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Abstract

We analytically determine two of the mechanisms which cause chaotic dynam-
ics to appear in a model of the forced and damped Sine-Gordon equation. In
particular, we find orbits homoclinic to periodic orbits, and orbits homoclinic to
fixed points which satisfy conditions sufficient to guarantee the existence of nearby
chaotic invariant sets. One of these homoclinic orbits is a so-called Silnikov-type
loop. A proof the existence of a symmetric pair of such loops is our main result.
This proof consists of a modified Melnikov perturbation analysis, augmented by

some techniques from the field of geometric singular perturbation theory.
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CHAPTER 1

INTRODUCTION

1.1. Goal of This Thesis. The aim of this work is to analytically determine
the mechanisms which cause chaotic dynamics to appear in a model of the forced and
damped Sine-Gordon equation. In particular, we find orbits homoclinic to periodic
orbits, and orbits homoclinic to fixed points which satisfy conditions sufficient to
guarantee the existence of nearby chaotic invariant sets. One of these homoclinic
orbits is a so called Silnikov-type loop. A proof of its existence is our main result. We
had to modify the standard Melnikov perturbation analysis for this problem, and to
augment it with some techniques from the field of geometric singular perturbation
theory to create a new, powerful technique which we hope to use on many similar

problems.

The motivation for this work came through papers of Bishop, Ercolani, Forest,
McLaughlin, Overman, and others, on a particular type of chaos occurring in the
forced and damped Sine-Gordon equation and their attempts to model it by a
two degree of freedom system of ordinary differential equations. They performed
numerical experiments on both the Sine-Gordon equation and the model, and found
similar behavior in the two systems. (See Bishop, Forest, McLaughlin, and Overman
(1986], Bishop, Forest, McLaughlin [1988], Bishop, Flesch, Forest, McLaughlin, and

Overman [1989], and references therein.) In particular, using nonlinear numerical
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spectral analysis, they determined that most of the chaotic dynamics in the Sine-
Gordon equation take place on a low-dimensional submanifold, spanned by only a
few nonlinear modes. This suggested the creation of a model with only two linear
modes which we describe in this work.

To better understand the role of the model, we now briefly describe the numer-

ical experiment that indicated the existence of chaos in the Sine-Gordon equation.

All the numerical studies have been performed on the equation
Ut — Uzz +sinu = ef—auy + I coswt], (1.1).
with periodic boundary conditions
uz=—=,t)=u(z = ;,t)
for all ¢ and with even spatial symmetry
u(z,t) = u(—x,1t)

for all ¢. The authors chose a fixed small value of ea, and fixed w and L and in
addition assumed that w is close to, but less than, one; i.e., it i1s w = 1 — ew with
both € and @ being positive. The initial condition they chose was a single hump
Sine-Gordon “breather” solution, and they observed its evolution in space and time
as they increased the forcing eI

The complete bifurcation sequence is described, for instance, in Bishop, Flesch,

Forest, McLaughlin, and Overman [1989]. Here we only present its main point,
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which is that above a certain value of eI', chaotic jumping of the solution occurs
between two “breathers,” one peaked in the middle and the other one at the ends
of the interval [—-g—,-g’-], with the solution passing near a spatially flat state at
every jump. Comparing the situation with the unperturbed Sine-Gordon equation,
they found that the latter possesses linearly unstable spatially flat states connected
to themselves by homoclinic orbits: the two types of “breathers” with a spatial
hump structure which exhibit chaotic behavior in the perturbed problem. (See
Ercolani, Forest, McLaughlin [1989].) From this they inferred that a Melnikov-type
analysis should be appropriate in order to see how these unperturbed structures are
distorted under perturbation to give rise to chaos. As a preliminary step in their
analysis of the perturbed Sine-Gordon equation, they chose to develop a simple
model capturing as much of the unperturbed and perturbed structure of the Sine-

Gordon equation as possible.

1.2. The Model. We now derive the model following Bishop, Flesch, Forest,
McLaughlin, and Overman [1989], and then discuss its relationship with the Sine-
Gordon equation. As a preliminary step we recall that w in (1.1), is assumed to be
of the form w = 1 —e@. This permits us to derive a nonlinear Schroedinger envelope

equation for the quantity B(X,T) defined by

ue(x, 1) = 2Ve@[B(X, T)e™* + B*(X, T)e™ ! + O(e),

where u¢(z,t) is a solution of (1.1), with X = 2e&z,T = edt. The resulting



envelope equation 1s

—iBy + Bxx + (|BI*-1)B=iaB+T, (1.2)

with @ = 5% and [' = ——. Tt is defined on the X interval [—Lx, £2] where
Lx = V2eiL.

Note that (1.2) is still integrable when & and I' are zero, and that we have
eliminated the periodic dependence on t from the forcing. The whole approximation
is somewhat similar to a crude form of averaging, since steady solutions of (1.2)
correspond to periodic solutions of (1.1),, and periodic solutions of (1.2) correspond
to quasiperiodic solutions of (1.1). in case the period of the solution of (1.2) is
rationally incommensurable with w. Chaotic solutions are, of course, chaotic in
both equations.

Following the numerical experiments of Bishop, et.al., we are interested in small
& and T. Hence, we rename the variables @ and [ as ea and /26T respectively,
where € is assumed to be small. We also rename the variables X and T into z and
t, respectively.

In correspondence with what has been observed in the Sine-Gordon equation

we assume a two mode approximation

B(z,t) = \—}—ic(t) +b(t)coskz +- -+,

with £ = %’f After inserting into (1.2) and neglecting the higher Fourier modes

this approximation gives the following equations for the two complex amplitudes



c=cy +1icy and b= by +1by :
—ié + (3le? + 1B = 1)e + $(cb* + bc*)b = teac + i€l (1.3a).

—ib 4 (]e* + 2b)2 — (1 + k%))b + L(cb* + be*)c = ieabd. (1.3b).

The equations (1.3), are the model we will analyze. In Chapter 2 we establish the
following properties of the unperturbed equations, which are (1.3), with ¢ = 0 and
are refered to by (1.3)o:

(1) The equations (1.3)y constitute a completely integrable Hamiltonian system,
i.e., the equations possess two independent constants of motion whose mutual
Poisson bracket is zero;

(2) The phase space of (1.3)y possesses a circle of fixed points ¢ = V2t | b =0,
with 0 < v < 27, which is connected to itself by two symmetric two-dimensional
surfaces of heteroclinic orbits. These orbits connect pairs of fixed points on the

circle.

The circle of fixed points and its heteroclinic orbits correspond to the flat state
and the “breathers” in the Sine-Gordon equation, respectively. Of course, there
are serious differences in the phase spaces of these equations. (See Bishop, Flesch,
Forest, McLaughlin, and Overman [1989].) But the above analogies in the geometry
of the homoclinic structures are sufficient to prompt research on the model. In fact,
we are convinced that the methods we have developed for the perturbed model

will, because of these common geometric features, need to be only slightly modified
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in order to yield a similar result for the nonlinear Schroedinger equation (1.2).
The modifications will consist mostly of extending finite-dimensional results about
invariant manifolds and stable fibers (see Chapters 3 and 4) to the case of infinite
dimensions and of taking care of the neutral modes.

1.3. Mechanisms for Chaos in the Model. The results we have found
indicate two different mechanisms for chaos in the model. The first mechanism is
orbits homoclinic to certain nonresonant periodic orbits in the case when a = 0.
Similar results have been independently found by Ercolani, McLaughlin, and Forest
(1989] who used a different Melnikov-type method from the one we use to obtain
the same conclusion.

The second mechanism, which is the main result of this work, is the Silnikov
orbit connecting a fixed point to itself. This fixed point is one of the two survivors
from the above mentioned circle of fixed points, which under perturbation develops
into a resonance band. We show that the Silnikov orbit does not exist in the phase
space of the equations (1.3), as they stand. The orbit does, however, exist in the

phase space of the modified system

—ic+ (zlel* + 36> = 1)c + 2(cb™ + bc™)b = teac + 1T (1.4a),

—ib+ (Se|? + 2[b]* — (1 + k%))b+ L(cb* + bc*)c = ie(1 + A)ab (1.4b),

with any positive A. The source of this modification can be traced back to the

Nonlinear Schroedinger and Sine-Gordon equations, which have to be altered so
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that they include viscous damping. In their modified versions they are
Upg — Uzg +SIDU = €[—auy — Augy, + [ coswi] (1.5)

and

—iBr+ Bxx + (|B|* = 1)B =iaB + iABxx + 1. (1.6)

The relationship between the parameters A, A and A is given by the equations
A=-eAand el = \—lfi The effect of the added terms is that damping is stronger for
higher modes than for the lower ones. We see immediately that our nonexistence
result was to be expected, since the original partial differential equations and the
model were the borderline case between viscous damping and viscous forcing, the
latter being unphysical.

As we have mentioned above, the Silnikov loop in our modified model is homo-
clinic to a fixed point inside a resonance band, which is the leftover of the circle of
fixed point after the perturbation has been applied. Methods for dealing with this
delicate resonant structure are a combination of the Melnikov technique and geo-
metric singular perturbation theory, which do not appear to have been used in this
conjunction before. We hope to use these methods on other problems, founding our
hopes on the fact that resonance phenomena are a common occurrence in systems
with many degrees of freedom. A peculiarity of our method is that it is used to
describe orbits homoclinic to a structure which is born out of the perturbation, yet

we maximally use the unperturbed solutions as well.



-8-
At present, we speculate that the same method can be modified and used for
certain partial differential equations such as the previously-mentioned nonlinear
Schroedinger equation (1.2). In any case, we believe that the investigation of orbits

homoclinic to resonance bands promises many new and interesting results.



-9-

CHAPTER 2

PHASE SPACE OF THE UNPERTURBED
SYSTEM

2.1. Preliminaries. The goal of this section is to completely describe the
geometry of the phase space of the unperturbed system. In the course of this
description, we will identify the invariant sets possessing orbits homoclinic to them-
selves since these are the mechanisms most likely to cause chaos when the system 1s
perturbed. We present explicit solutions for these homoclinic orbits in this chapter
because they will be used as the starting point in the perturbation analysis we will
develop in Chapters 3 and 4.

The unperturbed equations are obtained from the equations (1.3), for the two

complex amplitudes ¢ and b by setting ¢ = 0. They are

—ic+ (Flcl® + 2[bP —1)c+ 2 (cb* +bc*)b=0 (2.1a)
~ib+ (3el* + 3182 — (1 + k2)) b+ L (cb* +c*b)e = 0. (2.10)
This system possesses two constants of motion, the Hamiltonian

H = %Ic]‘* + -é—)blr"}clz + %|b|4 — % (1 + kz) 5] — —é—]c|2 + % (l)2c*2 + b*2c2) (2.2a)

and

= 3(le* + 1bP). (2.20)
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The system (2.1) can be written in the Hamiltonian form

. (8H ‘8H>
c==——-1—

3c2 0c1
- (9H _ ?fi)
9by ' Oby )

where we define ¢ = ¢; + 1¢cy and b = b; + 1b,.
Before analyzing equations (2.1) in detail, we identify the three important
symimetries they possess. By inspection, it is easy to see that (2.1) is invariant

under the transformations

(¢,b) = (—c,b), (2.3a)

(¢,b) = (¢, —b), (2.3b)
and

(¢,b) — (¢, b)e'X (2.3¢)

where x i1s any real number. The first two symmetries imply that the planes II, =
{(b,c)|b=0} and II, = {(b,¢) | c = 0} are both invariant under the flow generated
by (2.1). The third symmetry is responsible for the constant of motion I which
foliates the planes II. and II, into circular periodic orbits with constant frequencies.
We will give a detailed derivation of these facts and describe two more invariant
surfaces, also foliated by circular periodic orbits, below. First, however, we rewrite

equations (2.1) in a simpler form.

2.2. The Symplectic Reduction. The analysis of equation (2.1) is greatly

facilitated by finding a coordinate system in which the form (2.1) assumes will be
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as simple as possible. The fact that we are dealing with a Hamiltonian system
with an additional constant of motion plays a significant role in the search for the
appropriate coordinate system since there exists a standard way to simplify such
systems. The standard procedure consists of making a symplectic coordinate change
such that the extra constant and its conjugate variable, which we call the conjugate
angle, are among the new coordinates. This symplectic coordinate change effectively
decouples these two new variables from the rest: The angle is not present in any of
the equations, because, as a variable canonically conjugate to a conserved quantity,
it does not enter the Hamiltonian; and, in addition, the constant of motion acts as a
parameter in the system for the remaining variables. Theoretically, this symplectic
coordinate change can always be made when the system possesses a second constant
of motion. This fact is proved, for instance, in Olver [1986]. In practice, however,
no recipe exists to find the conjugate angle and a suitable change of the other
coordinates. Thus one rmust, in general, resort to trial and error in order to find the

appropriate transformation.

For our system, we will follow Zufiria [1988] and take the argument of one of
the two complex variables in (2.1) as the angle conjugate to the constant I. We
have two choices for the form of the transformation, and we will have to use both

in order to avoid singularities.

For most of this work we will use the coordinate system obtained by taking

the argument of the complex variable ¢ to be the angle conjugate to the constant
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I. Hence, our first transformation is:
c = |cle'” (2.4a)

b= (z +1y)e'. (2.4b)

We then take I,~,z and y as the new variables. The proof that this transformation
is canonical is tedious, and we relegate it to Appendix B. The Hamiltonian in these

variables is

H=34I" -1 - Fa* - 32y + Fy' + (I - 3k%)2? — k%%, (2.5)

16

Equations (2.1) transform to

&= —kPy — 22ty + 14 (2.6a)
y=(k*=-2I)z+ -l-zg’ + %xy2 (2.6b)
I=0 (2.6¢)
y=1-1-2z". (2.6d)

From (2.2b) we see that (2.6) is only valid in the interior of the paraboloid z% +
y? < 2I. The boundary of this paraboloid corresponds to the plane II;. The
transformation is singular there.

We now analyze the structure of system (2.6) in detail. The angle v is indeed
completely decoupled from the rest of the equations. We can treat (2.6a) and (2.6b)

as a one-parameter family of planar Hamiltonian systems for the variables z and
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y since I does not change in time. We will call this system the reduced system.
The common way of depicting the dynamics of the equations (2.6) is to sketch
the phase portraits of the reduced system on various levels of I and suppress the
angle (see Figure 2.1). In such a representation, fixed points of the reduced system
correspond to periodic orbits if the frequency is non zero, or closed curves of fixed
points if the frequency is zero in the full equations. Periodic orbits correspond to
invariant tori, and separatrices connecting fixed points to themselves to families
of orbits homoclinic to periodic orbits or heteroclinic connections between pairs of
points on a curve of equilibria. We can also use this geometric approach to explicitly
compute the orbits of (2.6). We first calculate z and y as functions of time from
the reduced system, then insert them in the equation (2.6d) and integrate (2.6d) to

compute the angle v. This will be carried out in Section 2.4.

The above discussion focused on (2.6) when [ is fixed at a particular value.
But indeed. I is more than just a parameter for (2.6), it is one of its variables. We
may expect (and we will see shortly that this is the case) that the fixed points of the
reduced system vary smoothly with I and that, therefore, in the z-y-I coordinates,
the equations (2.6a), (2.6b) and (2.6¢) possess smooth curves of equilibria with their

z and y coordinates being expressed as smooth functions of I.

When we add the angle v, these curves become two-dimensional surfaces, fo-
liated by periodic orbits and occasional closed curves of fixed points, in the full

four-dimensional space. In the same spirit, we may expect to see smooth one-
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parameter families of orbits homoclinic to the fixed points lying on (possibly parts
of) the smooth curves in the z-y-I space that we have just discussed. In the z-y-I
coordinates, these families of homoclinic orbits will form two-dimensional homo-
clinic surfaces. In the full four-dimensional system (2.6) we will thus have to deal
with three-dimensional manifolds, homoclinic to two-dimensional invariant surfaces.
These two-dimensional invariant surfaces, together with their homoclinic manifolds
which, obviously, are also invariant, are the backbone of the structure of our phase
space (See Figure 2.2). What makes these structures especially interesting is that
they are robust in their ability to persist under perturbation. In Section 3.3, we
will discuss the exact nature and the extent of their persistence.

In order to at least locally avoid the singularity on I, we now make the second

possible transformation by first writing
b= |ble? (2.7a)

c=(u+iv)e?, (2.7b)

and then taking I, 3,u and v as the new variables. The Hamiltonian, rewritten in

these variables, is

H =30+ (1R = gt = gl oot + 3 (K 4 3D + 5 (R — 3 1), (28)

and the equations (2.1) transform to

i=(k*=1I)v—3u?v + 1od (2.9a)
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o= — (K +3I)u+ Tu® + 3u? (2.9b)
[=0 (2.9¢)
B=14k%=3I-3u% 4102, (2.9d)

From (2.2b) it should be clear that the domain of this system is the interior of the
paraboloid u? + v? < 2I and II, is described by u = v = 0. The transformation is
of course again singular at the boundary which is now mapped onto II.. Note that
the axis of the paraboloid in the u-v coordinates corresponds to the boundary of
the paraboloid in the z-y coordinates and vice versa. This completes our discussion

of the reduced system.

2.3. Fixed Points of the Reduced Systems and Their Meaning in
the Original Variables. The simplest structure to be analyzed in any dynamical
system are its fixed points. On the other hand, knowledge of their position and
stability type provides a great deal of insight into the geometric structure of the
phase space. This is particularly true for planar Hamiltonian systems such as (2.6a),
(2.6b) and (2.9a), (2.9b), since in this case the knowledge of the fixed points, their
stability, and the separatrices that emerge from the unstable fixed points, completely
determine the phase portraits. Besides that, for us, the fixed points of the reduced
system are even more important since, due to a clever choice of coordinates, they
represent either periodic orbits or circles of fixed points for the full equations (2.6)

and (2.9). We will therefore devote the first part of this section to the analysis of
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the fixed points of the reduced systems, and the second part to their interpretation
in the full phase space.

We begin by listing the fixed points of (2.6a), (2.6b) and their stability types
(see Figure 2.1). Throughout this discussion we will use (2.6a) and (2.6b) whenever
possible; we will only use (2.9a) and (2.9b) to describe II, since the transformation
leading to (2.6) is singular there. We also write down the eigenvalues of the lin-
earizations of (2.6a), (2.6b) around these fixed points which reveal their stability.

We find:

(a) The origin with the eigenvalues +kv/2I — k? is a center for I < k*/2 and a

saddle for I > k?/2.

(b) The points z = 0, y = %2k, with the eigenvalues +2ikv/I — 2k? are centers for

I > 2k?* and hit the boundary of the paraboloid at I = 2k2.

(c) The points z = £24/%(2] — k?), y = 0, with the eigenvalues

+2i1/1 (21 — k2)(2k2 + 31)
7

are centers for I > k?/2 and merge with the origin in a pitchfork bifurcation

at I = k?%/2.

The boundary of the paraboloid contains up to four of what seem to be fixed
points. Since the change of variables leading to (2.6) is singular there, these points
are only fictitious and do not have a clear meaning, and therefore they can not be

analyzed in the z-y coordinates. The correct thing to do is to look at
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(d) The origin in the u-v coordinates with the eigenvalues :i:\/(-;-f —k?) (k* + 21).

It is a center for I < 2k? and a saddle for I > 2k2.

Making use of the Hamiltonian (2.5), we arrive at the phase portraits presented
in Figure 2.1. The phase portraits in the u-v coordinates look similar and can be

obtained by interchanging the role of the boundary and the centers of the circles.

The sequence of bifurcations of the reduced system (2.6) is as follows. For
I < k?/2 the origin, ¢ = y = 0, is a center. At I = k*/2 the fixed points (c)
bifurcate off from it in a pitchfork bifurcation. The point £ = y = 0 then becomes
a saddle, connected to itself by a pair of homoclinic orbits described implicitly by

the equation

H(z,y,I)— H(0,0,1) = 0. (2.10)

The reason that (2.10) is valid on the separatrices is that, by continuity, the value
of the Hamiltonian on a homoclinic orbit must be the same as its value at the fixed
point to which the orbit is homoclinic. At I = 2k? the fixed points (b) enter the disc
z? + y? < 2I, and heteroclinic orbits appear which connect pairs of the fictitious

fixed points on the circle 22 + y? = 2I. These orbits enclose the fixed points (b).

Because of the singularity of the z-y-I coordinates at z? +y% = 21, we have to
look at this last bifurcation in the u-v-I coordinates. In that coordinate system the
bifurcation at I = 2k? corresponds to a pitchfork bifurcation of the point u = v = 0,

producing the fixed points (b) and a pair of homoclinic orbits connecting u = v = 0
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to itself. In mixed coordinates these homoclinic orbits are described by the equation
H(z,y,I) - H(u=0,v=0,I)=0 (2.11)

with H(z,y,I) given by formula (2.5) and H(u,v,I) by formula (2.8).

At I = 4k?, a global bifurcation occurs in which the orbits homoclinic to
¢ = y = 0 and those homoclinic to u = v = 0 pass through each other giving rise
to four heteroclinic connections. For I > 4k? the phase portraits look the same as
those just before the global bifurcation rotated through an angle of ninety degrees.
The separatrices are described by the same implicit equations as before.

Let us now interpret these fixed points of the reduced system in the (¢, b) phase

space.

(a) We know already that the line z = y = 0 corresponds to the plane II.. Inserting
these values in (2.6d) and integrating (2.6d) gives the time evolution of the angle
~tobe v = (1—1I)t+~y. From (2.4) and (2.2b) we then find that II, is foliated

by circular periodic orbits ¢ = v/2Ie'?. A circle of fixed points occurs at [ = 1.

(b) The points z = 0, y = +2k, correspond to the circles ¢ = ++/2(I — 2k?)e™?,
b = 2ike*, where v = (1 —I)t+~,. For I = 1 we get two circles of fixed points,

one for each sign of c.

(¢c) The points z = £24/%(2I — k?), y = 0 correspond to the circles

c=4/2(3I+2k2)e,  b=24/1(2] —k2)e",
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where v = [1 + 2(4k* + 15])]t + vo. The two circles of fixed points are given

by I = -(4k* +7).

(d) Finally the line u = v = 0 corresponds to the plane II; foliated by the periodic
orbits ¢ = 0, b = V2Ie*?, where 3 = (1+ k* — 2I)t + (. Again,we find a circle

of fixed points, this time at [ = 2(1 + £?).

Note that not all the circles of fixed points need to exist for all values of k¥ and
that there are at most six of them in the entire space. For convenience, we now list

their position, stability, and the intervals of k¥ in which they exist.

(a) The circle in II, has coordinates ¢ = v2e!7, b = 0. The eigenvalues of the
reduced system at this circle are +kv2 — k2. It exists for all £ and it is stable

for £ > +/2 and unstable for k£ < /2.

(b) Two circles ¢ = +/2(1 — 2k? eV, b = 2ike’” with the eigenvalues equal to

+2ik\/1 — 2kZ exist for k < 1/v/2 and are stable.

(c) Two circles ¢ = £/2(2k2 +1)e*?, b = 2,/5:(2 k2)e'” have the eigenvalues

:f:%z\/?(? — k2)(2k? + 1). They exist for k¥ < v/2 and are stable.

(d) The circle in I lies at ¢ = 0, b = 24/3(1 + k?)e'” with the eigenvalues
+4/3(1 — 4k*) exists for all k and is stable for k > 1/v/2 and unstable for
k< 1/V2.

We now take a more global view of the structures we described above. The

periodic orbits we have discovered form invariant two-dimensional surfaces, II., II;
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and two more. In the z-y-I coordinates, when we suppress the angle ~, these
surfaces appear as curves of fixed points as shown on Figure 2.1. We see that the
annuli k2/2 < I < 4k* and I > 4k? in II. and 2k% < I < 4k? and I > 4k? in I, are
connected to themselves by three-dimensional homoclinic manifolds. (At I = 4k*
these manifolds pass through each other in a global bifurcation.) In the z-y-I
coordinates, the homoclinic manifolds are represented as two-dimensional surfaces;
the projection of the manifold homoclinic to the annulus -"2—2 < I < 4k? is presented

on Figure 2.2.

The homoclinic manifolds are foliated into surfaces of constant I. In the z-
y-I projection, these are just the individual separatrices forming the homoclinic
surface. In the full four-dimensional phase space, though, they assume the form of
“pinched” two-tori. In a rather unusual coordinate system, one of them is shown on
Figure 2.3. The middle line, along which such a torus is pinched, is either a periodic
orbit or a circle of fixed points, depending on the frequency. The rest of the torus
consists of two symmetric two-dimensional surfaces. If the middle line is a periodic
orbit, the two surfaces are further foliated by orbits homoclinic to it. If the middle
line is a circle of fixed points, the surfaces are foliated by either heteroclinic orbits
connecting pairs of fixed points on the circle, or else orbits homoclinic to the points
on the circle. Which one of these two situations occurs depends, as we will see, on

the value of the parameter k£, and will play a great role in the perturbed system.

It is also interesting to note that, since the Hamiltonian is independent of the



-21-
decoupled angle, the manifolds homoclinic to annuli in II, are still described by
the equation (2.10) and those homoclinic to annuli in II, by the equation (2.11).
This representation is important, since it enables us to calculate tangent spaces and

normals to the homoclinic manifolds.

2.4. Explicit Solutions of the Homoclinic Orbits. Due to the fact that
the homoclinic connections are the primary candidates for being the sources of
chaos, we now calculate closed form solutions for them. We obtain manageable
expressions by further transforming the systems (2.6) and (2.9) to symplectic polar
coordinates.

To transform (2.6) write

z +1iy = V2Be'? (2.12)

and use B and 6 as new variables. The Hamiltonian is transformed to

H=4iI’-I-3B*+(I-%*)B+ B(I - B)cos2§, (2.13)

and the equations are now

B = —-2B(I — B)sin 20 (2.14a)

8 = k% — I(1 + cos 28) + B(2 + 2 cos 26) (2.14b)



¥=1—-1~- B(1+cos28).

The analogous transformation of (2.9) is achieved by first writing
u+ v = V2Ce'®

and then using C and ¢ as new variables. The resulting Hamiltonian is

H=3r -1+ -3C*+ (31 +k*)C + C(I - C)cos 24,
and the equations are

C =-2C(I - C)sin2¢

6= —k%— I(3 + cos2¢) + C(2 + 2cos 29)

B=1+k2—%I—C(%+c052¢).

(2.14c)

(2.14d)

(2.15)

(2.16)

(2.17a)

(2.175)

(2.17¢)

(2.17d)
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The variables in the systems (2.14) and (2.17) have more in common than we would

expect at first glance. The relations

B+C=1I (2.18)

and

=—-0=03—v (2.19)

which we compute from (2.4), (2.7), (2.12), and (2.15) show that the transformation
between the systems is a simple one. We also note that we can calculate 3 instead
of 4 in (2.14d) or v instead of # in (2.17d) and use (2.19) to recover the other angle.

Let us first calculate the solutions on the orbits homoclinic to II.. By continuity,
the value of the Hamiltonian (2.13) on the homoclinic orbits will be $I? — I, the
same as at the origin B = 0. Inserting this in (2.13) and cancelling a common
factor B we find the following connection between B and the angle 6 to hold on the

heteroclinic orbits:

4k -1

B=] - —m8M— .
d 3+4cos28

(2.20)

We now want to find the differential equations for the two remaining angles which

will give us the final answer. Inserting (2.20) into (2.14b) we get the equation

= I(1 + cos20) — k? (2.21)
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and since it is more convenient to calculate the angle 3 instead of v we use (2.17d),

(2.18) and (2.20) to find

B=1-1-1B. (2.22)

We first integrate the equation (2.21), then express B from (2.20), and finally inte-
grate (2.22), to get the desired solution. As mentioned before, we can then calculate
v from (2.19), and we can also transform the solution back to I, v, z, and y coor-
dinates using (2.12).

Both families of homoclinic orbits, the one for I > 4k? and that for I < 4k?,
can be obtained from the above equations (2.20), (2.21), and (2.22) since in our
derivation we never needed to specify the value of k. Also, since our equations are
autonomous, all the solutions on a given homoclinic orbit can be obtained from a
single one by time translation t — ¢ — to, where ¢, is a suitable constant. This gives
us great freedom at finding the solutions; in particular, we can choose especially
simple initial conditions to calculate one of the solutions and then obtain the other
solutions on the same homoclinic orbit by time translation. The suitable initial
conditions, which give rise to solutions whose B and 6 components are symmetric
with respect to time reversal, are easily spotted on Figure 2.1. For brevity, we only
display these particular solutions, but note again that any other solution on the
same homoclinic orbit can be obtained by simply writing ¢ — ¢y instead of ¢ in all

our formulas.



_95-
Consider first the case I > 4k%. We use the initial conditions (t =0) = -2’5,

B(t = 0) = Bp to compute

5 4k? (2 — k?) (2.234)
= 404
(I — 4k?) cosh (2kv2I — k%t) + I + 3k2
k
— — k2
cot 8 =~ tanh (kv21 = ¥2t) (2.23b)

I AT
p = tenh { 21 — k2

tanh (k 21 — k2t> +(1=Dt+F. (2.23)

When I < 4k?, we take the initial conditions §(t = 0) = 0, 3(t = 0) = By and

find
. 42 (21 - #2) 2240
= (4k2 — ) cosh (2k/31 — k2t) 1 I + 32 e
V2T — k2
tan § = ———I—k——k— tanh (k 21 — k2t> (2.24b)
1 L] T
§ =~ tanh 1 { —— tanh (k 9 — kzt)} +(1=Dt+b. (2.24c)

Now let us look at the orbits homoclinic to II;. The points with the same value

of the Hamiltonian (2.16) as the origin are given by
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C=]— ——m. .
3+ 4cos2¢ (2.25)
Inserting in (2.17b) we compute
¢ =k? + I(1 + cos 2¢). (2.26)
Finally, using (2.14d), (2.18) and (2.25) gives
Y=1+k-3I+1C. (2.27)

For I > 4k? we pick the initial conditions ¢(t = 0) = 0, ¥(t = 0) = 7o. Together

with the above equations this gives

(I - 2k2) (31 + 2k2)

2
C = (2.28a)
2 (I — 4k?) cosh (\/(1 3k (31 + 2k2)t) + 51 — 6k2
31 + 2k2
tan g = /= tanh (% VI —2k2) (31 + 2k2)t) (2.28b)
1 | ] sr+oke
= ——tanh™! |/ 1./(T=2k2 2
1= [ 7(1_2k2)tanh<2\/(l 2k2) (31 + 2k )t)}
+((1+k) -2 t+ 7. (2.28¢)

Finally, for I < 4k? we get, using the initial conditions ¢(t = 0) = X, y(t =

0) = vo, the following expressions



Co 2 (I —2k?) (3 + 2k?)
2 (4k2 — I)cosh (\/(I —2k7) (31 1 22 )t) + 51 — 6k?

(2.29a)

cot ¢ = 1/ 2=2% tanh (3T =287) (3T + 287t (2.29b)
31 + 2k? 2 '

1 [T =2k
7:-—\/——,__7_tanh 1[ —?%-:_-Bzz—ltanh (%\/(I—2k2)(3I+2k2)t)}

+((1+&) = 2Dt +7. (2.29¢)

The motion on the heteroclinic connections at I = 4k? is described by

I
= 2
¢ 1+ ex ¥ I(t—to) (2.30a)
cos2¢ = —32, (2.300)
T (4~
8= o+ (1= 20) (t—to) F g log [1 + 751600
= Bo+ (1 = I)(t —to) F 525 log [1 n eiagfm_to)] _ (2.300)

For I = % and I = 1 we get heteroclinic connections of fixed points to periodic
orbits. We again point out that it is easy to transform these expressions to B, 6,

and v using (2.18) and (2.19) and also to all other variables, which we will not do.
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2.5. Nature of the Orbits Homoclinic to the Circles of Fixed Points.
In this section we present a detailed analysis of the orbits homoclinic to the circles
of fixed points. More precisely, we calculate the distance in angle between the initial
and the end point on such an orbit from the formulas given in section 2.4. We will
only consider the orbits homoclinic to the circle (a) in II.. The orbits homoclinic to
the circle (d) in II can be treated in the same way and have the same properties.
However, since we will not use them, we do not present their analysis.

We look at the orbits (2.23) for k < 1 and (2.24) for k > 3 separately, beginning
with (2.23). We parametrize the circle (a) by the angle v via the equation ¢ = V2™,
The quantity we want to find is the difference Ay = y(o0) — y(—o0) between the
two fixed points on the circle, connected by an orbit of the type (2.23). We calculate

A~ from (2.23) and (2.19) with the aid of Figure 2.1. The equation (2.23c) first

gives
2
B(—o0) = —\}—7— tanh ™ < 217f kz) + Bo - (2.31a)
and
k2
B(oo) = —-71_5 tanh~! ( 21_7_ k2) 1 4. (2.31b)

From the equation (2.23b) and Figure 2.1. we get

§(—~c0) =7 —cot™? (\/——21——_’“____16—2-) (2.31¢)
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and

8(c0) = cot ™! <72‘7k=_'“‘;5> (2.31d)

We use the equation (2.19) to first calculate fy = vy + § at t = 0 ad then combine

(2.19) and (2.31) to get

1

(=00) = 70 = & 4ot~ [t ) + L tanht () —
7(—00)—70—2+cot <m>+ﬁtanh ( 2[—k2> (2.32a)

and

_ T k 1 -1 Tk?
7(o0) =70 + > cot <————-m> ﬁtanh < STz ) (2.32b)

The difference A~y is then equal to

_ S (Y D2 (2
Ay =m—2cot (m) \/:{.ta.nh (ﬂ) (2.33)

When k varies between 0 and %, this difference decreases monotonically from 0 to
—o0o. Hence there are infinitely many cases when Ay = 2n7 and the orbits are
homoclinic. From the analysis it is also evident that the values of k for which the
orbits become homoclinic possess a limit point at k = % The phase portrait shows,
though, that at that point the orbits become heteroclinic, connecting fixed points

to periodic circles.
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On the orbits (2.24) we compute

B(—o0) = —\}?ta.nh'l ( 2I7;2k2> + Bo (2.34a)
B(o0) = —\—;_7 tanh ™ ( 217;2}“2) + fo (2.34b)
f(~o0) = —tan™! (@) (2.34¢)
§(c0) = tan™! (@) : (2.34d)

The initial condition 8o = 7o then gives
v(—00) = 7o + tan™" (@) —% anh ™! (?) , (2.35a)
v(o0) = 7o — tan™} (@) — % tanh ™ (%) , (2.35b)

and

Ay = —2tan™! (Vé_k:ﬁ) - —% tanh ™! (%) : (2.36)

For k between i and /2 this function increases monotonically from —oo to 0.

2
Hence we get again infinitely many values of ¥ with homoclinic orbits accumulating

-1
onk—Q.
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We have thus proven that, except for isolated values of k, the orbits connecting
points on the circle of equilibria are heteroclinic. The difference in the angle +
between their forward and backward limit points increases monotonically for &
between £ = 0 and k = % until it becomes infinite at k = % In between, there
are infinitely many values of k for which a homoclinic orbit exists. At the n-th
such value of k, the homoclinic orbit will wrap around the “Pinched” homoclinic
torus (similar to the one on Figure 2.3) n times before returning to the fixed point
it emerged from. The same situation, only in reverse order, occurs for k& between
k= % and k = /2. Besides being interesting in its own right, the precise knowledge

of these heteroclinic connections will play a major role in Chapter 4, where we give

criteria for the existence of a pair of Silnikov-type saddle connections.
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Figure 2.1. Paraboloid z? + y? = 2I with the fixed points of (2.6)and
the phase portraits on different levels of I:
(a) 0 < I < k%/2, (b) k¥/2< I < 2k?,
(c) 2k? < I < 4k?, (d) I = 4k?,

(e) I > 4k2.



-33-

\

CC Tttt

FH
-~
»

Figure 2.2. The homoclinic manifold for the annulus with ¥?/2 < I < 4k? in IL..

Figure 2.3. A “Pinched” torus of orbits homoclinic to a periodic orbit

at a fixed I value.
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CHAPTER 3

INVARIANT MANIFOLDS IN THE
PERTURBED SYSTEM

3.1. Introduction. In this and all the later sections of this work we will

investigate the perturbed equations
¢=—i(glc)* + 36> —1) c — % (cb* + bc*) b— eac — €I’ (3.1a)

b= —i (%lclz + %Ib;z - (1 + kz)) b— % (cb* +c"b)c—eab. (3.1b),

We will begin by showing that the plane II., which is invariant under the flow of
the unperturbed system, is also invariant under the flow of the perturbed system.
Then restricting ourselves to a compact annulus A in II., we will prove the existence
of three-dimensional manifolds, W?(A) and W}*(A), which are spanned by orbits,
and which are close to the unperturbed stable and unstable manifolds, W (A) and
Wg(A), of the annulus A. The role W(A) and W*(A) play in the perturbed
problem is similar to the role of W (A) and Wj*(.A) in the unperturbed problem.
However, their interpretation as stable and unstable manifolds requires careful ex-
planation since A is only locally invariant under the perturbed dynamics. Using
the Melnikov technique, we will investigate the conditions for W2*(.A) and W2(.A)
to intersect and some special features of such intersections, such as their dimension

and the fate of the orbits contained in them. Most of the subsequent work will be
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devoted to determining the conditions under which such orbits will be biasymptotic
to a fixed point or a periodic orbit in .A. In some cases, the existence of such orbits
will imply the existence of nearby chaotic invariant sets.

We will consider two different situations: the nondissipative case when « is zero
and only the forcing I' is nonzero, and the dissipative case when both parameters
a and I' are nonzero. The main difference between the two cases is that in the
nondissipative case, the system (3.1), is still Hamiltonian with the Hamiltonian

function

e = Seft + 1151l + b1t — 3 (1 + k%) [b)® — Slcl® + 1 (b%c*? + b*2ct) — €ley,
(3.2),
whereas it is not in the dissipative case. We remark that our discussion in the first

paragraph of this section applies to both of these cases.

In the nondissipative case the plane I, is still almost completely foliated by
periodic orbits which are close to the unperturbed ones, except for a resonance layer
around what used to be the circle of fixed points in the unperturbed system. This
is to be expected due to the Hamiltonian nature of the nondissipative case. We
will calculate these periodic orbits directly as the level sets of the restriction of the
Hamiltonian (3.2), to II.. However, it is interesting to note that we could prove
their existence in a purely geometric fashion as well. We only need to observe that,
away from the resonance layer, the three-dimensional level sets of the unperturbed

Hamiltonian intersect II. transversely along the unperturbed periodic orbits. Since
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transverse intersections persist under small perturbations, and since the periodic
orbits away from the resonance have nonzero frequencies in the unperturbed case,

they persist under perturbation.

As a simple consequence of our investigation of the intersections of W?(A) and
W*(.A) and some transversality considerations, we will be able to prove the existence
of transverse homoclinic orbits connecting periodic orbits in certain annuli A in II,

not containing the resonance, to themselves.

When the dissipation « is nonzero, we will show that no closed orbits remain
in II.. Hence the orbits, found in the nondissipative case, which are homoclinic to
periodic orbits outside the resonance have no counterpart in the dissipative case. All
the interesting dynamics 1n this case, therefore, have their origin in the resonance

band.

Due to its central importance, the resonance band will receive our special atten-
tion. It is born out of the circle of fixed points as a consequence of the perturbation.
In the nondissipative case, the resonance band contains two fixed points, one of them
connected to itself by two separatrices lying in II, and enclosing a family of peri-
odic orbits nested around the other fixed point (see Figure 3.2). In the dissipative
case, when « is not too large compared with I', the two fixed points persist, but
the periodic orbits and the separatrices vanish. All these structures are very dif-
ferent from those that existed in the unperturbed problem. Above the resonance

band off II,, the perturbed orbits in the intersections of WJ(A) and W}(A) for
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I near the resonant value I = 1 also differ drastically from the unperturbed ones
which are just the heteroclinic orbits connecting pairs of points along the circle of
fixed points. Therefore, standard Melnikov analysis is not a sufficient tool for the
investigation of the orbits homoclinic to the fixed points or the periodic orbits in
the resonance band. Standard Melnikov analysis can only be applied in the case
when in the unperturbed system we have an invariant set which persists for the
perturbed system, and is, in the absence of the perturbation, connected to itself
by a family of homoclinic orbits. The Melnikov function then provides a criterion
for the persistence of some of those homoclinic orbits. Our analysis must therefore
proceed in a manner different from the usual one. The technique we have developed

consists of two stages.

In the first stage we use ramifications of the results about the intersections of
the manifolds W2(A) and W*(.A) to make sure that a certain orbit is contained in
the intersection. In the second stage we use geometric singular perturbation theory
in the vicinity of the resonance to describe that particular orbit with the help of
orbits in II.. Loosely speaking, the perturbed orbit will be constructed from two
parts, one part being close to the unperturbed heteroclinic orbit and the other part
close to an orbit in II.. The two stages of our analysis correspond to the two parts
in this construction with the end result being the connection of these two parts into

one orbit of the perturbed system.

The main result we derive in the dissipative case is a proof of the existence
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of orbits homoclinic to one of the two fixed points inside the resonance using the
two stage technique that we have developed. The same kind of orbit appears to be
responsible for the chaos found in the numerical simulations (see Bishop, Flesch,
Forest, McLaughlin, and Overman [1989]) of the model. We note, however, that
the orbits whose existence we will prove are not necessarily the ones observed nu-
merically.

With slight modifications, we could obtain similar results for II; and orbits
homoclinic to nondissipative periodic orbits in it but not for the phenomena in the
resonance band which are the most interesting. Furthermore, since the dynamics
originating near II, are not relevant for modeling the nonlinear Schroedinger and
Sine-Gordon equations, we omit mentioning them in all further discussion.

Before concluding this section, we rewrite system (3.1). in the coordinates
which we will use for the remainder of our analysis, briefly comment on the class of
problems to which some aspects of our problem belong, and present a short outline
of the remainder of this chapter.

The coordinates we will use in all of our analysis are I, v, z, and y. The

perturbed equations (3.1), in these coordinates assume the form

& =—k’y + iy3 - %x2y+e

V2I —x? —y?

r / siny — azj} (3.3a).

i

siny + o
V2I— 22—y myTey
[=—¢ [I’\/ZI —z2 —y?cosy+ 2aI} (3.3¢)e

g= (k" -2l )z +1z® +3zy® —¢ [I‘ (3.3b)c
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y=1-1—-z*+¢l

sin -y . (3.3d)¢

1
V2I — 22 —y2

The Hamiltonian for the nondissipative case in the I, v, z, and y coordinates is

H, = %IZ —I—1—76:154‘—3331:1:21/2 +1—16y4+(l-—%k2)x2 ——%kzy2 —€el'\/2I — 2?2 — y?sin~y.
(3-4)e
Using the unperturbed Hamiltonian H = H.-¢ we can write (3.3), in the more

compact form

i =20 1) + et (m L) (3.5a).
i= -2 ey L) + cg?(@y, Ly ) (3.35),

I= egI(m,y,I,'y; a,T) (3.5¢)¢
¥ = —%?—(x, y, L k) +e97(z,y, [, 750, T) (3.5d).

Besides being convenient, this notation points to the fact that there is a whole
class of systems, possibly in higher dimensions, having similar features as ours. In
particular, if a system of the form (3.5), possesses invariant manifolds, such as those
parts of II. and II, which are connected to themselves by homoclinic manifolds,
then it shares many common geometric properties with ours. A theory based on
their geometry has been developed to analyze certain properties of such systems.
An exposition of this theory can be found in Wiggins [1988]. Parts of it include
the treatment of invariant manifolds to be presented in the next section and the
Melnikov function analysis to be presented in sections 3.4 and 3.5, the results of

which can immediately be extended to any two degree of freedom system of the
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form (3.5). possessing in its unperturbed form the same type of invariant manifolds
as our unperturbed system (3.5).

The remainder of Section 3 is organized as follows: In Section 3.2 we present
a detailed discussion of the dynamics in the plane II.. In Section 3.3 we discuss
the stable and unstable manifolds of annuli in II.. We establish criteria for these
manifolds to intersect in Section 3.4. Finally, in Section 3.5, we examine orbits
homoclinic to periodic orbits in II. away from the resonance band in the nondissi-
pative case. Our analysis of the dynamics originating from the resonance band will

be presented in Chapter 4.

3.2. Dynamics in Il.. Since we will be interested in orbits homoclinic to
fixed points and periodic orbits in II., we now study the dynamics on this plane in
detail. As we have remarked in Section 3.1, the plane Il. is invariant under the flow
of (3.1)c. This is established by observing that in (3.1b), we have b=0for b=0.
Hence, the dynamics of orbits on II. are described by equation (3.1a). restricted to
II. which is

¢=—i(3lc|* = 1)c—¢(T + ac). (3.6)

As we have shown in Section 2, we understand the dynamics of (3.6), completely
when € = 0. In particular, we have shown in Section 2.3 that II. is foliated by
circular periodic orbits ¢ = v/2Ie', where v = (1 — I)t + vo. The orbit at I =1 is
a circle of fixed points and there is also a center-type fixed point at the origin, as is

shown in Figure 3.1.
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In the nondissipative case we can derive equation (3.6), from the Hamiltonian
le|* — 2]c|? — €Tec, . (3.7)e

We can again completely analyze the phase portrait of (3.6), in this case. Since all
orbits on II. are level sets of the Hamiltonian (3.7)., we can express ¢; from this
equation in terms of ¢, and H, and hence find explicit expressions for the orbits.
We present the phase portrait thus obtained in Figure 3.2. We see that periodic
orbits away from £|c| = I = 1 persist and that their shape is only slightly distorted
by the forcing. The fixed point near the origin also persists and is an O(e) distance
away from its original position. This O(€) estimate follows by applying the implicit
function theorem. The main changes that forcing introduces take place around
I = 1 where we find a resonance band instead of the circle of fixed points. From
Figure 3.2, it should be clear that only two fixed points from this circle survive
the perturbation. One of them becomes a center and one a saddle, the saddle
being connected to itself by two homoclinic orbits encircling the center. To find the
accurate position of these points we must solve (3.6). with a = 0 and zero left hand
side. The solutions of this equation are given by ¢; = 0 and ¢, assuming the values
of the three real roots of the the cubic equation (4¢3 — 1) c; — eI’ = 0. We will not
solve this cubic equation since for the purposes of our analysis we only care about
the existence and approximate location of the fixed points and not about their exact
coordinates.

In the dissipative case, orbits cannot be calculated so easily any more. By more
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careful analysis, though, we can still recover most of the relevant dynamics.

We begin by discussing the fixed points. We can again use the implicit function
theorem to show that the fixed point near the origin persists O(¢€) close to where it
was in the unperturbed system. We will show shortly that the resonance band is still
present when « is not too large compared with I" and that there are two surviving
fixed points in it. We could show their existence directly by again deriving a cubic
equation for their precise location, but since we will show their existence later by
a more refined method, we omit this step. We remark that the system (3.6), is
dissipative for positive ea, hence its fixed points can only be saddles or sinks. This
fact holds for the full four-dimensional equations (3.1), as well. The eigenvalues in
all four dimensions of the unperturbed center at the origin are easily calculated to
be +: and +:k?. For small enough ¢, the eigenvalues will pick up small negative

real parts due to the dissipation. Therefore, this point can only become a sink.

We also need to address the question whether any closed orbits remain in II,
in the dissipative case. The answer is given by the Bendixson criterion for planar
systems (see Guckenheimer and Holmes [1983], p. 44, or Wiggins [1989]). This
criterion states that in a convex region in the plane where the divergence of the
vector field does not change sign, there cannot be any closed orbits. The divergence
of the right hand side of equations (3.6), is —2ea, hence no closed orbits exist in II..
This excludes the existence of either periodic orbits or separatrix loops and leaves

the three fixed points as the only possible limit sets in II..
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To obtain more detailed information about the dissipative dynamics on II., we
must separately examine what happens away from -%—[c[2 = I = 1 and what happens
near %]cP = [ = 1. The reason for separating the analysis in this way is that even
in the dissipative case we expect to see resonant behavior near %|cl2 =] = 1 since

the unperturbed terms are comparable in size to the perturbation there.

In what is to follow, we first want to show that for positive eq, all the orbits
away from the resonance spiral inwards, either towards the resonance when %ICP =
I > 1 or towards the attracting fixed point near the origin when %lcP =1<1. We
will show this by using the nonresonant periodic orbits of the Hamiltonian (3.7).
as the closed curves with the vector field (3.6) everywhere on them pointing into
the regions they enclose. This will imply, for instance, that the basin of attraction
of the sink near the origin will contain all the points away from the resonance with
+le[* = I < 1. We will then examine the resonance in detail. In particular, we will
look at the remaining two fixed points and determine as accurately as possible the

locations of the basins of attraction of the two attracting fixed points in II..

Let us now first look at the situation outside the resonance. We want to show
that on every nonresonant orbit of the Hamiltonian H,, the vector field points into
the region enclosed by it. To prove this, note that the outward pointing normal at

any point of such an orbit is

n

0H, OH.
Oc; ’ Ocs

((Glel* = 1) o1, (3lef* = 1) e2)
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when 2|c|> =1 > 1 and

_ _(9Hf __GHE
n= dc;’  Jcy

= (= (3l =1 cr,— (3lel* = 1) e2)

when %|c|? = I < 1. The scalar product between the normal n and the vector field
(3.6)¢ 1s equal to

(n,¢) = ea [~ (Llef* = 1) |c|* + el

for 2]c[* =1 > 1 and
(n,é) = ea [(Llef* = 1) lcf* — el'cy]

for 1|¢[? = I < 1. On a nonresonant orbit, 3 |c|* = I varies by an O(¢) amount only,
and since it is not equal to 1 or 0 (we must exclude orbits too close to the origin,
too), either of the above two expressions, which holds on that orbit, is negative and
our conclusion follows. Therefore, indeed, orbits spiral inwards when they are away
from the resonance.

We will now take a closer look at the resonance band. The idea is to magnify
it by first transforming equations (3.6), to the action-angle variables which in this
case happen to be I and =, and then rescale the I coordinate so that the thickness
of the band will be finite for all values of e. We also want the limit as ¢ — 0 of
the system we obtain from this rescaling to have a simple form, a property which
will follow automatically from our transformations. The above described procedure

is standard in the theory of averaging. A good general description of it can be
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found in Arnold, [1988], p. 159, or Wiggins [1989], and an application is given in
Guckenheimer and Holmes, [1983], pp. 205-211.

Equations (3.6), transformed to I and v coordinates are

I=—¢ (F\/ﬁ cosvy + 2aI) (3.8a).
: r
A=1-T+ € (3.8b)

sinvy.
var
We take a new variable h defined by I = 1 + \/eh, rescale the time 7 = /et and
denote differentiation with respect to 7 by '. Thus we transform (3.8), to the new

set of equations

B = —T\/2(1 + eh) cosy — 2a(1 + \/eh) (3.9a).

' Vel :
v = —h + \/'—‘:)‘H'__*_:__@ sin-y. (396)6

In the limit as € — 0, they become the equations of the constantly forced pendulum
W = -TV2cosy — 2a (3.9a)o

v = —h (3.96)0
which possess the Hamiltonian
H =1h? —TV2siny — 2ay. (3.10)

This limit also shows that the original size of the resonance band was O(+/e), which

will be important to know in the later sections when we need such estimates in



-46-
order to couple the dynamics in the resonance with the dynamics off II. near the
resonance.

We will obtain information about the dynamics of the equations (3.9). by first
analyzing their limit (3.9)o and then applying perturbation techniques. Due to their
Hamiltonian nature, equations (3.9)g can easily be studied.

Before taking advantage of this fact, though, we first investigate their equilibria.

The fixed points of (3.9)¢ have coordinates (A, ~) which satisfy the equations
h=0

cosy = —\/5%

We see that these equations give two fixed points, we will call them py and q¢, when
a < —5—5 Since the angle cos™! 2% must lie between 0 and 7 for positive a and T,

we find their h-v coordinates to be
po = (0,7r —cos™! ﬁ%) (3.11a)

a0 = (0,7 +cos™ V3R) . (3.11b)

At a = %, they coalesce in a saddle-node bifurcation. Note that

at po and
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at go. The matrix associated with the linearization of the system (3.9). is given by

i w ST V) s
mcos'y 2v/ea T'/2(1 + y/eh)siny

—1— —L ——sin L cos
[2(1+/€h)] 2 v 2(14++/ch) v

The characteristc polynomial of this matrix is

2al’ 2
A 42 A+T4/2(1 + Veh)siny — € | ————=—=—=cosvy + =———=—~co0s27 } ,
Vea (14 Veh)siny —e D sy 2(1+\/Eh)cos &
(3.12)

which at € = 0 reduces to

A2+ V2T sin~y .

From this equation and (3.11) one immediately obtains the eigenvalues at py and

go- At po they are
1
+ivT [2(1 - 2(2)))] ",

and at go they are

i
4

+VT [2(1 — 2(8)?)]

Therefore, py is a center and gy a saddle.

Having found all the information about the fixed points of (3.9)y, we now
calculate its orbits. They are the level sets of the Hamiltonian (3.10), and can
be obtained explicitly by expressing h in terms of H and v from equation (3.10).
The resulting phase portrait is presented in Figure 3.3. In particular, note that
the stable and unstable manifolds of go, which we denote by W§(go) and W§(go),
intersect along a separatrix loop, which we denote by W(gp). This loop divides the

phase space in two regions, the inside of the loop W(qgo) being one and the outside
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the other. Note that all the orbits inside W(qq ) are periodic. They encircle the fixed
point pg. Outside of W(qq ) no orbits are periodic; they descend from h = 400, pass
by W(qo) and go off to h = —oo. This agrees with the fact we established earlier
in the ¢ coordinates that in the perturbed problem orbits away from the resonance
spiral inwards (meaning on average decreasing their A coordinate).

A special situation occurs in the nondissipative case, i.e., when o = 0. Equa-
tions (3.9)p then become the equations of the simple pendulum. The point ¢ is
now connected to itself by two separatrix loops rather than one, and all the other
orbits are periodic, as can be expected from the previously described direct analysis
on the nondissipative case (see Figure 3.2). Therefore it comes as no surprise that

for a = 0 the equations (3.9). are also Hamiltonian with the rescaled Hamiltonian

He=1(H +1)=1r? —T1/2(1 + Veh)sin~y

for all positive e. Here H, is the Hamiltonian (3.7)¢ first recast in the I-y coordi-

nates, which is

H=i-1- eL'V2Isiny, (3.13).

and then transformed to the h-v coordinates.

Having completed the analysis of equations (3.9)p, we now turn to the per-
turbed equations (3.9).. We first analyze their equilibria with the help of knowledge
about the equilibria of equations (3.9)¢. For small nonzero ¢, the implicit function
theorem states that there exist fixed points p, and ¢, which are O(1/€) away from py

and o, respectively, and whose coordinates are analytic functions of «, I', and +/e.
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The O(+/e), rather than an O(¢) estimate, arises from the fact that equations (3.9),
contain /€ as the small parameter rather than e. The eigenvalues of the stability
matrix of (3.9) evaluated at p., can then be obtained from (3.12) and are

~veexi (VT 200 - 2A8)H)F +0(va) )
Similarly, the eigenvalues at ¢, are

~Veax {VT (1 -28)")F +0(Va)} -
We see that ¢, remains a saddle for sufficiently small €, and that p, turns into a
sink for a and /e positive.

We now analyze the global dynamics of system (3.9),. From this point on,
we will always assume that o and /¢ are nonnegative, except in Lemma 3.1. Qur
particular interest lies in determining as precisely as possible the relative locations
of the basins of attraction of the two sinks, p, and the sink near the origin. As a
result of our analysis, we will establish that the phase portrait of (3.9), is as shown
in Figure 3.4. The stable and unstable manifolds, W?(¢.) and W*(q.), of the fixed
point ¢, do not intersect as they did in system (3.9)g. Both branches of W?(q.)
come from h = 400 as opposed to only one branch of Wy (g¢). These two branches
separate the plane into the basins of attraction of p. and the sink near the origin.
Furthermore, the branch of W}(g.) which in the unperturbed case coincided with
a branch of W§(qo) to form the loop W(qgo), now falls into p..

In order to prove these statements, we first return to the unperturbed problem

and define two regions, Ry and Sy, which will, under perturbation, deform into
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trapping regions, R., containing p., and S. containing the origin (see Figure 3.5
and Figure 3.7). The region R, will be the interior of the loop W;(go). In order to

define Sy, we first denote by ¥ the vertical half ray
L= {(h,y)[O <h<oo,y=m—cos 2%}

coming out of py and going off to & = co. The vector field (3.9)¢ on T is perpendic-
ular to T. Let a} and a? be the two points of intersection of each branch of Wg(qo)
with ¥, closest to gg in terms of the arclength. Let £y be the union of the pieces of
W{(qo) between go and af and between go and af, respectively, and the segment of
¥ connecting a} and aj (see Figure 3.5). The curve Ly divides the h-y plane into
two regions; Sp will be the one of these two regions which contains large negative
values of h (see Figure 3.5). For small positive n we define two more regions, Ro,y
and Sy ,, which we obtain by excluding from Ry and Sy, respectively, all the points
whose distance from the loop W(qo) is less than . We will need these two regions
in Section 4.6 when we derive conditions for the existence of an orbit homoclinic to
De-

Before defining the perturbed counterparts, R, and S, of the regions Ry and
So, respectively, we briefly discuss W?(¢.) and W¥(q.). We want to point out two
of their aspects. First, these two manifolds will not intersect for nonzero « and e.
The reason for this is that they could only intersect along a separatrix loop whose
existence is ruled out since we have proven that no closed orbits can exist in II, for

nonzero « and €. Second, the pieces of W?(q.) and W¥(¢.) between g, and their first
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intersection points with T, call them a!, a? and a2, stay uniformly O(4/€) close to
their unperturbed counterparts. The precise mathematical details of this statement
are stated in the two lemmas presented below.

In the first lemma we show that the local stable and unstable manifolds of the
point g, stay close to those of gqg. The result will hold in the disk Ds around go with

radius §. We formulate this statement in

Lemma 3.1. For any small enough fixed positive 8, there exists a positive €, such

that for 0 < e < €, the point q. is contained in Ds. Moreover, the local stable

8

and unstable manifolds, W¢ .

(g¢) and WP, .(g¢) of the point q. vary analytically
with /e, and therefore, stay uniformly O(+/€) close to the local stable and unstable

manifolds, W ;,.(q0) and W ,.(qo), of the point gy inside D; (see Figure 3.6).

PROOQF: The proof is very similar to the proof of Proposition 4.1 in Section 4.2;

therefore we omit it.

We now want to show that we can extend this estimate outside Djs to show the
O(+/€) closeness of the global stable and unstable manifolds of ¢ and ¢. as well.
We make the argument only for the stable manifold. The argument for the unstable
manifolds is exactly the same.

For this purpose, take any two points, say by and b, lying on W ,.(qo)
and W?,, .(ge), respectively, whose distance from each other is of O(e). Let
(ho(7,b0),v0(7,bo)) denote the solution of (3.9), passing through by at 7 = 0, and

let (he(T, be),ve(T, be)) denote the solution of (3.9) going through b, at 7 = 0. We
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apply a Gronwall-type estimate (see Appendix C) to these two solutions to prove

Lemma 3.2. For any finite positive T, there exists a positive constant K(T'), such

that for every 7 with =T < 7 <0, the inequality

I (ho(7,B0), 70(7, bo)) — (Be(7,be), ve(T, b)) || < K(T)V/e

holds.

From this lemma, our statement about the uniform O(./€) proximity of the
pieces of W?(¢.) and W¥(q.) between ¢, and aj, aj and a3, respectively, to their
unperturbed counterparts follows quite easily. We only need to take T on each
of the orbits so long that both the perturbed and the unperturbed solution pass
through ¥; in particular, this shows that a! is O( /€) away from a} and that both
a? and a? are O(\/€) away from a3 (see Figure 3.7).

At this point we are ready to construct the regions R, and S.. To construct
R, take K to be the union of the piece of W?(q.) between g, and a?, the piece of
W(q.) between ¢, and a® and the piece of T between a? and a2. The region R, is
the interior of the curve K. To construct S take £, to be the union of the pieces
of W2(q.) between ¢, and a and a?, respectively, and the part of & between a} and
a?; S, will be the one of the two regions, into which L. divides the phase space,
which contains large negative h (see Figure 3.7).

We are now in a position to determine the relative locations of the basins of

attraction of the two sinks, p. and the sink near the origin. We do this in
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Proposition 3.3. For any positive 7, there exists a small enough positive €y, such

that for 0 < € < ¢ and \/ea positive the following two statements hold:

(a) R, is a trapping region containing Ry, which in turn contains p.. The point

pe is the forward limit point of all the orbits in R..

(b) S. is a trapping region containing Sp,,. All the orbits in S are attracted to

the sink near the origin.

PROOF: First note that the vector field (3.9)y is transverse to L between a} and
a?, and hence (3.9), is transverse to the segments of £ between a} and a? and a?
and a3, respectively, for small e. To prove (a), note that the separatrix W(gq) could
split in two ways, either so that the vector fleld on the part of & between a? and
ai points out of R, or else it points into it. We will show that the first situation is
impossible. Then we will show that the second situation implies (a).

We now show that the first situation is impossible since it violates the Poincaré-
Bendixson theorem. We only need to reverse time in our problem and take any point
in the interior of ¥ N K, as the initial condition for (3.9).. The solution will trace
a semiorbit, which will be all contained in R, since the time reversed vector field
points everywhere into R, on K, or else is tangent to K.. The Poincaré-Bendixson
theorem (see Coddington and Levinson, [1955], chapter 16) then states that this
semiorbit must have a forward limit set inside R., which must be either a fixed

point or a closed orbit. Since there are no closed orbits in II, and no other fixed

point inside R, than p,, the only candidate must be p.. However, p. cannot be
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the forward limit point of any semiorbit because it is a source for the time-reversed

vector field. This shows that the first situation is impossible.

The second possibility is that the vector field points into R, on ¥ N K. In this
case, an argument similar to the previous one shows that all orbits in R, approach
pe in forward time, and every point in R, will be attracted to p.. By Lemma 3.2,
we also see that for every small positive 7 we can find a small enough positive €
so that for all positive € < €, the curve K, is contained in an 1 neighborhood of

W(qo). This concludes the proof of (a).

To prove (b), note that on £,N the vector field (3.9)y points into Sy. Therefore
for small €, the vector field still points into S, on £, N X and hence S, is a trapping
region. By Lemma 3.2, L, is uniformly O(/€) close to Ly, hence for any given small
positive n, there exists a small enough positive ¢y (we may have to decrease €y from
part (a)) such that for 0 < € < ¢, the region Sg 5 is contained in S,. Since the only

other attracting set in II. is the sink near the origin, (b) is proven.

Using the above described geometry and the conclusions of Proposition 3.3 one
can easily show that both branches of WZ(¢.) now come from A = 4+o00. To prove
this just note that no solution on W?(q.) can be contained in either R, or S¢ as
T — 00 since neither of these regions contains any sources and that all the orbits

outside the resonance with %jclz = [ > 1 must spiral towards the resonance.

We remark that even though we treated a and I as fixed parameters, it is easy

to see that all the features of the above described dynamics in II, change smoothly
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as a and I' are varied.

Having analyzed the dynamics in I, in detail, we briefly indicate the possible
invariant sets on II., which could in the full four-dimensional phase space possess
orbits homoclinic to themselves, giving rise to chaotic behavior.

In the nondissipative case, the selection is very wide. The periodic orbits both
outside and inside the resonance are likely candidates; so are both fixed points in
the resonance, p. and ¢..

In the dissipative case the choice narrows considerably; only p. and ¢. remain as
the candidates. In the course of our work we will only investigate two of the above
possibilities: the periodic orbits outside the resonance in the nondissipative case

and the fixed point p. in the dissipative case in Sections 3.5 and 4.6, respectively.

3.3. Persistence of the Invariant Manifolds in the Phase Space. In
this section we discuss the stable and unstable manifolds of annuli in II., their
persistence and smoothness. The intersections of these manifolds will play a crucial
role in the subsequent analysis of homoclinic phenomena to be developed in later
sections.

We first state the essential features of the unperturbed problem which we will
need in this section. We will often refer back to the geometry established in Section
2.3 and the solutions of the homoclinic orbits calculated in Section 2.4. To begin

with, we state the precise definition of the annulus A4 in II,. It is defined to be

A={(z,y,I,7)|z=y=0,0< L <I < ,0<vy<2r}.
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Orbits in A are given by I = constant and v = (1 — I)t + v9. We see that A
is invariant under the unperturbed flow of the equations (3.3) since I = 0. The
annulus A is a manifold with boundary, the boundary, denoted 9.4, being the two
circles around the origin in II. with radii I = [; and I = I;. Another way of saying
that A is invariant is that the vector field (3.3) is everywhere tangent to d.A. This
situation is different from that of the closed boundaryless invariant manifolds, such
as tori, and as a result we may expect to encounter problems at the boundary A4
when we perturb our system.

Now we define local stable and unstable manifolds of the annulus 4. As we have
shown in Section 2.3 (see Figures 2.1 and 2.2) we must have k%/2 < I; < I in order
to guarantee that for every orbit in A there exist orbits outside II. approaching it
exponentially in either forward or backward time. Having imposed this restriction,

we choose a small positive ¢ and a neighborhood
Us = {(z,y, L.y)|2* +y* < 8* . < I < I,0 < v <27}

of the annulus A and define the local stable manifold W ;,.(A) (local unstable man-

ifold Wi',.(A)) of the annulus A as the sets of all the points in Us which approach

A in forward (backward) time (see Figure 3.8). Note that W¢ |, (A) and W¢',.(A)

are only locally invariant, i.e., they are spanned by orbits, but the orbits enter
5 10c(A) (leave W¢';, (A)) through the part of its boundary at ¢* +y* = é°.

We now extend the local stable and unstable manifolds of A to global ones.

This can only be done if the radii I, and I; of the annulus A satisfy either ¥?/2 <
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I} < I, < 4k* or 4k* < I; < I. The reason for this restriction is the heteroclinic
connection between II, and II; at I = 4k?, discussed in Section 2.3 (see Figure 2.1).
If A included points with I = 4k?, this heteroclinic connection would introduce
an unwanted singularity in its stable and unstable manifolds; therefore, we exclude
this possibility. For A satisfying the above restriction, we define its stable manifold
W (A) (unstable manifold Wi*(A)) to be the set of all the points which approach A
(A)

in forward (backward) time (see Figure 3.9). Obviously, W3 (A) contains W

Jdoc

(Wg'(A) contains W, (A)). Note that W§(A) and W (A) coincide and are equal

loc
to the homoclinic manifold W(A) of A. We recall from Section 2.3 that W(.A)
is a three-dimensional manifold implicitly defined by the equation (2.10), which is
H(z,y,I)— H(0,0,I) =0, with I restricted to the interval I < I < I;. Moreover,

we can parametrize it explicitly by

W(A) = {(z(=to, D), y(~to, ), I,y(—to, [, 7)) | to ER,I; < I < [,,0 < v < 27}

(3.16)

where z(¢,I), y(t,I), and (¢, I,7,) are calculated using the transformations (2.12)

and (2.19) from the formulas (2.24) when k?/2 < I; < I < 4k? and (2.23) when
4k* < I; < I.

We want to make some comments concerning this parametrization. The vari-

ables I and v, are used to pick out a particular homoclinic orbit in W(A4). Once

I and 7, are fixed this orbit is parametrized by t,. As we have shown in Sec-

tion 2.4, every solution on the homoclinic orbit labeled by I and v is of the form
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(z(t —to, ), y(t —to,I),I,v(t —tg,1,v)) for some ty. Therefore setting ¢t = 0 and

varying to in R exhausts all the possible initial conditions, s.e., all the possible

points on that orbit. Every point in W(A) can hence be uniquely described by

the parametrization (3.16). We also remark that this parametrization is different

from the more standard one used in Wiggins [1988]; the differences will be pointed

out in Appendix E where we discuss the advantages and shortcomings of both
parametrizations.

The homoclinic manifold W(.A) is again invariant under the flow of (3.3)¢ for

the same reason as A is, i.e., the vector field (3.3)y is everywhere tangent to its

boundary d.A which is described by either the equations
H(z,y,[)—- H(0,0,I)=0
I = Il or I = IQ

or by the parametrization

OW(A)

= {(z(=to, 1), y(=to, ), I, ¥(=to, I,0)) [to ER, I =1L or I =1,,0 < v < 27} .
We can also see from the formulas (2.23) and (2.24) that z and y coordinates on any

(A) (W3 ,.(A)) at t = 0 shrink to zero at the exponential rate

Jdoe

orbit starting in Wy 1.
e~kV2I=k*1t| for positive (negative) time, while the I coordinate remains unchanged.
Having reviewed the features of the unperturbed problem essential to the anal-

ysis of the perturbed problem, we now perform this latter task. In the perturbed

problem, the time evolution of the coordinates I and « on A is given by the equations
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(3.8)¢, which have been extensively studied in the previous section. The annulus A
is still spanned by orbits, since it is a subset of the invariant plane II.. However, it
may no longer be invariant since orbits may enter or leave it through its boundary
OA and is hence only locally invariant. Typically, we would expect a point in A
which is O(1) away from 9.4 to have entered A or to leave A on a time scale of

O(2%) if it does not remain in A forever.

The fact that A4 is only locally invariant causes some difficulties with defining
the perturbed stable and unstable manifolds of 4. Usually, stable and unstable
manifolds of invariant sets are defined as the sets of points which approach the in-
variant set for all forward and backward times, respectively. But in our problem, A
is not invariant and hence an orbit in A off of II, may well approach an orbit which
ultimately leaves A. The question which then arises is whether to leave such orbits
out of our definition of the stable and unstable manifolds of A or include them in it.
The answer to this question is that it is more natural to include them. The reason
for this choice is that orbits of precisely this type will span the three-dimensional
manifolds W,  (A) and W (A) (see Figure 3.9) which, as we will show shortly,
will play an important role in our analysis. We state their existence and proper-
ties rigorously in Proposition 3.4. These manifolds are graphs over Wy ,,.(A) and
Wy 10c(A), respectively, which vary smoothly with € and other parameters, and also

intersect along A.

The boundaries W7, (A) and OW* . (A) of these two manifolds consist of

e,loc e,loc
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three parts: the bottom at I = I;, the top at I = I, and the sides at z% + y* = 82,

(A) and W, (A) (W2, (A) and W, (A)) is that

The common feature of W’

Jdoc € Ioc loc

the z-y dynamics for small e remain almost the same as in the unperturbed case.

(A) (leave W}, (A)) through its sides

In particular, orbits still only enter W/

Joce €, loc

and the zr and y coordinates contract at an exponential rate faster than eI

with £ = kv2I[; — k? + O(¢), for positive (negative) times as long as their orbit

stays in W¢,.(A) (W2, .(A)). However, the I-y dynamics may change the orbits

Ioc

drastically; in particular, they may either enter or leave W}, (A) and WY, _(A)

€ Ioc Ioc

through both their top and and their bottom (see Figure 3.8). If an orbit does stay

in W2,,.(A) for all positive times (in W, .(A) for all negative times), though, 1t

loc

must in forward (backward) time approach an invariant set in A because of the

exponential contraction of its z and y coordinates.

We now define W2 (A) (W*(A)) as the manifolds obtained by letting all the

points on the above defined sides of W, .(A) (W*,.(A)) evolve under the flow

€, loc

of (3.3), in backward (forward) time, and then taking the union with W, (A)

€, Ioc

(W*,.(A)). This situation is shown in Figure 3.9. The manifolds W7(A) and

€, €

W(A) need not be invariant; indeed, orbits may enter and leave them through the

above defined top and bottom of W?, (A) and W}, (A), respectively. Therefore,

Jdoc € loc

they need not be the stable and unstable manifolds of any object, in the usual sense

of the terminology. But they will serve a good purpose in our problem, hence we

will call W2 (.A) the stable manifold (WP(A) the unstable manifold) of the annulus
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A, and W2, _(A) the local stable manifold (W, (A) the local unstable manifold)

Joc loc

of A. With this discussion behind us, we only need to state the precise existence

theorem for W2, (A) and W}, .(A). It goes as follows.

Jdoc Joe

Proposition 3.4. There exist small positive eg and 6y such that for —e; < € < €

and 0 < § < &y there exist locally invariant manifolds W?,,.(A) and W} _(A) in

€ loc JHoc

Us, possessing the following properties:
(1) They vary in a C*° manner with € and the other parameters in the problem.

(2) For € = 0, they coincide with the unperturbed local stable and unstable mani-

folds W§ ,.(A) and W', .(A), respectively.

Jdoc

(3) They intersect along A.

(4) Any point which starts at t = 0 on the sides of W

2 10clA) (W, (A)) will

e,loc

approach A in forward (backward) time at an exponential rate at least as

fast as e "1 where « = kv/2I, — k2 + O(¢), as long as it stays in W*, (A)

loc

(WeioelA))-

PROOF: The proof of the first three statements is the same as in Wiggins [1988],
p. 354. The last proposition follows from Fenichel [1974], Theorem 3, using very
similar techniques as Wiggins [1988], p. 354, does in order to deduce his theorem
from Fenichel [1971]. The details of the proof are long, tedious and involve concepts
which will not be illuminating for the rest of our discussion; hence we do not present

them here.
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Following this proposition, let us make two comments. First note that the expo-

nential rate e ~¥V21=**Itl is the slowest one at which orbits in W, (A) ( 0 1oc(A))
approach A in forward (backward) time. Second, note that point (3) implies
W? 15e(A) and W5 1, (A) (W2, .(A) and W, (A)) to be uniformly O(e) close to

each other in C7 topology for any r, i.e., they and all their derivatives up to and

including r-th are uniformly O(e) close.

In the next few sections we will learn the use of the manifolds W?(.4) and
WE(A). In particular, we will see that their intersections (if they intersect at all)
contain all the orbits asymptotic to any invariant set in .4 in both forward and

backward time.

3.4. Intersections of the Manifolds W/(A) and W}*(A) and the Na-
ture of the Orbits Contained in Them. In this section we want to develop
a computable distance measurement for the distance between W?(.A4) and W*(A).
Particularly interesting for us will be the points at which this distance vanishes, i.e.,
where W?(A) and W*(A) intersect. If such a point exists, the invariance of the two
manifolds forces the orbit on which this point lies to be contained in the intersection
as well. The study of this type of orbit will occupy the remaining part of this work.
The interesting feature of orbits lying in the intersection of the manifolds W} (A)
and W!(A) is that all orbits homoclinic to fixed points or periodic orbits in .4 are
among them. And, in turn, it is these orbits which are responsible for the possible

existence of nearby chaotic invariant sets.
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We note, however, that not all the orbits contained in the intersections of
W2(A) and WP(A) need to be homoclinic. In fact, in the dissipative case, we
actually expect most of them to enter W}, _(A) through its top, pass through the
intersection to W7, .(A) and leave W (A) through its bottom (see Figure 3.10).
We can speculate that such an orbit will, in general, prior to entering W2, (A),
asymptote in backward time to an orbit in II. spiraling inwards from I = 40, and,
after leaving W2 ,.(A), drift off to the sink at the origin. Not being asymptotic to
a recurrent set, such an orbit will clearly not give rise to any kind of chaos. We
will therefore spend a lot of effort in the forthcoming sections to determine what

precisely happens to an orbit when it is contained in an intersection of W2(A) and

We(A).

To get a better picture of the difficulties encountered in our problem, we want
to contrast it with the usual case to which the Melnikov function calculation ap-
plies: the periodically perturbed planar Hamiltonian system with a separatrix loop

connecting a saddle type fixed point to itself (see Wiggins [1989]).

We can regard the suspended phase space (with time as the extra variable) as a
cartesian product of the plane R ? and a circle. The unperturbed fixed point is then a
trivial hyperbolic periodic orbit, and the saddle connection loop a pinched invariant
torus (See Figure 3.11) foliated by orbits homoclinic to the periodic orbit. The word
hyperbolic in this case means that the periodic orbit is isolated, that at every point

on the orbit its local stable and unstable manifolds intersect transversely, and that
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points on these two manifolds approach the periodic orbit at an exponential rate
in forward and backward times, respectively. Pieces of the periodic orbit’s global

stable and unstable manifolds coincide along the pinched invariant torus.

Under perturbation the trivial periodic orbit persists as a real periodic orbit,
its stable and unstable manifolds do not coincide any more, and if they intersect,
the situation looks like Figure 3.11. Two important features should be noted. The
first is that the hyperbolic periodic orbit and its local stable and unstable manifolds
persist, under perturbation, essentially unchanged. The second feature is that the
orbits along which perturbed global stable and unstable manifolds of the periodic
orbit intersect are the survivors of the unperturbed pinched torus of homoclinic

orbits.

Neither of these features is present in our system. The plane Il is invariant, but
does not, as a whole, possess a simple homoclinic manifold. The annulus A in II,
however, does possess a simple homoclinic manifold but may not be invariant in the
perturbed system. The periodic orbits in the nondissipative case have both of the
above properties, but are not isolated in the full four-dimensional phase space and
hence not hyperbolic. However, we will see below that they become hyperbolic as
soon as we restrict ourselves to the three-dimensional level sets of the Hamiltonian
H.. And finally, the fixed points p and ¢, being associated with the most complex
dynamics in our problem, in their unperturbed form, py and ¢o, usually do not even

possess orbits homoclinic to themselves, but are connected via heteroclinic orbits
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to other fixed points on the circle (see Section 2.5). Moreover, p, and g, lie in the
middle of a resonance band, a structure created by the perturbation and drastically

different from the unperturbed circle of fixed points which stood in its place.

This is why we consider it necessary to approach the problem in two stages,
the first one being to look for intersections of W?(.4) and W}*(.A) using the Mel-
nikov technique, and the second one to concentrate on specific orbits contained in
those intersections and study their nature, usually using other techniques of a more
geometric type. The particular technique we will use will depend on the situation

we will be looking at.

In the case of nondissipative nonresonant periodic orbits, we essentially re-
cover a situation similar to a periodically forced planar Hamiltonian system with a
separatrix loop discussed above when we restrict ourselves to any one of the three-
dimensional level surfaces of the Hamiltonian H,. The reason for this is that on
every level surface of H, there is only one periodic orbit and it is then easy to show
its hyperbolicity inside that level surface. In fact, in certain simple situations (but
not always in ours), a method can be applied which explicitly reduces a perturbed
two degree of freedom system with the same unperturbed geometry as ours to a
periodically forced planar system using the fact that the phase space is foliated by
the level surfaces of the Hamiltonian (see Holmes and Marsden [1982]). In the next
section, we will instead apply more geometric methods somewhat similar to those

in Wiggins [1988], which will show how the intersections of the manifolds W2(A)
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and W*(.A) are foliated by the level sets of H, into families of orbits homoclinic to
the family of periodic orbits in .4 to obtain a more elegant version of the same type

of result.

The second situation we will deal with, the orbit homoclinic to p, in the dis-
sipative case, will require completely different techniques which are of a singular
perturbation nature. As we will see in Chapter 4, this orbit will have to be con-
structed from two pieces and we will only be able to calculate the existence of one

of the pieces with the use of the Melnikov function.

We now begin by investigating the intersections of the stable and unstable man-
ifolds, W?(A) and W*(A), of the annulus .A. We have seen that in the unperturbed
case the stable and unstable manifolds, W3 (A) and Wg'(A), of A coincide and form
the homoclinic manifold W(.A). In the perturbed case, W2(A) and W*(A) cannot
be expected to coincide any more. Instead, we expect them to either intersect along
two-dimensional surfaces or else not intersect at all. The number two comes from
the dimension count for transversal intersections of manifolds: The dimension of
the intersection equals the sum of the dimensions of W?(.4) and W}*(.A) minus the
dimension of the ambient space R*. We will measure the distance between W2(A)
and W*(A) by using the unperturbed homoclinic manifold W(.A) as a framework
on which to develop a geometric perturbation theory. We therefore first need a
parametrization of W(.A) in order to describe the coordinates of points on W7(A)

and W*(A) near W(.A). We then need a coordinate system at each point of W(.A)
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in order to measure how W?(.A) and W}*(.A) split near that point. We also want to
determine the number of independent directions in which we need to measure the
distance and finally develop a computable expression for the distance measurement.

We recall that W(.A) is parametrized as in (3.16) by
IV(A) = {(z(—t07‘[)1y(—t03 I),I,’Y(—to,.{, ’YO)) lto ER,[l <I < IZ,O S Yo S 27T}

where z, y and « are obtained from the solutions calculated in section 2.4. Various
features of this parametrization have been discussed in the previous section.

At each point a = (a(—to,I),y(—to, ), I,v(—t0,I,v)) in W(A) we attach
the following coordinate system: The tangent t,, to the orbits on W(.A) at a, the
normal nyw to W(A) at a, and the two vectors, I and 4, the unit vectors in I and

~ directions. In the z-y-I-y coordinates, the components of these vectors are

tolan D) = (G e D =G D0.~Fr@n D) (31)
(e D) = (Gt D) G D). G ) - 5 0.0.0.0)  (318)
1=1(0,0,1,0) (3.19)

5 =(0,0,0,1), (3.20)

where, for brevity, we omit the arguments (—to,I) in the z and y coordinates. The
) . | . . .

determinant of the matrix composed of these vectors is easily seen to be (%’zi) +
2

<%—§I-) and since both of these derivatives vanish only on W(A) for z =y = 0, i.e.,

on Il we see that t;,, nw, I, and % indeed form a coordinate system at every point
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a in W(.A) except at II.. There we will not need it, since we do not measure the

splitting distance there.

We claim that we only need to measure the distance between W?(A) and

W*(A) in one direction. We will make this explicit as we set up the measurement.

The distance measurement is set up as follows. At each point A in W(A) we
will measure the distance between W2(A) and W*(A) near a along the normal
nw(z(—to, 1), y(—te, 1), 1) to W(A) at a. By its very definition, nw intersects
W(A) transversely at a, and therefore it is also transverse to W2(A4) and W*(A)
for small enough e. Hence, a line through a parallel to nw(xz(—tp, ), y(—to,I),I)

intersects W2(A) and W*(A) near a transversely in at least one point each.

However, W?(A) and W*(A) may fold back on themselves and therefore inter-
sect ny at more than one point. (See Figure 3.14. for a simplified situation.) We
will denote the two points between which we want to measure the distance by a’
and a¥, where a! lies in WZ(A) and a? in W}*(A). We will choose af to be the point
of intersection of nyw and W?(A) whose trajectory needs the least amount of time
to reach W7, (A). We choose a; in an analogous manner. This choice agrees with

our intuition and can be shown to be the only mathematically correct one. (For a

more complete description see Wiggins [1988) or Wiggins [1989).)

Summarizing the above, the line parallel to nw(z(—te,I),y(—%o,I),I) at each
point a = (z(~tg, 1), y(—to, ), I,y(—to,1,70)) on W(.A) and going through a inter-

sects W3(A) and W¥(A) in two points, af and a?, which can be picked in a unique
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manner. If al = a¥, the manifolds W?(A) and W?(A) will intersect at that point.
It now follows from the previous sentence that at each point a a measurement in
only one direction, that of nw, will determine whether W7 (.A) and W*(.A) intersect
or not.
We now derive a computable expression for the distance between a! and af.

Since a? and a? lie on nw, the vector af — af is parallel to ny/, and hence

<an a; — ai>
inw |l

= [la¢ — el

We therefore define the signed distance between af and af as

d(a;€) = d(to, I,v0; k,a, s €)
(3.17)

— (nW(Iv Y, I)a a? - (l‘:)
inw(z,y, 1)

with (z,y,I) = (z(—to, I),y(—to,I),I). The reason we have chosen this expression
over ||a® —a?|| is the fact that we can explicitly calculate the O(¢) approximation to it
and then justify that the distance vanishes near the points where the approximation
vanishes. If for some (t9,/,70;k,a,I';€¢) we have d(to,I,v0;k,a,I;¢) = 0 then
a® = a* there and W?(A) and W}*(.A) intersect.

We now Taylor expand d(a;€) to get

d(t07Ia70;k3a’P;e) = d(t07Iv70;kvaaF; O)

d
+ e%ﬁ-(to,l, Y03 k,a,T50) + O(€%)

where

d(to,I,‘)’o;k,a,r;O) =0



and
ad (w (@(—to, I), y(—to, 1), )y 225 |emo — 225) o)

—(to, I, v0; k,a,T;0) =
66( 0 Yo ) Hnw(ill(—to,I),y("thI)vI)“

The numerator of the last expression is called the Melnikov function, and we will
denote it by M(I,vo,k;a,). It turns out to be computable explicitly using only
the unperturbed solutions and the perturbed vector field. In Appendix E we will

show that it has the form
.\«I(I,‘/O,k;a,r) =

/ (nw (z(t,1),y(t, 1), 1), g(x(t, I),y(t, ), I, 7(t, I, %0), 2, T)) dt (3.18)

— o0

where g = (¢g%,¢%,97,97) is the perturbation part of the vector field (3.5), divided
by e.

Note that the Melnikov function does not contain to explicitly and that, there-
fore, all the explicit dependence on ty of the O(¢) of d(a; €) comes from 1ts denomina-
tor. This phenomenon occurs because of our choice of parametrization of W(.A) by
orbits, and corresponds to the fact that the Melnikov function is constant along the
unperturbed orbits. We will show this fact when we derive the Melnikov function in
Appendix E. We will also elaborate more on its consequences for the intersections of
W2(A) and WH(A) after we state the theorem concerning the connection between
zeros of the Melnikov function and these intersections.

We expect the zeros of the Melnikov function to approximate the zeros of the
signed distance between W?(A) and W*(A). The following proposition will confirm

our expectations.
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Proposition 3.5. If for [ = I, v =%, k =k a = & and T = T the following

statements are true:
(1) M(I_’S/O’ié’a’f) = 07 &I’ld

(2) At least one of the first partial derivatives of M(I,~o,k;a,T') is nonzero at

I=I,vw=%,k=ka=a,and " =T,

then for € sufficiently small, W?(A) and W*(.A) intersect near (to, I,70; k,@,T) for

every to € R.

Furthermore, if either %#(f, Fo;k,a&,T) or g—:’i(f, %03 k,&,T) is nonzero, the

intersection is transverse for every tg.

PROQF: Define

1
d(t07I7 705 kvaar; 6) = ‘;Hllw(f(—to,I),y(—tO»I),I)“ d(t()aIa Yo kaavr‘; 6)

= M(I,v,ka, )+ O(e).

We have ci(to,I_, 70;15,&,?:0) = 0 and one of the derivatives, say for definite-

,I') nonzero. Therefore, for small ¢,

o]

ness %%—(to, I, 7k arT; 0) = %AI”(I_, %o k,
by the implicit function theorem, we can express I = I(tg,vo;k,a,I;e) with
I(to, %o; k,@,T;0) = I and J(tO,I(tO,'yo;k,a,I‘; €),Y0; k,a,T;¢) = 0. Since ||nw||
is nonzero away from II., this shows that d(to, I(to,vo; k,a,T';€),v0;k,,';€) = 0,
hence W?(A) and W}k(A) intersect there. If the derivative on another variable is
nonzero, we repeat the same proof with I replaced by that variable.

To prove the transversality of the intersection, we note that as ty, I and ~p

run through any compact subset of R x (Ij,I3) x [0,2x], the corresponding point
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a will describe a compact three-dimensional subset of W(.A), and a! and a? will
describe compact three-dimensional subsets of W2(A) and W*(.A), respectively. In
particular, this shows that ¢o, I, and 7o can also be used to parametrize W/(.A) and

W*(A) near the given point a € W(A). Therefore, the tangent spaces of W?(.A) at

a? and W*(A) at a? are spanned by the triples of vectors

da? Oa; Oa;

€

ato ’ —_87 ’ 6’70

and

da? Jal Oal

3 €

ato ' (9[ ’ 870 '

respectively. For small ¢, these tangent spaces are still transverse to nw. At an
intersection point we have a = a?. Therefore, we can construct the vector sum
of the two tangent spaces and if it contains a vector which has a component in
the direction of nyy, it must contain ny, and is therefore four-dimensional, which
implies that W2(.4) and W!(A) intersect transversely there.

If 2% is nonzero at a, we look at (90,[ — %[*, nw) at that point. We have

da¢  Ja;
< o1 W>
dag  Oa; . s Onw
_—_< ~ S0 >+<a6—a€, (9]>

__(9_ e —al,nwy)
—a €9 W)

the second equality being the result of the fact that a? — a] = 0. But

0 oM
—57((1;‘ —al,nw) = e———([ Yos k F) + O(e )y
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da’

. da
and for small enough values of ¢ this is nonzero. Hence the vector <+ — =+ has a

nonzero component in the direction of nw and the transversality is proved.

If is nonzero at .4, we find in the same way that
da®*  Ja? oM
£ — —= = e—o k, @)
<a70 870,11W> €3 (I Soik, @, T) + O(e?)

which again proves the transversality. This concludes the proof of Proposition 3.5.

If we have M(I,7;k,&,T) =0, and again for definiteness assume

oM . -
EI—(I,’)/(),]»,CI,F)

to be nonzero, we have by the implicit function theorem
I(to,%0; k,a,Te) = I + Ofe) (3.19)

for each fixed t,. However, the error term need not be bounded as to ty — too. In

fact, we have argued before that a typical intersection orbit in the perturbed case

spirals inward from I = +o0, staying close to II, until it hits the top of W, (A).

It then leaves W}, (A) through its side and follows an unperturbed orbit uniformly

O(e) close until it enters W2, (A). It is near this piece of the orbit that (3.19) is

Jdoc

uniformly valid. The orbit then typically leaves W7, .(A) through its bottom.

e loc

This explains why the Melnikov function is independent of ¢q: The intersection
surface of W:(A) and W¥*(A) can be parametrized by tg, I and 7, where in the
zeroth order in €, I and 7 are connected by the equation M (I, v, k;,T") = 0. This

equation picks out the orbits on a two-dimensional submanifold of W(.A), which is
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O(e) close to the intersection surface of W?(A) and W*(A) outside of W7, (A)

and W*

e,dloc

(A). The parameter to t, then parametrizes each orbit on that surface.
We must also remark that the intersection surfaces vary smoothly with k, «

and ~.

We now present the concrete form of the Melnikov function in our problem. It
is given by
M(I,vo,k;a,T) =TF(I,k)cosvyy + aG(I,k).
The computation is performed in Appendix F. We see that if F(I,k) and G(I, k)

are nonzero and

for some k and I < [ < I, then we find an intersection surface of W?(4) and

W(A) near the surface parametrized by I and t¢, with

= cos & G(I.k)
0 TF(Ik)

3.5. Orbits Homoclinic to Periodic Orbits in I, Away from the
Resonance Band for Nondissipative Perturbations. We saw in the previous
section how to compute when W?(A4) and W*(.A) intersect transversely at a point
and what this implies for the orbit going through that intersection point. The
situation we found especially interesting was when the orbit did not leave W2, .(A)
and W, .(A), since in that case it had to approach a fixed point or a closed invariant

curve inside A in forward and possibly another one in backward time. In Section



-75-
3.2 we have shown that there are many closed, in fact periodic, orbits in II. when

« 1s zero.

In this section we look at the intersections of the stable and unstable manifolds
of the nonresonant periodic orbits in II.. We want to show that for the periodic
orbits contained in A, the existence of such intersections can easily be inferred from
the existence of intersections of W2(.A) and W¥(.A). All we need to do is to carefully
examine the transversality of the intersections of the level sets of the Hamiltonian

H.(z,y,I,v) with 4, W2(A), and W*(A), and also with W2(A) N W2(A).

It will be a simple matter to show that all these intersections are transverse, and
from this we will immediately deduce that when we restrict ourselves to a level set
of H(z,y,I,7), transverse intersections of W2(A) and W¥(.A4) become transverse
intersections of the stable and unstable manifolds of the periodic orbits in 4. We
will therefore show that, under certain conditions which can easily be calculated,
the periodic orbits in .4 possess transverse homoclinic orbits. In conclusion, we will
discuss the implications of these transverse homoclinic orbits for the existence of

nearby chaotic dynamics.

We start with a simple observation that outside the resonance band, each
periodic orbit can be at least locally uniquely labeled by the value of the Hamiltonian
H. on it. We can either calculate this fact directly by expressing ¢; in terms of c;
and H, from the equation (3.7), or else from the Hamiltonian (3.13),, which is

H, = -;—Iz — I — el’'v/2Isinvy. If we set H, = E = constant, we see that we can
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express I in terms of ¥ and E if 22« = I — 1 is nonzero. If we denote the periodic

al

orbit thus obtained by O.(E), we see that

Proposition 3.6. The orbit O(E) varies smoothly with e. In particular, O.(E)

and Oy(E) are O(¢) apart.

For fixed E, we denote the three-dimensional level sets of the Hamiltonian by

S¢ = {(z,y,1,7)| H(z,y,I) = E}

SfE = {(I’y’IW)IHe(l’y’L”U = E}

We will call them energy manifolds.

In Section 3.3 we imposed certain restrictions on the radii I; and I; of the
annulus A in order that the homoclinic manifold W(.A) of A exists. Here we assume
in addition that either I; < I, < 1 or 1 < I; < I, holds so that .4 does not
contain the resonance. Under these restrictions we can prove the following facts
about the nondissipative case of the perturbed problem: The annulus A, its stable
and unstable manifolds, W?(.A) and W*(A), respectively, and their intersection
W2(A) N W¥(A) all intersect the manifolds SZ transversely (see Figure 3.16). For
every periodic orbit O(E), the surfaces SENW?(A) and SE NW*(A) are its stable
and unstable manifolds. Transversality of all of the above-mentioned intersections
with SZ guarantees that if W?(.A) and W}*(A) intersect transversely in a surface, the
I coordinate of whose points can take on all the possible values between I; and Iy,

then transversality of the intersection of W2(A) and W}*(A) implies transversality
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of the intersection of the stable and unstable manifolds of all of the periodic orbits
O(F) in A.

Therefore, since we restrict ourselves to an energy manifold SZ, we are back
in the familiar situation of a hyperbolic periodic orbit whose stable and unstable
manifolds intersect transversely. As we have mentioned before, another method
exists for obtaining the same result. This alternative method consists of using 7
as the independent variable for the dynamics restricted to SZ (see Holmes and
Marsden {1982}, and Ercolani, McLaughlin, and Forest {1989]). Even though this
method gives the same Melnikov function as ours in the end, it relies crucially on the
assumption that 4 is nonzero along the unperturbed homoclinic surface W(A)NSE.
Therefore, it cannot be applied to all situations in our problem where ¥ = 1 —I —z?
which may well have isolated zeros.

We now present a few propositions which will prove the assertions we made

above. We first prove

Proposition 3.7. For small enough values of €, the manifolds S¥ intersect W2(A)

and W!(A) transversely.

PROOF: Since transverse intersections survive small perturbations, transversality
of the intersection of S and W(A) implies the result of our proposition. Hence,
we only need to prove that the manifolds S& and W(.A) intersect transversely. This
proof proceeds as follows. To begin with, we recall that the unperturbed homoclinic

manifold W(.A) is three-dimensional and is described by the equation (2.10), which
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is H(z,y,I) — H(0,0,I) = 0. The normal to this manifold is

_ (9H(z.y, 1) OH(z,y,I) OH(z,y,I) 0H(0,0,]) o
nw = Oz ’ Ay ’ oI or ’

The normal to the three-dimensional manifold S£ is

0 - (9H(zy, 1) 0H(z,y,I) OH(z,y,I) 0
E = Oz ’ ay ’ oI ) ’

so at each point of intersection, the normals differ by the vector

9H(0,0,I) \ _
(o,o, 57 ,o>_(0,0,1 1,0).

Since we have excluded the points with I = 1 from A4 and hence also from W(A),
this vector is nonzero on A. Since the normals of the two manifolds SZ and W(A)
do not coincide at the intersection point, neither do their tangent spaces and hence
the manifolds intersect transversely in a two-dimensional surface. This concludes

the proof of the proposition.

This proposition also shows that the manifolds S¥ foliate W?(.A) and W2(A)
into two-dimensional energy “slices,” W2(O(E)) = SENW2(A) and W*(O(E)) =
SENW2(A). We will now show that these energy “slices” are nothing but the stable

and unstable manifolds of the orbits O (E).

Proposition 3.8. For every periodic orbit O(E), the surface W2(O(E)) is its

stable manifold and the surface W*(O.(E)) its unstable manifold.

PROOF": The proof of this proposition will consist of two parts. We will first prove

that if we restrict burselves to W2(A) and W}*(A), the manifolds W?(O.(E)) and
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W(Oe(E)) intersect A transversely along O(E) (see Figure 3.16). We will then
show that orbits on W2(O.(E)) and W*(O.(E)) approach O.(E) in forward and
backward time, respectively.

In the first part, we must start by proving that the energy surfaces SZ inter-
sect A transversely along the periodic orbits O.(E). Since transverse intersections
persist under perturbations we only need this proof for € = 0. The latter consists
of checking that the energy surfaces S& intersect A transversely. We start this by

noting that the tangent space of Il at any point in A is spanned by the vectors
I=(0,0,1,0)

4 =1(0,0,0,1).

The normal to SE at any point in II, away from I =1 is

oH
—7(0,0,1),0) = (0,0,7 - 1,0)

ng = (0,0,

which is a multiple of J. Therefore, the sum of the tangent spaces of II, and S

at a given point in II. equals the sum of the tangent space of S¥ and the normal

to S&, which is R*. Transversality of the intersection between SF and A is then
proven.

The statement that W}’(O.(E)) and W*(O.(E)) intersect A along the periodic

orbits O¢(E) transversely when we restrict ourselves to W?(.A) and W*(.A), respec-

tively, now follows quite easily from the fact that SZ is transverse to both A and

the manifolds W?(A) and W}*(A).
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We now perform the second part of the proof. For brevity, we do it only for the
stable manifolds; the argument for the unstable manifolds is the same. We begin
by noting that every orbit starting in W2(O.(E)) will be O(e) close to an orbit in
W3 (Oo(E)) for finite times because of the Gronwall estimates. This means that it

will eventually come to W?

c1oc(A). Once in there, it cannot leave W7, (A), since it

must stay on W, (A)NWZ(O(E)) which is O(e) close to W, .(A)NW;(Oo(E)).
The I coordinate on the latter is a constant given by the equation %—I 2_I=E,and
hence the I coordinate on W£, (A)NWE(O((E)) can not vary by more than O(e),
which is certainly not enough for any orbit in it to escape W7, (A). Therefore, the

orbit must approach an invariant set in A because of Proposition 3.4 in Section 3.3.

The only possible such set is W (O (E)) N A = O.(E), which concludes our proof.

We remark that the situation in Proposition 3.8 is analogous to that of the
usual planar Hamiltonian system with a saddle-type fixed point. By continuity,
the value of the Hamiltonian at the fixed point and on its stable and unstable
manifolds must be the same. In other words, in that case the fixed point, together
with its stable and unstable manifolds, forms one level set of the Hamiltonian, just
as O(FE) together with W2 (O.(E)) and W*(O(FE)) does when restricted to the

union of W?(.A) and W*(A) in our problem.

We now turn our attention to the intersections of W2(A) and W*(.A) and
their implications for our situation. It is clear that if W?(A) and W*(A) intersect

transversely along a two-dimensional surface S, and if the energy manifold SF
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intersects S, transversely, then W2(O.(E)) and W*(O¢(E)) intersect transversely
inside SZ along SE N &..
To check for transverse intersections of W*(A) and W}*(A), we apply the Mel-
nikov theory developed in the previous section. The Melnikov function in the nondis-

sipative case reduces to
M(I,7;k,0,I') =TF(I, k) coso .

It has zeros at v = (1'3-;—1-)1 for all integer n. If F(I,k) is nonzero for ; < I < I,
at a given value of k, the partial derivative g—ﬁ‘fo—(I, Y; k,0,T) = (=1)"TF(1,k) is
nonzero and hence we can describe the intersection surface by v = Q"%E + O(e),
where the O(¢) terms depend on the other parameters in the Melnikov function; in
particular I, and possibly ty. Therefore, W2(.A) and W!(.A) intersect transversely

along a surface S, which is near the surface
SO = {(m(-to,[),y(—to,I),I,7(_t031770))ItO € R,Il < I < I2,,70 — §2n-;-1!1r}

where z(—to,I), y(—to,I), and ¥(—tg,1,70) are the homoclinic coordinates de-
scribed in the previous section.

We are now in a position to establish
Proposition 3.9. The surface S, intersects the manifolds S¥ transversely.

PROOF: As in the above propositions, we only need the proof for € = 0. We first

note that Sp is described by the two equations

H(z,y,I)— H(0,0,I)=0 (3.55a)
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(2n+ 1)m

. (3.556)

Yo =

From the above parametrization of &y we find the two independent tangents of Sy

to be
¢ = Ox(—tg,I) Oy(—to,I) 0 Ov(—to, I, 7o)
to — 8t0 ’ ato VY atg
oH oH OH
= <_—a—y—(xay,-[)a_5;(z$y,-[)sov _a—f'(xaya[))
and

6 = ((h(——to,I)’ 8y(—t0,I)’0’

67(_t0s Iv 70)
oI oI ’

oI
where, for less cumbersome notation, we suppress the argument (—to, ) in z, y and
~+ whenever they appear in H(z,y,I). Now, obviously, t;, - ng = 0, but

__OH Oz OH dy OH
t[ ‘np = 8:1: (Ivya‘[)al(_t()v[) + ay (m’y,I)aI(—tO’I) +

oI
dH .
= E—(.’L‘(-—to, I),y("‘t07 I)7I)

From (3.55a) we get

dH oOH
gf(x(—tovf),y('—tmf),f) = —a—f(O,OJ),

, therefore,
OH
t;r-ng = —6—1,-(0,0,1) =[~-1
which is nonzero except at the resonance at I = 1, which we have excluded from A by

hypothesis. This means that S and S& intersect transversely, and by a dimensional

count we see that they do so along a curve. This concludes our proof.

The intersection of SZ NS, is precisely W2(O(E))NW*(O(E)). Since W2(A)
and W¥(A) also intersect transversely, it should be clear that W (O.(E)) and

W2(0.(E)) intersect transversely inside S along S¥ NS,. Thus we have proved
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Proposition 3.10. If F(I, k) is nonzero on an interval Iy < I < I; not containing
I = 1, then for all small enough e, the stable and unstable manifolds of all the
periodic orbits contained in the annulus A intersect transversely on the energy
manifolds SE. Therefore, all the periodic orbits on that annulus possess transverse

homoclinic orbits.

From the above discussion we conclude that the sufficient criterion for trans-
verse intersections on the energy manifold of the stable and unstable manifolds of

periodic orbits in II; contained inside an annulus in II. were
(a) that the Melnikov function had a zero for each value of I in that annulus, and

(b) that its partial derivative on the angle v, was nonzero for all the values of I
involved, and hence the zeros formed a curve which could be parametrized by

I and that %LI[-(O, 0, I) was nonzero for all those I values.

This is important to note since the same conditions apply to the general situ-
ation.

Let us now see what the implications of transverse intersections of W2(O(E))
and W*(O.(E)) are for the possible existence of a nearby chaotic invariant set. As-
sume for this that O.(E) lies near the circle in II, with I = I. If in the unperturbed
case v is bounded away from zero along the homoclinic manifolds at I = I, we
can set up a Poincaré map by fixing v at a particular value, say 4, and monitoring
z,y, and I as v returns to ¥ + 2r. We can then use the Smale-Birkhoff homoclinic

theorem (see Wiggins [1988]) to show that this map possesses a chaotic invariant
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Cantor set with the Poincaré map acting on it like a shift on two symbols. In fact,
because the perturbed problem still possesses the symmetry with respect to the map
(z,y,I,v) — (—z,—y,I,7), each orbit O.(E) whose stable and unstable manifolds
intersect transversely in SF possesses two transverse homoclinic orbits. These or-
bits imply the existence of another chaotic invariant Cantor set. The Poincaré map
again acts on it like a shift on two symbols, but the two symbols now have a clear
meaning. Each one of them corresponds to a passage of the solution near one of
the two symmetric homoclinic orbits. Therefore, the dynamics of the solutions with
the initial conditions in that invariant set exhibit random jumping from one of two
symmetric loops to another, similar to that in the perturbed pendulum equation.

We will not give the rigorous details of the above discussion, since they are
well documented in Wiggins [1988], and a similar case will be presented later in
Chapter 4, and in Appendix G. We remark that if ¥ is not bounded away from
zero, we should still be able to set up a Poincaré map by carefully choosing v = ¥
and possibly waiting for more than one period for the v coordinate of the orbits to
return to 4. Once the Poincaré map is set up, however, everything else should be

the same as when % is of one sign.
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Figure 3.2. Dynamics in II. in the nondissipative case.
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Figure 3.3. Phase portrait of the equations (3.9),.
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Figure 3.4. Phase portrait of the equations (3.9)..
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Figure 3.6. Local stable and unstable manifolds of ¢ and ¢, are close.
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Figure 3.7. Trapping regions for the equations (3.9)..
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Figure 3.8. The local stable and unstable manifolds of .4 at a fixed value of ~:

(a) unperturbed, (b) perturbed.
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Figure 3.9. Global stable and unstable manifolds of A at a fixed value of v:

(a) unperturbed, (b) perturbed.

A /We.ioc (D

Figure 3.10. An intersection orbit which leaves W ioc(A).
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Figure 3.11. Periodically forced planar Hamiltonian system with a separatrix loop.

Figure 3.12. The homoclinic coordinate system.
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—W2 (A

Figure 3.13. The normal ny intersects W2(.A) and W*(.A) transversely.

Figure 3.14. Points a{ and a?, closest to the fixed point &..
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(a) an unperturbed orbit, (b) an intersection orbit.
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Figure 3.16. The energy manifolds intersect the stable and unstable
manifolds of A transversely:

(a) unperturbed, (b) perturbed.
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CHAPTER 4

A SILNIKOV ORBIT IN THE
DISSIPATIVE CASE

4.1 Introduction. In this section, we discuss only the dissipative case. We
investigate the existence of orbits homoclinic to the fixed point p. in II, and deter-
mine whether such orbit imply the existence of nearby chaotic invariant sets. As
we have mentioned before, p, and g, are the only two invariant sets in II, capable
of possessing homoclinic orbits in the dissipative case. We chose to study orbits
homoclinic to p, since, as we will see, they mimic closely the mechanism for chaos
observed in the numerical experiments performed by Ercolani, Forest, McLaughlin,
and Overman, (see the references quoted in the introduction). Moreover, it appears
that the results we have obtained will readily carry over to the infinite-dimensional

phase space of the nonlinear Schroedinger equation.

All the difficulties we had to overcome in order to prove the existence of a
Silnikov homoclinic orbit can be attributed to one cause: We are studying orbits
homoclinic to a resonance phenomenon born out of the perturbation. In Section 3.4
we have pointed out the shortcomings of the chief tool used so far for establishing
the existence of chaotic Cantor sets in the phase space, the Melnikov theory. Its
main use was as a persistence theory. It gives a sufficient criterion for determinig

if certain orbits from the unperturbed phase spaces survive a given perturbation.
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In our problem, orbits whose existence we are trying to prove do not exist in the
unperturbed phase space; therefore, if we want to take advantage of the Melnikov
theory at all, we have to find a new role for it. We have discussed a part of this
new role in Section 3.4, where we have shown that the Melnikov function can be
interpreted as the distance between the stable and the unstable manifolds of the

annulus A in II. near a given point on the unperturbed homoclinic manifold.

The second part of the new role that the Melnikov theory will play in our
work will be as a measure of the distance between a particular orbit, the unstable
manifold, W*(pe), of pe, and the three-dimensional stable manifold, W7(.A), of the
annulus A. We develop this distance measurement in Section 4.3. This measurement
is completely unlike any previous Melnikov technique in that we are measuring
the distance between the stable manifold and unstable manifold of two different
invariant sets having different dimensions. We will then show that the Melnikov
function we need for this case is the same one we computed in Section 3.4 with
I = 1 and v, expressed in terms of k, @, and I' via a condition which fixes the
tail of W(po) at po. The condition that the Melnikov function be equal to zero
therefore gives us one equation for two unknowns, & and the ratio #. In the space
of the parameters k, a and I' this equation defines a two dimensional surface, 1.e., a
set with zero measure. This implies that the existence of a saddle connection at p,

must be a rare event. We will discuss in Appendix G, however, how the existence of

a saddle connection to p. at one point in the parameter space implies the existence
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of a nearby chaotic invariant set in a neighborhood of that point. This means that
the set of the points in the parameter space where a chaotic invariant set exists in

the phase space will not have measure zero.

Also, showing persistence of the local unstable manifold, W, (pc), of p. and
establishing its smoothness with respect to e are nontrivial problems. They are
nontrivial since the unperturbed point pg is not hyperbolic, t.e., two of its eigenval-
ues are zero. Therefore, in Section 4.2 we will have to slightly modify the existing
persistence theorem for the stable manifolds of a fixed point. Our theorem about
the persistence of W}*(p.) and the closeness of W*(p,) and W (py) will first hold
only locally in a neighborhood of po and p; i.e., for W¥, (pe) and Wg';, .(po). We
will then extend W, (pe) to become the global unstable manifold, W/*(p.), of the
fixed point p. and prove that two solutions starting on W2, (pe) and W', .(po)
a distance O(e) apart at ¢t = 0 will stay O(e) close for all semi-infinite, positive
t. This will extend the closeness of W*(p.) and W' (po) to the beyond the small
neighborhood of A4 in which the local manifolds are close. Closeness for the global

manifolds will be important to know in Section 4.6. when we discuss the infinite

time behavior of solutions on Wk(p,).

In sections 4.2 and 4.3 we will describe the behavior of orbits in W*(p.) on the
time intervals (—oo, t] for all finite ¢ and state the conditions for the corresponding
parts of W}*(pe) to be contained in W?(.A), or equivalently, in W2 (A)NW2(A). As

we know, however, the solutions on W}*(p,) may still drift out of W2, (A) through
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its bottom (defined in Section 3.3) as t — +-0o. We will apply rescaling and special
geometric singular perturbation techniques to follow the solution on W*(p,) when
1t is close to A at very large values of ¢. In particular, we will show that the solution
approaches a certain solution in A exponentially for large ¢, as long as it stays in

S 10e(A). We will then use the information about various basins of attraction in
II. which we obtained in Section 3.2, in order to present the criteria for W*(pe) to
return to p. and establish the saddle connection. The discussion of the rescaling and
the geometric singular perturbation techniques will be distributed among Sections
4.4, 4.5 and 4.6. In Section 4.4 we will discuss the rescaling, and in Section 4.5 we
will present the necessary tool from the geometric singular perturbation theory, the
stable (and unstable) fibers. We can compare the stable fibers to a shrinking leash
connecting the solution on W¥(p.) to the corresponding solution in II., making sure
that they approach each other as time progresses. In Section 4.6, we then join all
this information into an effective existence theorem for the orbit homoclinic to p..
It is in these last three sections that most of the hard work is hidden; in particular,
Theorem 4.4 in Section 4.5 is a consequence of the hard analysis performed in
four papers by N. Fenichel ([1971], [1974], [1977], [1979]). We stress again that
the necessity to use these nontrivial tools stems from the fact that the resonant
structures in our perturbed phase space do not persist under perturbation, but

are rather created by it. Thus we are not looking for the persistence of an orbit

homoclinic to pg, but are instead constructing an orbit homoclinic to p. from a
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heteroclinic orbit coming out of py and orbits in II,.

The final result will be the criterion for the existence of two symmetric Silnikov-
type loops homoclinic to p. Section 4.6, and their implications for the existing
chaotic dynamics. The dynamics near such a loop have first been theoretically
described by Silnikov [1965]. We will present a brief discussion of the relevant
dynamics (with some of the details relegated to Appendix G) and point out the

features they have in common with the dynamics of the Sine-Gordon equation.

4.2 Persistence and Smoothness of the Unstable Manifold W*(p,) of
the Fixed Point p.. We now turn to the first topic in our program, the unstable
manifold W*(p.) of p.. For positive damping ea the fixed point p, possesses a
three-dimensional stable and a one-dimensional unstable manifold. This statement
follows readily from the considerations in Section 3.2 and the fact that py in the
unperturbed case had a positive, a negative, and two zero eigenvalues. The unstable
manifold, TW*(p.), of the point p is our candidate for the homoclinic loop. However,
even though its existence follows from standard theorems for every positive € and
a, its smooth dependence on € down to and including € = 0 does not, and therefore
we must address this question here.

As usual, we first examine the local situation and prove

Proposition 4.1. For small enough € and positive ea, there exists a one-dimension
al manifold W}, (pc), the strong local unstable manifold of the fixed point p.. It

depends analytically on € and the parameters k, «, and T', and is uniformly O(e)
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close to W' ,.(Po)-

PROOQF: The proof is long and tedious, and since it is not crucial for the under-
standing of the rest of the material presented here, it will be relegated to Appendix

D. Also, the subtleties of the analyticity of W¥(p.) will be discussed there.

We now want to extend this result outside a neighborhood of p, and p.. To
this end, let py be a point on W, (ps) and let p. be a point on W, (pe), a
distance O(¢) away from py. Denote the solution of (3.3)y passing through p, at
t =0 by (£o(t,Po), Jo(t, Do), 1, % (t, po)). (Note that it is just a time shift of either
the solutions (2.23) or (2.24), depending on the value of k) and the solution of
(3.3). passing through p. at t = 0 by (2.(t, pe), Ge(t, Pe)s Le(t, Pe), Fe(t, Be)). Using

Gronwall’s inequality (see Appendix C) we get

Proposition 4.2. For any fixed positive time t, there exists a constant N(T') such

that for every t with 0 <t < T, the inequality

“(*’io(taﬁO)’gO(tvﬁO)’ 17':/0(159130)) - (jé(t’pAf)aZ)E(t7ﬁf)’jé(t7ﬁ6)7’?€(t7ﬁf))“ S GIV(T)

holds.

Propositions 4.1 and 4.2 combined give us control over solutions on W¥(p.) on
time intervals (—oo,t] for any finite t. The price we pay for it is having to decrease
€ as we increase t. We will need the results from this section in Section 4.6, when
we use the point (£(T, e ), (T, Pe ), fE(T, De)y Ye(T, De)) as the initial condition for

a solution on the part of W*(p,) which is no longer close to a solution on W (pg)
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but is instead close to a solution in II..

4.3. The Distance Between W*(p.) and W?(.4). In this section we develop
a calculation, analogous to the one in Section 3.4, which will enable us to calculate
when W¥(p) is contained in W?(.A). The Melnikov function we will thus obtain
will be the same as the one we computed in Section 3.4 with I and v¢ fixed at some
prescribed values; but the details of the geometry and the conditions which ensure
that the zeros of the Melnikov function imply that W*(p¢) is contained in W}(.A)

are sufficiently different so that they deserve a special derivation.

We begin with a review of the relevant material from preceeding sections. We
have seen in the previous section that for positive ea the unstable manifold W} (p.)
persists under perturbation as a one-dimensional manifold, a part of it being uni-
formly O(e) close to Wi (po). Also, Wr(p,) depends smoothly on € and all the other

parameters in the problem.

We will assume that I; < 1 < I so that the annulus A is contained in the
resonance and set up the measurement of the distance between W' (pe) and W?(.A)
using perturbation theory near W§*(py) in a manner analogous to the one in Section
3.4. We will again need to follow the same steps as in Section 3.4. First, we will
parametrize W'(py). Second, we will attach a coordinate system at each point of
W (po) in order to measure the distance between W*(p) and W7 (A). Finally, we
will determine the number of directions in which we need to measure the distance

and develop the Melnikov function. Some of these steps will be the same as in
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Section 3.4. We will develop the non-similar steps from the beginning, and contrast
them with the corresponding steps in Section 3.4.

We first set up the parametrization of W (pg) by restricting the parametriza-
tion (3.16) of W(A) to W' (po). In this parametrization, the choice of I and v
singles out a particular orbit on W(.4). Since Wy (po) is one of the orbits of the
pinched homoclinic torus connecting the unperturbed circle of fixed points in II.
at I = 1 to itself, the choice of I for our work with the resonance is clearly I = 1.
The choice of +y will follow from the definition of Wi (pg) as the orbit on which
all the trajectories approach py in backward time. The backward time limit of the
~ component of a particular trajectory on Wg'(po) is given by formula (2.32a) for
0<k< % and by formula (2.35a) for % < k < /2. But since all the other trajecto-
ries are obtained from this particular one by finite time translation, the backward
time limit of their v component is given by the same formulas (2.32a) and (2.35a)
used for the particular trajectory.

Therefore, we can calculate vp = ¥o(k, «, I') which determines Wy'(po) from the
~ component, T — cos_lﬂ%, of pg and formulas (2.32a) and (2.35a), respectively.

The result we obtain is

_ 3 1 fEa . k 1 -1 Tk?
Fo(k,a,T) = - cos 28 — cot Vo 7_% tanh T (4.1a)
for k < £ and
VIR 1 e
Fo(k,a,T) =7 —cos™! V2% —tan™! — — — tanh ™" 2k (4.1d)

k Vi Tk?
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for 1 <k < V2. Our parametrization of W(po) is therefore given by
VV(‘;‘(po) = {(‘T(_tmI)’y(—tOvI)vIv7(—t07I77O)) ItO ER7I = 1370 = 70(k7a7r\)} '

At each point a = (z(~t9,1),y(~t0,1),1,7(—t0, 1,7 (k,a,T"))) we then attach
the moving coordinate frame spanned by the vectors t,,(z,y,I), nw(z,y, 1), I and
4, exactly as in Section 3.4, where the components of these vectors are expressed
by the formulas (3.17) through (3.20).

We next want to show that the number of independent directions along which
we need to measure the distance between W*(p.) and W2(A) is one and at the
same time set up the measurement. Recall from Section 3.4 that we picked two
points, a? € W?2(A) and a? € W*(A), near a € W(A) in a unique way, and then
measured the distance between a? and a*. If it happened that af = a* then W2(A)
and W*(.A) intersected there.

We want to do the same thing here. However, we need to be careful since the
way of obtaining a’ and a} will now have to be different from that of Section 3.4.
To point out the difference, let us first recall how we found a} and a! in Section
3.4. There we looked at the intersection points of the line through e, parallel to ny
at a, with W2(A4) and W*(A). The points a} and a? were the intersection points
on W?(A) and W*(A) whose trajectories took the least amount of time to reach

* oe(A) and W2

e,loc

(A), respectively. The key ingredient in the definition of ¢ and

loc

a? was the fact that nw intersected W(.A) at a transversely in precisely the point

a. This implied that the line through a parallel to ny would also intersect W2(A)
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and W*(A) transversely, each one in at least one isolated point. This guaranteed
the existence of a! and a® and, as we mentioned before, we could then choose them

In a unique manner.

In this section we want a’ to be on W*(p.). However, at no point a on W§'(pg)
can W{¥(po) and nw intersect transversely; at best the sum of their tangent spaces
is two-dimensional and for transversality it would have to be four. Because of this,
nw and W*(p.) cannot be expected to intersect at all, and a¢ cannot be defined
as one of the intersection points. In order to insure transversality, and thus the
existence of a¥, we must attach at a a subspace with precisely enough dimensions
so that it will intersect W¥(po) at a transversely in just the point a. Since Wg(po)
is one-dimensional, this subspace must be three-dimensional. The best possible
choice for such a subspace is the subspace ¥, spanned by the vectors nw, I and
% at a. This subspace is transverse to W{(pp) at a where they intersect, since the
tangent t;, to W&(po) at a and the above three vectors form a basis of R *. as was
explained in Section 3.4. Therefore, &, also intersects W*(p,) transversely near
a, and hence we can again define a® as the intersection point of £, and Wg(p.)

closest to W}

'10c(A) in terms of the time the trajectory starting at a takes to reach

We, (A).

¢,loc

From here on the situation is similar to that in Section 3.4. Since nw is
orthogonal to W(.A) at a, a line parallel to ny through a? will be transverse

to W2(.A) and will hence intersect it in at least one point. We define a? as the
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intersection point of the line parallel to nw through a¥ and W?(.4) which is closest

to W?

2 1ocl-A), again in terms of the time the trajectory starting at a takes to reach

W?10c(A). The signed distance d(ta, 1,7 (k,a,); k,a,T;€), and the derivation and
form of the Melnikov function M(1,30(k,,I');k,a,T") are the same as in Section
3.4, except for the fact that the I and +, variables are not free any more but
instead assume the specific values I = 1 and v = 7o(k,a,'), which determine
the unperturbed orbit Wi*(po). The main difference, again, lies in the geometry,
since it is meaningless to talk about transversality of an intersection of W*(p.) and
W?(A). The reason for this is that W*(p¢) is an orbit and hence if it intersects
W2(A) at one point, it must, because of the local invariance of W?(.A), be contained
in W2(.A) until it leaves W?(.A) through either the top or the bottom of W2, (A).
We will thus say that in such a case W2(p.) is contained in W2(A) at least locally.
In particular, if W*(p.) and W?(A) intersect, every solution on Wk(p,) must be
contained in W?(A) for all large negative times. From the above discussion, we
therefore see that W*(p.) is either at least locally contained in W'(A) or else they

have no points other than p, in common.

We remark that Wi'(po) and W*(p.), the distance d(tg,1,%0(k, @, T'); k, o, T €)
and the Melnikov function M(1,%(k,a,');k,a,I') all vary smoothly with the pa-

rameters k, o and T.

We now state the connection between zeros of the Melnikov function and in-

tersections of W*(p,) and W2(A) in
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Proposition 4.3. Suppose that for some k = k, « = @ and T = [’ the following

statements are true:
(1) M(1,7%(k,a,T); k&) =0.

(2) At least one of the first partial derivatives of M(1,50(k,a,T); k, a,T) with

respect to k, a or I is nonzero at k =k, a =a andI' =T.

Then for e sufficiently small, W}*(p¢) is locally contained in W2 (A) for some k, a,

and T neark=k,a=aand =T.

PROOF: Fix tg and define
d(to,1,%0(k, &, T); b, ., T €)

[y

EHDW(I( to, L sy(—t(lvj)vI)”d(tO’ 1,’?0(&2,01,11);]6,0(,1",6)

= M(1,5(k,a,T); k,a,T) + O(e)

as in Section 3.4. We have d(to,l Fo(k,@,T);k,&,I';0) = 0 and one of the deriva-

tives, say for definiteness %(to,l Folk,a,T); k,a,T;0) = %—f»(l,’?o(l::, ), k,a,T)

nonzero. Therefore, for small €, we can express by the implicit function theorem

a = a(te,k,I';e) with a = a(to,l_c,l"; 0) = a and

d(to, 1,70(k; a(to, &, T; €), T); k, a(to, b, T; €), Ty €) = 0,
which implies

d(to, 1,vo(k,alte, b, €),T); k,alte, k,T5€),[e) = 0.
This means that for all € small enough a! = a? near the point

a = (2(=to, 1),y(~to, 1), 1, 7(~t0, 1, Fo(k, a(to, k, T; €),T))) (42)
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on W (po). (We will comment on the curious appearance of € in (4.2) shortly.) But
if this is true for one point a in W§'(po ), it must be true for all the other points in
Wg(pe) with the same values of k,a, and I" as well, since W2(p.) is either locally
contained in W?(.A) or else they do not intersect at all. This shows that a(to,%,T’;€)

is independent of ty, t.e., « = a(k,[';€) only, and concludes our proof.

We now want to make a comment concerning the expression (4.2). We note
that the appearance of € in (4.2) at first seems a bit mysterious, because a lies on
W¢(po), an unperturbed heteroclinic orbit, and € is the perturbation parameter.
However, we recall that the position of W (py) depends on the parameters o and
T, which also only enter in our equations through the perturbation. Moreover, in
the above proof the parameter @ must be a function of € in order that a} = a? for
all small enough e. This forces the choice of W (po ), and hence also that of pg, to
depend on € in our proof.

To conclude this section. note that Proposition 4.3 only provides a criterion for
W(pe) to be contained in W7(A) locally. This means that solutions on W2(p)
leave W7, .(A) as t — co. In order to bring the forward asymptotic behavior of

W(pe) under control, we must apply different methods which we will develop in

the next few sections.

4.4. The Three Systems Needed to Establish the Existence of the
Saddle Connection at p.. Having given in Proposition 4.3 the conditions on

the values of a and I at which W*(p) is at least locally contained in W?(.A), we
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now have to investigate whether W*(p.), in the case when these conditions are
met, returns to p, as t — oo or else leaves a neighborhood of 4. Intuitively, one
would tend to believe that the sufficient condition for W*(p¢) to return to p, will
be if the forward-time limit point of Wj'(po) is contained in the resonance. The
reason for this belief is that we have shown on the one hand that the width of the
resonance to be of order O(\/¢) and on the other hand that W*(p,) returns to any
prescribed neighborhood of A at a distance of O(¢) of where Wj'(po) does. Inside
this neighborhood, the two orbits differ drastically. We may, therefore, expect the
dynamics on W' (pg) to bear no relationship with those on W*(p.). However, all
the orbits in the resonance tend to p. and it is reasonable to expect that so will all

the orbits in its immediate neighborhood.

If one tries to prove these conjectures rigorously, though, one encounters some
serious difficulties. The reason for these difficulties lies in the impreciseness of the
statement that W*(p.) returns to any prescribed neighborhood of A a distance
O(e) away from where W (po) does. The precise statements are as follows: Given
any fixed positive 0§, there will exist a large enough ¢t = T such that the z and y
coordinates of any two trajectories on W (pe) and Wk (pe ), which started a distance
O(€) apart at t = 0, will satisfy z* +y% < § at ¢ = T, while the trajectories will still
be a distance O(¢) apart. This 6 is completely independent of ¢, and in fact it is
incorrect to assume that we could make it shrink to zero together with . Therefore,

as € tends to zero, the width of the resonance becomes very small compared to é
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and there is no guarantee that W*(p.) does not miss it.

After some thought we recognize two major obstacles to our attempted argu-
ment. The first obstacle is the fact that the width of the resonance shrinks to zero
with e. The second one is that there exists no d-priori reason for the orbits in W2(A)
to behave in the same way as those in .4, no matter how close to A they may be.
The problem with the width of the resonance band is, as we will see shortly, easily
overcome by rescaling. The second obstacle is more difficult to overcome, however,
and requires for its final resolution strong general results obtained by hard analysis,
similar to those used in proving persistence of invariant manifolds.

In this section we resolve the first of the two obstacles discussed above. Us-
ing the appropriate rescaling we will magnify the resonance band and obtain two
important sets of equations. I{nowledge of these two sets of equations will allow
us to understand the dynamics in and near the resonance. We will use one set of
equations when we study the dynamics in the resonance which become slower and
slower as ¢ — 0, and we will use the second set of equations when we study the
exponential approach of trajectories in W?(A) to A.

We make the same transformation I = 1 + \/eh as in Section 3.2 to arrive at
the system

Iy
V2(1+ \eh) — 22 — y?

&= —k?y + iys - %a:Qy—{-e

siny — az} (4.3a).

Iz
V2(1 + Jeh) — 2% — y?

g:(k2—2)x+{-x3+%my2—2\/€hm—e[ sinvy + ay

(4.3b).
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h = —/e {1\/2(1 + Veh) — 22 —y2? cosy + 2a(l + /eh) (4.3¢).

T
VAt veh) sy

Putting £ = y = 0, we can rescale time 7 = /et and again obtain the familiar

y=—z% = Jeh +¢

iny . (4.3d)

equations

B = =T1/2(1 + Veh) cos vy — 2a(1 + Veh) (3.9a).

r
v = ~h+ ——ig—-——u sin (3.9b),
2(1 + \/eh)

with ' representing the derivative on 7, which we have extensively studied in Section
3.2. Recall, in particular, that the width of the resonance band in the z, y, A and v
coordinates is O(1) and that its interior is approximately the interior of a separatrix
W(qo) when € tends to zero. We note the two limiting sets of these equations which

we get as € — (. They are

= —kty+ 1yt - 3%y (4.3a)o
y=(k*=2)z+ I2° + 3zy° (4.3b)q
h=0 (4.3¢)o
Y= —g? (4.3d)o
and
B = —T'V2cosy — 2a (3.9a)o

~ = —h (3.95)o -
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Note that in the system (4.3)o, the equations for the z, y and v are the same as the
equations for the z, y and v in the system (2.6) at = 1, and hence the solutions of
these equations are also the same. In particular, the homoclinic orbit solutions from
Section 2.4 with I = 1 hold in this case. The main difference between the systems
(4.3)¢ and (2.6) is that the circle of fixed points has been magnified to cover the
whole A-v plane, which we will call fIc. (Note that for nonzero e, f[c and II, are
identical.) We can indeed see directly that II, is a plane of fixed points for (4.3),.
Also, the previously mentioned homoclinic solutions, together with the equation
h = constant, describe heteroclinic orbits connecting pairs of points in II,.

We will again investigate the dynamics associated with annuli in .. Coordi-

nates on such an annulus A will be given by
A={(z,y,h7)]e=y=0h <h<hy,0<y< 27},

The system (4.3)¢ and its limits (4.3)y and (3.9)p will provide all the information we
need to complete our analysis. Note that (4.3). and (3.3), are the same equations in
different coordinates, and therefore, all the statements about one of them also hold
for the other. The fact that we need two limits is typical of singular perturbation
problems. As we have mentioned before, the so called inner limit, (4.3)q, will provide
the estimate for the rates of fast exponential approach of the orbits in W?(A) to
A. The outer equations (3.9), and their limit (3.9)o will in turn provide the slow
dynamics along A. The purpose of the next few sections will be to discuss how

these two systems are coupled in (4.3), and thus show that the dynamics in W?(A)
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close to A really are very similar to those in A.

4.5. Stable and Unstable Fibers. In the previous section we have rescaled
the resonance; it is now O(1) wide and due to rescaling, W*(p.) returns to any given
neighborhood of II. a distance O(V/e) away from W¢(po). Restricting ourselves to

the annulus A in II. given by
A={(z,y,h.7) |z =y=0,h <h<hy0<7 < 2r}

with hy and h, large enough, so that A contains the resonance, we now want to show
that once they are in a neighborhood of A, the solutions on W*(p,) have the same
forward time asymptotic behavior as solutions on an orbit in A passing through
an O(y/€) small neighborhood of the forward limit point of W(py). In fact, any
point on W}*(p¢) will approach a corresponding point moving on that planar orbit
exponentially in forward time. It is in this way that we are combining the dynamics
of (4.3)o and (3.9).. The equations (3.9). will give the orbit in A and (4.3)y will
provide the exponential rates of attraction towards A transverse to A along that
orbit.

We begin this section with a simple example in R 2

£ = —ef (4.4a),

n=-n (4.4b)

which in a naive way models the behavior in W?(A) in a small neighborhood of De-
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In particular, £ corresponds to A and 7, and n corresponds to the distance from A
in (4.3)..

For zero €, the solution of (4.4)q is

§=6o

n=r1nee .

We see that the { axis is a line of fixed points for (4.4)9. The orbits of (4.4)y are
straight lines of constant £ = &, and all the points on them approach the base point

(£,m) = (£0,0) at an exponential rate e~

More specifically, if we only allow 1,
to have its absolute value smaller than, say, a positive number M, the distance
between any point starting at ¢ = 0 with one of the allowed values of 1g and the
base point will be less than Me™!.

An analogous situation occurs in our system (4.3)g. There, the plane . is a
plane of fixed points. The one-dimensional local stable manifolds of the fixed points
foliate the local stable manifold of ﬁc. Solutions on these local stable manifolds

—kvV2-k*t (this was

approach the fixed points at their base at the exponential rate e
discussed in Section 3.3). We thus see that the local stable manifolds of the fixed
points in II, play the same role in the dynamics of the equations (4.3)y as the local

stable manifolds of the fixed points on the € axis do in our example.

For nonzero ¢, the solution of (4.4), is

£ = e
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n=mnoe ",

and the orbits are now a one-parameter family of parabolas {77 = C'fj? |C € R}.
We see that the orbits differ drastically from the ones in the case of zero €, but
we can easily convince ourselves that vertical lines still bear a special meaning;
they are mapped onto one another by the time flow, and all the points starting
on the vertical segment F7(£,0) = {({,n) & =&, —M < n < M} will be mapped
onto the segment {(£,17) £ = &oe™ ", —Me™ ¢ < n < Me™'} which is shrinking with

 as it was for € = 0. (This notation will become clear

the same exponential rate e~
shortly.) From the standpoint of orbits, any trajectory on any orbit being contained
in F2(&,0) at t = 0 will approach the trajectory (£ge™%,0) at an exponential rate

t

at least as fast as Me™". It is true that trajectories starting on different vertical

lines approach each other exponentially as well; in fact, they all approach the origin,

but the rate of approach is much slower, only e~**.

The vertical segments in our example problem (4.4), are important enough to
deserve a special name; we will call them the stable fibers. We note three important
facts about them. First, stable fibers need not be orbits, yet they can be very well

used to describe the dynamics of (4.4),.

Second, they form a positively invariant family, which means that the image
of the fiber F?(£;,0) under the flow of (4.4), is, at time t, contained in the fiber
Fé(&oe™ ", 0).

Finally, even though orbits may change drastically under perturbation, fibers
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persist. Moreover, we see that in our example, every fiber F7({y,0) can be repre-

sented as a graph over the {; and n variables by the equation £ = £(£o,7) = &.

We now want to explain how the features in our example follow from a general
theory which can be applied to the phase space of (4.3)e. We want to show that
w? 10c(A) is foliated by the stable fibers of the points in a compact neighborhood of
A. These fibers are smooth curves, vary smoothly with /¢, and coincide with the

local stable manifolds of the fixed points in A at € = 0. Trajectories with the initial

conditions on the same fiber will approach each other at the exponential rate e~ "*!

with & = kv/2 — k2 + O(\/€) as long as they stay in W2, _(A).
¢,loc

We first look at the unperturbed case, the equations (4.3)y. There, A is a
manifold of fixed points with one-dimensional stable, one-dimensional unstable,
and two-dimensional center directions. Note that the center directions are those
associated with the two zero eigenvalues of each fixed point in A, i.e., they are a
consequence of the fact that A is an annulus of fixed points. No zero eigenvalues
are associated with the directions transverse to A; the eigendirections transverse to
A therefore correspond to either exponential contraction or exponential expansion.
This property characterizes A as being normally hyperbolic and is a key factor in

the persistence of the stable fibers to be discussed shortly.

The second important property of the unperturbed case is that the local stable
manifolds of the fixed points in A can be expressed as graphs with y, A, and v

being functions of z and the coordinates %, and 7, of the fixed point in A whose
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stable manifold this graph describes. The form of the functions y, k, and v can be
calculated as follows: From (4.3)y we see that h = h.. We can express y in terms of
¢ from the Hamiltonian (2.5) with I = 1. Then we express 6 in terms of z and y(z)
from (2.12), ¢t in terms of §(z) from either (2.23b) or (2.24b) with I = 1, from which
one of the two depending on k, 3 in terms of {(6(z)) and ~, from either (2.23¢c) or
(2.24c) with I = 1, again with the choice of the form depending on k, and finally
v in terms of 8 and 6 from (2.19). The angle v, can then be expressed from the
formula . = v(oo) with y(oco) given by either (2.32b) or (2.35b).

Obviously, the algebra is prohibitive, but for us it suffices to note that the
representation of the stable manifolds of the fixed points in A as graphs over z, h,

and 7, s possible.

3

6,Ioc(./i) there exists precisely one

We also note that, given any point p on
fixed point in A on whose stable manifold p lies. Therefore, we can express the h,

and 7. coordinates of that fixed point in terms of, say, z, h, and - coordinates of p.

We now turn our attention to the perturbed system. We want to show:

Theorem 4.4. For every integer r > 2 and small positive number d we can find
small enough § and \/€g such that for every \/e with —/e; < \/e < \/eq, the local
stable manifold W;,oc(.fl) of the annulus A is foliated by fibers F2(0,0, he,~.) which
are represented by the functions

y = y(z, hey Ve By @, Ty V/E) (4.5a)

h = h(z, he,ve; kya, T /€) (4.5b)
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Y :7(‘T7hc’7c;k7ayr; \/é)y (4‘5C)
these functions being defined for z, h., 7. and /€ satisfying —6 <z < §, hy —d <

he < hg +d, 0 < 7. < 27 and — /& < \/e < \/eg. The fibers possess the following

properties:

(1) The functions y, h and v are C* inz and C" in he, e, k, @, I and \/e including
at \/e = 0.

(2) We have

(0, heyvei by o, T /e) = 0 (4.6a)
R0, heyves kya, T Ve) = 0 (4.6b)
7(03 hC770;kaO‘7F; \/2)207 (46C)

(3) At e =0, the fibers coincide with the stable manifolds of the fixed points in A.

(4) The functions y, h and v are one-to-one on a neighborhood of Ainil,. In
particular, we can express h, and 7. in terms of z, h, and vy from (4.5). This

means that a fiber is uniquely determined by any one of its points.

(5) Let p be a point in W? 1oc(A), whose y, k, and v coordinates are (because of(4))
uniquely determined by its z coordinate and the coordinates h. and 7. of a
point p. in .. Let p* = (z(t,p),y(t,p), h(t,p),v(t,p)) denote the trajectory

passing through p at t = 0. Likewise, let p’ = (0,0, h(t, pc), (¢, pc)) denote
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the trajectory passing through p. at t = 0. Then, for positive t, we have

y(t7 p) = y(CE(t, p)? hc(t’ pc)v 7C(t7pc); kv a, Fy \/E) (470,)
h(t,p) = h(:r(t,p), hc(tspc)’ 7c(tvpc); k‘, a, F; \/E) (47())
v(t,p) = ¥(z(t,p), he(t, pe), ve(t, pe)i ko o, T Ve) (4.7c)

for as long as p' stays in W? (/i) This means that the flow of the equations

e,loc

(4.3)¢ maps the fiber F}(p) = F?(p.) inside the fiber F3(p') = F*(pl), i.e.,

fibers are a locally positively invariant family.

(6) Let 0 < x < kv/2—4%?. Then there exists a constant K, such that for all
Ve with —\/eg < /e < \Jeo we have |z(t,p)| < Ke "' and therefore also
ly(t,p)| < Ke~** for all t such that p* is in W:Joc(fl). In particular, this
shows that all the trajectories passing through a point on the fiber F(p.) will
approach p, and hence each other, exponentially in forward time at the rate

Y

€ as long as they stay in W7,

(A). Moreover, if p* stays in PV;,OC(A) for all

positive times, the fiber F?(p) consists of precisely the points which approach

K

p! at least at the rate e~ "' in forward time.

(7) If {G:(p)} is another family of fibers represented by the graphs
y = (2, he, 7 ky o, T Ve)
h = h(z, he,ve; k, @, T; Ve)

')/ - :)'/(:E, hC) 7c; k) a'} r; \/E)
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and if the functions y, h, and v and §, h and 4 have a tangency at the point

(Z, hey¥e; k, a, T'; \/€) then that tangency is of order r.

PROOF: The proof of this theorem follows easily from Theorem 9.1 in Fenichel,
[1979]. We point out that the previously discussed normal hyperbolicity of Ain the

unperturbed case plays a crucial role in the proof of Fenichel’s theorem.

Before concluding this section, we want to make two comments. The first one
is that the roles of the variables z and y can be interchanged in all of the above
discussion. The second one is that we could define unstable fibers for W, oc(/i) in
precisely the same manner as we defined the stable ones. Fibers will be the main

tool in our discussion of the conditions for W*(p¢) to return to p.. These conditions

will be presented in the next section.

4.6 Orbits Homoclinic to p.. In this section we prove our main result:
the existence of orbits homoclinic to p,. Most of the technicalities are behind us,
and we have all the necessary tools at our disposal. The Melnikov calculation
developed in Section 4.3 will enable us to check whether W}*(p,) is at least locally
contained in W?(A) of some annulus A in II.. In case the answer to this question
is affirmative, the estimates from Section 4.2 will bring two solutions starting at
points po € W¢',.(po) and pe € W2, (pe) back near A to points Pa € W5 10e(A)
(A), and make sure that the z-y-h-vy coordinates of the points pg

and pl € W?

Jdoc

and p! are at most O( /¢) apart. We will then limit ourselves to a smaller annulus



-119-
A in the z-y-h-y coordinates and show that the points p§® and p2°, the intersection
points with A of the fibers F$(pg®) and F?(p<°), respectively, are also O(/€) close,
which will enable us to locate p° to within an O(+/€) distance. By the results of the
previous section, the solutions having p? and p°, respectively, as initial conditions,
will approach each other exponentially for as long as they stay in W, ,Oc(/-i) We,
therefore, only need to find the forward asymptotic behavior of the orbit passing
through p%® to determine what happens to W*(p.), and this we can do by using the
results studied in Section 3.2. In particular, if pg° is attracted to p., a homoclinic

loop connecting p, to itself exists.

Having laid out the strategy, the remaining task is to provide the detailed
propositions and proofs. We will first assume W!(p¢) to be locally contained in
W2(A) and explore the consequences of this assumption in view of Sections 4.2 and
4.5. Recall that we proved that W, (p¢) and W', .(po) are O(e) close in (z,y, I,7)
coordinates. We then chose two points, pg and p. on those two manifolds, O(e) away
from each other and showed that the solutions starting at pp and p., respectively,
remain uniformly O(e) away from each other for finite positive times. In particular,
let T be the time it takes the solution starting at pp to return to = = %, denote that
point by pZ, and the corresponding point on W2 (p), which is O(e) away, by p7. In
the z, y ,h and v coordinates, p{ and pI are O(,/€) apart. Let p5°® and p>® denote
the unique intersection points of the fibers F3(p ) and F?(pl) with II.. Then we

have
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Lemma 4.5. The points p{° and p>® are O(+/€) apart.

PROOF: Let the z,h and v coordinates of p{ and pI be

(‘TO ’ hO » 7o ) a'nd ( he s Ve )

respectively, and let (hoc,7voc) and (Aec, vec) be the h-y coordinates of the points pg°

and p%® (which lie in II;). Then

lhee — hoe| < Mylel — 20| + Ma|hT = hT| + My|yD — 73 | + M€

where

Oh¢
: =max{ — —6< <8 h <h<h,0<y<2m /e < Ve< /eq

I

Oh.
My = max 7 —-6<a:<6,h1<h<h1,057§_27r,—\/§<\/g<\/€o_
{ ,—é<l<0h1<h<h1,0<7<2‘n’—\/—<\/—<\/—}
M_ma.x{a —b<$<5h1<h<h1,0<7<27r—-\/——<\/-<\/—}

where k. = h.(z, h,v; k, o, [; /€). By the above discussion, the quantities leT -z,
|kT — hT|, and |vT —~{] are all O(+/€), and therefore so is |hec — hoc|. The same

type of an inequality is valid for |yec — Yoc| and the lemma follows.

Before stating our main result, we will find the position of the point p§°® and
investigate whether, for given k,a and T, it lies inside the region Rq enclosed by
the separatrix W(qo) or in the region &g, which were both defined in Section 3.2.

The point p%° will then lie in Rg , or Sp ,, respectively, (see Section 3.2.) for some
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small n. The orbit with p2° as the initial condition, will then, by Proposition 3.3,
be either attracted to p. or else leave a neighborhood of A. The same will happen
to the orbit starting at pl since p? and p%® lie on the same fiber, and hence, orbits
starting at p? and p®™ approach each other exponentially fast in forward time. The
same type of argument shows that if p§°® is contained in Sy, the orbit starting at
p? will drift away from A, most probably to the sink near the origin. The h-v

coordinates of the point pg° are
po. = (0,7%(k, &, T))

with

k 2 k2
v*(k,a,T) = 21 — cos ™! \/5% —2cot™} ——== — ~—=tanh™! !

2-k2 VT 2 ~ k2
fork<%—and

V2R 2 L (2= k2
k 7 Tk?

~+*®(k,a,[') =7 — cos™* 2¢ ~2tan”
for 1 <k< V2.
These formulas can be calculated from the 4 coordinate of pg, which is © —
cos™! /2%, and the formulas (2.33) for 0 < k£ < £ and (2.36) for § <k < V2.
To determine whether p§° is contained in Ry or Sp, we must first calculate the
~ components of the two intersection points of W(go) with the 4 axis. One of these

two points is, of course, go. The position of the second one can be obtained by

noting that the Hamiltonian (3.10) has the same value on the whole of W(qq) as
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it does at go. If we denote the 4 coordinate of that second intersection point by

Y(k, a,T"), we thus see that ¥(k, ,I') must satisfy the equation

[ 4

I'v2sin7(k, @, T) + 2a7(k, @, T) + I‘\/Q (1 -2 (%)2) — %2 (77 + cos™! \/§f> =0.

Since the second intersection point must lie between py and ¢q, its ¥ component
must lie between the v components of these two points. This requirement gives the
inequality m — cos™! V28 < ¥(k,a,T) < cos™! V28 + 7 (see Figure 3.3).

The above discussion has proved
Lemma 4.6. For given k, « and I, the point p§°® will be:
(1) contained in Ry if for some integer n the inequality

[ 4

¥(k,a,T) < v°(k,a,T) + 2n1 < 7 + cos™} \/if,

holds, and will be

(2) contained in Sy if for some integer n the inequality

COS—1 : % -1 < 7o°(k’avr) + 2nm < 7oo(k’a’r)

holds.

We are now ready to state our main result in

Theorem 4.7. If for some k =k, « =& and I' =T’ we have

M(1,%(k,&,T); k,aT)=0
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with at least one of the partial derivatives of M with respect to a or I' being nonzero.

Then

(1) Iffor k = k, a = @ and T =T the inequality %(k,a,T) < v°(k,a,T) + 2nm <
7+ cos™ ! \/5% holds, then for k = k and some @ and T neara =& and T =T

a homoclinic orbit connecting p. to itself exists for small e.

(2) Iffork =k, = & and T’ =T the inequality cos™! \/5% -7 < y>®(k,a, )+
2nmw < ’y(l?:,&,f) holds, then for small € and k = k no homoclinic orbit con-

necting p, to itself can exist for a near « = & and I near T =T

PROOF: Assume, for definiteness, that %]g(l, Fo(k,a,T); k,&,T) is nonzero. Then,
as in the proof of Proposition 4.3, we find that there exists a function a = a(k, T, €)

with a(k,T,0) = & such that W}*(p,) is at least locally contained in W?(A) for &,
a=a(k,1’,e)1“andeneark=l-c,a:&,l”:f‘.

If the situation (1) arises, then by our previous discussion, and in particular,
Lemma 4.6, a solution on W*(p) tends to pe in forward time and the existence of
a homoclinic loop is proved. If situation (2) arises, then by the same arguments,

W (pe) leaves W2, (A) at some large positive time and hence cannot approach pe.

Most probably it ends up in the sink near the origin.

We observe that, if the conditions in (1) of Theorem 4.7 are met, the symmetry
of our equations with respect to the coordinate transformation (z,y) — (—x, —y)
implies that not only one but two symmetric orbits homoclinic to p. exist. This

will bear important consequences for the chaotic dynamics we are interested in.
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We now present another criterion for the existence of the Silnikov loops which is
more convenient for calculations. It can be obtained as follows: Let n be an integer
such that cos™" 28 —7 < v*(k,a,T)+2n7 < cos™! 2F+m and let ¥°(k, o, ) =
v*°(k,a,T') + 2n7. Assume also that the v coordinate of qq is cos™! 2% + 7 (not

cos™! /2& — 7). Then

Proposition 4.8. If the value of the Hamiltonian (3.10) at h = 0 and v =
¥°(k, e, ') is less than its value at g, then p{® will lie in Ry. If the inequality

is reverese, pg° will lie in Sp.

PROOF: This statement follows immediately from the fact that the value of the
Hamiltonian (3.10) for v between cos™ v/2& — 7 and cos™! \/é% + 7 increases
monotonically with the smallest distance of the orbits from pgy, where it attains its
minimum.

In Appendix F we check if the conditions of Theorem 4.7 are satisfied for any
value of k in the allowed interval between 0 and /2. We find numerically that the
equation M(I,v;k, a,I') = 0 cannot hold for any positive a and I" with & from the
above range. Therefore simple Silnikov orbits cannot exist in our model. However,

for the modified equations

&= —ky + i—y3 — %ﬁy +e€ l:F\/zI_y_z___z siny — a(l + /\)xJ (4.8a).

T

Y= (k2—21)x+{-x3+%xy2 —€e|T siny+a(l+A)y| (4.8b).
V2l — 22 —y?
I=—¢ [F\/2I —z?2 —y%cosy + 2aI] (4.8¢),
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1

sin «y
V21— 1?2 —y?

with any positive A, the Melnikov function does possess zeros, at least when k is

A=1-IT—-z®+¢l (4.8d)

near k = /2. We can also verify that the condition in Proposition 4.8 for pg® to
be contained in Rg is met. Therefore, a symmetric pair of Silnikov loops exists in
this case. We remark that the above system (4.8)¢ corresponds to the Sine-Gordon
and Nonlinear Schroedinger equations with the addition of viscous damping as is

explained at the end of Chapter 1.

At this point, we briefly discuss the dynamics associated with the existence
of the pair of loops homoclinic to p.. We want to show that an invariant Cantor
set of orbits exists near this pair, the dynamics of which can be described by the
shift map on the set of biinfinite sequences of the two symbols, say + and —. The
two symbols correspond to the passage of the trajectory near the two symmetric
homoclinic orbits. In particular, we want to show that for every biinfinite sequence
of the symbols + and —, an initial condition exists in the invariant Cantor set
whose trajectory can be represented by this sequence. Therefore, the dynamics on
the Cantor set can best be characterized as random jumping of the trajectories in

it between positive and negative values of the coordinates z and y.

Since the techniques for establishing these facts are fairly standard, we relegate
all the rigorous statements about the dynamics in the Cantor set to Appendix G. We
remark, however, that the treatment presented there is largely simplified in order to

bring out in the clearest possible way the most striking feature of this situation: the
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random jumping of the trajectories. Much more precise descriptions of the ensuing
dynamics exist (see Wiggins [1988], Chapter 3), but their consequences for what we
can observe are the same as those obtained from our simplified treatment.

We also point out the fact that the same type of dynamics are present, not
only at the precise parameter values when the pair of homoclinic orbits exist, but
also in a little neighborhood of these values in the parameter space where the two
orbits are broken. The reason for this will be discussed in Appendix G; however,
we want to add that because of this phenomenon, the set of the parameter values
for which our phase space exhibits chaotic dynamics has nonzero measure in the

parameter space.
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o
X
T
(b)
Pe X
T

Figure 4.1. The unperturbed heteroclinic orbit emerging from p, and

the saddle connection at pe.

Figure 4.2. ¥, intersects W (p¢) transversely.
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Figure 4.3. Unperturbed and perturbed stable fibers for system (4.4),:
(a) unperturbed orbits, (b) perturbed orbits,

(c) stable fibers in the perturbed system.
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Figure 4.4. Points pl, p?, p5° and p™ with their stable fibers.

Figure 4.5. Sadle connection at p..
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Figure 4.6. The case when W*(p,) leaves W ioc(A).

€
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APPENDIX A

Perturbed Equations in Alternative Variables

The equations (3.1)¢ in the u, v, I and § coordinates are

1) v—32u?v + 3103 — el'cos § — eau

u= (k-
— (B + 2N u+Iu® + 2uv? + e'sinf — eav
= el'(vsin g — ucos B) — 2eal
FRSPUPEINEY SN W WY
The Hamiltonian in the nondissipative case is given by

H=3P 41+ - Fut — 2u?? + Lol

+ 3(* + 3 Du? + (K = $1)v? — el(usin 4+ vcos ).

(A.la),

(A.1b).

(A.lc)e

(A.1d)e

(A.2)



-132-

APPENDIX B

Proof that Transformation (2.4) is Symplectic

Letp:(pl7"'7pn)7q=(q17"'7Qn)aPZ(PI,"~3Pn) a'nsz(Qla

We say that the transformation (p, q) — (P, Q) is symplectic if

i dpndg = Zn: dPAdQ
=0

1==0

where A is the usual wedge product from tensor algebra.

The transformation (2.4) is given by

c=+/2I — 22 — y2e'7

b= (z +iy)e™.

We verify the fact that it is symplectic by the following direct calculation:

’Qn)'
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dciAdcy + dbyAdby
1 *
=-2-:{dc*/\dc + db*Adb}
1
1 e o |
=§—Z-{ [(d.’lt - Zdy)e vy _ z(fc - Zy)e-t‘rd,y] A [(dm + zdy)e” + Z(.’c + Z.y)617d7:|
| (4T = 2ds = yiy)e —io/BT =7 = e

V2I—z2 — 2
1 o |
A {m(df‘fdw*ydy)ﬁﬂme ~/J}

. {Qi(dx/\dy) —(z —1y)dyA(dz + 1dy)

1

[

[V}

+ iz +1y)(dz — idy)Ady + 2i(d] — zdz — ydy)/\d*y}
1
=dzAdy + dINdy — ;)-d'y/\(:z:d:c + ydy — 1ydz + 1xdy)
1 . .
+ E(Id$ + ydy + 1ydx — wxdy)Ady — (zdz + ydy)Ady

=dzAdy + dINd~.



-134-
APPENDIX C
Gronwall-Type Estimates
In this appendix we clarify what we mean by a simple Gronwall-type estimate.
We first list the Gronwall Lemma. (See Coddington and Levinson, [1955], p. 37, or

Guckenheimer and Holmes, [1983], p. 169.)

Lemma C1. If the functions u,v and c are defined on [0,t], ¢ is nonnegative and

differentiable and
t
v(t) < e(t) +/ u(s)v(s)ds
0

then

4 t .
0

Suppose now that we have a differential equation
&= f(z) + eg(,t, ) (c.1).

with z € R™. If z.(t) is a solution of (C.1), and z¢(t) is a solution of (C.1)y such
that ||z.(0) — zo(0)]] = O(¢), then we want to show that ||z.(t) — zo(t)]] = O(e) for
all finite t.

In order to do this, we first find the integral equation which holds for the

difference z.(t) and z¢(t). Integrating (C.1), and (C.1)¢ and subtracting, we obtain

t

z.(t) — zo(t) = z(0) — z0(0) + /0 [f(:ce(s)) - f(z:o(s))] ds + e/(; g(ze(s),s,€)ds.

If

L =max {||Df(2)||| = € D}
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and

C = max {|lg(z,s,¢)||| ¢ € D,0 < s < ¢}

where D is some compact region containing z.(s) and zo(s) for all s with 0 < s < T,

then

lz(t) = zo(B)] < Jlze(0) — 2o (0)] + L / lze(s) — zo(s)|lds + Ct.

We now apply the Gronwall Lemma with ¢(t) = ||zo(t) —20(0)|| +€Ct, u(t) = L
and v(t) = ||z(t) — zo(t)]| to obtain
llze(t) — zo ()l
EC eLt )

< o) = 20O}l + ¢C [ 0= < [[12.0) = zo(O)] + F

By assumption, the expression in brackets is O(¢); hence for all finite ¢ we have

llze(2) = zo(B)]| = OCe).
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APPENDIX D
Proof of Proposition 4.1

In order to prove Proposition 4.2 we will need Lemma D.1, which we present
here. This lemma is a modified version of the stable manifold theorem, which can
be found, for instance, in Coddington and Levinson [1955], p. 330, as Theorem
4.1, and the modifications we had to make are taken from Theorems 4.4 and 4.5 on
pages 337 and 338, respectively.

In order to present Lemma D.1, we have to set up some terminology. Let

€= A(t, N+ f(£,6,0), (D.1)

where £ € €C*, e € C, A € CP. Let £ = (£1,&2), where §; € €™, & € C*™™ and

(A 0
..4_(0 AZ)

with the real parts of the eigenvalues of A; less than —a and those of 4, greater
than —a, where « is a positive number. Assume that A(e, \) is analytic in |e] < €
and [A — A| < A for some A € € and positive ¢; and A, and that f is analytic for
|€| < & and the same range of € and A as A(e, A). Also assume that f(0,¢,\) and
D¢ f(0,¢e, A) are zero. This implies that for any positive d there exists a positive &

such that

I£(€) — f(E)] < dlE - €, (D.2)

when |£] < § and |€] < 6.
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Lemma D.1. Let the above assumptions hold. There exists an invariant manifold

W in the £ space with the following properties:

(1) W contains the origin.

(2) Any solution ¢(t) with ¢(0) € W satisfies |¢(t)] < Ce™** as t — o for some

constant C.

(3) There exists a positive nn such that a solution ¢ near the origin but not on W

at t = 0, which satifies [¢(t)| < n for all t > 0, can not satisfy |¢(t)| < Be~**

for all t with any constant B.

(4) W can be represented as a graph €, = V({;,¢,\) with ¥ being analytic in &;,

t and X, and D¢, ¥(0,¢,A) = 0.

PROOF: Put

Ui(t) = <€t;1 8)

o= (g o)
Then

et = Uy (t) + Uq(2)
and

Ui(t) = AU;(t)

forj =1,2.

(D.3)

(D.4)

(D.5)

(D.6)
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By assumption, there exist positive constants K and o, with ¢ < a, such that

fort>0

U1 (t)] < Ke~ (oot (D.7)

and for t <0

Ua(t)] = Kem (a7t (D.8)
Consider the integral equation
t oo
8(t,a) = Uy(t)a + / Ur(t — s)f(0(s,a))ds ~ / Ux(t —s)f(6(s,a))ds. (D.9)
0 t
Choose d such that 2% < 1 and let a = (a1,0) satisfy 2k|a| < 6. Solve (D.9) by

successive approximations starting with 6()(¢,a) = 0. It follows that §,y(t,a) =

U1(t)a and that for positive t,
,9(1)(t7 a) - 0(0)(t7 a)l < I{[ale-at .

To make the induction step, assume that

Klale=o!
101y (t,a) = Gu-1)(t,a)| < —'—ZTI_—;— (D.10)
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for t > 0. Then

1+1)(t, @) — 8y (¢, @)l
t
< K/O e~ @+ =) £(641)(s,0)) — f(Bry(s,a))lds
+K / e~ (@= D=  £(f141)(s,a)) = F(Bny(s, a))lds

K2dla' —(a+o)t t (at+o)s _-—as —(a—0o)t OO (a—0o)s _—as
< i |° e e ds+e e e”*ds}  (D.11)
0 t

- K2d'a' —at

T 2l-lg ¢
2Kd |a|K

< S

- g 2t
la| K
ol

1—e +1]

—at

E_at

Summing the series

[00)(t: @)=b(1)(t, a)] + [61)(t, @) = O(ay(t, )] + - - -

+ [0y (8, a) = Ou—1)(t, a)] + [Bq1y(t, @) = Oy (¢, @) + - -

then yields the solution 6(t,a) with
16(t,a)| < 2K|ale™ . (D.12)

The integral
/t Ua(t — s)f(6(s,a))ds

converges uniformly since by (D.12), |6(¢,a)| < § and hence the integrand is
< 2Kdlale™ (@) (t=9) =98 — 9K d|g|e~(@=)te =79
Therefore, we may differentiate (D.9) to get

8(t,a) = A8(t,a) + F(6(t,a)).
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Note that, because of the uniform convergence of the iteration scheme, 6 is an
analytic function of a, ¢, and A for all t > 0.

From (D.9) it follows that the first m components of §(t,a) satisfy
61(0,a) = a,
and that the latter n — m components are

62(0,a) = — {/oo Uy(—3s)f(8(s,a))ds

0 2

Let ¥(ay) = 62(0,a). Then the initial values £ = 6(0,a) satisfy the equations
£, = U(&;) in the &-space, which define the manifold W. By the uniqueness of
the solutions of differential equations, if p is any solution with |p(0)| small and
p(0) € W, then p(t) = 6(t,a) for some a where 6 is the solution of (D.9) satisfying
6(0,a) = p(0) and p(t) — 0 as t — oo.

We will show next that no solution p of (D.1) with |p(0)| small and p(0) not
on W can satisfy |p(t)| < é for all t and |p(t)| < Be™°¢ for all t and any B. Indeed,
suppose that |p(¢)] < § and |p(t)] < Be™ ! for some B and for all ¢. Then it follows
from (D.1) that

p(t) = e p(0) + / =94 £(p(s))ds

Using (D.3) and (D.4) this can be written as

p(t) = Uy ()p(0)+Un(t)e+ /0 ULt — 5)F(p(s))ds— / T Ut - $)f(p(s))ds, (D13)

where ¢ is the constant vector

¢ = / " Ua(=5)F(p(s))ds + p(0).
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Now |f(p(s))| < dlp(s)] € dBe™* since |p(s)| < 6, and |Uz(~s)| < Kel*=?)% and
therefore, the integral in ¢ converges.

The first term in (D.13) is bounded by K|p(0)le~**. The third one has the

bound
t i
I&"dB/ 6_(a+o)(t—s)6—asd5 — K dBe—at
0 a
and the fourth one is bounded by
o0 Xd
KdB/ e~ (a=o)t=s) g —as gy — AdBe—o’t,
¢ o

which is the same bound as we found for the third term.

The second term, though, is a sum of polynomials, multiplied by exponentials
e~ #! where 4 < a — ¢. This term clearly cannot be bounded by Be™*! for any
constant B, unless we have ¢ = 0 so that p satisfies (D.9).

To prove the uniqueness of solutions of (D.9), let 8 and 6 be solutions for the
same a and let |0(¢,a)| < § and |6(t,a)] < 6. Then (D.9) yields, with (D.2)

t
10(t,a) — 6(t,a)le*" < Kde* / e+ t=910(5 a) — (s, a)|ds
o )
+ K de* / e~(@=a)t=9)19(s a) — (s, a)lds
t
t ~
= Kde 7! / e’%e?*|6(s,a) — 0(s,a)|ds
0 )
+ I{de” / el@=9)%9(s, a) — 6(s, a)|ds .
t

If M = {eat|é(t,a) —4(t,a)| j ¢ > o}, then

at _ —ot
L MKt e

g

M < MKde |

SMKd
< .
(o2
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Since we have chosen d < 5%, it follows that M = 0 and hence p(0) € W.
Apart from taking C = ¢ in part (2) of the lemma, we only need to prove that

D¢¥(0) = 0. This follows from the estimate

162(0,a)| = {— [Tt = e anas

2

< dK / @=2219(s. a)|ds
0

_‘2dK2|a|/ e 7%ds
0

_ 2dK?al

a

This shows that ¥(0) = 65(0,0) = 0 and that for any small enough d, there

exists a 6 such that if |a} < ¢, then

[¥(a1) - $(0)] _ 24K*

lai] g

3

which implies the assertion.

We now state and prove Proposition D.2, a slightly modified version of Propo-
sition 4.2, of which Proposition 4.2 is a special case. The reason for the modification
is that in order to apply Lemma D.1, we must allow €, k, « and I" to assume com-
plex values. We then restrict ourselves to the normal situation with €, k, « and T’
being positive to recover Proposition 4.2. We remark that W, (pe) is the local
unstable manifold of p, only if e« > 0. If ea < 0, the unstable manifold of p,. is
three-dimensional, but W, (p¢), as described in Proposition D.2, is still distin-

guished by the property of being the curve segment along which points approach p,

in backward time with the fastest exponential rate.
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Proposition D.2. For small enough ¢, there exists a one-dimensional manifold
W2 oc(pe), the strong local unstable manifold of the fixed point p.. It depends

analytically on € and the parameters k, o, and I', and is uniformly O(e) close to
WOu,Ioc(pO)'

PROOF': In order to use Lemma D.1, we must transform the equations (3.3), into a
form to which Lemma D.1 applies. In particular, in the new coordinates, the point
pe must always be at the origin and its unstable eigenspace must coincide with one
of the coordinate axes. Moreover, all the transformations involved must be analytic.

We first show that I, and «., the I and v coordinates of the point p, differ
from I =1 and v = 7 —cos™! V28 by an O(e) quantity and that they are analytic
functions of . To this end, we write I, = 1 + ew,, insert this in equation (3.8), with

zero left hand side and cancel a factor of e. We end up with a pair of equations

I'v/2(1 + ewe) cosvye + 2a(1l + ew) =0 (D.14a).
r : ‘
—We + ——=———o—-sInvy. =0 (D.14b).
2(1 + ew,)

which at € = 0 become

P\/:jCOS Ye=0 -+ 20 =0 (D14a)0
Wemg + 0 Ye= . .
0 \/_5 51 0 ( )0

The solutions of equations (D.14), are

Wemo = £ 71 /1 — 2(§)? (D.15a)
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Ye=o =T —cos ' V28 (D.15b)

The Jacobian determinant of (D.14), at e = 0 is

0 —I\/ﬁsinvmo ] o2
det (_1 ) :-F\/§S1n7€=ozf\/2 (I—Q(F) ),

7% COS Ye=0

which is nonzero for a < —55 The conclusion now follows from the implicit function
theorem for analytic functions. It also follows that the coordinates I, and 7, of p
are analytic functions of @ and I' away from ' = 0 and a = 7F5

In order to align the stable subspace of p. with one of the coordinate axes we

first calculate the stability matrix of the system (3.3) at p.. This matrix is given

by
A4, 0
A =
( 0 Az)
with
i —€x —k% - ‘\76-21% SIN e

P\ 2L - R+ S sin e
and

. —€ [71;75 COS Ye + a} +el'/21, sin 7,

a9 = _ EF : el

m SN Y, +72-7: COS e

and the two zero 2 x 2 matrices off the main diagonal. At ¢ = 0, the matrix 4;
has positive and negative eigenvalues whose eigenspaces are perpendicular to II..
The matrix As, in turn, has zero eigenvalues at € = 0 and acts on vectors parallel
to II.. We only need to align the unstable eigenspace of A with a coordinate axis.

Therefore, because of the block diagonal form of A, we only need to rotate the
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and y coordinates associated with A;. We first find its eigenvalues

_ 2 el . oF _ 12 el .
A=—ea \/<k 5T, sm'ye> (-IE k2 + 5T sin 7y,

and the corresponding eigenvectors

r r

e = (\/k2 - 5‘2I€ sin 7, —%L — k2 + 6215 sin’yf>
el . el .

e, = <\/k2 - 5T sin 7., \/'?_I6 — k2 + \/2768111‘)@) )

which are obviously analytic in €, k, a, and I'.

We now define the new coordinates ¢ and n by the requirement that
(z,y) = €ey +nez.

This requirement immediately gives the analytic transformation

o 2 _ el .
z = (£ +77)\/}~ ST S e

—t€

el
— 97 _ L2 ;
y=(7n 5)\/~Ie ke + 5T sin e ,

and its inverse

£ = - - =

2\/k2 —f;—%sin% 2\/216-—&:2 —}—%sin*yE

iy

Y
= L * L '
2\/k2—m51n75 2\/2I€—k2+-\757:sm76
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We can now apply Lemma D.1 to obtain an analytic strong unstable manifold
of the origin in the (€,7,I,,7p) coordinates with I, = I — I, and v, = v — .. This

manifold is a graph of the form
n=n(kaTe)
I, = (& k,a, T e)

7,1’ = 711(5) kaCV’F; 6)’

with
n(0; k, o, T ¢) =
I,(0;k,a,T;e) =0
7p(05k, @, I e) = 0
and 5
n 3 _
5 0k e Tie) =0
oI

——B(O;k,a,F;e) =0
g
7”(0 k,a,Tie) = 0.
In order to transform it back to the original coordinates we first express, say, y in

terms of z from the equation

)
+
2\/k2 -ﬁsm'ye \/U — k% + ﬁsm%
Y
2\ﬂ»2 72? sin ¥, \/215 — k2 + %:- sin v,

We can do this since the derivative of its left hand side with respect to y is

Jk,a,Te ] =0.

1
2\/216 — k2 + Shmsiny. ,
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which is nonzero.

We thus get y = y(z, I, ve; k,a, 'y €). We then write

y(z, Leyve; kya, T €)

2\/lc2 —\/==-s1n7f \/21 k? — 72=I—sm'y6
= I($,I€,7e,k,a,r, 6)

I=I.+1, ik,a, T e

T, I, ves k,a, €
Y=+ R (CAE Y AL ) ik,a,Te

\/k2 Wsm’y6 2 QIC—k2+75;=I:sin7€
= 7(xv1677ea k‘,a, I e),

to obtain the equations determining W}*(p.). Straight forward estimates involving
the mean value theorem, similar to those we use in Lemma 4.5, will now show the

uniform closeness of W*(p.) and W§*(pe).
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APPENDIX E

Derivation of the Melnikov Function

In this appendix we derive the Melnikov function. We will work with the

equations (3.3), recast in more compact notation

£ = JDeH(E, I k) + eg*(¢,I,7;2,T) (E.1la).
I =egl(6,1,v;a,T) (E.1b),
Y= -DiH(T;k)+eg?(&,1,v;a,T) (E.1c).

with £ = (z,y), De = (%, 5%), Dy = 5"}, and

In the remainder of this section we will omit the explicit dependence on the param-
eters k,a, and T in order to make the notation less cumbersome.

We want to show that the Melnikov function is given by the formula

oo

IM(Iv o5 ka «, F) = / <nW(€(S9 I)’ I),g(f(s, I)’ I’ 7(37 I770))ds

—_—

where nw (&, I) = (DeH(E,1),DrH(E,I) — DrH(0,1),0) and £(¢,1) and

At T, 7o) = — / D1H(E(s, I), I)ds + o
0

are calculated from formulas (2.23) and (2.24), respectively, depending on the value

of I.
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Before performing the derivation itself, we recall the geometry associated with
the splitting of the manifolds. We are interested in the perturbed system in a
neighborhood of the unperturbed homoclinic manifold W(.A). This manifold is

parametrized by

W(A) = {(5(_t07 I)slav(—tﬁvI”YO)) ItO € RvIl < I< ‘['270 S Yo S 27\'} .

At each point a € W(A) we attach the normal, nw, to W(A) at a and uniquely
determine a® and a, the points of intersection of the line through ny with W2(.A)
and W*(A), between which we measure the distance. We define the signed distance

between a! and a! by

(ny(E(=to, 1), I),a¢ — a?)
Inw(E(—to, I), )|l

d(t0’1770; k,a,F;e) =

and Taylor expand it about € = 0 to obtain

(i (&(=to, 1), I), %22 — 228
Inw(€(—to, 1), I

d(to,I,vo;k,a,T;e) =€ +0(62)

where d(tq, 1,703 k,a,I';0) = 0 since a§ = a§. The Melnikov function is then defined

to be

Oda?

a u
M(I7 ’70;]{,',61’,11) = <11W(€(—t0,I),I), —ailg_le=0 - '5fle=0> .

We calculate M(I,vo; k,«,T") using the time dependent Melnikov function

Qar(e) _ dax(t)
e =0 ge =%/

M(t) = <nW(£(t - tOv I)’ I)v



- 150 -
where a2(t) = (£2(2), I(£),72(t)) and a¥(t) = (64(t), I*(t), 74(t)) are the solutions
of (E.1). with the initial conditions a¥(0) = a¥ and a(0) = ai. Our calculation

will therefore involve the quantities

2,8 o6 (t

o = 2
e AI%(¢

Il’ (t) = 66( ){e=0
w.s a6%3(t

91’ (t) = aé( )|e=0 .

which satisfy the first variation equations

0% = JDRH(E(t — to, 1), 1)E" + JD DeH(E(t — to, [), 1) I}

9*(&(t — to, 1), I,7(t — 0, 1, 70)) (E.2a)
I = gl (€t — to, ), I, y(t — to, I, 7)) I} (E.2b)
Wt = —DeDrH(E(t — to, 1), DEN™ — DYH(E(t — to, ), ;™

+g‘¥(§(t—tOvI)7I7A/(t'_tO’Ia7O))' (EZC)

They exist on the time intervals [tg, 00) and (—o0, o], respectively.

We split the time-dependent Melnikov function, M(t), into two parts
M(t) = A¥(t) — A%(t) (E.3)

with A"(t) = (nw(E(t — to, 1), I),a™ (1)), and a}™(t) = (E(1), ™ (8), 7 (1)).

We then proceed to find a differential equation for A®*(t). We have

As,u(t) = (nw(ﬁ(t - t0,1)1‘[)7 (t)) < ( (t - tO»I)’ (t)) ’ (E4)
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where
nw ({(t — to, 1), 1) = (DEHS,DsD;Hé,O) = (D?H JD¢H, D:D;H JDEH,0> ,

and aj"(t) are given by the equations (E.2). Note that we suppress the arguments
in H for convenience.
Substituting in (E.4) we find
A**(t) = (D}H JD¢H,£°) + DD H JDeHI,
+(D{H,£") + (DeH,JDDeH 1)) + (nw, g).

Now (DEH JDe¢H,v) = —(D¢H, JD?HV) for any vector v. Also
DeD;H JD¢H = (DD H,JD¢H) = —(DeH, JD¢ D1 H) .

Therefore
A (t) = (nw, g)(€(t — to, I), I, ¥(t — t0,I,%0)).-
From ( £.3) and the definition of the Melnikov function, M (¢), we now have
M(I,vo;k,a,T)
= M(0)
= A*(0) — A*(0)

T
= [Tu (ang)(g(t—to),I,’)’(t —thI,'Yo))dt +Au(—Tu) —As(Ts),

Now A*(Ts) = (nw(&(Ts — to, I),I),a}(Ts)), and for large T, the normal nw(Ts —
to, I), I) shrinks to zero exponentially. But aj(Ts) can at best grow linearly as can

be seen from the asymptotic form of the first variation equations and the fact that no
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exponentially growing solutions are allowed for £5(¢) since £2(t) must lie on W2(A).
Therefore A*(T, — o) = 0, and similarly A*(-7T, — —oo) = 0. Changing the
integration variable from t — ty to t, we get

o ]

M(I’ Yo, kaawr) = / <llw,g)(€(t,f),l,’)/(t,f, 70))dt'

—c0

We now comment on the fact that the Melnikov function does not contain t,.
This arises due to our choice of the parametrization of W(.A) by orbits. We recall
that in this parametrization, the €, I and v coordinates of any point a on W(.A)

are specified by the equations

£ =¢(t~to)

I = constant

_to

7=7(_t0,I370>=- D]H(@(S),I)ds-*-’yo
0

with some tq, I, and 7y.

We see that =g is not the ¥ coordinate of the point a. However, the choice of
I and 7y uniquely determines the orbit on which a lies; z.¢., all the other points on
this orbit are also described by the same I and ~,.

This is very convenient for our purpose in the perturbed problem. There, our
interest lies in answering the question whether a certain orbit, in particular, the
unstable manifold W*(p¢) of p. in Chapter 4, is contained in the intersection of

W$(A) and WP(A). Outside W, (A) and W}, (A) such an intersection orbit

¢,loc

can be parametrized via an unperturbed orbit because of the uniqueness of choice
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of the point ai = a? on the perturbed orbit given a point a on the unperturbed
orbit. Therefore, the intersection orbit is also uniquely specified by choosing values
of I and vp. As a consequence, zeros of the Melnikov function M (I, v,; k, o, T") stand
in a unique correspondence with the intersection orbits.
Wiggins [1988] chooses a different parametrization of W(.4) where he only uses

the unperturbed solutions to parametrize the £-coordinates:
LV(A) = {(5('—t0’1)’17;/) ’tO € RvII <I< 1210 S 5/ _<.. 2”} .

This parametrization is more geometric since for any point on W(.A), the pa-
rameter ¥ is its v coordinate. However, this parametrization has the disadvantage
that points on the same orbit now only share the same I variable. Instead of by

the unique second parameter -, the orbit is determined by the equation

_.to

5+ DrH(z(s),I)ds = constant .
0

The dependence of the Melnikov function on ¢y, I and ¥ therefore changes as well.
The solutions which we must now use for calculating the Melnikov function are

f(t - to), I and

t—to

7(t—t07t091’73’)=—/ D[H($(S),I)d3+"7,

—to

and the result we obtain is

0
M(I,—- D[H(x(s),I)ds+'7;k,a,F>

_to
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where M is the Melnikov function in the #o-I-79 coordinates. This form of the
Melnikov function is particularly suitable for dealing with Poincaré maps such as
those for the nonresonant periodic orbits in Section 3.5 since fixing ¥ corresponds to
fixing the Poincaré section L7, and to then parametrizes W(A) N F However, for
determining intersection orbits, our parametrization yields a more economic form

of the Melnikov function.
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Figure E.1 The two ways of parametrizing W(.A).
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APPENDIX F

Calculation of the Melnikov Function

In this appendix we calculate the Melnikov function to check for the intersec-
tions of W?(A) and W}*(A). We perform the calculation using the equations (3.3).

and the formula

M(I, vy k,a,T) = / (nw,g)dt

— o0

derived in the previous appendix.

From (3.3), we compute the components of ny to be

nfy =z [(2I — k?) — I2? — 347]

n{v =z?
n;lv = O.

We also need the components ¢*, g9, ¢/ and ¢” of the perturbation ¢, which are

T Y .
g- =T 4 siny — az
V2I — 2% —y?
s .
gy =-T siny — ay

V21— 22 —y?
gl = —T/2I — 22 — y% cosy — 2al
1
V2I — 22 —y?

After some algebra we find the integrand of the Melnikov function to be equal

g'="T sin-y.

to

Tzy/2I — 22 — y*(—z cosy + ysiny) — 41z + a(z® +y*) (K* + 122 — 147%) .
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Using formulas (2.12) and (2.19), we transform this expression into

—2V2I'BVT — Beosfcos B — dalz? + a(z® + y?) (K* + 12 — 1y?)

where B, 6 and 3 are given by formulas (2.23) and (2.24), respectively, depending

on the value of k, and z and y can be computed from B and 8 using (2.12). From

(2.23c) and (2.24c) we see that we can write § in the form (¢, I, Bo) = B(¢,I) + Bo

where (¢, I) is an odd function of ¢. Now, from (2.19), (2.23b), (2.24b) and Figure

2.1 we find that §op = 7 + § for [ > 4k? and that 8y = v for I < 4k%. Also, from

Figure 2.1 we find that for I > 4k* the function z(¢,I) is odd and the function

y(t,I) is even, and that for J < 4k? the function y(t,I) is odd and the function

z(t,I) is even. This implies that the Melnikov function is
M(I,vo;k,a,Ty=TF(I,k)cosv + aG(I, k)

with

F([,k)z?\/’.i/ BT = B cos cos 3 dt

and

Gk = / [—4laz? + a(z? +y?) (K + 12 — 1y%)] dt,

-

for I > 4k? and
F(I,k) = -2\/5/ BT — B cos8cos B dt

and

G = [ [~alaa +a(a® +) (8 + Fo* — 10?)]

— Qo0

(F.1)
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for I < 4k>.
The most important case occurs at the resonance, t.e., when [ = 1. For k& < %

we there have

_ 4k? sech®?kv/2 — k2t
1 — 752 tanh® kv/2 — k%t
td k tanh kv/2 — k2%t
CcCO == ——— {all —
V2 — k2
3 L tanh™? /\/7 k tanh kv/2 k2t\
= ———=ta —_— -
VT k V2 —k? )
1 + 5% tanh?® kv/2 — &2t

1 - B =(1-4k?
( i — 7527 tanh® kv2 — &2t

ke tanh k2 — k2t secth\/Q — k2%t
BV1 = Beos = 4k2\/1 — 4k? VIR
(1 - 752 tanh® kv/2 — k2t)3

L2 =9 5= tanh? k2 — k2t
14 gz tanh® kV2 - K%
y? =2B 1
1+ 327 tanh® kv2 — k2t

For k > % the same expressions become

4(2 — k?)sech®kv/2 — k2t

B = ~
7 — £ tanh® kv/2 — &2t
JO .2
tan@z—:—lc—-];tanhk 2 — k%t
. 1 1 V2= k2
= ——tanh™! | —=~“——tanh ky/2 — k2t
=g (55 )

1+ 225 tanh?® kv/2 — k2t
7 — 22K tanh?® kv/2 — k2t

h?kv/2 — k%t
BVI— Beosf = 4(2 — k?)y/4k? — 1 =
2=t (7~ 5 ok b2~ F20)}

1-B=(4k*-1)
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)
z* =28

1
1 + 2= tanh® kv/2 — k2t
2=k% ¢ anh? k2 — k2t

y =28 k2

14 =52 1‘2 tanh® kv/2 — k2t

From these expressions we can either calculate the Melnikov function numerically

or approximate it analyticaly for small values of k£ and 2 — k2, respectively.
In order to verify the conditions for W}*(p,) to be contained in W?(.A4), we must

choose

Yo :’5’0(16,&,1_‘):7{'—COS—1 ‘%—_l/)(k)

where

1 _ Tk? _ k
¢(k)=—\7_7—_tanhl _kZ—-tanlm
fork<-§-a~nd

;) = tan”! ——— + —=tanh”
Y(k) = tan 2 +\/7 anh =

for % < k < /2. The Melnikov function therefore becomes

M1, 5 (k,a,T); k,a,T)
(F.2)
( V2F(1, k) cos $(k)G(1, k ) + VT2 — 2a2F(1, k) sin (k).

The condition that the Melnikov function be zero is therefore given by the
equation

a(k)V28& + b(k)y/1 - 2(&)2 =0 (F.3)

where

a(k) = =F(1,k) cosy(k) + 9{17;&
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and

b(k) = F(1,k)sin (k).

The equation ( F.3) is a relation between the quantities V2 # and k and hence we can
calculate \/.‘5% in terms of & from it. It is easy to see that the only valid solutions
are those for which v/2 £ is nonnegative. (If we allowed negative values as well, the
equation (F.3) would change so that we would instead have to solve the original
equation (F.3) for {\/5%[)

On Figures F.1 and F.2 we plot the values of a(k) and b(k) for 0 < k < V2.
We see that both a(k) and b(k) are always negative, therefore no positive solutions
of (F.3) can exist. This implies that in the original system (1.3). we can not find
any simple Silnikov homoclinic loops.

If we repeat the above procedure for equations (4.8), the integrand of the

Melnikov function will become

Tz/2I — 2% — y*(—z cosy + ysin~y) —4Iz? +a(l+ A)(dfz +y2) (k2 + %fz - :i’y2) .

The expressions for F(1, k) stay the same, however, the expression for G(1, k) will

become

G,k \) = / [—4Taz® + a(l + A)(2? +y?) (k* + 2% — 1y?)] dt
We define the coefficients a(k,A) and b(k,\) in the same way as we defined
a(k) and b(k) and plot them on Figures F.3 and F.4 for A = 0.1. We see that there

exists an interval of k in which the values of a(k, A) and b(k, A) have opposite signs.
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For those values of k we can calculate v/2€ as a function of k so that the modified
Melnikov function M(1,%0(k,a,T'); k, A, a,T") will have a zero.

We then calculate the difference AH of the values of the Hamiltonian (3.10)
at qo and at p§° with its v coordinate shifted by a suitable multiple of 27 as in
Proposition 4.8. For all values of k for which the Melnikov function has a zero
we calculate this difference by first calculating v/2 ¢ from the modified version of
equation (F.3), inserting the corresponding values at go and p$° into (3.10), and
subtracting. The normalized quantity d(k) = % is plotted on Figure F.5. Note
that d(k) is positive throughout its whole interval of definition. This implies that
at those values of k for which the Melnikov function M(1,7o(k, a,'); k, A\, @, T') has
zeros, a Silnikov loop exists at p,.

We can verify this result independently by a perturbation calculation near

k = 2. We put 2 — k2 = and obtain
B = 4p? sech® knt + O(n*)
6 = 2 tanh knt + O(n®)
B = _?'IE tanh knt + 0(773)
1-B=1+0(n%)
BvV1— Bcosé = %’72 sech® knt + O(n*)
cos B =1+ O(n?)

z? = &n?sech? knt + O(n*)
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y* = O(n*).
From the above expressions we easily calculate

16./m
F(1 ) = -2

and

3277

G(1,k,\) = T (-1+2).

We also have

w(k) = 21+ O 3)--53\-5+0(n>

Therefore, the expression for the Melnikov function becomes

M(1F0(k, D)k, A, T) = 2 ( & e 2a2+/\a) + O(n®).

This implies that § = 2L 4+ O(n?). We also see that at that value the partial
derivative %—%(1,%(k,a,f‘); k, A, a,I') is equal

O (1,70(k, . D)k, A, T) = 222

which is nonzero. Therefore, the conditions of Proposition 4.3 for W*(p,) to be
locally contained in W?(.A) are met.

We can also immediately compute that the value of the Hamiltonian (3.10) at g
is I'v2 + O(n) and that the value of the Hamiltonian (3.10) at p¢° is —['v2 4+ O(n).
Therefore, their difference is 2I'V2 + O(n), which matches the results obtained
numerically and presented on Figure F.5. We have thus confirmed that the Silnikov

loop exists in this case.
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Figure F.2 The coefficient b(k) at A = 0.
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Figure F.4 The coefficient b(k) at A = 0.1.
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Figure F.5 The coefficient d(k) at A = 0.1.
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APPENDIX G

Symmetric Silnikov Example in Four Dimensions

In this appendix we present a discussion of the chaotic dynamics implied by a
symmetric pair of Silnikov loops homoclinic to a fixed point in the four-dimensional
phase space. We will show that, under certain conditions imposed on the eigenvalues
of the stability matrix at the fixed point, the existence of such a pair of loops will
imply the presence of a chaotic invariant set in the phase space. We will consider a
more general situation rather than our particular case, since there is no difference
in the treatment.

This general situation is described by a system of the form

t=—pr—wy+ F(z,y,z,w) (G.1a)
y=wy — pz + F¥z,y,z,w) (G.1b)
= A4 Fia,y, 2, w) (G.le)
w=rvw+ F*z,y,z,w) (G.1d)

where p, w, A and v are positive and F'?, FY F* and F'¥ are quadratic at the origin.

It is clear that the origin is a hyperbolic fixed point for (G.1) with the eigen-
values of the linearized vector field given by —p £ iw, —A,v. Hence it has a three-
dimensional stable and a one-dimensional unstable manifold. We will assume that,
locally, the unstable manifold of the origin coincides with the w axis and the sta-

ble manifold coincides with the z-y-z hyperplane. The vector field in our problem
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satisfies an additional constraint on the eigenvalues, which is that A > v > w > p.
We will assume this to be true in the present discussion as well. We remark that,
clearly, the choice of the origin as the fixed point we will be interested in, presents
no loss of generality. It is less clear that we can even locally align its stable and

unstable manifolds with the indicated linear subspaces. This fact needs a proof,

which can be found in Wiggins [1988), page 184.

We furthermore assume that the vector field (G.1) is invariant under the trans-
formation (z,y,z,w) — (z,y, —z, —w), which is exactly what we have in our equa-
tions, and that it possesses a homoclinic orbit connecting the origin to itself. By
the assumed symmetry there must in fact be two of them, call them I't and I'",
respectively, where the + and the — signs refer to whether the orbit leaves the origin
in the positive or negative direction of w. The two orbits can be parametrized by
=28 (t), y =y (1), s = £:0(t) and w = +w(¢) where (z0(¢), 4" (¢), 21 (¢), 0! (t))
is, say, a particular solution on I'*. By our assumption that A > p, the pieces of
the two orbits near the origin, which lie in the stable manifold, are tangent to the

z-y plane.

In order to study the orbit structure of (G.1), we will follow the standard
procedure of computing a local Poincaré map P defined in a neighborhood of I'*

and I'". For this we first define four cross-sections to the symmetric vector field



- 168 -
(G.1):

H+ ={($7y9sz)l€e—%£ <z Se,y=0,0<w SE,—&SZSe}

Iy ={(:z,y,z,w)[ese—%"1 <z<ey=0,—e<w<0,-e<Lz<¢€}
HT ={(a:,y,z,w)[w=6}
Hl_ ={($,y,z,w)lw=—e}.

For simpler notation, we also define II, = II} U II;. The Poincaré map P will
take a point p on Il and follow its trajectory as it passes by the origin, leaves a
neighborhood of the origin, staying close to a solution on one of two homoclinic
orbits until it returns to a point P(p) on IIy. Of course, we do not consider any
points in IIy which the time flow of (G.1) will not bring back to Il,.

We want to show that there exits an invariant Cantor set for P on Iy, and
that the action of P on the points in that Cantor set is topologically conjugate to
the action of the shift map on the set of all biinfinite sequences of the symbols +
and —.

The exact calculation of the map P is obviously impossible, since we would
have to solve (G.1) in order to find the trajectories of points in II,. However, we
can approximate P by a simpler map P’ which can be computed, and argue that
the existence of a chaotic invariant Cantor set on Il for P implies the existence of
such a set for P. We will only compute PL and show it possesses a chaotic Cantor
set. For the proof that these results carry over to the exact map P, see Proposition

3.2.10 in Wiggins [1988], p. 198.
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In order to approximate P we first represent it as a composite of four maps Py,
P, P and P;. Here P, is defined as the map which takes a point on IIf and
brings it to II]. The map P; then brings points on IIT back to II. The maps P;
and P, are defined analogously on the negative side. The map P therefore coincides
with the composite P* = P o Pt on I} and with the composite P~ = P o Py
on IIj .

In order to define P we linearize the maps P+ and P~ around the origin
to obtain the approximate maps PO[”L and POL—, mapping IIj and II, into Hf
and IIT, respectively. To obtain P1L+ and PIL ~ , we linearize P;" and P around
the intersection points of II] and II] with I't and T'~, respectively; again, PL
coincides with the composite PL+ = P1L+ o P{* on Hé‘+ and with the composite
PL= =P~ o P{~ on 17

We now construct PL+ using the linearized flow of (G.1), given by

2(t) = e P (zg coswt — yp sinwt) (G.2qa)
y(t) = e ! (zq sinwt + yg coswt) (G.2b)
2(t) = zge™M (G.2¢)
w(t) = woe”t . (G.2d)

For every point (r,y,z,w) = (29,0, 29, wq) on Hg’ we calculate from (G.2d) the
time T it takes to reach IIf. We then insert T into the other equations in (G.2) to
obtain the image of that point under P£*. Note that we have carefully chosen the

z width of II so that orbits starting on II} do not reintersect I before leaving a
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neighborhood of the origin.

For any point in II, the time of flight T' from IIf to IIf is found by solving

€ = woe’ T

from which we obtain

1 €

Using (G.2) and (G.3) and dropping the subscript 0 in the coordinates, we compute

the map PF™ from IIf to II] to be

. z(2)* cos (2 log 5)

£ : W €
O] | =) sin(ilog <) (G.4)
- 2(2)”

To get an idea of the geometry of PET(IIF), it will be useful to consider a

foliation of Hg’ by the slabs

x 2x{k41)v
R;’:{(:v,y,z,w)[ee_%ﬂSxﬁe,—e<z_<_e,ee_ = gwge’“&“}.

Then we have
(o]
ny = |JRf.
k=0
It will also be useful to coordinatize the z-y part of IIf by polar coordinates.

Denoting the z,y, z coordinates on Hf’ by z',y’, z' in order to avoid confusion with

the coordinates on H{," we have

"~

r=+z'? +y'?, tand =

8 |
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and in these coordinates PXT is written as

. ry e (®)*

0 6 £ log £

PO I BV ’ Zgg ’ (G.5)
z(¥)

w € €

Now consider an R} C IIf for fixed k. Using (G.5) we make the following observa-
tions concerning PLF(R}):

i) The two-dimensional sheets w = constant contained in R;:' are mapped to
§ = constant under Pft.

ii) The two vertical boundaries of R{ that are parallel to the w-z plane are
mapped to two-dimensional logarithmic spirals.

iii) The two-dimensional sheet z = 0 contained in R{ is mapped to z' = 0 in
;.

We see that P0L+( Rf) has roughly the shape of a hollow cylinder.

Defining P1L+, note that we can take it to be linear, the approximation being

valid in an open set Ut C II}. There PFY . U+ C [T — II is given by

z a b ¢ O z z
y 0 0 0 O Y 0
217 d e follz] T2 (G.6)
€ g h 1 0 € 0
where (£ = ¢(1 +€7%)/2,0,2,0) = T* NI and z = O(€?).

The upper half of the Poincaré map PLt = PIL'" o P0L+ cVH c I — IOt is

thus computed with the aid of (G.4) and (G.6) to be

z az (2)¥ cos (2log ) + be (2)¥ sin (Llog £) +cz (2)* + 2
A

z | — | dzx (-‘;"-)5 cos (-‘flog —Eu;) + ex (-’-f-)“"l sin (—‘;’-log é) + fz (2)" +z

w A

gz (-’f)f cos (%log i) + hx (%)"fl sin (¥ log £) + 1z ()
(G.16)
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where V't = (P;t)~1(U™). If we choose II] sufficiently small then PL*(RY ) appears
as in Figure G.7.
We will now proceed to examine the geometry of POL'*(RZ') more carefully. The

maximal and minimal values of w in R{ and 2’ and r in PFH(RY) are

_2xkp _2x(kt1)y
Wnaz = €€ @ Wnin = €€ w
7, _ _ZI“J!EE f N 6_21 kw 12
Zmaz = €€ Zmin — €
_27kp _2x(k41)p
Tmaz = €€ < Tmin = €€ w
respectively. Since we assumed A > v > p we have
f
< 2y 2mk(v—A)
Zmaz _ AT T =0
Wmin
Tmin _2xp 2‘!”3!!1—(_)!
— =e v g @ — 00
Wmaz
!
Z 2xp 2xk(p=2)
mazr — e w g w — 0
Tmin

as k — oco. By a well known theorem in linear algebra, every linear transformation
is the product of a rotation, an inversion, and a stretching. In our case the map Pll' +
1s orientation preserving, so there is no inversion; moreover it is nonsingular. Hence
PL+(RY) is just a deformed and rotated version of P0L+(R2'), i.e., it has roughly the
shape of a cracked cylinder. Generically its “symmetry axis” is neither parallel nor
orthogonal to the z-z plane. This fact will enable us to find the proper horizontal
and vertical slabs, with the aid of which we will construct a chaotic invariant set.

We repeat the same procedure on the negative to find the map PL~ and thus
complete the construction of PZ.

Having constructed PZ, we want to show that it possesses a chaotic invariant
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set. Our discussion here will be rather heuristic, and we refer to Wiggins [1988] for

the rigorous details.

In order to construct the chaotic invariant set, we must find two horizontal
slabs H* and H~ in IIp, which will be mapped onto two vertical slabs V1 and V—
in IIy in such a manner that both V* and V'~ intersect both H+ and H~. The
terms “horizontal slab” and “vertical slab” have precise definitions as described in
Wiggins [1988], Chapter 2. We, however, will proceed by defining H+, H~, V't
and V™ and refer to Wiggins [1988] in order to check that they fit into the precise
definitions and that the way they intersect is proper for the general framework

described there.

We now define H*, H~, V't and V—. We first define V* and V~. In order
to do this we first note that the asymptotic estimates of the size of the various
coordinates given above ensure that the inner boundary of PL+(R]) intersects the
upper horizontal boundary of RZ’ and the lower horizontal boundary of R; each in
two separate curves (see Figure G.8). This means that PL¥(R}) intersects R] and
R} each in two separate pieces. Choose one of the two pieces of PL¥(RF) N R,
the piece of PL*+( R} )N Ry directly underneath it and the connecting piece to form
the vertical slab V*. For the slab V'~ choose the mirror image of V* obtained by
interchanging + and — in the construction of V*. The horizontal slabs Ht and

H~ will be the preimages of the vertical slabs V* and V~, respectively.

We now have two horizontal slabs, H* and H~, being mapped onto two vertical
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slabs V* and V~. The orbit carrying any point in Ht to VT is close to the
homoclinic orbit I'* and the orbit carrying any point in H~ to V'~ is close to the
homoclinic orbit I'~. We construct the invariant set A for our mapping P~ as the
intersection of all the forward images of V* and V'~ and all the backward images
of H* and H~. The intersection of all the forward images of V* and V~ turns
out to be a Cantor set of lines, and the intersection of all the backward images of
H* and H~ a Cantor set of surfaces. The set A, their intersection, is therefore
a Cantor set of points. The details of this construction are the same as those
for the standard Smale Horseshoe map, which are well known and presented in
many standard texts, such as Guckenheimer and Holmes [1985], Wiggins [1988),
and Wiggins [1989]. The only detail we need from this construction is the fact
that we assign to each point p in A an infinite sequence {---,s_2, $_1, So, $1,52, " *}
where s; € {+, —} for all : and where p € H,,, PL(p) € H,, (PL)*(p) € H,,, etc.,
and p € Vi_,, (PH)7H(p) € Vi_,, (PF)7%(p) € Vi_,, ete. But, (PL)™1(V) = Hi;
therefore we can interpret the sequence of the + and — to mean that (PL)*(p) € H,,
for every integer k, which means that during the k-th iteration of the map PZ, our
point will follow close to the orbit I'**. Since all biinfinite sequences of + and -
are possible, we see that we have thus encoded the random jumping of the points

in A near the upper and lower homoclinic orbits.

At the end we remark that neither the Poincaré map P nor the the resulting

chaotic Cantor set are sensitive to small perturbations unlike the Silnikov orbits
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which break immediately. Therefore, the chaotic Cantor set exists in a neighborhood
of every value of the parameters at which the two Silnikov orbits exist. The details
of this statement can be found in Wiggins [1988], p. 240 and the reference cited
there. We note, however, that this discussion implies the existence of a chaotic

Cantor set for a subset of the parameter space with nonzero measure.
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Figure G.1. Intersection of II, with the z-y plane.
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Figure G.2. The cross sections II7, Iy, I and IIy.
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Figure G.3. Intersection of Il with the z-y-z hyperplane.
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Figure G.4. Maps P/*, PL~, PL+ and pPL-
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Figure G.6. The slab R{ and its image POL+(R',:').
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Figure G.7. The slab R} and its image PLH(RE).

Figure G.8. The horizontal slabs H+ and H~ with the vertical slabs V+ and V.
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Figure G.9. The w-z components of the horizontal slabs H+ and H-

and the vertical slabs V*t and V.
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Figure G.10. The horizontal slabs Ht and H™ are mapped onto

the vertical slabs V* and V.
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