O; nx < in.ncx; nx++) {
for (ny = O; ny < mncy, ny+-r) {

out npart[nxj[ny) npartinxl[ny],

for (I = O; I < npart[nx)inyj I++) {
nmol lcr[npsum[nxj[ny! + I];
xvel = ptvxinmol].
yvel = ptvy!nmol],
zvel = ptvz[nmoJI,
out vx[nxj[ny] += xvel,
out vy[nx)[ny] ~= yvel;
out kmen[nxl[nyj +=

(xvel 'xvel + yvel ryvel+zvel •zvel);
out kmenxjnx)iny] += xvel 'xvel,
out kmeny[nx1lny] += yvelryvel,
out kmenz(nx)inyj += zvel •zvel.
if(type[nmolj 1= 0) out npart_h[nxj[nyj += 1,

/ • This first portion of sample() zs adequate zf the particles
• all have the same mass. If not, a separate subroutine
• is used so as not to confuse the normally simple
• sampling algorithm. In such a case, the meaning of
• kinen, kinenx and kzneny are slightly different.
•;

if(in.mass_h > l && in.perc_h > 0) mult1_5pec1es_temp();
ttime[3) +=(unsigned int)((unsigned int)clock()--t1mO);

sample.c

sample

multi _species_temp() multi_species_temp

int nx, ny;
int I, m, nmol;
veltype xvel, yvel, zvel;
float meanvx[2], meanvy[2], meanvz[2i. num_massi2], esum[2];
float density, mass__avg_vel_x, mass_avg_vel_v mass_avg_vel_z;
float co _Jiq, temp[2], temp _wrtcmv[21,

Oct 1 18:08 1989 Page 1 of sample. c

sample.c sample.c
181

... multi_species_temp
for (nx = O; nx < m.ncx nx++) {

for (ny = O; ny < m ncy; ny++) {

Oct 1 18:08 1989

for(m=0; m<2; m++)
num_mass[m)=esurn/rn]=meanvxirn)=meanvy[m)=meanvz/m/=0;

/ • Energy_sum and mean velocities, initially • j
density=mass _avg_ve l_x=mass _avg_vel _v=mass _avg_vel _z=O;
for (I = O; I < npartjnx)lny), I++) {

/' Calculate cell density, number density, mean kinetic energy
• and mean velocity of each species
•;

nmol = icrlnpsum[nxi[ny) + I);
density += mass_of_typeitype[nmol)); / • density • /
m = type[nrnolj,
nurn_mass[m)++; / • number density • /
xvel = ptvx[nmol);
yvel = ptvy[nrnol);
zvel = ptvz[nmol);
esum[m) +=

(xvel "xvel+yvel ,Yvel+zvel •zvel) •mass _of _typeitype/nrnol)];

}

f • mean KE •j
meanvx\rnl += xvel; / • mean velocity • /
meanvy rn += yvel,
meanvzjrn) += zvel;

for(m=O; m<2; m++) { /• mean velocity for species m •j
if(num_massjm) > O){

meanvx[m\ /= (float)num_mass\mJ;
meanvy[m /= (float)num_lllass mj;
meanvz/m) / = (float)num _mass(rn);

for(m=0; m <2, m++) { / • for the mass averaged velocity • /
if(num_mass/m) > 0) {

mass avg vel x += meanvx/m] *num_mass[m) •mass_of_type/rn];
mass=avg=vely += meanvylm) •num_rnass[m) •mass_of_typeirn];
mass_avg_vel_z += meanvz/m) •num_masslrn) •mass _of _type(rn);

}
if(density > O){

mass avg vel x /= (float)density;
mass=avg=vely /= (float)density;
mass_avg_vel_z /= (float)density;

for(rn=0; m<2; m++) {
il'(num_masslm) > 0) {

temp/ml = mass_of _type/ml~ esum/m) /
(floatXnum_mass[m] •mass_of_type!m])
- meanvx[mj 'meanvx[mj--meanvy(m) •meanvy/m)
--meanvz[mj •meanvz[m)) / 3 ,

/ • The temperature of species m • /
co sq = mass avg vel x •mass avg vel x+

- mass_avg=vel_y•mass_avgyel_y+ -
mass avg vel z•mass avg vel z;

~i, The -square -of c o -, /
temp_wrtcmvlm) = mass_of_type/m)~esumlm]

(float)(num_mass/mj •mass _of _type/ml) +
co_sq - 2.~mass_avg_vel_x•meanvx[m)+
mass_avg_vel_v •meanvy)m)+
mass_avg_vel _z •meanvz/m j)) /3 ,

Page 2 of .sample c

sample.c

Mar 91 21:15 1989

182 sample.c

... rnulti_species_temp
/ * The species m temp. WRT the mass avg vei * /

outkmen/nx]/ny] = (num_ma.ss/OJ 'temp_wrtcmv[Oj
+ num_mass[l) 'temp_wrtcmv[l]),
/ * The total gas temperature * /

out kmenx[nxJ[nyJ = num_ma.ss[O] *temp_wrtcmv[Oj,
/ * Now, kinenx contains the temp of species O • /

out.kmeny[nxj/nyJ = num_mass[l] •temp_wrtcmv/1];
/ • and kineny contains the temp of species 1 • /
/ • Thus, the meaning on kinenx and kineny

• have changed. This saves creating, storing
• and sending a lot of extra data for the
• multi-species applications chosen. • /

Page S of sampfr r

send_out.c
183

/ • This routine sends the output data directly to the host. • /

#include <cube/cosmic h>
#include "2d.h"

extern unsigned long tt1me(j;

send_out{)
(

unsigned int tim0;
MSGDESC out sd;
MSGDESC plsjd;

t1m0 = clock();

/ • set up message descriptor to send output to host • /
sdesc (&out_sd, HOST, 0, 0, &out, sizeof(struct output));
sdesc (&pls_!d, 0, 0, 100, 0, 0);

led(!); / • Turn on LED light • /

recvb(&pls_!d); / • Wait until host asks for data '/
out sci.type = node + 20000;
sendb(&out_,;d); / • Send the host the data • /

led(0); / • Turn off LED light • /

tt1me[4) +=(unsigned int)((unsigned int)clock()--t1m0);

Mar 31 21:15 1989

send_out.c

send_out

Page 1 of send_out.c

zero.c 184

1
• Set the matrix used to send data to the Host back to zero and
• reset the cell locations * /

#include <cube/cosmic h>
#include "'2d.h"

extern unsigned long ttirne[],
zero()
{

int nx, ny,
unsigned int t1rnO;

tirnO = clock();

for (nx = O; nx < in.ncx; nx++) {
for (ny = O; ny < in.ncy; ny++) {

out.npartjnxj nyj = O;
out.vx[nx [ny = O.;
out.vy[nxl[ny = 0.,
out.kinen[nxl nyj = 0 ,
out.kinenx[nxj[nyj = 0 ,
out.kineny[nxl[nyj = 0.,
out.kinenz[nx [nyj = O.;
out.npart _h[nxj[nyj = 0,

for nx O; nx < in.ncx; nx++)
out.cellx[nxj = (nx + 0 5) * chx + rnesh.xrnark[locxj;

for ny = O; ny < in ncy; ny++)
out.celly[ny) = (ny + O.S)*chy + rnesh.yrnark[chs1ze-Jocy-!);

tt1rne[14I +=(unsigned int)((unsigned int)clock()-t1rnO);

Apr 6 17:10 1989

zero.c

zero

Page 1 of :an r

move_pt.c 185

/" This routine moves each particle to its next location by an amount
* appropriate to the time step.
* The time till first impact either on the top or bottom is calculated,
* the impact is calculated (perhaps it is diffusive)
* and the particle is moved from the wall. If there is time remaining, the
* time tilt the next impact is found and the process repeats until the time
* step is used up. At the end are calculated the .,ide wall collisions.
,, I

I

#include <cube/cosmic h>
#include "2d.h"

extern unsigned long tt1me[];

move _pt()
{

int 1, nmol, collided with wall;
unsigned int t1mO; - -
float tt, a, b;
float dtm diff, x diff, y diff, vx_diff, vy _d1ff, vz_diff, RTx2;
float piston__pos, -obst__pos;
extern float RTemp;
veltype piston speed;
postype oldx, oldy, two;
t1metype dtml;

timO = clock();

two = 2.,
RTx2 = RTemp*2,
collided with wall = O;
I. to move -a piston from the left ,, I
piston__pos = in.xJeft + time " m u_enter;
piston speed = m.u enter,
i I'(piston _pos > in pstop) {

}

piston__pos = m.pstop;
piston _ypeed = 0 ,

/ • for the obstacle • /
obst _pos = in obs _a;

for (nmol O; nmol < totmol, nmol++) { / • for all particles /node • /
dtml = in.dtm; /" the time step "/
o!dx = ptx[nmoll;
oldy = pty[nmol;
if(in.diff <= 0.) goto simple step,

dtm diff = in.dtm;
x_diff = ptx[nmolj;
vx_diff = ptvx[nmolj;
y _diff = pty[nmolj;
vy _diff = ptvy[nmolj,
vz_diff = ptvz[nmolj;
collided with wall = O;
for (tt = 0, 0 < =dtm_d1ff,

/ • Starting particle positions • /
/ * ff non-diffusive walls * /

/" Initial velocities • /

dtm_d1ff ~ tt) {
/ • tt is the time until the particle
* has· its first /next impact with
" a horizontal wall. • /

ir (vy _diff = = 0) tt = 1 e+8; /" It never gets there • /
else ir (vy _ d I ff > 0) { / • pt moving up • /

tt = (rn ym_glob-y _d1ff) / vy _diff;

move_pt.c

move_pt

Apr 6 17:10 1989 Page 1 of move_pt.c

move_pt.c

next I:

Apr 617:101989

186 move_pt.c

... more_pt
else { /* pt moving down, will hit bot 1st '/

tt = - (y _diff-in y _bot) / vy _d1ff;
/ • time till impact on bottom • /

if (tt > dtm diff) break; / • ff min time tzll impact > then
• time step then don't worry
• about impacts for this pt • /

collided with wall = I;
v d1ff += tt • 0.9999
x -ddf += tt • 0.9999

• vy d1ff;
• vx ct1ff

- / • place particle almost at
• impact point with impact
• velocity • /

if(y_diff < in.y_bot) y_diff ~ 2.'(y_dtff - in.y_bot);
if(y _diff > in.ym__glob) y _diff ~ 2 '(y _diff - in.ym__glob);

/ • This is just in case pt
• exceeded bdrys, it never should • !

if (vy _diff > 0.) { / • On the wall at y = in.ym_glob • /
/ • For diffusive wall, assign

continue;
}
else {

• new velocity components based
• on top bdry temperature e1 vet • /

if(VTYPE I= 0) { / • integer velocities • /

}

for(i = ran _!nt Je(temp _width[I]);
ran bits(13) > = temp _array[Il[i-temp _width_ d1v2[1 j +so),

1 = ran_!ntJe(temp_w1dth[Ij));
vx_d1ff = i-temp_w1dth_div2[1] - in.uw;

for(i = ranjntJe(temp_w1dth[I]);
ranb1ts(13) > = temp_array[Jl[i-temp _width_d1v2[!J +SO!.

1 = ran_mtJe(temp_width[Ij));
vz_diff = i-temp_width_div2[1);

for(t = ran_!ntJe{temp_w1dth[31);
ran bits(13) > = temp _array[3][i-temp _w1dth_d1v2[3) +SO).

1 = ran_!ntJe(temp_w1dth[3j));
vy _diff = i-temp _w1dth_div2[3j;

if'(vy_diff >= 0) goto next_!,

else { / • DSMC velocities • /
vmw = sqrt(in.Tw *RTx2);
a = vmw • sqrt(-log(rand()));

b
/ • Speed of reflected part. • /

pi2 • rand();
vx diff
vz -diff
vy-:::_d1ff

a • sin(b) - in.uw;
-a • cos(b);
- vmw • sqrt(-log(rand()));

/ • ff not, pt. must be on wall at y=in.y bot
• assign new velocdy components based
• on bottom bdry temperature e1 rel '

if(VTYPE I= 0) { / • !DSMC velocities • /
for(i = ran_!ntJe(temp_width[01\); _ .

ranb1ts(!3) > = temp_array[O.[i-temp _w1dth_d1v2[0j~ SOi
1 = ran_!ntJe(temp_width[Oj)),

vx_d1ff = i-temp_width_d1v2[0l + in uw,
for(1 = ran_!ntJe(temp_w1dth 01);

ran bits(13) > = temp _array[OI[1-temp _ width _d1v2[0!+SOi
i = ran_!ntJe(temp_width[Oj)),

vz_d1ff = i-temp_width_div2[0j,
for(1 = ran _!nt Je(temp _width[2j);

ranb1ts(13) > = temp _array[2J[i-temp _ width_div2[2i-,- oO,

Page 2 of move_pt r

move_pt.c

}

187

i = ran_!ntje(temp_w1dth[2j))
vy _diff = i-temp _w1dth_d1v2[21,
if(vy_diff <= 0) goto next_2,

else { / • DSMC velocities.. • /
vmw = sqrt(I •RTx2),
a = vm w • sqrt(-log(rand())),
b = pi2 • rand{),
vx_diff = a • sin(b) + in.uw;
vz_diff = a • cos(b);

move_pt.c

. move_pt

vy _diff = vmw • sqrt(--log(rand{))),

continue;
}

/ • Particle has now finished its last co//ision with
• top or bottom walls as allowed by the size of
• the time step and may now collide with other
• things in the flow. • /

/ • First the position is updated • /
simple_J,tep· il'(in.diff <= 0 II collided_with_wall == 0) {

Apr 6 17:1 O 1989

}

/ • If walls are specular or particle never touched wall • /
pty[nmolj += dtml • ptvy[nmol];
ptx[nmol] += dtml • ptvx[nmol];
it'(pty[nmol] < in.y _bot) {

}

pty[nmol] ~ (two'pty[nmol]-2. 'in y _bot);
ptvy[nmol] = -ptvy[nmolj,

else il'(pty[nmol] > m.ym__E;lob) {
pty[nmol] ~ (two'pty[nmol]--2. 'in.ym_glob);
ptvy[nmol] = -ptvy[nmol];

else { / • particle has been diffusely reflected from a wall • /
it'(LATICE b O){ / • Now give them floating point positions • /

x_diff += dtm_diff • (float)ptvx[nmolj,
y_diff += dtm_d1ff • (float)ptvy[nmolj,

}

/ • Round particles to nearest lattice site • /
if'(x_diff > = 0.) ptx[nmol[= (int)(x_diff + 0.5);
else ptx[nmolj = (int)(x diff - 0 5);
if'(y _diff > = 0.) pty[nmol/ = (int)(y _diff + 0 5);
else pty[nmol] = (int)(y diff - 0.5);
ir(pty[nmolj < in y _bot Ii pty[nmolj > m.ym_glob)

print("particle is out of field, y = %d",
pty[nmol]);

else / • particles are Bird particles • /

ptvx[nmol[
ptvy[nmol]
ptvz[nmol]

vx d1ff;
vy-diff;
vz]1ff;

x diff += dtm diff • ptvx[nmoll,
y =d1ff += dtm=d1ff • ptvy[nmolj,

ptx\nmoll = x_diff;
pty nmol = y _diff;

/ • floating point position • /
/ • floating point posifron • /

ir(pty[nmol] < in.y _bot II pty/nmolj > 1n ym_glob)
print("particle is out of field, y = %d",

pty/nmol]);

move_pt.c

}

188

/ • Now to create specularly reflective sidewalls. if needed • /
if(ptx[nmol] < piston_pos) {

ptx[nmol] += two'(p,ston_pos - ptxlnmolj),
ptvx[nmol] = --ptvx[nmol] +two•p,ston_speed;

/ • For specular reflection off piston
• particle gains 2 x pistonspeed • /

if(ptx[nmol] > in.xm_glob) {
ptx[nmoi] ~ (two•ptx[nmol]-2. •1n xm_glob),
ptvx[nmol] = --ptvx[nmol];

/ • To create an obstruction in the flow • /
if(o!dx > obst_pos && ptx[nmol] < obst_pos)

if((obst_pos-oldx) '(pty[nmolJ-oldy) /

}

(ptx[nmol]-oldx) + oldy < in.obs_height) {
/ • ff, in fact particle would have

• passed through obstacle.. • /
ptx[nmol] += two'(obst _pos - ptx[nmoiJ),
ptvx[nmoi] = --ptvx[nmolJ,

if(oldx < obst_pos && ptxJnmol] > obst_pos)
if((obst _pos-oldx) '(pty[nmolj-oldy) /

(ptx[nmol]-oldx) + oldy < in obs_he,ght) (
/ • ff, in fact particle would have

• passed through obstacie.. • /
ptx[nmoi] += two'(obst_pos - ptx[nmo!J);
ptvx[nmol] = --ptvx[nmolJ,

move_pt.c

.. move_pt

ttime[6] +=(unsigned int)((unsigned int)clock()--t1m0);

Mar 9121:271989 Page 4 of move_pl.r

recv_ok.c 189

/ • This routine waits till it receives an "OK to send particles
• to me" signal from all neighbors • /

#include <cube /cosmic h>
#include "2d.h"

extern unsigned long tt1melJ;

recv _ok()
{

int csiunt_ok;
unsigned int t1m0;
MSGDESC rd_ok;

tim0 = clock();
sdesc (&rd_ok, 0, 0, 0, 0, 0);

rd ok.type = step type;
count ok = 0, -
while-(count_ok < msg_!t)
{ / • That is, receive messages until one is received from

• every neighbor • /
recvb(&rd_ok);
count_ok += I;

ttime[8) +=(unsigned int)((unsigned int)clock()-t1m0);

Oct 1 18:00 1989

recv_ok.c

recv_ok

Page 1 of re ct'~nk r

send_pt.c send_pt.c
190

/ • This key routine scans through the list of totmol particles and sends
• those which have to be moved away out to another node. ff the particle
• is to be sent to a neighboring node it is packaged with other particles.
• ff it is to be sent to a distant node it is sent individually.
•;

#include <cube/cosmic h>
#include "2d.h"

extern unsigned long tt1meij;

send_pt() send_pt
{

int nmol, nx, ny, node send, send_to, num_stored, i;
extern float Jumper; -
unsigned int tim0;
MSGDESC sd;

tim0 = clock();
sdesc (&sd, 0, 0, 10000, 0, sizeof(struct particle_sent_Jecv));

for (nmol = 0; nmol < totmol;

nx = locx;

nmol++) { / • Consider particles 1 at a time • /
/ • nx and ny are the location where the particle • /
/ • is to go. Particles will generally remain within • /
/ • this node if it covers enough area.•/ ny = locy,

if(ptx[nmolj > mesh xmark[locx + 1] 11 ptx[nmolj < mesh.xmark[locxl) {
/ • That is, if particle should be to the right or left of this node.. • /
if(ptx[nmolj > mesh.xmark[cwsizej) {

/ • Particle is to pass through RHS boundary.
• This should not happen for a closed flow field. For a free channel
• with no side walls particles passing the right side of the
• field are sent to the left..... • /

ptx[nmolj ~ (float)m xm_glob;

else if(ptx[nmolj < mesh.xmark[0j) {
/ • While particles passing out through the LHS reenter through the RHS • /
ptx[nmolj "-= {float)in xm_glob;

for{1=I, i<NDXMAX, i++) { /* To find out to what node it should be sent ... */
if(locx+ I +1 < = cwsize) / • if such a node exists to the right and • /

if(ptx[nmolj > mesh.xmark[locx+lj && ptx[nmolj
< mesh.xmark[locx+ I+i])
/ • 1f particle falls within that node... • /

{ nx = locx + 1; break;} / • send particle there. • /
if(locx-i > = 0) / • 1/ such a node exists to the left and • /

if(ptx[nmolj < mesh.xmark[locxl && ptx[nmolj
> mesh.xmark[locx-i)
/ • 1f particle falls within that node • /

{nx = locx - i; break;} / • send particle there. • /

/ • Now do the same type of thing in the Y direction. • /
if(pty[nmol] > mesh.ymark[chs1ze-locy\ II

pty[nmolj < mesh ymark[chs1zHocy-!j) {
/ • That is, 1f particle should be above or below this node.. • /

for{ i= I; i < NDY}.fAX, i++) { / • To find out to what node it should be sent.. • /

Oct 1 18:00 1989 Page 1 of send_pt.c

send_pt.c
191

send_pt.c

if(chs1ze--locy+1 <= chsize) /' 1/ node is below the top and '/
if'(pty[nmoJ] > mesh.ymark[chs1ze--locy] &&

pty[nmoJ] < mesh.ymark[chsize--locy+1j)
/ • if particle falls within that node.. • /

{ny = Joey - i; break;} /' send particle there. •(
if(chs1ze--locy--l.-i > = 0) / • 1/ node is above the bottom and • /

if'(pty[nmoJ] < mesh ymark[chsize--locy--J.) &&
pty[nmoJ) > mesh.ymark[chsize--locy--J.-11)
/' ,f particle falls within that node ... '/

{ ny = Joey + i; break;} / • send particle there. • /

if ((node 3 end = who(nx,ny)) I= node) {
/ • If node where particle belongs is not me • /

for (i=O; i<msg_.It; i++) {/'find neighbor index '/
if(node_send == ne1ghbor[i]) {send_to=i; break;}
else if(i == msg rt-!){/• It was not a neighboring node but a

- • distant one. Send particle individually.
• This should he very rare. • /

pmesg_sr[8).pt_sr[O).x ptx[nmot];
pmesg_sr 8 pt_sr O .y = pty[nmoJ];
pmesg_sr 8 pt3 r O .vx = ptvx[nmol);
pmesg3 r 8 pt_sr O vy = ptvy[nmoJ];
pmesg_sr 8 .pt_sr O .vz = ptvz[nmoJ];
pmesg_sr 8 pt3 r O type = type[nmoJ];

/ • Copy particle into particle message
sending structure #8. • /

totmoJ ~ !, / • Decrement for departure. • /
ptx[nmoi] = ptx[totmolj;
pty[nmolj = pty[totmoJ);
ptvxlnmol) ptvx[totmol);
ptvy[nmoJ) ptvy[totmoJ),
ptvzlnmoJI ptvzltotmoJl;
type nmoJ type totmoJ ;

nmoJ ~ !,
pmesg_sr[8) num_sr

/ • Copy last particle
• into departing particle, s place. • /

-4;
/ • This is the flag attached saying that the

• particle came from afar. • /
sd.node = node send;
sd.buf = (char -•)&pmesg_sr[8);
sendb(&sd);
Jumper += !, / * Increment # of jumpers sent * /
goto next_particJe;

/ • Normally, the particle is packaged in an array
• which is sent to a neighbor. • /

num_stored = pmesg_sr[send_to) num_sr,
/ • # pts already stored in structure. • /

pmesg sr send to .pt_sr num_stored .x = ptx[nmoJ);
pmesg sr send-to pt_sr num_stored y = pty[nmoJ);
pmesg sr send-to .pt_sr num_stored vx ptvx[nmoJ),
pmesg -sr send-to pt_sr num_stored vy = ptvy[nmoJ);
pmesg -sr send-to .pt_sr num_stored vz = ptvz[nmol);
pmesg=sr send=to .pt_sr num_stored1 type = type[nmol);

/ • Copy particle into particle message
sending structure. • /

. . send_pt

Oct 1 18:00 1989 Page 2 of .send_pt r

send_pt.c
192

send_pt.c

totmol ~ l; / • Switch ,n
ptx/nmolj = ptx/totmo!J,
pty/nmolj = pty/totmo!J;

last particle and decrement for departure. • /

ptvxlnmoll ptvxltotmol\;
ptvy nmol ptvy totmol ;
ptvz/nmolj ptvz/ totmolj,
type/nmolj type/ totmolj,

nmol ~ l;
pmesg_,;r/send_toj.num _ _1;r += l;

/ • Copy last particle
• into departing particle's place. • /

/ • # Packaged in array is now one greater. • /
if (pmesg_sr/send_toj.num_,;r == PTSENT) {

}
next _particle:
1=0;

/ * If pt message is full, send package. * /
pmesg_sr/send_toj num_,;r = -l;

/ • Flag means this isnt last pt mesg from me • /
sd.node = node send;
sd.buf = (char - •)&pmesg_,;r/send_toj;
sendb(&sd);
pmesg_,;r/send _to] num _sr = O;

/ * No pts left in pt messsage. • /

/ • Finally, send out particle arrays to all neighbors with whatever
• particles are in them. The . num sr flag is O or > 0 indicating
• that this will be the last message sent. • I

for (i=O; i<msg_rt; i++) {
sd.node = neighbor[ij,
sd.buf = (char •)&pmesg_sr[ij;
sen db(&sd);
pmesg_,;rliJ .num ..?r = O;

ttime/9] += (unsigned int)((unsigned int)clock()-timO);

... .send_pt

Oct 1 18:00 1989 Page 9 of send_pt r

recv_pt.c 193

/ • This routine receives particle messages from other, generally
• nearby, nodes until it has received a concluding message from each of its
• nearest neighbors,
•;

#include <cube/cosmich>
#include "2d.h"

extern unsigned long tt1me[J;

recv _pt()
{

int count end, i;
unsigned-int t1mO;
MSGDESC rd;

timO = clock();
sdesc (&rd,0,0,10000, &pmesg_sr!O), sizeof(struct particle_sent_Iecv));

/ • Receive particle message into pmesg_sr/0/ which
• for the present is unused. • /

count_end = O;

while (count_end < msg_It) / • While I have not received messages
• from all my nearest neighbors.... • /

recv b(&rd); /' Receive first/next message '/

if (pmesg_sr!OJ.num_sr < 0) { / • Either this message is not

}

• the last from that neighbor
• or it is from a distant
• node • /

if (pmesg sr[Oj num sr == -1)
-pmesg_sric)j num_sr = PTSENT;

/ • It was from a neighbor but was not the
• last and contained the full # of particles
• permitted, PTSENT • /

else {pmesg_sr!OJ .num_sr = l;
/ • Message from distant node had 1 pt. • /

if(pmesg_sr!OJ.pt_sr!OJ x < mesh.xmark[locxj II
pmesg_srlOI pt_sr[Oj.x > mesh xmark/locx+ll II
pmesg_sr O pt_sr[O .y < mesh.ymark/locyj II
pmesg_sr[Oj pt _sr/Oj .y > mesh.ymark[locy+ 1 I) {

}

print("recvng Jmp pt outside node, it was discarded");
pmesg_sr[Oj.num_sr = O;

if(locy < 2) pnnt("recvng Jmp pt");

recv_pt.c

recv_pt

else count_end += l; / * This was the last message from a neighbor * /

too_many·

/ • Now read particles from message into internal
• particle list and increment totmol • /

for (i=O; i<pmesg_sr/Oj num_sr; 1++) {
ptx!totmolj = pmesg_sr/Oj.pt_sr[1j.x;
pty!totmolj = pmesg_sr[Oj pt_sri1/.y;
ptvx[totmol) = pmesg_sr[Oj .pt _sr,ij .vx;
ptvy[totmol). = pmesg_sr[Oj pt_srj1) vy;
ptvz,totmoll = pmesg srlOI pt sr[il.vz;
type totmol = pmesg=srlo pt=sr/i type;
totmol += l;

if(totmol == NM) {pnnt("totmol > NM\n"); goto too_many;}

Oct 1 18:00 1989 Page 1 of recv_pt.c

recv_pt.c recv_pt.c
194

recu_pt
pmesg_sr!OJ.num_sr = 0,
tt1me[Ilj +=(unsigned int)((unsigned int)clock()-t1mO);

Jan 9 11:59 1990 Page 2 of rec t'_pt r

coll.c

195
/ • This is the key routine which ca/cu/ates collisions between particles.

• Particles are chosen at random from within the cell based on their
• probability of collision. This particular version, coll.Sd !DSMC multispec, does
• the collisions based on the SD integer method and assumes -
• that the velocities have been defined as integers.
• ft also permits multi-mass particle collisions. • /

#include <cube/cubedef h>
#include "2d.h"

extern unsigned long tt1me[J;
int npart_cell, npsum_cell;

coll()
{

int i, J, ny, nx;
int I, m, b, c, checksame, checkobst, check_even, sum_check;
int sum u, sum v, sum w;

int ult, .umt, vlt-:- vmt, wit, wmt;
int coll_type, nlite, nheav;
int num, octant, vx, vy, vz, vt;
int vrx, vry, vrz;
int vr sq;
int par, shift, Enum_over _3;
unsigned int tim0;
float vr;
float act_sites_per_cell, nom_sites_per_cell, nomcellvol;
float nom_vol_per..31te, xh, xi, yh, yl;
float a;
float collfac;
float compensat;
extern float numbercl, numberc2, numbercl2;
extern int sphere 3adius _J;q;

tim0 = clock();

if(node == 0) if(VELDIM I= 3 II VTYPE I= 1)
print("USING WRONG VERSION OF COLL");

nomcellvol = (m.xm_glob-in.xjeft)"(m.ym_glob-in.y_bot)
/((float)NDYMAX "(float)NDXMAX "(float)in.ncy "(float)in .ncx);

/ • Nominal cell volume • /
nom..3ites_per _cell = (in.xm_glob-in.xjeft) "(in.ym_glob-in.y _bot)

/((float)NDYMAX "(float)NDXMAX "(float)in.ncy "(float)in.ncx) /in dtm;

for (nx = 0; nx < in.ncx; nx++) { / • For all cells in X direction • /
for (ny = 0; ny < in.ncy; ny++) { / • For all cells in Y direction • /

for(coll_type=0; coll_type<4, coll_type++) {
/ • for the ,/ types of multi-spec coils

• type O -> lite/lite
• type 1 -> lite/ heavy
• type 2 -> heavy/lite
• type S -> heavy/ heavy • /

if (ct[coll_type)[nxl[nyj > time) continue;
if(coll_type > 0 && npart_h[nxj[nyj < 2) { / • Must be > 2 heavies • /

ct[coll_typej[nx)[nyj += in.dtm,
continue;

}
else if (npart[nxj[nyj < 2) { / • Must be > 2 lights • /

ct[coll_typej[nxj[nyj += m.dtm;
continue;

coll.c

coll

Jan 9 11:53 1990 Page 1 of co/1.r

coll.c

do {

196

/ • We first must determine the volume represented by this cell. • /
if{LATICE I= 0) { / • particles on latice sites decides the cell volume. • /

xh = (intX(out.cellx[nxj + 0 S • chx) /m dtm) ' 1n.dtm,
xi = {int){(out.cellx[nxj - 0.5 • chx)/in dtm) ' in dtm.
yh = (int)((out.celly(nyJ + 0 5 ' chy) /m dtm) ' in dtm,
yl = {int)((out.celly[nyi - 0 5 • chy)/m dtm) • m.dtm,
/ • these are the positrons of the left. right, top and

• and bottom rows and colu.mns of lattice sites • /
act _sites _per _cell = (int)((xh--,:1) /1n.dtm) 4.int)((yh-y 1) /in dtm);
/ • = the actual number of sites in the cell • /
cell_vol = act_sites_per_cell • nomcellvol / nom_,;1tes_per_cell,

else cell_vol = chx • chy; / • Possible to ha1•e integer particles
• without spatial lattice • /

collfac = 2 0 • cell_vol / cxs; / • operations combined it save time '/
npart_cell = npart[nxl[ny); / • so no need to use an array repeatedly • /
npsum_celi = npsum[nx)[ny]; /' so no need to use an array repeatedly • /

checksame = O;
/ • Repeat sample coll' s till ct/nx//ny/ > time • /

/ • So can only try for collision 100 times • /
try _new _pair:

do {
checksame++; / • Choose 2 particles from cell (nx//ny/ • /

/ • Calculate rel velocity fj collision time • /
sum_check = l;

switch(coll type){
case O { / • lite-We collision • /

for (, ,) {

}
break;

I = p1ckJite();
m = pickJite();
if (m I= I) break,

case { / • lite-heavy collision • /
I = p1ckJ1te();
m = pick_heavy(),
break;

case 2: { / • heavy-Me collision • /
I = pick_heavy();
m = pickJite();
break;

case 3: { /' heavy-heavy collision • /

vrx
vry
vrz

for (; ,) {

}
break;

I = p1ck_heavy(),
m = pick heavy();
if (m I= -I) break,

ptvx[m] - ptvx[l],
ptvy[m] - ptvy[lj,
ptvz[mj - ptvz[lj;

/ • two different particles •;

/,; vrx, y, z = components of collision pair relative vet • /

coll.c

.. coll

Jan 9 11:59 1990 Page 2 of co/Ir

coll.c
197

coll.c

vr_sq = vrx'vrx + vry'vry .- vrz'vrz: /' relative speed squared•/
vrmaxcount/nxJ I nyJ ++,
if(vr_sq > recentvrmax_sq/nx)lnyj) recentvrmax_sq/nxj[nyJ = vr_sq;
if(vrmaxcount/nx)lny] > 20) { / • Update every 20 times • /

vrm_sq/nx]lnyJ = {recentvrmax_sq[nxi[nyj+vrm_sq/nxl[nyl) • 0 5,
/ • = avrg of most recent max vet and old such value • /

recentvrmax_sqfnxj[nyj = 0, /' reset • /
vrmaxcount[nxj nyi = 0, / • reset • /

}
/ • above was to update the max relative v£iocity as the temperature drops

while this next statement updates as the temperature rises • /
if (vr_sq > vrm_sq/nxJ/nyJ) vrm_sq/nx)lnyj = vr_sq; j• !vfax value of cell rel vet•/

if(pty/mj < in.obs_he1ght && pty[tj < m.obs_he1ght)
if((ptx/m] < mobs_a && ptx/11 > in.obs_a) II

(ptx/ml > in.obs_a && ptx[tJ < in.obs_a)) sum_check = O;
/ • sum_check is set = 0 1/ particles are in the same cell but

• are on opposite sides of the obstacle, 1/ present • /

}

if(sum _check 1= 0) {
sum check = O;
a =- rand();
if(vr_sq/vrm_sq[nxj[nyJ > a'a) sum check J,

if(checksame > = JOO) sum _check = I,

while (sum_check == O);

if(checksame > = JOO){
ct/coll_typeJ[nx)lnyJ += in dtm,
prmt("Exceeded 100, vr=%d, vrm=%f\n",vr_sq,vrm_sq/nxJ[nyj);
goto checked_over _onehundred,

) / • this should almost never happen • /

vr = sqrt((float)vr _sq); / • The relative speed • /
nlite = npart[nxJ[nyJ - npart_h/nxJ[nyJ.
nheav = npart_h/nxJ/nyJ.
if(coll_type==O) ct(OJ/nx /ny] += collfac / {{float)nlite • (float)nlite • vr);
else if'(coll_type==l) ct Jj/nx]/ny] += collfac / ((float)nlite • (float)nheav • vr);
else if'(coll_type==2) ct 2][nxi!nyJ += collfac / ((float)nlite • (float)nheav • vr);
else if'(coll_type==3) ct 3J/nxJ/ny] += collfac / ((float)nheav • (float)nheav • vr);
/ • updated cell time • /

if(vr_sq > sphere_Iadius_sq II Enum[vr_sq] == 0) {
/ • table is too small • /
print("vr_sq=%d,vel=(%d %d %d)%d (%d %d· %d)%d reiected this collision",
vr _sq,ptvx/m] ,ptvy/m],ptvz[m] ,mass _of _type[type[m]],
ptvx(l] ,ptvy[t] ,ptvz[tJ ,mass _of _type[type/ IJI);
goto checked over onehundred,

if'(mass_of_type[type(IJI I= mass_of_type,type[miJ) {
/ • particles have a different mass • /

)
else {

numbercJ2 += J; / • the number of inter-species collisions • /
diff_species_col11s1on(l,m,vr _sq);
goto skip _same _species;

if(mass_of_type[type[t]J == I II mass_of_type[typejmJ] J) numbercJ += !,

coll

Jan 9 11:59 1990 Page 3 of roll r

coll.c

p1ck_num

198

else numberc2 ~= I, .. the number of heavy /heavy collisions

sum _u ptvxlm\ + ptvx[lj, ;, twfre the mean u velocity •;
sum v ptvy m + ptvy[lj; ;, twice the mean V velocity •;
sum w ptvz[mj + ptvz[lj; !' twfre the mean w velocity •;

par = panty(sum_u,sum_v,sum_w), /* determine collision parity •;
if(par 1= 3){

•;

Enum_over_3 = Enum[vr_sqj / 3; ;• 1/9 of number of points '/
shift par • Enum over 3;
num = shift + I +-(int)(Enum_over_3•rand());

/ • num is from correct third of the table • /

else num = ran_Jntje(Enum[vr _sq]), / • any portion is valid • /
if(num == 0) goto pick _num; / • 0 is not valid • /

octant=ranbi ts(3);

switch(octant) { / • re fie ct po,·nt across UVW = 0 planes randomly • /

coll.c

... coll

case O (vx=pE[vr__sql[numj.Ex; vy=pE[vr_sql[numj.Ey; vz=pE[vr__sql[numj.Ez; break;}
case I { vx= -pElvr _sqjlnum] Ex; vy=pE[vr __sql[numj .Ey; vz=pE[vr _sql[numj .Ez; break,}
case 2: (vx= -pE vr_sql numj.Ex; vy= -pE[vr_sq11·num1 Ey; vz=pE[vr_sql[numj Ez; break,}
case 3 { vx= -pE vr _sq numj.Ex, vy= -pE[vr _sq num .Ey; vz= -pE[vr_sqj[numj Ez; break,}
case 4 {vx= -pE[vr__sql[num) Ex, vy=pE[vr__sql[num].Ey; vz= --pE[vr_sql[num).Ez; break;}
case 5 { vx=pElvr _sqj[numl Ex; vy= --pE[vr _sql[numJ Ey; vz=pE[vr_sql[num) Ez; break,}
case 6 {vx=pE[vr__sq [numj Ex, vy= -pE/vr__sq [numj.Ey; vz= --pE[vr_sqj[numjEz; break,}
case 7 { vx=pE[vr _sql[num) .Ex; vy=pE[vr _sq[[num[.Ey; vz= --pE[vr _sql[numj Ez; break;}

default break;

ult = sum_u + vx; 1 • twice the final u velocity of particle I • /
umt = sum u - vx;
vlt = sum_v + vy;
vmt = sum v - vy;
wit = sum_w + vz;
wmt = sum_w - vz;

ptvx lj = ult>> I; / • > > is faster than /2 or •o.s • /
ptvx mj = umt> > I,
ptvy I] = vlt> > I;
ptvy mj = vmt> > !;
ptvz Ij = wit>>!,
ptvz[mj = wmt> > !;

skip same species:
checked o~er onehundred:

- vry = b;

) while (ct[coll_type][nxj[nyj < time),
} / • For 4 coll types • /

} / • over all y cells • /
} /' over all x cells */

ttime[l3[+=(unsigned int)((unsigned int)clock(}-t1mO),

int sphere _Jadius, sphere _Jadi us _sq,

make_LUT()

Jan 9 11:59 1990

make_LUT

Page 4 of coll c

coll.c 199

int 1, J, k, I, e, num, num max, e_num_max,
int half sphere radius sq, -
int par,-shift, - -
long tot _numyts,

sphere_rad1us = LUTRAD;

if(node == 0)

coll.c

.. make_LUT

pnnt("Start to make velocity matrix, assume max rel vel will be %d\n", sphere_rad1us),

sphere radius sq = sphere radius "sphere radius; / • square of sphere radius • /
half sphere racl1us sq = sphere radius sq-/ 2 , / • half of that • /
num~max :;; totjiumyts = a; ; • set counters to o •;

ror(i=O; 1<=sphere_radius_sq; i++) Enum[i) = O;

1 < =sphere radius; i++) {
for(J= O; J<=sphere_radius; J++) {

for(k= O; k<=sphere_radius; k++) {
e = i *1 + j *J + k *k;

/ • square of sphere radius • /
ir(e < = sphere _rad 1us _sq) {

/ • only those spheres less than max • /
Enum[e[+= l;

/ • number of points • /
tot_numyts += 1,

/ • total number of points • /
if(Enum[ej > num_max) {

num_max = Enum[ej,
e_num_max = e;

/ • To malloc one circle at a time so no block is > 64kbytes • /
/' use xmalloc on s2010 */
for(i=O; 1<=sphere_radius_sq; i++)

if(l(pE[i) = (struct Epoint •)malloc(Enum[i[*sizeof(struct Epoint))))
{ prmt(" malloc failed for i = %d" ,i); break,}
else pE[i)~ / • Want to access the 1st element using index 1 • /

/ • place points onto newly malloc, ed circles • /
for(1= O; i<=sphere_radius; i++) {

ror(J= 0, i<=sphere_Iadms; j++) {
for(k= O; k<=sphere_Iadius; k++) {

e = 1 •i + J 'J + k *k;
if(e < = sphere _Iad1us _sq) {

par = panty(i,J,k);
/ • shift over in table based on point's parity •
if(par == 3) par = O;
shift = par • Enum[ej / 3;
numberjn_Eroup[el[parj += I,
num = shift + number_!n_Eroup[el\parj;

pE[el[num[Ex i;
pE[el[numj Ey = j;

Jan 9 11:59 1990 Page 5 of rn/1 r

coll.c coll.c
200

... make_LUT
pE[ejf num] .Ez k;

num I.
scramble{); / • scramble the LUT to avoid bias • /

if{node 0)prmt("Finish makmg vel matrix, num max=%d, for e=%d, tot_num_pts=%1d\n",
num_max, e, tot_num_pts); -

panty(u,v,w) parity
j • find the parity of the given point • /

int u,v,w;

scramble()

if(((u · w)&l) == 0 && ((u • v)&I) == 0) return(3); /* all the same parity */
else if(((u • v)&l) == 0) return(0); /* u and v the same but w different */
else if(((w • v)&I) == 0) return(2), /* w and v the same but u different */
else return(!); / • u and w the same but v different • /

scramble
I• scramble the L UT to avoid bias • /

int 1, j, k, I, e, num, num max, e num max,
int numl, num2, hold_x, hold_y, hold_z,-par;
long tot _num _pts;
extern int sphere_Jadius, sphere__rad1us_sq,

/ • Now to scramble the E matrix to aid in getting really random numbers • /
/ • pick 2 random points of the same parity and interchange them. Do this

• 8 times, on average, for each point. That should be pretty random. • /

if(node == 0) print("! will now scramble the LUT");
for(e=0; e<=sphere__radius_sq; e++) {

if(Enumfej > 3) for(i=l, i<3'Enumfej, i++) {
choose_first_num numl = ran_mtJe(Enumfe]),
if(numl == 0) goto choose_first_num;

hold_x = pE[eifnumlj Ex. hold_y = pEfe]inum!J.Ey; hold_z
/ • hold the first number in a temporary space • /

pEfel[num!J Ez.

pEfe][numl].Ex

Jan 9 11:53 1990

par = panty(hold_x hold_y,hold_z),

choose3 econd_num nurn2 = ran_JntJe(Enum(el),
if(num2 == 0 11 nurni == numl) goto choose_second_nurn;
if(panty(pEleJ:num2: Ex.pEle/lnum2] Ey,pEfe][num2].Ez) '= par)

goto choose 3 econd _num;

pEfel[num2J.Ex, pE[eUnurnl! Ey = pEfe][num2J.Ey; pEfe][num!J Ez = pEfe/[num2j Ez.
/ • put 2nd point in place of first • /

pE[e]!num2j Ex = hold....:x, pE/e![num2].Ey hold_y, pE[e]/num2] Ez hold_z.

Page 6 of co/1.c

coll.c 201 coll.c

.scramble
/ • put 1st point 1n place of 2nd • /

diff __,;pec1es _collision(1,m, vr _sq)
int I, m, vr sq;

dzff _spe cies_c ollision

{ / • to perform a multi species collision • /

char vx, vy, vz, octant;
int num;
int lite, heavy;
int rel_x_plus_400, rel_y _plus_400, rel_z_plus_400;
int i1;

/ • I will assume for now that the gas is a binary mixture and one
component is the light gas of mass 1 • /

if(mass_of_type/type/1]) < mass_of_type[type[m]]) {lite
else { lite = m; heavy = I;}

rel_x_plus_400 = ptvx[heavyl - ptvx[l1tej + 400;
rel_y _plus_400 = ptvy[heavy - ptvy[lite] + 400;
rel_z_plus_400 = ptvz[heavy] - ptvz[l1te] + 400;

I; heavy

/ • a 400 offset is used to avoid -11e values in //s • /

pick_num2

m;}

num • = ran _mt Je(Enum/vr __,;q]); / • pick any point on sphere, no parity • /
if(num == 0) goto p1ck_num2;

octant=ranbits(3); / • to reflect randomly through UVW = 0 • /

if(octant & 1) vx=pE[vr__,;q]lnum].Ex; else vx= -pE[vr_sq][num].Ex;
/ • to reflect randomly through U = 0 • /

if(heavy Jite_mod[rel_x_plus _400 - vx] '= 0) (

}

/ • use a look up to avoid repeating modulus operation • /
vx = --vx; / • reflect through U = 0 • /
if(heavyjite_mod/rel_x_plus_400 - vx) '= 0) goto pick_num2;
/ • if still not good, pick a new point • /

if(octant & 2) vy=pE/vr_sq][num].Ey, else vy= -pE/vr_sq]lnum] Ey;
/ • to reflect randomly through V = 0 • /

if(heavy J1te_mod/rel_y _plus_400 - vy] '= 0) {
vy = --vy; / • reflect through V = 0 • /
if(heavy Jite_mod/rel_v _plus_400 - vyj '= 0) goto p1ck_num2;

}
if(octant & 4) vz=pE/vr__,;q)/numj.Ez, else vz= -pE/vr_sq)[num] Ez;

/ • to reflect randomly through W = 0 • /
if(heavyJite_mod/rel_z_plus_400 - vzi '= 0) {

vz = --vz; / • reflect through IV = 0 • /
if(heavyJite_mod[rel_z_plus_400 - vz] '= 0) goto p1ck_num2;

ptvxllitel
ptvy lite
ptvz lite]
ptvx heavy!
ptvy heavy
ptvz heavy)

ptvx[heavy] - heavy Jite_d1v[rel_x_plus_400 + vx •mass_of _type/typeiheavy]]!,
ptvy/heavy) - heavy J1te_d1v/rel_y _plus_400 + vy•mass_of_type[typeiheavyl)J,
ptvz/heavy] - heavy J1te _d1v[rel _z _plus _400 + vz •mass _of _type/type/heavy])],

Jan 9 11:59 1990

heavy Jite_d1vlrel_x_plus_400 - vx];
heavy J1te_d1v rel_v _plus _400 - vy);
heavy J1te _div]rel _z _plus _400 - vz);

Page 7 of colic

coll.c coll.c
202

. dijf_spectes_collision
/ • add new relafrve to mean velocities • /

1rnt _heavy Jite()
{ / • To initialize the vectors used later. It is only called once • /

init_he avy_lite

int 1;

if(node == 0 && (mass_of_type[0j + mass_of_type[lj) > 10)
print("WARNING, there may be a problem with heavy J1te arrays bemg too small"),

for(i= -100, 1<=400; 1++) heavyjite_mod[i+400] = 1%(mass_of_type[0j + mass_of_type/11),
/ • For the modulus operation • /

for(i= -100; 1<=400; i++) heavyjite_div[i+400j = i/(mass_of_type[0j + mass_of_type[l[),
/ • For the long division • /

pickjite()
{ / • Pick a random light particle • /
extern int npart_cell, npsum_cell;
int k;

pickjite. k = lcr[ran_1ntje(npart_cell) + npsum_cellj;
if(mass_of_type[type[kjj I= 1) goto p1ckj1te;
else return(k);

p1ck_heavy()
{ / • Pick a random heavy particle • /
extern int npart_cell, npsum_cell;
int k,

pick_heavy k = lcr[ran_1ntje(npart_cell) + npsum_cellj;
if(mass_of_type[type[kll I= m mass_h) goto p1ck_heavy;
else return(k);

Apr 6 16:37 1989

pz"ck_lite

pick_heavy

Page 8 of roll r

coll.c
203

/ • This is the key routine which calculates colfrsions 6etween particles.
• Particles are chosen at random from within the eel/ based on their
• probability of collision. This particular version, coiUJd Bfrd,
• performs the normal Bird type of 3D collisions and assumes that
• the velocities have been defined as floats. '/

#include <cube/cubedef.h>
#include "2d.h"

extern unsigned long tt1me[];
int npart_cell, npsum_cell;

coll.c

coll() Coll
{

int ny, nx;
int 1, m, checksame, sum check,
int coll type, nlite, nheav; -
unsigned int timO,
float vr, vr J,Q, a, b1mp;
float vrx, vry, vrz, mx, my, mz;
float eps;

float collfac;
extern float pslipf, dtmp;
extern float numberc 1, numberc2, numberc l ~;

tim0 = clock();

if'(node == 0) if'(VELDIM I_= 3 /I VTYPE I= 0)
print("USING WRONG VERSION OF COLL");

for (nx = 0; nx < in.ncx; nx++) { / • For ail cells in X direction • /
for (ny = 0; ny < m ncy; ny++) { / • For all cells ,n Y direction • /

for(coll_type=0; coll_type<4; coll_type++) {

do {

/ • for the 4 types of multi-tJpec coils
• type O -> !tie/ lite
• type 1 -> lite/ heavy
• type 2 -> heavy/ lite
• type 3 -> heavy/ heavy • /

if'(ct[coll_typel[nxl[ny) > time) continue;
if'(coll_type > 0 && npart_h[nx/[ny/ < 2) { / • Must be > 2 heavies • /

ct[co!l_type/[nxl[ny/ += 1n dtm;
continue;

}
else if(npart[nxl[ny/ < 2) { / • Must be > 2 lights • /

ct[coll_typel[nxl[ny/ += in.dtm,
continue;

}
cell vol = chx • chy; / • Volume of the cell '/

collfac = 2.0 • cell_vol / cxs; / • operations combined it save time • /
npart_ce!I = npart[nxl[ny]; / • so no need to use an array repeatedly • /

npsum_ce!I = npsum[nxl[ny/; /' so no need to use an array repeatedly • /

checksame = 0;
do {

checksame++;

/ • Repeat sample coli' s till ct/col/_type//nx//ny//> time • /
/ • So can only try for collision 100 times • /

/ • Choose 2 particles from cell /nx//ny/ • /
/ • Calculate rel ,,elocdy 8 collision time • /

sum check = l;

switch(coll_type){
case 0: { / • lite-lite collision • /

for (, ,) {

Jan 10 19:02 1990

I = pick lite();
m = p1ckJ1te(),

Paqe 1 of coll,

coll.c
204

if (m I= I) break;
}
break,

case 1. { / • lite-heavy collision • /
I = p1ckJ1te();
m = pick heavy(),
break, -

case 2 { / • heavy-lite collision • /
I = pick_heavy();
m = pick lite();
break; -

case 3: { / • heavy-heavy collision • /
for (, ,) {

}
break,

I = p1ck_heavy();
m = pick_heavy();
if (m I= I) break;

vrx ptvx(m] - ptvx[l),
vry ptvy(mJ - ptvy(IJ,
vrz ptvz(m) - ptvz[IJ,

/ • two different particles • /

/ • vrx, y, z = components of collision pair relative vel • /

vr .3q = vrx •vrx + vry -..,ry + vrz -..,rz, / • relative speed • /

vrmaxcount(nxJ(nyJ++;
if(vr _sq > recentvrmax.3q(nxl [nyJ) recentvrmax _sq(nx)lny) = vr _3q,
ir(vrmaxcount(nxj(nyJ > 20) { / • Update every 20 times • /

vrm_,;q(nxJ(ny) = (recentvrmax_sq(nxJ(ny)+vrm_sq(nxJ(nyi) • 0 5;
/ • = avrg of most recent max vel and old such value * /

recentvrmax_sq(nxl!ny) = 0, /* reset * /
vrmaxcount(nx)lny) = 0; / • reset * /

}
/ * above was to update the max relative velocity as the temperature drops

while this next statement updates as the temperature rises • /

}

if (vr_sq > vrm_,;q[nx)lnyJ) vrm.3q(nxJ[ny) = vr.3q; /* Max value of cell rel vel'/

if(pty(m) < in.obs_he1ght && pty[!J < in.obs_height)
if((ptx(mj < inobs_a && ptx(IJ > in.obs_a) 11

(ptx(m) > m.obs_a && ptx[IJ < in obs_a)) sum_check = 0,
/ * sum check is set = 0 1/ particles are in the same cell but

* are on opposite sides of the obstacle, 1/ present • /

if(sum_check I= 0} (
sum check = 0;
a = - rand();
if(vr_,;q/vrrn_sq[nxl[nyJ > a 'a) sum check I,

if(checksame > = 100) surn_check = I,

while (sum_check == 0);

coll.c

.. coll

Jan 10 13:02 1990 Page '! of roll r

coll.c
205

if(checksame > = 100){
ct[coll_typei[nxl[nyj += m dtm;
prmt("Exceeded 100, vr sq=%f, nx=%d, ny=%d, vrm_sq[l[]=%f\n",

vr _sq,nx,ny, vrm_sq[nxl[nyj);
goto checked _over _onehundred;

) / • this should almost never happen • /

vr = sqrt(vr _sq); / • The relative speed • /

nlite = npart[nxj/ny] - npart_h[nxl[nyj; / • # of lights • /
nheav = npart_h[nx/lny!,
if(coll_type==O) ct(Oj[nxj[ny] += collfac / ((float)nlite • (float)nlite • vr);
else if(coll_type==l) ct[lj[nxj[nyj += collfac / ((float)nlite • (float)nheav • vr),
else if(coll_type==2) ct[2l[nxj[ny] += collfac / ((float)nlite • (float)nheav • vr);
else if(coll_type==3) ct[3l[nxj[nyj += collfac / ((float)nheav • (float)nheav • vr);
/ • updated cell time • /

if(mass[lj r= mass[mj) {
numbercl2 += I;

}

diff _:5pecies _coll 1s1011(I, m, vr);
goto skip _same _species;

/ • Type 1 or 2, heav / lit or lit/ heav • /

else if(mass[lj == I II mass[m) == I) numbercl += l; /* type O */
else numberc2 += I, / • type 8 • /

b1mp = 1 - 2. •rand();
eps = pi2 • rand(),

a = sqrt(l. - b1mp*b1mpj,
vrx = 0.5 • b1mp • vr,
vry = 0 S • a *cos(eps) "vr;
vrz = 0.5 • a~rn(eps)"vr;

/ • impact parameter, > 0, < 1 • /
/ • The azimuth angle, 0 to 2pi • /

/ • Reset post collision velocity • /

mx OS • (ptvx[ml + ptvx[I]);
my = 0 S • (ptvy[m + ptvy[I]),
mz = 0 S • (ptvz[mj + ptvz[i]),

ptvx m] = (mx + vrx);
ptvx I] = (mx - vrx);
ptvy mj = (my + vry);
ptvy I] = (my - vry);
ptvz[m] = (mz + vrz),
ptvz[l] = (mz - vrz);

skip same species:
checked_over _onehundred:

vry = a,

} while (ct[coll_typej[nxj[nyj < time),
} / • For 4 coli types • /

) /* over all y cells */
/* over all x cells •j

tt1me[l3j +=(unsigned int)((unsigned int)clock()-t1mO);

coll.c

.. coll

make_LUT() make_L UT

Jan 10 13:021990 Page B of co/1.c

coll.c
206

{ / • not used for DSMC • /
prmt("ERROR, need to use IDSMC version of coll").
)
scramble()
{ / • not used for DSMC • /
}
m1t_heavy J1te()
(/ • not used for DSMC • /
}

d1ff _species _coll 1s1on(i ,J, vr _t)
int i,J,
float vr t;
{ -

float sum_of_mass, rel_mass_..!, rel_mass_J,
float mx, my, mz;
float vrx, vry, vrz;
float a, b1mp, eps;

sum_of_mass = mass[i] + mass[JJ;
rel_mass_J = mass[ij /sum_of_mass,
rel_mass_J = mass[JJ /sum_of_mass.
mx ptvx\iJ •rel_massj + ptvx[J[•rel_mass_J,
my= ptvy1J•rel_mass_..! + ptvy[J]'rel_mass_J,
mz = ptvz[1j •rel_mass_...! + ptvz[J] •rel_mass_J,

bimp = 1. - 2 •rand();
eps = p12 • rand();

/ • impact parameter, > 0, < 1 • /
j • The azimuth angle, 0 to fipi • j

a = sqrt(1. - bimp 'bimp);
vrx bimp • vr_t;
vry = a•cos(eps)"vr_t;
vrz = a"sm(eps)"vr_t;

ptvx 1] mx + vr.~ 'rel_mass_J;
ptvx JI mx - vrx*rel_mass_..!,
ptvy I my + vry'rel_mass_J,
ptvy jJ my - vry "rel_mass_..!,
ptvz ij mz + vrz •rel _mass _J;
ptvz[i[~ mz - vrz"rel_mass_..!,

p1ckJite() / • Pick a light particle from the /,st of particles • j
{
extern int npart_cell, npsum_cell;
int k;

for(k = lcr[ran_JntJe(npart_cell) + npsum_celll.
k I= l; k = lcr[ran_JntJe(npart_cell) -'- npsum_celll);

return(k);

p1ck_heavy() / • Pick a heavy particle from the /1st of part,cles. • /
{
extern int npart _cell, npsum _cell;
int k;

for(k = lcr[ran_JntJe(npart_cell) + npsum_cell].

coll.c

.. make_LCT

scramble

init_he avy_lite

diff _spe cies_c ollision

pick_lite

pick_heavy

k I= in.mass_h; k = icr[ran_JntJe(npart_cell) + npsum_cell]),
return(k),

Jan 10 13:02 1990 Page 4 of coll r

coll.c
207

coll.c

. .. pick_heauy

Jan 10 19:02 1990 Page 5 of roll r

cube_remesh.c
208

cu be_remesh .c

/' This routine sends/receives data, creates the new mesh and then sends
• the new mesh from node zero into the other nodes.
• It then resorts the particles to fit into the new
• mesh • /

#include <cube/cosmic h>
#include "2d.h"

extern unsigned long ttime[j;
re mesh(ns,np)
int ns,np;
{

int i;
unsigned int tim0;
MSGDESC new _mesh;

sdesc (&new_mesh, 0, 0, 12345, &mesh, sizeof(struct meshflt));

send_out...:5cale(ns,np); / • Send scale vectors up the columns

tim0 = clock();

• and across the rows to node
• zero. From send out scale call cube mkmesh
, ,f node IS node zero- , I

ir(node I_= 0) recvb(&new _mesh); / • Recieve new mesh from node z~ro
'/

chx (mesh.xmark[locx+l)-mesh xmark[locx)) / m ncx;
chy (mesh.ymark[chs1ze-locy)-mesh.ymark[chs1ze-locy-l.j) /m ncy;

for(i=0; 1 < in.ncx; i++) out.cellx/1/ = chx "(0 5+1)+mesh.xmark[locxj;
ror(1=0; i <m ncy; i++) out celly/i/ = chy '(0 5+1) + mesh.ymark[chs1ze-locy-Ij,

/ • Update cell sizes and positions wdh new mesh data • /

ttime/15/ +=(unsigned intX(unsigned int)clock()-tim0);

/ • The following portion which sorts the particles back onto
• the new mesh closely reflects the particle send/receive
• section of cube_main()
'/

step type += l;
recv =ok();

step_type ~ I;

send_pt();
recv _pt();
send_ok();

reset Joe al();

/ • Recieve signal that ready to receive particles
from neighbor nodes • /

/ • Send appropriate particles to neighbors • /
/ • Receive particles from neighbors * /
/ • Send signal of ready to receive particles

• to neighbors. This signal will be
recvd in recv _ok() at next time step
in cube_ main(}.

'/
/ • Here. sort newly received particles

• into the new cells.
'/

re mesh

Mar 91 22:15 1989 Page 1 of cube_remesh.c

send_out_scale.c send_out_scale.c
209

/ • This routine sends the profile data up each column to the node above and
• then passes them across to node 0. ff f am node O I'll accumulate
• the data and create a new mesh. Every node adds in ,ts profile
• info to the xscale and yscale vectors before passing them on.
•j

#include <cube/cosmic h>
#include "2d h"

long myxscale[NDX1v1AX •NXCELL + !], myyscale(NDYMAX*NYCELL + !/:
extern unsigned long tt1me[j,

send _out~cale(ns,np)
int ns, np;

int i, nx, ny;
unsigned int t1m0;
MSGDESC out scale sd;
MSGDESC out scale -rd;
MSGDESC new-::_ mesh;

t1m0 = clock();

sdesc (&out_scale..3d, 0, 0, 1717, &scale, sizeor(struct meshlong)),
sdesc (&out _scale __rd, 0, 0, 1717, &scale, sizeor(struct meshlong));
sdesc (&new _mesh, 0, 0, 12345, &mesh, sizeof(struct meshflt));

/ • Set up message descriptor to send
• output to node above me • /

for{i=0; i<NDXMAX'in ncx; i++) scale.xscale[ij = myxscale[i) = 0;
for(i=0; 1<NDYMAX*in.ncy; i++) scale yscale[1) = myyscale[ij = 0;

/ • Set both vectors to zero before the sumatt'ons begin • /

for{nx 0; nx < in.ncx; nx++) {
for(ny = 0; ny < rn ncy, ny++) {

myxscale[nx + In ncx '1ocxj += npart[nxj[nyj,
myyscale[ny + In ncy '(chsize-locy--l)j += npart[nxl[nyj,

/ • Sum up number of particles in each row
• and column of cells within my node • /

if (Joey NDYMAX - I && Joey I= 0) {

send_out_scale

/ • if f am the bottom node in column but not also the top

}

• f must be the first to send out my vectors. f first
• add my scale vectors to the field scale vectors • /

for{i=0; i<NDXMAX•1n ncx, 1++) scale xscale[1j += myxscale[i],
for(i=0; i<NDYMAX•rn ncy. 1++) scale yscale[ij += myyscale[1j;
out scale sci.node = who(locx.locy--1).
sendb{ &out _scale ~d), / • send field vectors up the column of nodes•/

·else / • a general node (one not ,n the bottom row) must await the field
vectors from the next lowest node in the column • /

if'(NDYMAX == 1) goto there_1s_only _one_Jow,
recvb{&out scale rd); / • add my scale vectors to the field scale vectors • /
for(1=0; 1<NDXMAX•inncx. 1+"') scalexscale[Ij += myxscale[1j;
for(i=0; 1<NDYMAX•rn ncy, 1++) scale yscale[1j += myyscale[1j;
if{locy I= 0) { / • / am not a top row node. • /

out scale sci.node = who(locx,locy--1),
sendb(&out_scale~d), /. send field vectors up column • I

Apr 6 16:97 1989 Page 1 of send_aut_scale r

send_out_scale.c send_out_scale.c
210

.. send_o1tt_scale
else { /' / am a top row node. '/

there_Js_only one row:

}

if(node == who(NDXMAX-1, 0)) { / • I am top right node. • I

out_scale_sd.node = who(locx-l.,0);
out scale sd type = 1718;
sendb(&out _scale_,;d); / • send vectors to left '/

}
else { / • / am a top row node but not the one on

for(i=0; i<NDXMAX•in ncx; 1++) myxscale[1)
for(i=0; 1<NDYMAX•m.ncy; 1++) myyscale[ii

the right. • /
scale xscale[1!,
scale yscale[1j;

/ • Store field vectors in local vectors. • /
out scale rd.type = 1718;
recvb(&out_scale_rd); /' Recvb from node to my
for(i=0; i < NDXMA.,'{ •in ncx; i++) scale.xscale[1J += myxscalej ii,
for(1=0; 1<NDYMAX•inncy; i++) scale yscale[1j += myyscale/1);

/ • add my scale vectors to the field scale vectors • /
if(node '= 0) {

}

out _scale _sd node = who(locx-l. ,0);
out scale sd. type = 1718;
sendb(&out_scale_,;d); I. send vectors to left• I

else / • I AM NODE O and
• now the field scale vectors are complete and should

nght • /

• represent the number of particles in each row and column
• of cells in the whole flow field • /

if(ns == m.nstep-l.) { /' •f cube is to send out data for

}

• accumulation on the next time step, node 0
• now sends out field scale vectors and the
• most recent mesh (node boundaries) to the
• host • /

out scale sd.node = HOST;
sen db(&out _scale _,;d);
new mesh.node = HOST,
sendb(&new _mesh);
recvb(&new_mesh); /* The host will generate this mesh

• (or recall an old one) and send
• it back down to node 0. • /

else cube_mkmesh(ns,np);
/ • In this case, node zero generates

• the new mesh • /

for(i=l, i<NNODES; 1++) {
new mesh.node = i;
sendb(&new _mesh);

/ • Wherever this new mesh came from it is

• sent on to all nodes. • /

ttime[I6) +=(unsigned int)((unsigned int)clock()-tim0);

Apr 6 16:511989 Page 2 of send_out_.scale r

cube_mkmesh.c
211

j • This routine creates a new mesh based on the particle distribution
• it receives in the form of two field vectors, xscale and yscale.
• It is called from send out scale. c from node O and
• 1s nearly the same as-host_mkmesh.c
•;

#include <cube/cosmtch>
#include "2d.h"

float local __,xmark(NDXMA..X + 1], local _vmark(NDYMAX +I],
/ • Local node bdrys, used only in mkmesh • /

float dtf Jocal _xmark(NDXMAX +I],
/ • Local node widths • /

float temp_xmark(NDXMAX+l];
/ • Temporary node boundaries • /

cu be_mkmesh .c

cube_mkmesh(ns,np) cub e_mkmesh
int ns, np;

int i, J, k, 1 begin, k begin, dum;
long numpercolmn, numperrow, sum, act_field_mol;
float cellw1dth, cellheight, stuf;
float pistonpos;

pistonpos = m.x_Jeft + time • rn u_enter,
if(pistonpos > rn.pstop) p1stonpos = in pstop,

/ • To establish where the piston is: • /

act_field_mol = O; j• The actual # of molecules 1n flow field •j
for(i=O; 1<NDXMAX*in.ncx; i++) act_field_mol += scale.xscaleiii,
numpercolmn = (longXact_field_mol) / 1\'DXMA..X + 0 S;
numperrow = (long)(act_field_mol) / NDYMAX + 0 5;

/ • These are the balanced number of particles in
• each colmn_/row of nodes. •j

/ * The scale.(x,y)scale(/ vectors contain the total number of parties.
* in each (column,row) of cells throughout the whole flow field.

ie, scale.xscale(Oj is the number of particles 1n the far left
column of cells and should start off being about (NDYMAX*in.ncy*
in.me) or so. Scale.yscale(O/ 1s the # of part. in bottom-most
row of cells and should start off as (NDXMAX*in.ncx*in.mc.

for(i=O; i < =cws1ze; i++) { / • xscale 1s searched for its first
" non----zero member * /

ror(k=O; k<in.ncx; k++) {
if(scale.xscale[k +

1_begm
1 '1n ncxj > 0) {
= 1 k begm = k,

/ • These conta1·n the location
of the first nonzero column

go to found _x _beg1~.

}
found_x_begin:

local _xmark(Oj pistonpos

Apr 6 16:511989 Page 1 of cube_mkme.sh. c

cu be_mkmesh .c cube_mkmesh.c
212

.. cube_mkmesh
_I• The LHS boundary is always placed at the present

• piston location • /
sum 0, / • As I scan from left to right along scale.xsca/e sum will

• contain the total number of partfrles seen since the
• first/ last node boundary (local_xmark(/) was placed
'/

J = 1, / • j is just the index of the current node whose right boundary
• I am looking for
•;

for(i=1_begin. 1<cws1ze, i++) / • now begin counting particles and
setting down a node boundary when
> = numpercolumn • /

Apr 6 16:51 1989

cellw1dth = (mesh xmark/i+lj - mesh xmark[il)/10 ncx;
/ • the width of the current mesh cell • /

for{k=k_begin, k<m ncx; k++) {
k begm = 0,
if(-scale xscalefk + 1 'in ncxj == 0) {

/ • This is just for safety since except for
• possibly some of the leftmost columns of

sum

• cells, none of the rest should be empty • /
local--'xmark[Jj = mesh.xmarkfi]+

/ • This will probably cause an
• but f' II try it anyway • /

goto done_w1th_x,
}

k •cell width;
error later

if(numpercolmn > = sum + scale.xscalefk + 1 'in.ncxj)
/ • That is, ,f I have not yet counted up

• enough particles to lay down the right
• edge of this node ..
'/

sum += scale xscalefk + 1 •in ncx!;
/ • Sum gets incremented by the number of

• particles in this column of cells.
•;

if(1==cws1ze-l && k==m.ncx-1) {
/ • ff something ,s not quite right and f' ve

• reached the far side of the field without
hanng counted up enough particles, place

• the node boundary now anyway.
•;

stuf = scale xscale[k + i 'in.ncxj /
(floatXnumpercolmn / inncx),

if(stuf < I) stuf = 1,
/ • So J don't place the boundary

• ,short of the end wall . . /
local _xmark[J! = mesh.xmarkfij+

(m.ncx-1 +stuf) •cellw1dth,

else / • That is. I have counted enough particles
lo lay doun a new boundary ,

I

stuf = i floati(numpercolmn-sum) /(float)
(nu mpercolmn / in.ncx);

/ • stuf is the linear interpol.
to the local. of the node end • /

local-'xmark:ii = mesh xmarkfij+
((float)k+stuf) •cellw1dth,

• Lay down the new node boundary.

if(k k begin)
ir(1 1 = o) local_xmark[J]

Page 2 of cube_mkmesh c

cube_mkmesh.c cu be_mkmesh.c
213

.. cube_mkme.sh
mesh xmark[ij + stuf
'(mesh .xmark[ij--mesh .xmark[i-1 j) / in.ncx,

else local_xmark[Jj =
mesh.xmark[1j + stuf
'(mesh xmark[1+1J--mesh xmark[11)/m ncx,

I• ff this happened to be inside the first
• column of cells, lay down the boundary at
• the right edge of this first column.
•;

sum scale.xscale[k+1 •m.ncxj -
(n umpercolmn-sum);

/ • sum is reduced by the # of
parts. taken by the last node • /

}
done with x:

J += 1,
/ • now go on to the next (J) node
•;

local_xmark[cws1zej = in.xm_glob;
/ • Set the most rightward node boundary

• equal to the right edge of the flow
• field • /

for(i=0; 1<cws1ze; 1++) d1fJocal_xmark[ij = local_xmark[i+lj - local_xmark[1j,
/ • Now smooth this mesh in X by averaging the width

• of each node with that of its neighbors. • /

for(J =0; j < in hremesh; J ++) { / • Smooth hremesh times • /
for(1=l; 1<cwsize-l, i++) temp-'xmark[1j =

0.3333 '(d1f Jocal_xmark[H.j+dif Jocal_xmark[ii+ d1f Jocal_xmark[i+ lj);
/ • For nodes not on LHS or RHS • /

difJocal_xmark[0j = (difJocal_xmark[0j + difJocal_xmark[lj) • 0.5;
/ • For node on LHS • /

difJocal_xmark[cwsize-lj = (difJocal_xmark[cws1ze-lj +
difJocal_xmark[cwsize-21) • 0 5,

/ • For node on RHS • /
for(i=l; 1<cws1ze-l, 1++) di/Jocal_xmark[ij = temp_xmark[ij;

for(i=l; i<cwsize; i++) local__xmark[i) =
local__xmark[i-lj + di/Jocal_xmark[i-1);

/ • Now I have finished laying down node boundaries in the X direction and will
• go on to do exactly the same thing in the Y direction except that the
• Y direction is not smoothed. Thus, the Y direction
• proceedure which follows has few if any comments.
•;

i_begin = k_begm 0;

sum = 0;
j = l;
for(i=i begm; i<chs1ze; 1++) {

- cellheight = (mesh.ymark[i+lj--meshymark[ij)/in ncy;
for(k=k_begin, k<m ncy; k++) {

k begm = 0;
if'(scale yscale[k + i •m.ncyj == 0) {

Apr 6 16:51 1989 Page 3 of cube_mkmah r

cube_mkmesh.c cu be_mkmesh .c

done_w1th_y
}

214
.. cube_mkmesh

local_ymark[JJ = mesh ymark[1j+
k •cellhe1ght,

pnnt("yscale 0 early, k=%d, k begin=%d 1=%d, 1_begin= %d",
k,k_begm,1, 1_begm);
goto done_with_y;

}
it'(numperrow >= sum + scale.yscalefk + 1•m.ncyj)

sum += scale.yscale(k + 1 •in.ncy],
if(i==chsize-I && k==in.ncy-1) {

}
else

stuf = scale.yscale(k + 1 •m.ncy] /
(float)(numperrow / m.ncy);

it'(stuf < 1.) stuf = I ,
local_ymark(jj = mesh.ymark(i]+

(in.ncy-I +stu!)•cellhe1ght;

stuf = (float)(numperrow--sum)/(float)
(numperrow / m.ncy);

local_yrnark(j] = mesh.yrnark(ij+
((float)k+stuf) •cellheight;

it'(k == k_begin)

J += I,

it'(i b 0) local_ymark(j] =
mesh ymark(1] + stuf

'(mesh yrnark[i]-mesh.ymark(i-Ij) /1n ncy;
else local_ymark(J] =

mesh.ymark(i] + stuf
'(mesh ymark(i+ !]-mesh yrnarki1J) /m.ncy;

sum = scale.yscale(k+1 •in ncy]
(numperrow - sum);

local_ymark(chs1ze] = m.ym_Elob;

/ • Now, in case a lattice is used, we
• don't want particles' s1·tes to
• land exactly on a node boundary so
• we will shift the boundary slightly • /

it'(LATICE == 1) {
for(i=0; 1< =cwsize; 1++)

it'(local_xmark(i] == (int)local_xmark(1])
local_xmark(i] += 0 01;

for(i=0; i<=chsize; i++)
if(local_ymark(i] == (int)local_ymark[1])

local_ymark(i] += 0 01;

/ • Here update the actual mesh boundaries from the temporary
• variables used in this subroutine and reset the scale.
• (x,y)scale variables to zero.
•;

for(i=0; 1<=cws1ze; 1++) {
mesh xmark(1] = local-=xmark(1],
if(1 < cws1ze) for(k=0; k<m.ncx; k++)

scale xscaie(k+i •m.ncx] 0;
}
for(i=0; 1<=chs1ze; i++) {

mesh ymark[ij = local_ymark[i],

Apr 6 16:51 1989 Page 4 of cube_mkme.sh c

cube_mkmesh.c cube_mkmesh.c
215

... cube_mkmesh
if(1 < chs1ze) for(k=0, k<m ncy, k++)

scale yscale[k+1 •m ncy) = 0,
/ • Reset the mesh and scale arrays • /

if(ns % (int)(in cremesh '5) == 0) { / • print out the mesh for reference. • /
prmt("ns = %d, np = %d",ns,np);
dum = chsize; if(cwsize > dum) dum = cws1ze;
for(i=0, 1<=dum;· 1++) {

if(i < = cws1ze && i < = chsize)
prmt("CUBE 1 = %d, xmark = %f, ymark %f",

1,mesh.xmark[i],mesh ymark[i));
else if(i > cws1ze)print("CUBE 1 = %d, xmark ymark = %f"

Mar 31 22:14 1989

i,mesh.ymark[1]);
else prmt("CUBEi = %d, xmark = %f, ymark =

i,mesh.xmark[1j);

Page 5 of c11be_mkme.sh r

random.c

#ifndef lint
static char sccs1d!]
#endif

#include
#include

;•
* random. c:

"@:#)random.c

<cube/cosmich>
"2d.h"

216

4 2 (Berkeley)

• An improved random number generation package. In addition to the standard
• rand(} /srand(} like interface, this package also has a special state info
• interface. The initstate() routine is called with a seed, an array of
• bytes, and a count of how many bytes are being passed in; this array is then
• initialized to contain information for random number generation with that
• much state information. Good sizes for the amount of state information are
• 92, 64, 128, and 256 bytes. The state can be switched by calling the
* setstate() routine with the same array as was initiallized with initstate().
* By default, the package runs with 128 bytes of state information and
* generates far better random numbers than a linear congruential generator.
* If the amount of state information is less than 92 bytes, a simple linear
* congruential R.N. G. is used.
* Internally, the state information is treated as an array of longs; the
* zeroeth element of the array is the type of R.N. G. being used (small
* integer); the remainder of the array is the state information for the
* R.N.G. Thus, 92 bytes of state information will give 7 longs worth of
• state information, which will allow a degree seven polynomial. (Note: the
* zeroeth word of state information also has some other information stored
• in it - see setstate(} for details).
* The random number generation technique is a linear feedback shift register
• approach, employing trinomials (since there are fewer terms to sum up that
• way). In this approach, the least significant bit of all the numbers in
• the state table will act as a linear feedback shift register, and will have
• period 2' deg - 1 (where deg is the degree of the polynomial being used,
• assuming that the polynomial is irreducible and primitive). The higher
• order bits will have longer periods, since their values are also influenced
• by pseudo-random carries out of the lower bi'ts. The total period of the
• generator is approximately deg*(2"deg - 1); thus doubling the amount of
• state information has a vast influence on the period of the generator.
• Note: the deg'(2"deg - 1} is an approximation only good for large deg,
• when the period of the shift register is the dominant factor. With deg
• equal to seven, the period is actually much longer than the 7'(2"7 - 1)
• predicted by this formula.

'/

/'
• For each of the currently supported random number generators, we have a
• break value on the amount of state information (you need at least this
• many bytes of state info to support this random number generator), a degree
• for the polynomial (actually a trinomial) that the R NG. is based on, and
• the separation between the two lower order coef!i'c1ents of the trinomial.
'/

random.c

83/01/02",

#define TYPE 0 0
BREAK o

/ • linear congruential '/
#define 8
#define DEG 0 0
#define SEP ji 0

#define TYPE 1
#define BREAK_! 32

/' x*'7 + x"B + 1 '/

#define DEG 1 7
#de.fine SEP I 3

Mar 31 !!2:15 1989 Page 1 of randnm r

random.c random.c 217

#define j• x*'15 + x + 1 '/ TYPE 2 2
BREAK 2 #define

#define
#define

DEG 2
SEP 2

64
IS
I

#define /' x••s1 + x•t:1 + J 'I TYPE 3 3
BREAK_3 #define

#define
#define

DEG 3
SEP 3

128
31
3

TYPE 4 4
BREAK 4

#dell ne / • x *'6S + x + 1 • /
#define
#define
#define

;•

DEG 4
SEP 4

256
63
I

• Array versions of the above information to make code run Jaster - relies
* on fact that TYPE_i == ,.
•;

#define MAX_TYPES 5 / • max number of types above • /

static long degrees[MAX TYPES DEG_O, DEG 1, DEG 2,
-DEG_3;-DEG_4 },

static long seps[MAX: TYPES SEP _O, SEP I, SEP 2,
- SEP _,:3, SEP _4 }.

/*
• Initially, everything is set up as if from
• initstate(1, &rand/bl, 128);
• Note that this initialization takes advantage of the fact that srandom(}
• advances the front and rear pointers 10*rand deg times, and hence the
* rear pointer which starts at O will also end up at zero; thus the zeroeth
• element of the state information, which contains info about the current
• position of the rear pointer is just
• MAX_TYPES*(rptr - state) + TYPE_S TYPE_s.
•;

static long

;•

randtbl[DEG_3 + I j = { TYPE_3,
Ox9a3!9039, Ox32d9c024, Ox9b663!82, Ox5dalf342,
Oxde3b8!e0, Oxdf0a6fb5, Oxfl03bc02, Ox48f340fb,
Ox7449e56b, Oxbeb!dbbO, Oxab5c59!8, Ox946S54fd,
Ox8c2e680f, Oxeb3d799f, Oxbllee0b7, Ox2d436b86,
Oxda672e2a, Ox !.S88ca88, Oxe369735d, Ox904f35f7,
Oxd7!58fd6, Ox6fa6f05!, Ox6!6e6b96, Oxac94efdc,
Ox364!3f93, Oxc622c298, Oxf5a42ab8, Ox8a88d77b,

Oxf5ad9d0e, Ox8999220b, Ox27fb47b9 } ,

• fptr and rptr are two pointers into the state info, a front and a rear
• pointer. These two pointers are always rand sep places aparts, as they cycle
* cyclically through the state information. (Yes-: this does mean we could get
• away with just one pointer, but the code for random() is more efficient this
• way). The pointers are left positioned as they would be from the call
• initstate(1, randtbl, 128)
• (The position of the rear pointer, rptr, is really O (as e,_xplained above
• in the initialization of randtbl} because the state table pointer is set
• to point to randtbl/1/ (as explained below).
•;

Mar 91 22:15 1989 Page f! of randorn r

random.c 218

static long
static long

*fptr
•rptr

&randtbll SEP 3
&randtbl[I]; -

;•
• The following things are the pointer to the state information table,
• the type of the current generator, the degree of the current polynomial
• being used, and the separation between the two pointers.
• Note that for efficiency of random(), we remember the first location of
• the state information, not the zeroeth. Hence it ,s valid to access
• state(-1/, which is used to store the type of the R.N. G.
• Also, we remember the last location, since this is more efficient than
• indexing every time to find the address of the last element to see 1/
• the front and rear pointers have wrapped.
*/

static long 'state

static long rand_type
static long rand_deg
static long rand_sep

static long •end_ptr

;•
• srandom:

&randtbl[

TYPE 3;
DEG 3;
SEP];

&randtbl[

• Initialize the random number generator based on the given seed. If the
• type is the trivial no-state-information type, just remember the seed.
• Otherwise, initializes state(/ based on the given "seer!' via a linear
• congruential generator. Then, the pointers are set to known locations

-I],

DEG 3

• that are exactly rand sep places apart. Lastly, it cycles the state
• information a given number of times to get rid of any ,niti"al dependencies
• introduced by the L. C.R.N. G.
• Note that the initialization of randtbl(/ for default usage relies on
• values produced by this roiitit1e.
•;

srandom(x)

unsigned

long

if(

}
else

x·

i, J;

rand type TYPE 0
statel O) = x;

j = I;
state[0] = x;
for(i = I; i < rand_deg; 1++

state[i] = 1103515245 'state[1

}
fptr = &state[rand _sep];
rptr = &state [0 J;

{
Ij + 12345,

for(i = O; i < 10-'rand_deg; 1++ J rand();

Mar 31 22:15 1989

random.c

-r I],

srandom

Page 3 of random c

random.c
219

I•
• initstate:
• Initialize the state information in the given array of n bytes for
• future random number generation. Based on the number of bytes we
• are given, and the break values for the different R.N. G., s, 1ue choose
• the best (largest} one we can and set things up for it. srandom() is
• then called to initialize the state information.
• Note that on return from srandom(j, we set state(-1/ to be the type
• multiplexed with the current val!Le of the rear pointer; this is so
• successive calls to initstate() won, t lose this information and will
• be able to restart with sets/ate(}.
• Note: the first thing we do is save the current state, ,f any, just like
• setstate(} so that it doesn, t matter when initstate is called.
• Returns a pointer to the old state.
•;

char •
initstate(seed, arg_,;tate, n)

unsigned seed;
•arg_state;
n;

/ • seed for R. N. G. • /
char
int

/ • pointer to state array * /
/ • # bytes of state info * /

char •ostate = (char ')(&state[-l I),

if'(rand type TYPE O) state[-l I = rand type;
else state[-I] = MAX TYPES'(rptr - state) + rand=type;
if'(n < BREAK_! f {

if'(n < BREAK_O) return;
rand type = TYPE 0,
rand-deg DEG O;
rand::-,;ep SEP _O;

}
else {

if'(n < BREAK_2)
rand type = TYPE I,
rand-deg DEG 1,-
rand=sep SEP_!,

else {
if(

}

n < BREAK_})
rand type = TYPE 2;
rand-deg DEG 2;-
rand::-,;ep SEP .J.;

else {
if(n < BREAK_4)

rand type = TYPE 3,
rand-deg DEG 3;
rand =sep SEP _:3,

else {
rand type
rand-deg
rand=sep =

TYPE 4,
DEG 4;
SEP _4,

state = &(((long •)arg_state)[ti),
end_ptr = &state[rand_deg I,

/ • first location • /
; • must set end_ptr before srandom * /

srandorn(seed) ,
if'(rand _type TYPE _O) statei -l I =
else state! -l] = MA..'<:_TYPES'(rptr - state) +

rand type;
rand=type;

random.c

in£tstate

Mar 91 22:15 1989 Page 4 of rando111 r

random.c 220

return(ostate),

;•
• setstate:
• Restore the state from the given state array.
• Note: it is important that we also remember the locations of the pointers
• in the current state informati'on, and restart the locations of the pointers
• from the old state information. This is done by multiplexing the pointer
• location ,·nto the zeroeth word of the state information.
• Note that due to the order in which things are done, it is OK to call
• setstate() with the same state as the current state.
• Returns a pointer to the old state information.
•;

char •
setstate(arg_J;tate

char •arg_J;tate,

•new state
type
rear

(long •)arg state;
new _state!OJ%MAX _TYPES;
new _J;ta.te!OJ /MAX_TYPES;

random.c

... inttstate

setstate

long
long
long
char •ostate = (char •)(&state! -l I);

;•
• random:

if'(rand_type TYPE_O) state[-l J
else state! -l I = MA .. X_TYPES'(rptr - state) +
switch(type) {

case TYPE 0
case TYPE-I
case TYPE-2:
case TYPE-3
case TYPE-4:

rand type = tvpe,
rand=deg d~greesi type I
rand _sep = sepsl type j,
break;

default
pnnt ("error");

state &new _state[I J;
TYPE o
rear J;

if'(rand type '=
rptr - = &state!
fptr = &state!

}
(rear + rand _sep)%rand_ deg J;

end_ptr = &state! rand_deg J;
return(ostate);

rand type,
rand=type;

/' set endJtr too '/

• If we are using the trivial TYPE O RN G., ;ust do the old linear
• congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
• same in ail ther other cases due to all the global variables that have been
• set up. The basic operation is to add the number at the rear pointer into
• the one at the front pointer. Then both pointers are advanced to the next
• location cyclically in the table. The value returned is the sum generated,
• reduced to 91 bits by throwing away the "least random" low bit.
• Note: the code takes advantage of the fact that both the front and

Mar 31 2!!:15 1989 Page 5 of rando111 r

random.c
221

• rear pointers can, t wrap on the same call by not testing the rear
• pointer •J the front one has wrapped.
• Returns a 81---Mt random number.
'/

float

random.c

rand() rand
{

long
float J,

if(rand tvpe TYPE_O) {
1 = - ~tate[Oj = (state[Oj *1103515245 + 12345)&Ox7fffffff,

else {
'fptr = 'fptr + •rptr;
1 = ('fptr > > I)&Ox7fffffff;
if(++fptr >= end___ptr

fptr = state:
++rptr:

else {
if(++rptr >= end___ptr

J = (float)1 / Ox7fffffff;

/ • chucking least random bit • /

rptr state;

/' TO GET A FLOATING POINT NUMBER O<)<l '/
return(J),

Oct 117:46 1989 Page 6 of random.c

ranbits.c
222

/***
* The function ranbits{b) return a random long integer in which the lower b
* bits is significant. The function set ranbits set the seed of the random
* number generator. -

static long seed;

long ranbits{b)
int b;

register long tt, vv;
register int bb;

for(vv = 0, bb = b, tt = seed; bb-;)
1/(tt < OJ (tt • = 9; tt < < = 1; vv < < = 1; vv I= 1;)

else (tt <<= 1; vv <<= 1;)

seed tt; return(vv);

set_Janbits{newseed} long newseed; (seed newseed;)

Mar 31 f!f!:18 1989

ranbits.c

Page 1 of ranbits.c

ran_in t_le.c 223

/ • Tht's program returns a random integer between O and
the number specified. The number is generated by the
method of ranbits.c written by Wen-,hng Su. It is
essflltial that seed be a big random number (like 2945}
or it u:il/ take a long time before the sequences
become good and random. ft is faster than random. c •;

static long seed;

long ran_1ntJe(num)
int num,

register long tt, vv;
un:,igned long temp;

try again.
-- for(temp = (num<<I), vv = 0, tt = seed; temp >>= I;)

if(tt < 0) { tt '= 9; tt <<= I; vv <<= I, vv I= I,
else { tt <<= I; vv <<= I, }

seed = tt;
if(vv > num) goto try _agam;
return(vv),

set_ran_1nt(newseed) long newseed; { seed

Sep 90 15:55 1989

newseed;)

ran_int_le.c

set_ran_int

Page 1 of ran_,nt_l,· r

makefile
224

Teach make about . 086 files.

CFLAGS= -0 -fswitch
CC = cch

HFILS

HOBJ

host main. c host set. c host _Jetdat. c host dat. c host mkchain. c acum. c\
host=mkmesh. C grey. C pr _safety. C

host_ main. o host _set.a host _Jetdat. o host dat. o host_ mkchain. o acum. o\
host_mkmesh.o grey.a pr_safety.o

GHOBJ = host_ main. o host_set.o host_Jetdat. o host _dat. o host_ mkchain. o a cum. o\
host_ mkmesh. o grey. o pr _safety. o cosmicl. o cosmic 2. o cosmic.'/. o

CFILS

COBJ

G!OBJ

!OBJ

!OBJ2

GOBJ

2dcube.c cube main.c setup.c grey.c cube_Jetdat.c neighbors.c initia.c\
reset local. c\ -
send jk. c sample. c send _out. c zero. c\
move _JJt.c recv _ok.c send_JJt. c\
recv _JJt. c\
coll. c send out scale .c cube mkmesh. c cube _remesh. c\
random.c ian mt le.c ranbits.c

cube_ main. 086 setup. 086 grey. 086 cube _Jetdat. 086 neighbors. 086\
initia. 086 reset.Jocal. 086\
send_ok. 086 sample. 086 send _out. 086 zero. 086\
move _JJt. 086 recv _ok. 086 send _JJt. 086\
recv _JJt. 086\
coll. 086 cube_remesh. 086 send_out_scale. 086\
cube mkmesh. 086 random. 086 ran int le. 086 2dcube.O86 - - -
cube_main${OO) setup$(OO) grey$(OO) cube_Jetdat$(OO} \
neighbors$(OO}..
initia${OO) reset _Jocal${OO A
send_ok$(OO) sample${OO) send_out${OO} zero$(OO A
move_JJt$(OO} recv_ok$(OO} send_JJt$(OO}..
recv_JJt${OOA -
co//$(OO) cube_remesh${OO} send_out_scale$(OOA
cube_mkmesh${OO) random$(OO) 2dcube${OO}..
ranbits${OO} ran_jnt.Je$(OO) cosmlc1${OOA
cosmic/?$(OO) cosmic.'/$(OO)

cube _main. 0286 setup. 0286 grey. 0286 cube _Jetdat. 0286 neighbors. 0286\
initia. 0286 reset Jo cal. 0286\
send _ok. 0286 sample. 0286 send _out. 0286 zero 0286\
move _JJt. 0286 recv _ok. 0286 send yt. 0286\
recv yt. 0286\
coll. 0286 cube remesh.0286 send out scale. 0286\
cube_ mkmesh. 0286 random. 0286 -;:an Jnt _Je. 0286 2dcub e. 0286

cube_ main. 0886 setup. 0886 grey. 0886 cube _Jetdat. 0886 neighbors. 0886\
initia. 0886 reset local. 0886\
send _ok. 0886 sample. 0886 send_out. 0886 zero. 0886\
move _JJt. 0886 recv _ok. 0886 send yt. 0886\
recv yt. 0886\
colt. 0886 cube _remesh. 0886 send _out _scale. 0886\
cube mkmesh. 0886 random. 0886 ran int le. 0886 2dcube. 0886 - - -
cube _main. gh. o setup.gh. o grey. gh. o cube _Jetdat. gh. o neighbors. gh. o\
initia. gh. o reset local. gh. o\
send ok. gh. o sample.gh. o send out. gh. o zero.gh. o\
moveyt.gh.o recv_ok.gh.o sendyt.gh.o\

Mar 91 22:18 1989

makefile

Page 1 of rnak,file

makefile
225

recv _yt.gh o\
coll.gh. o cube _Jemesh.gh. o send_out _scale. gh. o\
cube_mkmesh.gh.o random.gh.o ran __ JntJe.gh.o 2dcube.gh.o

all: cubemain hostmain

contour: contour.a graphic2.o

makefile

cc -o contour ${ CFLAGS) contour.a graphic 2. o -<suntool -<sun window -<pixrect -<m

contour safe: contour safe. o graphic 2. o host _Jetdat. o host dat. o grey. o
- cch -o contour _safe ${ CFLA GS} contour _safe. o graphic 2. o\

host_JJetdat. o host_dat. o grey. o -<suntool -<Sun window -,pixrect -<m

hprofile _safe: hprofile _safe. o host _JJetdat. o host _dat. o grey. o
cch -o hprofile safe ${ CFLA GS) hprofile safe. o\
host_JJetdat. o host_dat. o grey. o -<m -<cosmic

vprofile_§afe: vprofile_safe.o host_JJetdat.o host_dat.o grey.a
cch -o vprofile _safe ${ CFLA GS} vprofile ...!afe. o\
host_JJetdat. o host_dat. o grey. o --Jm --Jcosmic

pv_ylot_safe: pv_ylot__!afe.o host_JJetdat.o host_dat.o grey.a
cch -o pv_ylot_safe ${ CFLAGS} pv_ylot_safe.o\
host_JJetdat. o host_dat. o grey. o --Jm -<cosmic

draw _safe _field: draw _safe _field. o host_JJetdat. o host _dat. o grey. o
cch -o draw __}afe _field ${ CFLA GS} draw _safe _field. o\
host_JJetdat. o host_dat. o grey. o --Jm --Jcosmic

readsafe: readsafe. o host _JJetdat. o host _dat. o pr _acum. o grey. o smooth _a cum. o
cch -o readsafe ${ CFLAGS} readsafe.o host_JJetdat.o host_dat.o\
pr _acum. o grey. o smooth _a cum. o -<m -<cosmic

dcontour: dcontour.o contour op.a
cc -o dcontour ${ CFLAGS} dcontour.o contour_op.o --Jm

dcontour _safe: dcontour _safe. o contour _op. o host_JJetdat. o host _dat.o grey. o
cch -o dcontour _safe ${ CFLA GS} dcontour _safe. o\
contour _op. o host_JJetdat. o host_dat. o grey. o --Jm --Jcosmic

teal: teal. o
eeh -o teal -{switch tcol.c ran_jntJe.c --Jm --Jcosmic

cubemain: $(COBJ)
cccos -o cubemain ${ COB.I} --Jmnode --Jcosmic -m
fix86 -;; 41000 cubemain

cubemain.ipsc: $(!OBJ)
ccipsc -o cubemain ${ [OBJ} --Jcosmic --Jm --Jmnode

cubemain.ipsc2: $(!OBJ)
ccipsc2 -o cubemain ${IOBJ2} --Jcosmic --Jm --Jmnode

cubemain.s2010: $(GIOBJ)
ccs2010 -c cosmic8. c -{)cosmic timeout=
ccs2010 -o cubemain ${ GIOB.J}- --Jeube -<m

eubemain.gh: $(GOBJ)
ccgh -m68020 --{68881 -o eubemain ${ GOB.I} --Jm -,cosmic

$(COBJ) $(!OBJ): 2dh

hostmain: $(HOBJ)
cch -{switch -o hostmain ${HOB.I} --Jm --Jcosmic

Mar 91 22:18 1989 Page 2 of 11u1k,Ji/,

makefile 226

ginhostmain: $(GHOBJ)
cch -fswitch --{} ginhostmain ${ GHOBJ} --lm --lcube

$(HOBJ): host 2d.h

2d. h host _2d. h: 2d. def

laser: host_2d.h 2d.def $(HFILS) 2d.h ${CFILS) makefile
igrind --Pmaser $? 8
touch laser

listd: host_2d.h 2d.def $(HFILS) 2d.h ${CFILS) makefile
print $? 8
touch listd

listb: host_2d.h 2d.def $(HFILS) 2d.h ${CFIL5) makefile
print $? 8
touch listb

lintc:
iinth $(CFILS)

linth:
linth ${HFILS)

wee:
wc host_2d.h 2d.def $(HFILS} 2d.h $(CFILS) makefile

Mar 31 22:18 1989

makefile

Page 3 of makefile

