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Abstract

This dissertation describes silicon integrated circuits that model known and
proposed physiological structures in the early auditory system. Specifically,
it describes silicon models of auditory-nerve response, of auditory localization
in the barn owl, and of pitch perception. The integrated circuits model the
structure as well as the function of the physiology; all subcircuits in the chips
have anatomical correlates. The chips, two of which contain over 100,000
transistors, compute all outputs in real time, using analog, continuous-time
processing. In most respects, chip responses approximate physiological or
psychophysical response of the modeled biological systems. The dissertation also
describes a novel nonlinear-inhibition circuit, which is a key component of two of

the silicon models.
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Chapter 1

Introduction

As a branch of science matures, it often develops a synthetic component.
Although many open issues remain, advances in auditory physiology,
psychophysics, and theoretical modeling offer detailed information on the
structure, function, and fundamental limitations of the early auditory system.
Creating an artificial early auditory system, in a physical medium that shares
many of the strengths and weaknesses of the biological substrate, requires a
concrete specification of auditory neural computations, and provides a challenge
to the field different from those of computer simulation and theoretical modeling.
My co-workers and I are building analog VLSI (very large-scale integrated)
silicon circuits that model the early auditory system, both to explore the general
computational principles of auditory neuroscience, and to create potentially
useful devices for sound understanding, for sound localization, and for prostheses

for the deaf. This dissertation documents some of our research.

1.1 Motivation for the Scientist: Why Use Analog VLSI Technology?

We believe that any medium imposes a direction on modeling; it is thus
advantageous to choose a modeling medium that shares characteristics with the
system under study. Analog VLSI and neural systems are different in detail, but
the frameworks for computation in the two technologies are remarkably similar.
Both media pack a large number of imperfect computational elements into a
small space. Systems in both technologies must confront these imperfections, not
as a second-order effect, but as a prerequisite for a working design. Both media
offer a rich palette of primitives in which to build a structure; nonlinearities are

resources for improved system performance. Neural and silicon systems are both



ultimately limited not by the density of devices, but rather by the density of
interconnect. Modeling neural systems directly in a physical medium subjects
the researcher to many of the same pressures faced by the nervous system over

the course of evolutionary time.

The design style of the projects described in this dissertation accentuates
the similarities between analog VLSI and neural systems. The circuits use the
full analog nature of transistors, exploiting the exponential functions inherent
in the devices. The chips use voltage, current, and charge as analog data
representations of system quantities; the systems also use a pulse representation
that models biological action potentials. All communication in the systems is
asynchronous; there are no clock signals. The speed of processing is matched to
the time scale of auditory signals. Each subcircuit is dedicated to modeling a
known or proposed structure in the early auditory system; circuits are not time-

multiplexed between multiple functions.

Analog VLSI systems, using this design style, have another distinct
advantage: real-time performance. All the systems described in this dissertation
work in real time. Real-time performance allows large, complex models to
be tested with a large library of input stimuli. Real-time performance also
encourages the construction of electromechanical systems to test sensorimotor

models.

Analog VLSI technology is an excellent medium for auditory modeling.
Processing time-varying information fully exploits the real-time performance
of analog VLSI systems; modeling human audition requires the processing
of time-varying waveforms at frequencies up to 20 kHz. In addition, many
representations of early audition do not require wiring in three dimensions, and

map well to a two-dimensional silicon die.



1.2 Motivation for the Engineer: Why Model Audition?

Why should an engineer study and model early biological auditory
processing, and incorporate these models into practical sonar and speech-
recognition systems? The early representations of a sensory system are crucial.
Early representations serve to reduce the amount of sensory data, while
preserving information essential for the task of the system. Moreover, early
representations express this information in a way that simplifies the task of later
modules in the system. Because early biological auditory representations are
the first stage of the best speech-recognition system known, it makes sense to
incorporate these representations into human-made speech recognizers. Likewise,
these representations are the sonic substrate for animals specialized for passive
and active sonar. The sonar performance of some of these animals exceeds the
performance of human-made sonar systems; incorporating biologically inspired
early auditory representations into human-made sonar systems may decrease this

performance gap.

Practical speech-recognition and sonar systems often require real-time
performance. Modeling early biological auditory representations using
conventional digital computers, in real time, is not possible with existing
technology. Analog VLSI technology is a medium that offers real-time
computation of these representations. Specialized digital architectures are
another way to compute these representations in real time. It is beyond the
scope of this dissertation to judge which method offers the best engineering
solution to the problem. As detailed in the Section 1.1, analog VLSI technology,
by its similarity to the biological substrate, aids the scientist in understanding
existing representations and inventing new models to explain neural data. In the
same way, analog VLSI technology may aid the creative engineer in designing

innovative solutions to engineering problems.



1.3 Overview of the Dissertation

This dissertation describes silicon models of three aspects of early audition.
Chapter 2 describes an integrated circuit that models the evoked responses
of the auditory nerve. The auditory nerve is the first neural representation of
audition; its carries information from the cochlea, the sense organ of hearing, to
the brain. Comparisons of chip and physiological responses to classical stimuli

show a qualitative similarity, with quantitative differences.

Chapter 4 describes an integrated circuit that computes the spatial position
of a sound in the azimuthal plane. The chip models a neural representation of
auditory space found in the barn owl, an animal specialized for passive auditory
localization. The 220,000-transistor chip models the processing of two cochleas
and several brainstem nuclei, computing an output map of azimuthal space by

processing interaural time differences.

Chapter 5 describes an integrated circuit that models human pitch
perception. Chip output approximates human performance on a variety of
classical pitch-perception stimuli. Some of the circuits on the chip correspond to
known physiological computations; other parts of the chip model proposed neural
structures.

Inhibition is an essential element of the auditory-localization and pitch-
perception chips; Chapter 3 describes the nonlinear-inhibition circuit used in
both chips. This novel circuit needs only two transistors for each neuron, and
requires a length of interconnect that increases linearly with the number of

neurons. Chapter 6 offers suggestions for future research.



Chapter 2
A Silicon Model of Auditory-Nerve Response

Nonlinear signal processing is an integral part of sensory transduction in
the nervous system. Sensory inputs are analog, continuous-time signals with a
large dynamic range, whereas central neurons encode information with limited
dynamic range and temporal specificity, using fixed-width, fixed-height pulses.
Sensory transduction uses nonlinear signal processing to reduce real-world input

to a neural representation, with a minimal loss of information.

An excellent example of nonlinear processing in sensory transduction occurs
in the cochlea, the organ that converts the sound energy present at the eardrum
into the first neural representation of the auditory system, the auditory nerve.
Humans can process sound input over a 120-dB dynamic range, yet the firing
rate of an auditory-nerve fiber can encode only about 25 dB of sound intensity.
Humans can sense binaural time differences of the order of 10 us, yet an
auditory-nerve fiber can fire at most once per millisecond. Using limited neural
resources, the cochlea creates a representation that preserves the information
essential for sound localization and understanding. Moreover, this neural code
expresses auditory information in a way that facilitates feature extraction by

higher neural structures.

This chapter describes the architecture and operation of an integrated circuit
that models, to a limited degree, the evoked responses of the auditory nerve. The
chip receives as input a time-varying voltage corresponding to sound input, and
computes outputs that correspond to the responses of individual auditory-nerve
fibers. The chip models the structure as well as the function of the cochlea; all
subcircuits in the chip have anatomical correlates. The chip computes all outputs

in real time, using analog continuous-time processing. The original research in



this chapter was done in collaboration with Carver Mead; parts of this chapter

were originally published in (Lazzaro and Mead, 1989b).

2.1 Neural Architecture of the Cochlea

Both mechanical and electrical processing occur in biological cochleas. The
sound energy present at the eardrum is coupled into a mechanical traveling-
wave structure, the basilar membrane, which converts time-domain information
into spatially-encoded information by spreading out signals in space according
to their time scale (or frequency). Over much of its length, the velocity of
propagation along the basilar membrane decreases exponentially with distance.
The structure also contains active electromechanical elements; outer hair cells
have motile properties, acting to reduce the damping of the passive basilar
membrane and thus allowing weaker signals to be heard. Axons from higher
brain centers innervate the outer hair cells; these centers may dynamically vary
the local damping of the cochlea, providing frequency-specific automatic gain

control (Kim, 1984).

Inner hair cells occur at regular intervals along the basilar membrane. Each
inner hair cell acts as an electromechanical transducer, converting basilar-
membrane vibration into a graded electrical signal. Several signal-processing
operations occur during transduction. Inner hair cells half-wave rectify the
mechanical signal, responding to motion in only one direction. Inner hair
cells primarily respond to the velocity of basilar-membrane motion, implicitly
computing the time derivative of basilar-membrane displacement (Dallos, 1985).
Inner hair cells also compress the mechanical signal nonlinearly, reducing a large

range of input sound intensities to a manageable excursion of signal level.

Spiral-ganglion neurons connect to each inner hair cell, and produce fixed-

width, fixed-height pulses in response to inner-hair-cell electrical activity. The



synaptic connection between the inner hair cell and the spiral-ganglion neuron
might implement a stage of automatic gain control, exploiting the dynamics
of synaptic-transmitter release (Geisler and Greenberg, 1986). Auditory-nerve
fibers are axons from spiral-ganglion neurons; these fibers present a neural

representation of audition to the brain.

When pure tones are presented as stimuli, an auditory-nerve fiber is
most sensitive to tones of a specific frequency. This characteristic frequency
corresponds to maximum basilar-membrane velocity at the location of the
inner hair cell associated with the nerve fiber. The spiral trunk of the auditory
nerve preserves this ordering; the nerve fibers are mapped cochleotopically and
tonotopically. The mean firing rate of an auditory fiber encodes sound intensity,
over about 25 dB of dynamic range. The temporal pattern of nerve firings
reflects the shape of the filtered and rectified sound waveform; this phase locking

does not diminish at high intensity levels (Evans, 1982).

2.2 Silicon Models of the Cochlea

Both mechanical and electrical processing occur in the cochlea. In the chip,
however, we model both types of computation using electronic processing. Lyon
and Mead have designed a silicon model of the mechanical processing of the
cochlea (Lyon and Mead, 1988a; Mead, 1989). Their circuit is a one-dimensional
physical model of the traveling-wave structure formed by the basilar membrane.
In this model of cochlear function, the exponentially tapered stiffness of the
basilar membrane and the motility of the outer hair cells combine to produce a

pseudoresonant structure.

A circuit model implements this view of cochlear hydrodynamics, using a
cascade of second-order sections, with exponentially scaled time constants. This

analog, continuous-time circuit model computes the pressure of selected discrete



points along the basilar membrane in real time. The cascade structure enforces
unidirectionality, so a discretization in space does not introduce reflections that
could cause instability in an active model. An amplifier in each second-order
section provides active positive feedback in the circuit, modeling the active
mechanical feedback provided by the outer hair cells in physiological cochleas.
An automatic-gain-control system can increase sensitivity to weak sounds by
locally varying the amount of positive feedback in the second-order sections.

Appendix 2A provides a brief description of the circuits in the model.

This model of cochlear mechanics is the foundation of our model of auditory
nerve response. We have not implemented an automatic-gain-control system
to vary the damping of the structure locally; however, the chip has inputs that
provide local control of membrane damping, allowing off-chip experiments with
automatic gain control. To complete the circuit model of the auditory periphery,
we have added circuits that model the functions of the inner hair cells and spiral-

ganglion neurons; Figure 2.1 shows the complete architecture of the chip.

Our inner-hair-cell circuit models the signal-processing operations that occur
during transduction: velocity-sensing, nonlinear compression, and half-wave
rectification. Our spiral-ganglion-neuron circuit converts the analog output of the
inner-hair-cell circuit into fixed-width, fixed-height pulses; the mean firing rate of
the circuit encodes the intensity of inner-hair-cell circuit response, whereas the
temporal pattern of pulses reflects the waveform shape of inner-hair-cell circuit

response. Appendix 2B provides a description of these two circuits.

The synaptic connection between the inner hair cell and the spiral-ganglion
neuron might implement a stage of automatic gain control, exploiting the
dynamics of synaptic-transmitter release (Geisler and Greenberg, 1986). The
nonlinear compression of our inner-hair-cell circuit approximates the static

effect of the automatic gain control of the inner-hair-cell synapse. A direct
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Figure 2.1. Block diagram of the auditory-nerve chip. Sound input travels down the basilar-
membrane model, a cascade of second-order (SO) sections with exponentially increasing time
constants. Basilar-membrane (BM) circuit outputs show pressure along the membrane, whereas
inputs modeling efferent innervation of outer hair (OH) cells control local damping of the
membrane circuit. Taps along the basilar membrane connect to a circuit model of inner hair
(IH) cells; outputs from inner hair cells connect to circuits that model spiral-ganglion (SG)

neurons. These neurons form the primary output of the chip, thus modeling auditory-fiber

response.
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implementation of dynamic automatic gain control would accurately model time
adaptation and two-tone synchrony suppression; this enhancement is currently

under development.

The outputs from spiral-ganglion-neuron circuits are the primary outputs of
the chip. Additional outputs of the circuit display basilar-membrane pressure, for
diagnostic purposes. The circuit we report in this chapter has eight auditory-
fiber outputs; the projects described in Chapters 4 and 5 use cochlea circuits

with 62 auditory-fiber outputs.

2.3 Silicon Basilar-Membrane Response

To test the tuning properties of the silicon auditory-nerve fibers, we
duplicated a variety of classical auditory-nerve measurements. In these
experiments, we tuned the basilar-membrane circuit to span about seven octaves,
from 50 Hz to 10,000 Hz. We set the maximum firing rates of the auditory-fiber
outputs at 150 to 300 spikes/s, with spike widths of 5 to 20 us.

In this configuration, without an input signal, the auditory-fiber outputs
fire at less than 0.1 spike/s. At the characteristic frequency of a fiber, pure
tones of a few millivolts peak amplitude produce responses significantly above
this spontaneous rate. The chip can process tones up to about 1 V of peak
amplitude, yielding approximately 60 dB of usable dynamic range. Adding
a preprocessor to the basilar-membrane circuit to limit intense input signals
would extend the upper limit of the dynamic range. A biological cochlea has
a mechanical limiter as a preprocessor — the stapedial reflex. Designing more
sensitive inner-hair-cell circuits would extend the lower limit of dynamic range.

Both dynamic-range enhancements are currently under development.

Figure 2.2(a) shows the amplitude of the silicon basilar-membrane response

to pure tones, at a position with a best frequency of about 1900 Hz. We
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set 0 dB at 3 mV peak, an input amplitude sufficient to produce responses
above the spontaneous rate in auditory-fiber outputs near this basilar-
membrane position. The 0-dB frequency-response curve shows a flat response
for frequencies significantly below the best frequency, a 12-dB response peak
at the best frequency, and a sharp dropoff to the noise floor for frequencies
significantly above the best frequency. The 0-dB chip frequency-response curve
is qualitatively similar to the 70-dB frequency-response curve taken from the
basilar membrane of the squirrel monkey using the Mossbauer effect, shown

in Figure 2.2(b) (Rhode 1971). Near the best frequency, basilar-membrane
pressure, computed by the chip, is approximately equal to the basilar-membrane
displacement, as measured by Rhode. Quantitatively, the bandwidth of the
response peak of the chip is wider than that of the physiological data; a
cascade of second-order sections does not yield an optimal model of cochlear

hydrodynamics (Lyon and Mead, 1988b).

The 10-dB and 20-dB chip frequency-response curves show a decrease in
the magnitude of the resonance peak, and a shift downward in best frequency.
This qualitative behavior matches the nonlinear behavior of the squirrel-monkey
basilar membrane. In the chip, the saturation of amplifiers that model the
motility of the outer hair cells causes nonlinear behavior. A similar phenomenon
may occur in the physiological system; for large sound intensities, outer hair cells

may not be capable of a linear response to basilar-membrane motion.

Another explanation of nonlinear basilar-membrane response also is plausible.
The efferent fibers that innervate the outer hair cells might be controlling
frequency-selective automatic gain control. In this model, efferent fibers allow
the outer hair cells to reduce the damping of the basilar membrane for soft
sounds, whereas for louder sounds, efferent fibers inhibit the motility of outer

hair cells, decreasing the size of the pseudoresonance peak (Kim, 1984). Our chip
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Figure 2.2. a. Plots showing the response of the basilar-membrane circuit at a single point,
to pure tones at a fixed input amplitude (0 dB = 3 mV peak). The 0-dB to 40-dB curves are
vertically shifted to match the low-frequency response of the 50-dB plot. b. Transfer functions
of a single position on the basilar membrane of the squirrel monkey (Rhode, 1971). The curves
show amplitude of vibration for constant malleus displacement. Two curves are vertically
shifted to match the low-frequency response of the third curve. c. Plots showing the response

of the basilar-membrane circuit to 10-dB pure tones, for different amounts of basilar-membrane

damping at the measurement point.
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does not model this automatic-gain-control system. There are, however, inputs
into the chip that model the outer-hair-cell efferent fibers, allowing local control

of damping at several points along the basilar-membrane model.

Figure 2.2(c) shows the effect of locally varying the strength of outer-hair-cell
damping, near the position of recording, on the frequency response of the basilar-
membrane model. The magnitude of the resonance peak decreases and the best
frequency of the response shifts downward as the damping is increased. In the
automatic-gain-control model, damping is increased for increasing signal levels;
in this way, the model qualitatively matches the physiological responses of Figure
2.2(b). An integrated automatic-gain-control system for this chip is currently

under development.

The frequency-response plots of the basilar-membrane model for 30-dB to
50-dB inputs, as shown in Figure 2.2(a), do not match physiological behavior.
The saturation of the amplifiers that model the stiffness of the basilar membrane
causes these undesired nonlinear effects. In practice, in many of the classical
auditory-nerve experiments, the saturating nonlinearity of the inner-hair-cell
circuit masks these nonphysiological effects. As mentioned earlier, future designs
will incorporate more sensitive inner hair cells and a model of the stapedial
reflex, to provide a large dynamic range without operating the basilar-membrane
circuit in this regime; to manage this increased operating range, these designs

will incorporate inner hair cells with dynamic automatic gain control.

2.4 Tuning Properties of Silicon Auditory-Nerve Fibers

We have characterized the tuning properties of the auditory-nerve-fiber
circuit model, using both pure tones and clicks. In response to a click of medium
intensity, a silicon auditory-nerve fiber produces one or several spikes. To extract

the click response from these spikes, we present the click stimulus to the chip
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many times, and record the responses of a silicon auditory-nerve fiber. These
data are reduced to a poststimulus-time (PST) histogram, in which the height
of each bin of the histogram indicates the number of spikes occurring within a

particular time interval after the presentation of the click.

A PST histogram of the response of a silicon auditory-nerve fiber to a
repetitive rarefaction click stimulus shows a half-wave-rectified version of a
damped sinusoidal oscillation (Figure 2.3(a)). The frequency of this oscillation,
1724 Hz, is approximately the best frequency of the basilar-membrane position

associated with this silicon nerve fiber. The half-wave rectification of the inner-

hair-cell circuit removes the negative polarity of oscillatory waveform from

the PST histogram of the click response. Repeating this experiment using a
condensation click recovers the negative polarity of oscillation; a compound PST
histogram, shown in Figure 2.3(b), combines data from both experiments to
recreate the ringing waveform produced by the basilar-membrane circuit. Figure
2.3(c) shows a compound PST histogram of the click response of an auditory
fiber in the cat (Kiang et al., 1965). Qualitatively, the circuit response matches

the physiological response.

Figures 2.3(a) and 2.3(b) are chip responses to a 60-mV click stimulus (26
dB, 0 dB = 3 mV peak). Higher-intensity clicks produce oscillatory responses
with increased damping; a compound PST histogram of chip auditory-nerve
response to a 36-dB click shows reduced ringing (Figure 2.3(d)). This effect
is a direct result of the nonlinear response of the basilar-membrane model;
physiological basilar-membrane click responses also show reduced ringing at high

click-intensity levels (Robles et al., 1976).

In response to a pure tone of sufficient intensity and appropriate frequency,
the silicon auditory fiber produces spikes at a constant mean rate, as shown in

Figure 2.4. The mean spike rate of a silicon fiber, in response to a constant tone,
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plotted as positive values; condensation click response is plotted as negative values. Conditions

are identical to those of part a. ¢. Compound PST histogram of the click response of an
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auditory fiber in the cat (Kiang et al., 1965). Click level is 30 dB relative to threshold

response level; click width is 100 ps. Rarefaction click response is plotted as positive values;
condensation click response is plotted as negative values. d. Compound PST histogram of

the click response of a silicon auditory-nerve fiber, for a 200-mV click (36-dB click). All other

conditions are identical to those of part a.
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does not decrease over time, unlike that of a physiological auditory fiber; this
lack of adaptation indicates the absence of dynamic automatic gain control in

our model.

Figure 2.5(a) shows the mean spike rate of a silicon auditory fiber as a
function of pure tone frequency. For low-amplitude tones, the fiber responds
to a narrow range of frequencies; for higher-intensity tones, the fiber responds
to a wider range of frequencies. The saturating nonlinearities of the basilar-

membrane circuit and of the inner-hair-cell circuit cause the bandwidth of the

fiber to increase with sound intensity. Qualitatively, this behavior matches the
iso-intensity plots from an auditory-nerve fiber in the squirrel monkey (Rose et

al., 1971), shown in Figure 2.5(b).

Figure 2.6(a) shows the mean spike rate of a silicon auditory fiber as a
function of pure tone amplitude, at frequencies below, at, and above the best
frequency of the fiber. In response to its characteristic frequency, 2100 Hz,
the fiber encodes about 25 dB of tone amplitude before saturation. Figure
2.6(b) shows rate-intensity curves from an auditory fiber in the cat (Sachs and
Abbas, 1974). At its characteristic frequency, the physiological fiber also encodes
about 25 dB of tone amplitude before saturation. The shape of the biological
and silicon curves at the characteristic frequency is remarkably similar, giving
us some confidence in the validity of this modeling paradigm. In response to
frequencies below and above the characteristic frequency, the functional forms of
the silicon fiber responses are different from those of the physiological data. Most
notably, the saturation rate of a silicon fiber for frequencies below the fiber’s
characteristic frequency exceeds the saturation rate of the silicon fiber at the
fiber’s characteristic frequency. This behavior is a direct result of the undesired

saturation, at high input intensities, of amplifiers that model the stiffness of the
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Figure 2.4. Output of a silicon auditory fiber (bottom trace) in response to a sinusoidal input

(top trace). The frequency of the input is the characteristic frequency of the fiber.
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Figure 2.5. a. Plots showing the mean spike rate of a silicon auditory fiber as a function of
pure tone frequency. Legend numbers indicate tone amplitude, in dB. b. Plots showing the
number of discharges of an auditory fiber in the squirrel monkey, in response to a 10-s pure

tone (Rose et al., 1971). Legend numbers indicate tone amplitude, in dB.
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basilar membrane. Above the best frequency of the silicon fiber, the response of

the model decreases in a manner that is reminiscent of its biological counterpart.

Figure 2.7(a) shows iso-response curves for four silicon auditory-nerve fibers.
These plots represent an iso-rate section through the iso-intensity curves of
Figure 2.5(a), at a spike rate for each fiber that was comfortably above the
spontaneous rate. The chip response accurately models the steep high-frequency
tail of tuning curves from cat auditory fibers (Kiang, 1980), shown in Figure
2.7(b); the shapes of physiological and chip tuning curves are qualitatively
similar. The bandwidth of the chip fibers for low sound intensities, however, is

significantly wider than that of the physiological response. This problem stems

from the wider bandwidth of the basilar-membrane circuit model, relative to
that of the physiological data, as well as from the lack of a dynamic automatic-
gain-control system for modulating the damping of the basilar-membrane circuit.
The high-frequency cutoff of the iso-response curves, shown in Figure 2.7(a), is
much steeper than is the cutoff of the iso-input curves shown in Figure 2.5(a).

In a linear system, these two measurements would give identical results. The
difference reflects the presence of a saturating nonlinearity in the system; the

inner-hair-cell circuit and the basilar-membrane circuit provide this saturation

function.

2.5 Timing Properties of Silicon Auditory-Nerve Fibers

As the click response of Figure 2.3 shows, the temporal firing patterns of the
silicon auditory-nerve fibers encode information. Figure 2.8(a) shows period
histograms of a chip fiber, in response to —5-dB to 50-dB pure tones at the
fiber’s characteristic frequency; these histograms show the probability of a spike
output occurring within a particular time interval during a single cycle of the

input sinusoid. The fiber preserves the shape of the input sinusoid throughout
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Figure 2.6. a. Plots showing the mean spike rate of a silicon auditory fiber as a function
of pure tone amplitude. Label numbers indicate tone frequency, in Hz. b. Plots showing the
mean spike rate of an auditory fiber in the cat, as a function of pure tone amplitude (Sachs

and Abbas, 1974). Label numbers indicate tone frequency, in Hz.
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this intensity range; this behavior matches data from an auditory fiber in the cat
(Rose et al., 1971), shown in Figure 2.8(b). Unlike the cat fiber, however, the
silicon fiber does not preserve absolute phase at higher intensities; this deficiency
results from the saturation of the second-order section amplifiers that model
basilar-membrane stiffness.

The temporal firing patterns of the silicon auditory-nerve fiber are,
however, a good representation of signal periodicity; the synchronization ratios
(normalized magnitude of the first Fourier coefficient) of the period histograms
in Figure 2.8(a) are 0.5 to 0.6, comparable to those of physiological data at
the same frequency. The firing patterns of silicon nerve fibers maintain partial
synchrony in the presence of masking noise. Figure 2.9(a) shows the degree of
synchronization of a silicon fiber to a pure tone at the best frequency of the
fiber, in the presence of white noise. Figure 2.9(b) shows similar data from the
auditory nerve of the squirrel monkey (Rhode et al., 1978). Qualitatively, the

data from the chip fiber and those from the cat fiber are similar.

The temporal firing patterns of the silicon auditory-nerve fiber preserve
the shape of complex waveforms; Figure 2.10(a) shows the compound period
histograms of a silicon fiber, in response to two harmonically related tones,
combined with equal amplitudes. A Fourier analysis of the histogram shows
strong peaks at 868 Hz and at 1156 Hz, along with distortion products; the fiber
preserves periodicity information. Figure 2.10(b) shows an auditory fiber in the
cat, which preserves periodicity information of a tone pair in the same manner

(Goblick and Pfeiffer, 1969).
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Figure 2.8. a. Period histograms of the silicon auditory-fiber response to a pure tone of 1840
Hz, near the fiber’s best frequency. Amplitude of tone is shown above each plot. Histogram
width is 54 us. Each histogram begins at a constant position, relative to the input sinusoid;
each is fitted to a sinusoid of best amplitude and phase. b. Period histograms of the response
of an auditory fiber in the cat, to a low-frequency tone (Rose et al., 1971). Amplitude of pure
tone is shown above each plot. Each histogram is fitted to a sinusoid of best amplitude but

fixed phase.
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Figure 2.9. a. Plots of the synchronization ratio of PST histograms of a silicon auditory-
fiber response to pure tones. Pure tone frequency is 1840 Hz, near the fiber’s best frequency.
Synchronization ratio is plotted as a function of tone amplitude. White noise is mixed with
the tone; the legend indicates the amplitude of the noise signal, in dB/\/ITI;. b. Plots of the
synchronization ratio of an auditory fiber in the squirrel monkey (Rhode et al., 1978). Pure
tone frequency is 900 Hz, the fiber’s best frequency. Synchronization ratio is plotted as a
function of tone amplitude. Band-limited (100- to 2000-Hz) noise is mixed with the tone; the

legend indicates the spectrum density of the noise signal, in dB.
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Figure 2.10. a. Top plot shows the compound period histogram of silicon auditory nerve
response to two tones, at 868 Hz and 1156 Hz (fs : f4), mixed at equal amplitudes (24 dB).
Bottom plot shows the best-fit combination of 868 Hz and 1156 Hz to the histogram (arbitrary
amplitude and phase). The best frequency of the fiber is about 1900 Hz. b. Top plot shows
the compound period histogram of a cat auditory-nerve-fiber response to two tones (f2 : f3), at
538 Hz and 807 Hz (Goblick and Pfeiffer, 1969). Bottom plot shows the best-fit combination of
538 Hz and 807 Hz to the histogram (arbitrary amplitude, but the same relative phase as the

stimulus).
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2.6 Discussion for the Scientist

The integrated circuit captures many essential features of data representation
in the auditory nerve; moreover, it computes the representation in real time. The
performance of the present circuit, however, falls short of the performance of the
auditory nerve in several significant respects. Each shortcoming in performance

can be traced to the incomplete modeling of an aspect of cochlear physiology.

The bandwidth of the resonant peak in the basilar-membrane circuit is wider
than that of physiological basilar-membrane response; a cascade of second-order
sections does not yield an optimal model of cochlear hydrodynamics (Lyon and
Mead, 1988b). The bandwidth of the silicon auditory-nerve-fiber tuning curves
is also wider than that of physiological fiber response. The insufficient basilar-
membrane circuit bandwidth obviously is a factor in this shortcoming; the lack
of a dynamic automatic-gain-control system for modulating the damping of the

basilar-membrane circuit is another important factor.

This absence of this automatic-gain-control system, as well as the absence of
circuits that model the dynamics of the synaptic connection between the inner
hair cell and the spiral-ganglion neuron, result in other performance deficiencies.
Specifically, a silicon auditory nerve fiber does not exhibit time adaptation, and
does not exhibit physiological two-tone rate supression and two-tone synchrony

supression.

Finally, a silicon auditory fiber lacks the wide dynamic range of physiological
cochleas; the chip can process sounds that range over only 60 dB. Improved
inner-hair-cell circuits that are sensitive to smaller voltage excursions would
improve circuit dynamic range, as would a circuit model of the stapedial reflex.
With a stapedial-reflex circuit as a preprocessor, the undesired saturation of
amplifiers that model the stiffness of the basilar membrane would not occur;

this saturation causes the unwanted phase shift of the period histograms of
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Figure 2.8(b), which show the temporal firing patterns of a silicon auditory
nerve in response to sinusoids at varying intensities. This saturation also
causes the saturation rate of a silicon fiber in response to frequencies below the
fiber’s characteristic frequency to exceed the saturation rate of a silicon fiber in

response to the fiber’s characteristic frequency, as shown in Figure 2.6(b).

Future research on this project involves implementing these enhancements to
our model of auditory-nerve response. Modeling neural systems, in a physical
medium that shares many of the strengths and weaknesses of the biological
substrate, offers a unique perspective on the relationship of neural structure
and function. For example, during the design of our silicon auditory nerve
model, many iterations of the inner-hair-cell circuit design were required to
achieve acceptable circuit performance. The major difficulty in circuit design
was modeling the long-term adaptation of the cell to static cilia deflection.
Duplicating this property of the cell was crucial to the successful operation of the
chip. Without this auto-zeroing property, the inner-hair-cell circuit cannot adjust
for variances in circuit elements due to fabrication tolerances; as a result, most
auditory-fiber circuit outputs either refuse to fire or fire at a maximum rate,

regardless of sound input.

Sensing basilar-membrane velocity, rather than pressure, provides this auto-
zeroing function; our design goal evolved to be the synthesis of a sensitive time-

differentiator circuit. Our inner-hair-cell circuit includes a time-differentiation

circuit that works by comparing the instantaneous value of a voltage that
represents basilar-membrane pressure with a time-averaged value of this voltage.
Thus, the characteristics of the silicon medium dictated the functional form of
our model. We believe that any medium imposes a direction on modeling; it is
thus advantageous to choose a modeling medium — analog VLSI technology —

that shares characteristics with the biological system under study.



28

2.7 Discussion for the Engineer

Our integrated-circuit model captures many essential features of data
representation in the auditory nerve; moreover, it computes the representation
in real time. There are many traditional engineering representations of audition,
however, that are also amenable to analog implementation. What advantages
does a silicon auditory-nerve representation offer to a designer of artificial

sensory systems?

As shown in Figures 2.3, 2.8, and 2.10, an auditory-nerve fiber encodes a
filtered, half-wave-rectified version of the input waveform, over a wide dynamic
range, using the temporal patterning of fixed-width, fixed-height pulses. This
representation supports the efficient, massively parallel computation of signal
properties, using autocorrelations in time and cross-correlations between auditory
fibers. In this representation, a correlation is simply a logical AND operation,
performed by a few synapses in neural systems, or by a few transistors in
silicon systems. Axonal delays in neural systems provide the time parameter for
computing autocorrelations; in silicon systems, we model this delay with compact
monostable circuits (Mead, 1989). We use these techniques in the projects in

Chapter 4 and Chapter 5.

The nonlinear filtering properties of the auditory-nerve fibers, shown in
Figures 2.5 and 2.7, enhance these correlations. In a quiet environment, auditory
fibers have narrow bandwidths; each fiber carries independent information,
yielding rich correlations. In noisier environments, the tuning of auditory fibers
widens, increasing the number of fibers that carry information about the signal.
This detuning ensures that some fibers still encode signal properties reliably

(Greenberg, 1988).

As shown in Figure 2.6, auditory fibers encode about 25 dB of signal

intensity. Dynamic automatic gain control, present in a physiological cochlea,
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enhances this range; in addition, different populations of auditory fibers have
different thresholds, further enhancing the encoding of signal intensity. Although
not sufficient as a primary representation of sound, rate encoding of signal
intensity is a valuable secondary cue, particularly for the detection of rapid
spectral changes and the encoding of aperiodic sounds. Future versions of our

chip will include these enhancements for rate encoding of signal intensity.

In conclusion, we have designed and tested an integrated circuit that
computes, in real time, the evoked responses of auditory nerve, using analog,
continuous-time processing. The chip offers a robust representation of audition,
which can serve as a solid foundation for analog silicon systems that model

higher auditory function.
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Appendix 2A

Circuit Description of the Basilar-Membrane Model

The circuit model of cochlear mechanics developed by Lyon and Mead (Lyon
and Mead, 1988a; Mead, 1989) is the foundation of our silicon model of auditory-
fiber response. This appendix provides a brief description of the implementation

of this basilar-membrane model.

The circuit is a one-dimensional physical model of the traveling-wave
structure formed by the basilar membrane. In this viewpoint of cochlear
function, the exponentially tapered stiffness of the basilar membrane and
the motility of the outer hair cells combine to produce a pseudoresonant
structure. The basilar-membrane circuit model implements this view of cochlear
hydrodynamics using a cascade of second-order sections with exponentially scaled

time constants.

Figure 2A.1 shows the CMOS circuit implementation of a second-order
section. Input and output signals for the circuit are time-varying voltages.
The gain blocks are transconductance amplifiers, operated in the subthreshold
regime. Capacitors are formed using the gate capacitance of n-channel and p-
channel MOS transistors in parallel. Because of subthreshold amplifier operation,
the time constant of the second-order section is an exponential function of the
voltage applied to the transconductance control inputs of A1 and A2, labeled 7
in Figure 2A.1. Thus, a cascade of second-order circuits, with a linear gradient
applied to the 7 control inputs, has exponentially scaled time constants. To
implement this gradient, we used a polysilicon wire that travels along the
length of circuit, and that connects to the 7 control input of each second-order
section. A voltage difference across this wire, applied from off the chip, produces

exponentially scaled time constants. The amplifier A3 provides active positive
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Figure 2A.1. Circuit implementation of a second-order section. Input V; and output V,
are time-varying voltages. The r and @ control inputs set bias currents on transconductance
amplifiers Al, A2, and A3, to control both the characteristic frequency and the peak height of

the lowpass-filter response.
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feedback to the membrane, modeling the active mechanical feedback provided by
the outer hair cells in biological cochleas. A second polysilicon wire is connected
to the transconductance inputs of the A3 amplifiers in each second-order section
(labeled Q in Figure 2A.1); a voltage gradient across this wire similar to that
on the 7 control inputs sets all the second-order sections to the same response

shape.

A way to model the adjustment of basilar-membrane damping by higher
brain centers is to use an automatic-gain-control system that varies the damping
of the second-order sections locally. We have not implemented this automatic-
gain-control system; however, we have brought off-chip several taps from the
polysilicon wire that connects to the @ control of the second-order sections,

allowing off-chip experiments with automatic gain control.
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Appendix 2B
Circuit Description of the Auditory-Transduction Model

Our inner-hair-cell circuit models the signal-processing operations that occur
during transduction: velocity sensing, nonlinear compression, and half-wave
rectification. Our spiral-ganglion-neuron circuit converts the analog output of the
inner-hair-cell circuit into fixed-width, fixed-height pulses; the mean firing rate of
the circuit encodes the intensity of inner-hair-cell circuit response, whereas the
temporal pattern of pulses reflects the waveform shape of inner-hair-cell circuit
response. This appendix provides a description of the implementations of the

inner-hair-cell circuit and of the spiral-ganglion-neuron circuit.

Figure 2B.1 shows our inner-hair-cell circuit model. A hysteretic-
differentiator circuit (Mead, 1989) processes the input-voltage waveform from
the basilar-membrane circuit, performing time differentiation and logarithmic
compression. The circuit enhances the zero-crossings of the input waveform,
accentuating phase information in the signal. The output voltage of the
hysteretic differentiator connects to a novel implementation of a half-wave
current rectifier.

Figure 2B.2 shows our half-wave current-rectifier circuit. To understand
its operation, we consider the state of this circuit when the input voltage V}, is
constant. If V, is constant, I, = 0, and V, adapts such that I, = I,. For I}, = 0,
we define the quiescent conditions I; = I, = I, and V; = V,. The value of I,
depends on the circuit bias voltage, V,. A current mirror reflects this quiescent
current to the circuit output. Thus, the output of the half-wave current-rectifier

circuit in response to a constant voltage input is an adjustable bias current.

Now consider the circuit state when the input voltage V}, is a time-varying

waveform. During the positive-going phase of the waveform, the current I, is
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Figure 2B.1. The inner-hair-cell circuit model. Input V;, from the basilar-membrane circuit,
is a time-varying voltage. The hysteretic-differentiator circuit, biased by voltage Vy, performs

time differentiation and logarithmic compression. The output of the hysteretic differentiator, a
time-varying voltage, connects to the half-wave current-rectifier circuit, which is shown in more

detail in Figure 2B.2.
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positive, and I, = I} + I,. As I, increases, V; must also increase; the amount
of increase depends on the circuit bias voltage, V;, as shown in the bottom graph
in Figure 2B.2. If V, increases, however, then I, must decrease. So, during the
positive-going phase of the waveform, the output current I, decreases from the

quiescent current I,.

During the negative-going phase of the waveform, the current I} is negative,
I, = |Iy| + I, and the output current of the circuit increases from the quiescent
current I;. Thus, the circuit converts the input time-varying voltage waveform
V}, into a unidirectional current waveform I,. For large |I| relative to I, the
current waveform I, is not symmetrical about Iy, and the average value of I, is
greater than that of I; thus, the circuit performs the rectification function, as

shown in the top graph in Figure 2B.2.

The current I, is the output of the inner-hair-cell circuit. The spiral-ganglion
neuron circuit model, shown in Figure 2B.3, converts this current into fixed-
width, fixed-height pulses. The circuit — a slightly modified version of the
neuron circuit described in (Mead, 1989) — creates a pulse rate that is linear in
input current, for sufficiently low pulse rates. Thus, the average pulse rate of the
circuit reflects the average value of I, whereas the temporal placement of each

pulse reflects the shape of the current waveform I,.
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Figure 2B.2. The half-wave current-rectifier circuit. Input V}, from the hysteretic-
differentiator circuit, is a time-varying voltage. A floating capacitor couples V;, into the node
associated with V,, as the bidirectional time-varying current I,. The bottom graph shows the
change in V, required to sink or source I, for several values of bias voltage V,; the voltage
V, is the value of V, when I, = 0. When V, = V, and I, = 0, the circuit output, the
unidirectional current I, is at a quiescent value, I,, set by V,. Nonzero values of I;, modulate
the output current I, about I ; for large |[,| relative to I,, the circuit output f, is a half-

wave-rectified version of I, as shown in the top graph. Graphs show theoretical responses.
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Figure 2B.3. The spiral-ganglion-neuron circuit. Circuit input, from the half-wave—
rectification circuit, is the unidirectional current I;. The circuit converts this current into
fixed-width, fixed-height voltage pulses, at output V,. The bias voltage V, sets pulse width;

the output voltage V, pulses between V44 and ground.
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Chapter 3

Circuit Models of Nonlinear Inhibition

The silicon models of auditory localization and pitch perception, presented
in Chapters 4 and 5, use inhibitory processing to improve the selectivity of their
output representations. This chapter describes the inhibitory processing used in

these projects.

Two general types of inhibition mediate activity in neural systems:
subtractive inhibition, which sets a zero level for the computation, and
multiplicative (nonlinear) inhibition, which regulates the gain of the
computation. The circuit described in the chapter implements general nonlinear
inhibition in its extreme form, known as winner-take-all. In addition to
the projects in Chapters 4 and 5, the winner-take-all circuit has been used

successfully in a model of visual stereopsis (Mahowald and Delbruck, 1989).

The chapter also describes a modification to this global winner-take-all
circuit, which computes local nonlinear inhibition. The circuit allows multiple
winners in the network, and is well suited for use in systems that represent a
feature space topographically and that process several features in parallel. The
research in this chapter was done in collaboration with Sylvie Ryckebusch, M. A.
Mahowald, and Carver Mead; parts of this chapter were originally published in
(Lazzaro et al., 1988).

3.1 The Winner-Take-All Circuit

Figure 3.1 is a schematic diagram of the winner-take-all circuit. Each neuron
receives a unidirectional current input Ix; the output voltages V...V, represent
the results of the winner-take-all computation. A single wire, associated with

the potential V,, computes the inhibition for the entire circuit; for an n-neuron
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circuit, this wire is O(n) long. To compute the global inhibition, each neuron k
contributes a current onto this common wire, using transistor T3,. To apply this
global inhibition locally, each neuron responds to the common wire voltage V,
using transistor 77,. This computation is continuous in time; no clocks are used.
The circuit exhibits no hysteresis, and operates with a time constant related

to the size of the largest input. The output representation of the circuit is not

binary; the winning output encodes the logarithm of its associated input.

A static and dynamic analysis of the two-neuron circuit illustrates these
properties. Figure 3.2 shows a schematic diagram of a two-neuron winner-take-
all circuit. To understand the behavior of the circuit, we first consider the input
condition Iy = I3 = I,. Transistors T}, and T}, have identical potentials at
gate and source, and are both sinking I,,; thus, the drain potentials V; and V;
must be equal. Transistors T3, and T3, have identical source, drain, and gate
potentials, and therefore must sink the identical current I, = I,, = I./2. In
the subthreshold region of operation, the equation I, = I, exp(V,/V,) describes
transistors T, and T1,, where I, is a fabrication parameter, and V, = kT /qk.
Likewise, the equation I./2 = I,exp((Vi, — V.)/V,), where V,, = Vi = Vj,

describes transistors T3, and T3,. Solving for Vi, (Im, I.) yields

Lo

I,
Vi =V, ln(—j'—:«) +V, In(ZIo .

(3.1)

Thus, for equal input currents, the circuit produces equal output voltages; this
behavior is desirable for a winner-take-all circuit. In addition, the output voltage

Vi logarithmically encodes the magnitude of the input current I,,.
The input condition Iy = I, + &, I = I, illustrates the inhibitory
action of the circuit. Transistor Ty, must sink 6; more current than in the

previous example; as a result, the gate voltage of T, rises. Transistors Ty, and
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Figure 3.1. Schematic diagram of the winner-take-all circuit. Each neuron receives a
unidirectional current input [j; the output voltages V) ...V, represent the result of the

winner-take-all computation. If Iy = max([;...I,), then V} is a logarithmic function of

Iy; if Ij <& I, then V} = 0.
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Ty, share a common gate, however; thus, T}, must also sink I, + 6;. But only
I, is present at the drain of Ty,. To compensate, the drain voltage of T1,, V3,
must decrease. For small é;s, the Early effect decreases the current through T7,,
decreasing V; linearly with 6;. For large §;s, T, must leave saturation, driving
Vs to approximately 0 V. As desired, the output associated with the smaller
input diminishes. For large é;s, I, ~ 0, and I, = I.. The equation I, + §; =
I, exp(V./V,) describes transistor T4, , and the equation I, = I, exp((V1 — V¢)/V,)

describes transistor T3,. Solving for V; yields

£m + 6;
I,

I
Vi =V, In( )+ Vo ln(—I—c-). (3.2)
0
The winning output encodes the logarithm of the associated input. The

symmetrical circuit topology ensures similar behavior for increases in I relative

to Il.

Equation 3.2 predicts the winning response of the circuit; a more complex
expression, derived in Appendix 3A, predicts the losing and crossover response of
the circuit. Figure 3.3 is a plot of this analysis, fit to experimental data. Figure
3.4 shows the wide dynamic range and logarithmic properties of the circuit; the
experiment in Figure 3.3 is repeated for several values of I3, ranging over four

orders of magnitude.

The conductance of transistors Ty, and T}, determines the losing response of

the circuit. The Early voltage, V¢, is a measure of the conductance of a saturated

MOS transistor. The expression

av,
Ve=L—r (3.8)

defines the Early voltage, where Vj is the drain potential of a transistor, and

L is the channel length of a transistor. Thus, the width of the losing response
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Figure 3.3. Experimental data (circles) and theoretical statements (solid lines) for a two-
neuron winner-take-all circuit. 7, the input current of the first neuron, is swept about the
value of I, the input current of the second neuron; neuron voltage outputs vy and V, are

plotted versus normalized input current.
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Figure 3.4. The experiment of Figure 3.3 is repeated for several values of I,; experimental
data of output voltage response are plotted versus absolute input current on a log scale. The
output voltage vy = V, is highlighted with a circle for each experiment. The dashed line is a
theoretical expression confirming logarithmic behavior over four orders of magnitude (Equation

3.1).
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of the circuit depends on the channel length of transistors T, and T1,. Figure
3.3 shows data for a circuit where the channel length of transistors 77, and T3,
is 13.5 um. Figure 3.5 shows data for a circuit with a wider losing response; in
this circuit, the channel length for transistors T, and Ti, is 3 um, the smallest

allowable in the fabrication technology used.

Increasing the channel length of transistors T, and Tj, narrows the losing
response of the circuit; alternatively, circuit modification also can narrow the
losing response. The circuit shown in Figure 3.6 approximately halves the width
of the original losing response, through source degeneration of transistors 77,
and T, by the added diode-connected transistors T3, and T3,. Figure 3.7 shows

experimental data for this modified circuit.
3.2 Time Response of the Winner-Take-All Circuit

A good winner-take-all circuit should be stable, and should not exhibit
damped oscillations (ringing) in response to input changes. This section
explores these dynamic properties of our winner-take-all circuit, and predicts the
temporal response of the circuit. Figure 3.8 shows the two-neuron winner-take-all

circuit, with capacitances added to model dynamic behavior.
Appendix 3B shows a small-signal analysis of this circuit. This analysis

shows that the circuit is stable and does not ring if I, > 4I(C./C), where

Iy = I, = I. Figure 3.9 compares this bound with experimental data.

If I, > 4I(C./C), the circuit exhibits first-order behavior. The time constant
CV, /I sets the dynamics of the winning neuron, where V, = kT /gx ~ 40mV. The
time constant CV,/I sets the dynamics of the losing neuron, where V, ~ 50V.

Figure 3.10 compares these predictions with experimental data, for several

variants of the winner-take-all circuit.
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Figure 3.5. Experimental data (circles) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit with a channel length for transistors Ty, and Ty, of 3um. The

dotted lines show the losing response for the circuit used in Figure 3.3, which has a channel

length for transistors Ty, and Ty, of 13.5um.
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Figure 3.6. Schematic diagram of a two-neuron winner-take-all circuit, modified to produce a

narrower losing response.
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Figure 3.7. Experimental data (circles) and theoretical statements (solid lines) for a two-
neuron winner-take-all circuit, modified to produce a narrower losing response. The dotted

lines show losing response for the circuit used in Figure 3.4.
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Figure 3.8. Schematic diagram of a two-neuron winner-take-all circuit, with capacitances
added for dynamic analysis. C' is a large MOS capacitor added to each neuron for smoothing;
C. models the parasitic capacitance contributed by the gates of Tj; and T}, the drains of 15

and T’,, and the interconnect.
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Figure 8.9. Experimental data (circles) and theoretical statements (solid line) for a two-

neuron winner-take-all circuit, showing the smallest I., for a given I, necessary for a first-order

response to a small-gsignal step input.
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Figure 8.10. Experimental data (symbols) and theoretical statements (solid lines) for a two-
neuron winner-take-all circuit, showing the time constant of the first-order response to a small-
signal step input. The winning response (filled circles) and losing response (triangles) of a
winner-take-all circuit with the static response of Figure 3.3 are shown; the time constants
differ by several orders of magnitude. Losing responses for winner-take-all circuits with the
static responses shown in Figure 3.5 (squares) and in Figure 3.7 (open circles) are also shown,

demonstrating the effect of the width of static response on dynamic behavior.
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3.3 The Local Nonlinear Inhibition Circuit

The winner-take-all circuit in Figure 3.1, as previously explained, locates the
largest input to the circuit. Figure 3.11 shows this behavior. Figure 3.11(a) is
the spatial input to a winner-take-all circuit with 16 neurons, with input 8 much
higher than all other inputs. Figure 3.11(b) shows the circuit response to this

input; only neuron 8 has significant response.

Certain applications require a gentler form of nonlinear inhibition.
Sometimes, a circuit that can represent multiple intensity scales is necessary.
Without circuit modification, the winner-take-all circuit in Figure 3.1 can

perform this task. Appendix 3C explains this mode of operation.

Other applications require a local winner-take-all computation, with each
winner having influence over only a limited spatial area. Figure 3.11(c) shows the
desired computation. As in Figure 3.11(b), neuron 8 has the largest response in
the circuit. However, neuron 8 suppresses the output of only nearby neurons;

neurons far from neuron 8 have significant responses, encoding their input

signals.

Figure 3.12 shows a circuit that computes the local winner-take-all function.
The circuit is identical to the original winner-take-all circuit, except that each
neuron connects to its nearest neighbors with a nonlinear resistor circuit (Mead,

1989). Each resistor conducts a current I, in response to a voltage AV across it,

where

I, = I, tanh(AV/(2V,)). (3.4)

I, the saturating current of the resistor, is a controllable parameter. The current
source I., present in the original winner-take-all circuit, is distributed between

the resistors in the local winner-take-all circuit.
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Figure 3.11. Comparison of idealized winner-take-all spatial response and the desired local

winner-take-all response. The horizontal axis of each plot represents spatial position in a 16-
neuron network. a. The plot shows a spatial impulse function, used as input to compare the
two concepts. The vertical axis shows the input current to each neuron, with Iy > Ipxs.

b. The plot shows the winner-take-all response. ¢. The plot shows the local winner-take-all

response.



54

I 4 I Ik+1
kal Tzk_1 Vk ?T%; Vk+1 E/TZk+1
Ty, JF Ty, |F— AT L
v, v, = |y,
AV e MM~ MWW M-

Figure 3.12. Schematic diagram of a section of the local winner-take-all circuit. Each neuron
¢ receives a unidirectional current input Ij; the output voltages V; represent the result of the

local winner-take-all computation.
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To understand the operation of the local winner-take-all circuit, we consider
the circuit response to a spatial impulse, defined as I}y > I, where I = I;4;.
It > Iy and Iy > Iy, so V,, is much larger than V;, | and V¢, and
the resistor circuits connecting neuron k with neuron & — 1 and neuron k£ + 1
saturate. Each resistor sinks I, current when saturated; transistor T3, thus
conducts 21, + I, current. In the subthreshold region of operation, the equation
Iy = I,exp(V,,/V,) describes transistor Ty,, and the equation 2I; + I, =

I, exp((Vg — V¢, )/V,) describes transistor T3, . Solving for Vj yields

As in the original winner-take-all circuit, the output of a winning neuron encodes

the logarithm of that neuron’s associated input.

As mentioned, the resistor circuit connecting neuron k with neuron k—1 sinks
I; current. The current sources I, associated with neurons k& — 1, k — 2, ... must
supply this current. If the current source I, for neuron k — 1 supplies part of this
current, then the transistor T3, _, carries no current, and the neuron output V;_;
approaches zero. Similar reasoning applies to neurons k£ + 1, kK + 2, ... . In this

way, a winning neuron inhibits its neighboring neurons.

This inhibitory action does not extend throughout the network. Neuron k
needs only I; current from neurons k — 1, k — 2, ... . Thus, neurons sufficiently
distant from neuron k maintain the service of their current source I., and the
outputs of these distant neurons can be active. Since, for a spatial impulse, all
neurons k — 1, k — 2, ... have an equal input current I, all distant neurons have
the equal output

Viek = Voln(1./1,) + V, In(I/1,). (3.6)

Similar reasoning applies for neurons k + 1, k+ 2, ....
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The relative values of I, and I, determine the spatial extent of the inhibitory

action. Figure 3.13 shows the spatial impulse response of the local winner-take-

all circuit, for different settings of Is/I..

3.4 Discussion

The circuits described in this chapter use the full analog nature of MOS
devices to realize an interesting class of neural computations efficiently. The
circuits exploit the physics of the medium in many ways. The winner-take-all
circuit uses a single wire to compute and communicate inhibition for the entire
circuit. Transistor T, in the winner-take-all circuit uses two physical phenomena
in its computation: its exponential current function encodes the logarithm of
the input, and the finite conductance of the transistor defines the losing output
response. As evolution exploits all the physical properties of neural devices to
optimize system performance, designers of synthetic neural systems should strive

to harness the full potential of the physics of their media.
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Figure 8.18. Experimental data showing the spatial impulse response of the local winner-
take-all circuit, for values of 1,/I, ranging over a factor of 12.7. Wider inhibitory responses

correspond to larger ratios. For clarity, the plots are vertically displaced in 0.25 V increments.
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Appendix 3A
Static Response of the Winner-Take-All Circuit

Figure 3.3 compares data from the two-neuron winner-take-all circuit with a
closed-form theoretical statement describing the losing and crossover response of

the circuit. This appendix derives that theoretical statement.

Figure 3A.1 shows a small-signal circuit model of the two-neuron winner-
take-all circuit (Figure 3.2). For a particular operating point [I;, L, I.,,1.,],
the model shows the effect of a small change in I;, denoted 71, on the circuit
voltages V1,V;, and V, indicated by the small-signal voltages v;, v2, and v,.

In this model, a linear resistor ri;, in parallel with a linear dependent current
source, with a conductance gi;, replaces each transistor T;; from Figure 3.2. For

a particular operating point in subthreshold, the small-signal parameters are

g1, = II/VOa g2, = cl/Vo’ 1y, = Ve/Il, ro, = Ve/Icls
(3A.1)
gi; = IZ/VOa g2, = cz/Vo, i, = Ve/IZ, T2, = V:B/Icza

where V,, the Early voltage, is a measure of transistor resistance, and V, =
kT [qk. This small-signal model is a linear system, which we can solve

analytically using conventional techniques; applying the approximation V, + V, ~

Ve to the solution yields the simplified equations

:_11 = (1/11)(Va + Ve(ICZ/IC))’
(38A.2)

% = —Ve(1/I)(I., / I.).
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Figure 3A.1. Small-signal model of the two-neuron winner-take-all circuit.
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Note that both small-signal and large-signal quantities appear in Equation
3A.2. We can view the small-signal quantities as differential elements of large-
signal quantities; as a result, we can rewrite Equation 3A.2 as the pair of

nonlinear differential equations

%% = (1/[1)(V0 + Ve(Icz/IC))’

(3A.3)
dV: ,
ﬁ"- = —Ve(1/0L)(L, /L).

Solving this pair of nonlinear differential equations yields a complete description
of circuit response. We begin by eliminating I., and I, from the equations.

Referring to Figure 3.2, the equations

Icl = Io eXp((V1 e Vc)/Vo),
(3A.4)
I, = I, exp((Va — Ve) / Vo)
describe transistors T3, and Ty,. From Kirchoff’s current law, we know that
I, + I, = I.; substitution of Equation 3A.4 into this equation yields the
expression

I, = L exp((Vy — Vi) /Vo) + L exp((Va — V2) [ Vs). (3A.5)

Dividing Equation 3A.4 by Equation 3A.5 eliminates V,, leaving, after

rearrangement,
1
I, /I, = R
o/ Le 1+ exp((Ve — V1) /V,)
(3A.6)
1
Icz/IC =

1+exp((Vi = V2)/Vo)’



61

These expressions fit nicely into Equation 3A.3, eliminating I, and I.,, and

leaving a set of differential equations involving only V3, V3, and I;:

A% 1
— = (1/1)(V, + V. R ATa
dI; ( / 1)( ot 8(1+exp((vl ——Vz)/Vo))) ( )
dv, 1
—= = =V (1/I . ATb
dIl e( / 1)(1 4+ exp((Vz ,__ Vl)/VO)) ( )
Equation 3A.7a contains V; only in the subexpression
! ; (3A.8a)
1+exp((Vi = Va)/Vo)’ '
Equation 3A.7b contains V; only in the subexpression
! (3A.8b)

1+ eXp((Vg — Vl)/Vo) ’

These subexpressions are both Fermt functions of the difference V; — V;. For
Vi — Va > V,, the value of the subexpression 3A.8a is approximately 0, whereas
the value of the subexpression 3A.8b is approximately 1; for Vo, — V7 > V,,
the value of the subexpression 3A.8a is approximately 1, whereas the value of
the subexpression 3A.8b is approximately 0. In the region V; ~ V3, we can
assume that V37 and V; are both changing with the same magnitude of slope
relative to I;. We can write this approximation as Vi — Vo =~ 2(V; — V},,) and
Vo, = Vi = 2(Va — Vy,), where, from the qualitative analysis in the chapter,
Vm = Vi = Vy when I} = I, = I,,. We can use this approximation to decouple

Equations 3A.7a and 3A.7b, producing

A% 1
an, (/) (Vo + Vel + exp(2(V; — Vm)/Vo)))’

(3A.9)
vy 1

ar, = WD em - Vm)/Vo))'
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We can solve these equations by straightforward integration, yielding, after

application of the approximation V, + V, =~ V,,

In(Iy/Inm) = ﬁ-‘f‘-:‘;}ff-"l + -;-111(1 + (Vo/Ve) exp(2(Vi — Vin) V), (3410a)
In(ly/In) = -(-Yi"-;;-'—-‘@-)- + 5 VoV (1~ exp(2(Vs = Vi) Va).  (34100)

Equation 3A.10a predicts the value of I; for a given value of V;, whereas
Equation 3A.10b predicts the value of I; for a given value of V5; in this

way, these equations are a closed-form approximation of circuit response.

To understand the behavior of the circuit, and to evaluate the effect of the
approximations Vy — Vy = 2(Vy — Vyp) and Vo — Vi = 2(V2 — Vi), we can simplify
Equations 3A.10a and 3.A10b for three regions of interest: Vi ~ Vo = V,,,

First consider the condition Vi ~ V; = V,,. In this case, |V; — V3| — 0,
Ii/I,, — 1, and we can linearize the transcendental functions in Equations

3A.10a and 3A.10b, yielding the simpler relations

Vi= (Ve/2)((Il/Im) - 1)) + Vin,
(3A.11)
Va = (Ve/2)(1 — (I1/In)) + Vim.

In this region, V; and V; are a linear function of I, with a slope of +V,/(21,).

Next, consider the condition V; > V,, while Vo < V,,,, valid when I; > I,,. In
Equation 3A.10b, Vy < V,, implies exp(2(Vs — Vin)/V,) — 0. This simplification

yields, after rearrangement,
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If we use the notation I; = I, + 6;, as in the earlier qualitative analysis, we can
rewrite the subexpression In(l/I,) as In(1 + (6;/I)), which we can approximate

as 6;/ I, for small §;/ I, yielding the simplified result
Vo =Vo/2+ Vin — (Ve/Im) 6. (3A.13)

Thus, in this region, V; decreases linearly with é;, with a slope of V,/I,, which is

twice as large as in the previous condition.

We can similarly derive a simplified expression for Vj, for the same condition
Vi > V,, while V3 < Vp. In Equation 3A.10a, Vi > V,, implies

(Vo/Ve) exp(2(Vi — Vi) /V,) > 1. This approximation yields, after rearrangement,
Vi =VoIn(I1 /1) + (Vo /2) In(Ve [ Vo) + Vi (3A.14)

For this condition, as predicted by Equation 3.2 in the chapter, V; is
a logarithmic function of I;. However, when does the approximation
(Vo/Ve) exp(2(Vi — Vin)/Vo) > 1 hold? This inequality, when rearranged, yields
the constraint
(Vi — Vi) > (Vo /2) In(Ve/V,). (3A.15)

Therefore, for a typical fabrication process, V; — V,, must be much greater
than 0.15V for Equation 3A.14 to hold! This error stems from the central
approximation Vi — Va =~ 2(V; — V;,), which is valid for only Vi — V2 < V.
Thus, for this region of operation, Equation 3.2 best predicts circuit behavior.

Finally, we consider the condition Vi, <« V,, while V5 > V,,, valid when
I < I,. In Equation 3A.10a, Vi < V,y, implies (V,/Ve) exp(2(V1 — Vim)/V,) — 0.

This simplification yields, after rearrangement,

Vi = Vip + Ve In(Iy /1) (3A.16)
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If we use the notation I} = I, — §;, as in the earlier analysis, we can rewrite the
subexpression In(I;/I,,) as In(1 — (6;/In)), which we can approximate as —&;/ I,

for small | — 6;/In|, yielding the simplified result
Vi = Vi — (Ve/Im)6i. (3A.17)

Thus, in this region, V; decreases linearly with §;, with a slope of V;/I,. The

losing responses for V7 and V3 are thus identical.

We can similarly derive a simplified expression for V3, for the same condition
Vi < Vy, while Vo > V,,. For Equation 3A.10b, V2 > V,, implies exp(2(Va —

Vim)/Vo) > 1. This approximation yields, after rearrangement,
In(I1/Im) = (Vim — V2)/Ve — (1/2)(V,/Ve) exp(2(V2 — Vim) / Vo). (3A.18)

As Vy — V,, increases, the right side of this equation grows exponentially large
and negative, forcing I, to grow closer and closer to zero; thus, V3 is constant
with I;. However, the poor approximation V, — Vi & 2(Vy — V) for Vo — V1 >V,
stunts this exponential growth. The qualitative analysis in the chapter predicts
this constant value accurately, as
Vy = Vo In(2™) + v, 1n(52). (3A.19)
I, I,

In summary, Equations 3A.10a and 3A.10b predict the losing and crossover
response of the circuit, whereas Equations 3.2 and 3A.19 predict the winning
response of the circuit. Figure 3.4 is a plot of this analysis, fitted to experimental
data. Figure 3A.2 expands the crossover region of Figure 3.4, showing
the crossover region between losing and winning analyses. The theoretical

predictions in Figure 3.5 and Figure 3.7 also use this analysis, with altered values

of V,.
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Figure 8A.2. Experimental data (circles) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit in the crossover region.
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Appendix 3B
Dynamic Response of the Winner-Take-All Circuit

In the chapter, we presented theoretical predictions of the time response of
the winner-take-all circuit; in Figure 3.9 and 3.10, we compared these predictions

with experimental data. In this appendix, we derive these theoretical predictions.

Figure 3.8 in the chapter shows a schematic diagram for a two-neuron
winner-take-all circuit, with capacitances added to model dynamic behavior.
Figure 3B.1 shows a small-signal circuit model for this circuit. For a particular
operating point [I1, I3, I, , I.,], the model shows the effect of a small change in
I;, denoted by 1, on the circuit voltages Vi, Vs, and V,, indicated by the small-

signal voltages vy,vy, and v.. In this model, a linear resistor Tis in parallel
with a linear dependent current source, with a conductance i replaces each
transistor Tij from Figure 3.2. For a particular operating point in subthreshold,

the small-signal parameters are

g, = II/VOa g2, = 101/V0s 1y = Ve/ll’ T2, = VC/ICl‘
(3B.1)
gi, = 12/Vo, 92, = cz/vm Tz = G/I?o’ T2, = Vﬁ‘/'[%’

where V,, the Early voltage, is a measure of transistor resistance, and V, =

kT /qk. This small-signal circuit model is a linear system, which we can solve
analytically using conventional techniques. The resulting solution, unfortunately,
is a function of the unsolved large signal I, and I,. However, for the input
conditions Iy = I, and I, = I, + 6;, we can reasonably make the approximations
1., ~ I, and I, ~ O for relatively small §;, due to the exponential dependence of

T5; and T3 on Vi and V;. Using these approximations, we can express the small-

signal voltages v; and vy as linear functions of the small-signal input current 1y,

as
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v1 Vo ((CVo/1c)s + 1)

F S AR Py P B T Ay s gy (3B.2)
and
% - -(%) ((CVe/I)s +1)(s/(a i b) +1)(s/(a—b) + 1)’ (3B.3)
where
= zélve + 25: v, (3B.4)
and
’- \/(221%)2 o) - (cggff)' (3B.5)

If b is an imaginary number, the circuit has complex poles, and exhibits
undesirable ringing behavior. If I, > 4I;(C./C), then b is real, and ringing
does not occur. Figure 3.9 in the chapter compares experimental data with this
inequality.

When b is real, the circuit exhibits first-order behavior. We can simplify
Equations 3B.2 and 3B.3, and show that the first-order time constant for V3
is CV,/I, and the first-order time constant for V; is CV, /I, where I} ~ I, =

I. Figure 3.10 in the chapter compares experimental data with these time

constants.
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Figure 3B.1. Small-signal model of the two-neuron winner-take-all circuit, with capacitances

added to model dynamic behavior.
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Appendix 3C
Representation of Multiple Intensity Scales

This appendix explains a regime of operation of the winner-take-all
circuit that represents multiple input intensity scales in the output, while still

functioning as an inhibitory circuit.

Consider an n-neuron winner-take-all circuit, with input currents Iy > I >

...> I,. As shown in Equation 3.1 in the chapter, the output voltage V; is

I I
Vi=V, 1n(}l) +Voln(7), (3C.1)
o o

while V; ...V, are approximately zero. The output does not represent the input
ordering Is > I3 > ... > I,; the largest input wins, and all other inputs
lose. We can operate the circuit in another regime, however, which allows inputs
Iy ...Iy to win, and inputs I ;... I, to lose, where the magnitude of I} is under
external control. Voltage outputs V7 ...Vj_, are now binary representations,

whereas V; maintains a logarithmic encoding of the input current I.

In our previous analysis in the chapter, we used ideal current sources to
represent Iy ...I,. In Figure 3C.1, we replace these ideal sources with transistor
realizations. Transistors T3, ...T3,, when operating in the subthreshold region,
realize ideal current sources if Vyz — Vi > 2V,. Recall our input I; > I > ... >
I,,, and consider the effect of increasing the value of current source I,. As shown
in Equation 3C.1, the neuron output V; increases with I.. For large I., transistor

T3, is no longer operating in the subthreshold region. In this case, the equation

I, = kK'(W/L)(Vy — Ve — Vp)? describes T3,, where W and L are the width and
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length of Ty, , and k' and Vr (the threshold voltage) are fabrication constants.

We can solve for V; for this situation, as

I [
Vi=V, ln(—i];") + Wgﬁl‘)‘ + Vr. (3C.2)

If we increase I, further, V7 continues to increase. For a sufficiently large I., V
can approach V4. In this situation, T3, begins to turn off, and no longer acts

as an ideal current source supplying I;. In this case, we can model T3, as an

independent current source, supplying the current I, = k'(W/L)(Vyg — V.)?, as
shown in Figure 3C.2. To a first approximation, Figure 3C.2 shows a winner-

take-all circuit with (n — 1) neurons, with an effective control current of I, — I;.

We can apply this technique to represent multiple input intensity scales.
Recall the input condition 1 > I, > ... > I,, and the desired
behavior of outputs: Vi ...V;_; to be approximately Vy4, Vi to maintain a
logarithmic encoding of the input current Iy, and all other output voltages
to be approximately 0. To produce this behavior, we simply increase I,, until

Vi...Vg_1 are approximately V34, but Vi < V.
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Figure 3C.1. Winner-take-all circuit, with transistor realizations replacing ideal input current

sources.
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Figure 3C.2. Winner-take-all circuit, after modeling a saturated neuron with the independent

current source ;.
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Chapter 4
A Silicon Model of Auditory Localization

The principles of organization of neural systems arose from the combination
of the performance requirements for survival and the physics of neural elements.
From this perspective, the extraction of time-domain information from auditory
data is a challenging computation; the system must detect changes in the data
that occur in tens of microseconds, using neurons that can fire only once per
several milliseconds. Neural approaches to this problem succeed by closely
coupling algorithms and implementation, unlike standard engineering practice,
which aims to define algorithms that are easily abstracted from hardware

implementation.

The echolocation system of the bat and the passive localization system of the
barn owl are two neural systems that use extensive time-domain processing to
create an accurate representation of auditory space. While the bat has developed
specialized algorithms to implement an active sonar system, the barn owl and
mammals use similar techniques to perform auditory localization. This chapter
describes an integrated circuit that models, to a limited degree, the passive

localization system of the barn owl.

The barn owl (Tyto alba) uses hearing to locate and catch small rodents in
total darkness. The owl localizes the rustles of the prey to within 1 to 2 degrees
in azimuth and elevation (Knudsen et al., 1979). The owl cannot localize sounds
when one ear is completely occluded; the auditory cues are differences in sound
received by the two ears. The owl uses different binaural cues to determine
azimuth and elevation. The elevational cue for the owl is binaural intensity
difference. This cue is a result of a vertical asymmetry in the placement of the

barn owl’s ear openings, as well as a slight asymmetry in the left and right
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halves of the barn owl’s facial ruff, which acts as a sound-collecting device
(Knudsen and Konishi, 1979). The azimuthal cue is binaural time difference.
The binaural time differences are in the microsecond range, as expected from the
short interaural distance of the owl, and vary as a function of azimuthal angle of

the sound source (Moiseff and Konishi, 1981).

Unlike those in the visual system, the primary sensory neurons of the
auditory system do not directly record the spatial location of a stimulus.
Neuronal circuits must compute the position of sounds in space from acoustic
cues in the stimulus. In the barn owl, the external nucleus of the inferior
colliculus (ICx) contains the neural substrate of this computation, a spatial map
of auditory space (Knudsen and Konishi, 1978). Neurons in the ICx respond
maximally to stimuli located in a small area in space, corresponding to a specific
combination of binaural intensity difference and binaural time difference (Figure
4.1). Recordings of the ICx neurons made while binaural intensity difference
(Knudsen and Konishi, 1980) and binaural time difference (Moiseff and Konishi,

1981) are varied separately confirm the role of these acoustic cues.

There are several stages of neural processing between the primary sensory
neurons at each cochlea and the computed map of space in the ICx. Each
primary auditory fiber initially divides into two distinct pathways (Figure 4.2).
One pathway processes intensity information, and thus encodes elevation cues,
whereas the other pathway processes timing information, and thus encodes
azimuthal cues. The two pathways recombine in the ICx to produce a complete

map of space (Takahashi and Konishi, 1988b).

Recent anatomical and physiological studies provide a model of the structure
and function of the time-coding pathway of the barn owl (Carr and Konishi,
1988; Takahashi and Konishi, 1988a; Fujita and Konishi, unpublished). This

pathway has clear anatomical and physiological homologues in other avian
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Figure 4.1. Neural map of auditory space in the barn owl. Auditory space is depicted as

an imaginary globe surrounding the owl. Projected onto the globe are the receptive field

best areas of 14 neurons. The best area, a zone of maximal response within a receptive field,
remains unaffected by variations in sound intensity and quality. The numbers surrounding the
same symbols (circles, rectangles, triangles, ellipses) represent neurons from the same electrode
penetration; the numbers themselves denote the order in which the neurons were encountered.
Below and to the right of the globe are illustrations of three histological sections through

the inferior colliculus; arrows point to the external nucleus, the ICx. Iso-azimuth contours

are shown as thick lines in the horizontal and sagittal sections; iso-elevation contours are
represented by thin lines in the transverse and sagittal sections. Abbreviations: a, anterior;

¢, contralateral; d, dorsal; i, ipsilateral; 1, lateral; m, medial; p, posterior; v, ventral. From

(Knudsen and Konishi, 1978) and (Konishi, 1986); (c0)AAAS.



77

Cochlea < P ‘ Cochlea

Figure 4.2. Schematic drawing of the auditory pathway of the barn owl. The pathway begins
at the cochlea, the sound transducer. The cochlea projects to the nucleus angularis (NA), to
start the amplitude-coding pathway, and to the nucleus magnocellularis (NM}, to start the
time-coding pathway. The NA projects contralaterally to the shell of central nucleus of the
inferior colliculus (SH), which projects to the external nucleus of the inferior colliculus (ICx),
the location of the complete map of auditory space. The NM projects bilaterally to nucleus
laminaris (NL); the NL projects contralaterally to the central nucleus of the inferior colliculus
(ICc). Fibers connect the ipsilateral and contralateral sides of the ICc, returning information
to the original side. The ICc then projects to the ICx, the location of the complete map of
auditory space. Adapted from (Fujita and Konishi, unpublished) and (Takahashi and Konishi,
1988b).
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species and in mammals, although the most completely studied example of time-

coding processing is that done by the barn owl.

The chapter describes a 220,000-transistor integrated circuit that models the
time-coding pathway of the barn owl, using analog, continuous-time processing.
The chip receives two inputs, corresponding to the sound pressure at each
ear of the owl. The chip computes as its output a map of the interaural time
difference between the input signals, encoding the azimuthal localization cue.
The architecture of the chip directly reflects the anatomy and physiology of the
neural pathway; intermediate outputs of the chip correspond to different neurons
in this pathway. The original research in this chapter was done in collaboration
with Carver Mead; parts of this chapter were originally published in (Lazzaro

and Mead, 1989a).
4.1 The Time-Coding Pathway of the Owl

By installing small microphones near the eardrums of the owl, Moiseff and
Konishi have demonstrated the dependence of binaural time difference on the
azimuthal angle of a sound source (Figure 4.3). The time-coding pathway of the

owl computes azimuth, using this binaural time difference as a cue.

The time-coding pathway receives as input a collateral of the primary
auditory fibers. The primary auditory fibers originate at the cochlea; Chapter
2 described the structure and function of the cochlea. The mean firing rate
of a primary auditory fiber encodes sound intensity. The temporal pattern
of auditory-nerve firings reflects the shape of the filtered and rectified sound
waveform; this phase locking does not diminish at high intensity levels (Evans,
1982). This temporal patterning preserves the timing information needed to

encode interaural time differences.
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Figure 4.3. Binaural time difference in the owl, as a function of azimuthal angle. Small
microphones installed near the eardrums were used to measure the interaural time differences

in the microsecond range. From (Moiseff and Konishi, 1981).
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In the owl, the primary auditory fibers project to the nucleus magnocellularis
(NM), the first nucleus of the time-coding pathway (Figure 4.2). Neurons in the
NM preserve the temporal patterning of nerve firings conveyed by the primary
auditory fibers (Sullivan and Konishi, 1984). The NM projects bilaterally to
the nucleus laminaris (NL), the first nucleus in the time-coding pathway that
receives input from both ears. The mammalian homologue of the NL is the

medial superior olive (MSO), which also receives input from both ears.

Neurons in both the NL (Moiseff and Konishi, 1983) and the MSO (Goldberg
and Brown, 1969) are most sensitive to binaural sounds that have a specific
interaural time delay (Figure 4.4). In 1948, Jeffress proposed a model to explain
the encoding of interaural time differences in neural circuits (Jeffress, 1948). In
the model, as applied to the anatomy of the owl, axons from the ipsilateral (same
side) NM and the contralateral (opposite side) NM, with similar characteristic
frequencies, enter the NL from opposite surfaces (Figure 4.5). The axons travel
antiparallel, and action potentials counterpropagate across the NL; the axons
act as neural delay lines. NL neurons are adjacent to both axons. Each NL
neuron receives synaptic connections from both axons, and fires maximally when
action potentials present in both axons reach that particular neuron at the same
time. In this way, interaural time differences map into a neural place coding; the
interaural time difference that maximally excites an NL neuron depends on the
position of the neuron in the NL (Konishi, 1986). In engineering terms, each NL
neuron computes the cross-correlation function of a filtered version of the sound
inputs; the value of this function is the relative probability of the sounds being

offset by a particular interaural time difference (Yin and Kuwada, 1984).

There is considerable evidence to support the application of this theory
to the barn owl. Anatomical surveys of the NL of the owl show antiparallel

axons, which enter from opposite sides, and which originate from the ipsilateral
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Figure 4.4. The delay curves obtained under physiological conditions from single units in the
NI, the ICc, and the ICx. Broadband noise was used as a stimulus. Neurons with similar best
frequencies (5.4 to 5.7 kHz) are shown. Neuronal selectivity improves markedly between the NL
and the ICc. Responses are phase ambiguous in the NL and the ICc, but not in the ICx, when
stimulated with noise. From (Fujita and Konishi, unpublished).
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Figure 4.5. The Jeffress model for measuring and encoding interaural time differences, as
applied to the barn owl. Fibers from the left and right NM converge on the NL; the NM fibers
encode timing information in the temporal patterning of their action potentials. Each fiber

has a uniform time delay. The NL neurons (circles labeled a through e) act as coincidence
detectors, firing maximally when signals from two sources arrive simultaneously. The pattern
of innervation of the NM fibers in the NL create left-right asymmetries in transmission delays;
when the binaural disparities in acoustic signals exactly compensate for the asymmetry of a
particular neuron, this neuron fires maximally. The position in the array thus encodes the

interaural time difference. Adapted from (Konishi, 1986).
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and contralateral NMs (Figure 4.6). Physiological data from NL neurons show

a linear relationship between axonal time delay and axonal position in the

NL (Carr and Konishi, 1988). Note that in Figure 4.4, NL neurons respond
maximally to several different interaural time delays. As predicted by the Jeffress
model, NL neurons respond to all interaural time differences that result in the
same interaural phase difference of the characteristic frequency of the input
fibers. In mammals, neuronal recordings in the MSO are also consistent with the

Jeffress model (Goldberg and Brown, 1969).

NL outputs project contralaterally to a subdivision of the central nucleus
of the inferior colliculus (ICc). ICc neurons are more selective for interaural
time differences than are NL neurons (Figure 4.4); application of bicuculline
methiodide (BMI, a selective gamma aminobtyric acid (GABA) antagonist) to
the ICc reduces this improved selectivity. BMI acts as a blocker of inhibition;
the action of BMI suggests that the increased selectivity of ICc neurons is a
result of inhibitory circuits between neurons that are tuned to different interaural
time differences (Fujita and Konishi, unpublished). Inhibitory circuits between
neurons tuned to the same interaural time differences might also be present. In
addition, evidence suggests that ICc neurons temporally integrate information to
improve selectivity for interaural time differences. The sensitivity of ICc neurons

to interaural time differences increases as a function of the duration of the sound

stimulus, for sounds lasting less than 5 ms (Wagner and Konishi, unpublished).

The ICc projects to the external nucleus of the inferior colliculus (ICx), after
crossing sides in the ICc. The ICx integrates information from the time-coding
pathway and from the amplitude-coding pathway to produce a complete map of
auditory space. Neurons in the ICx, unlike those in earlier stations of the time-
coding pathway, respond to input sounds over a wide range of frequencies. ICx

neurons are more selective for interaural time differences than are ICc neurons,
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Figure 4.6. Innervation of nucleus laminaris. Axons from the ipsilateral and contralateral
NM enter, respectively, the dorsal and ventral surfaces of the NL. Each axon runs along the
respective surface until it comes to the iso-frequency band that it is destined to innervate.
Within this band, the axon sends two or three collaterals into the NL, each of which divides
into several branches. These fibers, which might be as long as 1 mm, run along a relatively
straight course toward the opposite surface. The fibers appear to establish contacts with the

NL cell bodies either by en passant endings or by small branchlets. From (Carr and Konishi,

1988) and (Konishi, 1986).
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for low frequency sounds. In addition, neurons in earlier stations of the time-
coding pathway respond to all interaural time differences that result in the same
interaural phase difference of the neuron’s characteristic frequency; neurons in
the ICx respond maximally to one interaural time difference (Figure 4.4). This
behavior suggests that ICx neurons combine information over many frequency
channels in the ICc, to disambiguate interaural time differences from interaural
phase differences. Application of BMI to the ICx results in phase ambiguity and
decreased selectivity, suggesting an inhibitory mechanism for this computation

(Fujita and Konishi, unpublished).
4.2 A Silicon Model of the Time-Coding Pathway

Figure 4.7 shows the floorplan of the silicon model of the time-coding
pathway. The chip receives two inputs, corresponding to the sound pressure at
each ear of the owl. Each input connects to a silicon model of the mechanical
processing of the cochlea (Lyon and Mead, 1988a); Chapter 2 describes the

cochlea model. Silicon models of inner hair cells connect to the cochlea circuit

at constant intervals; 62 inner-hair-cell circuits connect to each silicon cochlea.
The output of each inner-hair-cell model connects directly to a spiral-ganglion-
neuron model, to complete a silicon model of auditory-nerve response. Chapter
2 described the auditory-nerve model. In the owl, the spiral-ganglion neurons
project to the NM; for simplicity, our integrated circuit does not model the NM;

each spiral-ganglion-neuron circuit directly connects to the NL.

In both owls and mammals, two instances of each nucleus in the auditory
pathway appear in the brainstem, symmetric about the midline. Obviously,
for binaural processing, two cochleas and two NMs are required. The NL,
however, receives bilateral projection from the NM; each NL primarily encodes

one-half of the azimuthal plane. This partitioning continues at higher stations;
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Figure 4.7. Floorplan of the silicon model of the time-coding pathway of the owl. Sounds for
the left ear and right ear enter the respective silicon cochleas at the lower left and lower right
of the figure. Silicon inner hair cells tap each silicon cochlea at 62 equally spaced locations;
each silicon inner hair cell connects directly to a silicon spiral-ganglion cell. The square box
marked with a pulse represents both the silicon inner hair cell and the silicon spiral-ganglion
cell. Each silicon spiral-ganglion cell generates action potentials; these signals travel down
silicon axons, which propagate from left to right for silicon spiral-ganglion cells from the left
cochlea, and from right to left for silicon spiral-ganglion cells from the right cochlea. The
rows of small rectangular boxes, marked with the symbol “Af,” represent the silicon axons.
One hundred seventy silicon NL cells, represented by small circles, lie between each pair of
antiparallel silicon axons. Each silicon NL cell connects directly to both axons, and responds
maximally when action potentials present in both axons reach that particular neuron at

the same time. In this way, interaural time differences map into a neural place code. Each
vertical wire that spans the array combines the outputs of all silicon NL neurons with a
specific interaural time difference. These 170 vertical wires form a temporally smoothed map
of interaural time difference, which responds to a wide range of input sound frequencies. The
nonlinear inhibition circuit near the bottom of the figure increases the selectivity of this map.

The time-multiplexing scanner transforms this map into a signal suitable for display on an

oscilloscope.
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for simplicity, our integrated circuit has only one copy of the NL and of later

stations, which encodes all azimuthal angles.

The chip models the anatomy of the NL directly. The two silicon cochleas
lie at opposite ends of the chip; the sounds in each silicon cochlea travel in
parallel up the chip. Spiral-ganglion-neuron circuits from each ear, which receive
input from inner-hair-cell circuits at the same cochlear position, project to
separate axon circuits, which travel antiparallel across the chip. When a sound
is presented to both chip inputs, action potentials counterpropagate across the

chip.

The axon circuit is a discrete neural delay line; for each action potential at
the axon’s input, a fixed-width, fixed-height pulse travels through the axon,
section by section, at a controllable velocity (Mead, 1989). After excitation of
the circuit with a single action potential, only one section of the axon is firing at
any point in time. NL neuron circuits lie between each pair of antiparallel axons
at every discrete section, and connect directly to both axons. Simultaneous
action potentials at both inputs excite the NL neuron circuit; if only one input
is active, the neuron generates no output. This simplified model differs from the
owl in several ways. The silicon NL neurons are perfect coincidence detectors; in
the owl, NL neurons also respond, with reduced intensity, to monaural input. In
addition, only two silicon axons converge on each silicon NL neuron; in the owl,

many axons from each side converge on an NL neuron.

In the owl, the NL projects to the ICc, which in turn projects to the ICx.
The final output of our integrated circuit models the responses of ICx neurons
to interaural time differences. In response to interaural time differences, ICx
neurons act different than NL neurons. Experiments suggest three mechanisms

for these differences: nonlinear inhibition, temporal integration, and combining
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of information over frequency channels. Our integrated circuit implements these

mechanisms to produce a neural map of interaural time difference.

In our chip, all NL neuron outputs corresponding to a particular interaural
time delay are summed to produce a single output value. NL neuron outputs are
current pulses; a single wire acts as a dendritic tree to perform the summation.
In this way, a two-dimensional matrix of NL neurons reduces to a single vector;
this vector is a map of interaural time difference, for all frequencies. In the owl,
inhibitory circuits between neurons tuned to the same interaural time differences
might be present in the ICc, before combination across frequency channels. Our
model does not include these circuits.

The ICc and perhaps the ICx might use temporal integration to increase
selectivity. Our chip temporally integrates the vector that represents interaural
time differences; the time constant of integration is adjustable. Nonlinear
inhibitory connections between neurons tuned to different interaural time
differences in the ICx and the ICc also increase sensitivity to interaural time
differences. In our chip, a nonlinear inhibition circuit, described in Chapter
3, processes the temporally integrated vector that represents interaural time
differences. The circuit performs a winner-take-all function, producing a new
map of interaural time differences in which only one neuron has significant
energy. The chip time multiplexes this final map of interaural time differences

on a single wire for display on an oscilloscope.
4.3 Comparison of Responses

We presented periodic click stimuli to the chip; one input received the sound
directly, while the other input received a time-delayed replica of the sound
(Figure 4.8). We recorded chip response at several intermediate outputs and at

the final output map of interaural time differences, and compared chip response
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to similar responses recorded from the time-coding pathway of the barn owl. We

also separately fabricated and tested several parts of the complete model.

Figure 4.9 shows the basilar-membrane response of the chip to click stimuli,
with no interaural time difference. The figure shows output response at several
equally spaced basilar-membrane locations, for both left and right cochleas. The
frequency content of the response progressively decreases at locations farther
from the beginning of the cochlea; in addition, the response at each location has
a slight resonant overshoot. The response also shows a time delay between each
pair of adjacent locations; for more distant locations, this time delay exceeds
the period of the input waveform. These observations match the behavior of the
traveling wave structure of physiological cochleas; a comparison of the responses

of the physiological and silicon cochleas was given in Chapter 2.

The left and right cochlea responses are nearly identical; there are small
differences in the velocity of propagation, due to imperfections in the circuit
elements. Because of these differences, the time delays in the left and right
cochleas at a particular location are not equal; these differences, shown in Figure

4.9, are a potential source of localization error.

Chapter 2 compared the responses of the silicon auditory-nerve model with
physiological data. As shown in Figures 2.3, 2.8, and 2.10, a silicon auditory-
nerve fiber encodes a filtered, half-wave-rectified version of the cochlea input,
over a wide dynamic range, using the temporal patterning of fixed-width, fixed-
height pulses. This property is vital for the correct function of the silicon model
of the time-coding pathway. Figure 2.8(b) shows that the absolute phase of
the temporal firing patterns of a silicon auditory nerve fiber shifts with input
intensity, for high signal levels; this behavior is unlike a physiological fiber.
Because of this shortcoming, we did not apply binaural intensity differences to

the chip.
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Figure 4.8. Input stimulus for the chip. Both left and right ears receive a periodic click
waveform, at a frequency of 475 Hz. The time delay between the two signals, denoted by “At”

is variable.
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Figure 4.9. Response of both cochleas to the input stimulus of Figure 3.8; this stimulus is
reproduced at the top of this figure. The horizontal axis is time; each vertical axis is cochlear
response. The figure shows the output response at five cochlear positions, for both left and
right cochleas. Tap 1 is closest to the beginning of the cochlea, and retains most of the high-
frequency content of the signal. Later taps show less and less high-frequency content; tap

5 contains only the fundamental frequency of 475 Hz. Each tap accentuates a particular
frequency, the characteristic frequency of the cochlear position; this frequency decreases with
increasing tap numbers. The cochleas act also as exponentially tapered delay lines; notice the
response of each tap occurs progressively further from the input waveform. For taps 4 and 5,
the delay of the cochlea exceeds a single period of the input waveform. The cochleas are not
exactly matched; a difference in time delay between the two cochleas is denoted by “At,,” on
the right of each pair of outputs. For lower-numbered taps, the delay is small compared to the

time delay of the silicon axons; for higher-numbered taps, it is significant.
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Figure 4.10 shows the output of several sections of the axon circuit, in
response to a single input pulse. Only one section is active at any point in time;
the pulse width does not grow or shrink systematically, but rather stays roughly
constant. Figure 4.11 shows the variation in axon pulse width over about 100
sections of axon, due to circuit element imperfections. In this circuit, a variation
in axon pulse width indicates a variation in the velocity of axonal propagation;

this variation is a potential source of localization error.

The final output of the chip is a map of interaural time difference. Three
signal-processing operations, computed in the ICx and ICc, improve the
original encoding of interaural time differences in the NL: temporal integration,
integration of information over many frequency channels, and inhibition among
neurons tuned to different interaural time delays. In our chip, we can disable the
inhibition and temporal-integration operations, and observe the unprocessed map

of interaural time differences.

Figure 4.12(a) shows these unprocessed maps of interaural time differences,
created in response to click stimuli. Each map corresponds to an interaural time
difference that is 100 us greater than that for the previous map; the first map
corresponds to simultaneous excitation of both ears. The vertical axis of each
map corresponds to neural activity level, whereas the horizontal axis of each
map corresponds to linear position within the map. Each map is an average
of several maps recorded at 100-ms intervals; averaging is necessary to capture
a representation of the quickly changing, temporally unsmoothed response.

The encoding of interaural time differences is present in the maps, but false
correlations add unwanted noise to the desired signal. By combining the outputs
of 62 rows of NL neurons, each tuned to a separate frequency region, the maps
in Figure 4.12(a) correctly encode interaural time differences, despite variation in

axonal velocity, mismatches in cochlear delay, and noise.
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Figure 4.10. Waveform measured at several sections of a silicon axon. Outputs were located
at every third section; thus, two outputs are not shown for every one that is. Note that pulse
height and pulse width stay fairly constant, and that only one axon section is active at any

point in time. From (Mead, 1989).
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Figure 4.11. Variation in the pulse width of a silicon axon, over about 100 axonal sections.
Axons were set to fire at a slower velocity than in the owl model, for more accurate

measurement. The line represents the section-by-section pulse width.
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Figure 4.12. Maps of interaural time differences, taken from the chip. a. The nonlinear
inhibition and temporal smoothing operations were turned off, showing the unprocessed map of
interaural time delays. Each individual plot shows the neural response at every position across
the map. The stimuli for each plot are the periodic click waveforms, offset by an interaural
time difference, shown in Figure 4.8; the interaural time difference is shown in the upper-

left corner of each plot, measured in milliseconds. These responses are the averaged result

of four maps, at 100-ms intervals, using a digital oscilloscope, because the on-chip temporal
smoothing is disabled. The encoding of interaural time differences is present in the maps, but
false correlations add unwanted noise to the desired signal. Because we are using a periodic
stimulus, large time delays are interpreted as negative delays, and the map response wraps

from one side to the other at an interaural time difference of 1.2 ms. b. The nonlinear

inhibition and temporal-smoothing operations were turned on, showing the final output map
of interaural time delays. Format is identical to that in part a. Off-chip averaging was not
used, because the chip temporally smooths the data. Each map shows a single peak, with little

activity at other positions, due to nonlinear inhibition.
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Figure 4.12(b) shows maps of interaural time differences taken with
inhibition and temporal-integration operations enabled, using stimuli identical
to those for Figure 4.12(a). For most interaural time differences, only one peak
exists. Off-chip averaging of maps over time is not necessary, as the temporal-
integration operation on the chip smooths the time response of the chip. The
maps do not reflect the periodicity of the individual frequency components
of the sound stimulus; experiments with a noise stimulus confirm the phase-

disambiguation property of the chip.

Figure 4.13(a) is an alternative representation of the map of interaural time
differences computed by the chip. We recorded the map position of the neuron
with maximum signal energy, for different interaural time differences, using
periodic click stimuli. Carr and Konishi (Carr and Konishi, 1988) performed a
similar experiment in the NL of the barn owl (Figure 4.13b), mapping the time
delay of an axon innervating the NL, as a function of position in the NL. The

linear properties of our chip map are the same as those of the owl map.
4.4 Discussion

The experiments on the chip raise several interesting issues about the
algorithms implemented by the auditory-localization system of the barn owl.
These issues concern the computational errors that occur due to imperfect

components, and how nature might attempt to correct for these errors.

Figure 4.9 shows the responses of two silicon cochleas to a click stimulus.
Because of component imperfections, the delays at the same position on the
two silicon cochleas are not identical. As a result, the row of NL neuron circuits
associated with this position has a spatial offset; in response to an interaural
time difference of zero, the NL neuron circuit with maximum energy is not

located exactly in the center of the row. If each cochlear position has a different
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Figure 4.13. a. Chip data showing the linear relationship of silicon NL neuron position
and interaural time difference. For each interaural time difference presented to the chip, the
output map position with the maximal response is plotted (170 map positions). The linearity
shows that silicon axons have a uniform mean time delay per section. b. Recordings of the
NM axons innervating the NL in the barn owl. The figure shows the mean time delays of
contralateral fibers recorded at different depths during one penetration through the 7-kHz
region. From (Carr and Konishi, 1988).
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temporal offset, each row of NL neurons has a different spatial offset; thus,
the two-dimensional silicon NL map is not correctly registered in the place

dimension.

This incorrect registration is a problem because the projection to the silicon
model of ICx and ICc is hardwired; there is no mechanism to adapt to the offsets
in the silicon NL map. The biological system might also have the same interaural
matching problem; to solve the problem, the system might use adaptation.
Adapting time delays in the system could result in a well-registered NL map;
in addition, adaptive projections from the NL to higher centers could decrease

registration errors in the NL map.

Figure 4.11 shows the variation in propagation velocity of a silicon axon.
This variance is a potential source of localization error. The error in the output
map of the chip from this error is minimized as a byproduct of the processing
algorithm of the system; the output map averages the responses of 62 rows of NL
neurons. In the biological system, ICx neurons combine information over many
frequency channels in the ICc; this operation also reduces errors in individual
ICc responses. In addition, the axons innervating NL might adapt to reduce the

variance in their propagation velocity, eliminating the source of the error.

Future enhancements of the chip include modeling these methods of
adaptation to improve system performance, modeling the intensity-coding
localization pathway, and using the chip as part of a electromechanical system
to model sensorimotor integration in the owl. In conclusion, the chip confirms
the plausibility of the model of time-coding pathway of the owl formulated by
Konishi and collaborators. The chip also demonstrates the utility of analog VLSI

technology as a modeling tool in computational neuroscience.
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Chapter 5
A Silicon Model of Pitch Perception

Many people can sing, in key, in unison with a melody. Perceiving the
pitch of a sound is an essential part of this task. The diversity of sounds that
evoke a distinct pitch indicates the complexity of human pitch perception. We
perceive a pure sinusoid as having a pitch that depends directly on its frequency.
A weighted sum of sinusoids, with harmonic (integer-related) frequencies
fy 2f, 3f, 4f,..., evokes a pitch identical to a sinusoid of frequency f, even if
the sinusoid of frequency f in the sum has a weight of zero. We also perceive a
distinct pitch, in a stereotypical fashion, in response to a sum of sinusoids with
arithmetically related frequencies, and in response to a sum of time-delayed,

correlated noise signals.

Explanations of the ability to perceive pitch initially used physiological
models of auditory processing. An early explanation, suggested by Helmholtz,
modeled the cochlea as a resonant frequency analyzer (Helmholtz, 1895). Models
developed in the 1950s (Licklider, 1951; Licklider, 1959) advanced beyond the
auditory periphery, specifying several stations of neural computation in explicit
detail. However, two limitations impeded further development of physiological
models of pitch perception. Auditory neurophysiology was in its infancy, and
could offer researchers little evidence with which to judge proposed theories.

In addition, computer simulation and circuit modeling of neural systems were
both technologically limited; published computational verification of the Licklider
model, by Lyon, did not occur until 1984 (Lyon, 1984).

As a result, models developed in the 1970s (Goldstein, 1973; Wightman,
1973) involved abstract models; the goal of the research was the description

of algorithms, computed by an unspecified “central processor,” that exactly
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“matched psychophysical pitch-perception data. These studies contributed
essential insights into pitch perception; however, they did not address the

implementation strengths and constraints of neural systems.

Advances in auditory physiology and computational neuroscience in the
last decade encourage us to return to physiological models of pitch perception.
Recent physiological studies have provided new insights into the structure and
function of both the auditory periphery (Rhode, 1971; Kiang, 1980; Kim, 1984;
Dallos, 1985) and the auditory brainstem nuclei (Carr and Konishi, 1988; Fujita
and Konishi, unpublished). Analog VLSI technology is a appropriate medium for
pitch-perception modeling; the projects described in Chapters 2, 3, and 4 provide

useful tools for building these models.

This chapter describes a silicon integrated-circuit model of pitch perception.
The chip receives as input a time-varying voltage corresponding to sound
pressure at the ear, and produces as output a map of perceived pitch. The
chip is a physiological model; subcircuits on the chip correspond to known
and proposed structures in the peripheral auditory system and in the auditory
brainstem nuclei. The algorithms of the chip share many details with the
work of Licklider (Licklider, 1959); the chip is an analog integrated-circuit
implementation of the work of Lyon, who proposed computational experiments
with the Licklider model, and published computer simulations of the performance
of the model (Lyon, 1984). The chip output approximates human performance
on a variety of classical pitch-perception stimuli. The research in this chapter

was done in collaboration with Carver Mead.
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5.1 System Architecture

Figure 5.1 is a block diagram of the chip. The chip receives as input a
time-varying signal, corresponding to the sound pressure at the ear. This input
connects to a silicon model (Lyon and Mead, 1988a) of the mechanical processing
of the cochlea; Chapter 2 described the cochlea circuit. Silicon models of inner
hair cells connect to the cochlea circuit at constant intervals; 62 inner-hair-cell
circuits connect to each silicon cochlea. The output of each inner-hair-cell circuit
connects directly to a spiral-ganglion-neuron circuit, to complete a silicon model

of auditory-nerve response. Chapter 2 describes the auditory-nerve model.

The portion of the chip explained thus far models the known structures of
the auditory periphery. The remainder of the chip implements proposed neural
structures in the brain. In the chip, each spiral-ganglion-neuron circuit connects
to a discrete delay line; for each input pulse, a fixed-width, fixed-height pulse
travels through the delay line, section by section, at a controllable velocity
(Mead, 1989). The circuit is identical to the silicon axon circuit described in

Chapter 4; Figures 4.10 and 4.11 illustrate the operation of the circuit.

A correlation-neuron circuit is associated with each delay-line section; this
circuit receives a connection from the output of its delay-line section, and from
the spiral-ganglion-neuron circuit that drives the delay line. Simultaneous pulses
at both inputs excite the correlation-neuron circuit; if only one input is active,
the circuit generates no output. Each row of correlation neurons associated with
a spiral-ganglion neuron forms a place code of periodicity. A spiral-ganglion
neuron fires in a repeating pattern, on average, in response to a periodic signal in
the appropriate frequency range. Correlation neurons that fire maximally receive
this repeating pattern simultaneously on both inputs; the time delay associated

with this correlation neuron is an integer multiple of the period of the signal. In
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Figure 5.1. Block diagram of the pitch-perception chip. Sound enters the silicon cochlea at
the lower left of the figure. Circuits that model inner hair cells and spiral-ganglion neurons tap
the silicon cochlea at 62 equally spaced locations; a square box marked with a pulse represents
these circuits. Spiral-ganglion-neuron circuits connect to discrete delay lines that span the
width of the chip. A small rectangular box, marked with the symbol “Af,” represents a delay-
line section; there are 170 sections in each delay line. A correlation-neuron circuit, represented
by a small circle, is associated with each delay-line section. A correlation neuron receives
connection from its delay-line section, and from the spiral-ganglion-neuron circuit that drives
its delay line. Vertical wires, which span the array, sum the response of all correlation neurons
that correspond to a specific time delay. These 170 vertical wires form a temporally smoothed
map of perceived pitch. The nonlinear inhibition circuit near the bottom of the figure increases

the selectivity of this map; the time-multiplexing scanner sends this map off the chip.
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engineering terms, each correlation neuron computes the running autocorrelation

function of a filtered version of the sound input, for a particular time delay.

In 1951, Licklider (Licklider, 1951) proposed this neural autocorrelation
structure as a periodicity representation that could be implemented plausibly
with synaptic delays in neural circuitry. Although no direct physiological
evidence for these autocorrelation structures has been discovered, Carr and
Konishi (Carr and Konishi, 1988) have found direct evidence for cross-correlation
structures for auditory localization in the midbrain of the barn owl; these
structures, shown in Figure 4.6 in Chapter 4, use axonal time delays to compute

a place code of interaural time delay.

Figure 5.2 shows the utility of neural autocorrelation structures in the
perception of the pitch of a weighted, harmonic sum of sinusoids, with
frequencies (f, 2f, 3f, 4f,...,). Due to the filtering action of the cochlea,
different sinusoids are predominant in different autocorrelators throughout the
chip. Cochlear processing is idealized in Figure 5.2; the figure shows an analog
representation of the signals in the delay lines across the chip, assuming that all
sinusoids are in phase. The peaks in all the delay lines coincide with the peaks
of the sinusoid of frequency f. Thus, even if the sinusoid of frequency f has zero
weight, the representation still encodes the frequency f, the perceived pitch of
the sum. The outputs of the correlation neurons reflect this representation; in

addition, they are invariant to the relative phase of the sinusoids.

To complete his model, Licklider proposed a self-organizing neural network,
which received connections from the autocorrelation structures, and which
learned to associate firing patterns with the perception of pitch. For our chip,
we designed a simple recognition algorithm, suitable for the perception of a single
pitch. The algorithm shares its structure with the silicon model of ICc and ICx

processing in the time-coding pathway of the owl, presented in Chapter 4.
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Figure 5.2. Analog representation of the signals in the delay lines across the chip, in response
to a harmonic signal. Cochlear processing is idealized (fully resolved harmonic components,
perfect half-wave rectification, no temporal smoothing). Peaks of activity in the horizontal

direction coincide with peaks in f, shown by vertical lines.
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The recognition algorithm sums all correlation-neuron outputs corresponding
to a particular time delay, across frequency channels, to produce a single output
value. Correlation-neuron outputs are current pulses; a single wire, running
vertically through the chip, acts as a dendritic tree to perform the summation
for each time delay. In this way, a two-dimensional representation of correlation
neurons reduces to a single vector; this vector is the map of perceived pitch. The
chip then integrates this vector temporally, with an adjustable time constant,
providing a stable representation over many cycles of the input signal. Finally, a
global nonlinear-inhibition circuit, described in Chapter 3 and shown in Figure
3.1, processes this temporally integrated vector. This nonlinear circuit performs
a winner-take-all function, producing a more selective map of perceived pitch.
The chip time multiplexes this output map on a single wire for display on an

oscilloscope.

5.2 Chip Responses

To show the capabilities and limitations of the silicon model, we recorded
chip responses to a variety of classical pitch-perception stimuli. In these
experiments, we tuned the basilar-membrane circuit to span about five octaves;
lowpass cutoff frequencies ranged from 300 Hz to 10,000 Hz. The delay lines were
tuned to provide about 3.3 ms of total delay; with this tuning, the chip perceives
pitches above 300 Hz. Temporal smoothing by the recognition algorithm acted

with a time constant of tens of milliseconds.

Figure 5.3(a) shows maps of perceived pitch period, generated by the chip in
response to sine, triangle, and square waves at various frequencies. As desired,
chip response is invariant to the harmonic content of the signal. The chip
response shows the first global peak of the autocorrelation representation; the

spatial variation in the delay-line timing weakens the strength of subsequent
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peaks. In Figure 5.3(b), we recorded the map position of the neuron with
maximum signal energy, for square waves of different frequencies; the graph
shows a linear relationship between the input period of the waveform and the

pitch period predicted by the chip.

The stimuli in Figure 5.4 illustrate the classical “missing fundamental”
aspect of pitch perception. Figure 5.4(a) shows a narrow-pulse waveform,
whereas Figure 5.4(b) shows the sum of this narrow-pulse waveform and a
synchronized sinusoid with appropriate frequency, amplitude, and phase to cancel
exactly the fundamental frequency of the pulse waveform. Human subjects
perceive the pitch of both waveforms to be identical (Schouten, 1940); Figure
5.4(c) shows identical maps from the chip in response to both waveforms, at

various frequencies.

As in the biological system, the chip circuits that model the cochlear
periphery are in some aspects nonlinear, and resynthesize the fundamental
frequency of the signal in Figure 5.4(b). We have done several experiments to
show that the effect of distortion products is negligible. Decreasing the intensity
of the stimulus, within the operating range of the chip, does not alter the
response map; at lower intensities, spectral analysis of cochlear-circuit outputs
shows the strength of the fundamental component of the signal to be near the
circuit’s noise floor. In addition, chip response does not change when a lowpass-
filtered white-noise signal, with a cutoff frequency above the fundamental of the

stimulus, is added to the signal shown in Figure 5.4(b) (Licklider, 1954).

The stimulus in Figure 5.5(a) shows the sensitivity of the chip to harmonic
patterns; to create the stimulus, we summed two synchronized pulse waveforms,
of identical frequency f and relative phase difference ¢. For ¢ = 180°, the
stimulus has a frequency of 2f. For ¢ = 180° + A, the stimulus has a frequency

of f, but the odd harmonics, especially the fundamental, are very weak, as shown
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in Figure 5.5(b). For remarkably small A, human subjects hear an octave pitch
shift between the ¢ = 180° and ¢ = 180° + A stimuli (Schouten, 1940).
Figure 5.5(c) presents pitch maps from the chip for various ¢, which also show

the perceived octave pitch shift.

A sum of three sinusoids, with arithmetically related frequencies f. — fm, fe,
and f. + fm, is a revealing pitch-perception stimulus; an amplitude-modulated
sinusoid, with carrier frequency f. and modulator frequency fy,, as shown in
Figure 5.6(a), produces this spectral pattern. If f. is equal to nfp,, where n is
an integer, the three sinusoids form an integer-related series, and human subjects
perceive a pitch equivalent to that of a sinusoid at the implied fundamental
frequency fp,. If f. is equal to (n + €) fr,, human subjects perceive, to a first
order, a pitch equivalent to a sinusoid at the frequency f./n (de Boer, 1956). As
postulated by de Boer (de Boer, 1956), the human perceptual system calculates
a pseudoperiod of this near-harmonic stimulus. The chip response to varying f,

shown in Figure 5.6(b), matches the first-order perception of human subjects.

If f. is held constant and f,, is varied, human subjects, to a first order,
perceive a pitch equivalent to that of a sinusoid with the frequency of the
integral submultiple of f. nearest to f,, (de Boer, 1956). The chip response to
varying fp,, shown in Figure 5.6(c), matches the first-order response of human

subjects, limited by the resolution of the output map.

Human perception of amplitude-modulated sinusoids has significant second-
order properties. If fy, is held constant and f, is varied, the perceived pitch is
not described exactly by the expression f./n; the slope of the response is slightly
greater than 1/n. If f, is held constant and f,, is varied, the perceived pitch
is not exactly the integral submultiple of f, nearest to f,,; the perceived pitch

decreases slightly with increasing fy, (de Boer, 1956). As postulated by de Boer
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period from the chip, in response to the stimulus, while A is varied; values of A are shown in
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Figure 5.6. a. Amplitude-modulated sinusoid sound stimulus (de Boer, 1956). b. Plot
showing center of energy of the chip map, in response to stimulus shown in part a, while the
carrier frequency, f., is varied. Dotted line shows frequency of fixed modulation frequency

fm = 333 Hz. Dots are data points; solid lines show theoretical first-order human response,

as explained in text. c¢. Plot showing center of energy of chip map, in response to the stimulus
shown in part a, while the modulation frequency, fm, is varied, with f., = 1665 Hz. Dots are

data points; solid lines show theoretical first-order human response, as explained in text.
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(18), these second-order properties reveal the weighting of individual frequency
components in the computation of the pseudoperiod by the human perceptual
system. In the chip, the simple recognition algorithm does not support the
relative weighting of frequency components; as a result, the responses depicted
in Figure 5.6 do not show the second-order properties of the human perceptual

system.

Human subjects perceive a faint, but distinct, pitch in response to a sum
of two time-delayed, correlated noise signals (Fourcin, 1965); the period of the
perceived pitch is equal to the time delay. This stimulus is relevant to auditory
localization, as well as to pitch perception; the outer ear produces time-delayed
replicas of incoming sounds, which encode the elevation angle of sound sources
in mammals (Batteau, 1967). Output maps from the chip show a perceived
pitch, in response to a bandpass-filtered sum of two time-delayed, correlated
noise signals, as shown in Figure 5.7(a). As shown in Figure 5.7(b), the center
of energy of the chip map varies linearly with time delay, in agreement with the
linear characteristic of Figure 5.3(b). Like that of human subjects, the response
of the chip to the noise stimulus is faint; to obtain the data in Figure 5.7, we
decreased the integration time constant of the recognition algorithm, and time

averaged the responses off-chip.

5.3 Discussion

The chip output approximates human performance in response to a variety
of classical pitch-perception stimuli. The major shortcoming of the chip is
the inadequate modeling of the second-order properties of pitch perception
of amplitude-modulated tones; this shortcoming is not a failure of neural

autocorrelator structures as a representation, but rather is a property of
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Figure 5.7. a. Plots showing maps of perceived pitch period from the chip, in response to

a bandpass-filtered sum of two time-delayed, correlated noise signals (right). Filtering was

kept constant for all plots. Centered numbers indicate time delay between noise signals.

Left plots show the spectral content of the input stimulus (60-Hz filter bandwidth). b. Plot
showing center of energy of chip map, in response to bandpass-filtered sum of two time-delayed,
correlated noise signals, as a function of time delay. Ordinate axis is calibrated from data to

indicate perceived delay. Dots are data points; solid line shows best linear fit to the data.
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the chip’s simple recognition algorithm, which does not support the relative

weighting of frequency components in the recognition process.

Neural autocorrelation structures, at the appropriate time scale, are a
natural initial representation for a variety of auditory tasks. Autocorrelation
time delays of hundreds of microseconds match the time delays introduced by the
outer ear to encode auditory localization information in the elevational plane.
Time delays in the millisecond range support pitch-perception and complex
sound-recognition tasks; time delays of hundreds of milliseconds might form a
substrate for the perception of rhythms. As a result, there might be a number of
autocorrelation structures in the auditory system, at different time scales. Faster
delays probably use axonal delay lines, as do the localization structures of the
barn owl (Carr and Konishi, 1988), whereas slower delays probably use neural
circuits for delay units. The autocorrelation structures might form a logarithmic
map of time, unlike our chip’s linear map, to represent compactly many orders of

magnitude of time delay.

In conclusion, the pitch-perception chip confirms the practicality of neural
autocorrelation structures as a representation of pitch perception in auditory
processing. The chip also demonstrates the utility of analog VLSI circuits as a

modeling tool in computational neuroscience.
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Chapter 6
Future Research

The projects described in this dissertation demonstrate the utility of analog
VLSI technology as a modeling tool in auditory neuroscience. The dissertation
does not, however, propose any new auditory theories. The auditory-localization
and pitch-perception chips implement theories that were proposed by Jeffress
(Jeffress, 1948) and Licklider (Licklider, 1951) several decades ago. The inner-
hair-cell and spiral-ganglion-cell models presented in Chapter 2 are a codification

of known properties of these cells.

This conservative approach to the dissertation was deliberate, and is in
harmony with a well-known computer-science dictum: Do not let your research
project depend on another research project. Through the projects described
in this dissertation, my co-workers and I wanted to answer the question: Is
analog VLSI technology an appropriate medium for auditory modeling? This
dissertation answers this question affirmitively; if we had attempted, and failed,
to invent new models of auditory function, we would have left our primary
question unanswered. There is another question for the future, which this
chapter explores: What are the interesting, yet tractable, auditory questions to
ask using analog VLSI technology? We devote each section of the chapter to a

different topic.

6.1 The Cochlea: Frequency-Specific Automatic Gain Control

As detailed in Chapter 2, the cochlea contains outer hair cells, which are
active electromechanical elements. Outer hair cells reduce the damping of
the passive basilar membrane, and allow weaker signals to be heard. Axons

from higher brain centers innervate the outer hair cells; these centers might



120

dynamically vary the local damping of the cochlea, providing frequency-specific

automatic gain control (Kim, 1984).

The circuit model of auditory-nerve response, described in Chapter 2,
includes outer-hair-cell function, but does not model dynamic variation of outer-
hair-cell motility by higher brain centers. Adding a frequency-specific automatic-
gain-control system to the silicon model of auditory-nerve response is a tractable
project in analog VLSI technology. The control system should independently
vary the damping of local regions of basilar-membrane circuitry, in response
to sound input. The control circuit must maintain the stability of the basilar-
membrane circuit; although human ears are occasionally oscillatory (ringing
ears), chronic oscillations are classified as a symptom (tinnitus) of auditory

diseases.

6.2 The Barn Owl: Learning Elevational Space

As described in Chapter 4, the barn owl uses interaural time differences
to encode azimuthal position in auditory space, and interaural intensity
differences to encode elevational position. The interaural intensity difference that
corresponds to a particular spatial position is frequency dependent; computing
a spatial map from interaural intensity difference requires knowledge about the

spectral characteristics of the head of the animal.

A silicon model of elevation coding in the barn owl would require several
levels of processing. A possible model would begin with two circuit models
of auditory-nerve response (Chapter 2), followed by processing to enhance
the intensity information in the auditory-nerve response; this enhancement
processing would model the function of the nucleus angularis (Sullivan and
Konishi, 1984). Binaural information would converge onto neurons that compute

interaural intensity differences in different frequency regions, modeling neuronal
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responses in the nucleus ventralis lemnisci lateralis pons posterior (VLVp)
(Manley et al., 1988). To complete the computation, a learning network would
correlate patterns of interaural intensity difference at different frequencies, to
form a representation of elevation space. The output of this network would
model the elevational response of the computed map of auditory space in the

ICx, shown in Figure 4.1 in Chapter 4.
6.3 The Mustache Bat: Active Sonar Processing

The mustache bat, Pteronotus parnellt rubiginosus, uses active sonar for
capturing flying insects, and for short-term navigation. The bat emits ultrasonic
signals, and processes the resulting echos, to sense the environment. Suga and
co-workers (Suga, 1984) have characterized a variety of neural maps in the bat

auditory cortex, which systematically process different aspects of the sonar

signal.

Analog VLSI technology is an appropriate tool for modeling these maps. The
bat processes sound frequencies in excess of 100 kHz; analog VLSI circuits can
process sounds at these frequencies. The peripheral auditory system of the bat
is specialized for sonar processing; these specializations could be incorporated
into the silicon model of auditory-nerve response (Chapter 2). Time-correlation
techniques used in the pitch-perception (Chapter 5) and auditory-localization
(Chapter 4) chips, in modified form, could form the basis for silicon models of

certain maps in the bat auditory cortex.
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6.4 Bats and Owls: Sensorimotor Feedback

When localizing a sound, the barn owl aligns its head to the source of the
sound in a stereotyped manner (Knudsen and Konishi, 1979). Designing an
electromechanical model of the alignment motion of the owl, using a motor-
driven head with two microphones and the silicon model of auditory localization
(Chapter 4), is a tractable project. Similar electromechanical systems modeling
alignment to a visual stimuli have been built (DeWeerth and Mead, personal

communication).

A more challenging project involves electromechanical modeling of bat insect
capture. A flying moth-chaser, linking a sonar transceiver, a radio-controlled
airplane, and silicon models of neural maps in the bat auditory cortex, would be
a spectacular display of analog VLSI processing. Radio control would be used for
takeoff and landing; once in flight, the airplane would seek out a flying object of
a specified shape, size, and speed, and would follow the object at a safe distance.
This project clearly would not be a trivial undertaking, but it would be possible

to complete with our current technology.
6.5 Human Perception: Modeling Binaural Phenomena

Human binaural perception includes phenomena other than auditory
localization of sounds. Binaural processing enhances our ability to detect signals
in noise: for example, binaural hearing aids the comprehension of speech against
a background of other speech (the cocktail-party effect). Several binaural
signal-detection theories have been advanced (Jeffress, 1972; Durlach, 1972).

Constructing analog VLSI models of these theories is a tractable project.

Binaural perception includes a wealth of interesting auditory illusions,

which raise interesting psychological and physiological questions about audition
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(Tobias, 1972; Deutsch, 1981). The systems described in Chapters 2, 4, and 5
are appropriate substrates for analog VLSI projects that explore these curious

binaural phenomena.

6.6 Speech Recognition: The Final Frontier

Analog VLSI systems have two different missions in the speech-recognition
community. The projects described in this dissertation offer real-time biological
models of early auditory processing, for integration into existing speech-
recognition architectures. In addition, analog VLSI technology is an appropriate
implementation medium for neurally inspired speech-recognition algorithms. The
projects described in this dissertation form a substrate for speech-oriented neural

maps in analog VLSI technology.

Such maps could represent interesting characteristics of the speech signal;
alternatively, these maps could represent the muscle movements necessary to
produce the input speech signal (Liberman and Mattingly, 1989). Using the
techniques of Chapter 4 and Chapter 5, these maps could process temporal as
well as spectral aspects of the speech signal, as encoded by the silicon auditory-
nerve model (Chapter 2). The pitch-perception chip (Chapter 5) computes the
fundamental frequency of a speech signal in real time; the chip could serve as
a component in a speech-recognition system that uses fundamental-frequency
knowledge to create robust neural maps of interesting characteristics of the

speech signal.



124

6.7 Conclusions

This chapter has presented interesting, tractable projects in auditory
modeling, using analog VLSI technology. The previous chapters detail completed
VLSI auditory models. Transforming project ideas into completed systems is a

rewarding experience; we invite interested researchers to verify this claim.

Building analog VLSI chips has never been easier. The MOS Implementation
Service (MOSIS), administered by the University of Southern California
Information Sciences Institute (USC ISI), offers the fabrication of prototype
VLSI chips to researchers in North America, for as little as $500 per project.
Computer-aided design tools for personal computers and workstations are
available at nominal costs from universities, and from innovative companies.

Practical texts exist for learning the craft of analog VLSI design (Mead, 1989).

To become a new branch of computational neuroscience, analog VLSI
modeling needs more participants, from both the engineering and the scientific
communities. The territory is vast, and largely unexplored. The rewards are

great for those who simply press forward.



125

References

Batteau, D. W. (1967). The role of the pinna in human localization. Proc. Roy.
Soc. (London B) 158: 158-180.

de Boer, E. (1956). Pitch of inharmonic signals. Nature (London) 178: 535-536.

Carr, C. E. and Konishi, M. (1988). Axonal delay lines for time measurement in

the owl’s brainstem. Proc. Natl. Acad. Sci. 85: 8311-8315.

Dallos, P. (1985). Response characteristics of mammalian cochlear hair cells. J.

Neuroscr. 5: 1591-1608.

Deutsch, D. (1981). The octave illusion and auditory perceptual integration. In
Tobias, J. V. (ed). Hearing Research and Theory, Vol. I. New York: Academic
Press, pp. 99-142.

Durlach, N. I. (1972). Binaural signal detection: Equalization and cancellation
theory. In Tobias, J. V. (ed). Foundations of Modern Auditory Theory, Vol. II.
New York: Academic Press, pp. 371-462.

Evans, E. F. (1982). Functional anatomy of the auditory system. In Barlow,
H. B. and Mollon, J. D. (eds), The Senses. Cambridge, England: Cambridge
University Press, p. 251.

Fourcin, A.J. (1965). The pitch of noise with periodic spectral peaks. In

Proceedings 5th International Congress on Acoustics, Leige, Vol. Ia, B 52.

Fujita I., and Konishi, M. (unpublished). The role of GABAergic inhibition in

coding of interaural time difference in the owl’s auditory system.



126

Geisler, C.D. and Greenberg, S. (1986). A two-stage nonlinear cochlear model

posseses automatic gain control. J. Acoust. Soc. Am. 80: 1359-1363.

Goblick, T.J., Jr., and Pfeiffer, R. R. (1969) Time domain measurements of

cochlear non-linearities using combination click stimuli. J. Acoust. Soc. Am. 46:

924-938.

Goldberg, J. M. and Brown, P. B. (1969). Response of binaural neurons to
dog superior olivary complex to dichotic tonal stimuli: Some physiological

mechanisms of sound localization. J. Neurophysiol. 32: 613-636.

Goldstein, J. L. (1973). An optimum processor theory for the central formation

of the pitch of complex tones. J. Acoust. Soc. Am. 54: 1496-1516.
Greenberg, S. (1988). The ear as a speech analyzer. J. Phonetics 16: 139-149.

Helmbholtz, H. L. F. (1895). Sensations of Tone. Ellis, A. J. (Trans.) New York:
Longmans Green, pp. 49-65.

Jeffress, L. A. (1948). A place theory of sound localization. J. Comp. Physiol.
Pyschol. 41: 35-39.

Jeffress, L. A. (1972). Binaural signal detection: Equalization and cancellation
theory. In Tobias, J. V. (ed). Foundations of Modern Auditory Theory, Vol. 1I.
New York: Academic Press, pp. 349-368.

Kiang, N. Y.-s, Watenabe, T., Thomas, E.C., and Clark, L.F. (1965). Discharge
Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT

Press.

Kiang, N. Y.-s (1980). Processing of speech by the auditory nervous system. J.
Acoust. Soc. Am. 68: 830-835.



127

Kim, D. O. (1984). Functional roles of the inner- and outer-haircell subsystems
in the cochlea and brainstem. In Berlin, C. I. (ed), Hearing Science. San Diego,

CA: College-Hill Press, pp. 241-262.

Knudsen, E. I. and Konishi, M. (1978). A neural map of auditory space in the
owl. Science 200: 795-797.

Knudsen, E. L., Blasdel, G. G., and Konishi, M. (1979). Sound localization by

the barn owl measured with the search coil technique. J. Comp. Physiol. 133:
1-11.

Knudsen, E. I. and Konishi, M. (1979). Mechanisms of sound localization in the

barn owl (Tyto alba). J. Comp. Physiol. 133: 13-21.

Knudsen, E. I. and Konishi, M. (1980). Monaural occlusion shifts receptive field

locations of auditory midbrain units in the owl. J. Neurophysiol 44: 687-695.

Konishi, M. (1986). Centrally synthesized maps of sensory space. TINS 4: 163—
168.

Lazzaro, J. P., Ryckebusch, S., Mahowald, M. A., and Mead, C. (1988). Winner-
take-all networks of O(n) complexity. In Tourestzky, D. (ed), Advances in

Neural Information Processing Systems 1. San Mateo, CA: Morgan Kaufmann

Publishers, pp. 703-711.

Lazzaro, J. P. and Mead, C. (1989a). Silicon models of auditory localization.

Neural Computation 1: 41-70.

Lazzaro, J. P. and Mead, C. (1989b). Circuit models of sensory transduction in
the cochlea. In Mead, C. and Ismail, M. (eds), Analog VLSI Implementations of
Neural Networks. Norwell, MA: Kluwer Academic Publishers, pp. 85-101.



128

Liberman, A. M. and Mattingly, I. G. (1989). A specialization for speech
perception. Science 243: 489-494.

Licklider, J. C. R. (1951). A duplex theory of pitch perception. Ezperientia 7:
128-134.

Licklider, J. C. R. (1954). “Periodicity pitch” and “place pitch.” J. Acoust. Soc.
Am. 26: 945 (A).

Licklider, J. C. R. (1959). Three auditory theories. In Koch, S. (ed), Pyschology:
A Study of a Science, Vol 1. New York: McGraw-Hill, pp. 94-144.

Lyon, R. F. (1984). Computational models of neural auditory processing. In
Proceedings, 1984 IEEE ICASSP, San Diego, CA (Mar. 1984).

Lyon, R. F. and Mead, C. (1988a). An analog electronic cochlea. IEEE Trans.
Acoust., Speech, Signal Processing 836: 1119-1134.

Lyon, R. F. and Mead, C. (1988b). Cochlear Hydrodynamics Demystified.
Caltech Computer Science Technical Report, Caltech-CS-TR-88-4, California
Institute of Technology, Pasadena, CA, February 1988.

Mahowald, M.A., and Delbruck, T.I. (1989). Cooperative stereo matching using
static and dynamic image features. In Mead, C. and Ismail, M. (eds), Analog
VLSI Implementations of Neural Networks. Norwell, MA: Kluwer Academic
Publishers, pp. 181-206.

Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley.

Manley, G. A., Koppl, C., and Konishi, M. (1988). A neural map of interaural

intensity difference in the brain stem of the barn owl. J. Neurosci. 8: 2665-2676.



129

Moiseff, A. and Konishi, M. (1981). Neuronal and behavioral sensitivity to

binaural time differences in the owl. J. Neurosci. 1: 40-48.

Moiseff, A. and Konishi, M. (1983). Binaural characteristics of units in the owl’s

brainstem auditory pathways: Precursors of restricted spatial fields. J. Neuroscr.

3: 2553-2562.

Rhode, W. S. (1971). Observations of the vibration of the basilar membrane

in squirrel monkeys using the Mossbauer technique. J. Acoust. Soc. Am. 49:

1218-1231.

Rhode, W. 8., Geisler, C.D., and Kennedy, D.T. (1978). Auditory nerve fiber

response to wide-band noise and tone combinations. J. Neurophysiol. 41: 692—

704.

Robles, L., Rhode, W. S., and Geisler, C.D. (1976) Transient response of basilar

membrane measured in squirrel monkeys using the Mossbauer effect. J. Acoust.

Soc. Am. 59: 926-939.

Rose, J.E., Hind, J.E., Anderson, D. J., and Brugge, J. F. (1971). Some effects of

stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J.

Neurophysiol. 34: 685-699.

Sachs, M. B. and Abbas, P. J. (1974) Rate versus level functions for auditory-

nerve fibers in cats: Tone-burst stimuli. J. Acoust. Soec. Am. 56: 1835-1847.

Schouten, J. F. (1940). The residue, a new component in subjective sound

analysis. Proc. Kon. Acad. Wetensch. (Neth.) 48: 356-365.

Suga, N. (1984). The extent to which biosonar information is represented in the
bat auditory cortex. In Edelman, G. M., Gall, W. E., and Cowan, W. M. (eds),

Dynamic Aspects of Neocortical Function. New York: Wiley, 1984.



130

Sullivan, W. E. and Konishi, M. (1984). Segregation of stimulus phase and

intensity coding in the cochlear nucleus of the barn owl. J. Neurosc:. 7: 1787

1799.

Takahashi, T. T. and Konishi, M. (1988a). Projections of the cochlear nuclei and

nucleus laminaris to the inferior colliculus of the barn owl. J. Compar. Neurol.

274: 190-211.

Takahashi, T. T. and Konishi, M. (1988b). Projections of the nucleus angularis
and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl.

J. Compar. Neurol. 274: 221-238.

Tobias, J. V. (1972). Curious binaural phenomena. In Tobias, J. V. (ed).

Foundations of Modern Auditory Theory, Vol. II. New York: Academic Press,
pp. 463-486.

Wagner, H., and Konishi, M. (unpublished).

Wightman, F. L. (1973). The pattern-transformation model of pitch. J. Acoust.
Soc. Am. 54: 407-416.

Yin, T. C. T and Kuwada, S. (1984). Neuronal mechanisms of binaural
interaction. In Edelman, G.M., Gall, W.E., and Cowan, W.M. (eds), Dynamic
Aspects of Neocortical Function. New York: Wiley, 1984.



