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Abstract

This thesis provides congruences between unstable and stable automorphic forms for the symplectic

similitude group GSp(4). More precisely, we raise the level of certain CAP representations Π of

Saito-Kurokawa type, arising from classical modular forms f ∈ S4(Γ0(N)) of square-free level and

root number εf = −1. We first transfer Π to a suitable inner form G such that G(R) is compact

modulo its center. This is achieved by viewing G as a similitude spin group of a definite quadratic

form in five variables, and then θ-lifting the whole Waldspurger packet for S̃L(2) determined by f .

Thereby we obtain an automorphic representation π of G. For the inner form we prove a precise

level-raising result, inspired by the work of Bellaiche and Clozel, and relying on computations of

Schmidt. Thus we obtain a π̃ congruent to π, with a local component that is irreducibly induced

from an unramified twist of the Steinberg representation of the Klingen Levi subgroup. To transfer

π̃ back to GSp(4), we use Arthur’s stable trace formula and the exhaustive work of Hales on Shalika

germs and the fundamental lemma in this case. Since π̃ has a local component of the above type, all

endoscopic error terms vanish. Indeed, by Weissauer, we only need to show that such a component

does not participate in the θ-correspondence with any GO(4). This is an exercise in using Kudla’s

filtration of the Jacquet modules of the Weil representation. Thus we get a cuspidal automorphic

representation Π̃ of GSp(4) congruent to Π, which is neither CAP nor endoscopic. In particular,

its Galois representations are irreducible by work of Ramakrishnan. It is crucial for our application

that we can arrange for Π̃ to have vectors fixed by the non-special maximal compact subgroups at all

primes dividing N . Since G is necessarily ramified at some prime r, we have to show a non-special

analogue of the fundamental lemma at r. Fortunately, by work of Kottwitz we can compare the

involved orbital integrals to twisted orbital integrals over the unramified quadratic extension of Qr.

The inner form G splits over this extension, and the comparison of the twisted orbital integrals can

be done by hand. Finally we give an application of our main result to the Bloch-Kato conjecture.

Assuming a conjecture of Skinner and Urban on the rank of the monodromy operators at the primes

dividing N , we construct a torsion class in the Selmer group of the motive Mf (2).
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Chapter 1

Introduction

We fix a prime r, and let D be the quaternion algebra over Q with ramification locus S = {∞, r}.
Then let G be the unitary similitude group of D2, where we take the hermitian form to be the

identity matrix I. Thus, for example, the group of Q-points is the following:

G(Q) = {x ∈ GL(2, D): x∗x = c(x)I, c(x) ∈ Q∗}.

Then G is an inner form of GSp(4) such that G(R) is compact modulo its center. More precisely,

its adjoint group Gad(R) is anisotropic SO(5). Similarly, Gad(Qr) is the special orthogonal group of

a quadratic form in 5 variables over Qr with Witt index 1. There is another description of G(Qr)

in section 5.3 below. At all other primes p the group G is split, and hence G(Qp) can be identified

with GSp(4,Qp). Let Af denote the finite part of the ring of rational adeles A.

The compact open subgroups K in G(Af ) form a directed set by opposite inclusion. Let HK,Z

denote the natural Z-structure in the Hecke algebra of K-biinvariant compactly supported functions

on G(Af ). As K varies, the centers Z(HK,Z) form an inverse system of algebras with respect to the

canonical maps Z(HJ,Z) → Z(HK,Z) given by φ 7→ eK ? φ for J ⊂ K. Consider the inverse limit

Z = lim←−Z(HK,Z).

This makes sense locally, and then Z = ⊗p<∞Zp, where Zp is obtained by the analogous construction

at p. If π is an irreducible admissible representation of G(A), there is a unique character ηπ : Z → C

such that ηπ = ηπK
f
◦ prK whenever πK

f 6= 0. Similarly, we have characters ηπp locally and then

ηπ = ⊗p<∞ηπp under the isomorphism above. If π is automorphic and π∞ = 1, the values of ηπ are

algebraic integers. Throughout, we will use the following definition of being congruent:

Definition 1. Let π̃ and π be automorphic representations of G(A), both trivial at infinity, and let
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λ be a finite place of Q̄. Then we define π̃ and π to be congruent modulo λ when the congruence

ηπ̃(φ) ≡ ηπ(φ) (mod λ)

holds for all φ ∈ Z. In this case, we simply write π̃ ≡ π (mod λ).

Analogously, it makes sense to say the local components π̃p and πp are congruent. Then π̃ ≡ π (mod

λ) if and only if π̃p ≡ πp (mod λ) for all p < ∞. If π̃p and πp are both unramified, π̃p ≡ πp (mod λ)

simply means their Satake parameters are congruent.

The following definition gives the analogue of the notion Eisenstein modulo λ in Clozel’s paper

[Clo].

Definition 2. Let π be an automorphic representation of G(A) with π∞ = 1, and let λ be a finite

place of Q̄. We say that π is abelian modulo λ if there exists an automorphic character χ of G(A)

with infinity type χ∞ = 1 such that π ≡ χ (mod λ).

We prefer the terminology abelian modulo λ since the group G has no Q-parabolics. We note that

there exists non-abelian π exactly because G(R) is assumed to be compact modulo its center.

For the next theorem we fix a good small compact open subgroup K =
∏

Kp (see section 2.1.4

for the precise definition of good small). Let N be an integer such that p - N implies that Kp is

hyperspecial. Then we have the following level-raising result for the inner form G.

Theorem A Let λ|` be a finite place of Q̄, with ` outside a finite set determined by K. Let π be an

automorphic representation of G(A), with ωπ and π∞ trivial, such that πK
f 6= 0. Assume π occurs

with multiplicity one, and that π is non-abelian modulo λ. Suppose q - N` is a prime number with

qi 6= 1 (mod `) for i = 1, . . . , 4, such that modulo the Weyl-action we have the congruence

tπq⊗|c|−3/2 ≡




1

q

q2

q3




(mod λ).

Here t denotes the Satake parameter of the lift to GL(4). Then there exists an automorphic repre-
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sentation π̃ ≡ π (mod λ) of G(A), with ωπ̃ and π̃∞ trivial, such that π̃Kq

f 6= 0 and

π̃q is of type





IIIa

IIa

when πq is of type





IIb

IIIb

.

In the remaining case where πq is generic, one can choose π̃q to be of type IIa or IIIa.

The finite set of primes ` that we have to discard, are those dividing the discriminant of the

Hecke algebra of K. See section 2.1.4 below for more details.

We use the classification of [Sch], reproduced in Appendix A and B. Note that the two types IIb

and IIIb are the typical unramified local components of CAP representations. The representations

of type IIa are of the form χStGL(2) o σ (induced from the Siegel parabolic), while those of type

IIIa are χ o σStGL(2) (induced from the Klingen parabolic). Both are ramified, generic, Klingen-

and Siegel-spherical. Moreover, a representation of type IIIa is tempered if and only if it is unitary.

In the generic case one can choose between the types IIa and IIIa depending on the application one

has in mind. Representations of type IIa are expected to transfer to the inner form over Qq, while

those of type IIIa cannot occur in endoscopic lifts. We will prove this below.

The proof of the above theorem is inspired by the work of Bellaiche [Bel] and Clozel [Clo]. They

were both dealing with a unitary group U(3), split over some imaginary quadratic extension E/Q.

Clozel considered the case where q is inert in E. Here the semisimple rank is one, and he obtained

a π̃ with a Steinberg component at q. In his thesis, Bellaiche dealt with the case where q is split in

E. Here the semisimple rank is two and this makes things more complicated. In this case one gets

a π̃ with π̃q ramified but having fixed vectors under any maximal parahoric in GL(3). This in turn

implies that π̃q = χStGL(2) × σ by the classification of Iwahori-spherical representations of GL(3)

in my paper [Sor]. For GSp(4) this classification is much more complicated, but fortunately it has

been done by R. Schmidt [Sch]. To really utilize the tables in [Sch] we need to modify Bellaiche’s

argument a bit. For example, we incorporate the action of the Bernstein center at q, and we get a

precise condition on what characteristics ` we need to discard. At a crucial point we rely on results

of Lazarus [Laz] describing the structure of universal modules.

The approach in [Sor] is different. There, we are using the arguments of Taylor [Tay] in a more

general setup. In the special case of an inner form of GSp(4), the main result has weaker assumptions

(no multiplicity one or banality is needed, and it works for arbitrary `) but also a weaker conclusion

(one can only say that π̃q is of type I, IIa, or IIIa).
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Next we prove a purely local result at the prime r, which will be crucial later on for our application

of the trace formula. Now Dr is the division quaternion Qr-algebra, and we fix an unramified

quadratic subfield E. Let θ be the generator for Gal(E/Qr). From now on, let G′ denote GSp(4).

We view G as the non-split inner form of G′ over Qr. It comes with a class of inner twistings,

ψ : G → G′.

That is, ψ is an isomorphism over Q̄r such that σψ ◦ψ−1 is an inner automorphism of G′ for all σ in

the Galois group of Qr. We fix a ψ defined over E. Since Gder is simply connected, stable conjugacy

is just G(Q̄r)-conjugacy. Similarly for G′. Then ψ defines an injection from the semisimple stable

conjugacy classes in G(Qr) to the semisimple stable conjugacy classes in G′(Qr).

Let γ ∈ G(Qr) be a semisimple element, and let Gγ(Qr) denote its extended centralizer:

Gγ(Qr) = {x ∈ G(Qr) : x−1γx ∈ Z(Qr)γ}.

After choosing Haar measures on G(Qr) and Gγ(Qr), we consider the orbital integral

Oγ(f) =
∫

Gγ(Qr)\G(Qr)

f(x−1γx)dx

of a function f ∈ C∞c (Gad(Qr)). Now let {γ̃} be a set of representatives for the conjugacy classes

within the stable conjugacy class of γ, modulo Z(Qr). Then Gγ̃ is an inner form of Gγ , and we

choose compatible measures. Let e(Gγ̃) denote the Kottwitz sign [K], and form the stable orbital

integral

SOγ(f) =
∑

γ̃
e(Gγ̃)Oγ̃(f).

The definitions for G′ are completely analogous. Now consider two functions f ∈ C∞c (Gad(Qr)) and

f ′ ∈ C∞c (G′ad(Qr)). They have matching orbital integrals if, for all semisimple γ′ ∈ G′(Qr),

SOγ′(f ′) =





SOγ(f) if γ′ belongs to ψ(γ) mod Z(Qr),

0 if γ′ does not come from G(Qr).

Here we use compatible Haar measures on both sides. We note that Waldspurger has shown in [Wa]

(using results of Langlands and Shelstad [LS]) that one can always find a function f ′ matching a

given f . We will take f to be the idempotent of a maximal compact subgroup in G(Qr) and show
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that we can take f ′ to be biinvariant under a corresponding maximal compact subgroup in G′(Qr).

The semisimple Qr-rank of G′ is two, and the reduced building is covered by two-dimensional

apartments. Each apartment is tessellated by equilateral right-angled triangles. The vertices at the

right angles are obviously non-special, whereas all the other vertices are hyperspecial. Correspond-

ingly, the group G′(Qr) has two conjugacy classes of maximal compact subgroups. The hyperspecial

ones and the (non-special) paramodular ones.

The group G has semisimple Qr-rank one, so its reduced building is an inhomogeneous tree. In

fact, for r = 2 there is a picture of it on page 48 in the article of Tits [Tt]. All its vertices are

special. Each edge has one vertex of order r2 + 1 and one vertex of order r + 1. The former maps to

a non-special vertex in the building over E, whereas the latter maps to the midpoint of a long edge.

The stabilizer of a vertex of order r2 + 1 is also called paramodular.

Let K ′ be a paramodular group in G′(Qr). Concretely, one can take K ′ to be the subgroup

generated by the Klingen parahoric and the matrix




−r−1

1

1

r




.

Besides Z(Qr) and K ′ itself, its normalizer contains an element η called the Atkin-Lehner element

in the paper of Ralf Schmidt [Sch]. It has the following form:

η =




1

1

r

r




.

Note that it satisfies the identity η2 = r · I.

Theorem B Let K and K ′ be arbitrary paramodular subgroups in G(Qr) and G′(Qr), respectively.

Then the centralized characteristic functions eK and eηK′ have matching orbital integrals.

Here eK denotes the characteristic function of Z(Qr)K. The main ingredient of the proof is a

slight modification of the results obtained by Kottwitz in [Kot]. First, since G splits over E, we may

compare the stable orbital integrals of eK and eηK′ to stable twisted orbital integrals on G(E) and
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G′(E). In turn, these integrals can be compared explicitly by hand via the inner twisting.

The next result is a special case of the Langlands functoriality conjecture. More precisely, it is an

analogue for GSp(4) of the Jacquet-Langlands correspondence between the spectra of GL(2) and its

inner forms. It allows us to transfer the π̃ from Theorem A to G′(A) in the cases we are interested

in. The notion of being endoscopic is made precise in section 4.1.4 below. Here we note that a

cuspidal automorphic representation Π of G′(A) is said to be CAP with respect to a Q-parabolic P ,

with Levi component M , if there exists a cuspidal automorphic representation τ of M(A) such that

Π is weakly equivalent to the constituents of the induced representation of τ to G′(A). Recall that

weakly equivalent means isomorphic at all but finitely many places.

Theorem C Let π be an automorphic representation of G(A), with ωπ and π∞ trivial. Suppose

there exists a prime q /∈ S such that πq is of type IIIa of the form χoσStGL(2) where χ2 6= 1. Pick a

cohomological discrete series representation Π1 of G′(R), holomorphic or generic. Then there exists

a cuspidal automorphic representation Π of G′(A), with ωΠ trivial and Π∞ = Π1, such that Πp = πp

for all p /∈ S. Any such Π is neither CAP nor endoscopic. Moreover, if πr is para-spherical (that

is, has vectors fixed by a paramodular group), there exists a Π as above with Πr para-spherical and

ramified.

Let us briefly sketch the ideas of the proof. The main tool is Arthur’s stable trace formula.

The point is that the endoscopic group PGL(2) × PGL(2) for PGSp(4) has no endoscopy itself,

and we therefore only need the standard fundamental lemma proved by Hales (not the weighted

version). Hales has also computed the Shalika germs for GSp(4) and its inner forms. Then, from the

general results of Langlands and Shelstad on descent for transfer factors, one immediately deduces

the transfer conjecture in our cases. In fact, more recently, Waldspurger has shown in general that

the fundamental lemma implies the transfer conjecture. Intuitively, this enables us to match the

geometric sides of the trace formulas for G and G′. Consequently, the spectral sides match and

we can compare the spectra. There is a serious problem to overcome though. The distribution

defined by the trace formula is unstable. One makes it stable by subtracting suitable endoscopic

error terms. To show that these error terms vanish in our situation, we invoke results of Weissauer

describing endoscopic lifts in terms of the θ-correspondence with GO(X) for X four-dimensional.

It remains to show that type IIIa representations do not participate in these correspondences. For

this purpose, we use Kudla’s filtration of the Jacquet modules of the Weil representation. Roughly,

this filtration reveals that the Weil representation is compatible with parabolic induction. This
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way, we are reduced to showing that the Steinberg representation StSL(2) does not occur in the

θ-correspondence with split O(2). This is a well-known fact. A standard argument, based on the

linear independence of characters, then gives a discrete automorphic representation Π with ΠS = πS .

It is actually cuspidal: By the theory of Eisenstein series we rule out that it occurs in the residual

spectrum since it has a tempered component. To see it is not CAP we use work of Piatetski-Shapiro

and Soudry. To make sure the component Π∞ lies in the expected L-packet, and that we can indeed

choose a specific member, we rely on the exhaustive work of Shelstad in the archimedean case.

To get the paramodular refinement at r, we appeal to Theorem B. In fact, we then get a Π such

that the Atkin-Lehner operator on the paramodular invariants of Πr has a positive trace. Using

work of Weissauer [W3] on the Ramanujan conjecture we show that Πr is in fact also ramified. Then,

by the computations of Schmidt, Πr must be of type IIa, Vb, Vc, or VIc. We expect that Πr is

necessarily tempered. If so, it is of type IIa of the form χStGL(2) o σ with χσ non-trivial quadratic.

We note that slight modifications of the above trace formula argument, combined with Weis-

sauer’s work on weak endoscopic lifts, in fact prove the existence of weak transfer in general.

The foregoing discussion culminates in the following main result, which provides congruences

between unstable and stable automorphic forms for GSp(4). Let f ∈ S4(Γ0(N)) be a newform of

weight 4 and square-free level N (and trivial character). We assume that f has root number

εf = −1.

In other words, the L-function L(s, f) vanishes to an odd order at s = 2. For example, such a

newform f exists for N = 13. By the sign condition, we may lift f to a Saito-Kurokawa form SK(f)

on GSp(4). This is a CAP representation, holomorphic at infinity, having Galois representation

ρSK(f),λ ' ρf,λ ⊕ ω−1
` ⊕ ω−2

` .

Here ω` is the `-adic cyclotomic character, and ρf,λ is the system of Galois representations attached

to f by Deligne [Del]. More recently, Laumon [Lau] and Weissauer [W3] have attached Galois

representations to any cuspidal automorphic representation of GSp(4), which is a discrete series at

infinity. We produce congruences between SK(f) and certain stable forms of small level:

Theorem D With notation as above, let λ|` be a finite place of Q̄, with ` outside a finite set of

primes determined by N , such that ρ̄f,λ is irreducible. Suppose q - N` is a prime such that
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• qi 6≡ 1 (mod `) for i = 1, . . . , 4,

• ρ̄f,λ(Frobq) has a fixed vector.

Then there exists a cuspidal automorphic representation Π ≡ SK(f) (mod λ) of PGSp(4), neither

CAP nor endoscopic, having the following properties: Π∞ is the cohomological holomorphic discrete

series representation, Πp is unramified and tempered for p - Nq,

• The Galois representation ρΠ,λ is irreducible,

• Πq is of type IIIa (hence tempered, generic, and ramified),

• Πp is para-spherical for all primes p dividing N .

Moreover, if f is not CM, there exists a positive density of primes q satisfying the conditions above.

The proof is a combination of all our previous results. We outline the main ideas. Since f

has trivial character, it generates a cuspidal automorphic representation τ of GL(2,A) with trivial

central character, and with τ∞ being the holomorphic discrete series of weight 4, so that we have

the equality between L-functions L(s − 3/2, τf ) = L(s, f). We may, and we will, view τ as a

cuspidal automorphic representation of PGL(2). Choose a prime r such that τr is the Steinberg

representation (and not its unramified quadratic twist). Let G be the definite inner form of GSp(4)

with ramification locus {∞, r}. Its adjoint group Gad is the special orthogonal group of a definite

quadratic form in five variables over Q. Let Aτ be the global Waldspurger packet for the metaplectic

group S̃L(2) determined by τ . Then SK(f) = θ(σ) for some σ ∈ Aτ . We consider the reflection

σ̆ ∈ Aτ and its lifting θ(σ̆) to the inner form G. This turns out to be para-spherical at all primes

dividing N . By Theorem A we can raise the level: Since SK(f) has local components of type IIb

outside N , we get a π ≡ θ(σ̆) (mod λ) with πq of type IIIa. Then, by Theorem C we can transfer π

to an automorphic representation Π of GSp(4) agreeing with π outside of {∞, r}. The irreducibility

of ρΠ,λ was essentially proved by Ramakrishnan in [Ram].

Finally, we give an application of Theorem D to prove new cases of the Bloch-Kato conjecture

for classical modular forms, assuming a conjecture of Skinner and Urban. Before we state our result,
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we briefly recall the definition of Selmer groups. Let V be a continuous representation of the Galois

group Gal(Q̄/Q), with coefficients in a finite extension L/Q`. Choose a lattice Λ and define W by

0 → Λ i→ V
pr→ W → 0.

Let λ be the maximal ideal in the ring of integers of L. Then we identify the reduction Λ/λΛ

with the λ-torsion in W . For each prime p, let Ip be the inertia group Gal(Q̄p/Qnr
p ). Let Bcris be

Fontaine’s crystalline Barsotti-Tate ring, which is a Q`-algebra of periods [BK]. Then we define the

finite part of the Galois cohomology:

H1
f (Qp, V ) =





ker{H1(Qp, V ) → H1(Qnr
p , V )}, for p 6= `,

ker{H1(Q`, V ) → H1(Q`, Bcris ⊗ V )}, for p = `.

The Selmer group H1
f (Q, V ) is then the subgroup of H1(Q, V ) cut out by these local conditions:

H1
f (Q, V ) = ker{H1(Q, V ) →

∏
p

H1(Qp, V )/H1
f (Qp, V )}.

Using the maps on cohomology induced by i and pr, we then define the finite parts for Λ and W ,

H1
f (Qp, Λ) = i−1

∗ H1
f (Qp, V ), H1

f (Qp,W ) = pr∗H
1
f (Qp, V ).

The Selmer groups H1
f (Q,Λ) and H1

f (Q,W ) are then defined as above. If V is the `-adic realization

of a motive, the latter group is sometimes called the `-part of the Selmer group of the motive. It

sits in a short exact sequence, where the quotient is a conjecturally finite `-group,

0 → pr∗H
1
f (Q, V ) → H1

f (Q,W ) → III(Q,W ) → 0.

This quotient III(Q, W ) is called the `-part of the Tate-Shafarevich group. Momentarily, let Λ̄ denote

the reduction Λ/λΛ. Then the finite part H1
f (Qp, Λ̄) is defined to be the image of H1

f (Qp,Λ) under

the natural map. See page 17 in [Rub]. The Selmer group H1
f (Q, Λ̄) is then defined as before. In the

situations we are eventually interested in below, it can be identified with the λ-torsion in H1
f (Q, W ).

The classes in H1
f (Q, V ) correspond to equivalence classes of certain good extensions of the trivial
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representation 1 by V . To be precise, consider an extension of `-adic Gal(Q̄/Q)-modules,

0 → V → X → 1 → 0.

It is said to have good reduction at p 6= ` if the sequence remains exact after taking Ip-invariants.

In particular, if V is unramified at p, this simply means that X is unramified at p. Similarly, the

extension is said to have good reduction at ` if the sequence remains exact after applying the functor

Dcris(V ) = H0(Q`, Bcris ⊗ V ).

This is a filtered module of dimension at most dimQ`
(V ). If the dimensions are equal, V is called

crystalline. In this case, X is required to be crystalline. An extension X with good reduction

everywhere gives rise to a cohomology class in H1
f (Q, V ) via the connecting homomorphism. This

defines a bijection. The other Selmer groups described above have similar interpretations. For

example, the finite part H1
f (Q`, Λ̄) is connected to the notion of being Fontaine-Laffaille [FL].

Here we are content with formulating the Bloch-Kato conjecture [BK] for classical modular forms.

At first, we consider an arbitrary newform f ∈ S2κ(Γ0(N)). We take V above to be the κ-th Tate

twist ρf,λ(κ) of the Galois representation attached to f . Then conjecturally we have the relation

ords=κL(s, f) ?= dimQ`
H1

f (Q, ρf,λ(κ)).

If εf = −1 the L-function vanishes at the point s = κ. Then the conjecture predicts that the

pertinent Selmer group is non-trivial. This was proved by Skinner and Urban in [SU] under the

assumption that f is ordinary at λ (meaning that the Hecke eigenvalue a`(f) is a λ-adic unit).

Their proof relies on the deep results of Kato [Ka]. However, in the square-free case they give a

different argument, bypassing the work of Kato, but instead relying on Conjecture 1 below.

Let ρ be a continuous representation of Gal(Q̄p/Qp) on a finite-dimensional vector space V over

the `-adic field L. Assume p 6= `. Then by a famous result of Grothendieck, ρ is potentially

semistable. This means there exists a nilpotent endomorphism N : V → V such that

ρ(σ) = exp(t`(σ)N)

for σ in a finite index subgroup of Ip. Here t` : Ip ³ Z` is a homomorphism intertwining the

natural actions of the Weil group at p. The endomorphism N is called the monodromy operator.
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The following is basically Conjecture 3.1.7 on page 41 in the paper of Skinner and Urban [SU].

Conjecture 1. Let Π be a cuspidal automorphic representation of GSp(4), neither CAP nor endo-

scopic, with Π∞ cohomological. Suppose the local component Πp has non-zero vectors fixed by the

paramodular group. Then the corresponding monodromy operator at p has rank at most one.

As explained later in this introduction, this conjecture follows from the expected compatibility

between the local and global Langlands correspondence for GSp(4). Our application to the Bloch-

Kato conjecture is contingent on Conjecture 1.

Theorem E Let f ∈ S4(Γ0(N)) be a newform of square-free level N with root number εf = −1.

Assume f is not of CM type. Let λ|` be a finite place of Q̄, with ` outside a finite set, such that ρ̄f,λ

is irreducible. Assume the above Conjecture 1. Then the Selmer group

H1
f (Q, ρ̄f,λ(2)) 6= 0,

as predicted by the Bloch-Kato conjecture since the L-function L(s, f) vanishes at s = 2.

By the result of Jordan and Livne on level-lowering for modular forms of higher weight [JL], we

may assume that ρ̄f,λ is ramified at all primes p|N . Indeed congruent eigenforms have equal root

numbers. This minimality assumption turns out to be crucial for the proof.

It follows immediately from Theorem E that the Selmer group of ρf,λ(2) is non-trivial, assuming

that the `-part of the Tate-Shafarevich group is trivial. This should always be the case according to

the Tamagawa number conjecture. See Conjecture 5.15 on page 376 in [BK].

We outline the main ideas of the proof of Theorem E. By Theorem D we obtain a prime q and

an automorphic representation Π. First we choose a lattice Λ in the space of ρΠ,λ such that Λ̄ has

ρ̄f,λ as its unique irreducible quotient. The goal is then to show that ω̄−2
` embeds into Λ̄. If not,

ω̄−1
` is the unique irreducible subrepresentation of Λ̄. Thus we get two non-split extensions

0 → ω̄−1
` → X → ω̄−2

` → 0 and 0 → ω̄−2
` → Y → ρ̄f,λ → 0.

Both X and Y are subquotients of the etale intersection cohomology (for the middle perversity):

IH3
et(S̄K ×Q Q̄, Q̄`).
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Here K is paramodular at primes dividing N , Klingen at q, and hyperspecial outside Nq. We denote

by S̄K the Satake compactification of the Siegel threefold SK . Obviously X and Y are then both

unramified outside Nq. In addition they are both Fontaine-Laffaille. To show that X and Y both

have good reduction at primes dividing N , we use Conjecture 1 and our minimality assumption.

At q the monodromy operator has order two by a result of Genestier and Tilouine. This allows

us to show that X or Y is unramified at q. This is a contradiction. Indeed, by Kummer theory

H1
f (Q, ω̄`) = 0, and by Kato’s paper [Ka] we also have H1

f (Q, ρ̄f,λ(1)) = 0. Therefore ω̄−2
` does

embed into Λ̄, and we get a non-split extension with good reduction everywhere:

0 → ω̄−1
` → Z → ρ̄f,λ → 0.

Taking the dual extension, and a suitable Tate twist, we obtain the desired class in H1
f (Q, ρ̄f,λ(2)).

We end this introduction by giving a heuristic argument for Conjecture 1. Let Π be a cuspidal au-

tomorphic representation of GSp(4), neither CAP nor endoscopic, with Π∞ cohomological. Assume

moreover that Πp is para-spherical, and that Πp has vectors fixed by some compact open subgroup

Kp in G(Ap
f ). Then we consider the Siegel threefold SK of level K, where Kp is paramodular. This

is a quasi-projective variety over Q. Its base change to Qp has an integral model, also denoted by

SK , representing the following moduli problem: For a Zp-scheme S consider triples (A, λ, η̄) where

• A is an abelian S-scheme of relative dimension two,

• λ : A → A∨ is a polarization of degree p2,

• η̄ : V ⊗ Ap
f
∼→ H1(A,Ap

f ) modulo Kp is a Kp-level structure.

The Galois representation ρΠ,λ is given by the ΠK
f -isotypic component of the interior cohomology of

the generic fiber SK ×Q Q̄. This is the image of the cohomology of compact support. It is expected

that, by finding a suitably nice toroidal compactification of SK , there is a natural isomorphism

H3
c (SK ×Zp F̄p, RΨ(Q̄`))

∼→ H3
c (SK ×Zp Q̄p, Q̄`).

Here RΨ(Q̄`) is the sheaf of nearby cycles on the special fiber. This is really an object in some limit

of derived categories, but we will not need the precise definition in our discussion.
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To understand the geometry of the special fiber SK×Zp
F̄p we should write down equations for the

Rapoport-Zink local model. This has been done for the other parahorics. When Kp is hyperspecial,

SK has good reduction. The Iwahori case was studied by de Jong [JO]. The Siegel case was treated

by Chai and Norman [CN], and Genestier and Tilouine [GT] dealt with the Klingen case.

Given the above isomorphism, since Π is not endoscopic, it seems likely that the techniques of

Haines and Ngo [HN] can be adapted to show the following important identity:

Lss(s− 3/2, Πp, spin) = detss(1− Frobp · p−s : ρ
Ip

Π,λ)−1.

Here the ss means we are considering the semisimple L-factors of Rapoport [Rap]. We expect that

Πp is necessarily tempered if Π is tempered almost everywhere. Combining this with a special case

of the weight-monodromy conjecture, it should then follow that the above identity holds without

the ss. To define the L-factor on the left, we use the parameter (%,N) attached to Πp by Kazhdan

and Lusztig [KL]. Thus % : WQp → GSp4(C) is a homomorphism whose image consists of semisimple

elements, and N ∈ gsp4(C) is a nilpotent operator satisfying the following relation:

%(Frob−1
p ) ·N · %(Frobp) = p ·N.

In Conjecture 1 we may clearly assume that Πp is ramified. If Πp is also tempered, it follows

from the appendices that Πp is actually of type IIa. To be exact, it has the form χStGL(2) o σ

(induced from the Siegel parabolic) for two unitary characters χ and σ. It is the unique irreducible

subrepresentation of the principal series ν1/2χ × ν−1/2χ o σ. Then % is the Satake parameter of

the unramified quotient χ1GL(2) o σ. There is only one non-trivial conjugacy class of nilpotent N

satisfying the above relation. Namely, the class containing

N ∼




0

0 1

0

0




.

In particular dim kerN = 3. We then deduce from the above equality of L-factors that dim ρ
Ip

Π,λ = 3.
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Chapter 2

Level-raising

2.1 Algebraic Modular Forms

2.1.1 The Complex Case

Let G be an inner form of GSp(4) over Q such that G(R) is compact modulo its center. Concretely,

G is the unitary similitude group of D2, for some definite quaternion algebra D over Q, where we

take the hermitian form to be the identity I. Throughout, we assume that D has ramification locus

S = {∞, r} for some prime r. Let c : G → Gm denote the similitude, and let Z ' Gm be the center.

Then we consider the space of automorphic forms,

A = {smooth f : Z(Af )G(Q)\G(Af ) → C}.

Here Af is the finite part of the adele ring A. There is an admissible representation r of G(Af ) on

this space given by right translations. In turn, the Hecke algebra H of compactly supported smooth

functions on G(Af ) also acts. We equip A with the pairing defined by the following integral,

〈f, f ′〉 =
∫

G(Q)\G(Af )

f(x)f ′(x)dx.

This is well-defined since G(Q) is a discrete cocompact subgroup of G(Af ). As one easily verifies,

〈r(φ)f, f ′〉 = 〈f, r(φ∨)f ′〉,

where the anti-involution φ 7→ φ∨ of H is defined by φ∨(x) = φ(x−1). It reflects contragredients.

Now let K be a compact open subgroup of G(Af ), and let AK be the space of K-invariants. The
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Hecke algebra HK of K-biinvariant compactly supported functions on G(Af ) then acts semisimply:

AK '
⊕

Π
m(Π)ΠK

f ,

where Π varies over the automorphic representations of G(A), with trivial central character, such

that Π∞ is trivial and ΠK
f 6= 0. Let us choose representatives {xi} for the finite set of cardinality h,

G(Q)\G(Af )/K.

Then f 7→ (f(xi)) identifies AK with a subspace of Ch. We introduce the following finite groups,

Γi = G(Q) ∩ xiKx−1
i .

These are all trivial if K is sufficiently small. To be precise, if the projection of K to some G(Qp) does

not contain non-trivial elements of finite order. Finally, let us consider the pairing on A restricted

to AK . A straightforward calculation shows that we have the following formula for f, f ′ ∈ AK ,

〈f, f ′〉 =
∑

i

f(xi)f ′(xi)#Γ−1
i ,

up to normalization. In particular, it follows immediately that the above pairing is non-degenerate.

2.1.2 Models Over Number Fields

Let HK,Z denote the natural Z-structure in the algebra HK . It preserves the lattice AK,Z consisting

of Z-valued functions in AK . If L is a number field, we then define HK,L and AK,L by extension of

scalars. We choose L so that Aut(C/L) fixes the simple HK-submodules of AK . Then

ΠK
f ' C⊗L ΠK

f (L), where ΠK
f (L) = ΠK

f ∩ AK,L.

Moreover, the L-model ΠK
f (L) is unique up to complex scalars. We retain the decomposition of AK,L

into a sum of the various ΠK
f (L), where Π runs through the usual set of automorphic representations.
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2.1.3 Integral Models

Let λ be a finite place of L above `, and let O denote the ring of integers in the completion Lλ.

Then AK,Lλ
is the sum of the ΠK

f (Lλ) obtained from ΠK
f (L) by tensoring with Lλ. Then

ΠK
f (Lλ) ' Lλ ⊗O ΠK

f (O), where ΠK
f (O) = ΠK

f (Lλ) ∩ AK,O.

However, the integral model ΠK
f (O) need not be unique up to scalars. We also remark that their

sum need not exhaust AK,O. However, the corresponding quotient is at worst torsion.

2.1.4 Algebraic Modular Forms Mod `

Let F be the residue field of O. By the Brauer-Nesbitt principle, see page 80 in [Vig], the semisimpli-

fication is independent of the lattice (up to isomorphism) so that we have the usual decomposition

Ass
K,F '

⊕
Π
m(Π)ΠK

f (F),

where ΠK
f (F) denotes the semisimplification of F⊗O ΠK

f (O). Indeed we consider the reductions of

the lattice AK,O and its sublattice
⊕

Π
m(Π)ΠK

f (O),

and then take their semisimplifications. We say that K is a good small subgroup if the Hecke-module

ΠK
f determines the representation Πf . For almost all ` we have semisimplicity:

Lemma 1. Suppose K is a good small subgroup. For ` outside a finite set of primes determined by

K the following holds. The HK,F-module AK,F is semisimple, all the ΠK
f (F) are simple submodules,

and each ΠK
f (F) occurs with multiplicity m(Π).

Proof . In this proof let HK,Z denote the image of HK,Z in EndAK,Z. The algebra HK,Z comes

endowed with a natural symmetric pairing given by the trace. We consider its discriminant,

det{tr(Ti ◦ Tj)} ∈ Z− {0},

where {Ti} is a basis for HK,Z. To see that this is non-zero, let HK denote the algebra acting

faithfully on AK . It is semisimple, so the natural pairing on HK is non-degenerate since its radical

is contained in the Jacobson radical. Now let ` be a prime not dividing the discriminant. Then the
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extended pairing on F⊗Z HK,Z is non-degenerate, and it is therefore semisimple. The surjection

F⊗Z HK,Z ³ HK,F

is then an isomorphism since its kernel is nilpotent. Consequently HK,F is semisimple. We now

proceed to compute its dimension in two different ways. Decompose ΠK
f (F) into simple submodules

X with multiplicity mΠ(X). By Wedderburn theory, HK is a product of matrix algebras. Hence,

by computing dimCHK = dimFHK,F in two ways, we obtain the following equality

∑
X

(dimX)2 =
∑

Π,X
mΠ(X)2(dimX)2 + mixed terms,

where the mixed terms are non-negative contributions coming from distinct types in ΠK
f (F):

∑
Π,X 6=X′mΠ(X)mΠ(X ′)(dimX)(dimX ′).

We deduce that there are no mixed terms, and each X is a constituent of a unique ΠK
f (F) with

multiplicity one. Therefore the ΠK
f (F) must be simple and inequivalent for varying Π.

If ` does not divide the orders #Γi for all i, we can define a Hecke-compatible non-degenerate

pairing on AK,F by the previous formula. This is automatic when ` is sufficiently large:

Lemma 2. ` does not divide the #Γi if ` > 5.

Proof . Suppose ` > 5 divides #Γi. Then ` divides the pro-order of GSp(4,Zp) for almost all p.

#GSp(4,Fp) = p4(p− 1)(p2 − 1)(p4 − 1),

so p has multiplicative order at most 4 mod `. This contradicts Dirichlet’s theorem.

2.2 Generalized Eigenspaces

Let π be a fixed automorphic representation of G(A), with trivial central character, such that π∞

is trivial and πK
f 6= 0. By Schur’s lemma, the center Z(HK,Z) acts on πK

f by a character

η : Z(HK,Z) → L.
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Here we may have to enlarge the field L. Since Z(HK,Z) preserves AK,Z, the values of η are in fact

algebraic integers. We denote by η̄ its reduction modulo λ, and look at its generalized eigenspace:

AK,F(η̄) = {f ∈ AK,F for which ∃n such that (r(φ)− η̄(φ))nf = 0, ∀φ ∈ Z(HK,F)}.

This subspace is preserved by HK,F. Its semisimplification is given by the following lemma:

Lemma 3. AK,F(η̄)ss ' ⊕
Π: Π ≡ π (mod λ) m(Π)ΠK

f (F).

Proof . In this proof let T denote the image of Z(HK,O) in EndAK,O. Since O is complete, T is

the direct product of its localizations. Clearly η̄ factors through T, and we let m = ker(η̄) be the

corresponding maximal ideal in T. Then (AK,O)m = Tm ⊗T AK,O is a lattice in

(AK,Lλ
)m =

⊕
η′ ≡ η (mod λ)

AK,Lλ
(η′) '

⊕
Π: Π ≡ π (mod λ)

m(Π)ΠK
f (Lλ).

Also, clearly (AK,F)m = AK,F(η̄), so the conclusion follows from the Brauer-Nesbitt principle.

We will assume that ` > 5 from now on. We then prove the following crucial result:

Lemma 4. AK,F(η̄) is selfdual.

Proof . By an easy inductive argument based on the socle filtration, it follows that the pairing

on AK,F restricts to a non-degenerate pairing between the generalized eigenspaces AK,F(η̄) and

AK,F(η̄∨). However, it is well-known that π ' π∨ (this is even true locally for any odd rank special

orthogonal group) so η̄ = η̄∨. The Hecke actions are intertwined by the compatibility relation.

2.3 The Universal Module

In this section we fix a prime q 6= r. We let G = G(Qq) and fix a hyperspecial subgroup K. Also, we

fix a Borel subgroup B. Let F be an algebraic closure of F` and consider the spherical Hecke algebra

HK,F. We look at the degree character, giving the Hecke-action on the trivial representation

deg : HK,F → F.

We define a category with objects (V, v), where V is a smooth G-representation over F and v ∈ V is

a K-fixed vector on which HK,F acts by deg, and with the obvious morphisms. This category has a
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universal initial object. An explicit construction realizes it as the following induced module,

M = Cc(G/K)⊗HK,F Fdeg.

Obviously MK is spanned by the class of eK , the neutral element in HK,F. Also observe that M is

generated by its K-invariants, hence cyclic. We will need the following theorem of Lazarus [Laz]:

Theorem 1. Suppose q 6= ` and q4 6= 1 (mod `). Then M∨ ' C∞(B\G).

Proof . Let δB denote the modulus character of B. Note that C∞(B\G)∨ is nothing but the

principal series of δ
1/2
B . By the universal property of M there is canonical surjective G-map

M→ C∞(B\G)∨.

By assumption ` is banal for q, that is, ` 6= q does not divide #G(Fq). Therefore, Theorem 1.0.3 in

[Laz] applies. Consequently, the above map must be an isomorphism since the two representations

have the same semisimplifications.

We say that ` is banal for q if it satisfies the hypothesis of this theorem. Note that we must

then have ` > 5. The result allows us to write down a composition series for M∨. There are two

parabolic subgroups containing B. The Klingen parabolic Pα, and the Siegel parabolic Pβ . The

latter has abelian unipotent radical. Let us take B to be the subgroup of upper triangular matrices:

B = {




a

b

cb−1

ca−1







1 x

1

1 −x

1







1 r s

1 t r

1

1



}.

Then these two maximal parabolic subgroups have the following matrix realizations:

Pα = {




c

g

c−1 det g







1 x

1

1 −x

1







1 r s

1 r

1

1



},
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and

Pβ = {




g

cτg−1







1 r s

1 t r

1

1



},

where τg denotes the skew-transpose of g. That is, transpose with respect to the second diagonal.

Now suppose qi 6= 1 (mod `) for i = 1, . . . , 4. By Theorem 4.7.2 in [Laz] the following filtration,

0 ⊂ {constants} ⊂ C∞(Pα\G) ⊂ C∞(Pα\G) + C∞(Pβ\G) ⊂ C∞(B\G),

has irreducible subquotients 1, Vα, Vβ , and St, all occurring with multiplicity one.

2.4 Existence of Certain Subquotients

Let π be as above, but assume that m(π) = 1. Moreover, suppose K is a good small subgroup and

that ` lies outside a finite set of primes as in Lemma 1. Let q /∈ {`, r} be a prime such that

• K = KqK
q with Kq hyperspecial,

• qi 6= 1 (mod `) for i = 1, . . . , 4,

• πq ≡ 1 (mod λ).

Then fix an Iwahori subgroup Iq ⊂ Kq and let I = IqK
q. By our assumptions on π and `, we can

identify πK
f (F) with a submodule of AK,F(η̄). We look at the Iwahori-modules they generate:

HI,F · πK
f (F) ⊂ HI,F · AK,F(η̄) ⊂ AI,F(η̄).

Here we abuse notation a bit, and let AI,F(η̄) denote the generalized eigenspace for η̄ composed with

Z(HI,F) → Z(HK,F), φ 7→ eK ? φ.

This is in fact an isomorphism, but we will not use that. The connection with M is given by:
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Lemma 5. The universal module M has a quotient N such that, as modules over HI,F,

N I ⊗ πK
f (F) ' HI,F · πK

f (F).

Moreover, if the component πq is a full unramified principal series, we have M = N .

Proof . Note that HI,F · πK
f (F) is a multiple of πK

f (F), viewed as a simple module over HKq,F. By

Theorem 3.12 in [Vig], since ` is banal for q, there is a representation N of G(Qq) such that

N I ' HomHKq,F(π
K
f (F),HI,F · πK

f (F)).

Moreover, N is generated by its Iwahori-invariants. It remains to show that N is a quotient of M.

By the universal property of M, there is a canonical surjective map of HI,F-modules,

MI ⊗ πK
f (F) ³ HI,F · πK

f (F).

This in turn defines a surjective map MI ³ N I ; indeed it is enough to show surjectivity after

tensoring with πK
f (F). By the result of Vigneras mentioned above, this map comes from a map of

representations M→N , which must be surjective since N I generates N .

Now let us assume that πq is generic, and show that the above canonical map is injective. We

do this by comparing dimensions. Obviously the source has dimension 8 dimπK
f . Furthermore,

HI,F · πK
f (F) ' F⊗O πI

f (O).

Since πq is generic, dim π
Iq
q = 8, and therefore HI,F · πK

f (F) also has dimension 8 dim πK
f .

Lemma 6. N is the trivial representation only if π is abelian modulo λ.

Proof . Suppose N = 1. Then AI,F(η̄) contains an eigenform f such that the Iwahori-Hecke algebra

acts on F · f by the degree character. Therefore, f is G(Qq)-invariant (on both sides). Note that

1 → Gder(Af ) → G(Af ) c→ A∗f → 1

is exact since H1(Qp, G
der) = 1, as Gder is simple and simply connected. We claim that f factors

through c. This follows easily from strong approximation, using that Gder(Qq) is non-compact.

Thus η̄ occurs in the space of F-valued functions on the finite abelian group A∗f/Q∗+c(I). By the
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Deligne-Serre lifting lemma, Lemma 6.11 in [DS], there is a character η′ ≡ η (mod λ) occurring

in the space C-valued functions. The group characters form a basis for this space, so there is an

automorphic character χ of G(Af ) such that η′ = ηχ. Hence π is abelian modulo λ.

In the following, we use the terminology of [Sch]. See Appendix A and B for the notation.

Lemma 7. Assume π is non-abelian modulo λ. Then πq must be of type I, IIb or IIIb. Then

N∨ ' C∞(P\G), where P =





B, if πq is of type I,

Pα, if πq is of type IIb,

Pβ , if πq is of type IIIb.

Proof . The trivial representation is the unique irreducible quotient of M, so it is also a quotient of

N . However, N 6= 1 by the previous lemma. Write down a composition series for N∨ of the form

0
1⊂ 1

V⊂ X ⊂ · · · ⊂ N∨,

with irreducible subquotients. Here X is a non-trivial extension of V by 1. Otherwise V ∨ is a

quotient of M and hence trivial. However, all constituents of M occur with multiplicity one. Thus

Ext1(1, V ) 6= 0

by selfduality. According to [Clo], the arguments in Casselman’s paper [Cas] remain valid as long

as ` is banal for q. Therefore, V ' VP for a maximal parabolic subgroup P . Moreover, there is an

isomorphism

X ' C∞(P\G).

Suppose P = Pα. Then C∞(Pα\G)∨ is a quotient of N . In turn, there is a surjective map

N J ⊗ πK
f (F) ' HJ,F · πK

f (F) ³ C∞(Pα\G/J)∨ ⊗ πK
f (F),

for any J . If we take J = Jβ we deduce that dim π
Jβ
q is at least 3. Since πq is also unramified, it

follows from Appendix B that it must be of type I or IIb. In the latter case note that dimN I and

#Pα\G/I both equal 4. Similarly, if P = Pβ we conclude that πq must be of type I or IIIb.
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2.5 Proof of Theorem A

Let P be a maximal parabolic subgroup such that N∨ contains C∞(P\G). Thus P = Pα if πq is of

type IIb, and P = Pβ if πq is of type IIIb. When πq is generic, P can be arbitrary.

Lemma 8. The modules V I
P ⊗πK

f (F) and 1I ⊗πK
f (F) occur with multiplicity one in HI,F · AK,F(η̄).

Proof . By the universality of M, there is a canonical surjective map of HI,F-modules,

MI ⊗AK,F(η̄) ³ HI,F · AK,F(η̄).

Now recall that M satisfies multiplicity one, and πK
f (F) occurs only once in AK,F(η̄).

Lemma 9. The module V I
P ⊗ πK

f (F) occurs in the quotient AI,F(η̄)/HI,F · AK,F(η̄).

Proof . First we show that V I
P ⊗πK

f (F) or 1I⊗πK
f (F) occurs in the quotient in the lemma. Then we

rule out the latter. Otherwise, both modules occur with multiplicity one in AI,F(η̄) by the previous

lemma. Now, AI,F(η̄) has a composition series where the constituent V I
P ⊗πK

f (F) is the left neighbor

of 1I ⊗ πK
f (F). Now we recall that AI,F(η̄) is selfdual by Lemma 4. Therefore,

C∞(P\G/I)⊗ πK
f (F)

is also a subquotient. In particular it has a composition series where the constituents form a subseries

of the above composition series. By multiplicity one, we must have an exact sequence

0 → V I
P ⊗ πK

f (F) → C∞(P\G/I)⊗ πK
f (F) → 1I ⊗ πK

f (F) → 0.

However, this is impossible since 1 is not a quotient of C∞(P\G). Suppose 1I ⊗ πK
f (F) occurs in

the quotient. Then there exists an automorphic representation Π ≡ π (mod λ), with ΠK
f = 0, such

that 1I ⊗ πK
f (F) is a summand of ΠI

f (F). Applying the idempotent eK we reach a contradiction.

We can now finish the proof of Theorem A as follows: Suppose P = Pα. Then there exists an

automorphic representation π̃ ≡ π (mod λ), with π̃K
f = 0, such that V I

α ⊗ πK
f (F) is a summand of

π̃I
f (F). Applying the idempotent eJβ

we see from Appendix B that dim π̃
Jβ
q is at least 2. Since π̃q is

also ramified, we conclude (again using Appendix B) that it must be of type IIIa. The type IVb is

immediately ruled out as it is not unitary. Analogously, if P = Pβ we deduce that π̃q is of type IIa.
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Chapter 3

Matching Orbital Integrals

3.1 Twisted Orbital Integrals

Momentarily, we let G denote the non-split inner form of G′ over Qr. It splits over the unramified

quadratic extension E. Let θ be the generator of Gal(E/Qr), and fix an inner twisting ψ defined

over E. We define a norm mapping N : G(E) → G(E) by setting Nδ = δθ(δ). For δ ∈ G(E), we

then define N δ by intersecting the stable conjugacy class of Nδ with G(Qr). It may happen that

N δ is empty since G is not quasi-split. Otherwise, the stable twisted conjugacy class of δ is defined

to be the fiber of N through δ. It is a finite union of twisted conjugacy classes.

We consider the Qr-group I obtained from G by restriction of scalars from E. Then θ defines an

automorphism of I over Qr, again denoted by θ. Now let δ ∈ G(E) be an element such that Nδ is

semisimple. The extended twisted centralizer of δ is the Qr-group Iδθ with rational points

Iδθ(Qr) = {x ∈ G(E) : x−1δθ(x) ∈ Z(Qr)δ}.

After choosing measures on G(E) and Iδθ(Qr), we consider the twisted orbital integral

Oδθ(fE) =
∫

Iδθ(Qr)\G(E)

fE(x−1δθ(x))dx

of a function fE ∈ C∞c (Gad(E)). Now let {δ̃} be a set of representatives for the twisted conjugacy

classes within the stable twisted conjugacy class of δ mod Z(Qr). Then Iδ̃θ is an inner form of Iδθ

and we transform the measure as usual. Then define the stable twisted orbital integral of fE to be

SOδθ(fE) =
∑

δ̃
e(Iδ̃θ)Oδ̃θ(fE).
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To be precise, we put SOδθ(fE) = 0 if N δ is empty. Now consider an f ∈ C∞c (Gad(Qr)). We say

that the functions f and fE have matching orbital integrals if for all semisimple γ ∈ G(Qr),

SOγ(f) =





SOδθ(fE) if γ belongs to N δ mod Z(Qr),

0 if γ does not come from G(E).

We note that Gγ and Iδθ are inner forms if γ ∈ N δ, and we use compatible Haar measures on

both sides. Also, the measures on G(Qr) and G(E) are fixed. In practice they will be normalized

compatibly. Finally, we note that all these definitions carry over to G′. Indeed things are more

well-behaved since G′ is quasi-split. For example, N is defined everywhere.

3.2 Base Change for Idempotents

Let K be a paramodular subgroup of G(Qr), and let x be the vertex in the tree fixed by K. Since

E/Qr is unramified, we may view x as a θ-invariant point in the building of G over E. Then let KE

be the parahoric subgroup of G(E) fixing x. We choose measures on G(Qr) and G(E), such that K

and KE have the same measure. The following crucial result is due to Kottwitz [Kot].

Theorem 2. The idempotents eK and eKE have matching orbital integrals.

Proof . Let L be the completion of the maximal unramified extension of Qr, and let σ be the

Frobenius over Qr. We view x as a point in the building of G over L, and let KL be the open

bounded subgroup of G(L) fixing x. We claim that KL satisfies the three conditions on page 240 in

[Kot]. Clearly KL is fixed by σ. Secondly, to see that k 7→ k−1σ(k) defines a surjective map from KL

to itself, we argue as in [Kot]. Namely, let G be the smooth affine group scheme over Zr attached to

x in Bruhat-Tits theory. It has generic fiber G, and OL-points KL. Since Gder is simply connected,

the special fiber Ḡ is connected and we can refer to Proposition 3 in Greenberg [Gre]. Now the result

follows by paraphrasing the arguments in [Kot] with our definition of orbital integrals.

Similarly, let K ′ be a paramodular subgroup of G′(Qr) fixing the vertex x′ in the building. View

x′ as a point in the building of G′ over E, and let K ′
E be the parahoric subgroup of G′(E) fixing x′.

Theorem 3. The functions eηK′ and eηK′
E

have matching orbital integrals.

Proof . As before, the idempotents eK′ and eK′
E

have matching orbital integrals. Now

e〈η,K′〉 = eK′ + eηK′ ,
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and similarly over E, so it remains to show that e〈η,K′〉 and e〈η,K′
E〉 match. Again, this follows from

the arguments in [Kot]. However, this is not as straightforward as above since the group 〈η, K ′
L〉

does not satisfy the conditions on page 240. Indeed the map k 7→ k−1σ(k) only maps onto the

subgroup K ′
L. This is sufficient however. Indeed, using the notation of [Kot], it is still true that X

mod center is identified with the set of fixed points of the Frobenius σ on XL mod center.

3.3 The Comparison Over E

It is well-known that G′ has a unique inner form over Qr. Thus, by the inflation-restriction sequence,

H1(E/Qr, G
′ad(E)) ' H1(Qr, G

′ad) ' {±1}.

The non-trivial cohomology class is represented by the cocycle θ 7→ η. We may therefore choose our

twisting ψ such that θψ ◦ ψ−1 is conjugation by η. Then the following integrals match.

Lemma 10. Oδθ(eKE
) = Oδ′θ(eηK′

E
) where δ′ = ψ(δ)η−1.

Proof . Obviously ψ restricts to an isomorphism between Iδθ and Iδ′θ. Moreover, we clearly have

Oδθ(eKE ) = Oδ′θ(eψ(KE)η−1).

The inverse image of K ′
E under ψ is θ-invariant. Hence it stabilizes a conjugate of x, so that

ψ(KE) = ξK ′
Eξ−1

for some ξ ∈ G′(E). It follows that θ(ξ)−1ηξ normalizes K ′
E , and then ψ(KE)η−1 is a θ-conjugate

of ηK ′
E mod center. Then the characteristic functions have the same twisted orbital integrals.

Lemma 11. SOδθ(eKE ) = SOδ′θ(eηK′
E
) where δ′ = ψ(δ)η−1.

Proof . First we deal with the case where N δ is non-empty. Let {δ̃} be a set of representatives

for the twisted conjugacy classes within the stable twisted conjugacy class of δ mod Z(Qr). It is

straightforward to check that {δ̃′} is then an analogous set of representatives for δ′. Then the result

follows from the previous lemma. If N δ is empty, it remains to show that

SOδ′θ(eηK′
E
) = 0.
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Otherwise Oδ̃′θ(eηK′
E
) is non-zero for some δ̃′. However, it equals Oδ̃θ(eKE

) by the previous lemma.

By the theorem on page 243 in [Kot], there is a corresponding γ̃ ∈ N δ̃. Hence N δ is non-empty.

3.4 Proof of Theorem B

To prove Theorem B, let γ′ ∈ G′(Qr) be an arbitrary semisimple element. First we assume that γ′

does not come from G(Qr). Then, we must show that SOγ′(eηK′) vanishes. We may clearly assume

that γ′ belongs to N δ′ for some δ′ ∈ G′(E). Write δ′ = ψ(δ)η−1. Then, from what we have shown,

SOγ′(eηK′) = SOδ′θ(eηK′
E
) = SOδθ(eKE

).

As a result, it suffices to show that N δ is empty. Otherwise, there exists a γ ∈ G(Qr) that is stably

conjugate to Nδ mod center. However, ψ(Nδ) = rNδ′ so ψ(γ) is then stably conjugate to γ′ modulo

the center. This contradicts our assumption that γ′ does not come from G(Qr). Next we assume

that γ′ is stably conjugate to ψ(γ) for some γ ∈ G(Qr). We must show that

SOγ′(eηK′) = SOγ(eK).

It is easy to check that γ ∈ N δ mod center if and only if γ′ ∈ N δ′ mod center. If this does not hold,

both sides are zero. If it does hold, the first string of equalities can be extended by SOγ(eK).
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Chapter 4

Functoriality

4.1 Endoscopy

4.1.1 The Endoscopic Group H

Up to equivalence, the inner class of G over Q admits a unique non-trivial elliptic endoscopic triple.

H = (GL(2)×GL(2))/GL(1)

is the underlying group, where GL(1) is centrally embedded by x 7→ (x, x−1). Its dual group is

Ĥ = {(x, x′) ∈ GL(2,C)×GL(2,C) : det x = det x′}.

There is a natural embedding into Ĝ, identifying Ĥ with the centralizer of diag(1,−1,−1, 1).

4.1.2 Transfer and the Fundamental Lemma

Let p be a prime. A semisimple element δ ∈ H(Qp) is said to be (G,H)-regular if α(δ) 6= 1 for every

root α of G that does not come from H. We have the following fundamental result in our case:

Theorem 4. For every f ∈ C∞c (Gad(Qp)) there exists a function fH ∈ C∞c (Had(Qp)) such that

SOδ(fH) =
∑

γ
∆G,H(δ, γ)e(Gγ)Oγ(f)

for all (G, H)-regular semisimple δ ∈ H(Qp). Here the sum runs over a set of representatives for the

conjugacy classes in G(Qp) belonging to the stable conjugacy class associated to δ. We use compatible

measures on both sides. The ∆G,H(δ, γ) are the Langlands-Shelstad transfer factors.
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Proof . By a descent argument due to Langlands and Shelstad, see page 495 of [LS], it suffices to

prove the theorem for G and its centralizers near the identity. Here we have Shalika germ expansions

of the orbital integrals, and Hales computed and matched these germs in [H1].

We remark that, since H has no endoscopy itself, SOδ equals Oδ up to a sign. We also note that,

by a more recent result of Waldspurger, see page 157 of [Wa], the previous theorem in fact follows

from the following supplementary result known as the standard fundamental lemma:

Theorem 5. Let p 6= r, and let K and KH be hyperspecial subgroups of G(Qp) and H(Qp), respec-

tively. Then, if f equals the idempotent eK , we may take fH above to be the idempotent eKH
.

Proof . This is due to Hales [H2].

By [Wa], one can also transfer functions f on G(Qp) to functions fG′ on G′(Qp) with matching

orbital integrals. The archimedean case of Theorem 4 was proved by Shelstad in [S1] and [S2].

Finally we mention that, of course, all we have said is also true for G′.

4.1.3 Local Character Identities

Let ρ be an irreducible admissible representation of H(Qp). It factors as ρ1 ⊗ ρ2, where the ρi are

representations of GL(2) with the same central character. Since H has no endoscopy, the character

trρ is a stable distribution. By results of Arthur [A1] and Shelstad [S2], there is an expansion

trρ(fH) =
∑

π
∆G,H(ρ, π)trπ(f)

for any f ∈ C∞c (G(Qp)). Here π runs over irreducible representations of G(Qp), and the ∆G,H(ρ, π)

are spectral analogues of the Langlands-Shelstad transfer factors. There is a similar expansion of trρ

in terms of representations of G′(Qp). Using θ-correspondence, Weissauer has made this expansion

explicit in [W1] and [W2]. We recall his results below. There are precisely two isomorphism classes

of quaternary quadratic spaces X with discriminant one. Namely, the split space Xs and the

anisotropic space Xa. Now, the key is that we have the following two identifications:

GSO(Xs) ' H, GSO(Xa) ' H̆ = (D∗ ×D∗)/GL(1).

Here D is the division quaternion algebra over Qp, and GSO(X) denotes the identity component

of the orthogonal similitude group GO(X). Note that, by the Jacquet-Langlands correspondence,
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there is a one-to-one correspondence between irreducible representations ρ̆ of H̆(Qp) and discrete

series representations ρ of H(Qp). We intend to transfer to GSp(4) using θ-correspondence.

Next we briefly review a result of Roberts [R1] on θ-correspondence for similitudes in our special

case. Assume p is odd, and fix a non-trivial character of Qp. Correspondingly, we have the Weil

representation ω of Sp(4)×O(X) on the Schwartz space of X2. It extends to a representation of

{(x, x′) ∈ GSp(4)×GO(X) : c(x) = c(x′)},

denoted by ω̃. Let RX(GSp(4)) denote the set of irreducible representations π of GSp(4) such that

the restriction to Sp(4) is multiplicity-free and has a constituent that is a quotient of ω. Define the

set R4(GO(X)) similarly. Since discX = 1, the condition Hom(ω̃, π ⊗ ρ) 6= 0 defines a bijection

RX(GSp(4)) ↔R4(GO(X))

by [R1]. We denote this map and its inverse by π 7→ θ(π) and ρ 7→ θ(ρ), respectively.

Now let ρ = ρ1 ⊗ ρ2 be a representation of GSO(X). It is said to be regular if ρ1 6= ρ2. In this

case, by Mackey theory, the induced representation of ρ to GO(X) is irreducible and we denote it

by ρ+. When ρ1 = ρ2 we say that ρ is invariant. If so, it has exactly two extensions to GO(X).

However, by [R2] there is a unique extension ρ+ occurring the θ-correspondence with GSp(4).

Theorem 6. Let ρ be a discrete series representation of H(Qp). Then we have the identity

trρ(fH) = trθ(ρ+)(f)− trθ(ρ̆+)(f)

for any f ∈ C∞c (G(Qp)). Here ρ̆ is associated to ρ under the Jacquet-Langlands correspondence.

Proof . This is due to Weissauer. See Proposition 1 in [W2].

Weissauer makes the following supplementary remarks: The lift θ(ρ+) is always generic, whereas

θ(ρ̆+) is non-generic. If ρ is regular, both θ-lifts are discrete series representations (indeed θ(ρ̆+) is

always supercuspidal). On the other hand, if ρ is invariant, the θ-lifts are limits of discrete series.

When ρ is not a discrete series, one can still expand trρ using the compatibility properties described

on page 4 in [W2]. This is done in great detail on page 93 in [W1].
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4.1.4 Weak Endoscopic Lifts

One says that a cuspidal automorphic representation π of G′(A) is endoscopic if there exist two

cuspidal automorphic representations ρi of GL(2), with central character ωπ, such that

L(s, πp, spin) = L(s, ρ1,p)L(s, ρ2,p)

for almost all p. Then we also say that π is a weak endoscopic lift of ρ = ρ1⊗ρ2. Moreover, let us recall

what it means for π to be CAP (cuspidal associated to parabolic): π is said to be CAP with respect

to a parabolic P , with Levi component M , if there exists a cuspidal automorphic representation τ

of M(A) such that π is weakly equivalent to the constituents of the induced representation of τ to

G′(A). The CAP representations for G′(A) are described completely in [PS] and [S].

Theorem 7. Let π be a weak endoscopic lift of ρ above, which is not CAP. Then for all p,

∆G′,H(ρp, πp) 6= 0.

P roof . This is part 3 of the main theorem of [W2] on page 16. The main ingredient is a result of

Kudla, Rallis, and Soudry [KRS], showing that any constituent of π restricted to Sp(4) is a global

θ-lift from some O(X) since the degree 5 L-function of π has a simple pole at s = 1.

In addition, Weissauer shows that ρ has a weak endoscopic lift as above if and only if ρ1 6= ρ2.

4.1.5 Representations of Type IIIa and θ-Correspondence

As we have shown in Theorem A, by raising the level of a suitable automorphic representation π of

G(A), we obtain a π̃ ≡ π (mod λ) with π̃q of type IIIa. This means precisely that π̃q is of the form

χo σStGL(2)

for unramified characters χ and σ of Q∗q such that χ 6= 1 and χ 6= | · |±2. They are both unitary in

our case. Throughout, we use the notation of [ST], so the above representation is induced from the

Klingen-Levi. In our case it has trivial central character, that is, χσ2 = 1. We note that χ2 6= 1:

Indeed π̃q is congruent (mod λ) to its unramified relative χoσ1GL(2), which has Satake parameters

{qα−1, q2α−1, qα, q2α}, α = σ(q),
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after twisting by |c|−3/2. Since π̃q ≡ πq ≡ 1 (mod λ), the above parameters are congruent to

{1, q, q2, q3}.

If α4 = 1 this can only happen if q4 ≡ 1 (mod `), contradicting banality. Therefore χ2 6= 1, and by

Theorem 5.2 part (iv) in [ST] the restriction of π̃q to Sp(4) remains irreducible.

Lemma 12. Let χ o σStGL(2) be a unitary representation of G′ad(Qq) of type IIIa, where χ2 6= 1.

Let X be an even-dimensional quadratic space over Qq of discriminant 1. The representation does

not occur in the θ-correspondence with GO(X) if X is anisotropic, or if dim X is at most 4.

Proof . By Lemma 4.2 in [R1] it suffices to show that χ o StSL(2) does not occur in the θ-

correspondence with O(X). In other words, by Frobenius reciprocity, we need to show that

HomGL(1)×SL(2)(r(ω), χ⊗ StSL(2)) = 0.

Here r(ω) is the Jacquet module for the Weil representation ω with respect to the Klingen parabolic

in Sp(4). We will utilize Kudla’s filtration of r(ω) as described in Theorem 8.1 in [K1]:

0 → IndO(X)
P (ω̆ ⊗ ω1,X̆) → r(ω) → χX ⊗ ω1,X → 0.

Here, up to a real twist, χX is a quadratic character. Of course, ω1,X denotes the Weil representation

for the pair SL(2)×O(X). The submodule of r(ω) is to be regarded as being trivial if X is anisotropic.

Otherwise, P denotes the parabolic subgroup of O(X) with Levi component GL(1)×O(X̆), where

X̆ is the space in the Witt tower of X with index one less than that of X. Up to a twist, ω̆ is the

representation of GL(1) ×GL(1) on Schwartz functions on Qq given by translation composed with

multiplication. Let us first note that the following space vanishes:

HomGL(1)×SL(2)(χX ⊗ ω1,X , χ⊗ StSL(2)) = 0.

Otherwise, χ = χX . However, χ is unitary and non-quadratic. This proves the lemma when X is

anisotropic. We may then assume that X is split of dimension 2 or 4. It remains to show that

HomGL(1)×SL(2)(IndO(X)
P (ω̆ ⊗ ω1,X̆), χ⊗ StSL(2)) = 0.

Otherwise, it follows immediately from Lemma 9.4 in [GG] that χ⊗ StSL(2) is also a quotient of the



35

representation ω̆⊗ω1,X̆ . Consequently, StSL(2) occurs in the θ-correspondence with O(X̆). However,

it is well-known that StSL(2) does not come from split O(2). See the example on page 86 in [K1].

Corollary 1. Let π be a cuspidal automorphic representation of G′ad(A) having a local component

of type IIIa of the form χo σStGL(2), where χ2 6= 1. Then π is neither CAP nor endoscopic.

Proof . Suppose π is CAP with respect to the Siegel parabolic Pβ or B. Note that PGSp(4) is the

same as split SO(5). Then by [PS] it comes from S̃L(2) via global θ-lifting. Locally, one can compute

these θ-lifts and check that they are all non-generic. We will have more to say about this in the

next chapter. However, type IIIa representations are generic. Now suppose π is CAP with respect

to the Klingen parabolic Pα. By [S] there exist a two-dimensional anisotropic quadratic space X

over Q such that π is a global θ-lift from GO(X). However, by Lemma 12, type IIIa representations

do not occur in the θ-correspondence with any two-dimensional quadratic space. Finally, suppose

π is a weak endoscopic lift of ρ. By Theorem 7, the local component πq = χ o σStGL(2) occurs in

the expansion of trρq. If ρq is a discrete series, this is impossible by Theorem 6 and Lemma 12.

Otherwise, its character expansion is given by a single representation. See page 94 in [W1]. This

representation is irreducibly induced from Pβ or B. Thus it cannot be of type IIIa.

4.2 Stability

4.2.1 Stabilization of the Trace Formula

The trace formula for G′ is an equality between two expansions of a very complicated invariant

distribution IG′ on G′(A). One expansion is in terms of geometric data such as conjugacy classes,

Tamagawa numbers, and (weighted) orbital integrals. The other expansion is in terms of spectral

data such as automorphic representations, multiplicities, and (weighted) characters. For our purpose,

we are only interested in the terms occurring discretely in the trace formula. Their sum defines an

invariant distribution denoted by IG′
disc. The main contribution comes from the trace on the discrete

spectrum, but there are also terms coming from what Arthur refers to as surviving remnants of

Eisenstein series. The distribution has an expansion of the following form:

IG′
disc(f

′) =
∑

Π

aG′
disc(Π)trΠ(f ′),

for a smooth function f ′ on G′(A). Here aG′
disc(Π) is a complex number attached to the discrete

automorphic representation Π. If Π is cuspidal, but not CAP, the number aG′
disc(Π) is simply the
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multiplicity of Π. The distribution IG′
disc is unstable (recall that a distribution is said to be stable if

it is supported on the stable orbital integrals). However, by the work of Arthur announced in [A2],

SG′
disc(f

′) = IG′
disc(f

′)− 1
4
IH
disc(f

′H)

does define a stable distribution. Here, if f ′ = ⊗f ′p is a pure tensor, we may take the matching

function to be f ′H = ⊗f ′Hp . Now we turn our attention to the trace formula for G. Since G is

anisotropic modulo its center, the trace formula takes its simplest form. All terms occur discretely,

IG
disc(f) =

∑
π

aG
disc(π)trπ(f),

for a smooth function f on G(A). Here aG
disc(π) is always the multiplicity of π. Again, this distribu-

tion is unstable, but it can be rewritten in terms of stable distribution on the endsocopic groups:

IG
disc(f) = SG′

disc(f
G′) +

1
4
IH
disc(f

H).

This was first proved by Kottwitz and Langlands, but it is also a very special case of the aforemen-

tioned work of Arthur. If f = ⊗fp is a tensor product, we may take fG′ = ⊗fG′
p as before.

4.2.2 A Semilocal Spectral Identity

As we have already observed, we have global transfer. For example, if f is a function on G(A), there

is a function fH on H(A) with matching orbital integrals. There is also a global character identity:

trρ(fH) =
∑

π
∆G,H(ρ, π)trπ(f)

for any f ∈ C∞c (G(A)), where ρ is an irreducible admissible representations of H(A). In the sum, π

runs over irreducible admissible representations of G(A), and ∆G,H(ρ, π) is the product of the local

transfer factors ∆G,H(ρp, πp). If we insert this expansion in the stable trace formula, we see that

∑
π
{aG

disc(π)− 1
4

∑
ρ
aH
disc(ρ)∆G,H(ρ, π)}trπ(f)

equals
∑

Π
{aG′

disc(Π)− 1
4

∑
ρ
aH
disc(ρ)∆G′,H(ρ, Π)}trΠ(f ′)



37

for any pair of matching functions f and f ′. We want to refine this identity. The point is that G is

split over Qp for all p /∈ S. Thus, if we fix an irreducible representation τS of the group G(AS),

∑
πS

{aG
disc(πS ⊗ τS)− 1

4

∑
ρ
aH
disc(ρ)∆G,H(ρ, πS ⊗ τS)}trπS(fS)

equals
∑

ΠS

{aG′
disc(ΠS ⊗ τS)− 1

4

∑
ρ
aH
disc(ρ)∆G′,H(ρ, ΠS ⊗ τS)}trΠS(f ′S)

for any pair of matching functions fS and f ′S , by linear independence of characters for G(AS). From

now on we assume that τS comes from an automorphic representation τ of G(A) such that

∆G,H(ρp, τp) = 0 for some p /∈ S,

for every discrete automorphic representation ρ of H(A). This is true, for example, if τS has a local

component of type IIIa as above. Under this assumption, the above identity simplifies immensely:

∑
πS

aG
disc(πS ⊗ τS)trπS(fS) =

∑
ΠS

aG′
disc(ΠS ⊗ τS)trΠS(f ′S)

for any pair of matching functions fS and f ′S . Let us mention that if the above hypothesis on τS

does not hold, then there exists a ρ such that ∆G,H(ρp, τp) is non-zero for all p /∈ S. Then we may

construct a weak transfer of τ to G′(A) by looking at the global θ-lift of ρ as in [W2].

4.2.3 Incorporating Shelstad’s Results at Infinity

For now, let us fix a pair of matching functions fr and f ′r at r, and consider the distribution

T =
∑

ΠS

aG′
disc(ΠS ⊗ τS)trΠr(f ′r)trΠ∞

on G′(R). From our previous considerations, this is clearly stable. Now recall that, by the Langlands

classification, the irreducible admissible representations of G′(R) are partitioned into finite L-packets

Πµ parameterized by admissible homomorphisms µ : WR → LG. Then by [S2] T has an expansion

T =
∑

µ
cµtrΠµ, trΠµ =

∑
Π∞∈Πµ

trΠ∞,
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where µ varies over the tempered parameters; that is, µ such that the projection of µ(WR) onto the

neutral component of LG is bounded. We deduce that only ΠS with Π∞ tempered occur in the sum

defining T . Moreover, for every tempered L-parameter µ, the coefficient cµ is given by

cµ =
∑

Πr

aG′
disc(Π∞ ⊗Πr ⊗ τS)trΠr(f ′r)

for any choice Π∞ ∈ Πµ. Now, since G(R) is compact, its L-packets are singletons {πµ}. The finite-

dimensional irreducible representations πµ are parameterized by discrete L-parameters µ (that is,

µ which does not map into a Levi subgroup). In this case, the L-packet Πµ for G′(R) consists

of two classes of discrete series representations {ΠH
µ , ΠW

µ } with the same central and infinitesimal

characters as πµ. The representation ΠH
µ is a holomorphic discrete series, whereas ΠW

µ is generic.

We will now invoke the following character identity over R proved by Shelstad in [S1]:

trΠµ(f ′∞) =





trπµ(f∞) if µ is discrete,

0 otherwise,

for matching functions f∞ and f ′∞. Inserting this in the trace formula derived in the last section,

cµ =
∑

πr

aG
disc(πµ ⊗ πr ⊗ τS)trπr(fr),

for any discrete µ. To elaborate on this, we compute T (f ′∞) in two ways, and then use linear

independence of characters for G(R). Comparing this with the above, we obtain our key identity:

∑
πr

aG
disc(πµ ⊗ πr ⊗ τS)trπr(fr) =

∑
Πr

aG′
disc(Π∞ ⊗Πr ⊗ τS)trΠr(f ′r)

valid for any discrete µ, any choice Π∞ ∈ Πµ, and any pair of matching fr and f ′r at r.

4.3 Proof of Theorem C

Let τ be an automorphic representation of G(A) having a local component of type IIIa outside S.

Suppose τ∞ = πµ. Then, by linear independence of characters for G(Qr), there exists a function fr

such that the left-hand side of the key identity above is non-zero. Let f ′r be any matching function.

Then the right-hand side is non-zero, and there exists a Πr with trΠr(f ′r) 6= 0 such that Π∞⊗Πr⊗τS

is a discrete automorphic representation of G′(A). Call it Π. It has a tempered component (namely
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the one of type IIIa) so Π must in fact be cuspidal. This is a standard argument using the fact,

proved by Langlands [La], that residual representations arise from residues of Eisenstein series for

non-unitary parameters. The same argument is used on page 6 in a paper of Labesse and Muller

[LM]. As we have shown, since Π has a component of type IIIa, it is neither CAP nor endoscopic.

Finally, we note that our argument can be extended to allow central characters.

To conclude, we refine our argument to gain information at the prime r. Let τ be as above, but

insist that ωτ = 1 and that τr is para-spherical. This means τKr
r 6= 0 for a paramodular group Kr

in G(Qr). If we take fr = eKr
the left-hand side of the key identity is positive. By our Theorem

B we may then take f ′r = eηK′
r
. Hence there exists a cuspidal automorphic representation Π of

G′ad(A) with Π∞ ∈ Πµ and ΠS = τS such that the trace of η on ΠK′
r

r is positive. In particular, Πr

is para-spherical. We claim that Πr is also ramified: Otherwise, since Π is not CAP, Πr is tempered

by Theorem I in [W3]. Thus Πr must be a full unramified principal series. However, then the

Atkin-Lehner operator on ΠK′
r

r is traceless by Table 3 in [Sch]. This is a contradiction.

Remark. The aforementioned table yields that Πr must be of type IIa, Vb, Vc, or VIc. We

suspect that Πr is necessarily tempered. If this is true, we deduce that Πr is of type IIa of the

form χSto σ (induced from the Siegel parabolic) where χσ is the non-trivial unramified quadratic

character of Q∗r .
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Chapter 5

Saito-Kurokawa Forms

5.1 Modular Forms and Root Numbers

Let f ∈ S4(Γ0(N)) be a newform of square-free level N , and consider its L-function given by

L(s, f) =
∞∑

n=1

ann−s =
∏

p|N
(1− app

−s)−1 ·
∏

p-N
(1− app

−s + p3−2s)−1.

Here the an are the Hecke eigenvalues. It admits analytic continuation to an entire function, and

Λ(s, f) = (2π)−sΓ(s)L(s, f) = εfN2−sΛ(4− s, f),

where the root number εf ∈ {±1} is given by the parity of the order of vanishing of L(s, f) at the

point s = 2. Now, we wish to work in the context of automorphic representations. By an elementary

construction, one associates to f a cuspidal automorphic representation τ of PGL(2,A). Namely,

first one pulls back f to a function on GL(2,R). Then, by strong approximation, one views it as

a function on GL(2,A) and τ is the representation it generates. It is uniquely determined by the

following properties: τp is unramified for p - N , and its Satake parameters {αp, α
−1
p } satisfy

ap = p3/2(αp + α−1
p ).

Moreover, up to an appropriate twist, τ∞ is the (holomorphic) discrete series representation of

GL(2,R) with the same central and infinitesimal characters as Sym2(C2). For p dividing N , the

component τp is in fact an unramified quadratic twist of StGL(2) since N is assumed to be square-

free. We note that the Jacquet-Langlands L-function L(s, τ) is simply Λ(s + 3/2, f). In addition,

εfN1/2−s equals the exponential function ε(s, τ) in its functional equation. Thus ε(1/2, τ) = εf .
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5.2 The Saito-Kurokawa Lifting

Let f be a newform as above, but now assume that εf = −1. We then lift τ to PGSp(4).

Proposition 1. There exists a cuspidal automorphic representation Π of PGSp(4), with Π∞ being

the cohomological holomorphic discrete series representation, such that for all primes p we have

Πp ' L(ν1/2τp o ν−1/2).

Here ν denotes the normalized absolute value, and L(−) is the unique irreducible quotient. In

particular, Πp is of type IIb for p - N . On the other hand, Πp is of type VIc or Vb for p dividing N

according to whether τp is StGL(2) or its non-trivial unramified quadratic twist ξ0StGL(2).

Proof . Let S̃L(2) denote the twofold metaplectic covering of SL(2). Throughout, we also fix a

non-trivial additive unitary character ψ = ⊗ψp. Each τp is infinite-dimensional, so it determines a

local Waldspurger packet Aτp of irreducible unitary representations of S̃L(2) over Qp. This packet

is a singleton {σ+
τp
} when τp is a principal series. Otherwise, when τp is a discrete series, we have

Aτp = {σ+
τp

, σ−τp
}.

Here σ+
τp

is ψp-generic, whereas σ−τp
is not. Recall that PGL(2) is the same as split SO(3), and its

inner form PD∗ is anisotropic SO(3). Then σ+
τp

can be described as the θ-lift of τp. In the discrete

series case, σ−τp
is the θ-lift of the Jacquet-Langlands transfer τ̆p. Consider the tensor product:

Aτ = ⊗Aτp = {σ = ⊗σεp
τp

with εp = ± and εp = + for almost all p}.

This is the global Waldspurger packet determined by τ . It is a finite set of irreducible unitary

representations of S̃L(2) over A. They are not all automorphic. By a famous result of Waldspurger,

σ = ⊗σεp
τp

is automorphic if and only if ε(1/2, τ) =
∏

εp.

For example, in our case σ = σ−τ∞⊗p<∞σ+
τp

is automorphic since εf = −1. Now we think of PGSp(4)

as split SO(5), and look at the global θ-series lifting θ(σ). This is non-zero. Indeed we are in the

stable range. We claim that θ(σ) is contained in the space of cusp forms. Otherwise, by the theory of

towers due to Rallis, σ would have a cuspidal lift to PGL(2). However, a result of Waldspurger then

implies that σ is generic. But σ∞ is non-generic. By a short argument, see for example Proposition
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2.12 and its proof in [G], it then follows that we have local-global compatibility. That is,

Π = θ(σ) = θ(σ−τ∞)⊗p<∞ θ(σ+
τp

).

In particular θ(σ) is irreducible. We should mention that local Howe duality is known in this special

situation. The case p = 2 can be checked by hand. It remains to compute the local lifts above.

Using Proposition 4.1 in [K1] it is not hard to show that θ(σ+
τp

) is the Langlands quotient given in

our proposition. θ(σ−τ∞) is the holomorphic discrete series with minimal K-type (3, 3) by [Li].

It follows immediately that Π is of Saito-Kurokawa type (that is, CAP with respect to the Siegel

parabolic). Moreover, it is non-tempered and para-spherical at all finite primes.

5.3 Transferring to an Inner Form

Let us now assume that our additive character ψ = ⊗ψp has trivial conductor. Then we have

ε(1/2, StGL(2), ψp) = −1, ε(1/2, ξ0StGL(2), ψp) = +1.

We have N > 1, so we pick a prime r such that τr = StGL(2). Then let D be the division quaternion

algebra over Q with ramification locus S = {∞, r}, and let G be the unitary similitude group of D2.

The reduced norm of Dr maps onto Qr, so all hermitian forms on D2
r are equivalent. Therefore,

G(Qr) = {x ∈ GL(2, Dr) : x∗




1

1


 x = c(x)




1

1


 , c(x) ∈ Q∗r}.

Consider the isotropic subspace Dr ⊕ 0. Its stabilizer is the minimal parabolic subgroup over Qr:

P = {




a

cā−1


: a ∈ D∗

r and c ∈ Q∗r}n {




1 b

1


: b + b̄ = 0}.

It has Levi component D∗
r ×Q∗r and abelian unipotent radical. The modulus character is

δP :




a

cā−1


 7→ |NDr/Qr

(a)|3 · |c|−3,

as shown by a standard calculation. We now transfer Π to G using θ-correspondence:
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Proposition 2. There exists an automorphic representation π of G(A), with ωπ and π∞ being

trivial, agreeing with Π outside of S, such that the local component at the ramified prime r is

πr ' ν1/21D∗ o ν−1/2.

P roof . We use the notation from the proof of the previous proposition. Since τr is a discrete series

representation, the global Waldspurger packet Aτ contains another automorphic member. Namely,

σ̆ = σ+
τ∞ ⊗ σ−τr

⊗p 6=r σ+
τp

.

Now we realize the adjoint group Gad as a certain anisotropic SO(5), and look at the global θ-lift

to this group θ(σ̆). We are no longer in the stable range, so to make sure this is non-vanishing we

appeal to the Rallis inner product formula. The case we need is reviewed on page 9 in [G]. Our

quadratic space has dimension 5, so all special L-values in the inner product formula are non-zero.

Consequently, θ(σ̆) 6= 0 if and only if all the local lifts θ(σ̆p) are non-vanishing. However,

θ(σ+
τ∞) = 1, θ(σ−τr

) = L(ν1/21D∗ o ν−1/2).

The first identity is a consequence of Theorem 5.1 in [K1], and the second is easily derived from

Proposition 4.1 in [K1]. As before, we have local-global compatibility, and we take π = θ(σ̆). It

remains to show that the unramified principal series ν1/21D∗ o ν−1/2 is irreducible. However, this

is an easy exercise using the expression for δP and results of Kato reviewed on page 144 in [Car].

We note in passing that the unramified principal series ν1/2ξ01D∗oν−1/2 is reducible. Therefore

it is crucial that we pick r such that τr is the actual Steinberg representation StGL(2), and not its

twist ξ0StGL(2). The following lemma allows us to apply our Theorem A to raise the level of π.

Lemma 13. The representation π occurs with multiplicity one in the spectrum of G(A).

Proof . We first recall that for S̃L(2,A), Waldspurger proved multiplicity one. Essentially this follows

from the multiplicity one theorem for PGL(2,A) using the θ-correspondence. We can therefore

identify the abstract representation σ̆ with a space of cusp forms on the metaplectic group. By a

formal argument, for example as on page 8 in [G], the θ-correspondence preserves multiplicity. Thus

the representation π = θ(σ̆) occurs with multiplicity one in the spectrum of G(A).

Gan proves a more general result in his preprint [G]. Analogous to work of Piatetski-Shapiro and
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Sayag in the isotropic case, Gan characterizes (certain) CAP representations of an anisotropic inner

form of GSp(4) as θ-lifts from the metaplectic group. As a corollary he deduces that all these CAP

representations have multiplicity one. We will use this characterization later below.

Let us end this section with a few words about the Bruhat-Tits theory of G(Qr). We denote by

ODr the maximal compact subring of Dr, and let pDr be its (bilateral) maximal ideal. We choose

a uniformizing parameter $Dr
. The order ODr

defines an integral model for G/Qr and we let

K = G(Zr) = {x ∈ GL(2,ODr
) : x∗




1

1


x = c(x)




1

1


 , c(x) ∈ Z∗r}.

This is the special maximal compact subgroup of G(Qr), which becomes the Siegel parahoric over

the unramified quadratic extension of Qr. Inside K, there is the Iwahori subgroup I cut out by the

condition of being upper triangular modulo pDr . Then K̃ is the subgroup generated by I and




$−1
Dr

$Dr


 .

Here K̃ is the paramodular maximal compact subgroup. Both K and K̃ are special, so they fit in

Iwasawa decompositions of G relative to P . Consequently πr is both K-spherical and K̃-spherical.

5.4 Galois Representations

Let Lf be the number field generated by the Hecke eigenvalues of f . A classical construction due

to Deligne [Del] provides a compatible system of continuous irreducible Galois representations

ρf,λ : Gal(Q̄/Q) → GL(2, Lf,λ),

indexed by the finite places λ|` of Lf , such that ρf,λ is unramified at primes p - N` and

Lp(s, f) = det(1− ρf,λ(Frobp)p−s)−1

for such p. Here Frobp denotes a geometric Frobenius. This result has been generalized to GSp(4)

by Laumon [Lau] and Weissauer [W3]. Namely, suppose Π is a cuspidal automorphic representation

of GSp(4) with Π∞ being a cohomological discrete series. Then there exists a number field LΠ and
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a compatible system of continuous semisimple four-dimensional Galois representations

ρΠ,λ : Gal(Q̄/Q) → GL(4, LΠ,λ),

indexed by the finite places λ|` of LΠ, such that ρΠ,λ is unramified at p 6= ` outside the ramification

locus of Π. Moreover, for such primes p there is the following relation with the spinor L-factor:

L(s− w/2,Πp, spin) = det(1− ρΠ,λ(Frobp)p−s)−1.

Here w = k1 + k2 − 3, where (k2, k2) is the weight of Π∞. We note that, when Π is not CAP, the

representation ρΠ,λ can be shown [W3] to be pure of weight w. This means the eigenvalues of Frobp

have absolute value pw/2. When Π is CAP or endsocopic, ρΠ,λ is reducible and essentially given by

the above construction of Deligne. For example, for our Saito-Kurokawa form it is given by:

Lemma 14. Let Π be the Saito-Kurokawa lift of f as in Proposition 1. Then we have

ρΠ,λ ' ρf,λ ⊕ ω−1
` ⊕ ω−2

`

for all λ|`, where ω` denotes the `-adic cyclotomic character.

Proof . Suppose p - N` and τp is induced from the unramified character χ with αp = χ(p). Then

Πp ' L(ν1/2χ× ν1/2χ−1 o ν−1/2) ' χ1GL(2) o χ−1.

This allows us to calculate the Satake parameters, and then write down its L-factor:

L(s,Πp, spin) = L(s, τp)ζp(s− 1/2)ζp(s + 1/2).

In our case k1 = k2 = 3 so that w = 3. Now use that ω`(Frobp) = p−1 for p 6= `.

On the contrary, when Π is neither CAP nor endoscopic, the Galois representation ρΠ,λ is ex-

pected to be irreducible. For large ` there is the following precise result in this direction:

Theorem 8. Let Π be a cuspidal automorphic representation of GSp(4) with Π∞ cohomological.

Assume ` > 2w + 1. Suppose ρΠ,λ is reducible and all its two-dimensional constituents are odd.

Then Π is CAP or endoscopic.

Proof . This is Theorem 3.2.1 in [SU]. It relies on work of Ramakrishnan [Ram].
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5.5 Proof of Theorem D

Let K =
∏

Kp where Kp is hyperspecial for p - N , and Kp is paramodular for p|N . We want to apply

Theorem A to the automorphic representation π from Proposition 2. However, we cannot prove that

K is a good small subgroup (in the sense that πK
f determines πf ). Indeed the paramodular groups

do not have Iwahori factorizations with respect to any parabolic. There is a way to circumvent this

problem. All we need is that the module πK
f has multiplicity one in AK . To see this, suppose

π′Kf ' πK
f

for an automorphic representation π′ with ωπ′ and π′∞ trivial. We wish to show that π′ ' π. Then

our claim follows from Lemma 13. Clearly π′p ' πp for p - N . Thus π′ is weakly equivalent to

the CAP representation Π of G′(A). Then, by Theorem 7.1 in [G], we have π′ = θ(σ′) for some

automorphic representation σ′ in the Waldspurger packet Aτ ′ for some τ ′. Here τ ′ must be weakly

equivalent to τ . Hence τ ′ ' τ by strong multiplicity one for GL(2). Now consider a prime p|N .

Then π′p = θ(σ±τp
). First, look at the case where p 6= r. Here θ(σ−τp

) is supercuspidal or of type VIb,

see for example Proposition 5.5 in [G]. Both are para-ramified, so π′p = πp. Finally, let p = r. Since

τr is the Steinberg representation, θ(σ+
τr

) = 0 by Proposition 6.5 in [G]. Therefore π′r = πr.

Now we apply Theorem A to π. Let λ|` be a finite place of Q̄, with ` not dividing the discriminant

of HK,Z, such that ρ̄f,λ is irreducible. Then π is non-abelian modulo λ (otherwise Π would be

congruent to an automorphic character, and its Galois representation would be a sum of characters

modulo λ, contradicting Lemma 14). Now suppose q - N` is a prime number satisfying

• qi 6= 1 (mod `) for i = 1, . . . , 4,

• ρ̄f,λ(Frobq) has a fixed vector.

The Satake parameters of πq are {αq, q
−1/2, q1/2, α−1

q }. Since ρ̄f,λ(Frobq) has eigenvalues {1, q3}, the

level-raising condition in Theorem A is satisfied. As a result, we find an automorphic representation

π̃ ≡ π (mod λ) of G(A), with ωπ̃ and π̃∞ trivial, such that π̃Kq

f 6= 0 and π̃q is of type IIIa.

Now we apply Theorem C to π̃. As we have seen earlier, π̃q must have the form χoσStGL(2) with

χ2 6= 1. Pick a cohomological discrete series representation Π1 of G′(R), holomorphic or generic of

weight (3, 3). Then we find a cuspidal automorphic representation Π̃ of G′ad(A), with Π̃∞ = Π1,

such that Π̃p = π̃p for p 6= r. Moreover, Π̃r is para-spherical since π̃r is. Thus Π̃p is para-spherical
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for all p|N , unramified and tempered [W3] for p - Nq, and of type IIIa for p = q.

Obviously Π̃p ≡ Πp (mod λ) for almost all p. Therefore the Galois representations ρΠ̃,λ and ρΠ,λ

have the same semisimplifications modulo λ. In other words, by Lemma 14, we have an isomorphism

ρΠ̃,λ ' ρ̄f,λ ⊕ ω̄−1
` ⊕ ω̄−2

`

up to semisimplification. It remains to show that ρΠ̃,λ is irreducible. Suppose it is reducible. Then it

is a sum %⊕ %′ of a pair of two-dimensional representations. Interchanging the two, we may assume

%̄ ' ρ̄f,λ, %̄′ ' ω̄−1
` ⊕ ω̄−2

` .

Then clearly % and %′ are both odd. Theorem 8 applies for ` > 7. Hence Π̃ is CAP or endoscopic,

contradicting Theorem C. This proves irreducibility of ρΠ̃,λ, and finishes the proof of Theorem D.

5.6 Existence of Good Primes

To apply Theorem D, we need to know the existence of primes q where we can raise the level.

Assume ` > 13. Then we choose g ∈ Z prime to `, which is a generator for F∗` modulo `. Thus

gi 6= 1 (mod `)

for i = 1, . . . , 12. Now assume f is not CM. Then in a suitable basis the image of ρf,λ contains

{x ∈ GL(2,Z`) : det x ∈ (Z∗` )3}

by Theorem 3.1 in Ribet’s article [Rib]. In particular, the diagonal matrix with entries {1, g3} lies

in the image of ρ̄f,λ. Then, by the Chebotarev density theorem, there exists a positive density of

primes q - N` such that ρ̄f,λ(Frobq) has eigenvalues {1, g3}. The determinant is q3 so we must have

g = ζq for some ζ ∈ F` with ζ3 = 1. If qi ≡ 1 (mod `) for some i = 1, . . . , 4, then g3i ≡ 1 (mod `).
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Chapter 6

The Bloch-Kato Conjecture

6.1 An Application of Theorem D

We continue to let f ∈ S4(Γ0(N)) be a newform of square-free level N , not of CM type, having root

number εf = −1. This sign condition implies that the L-function of f vanishes at the critical center

s = 2 (under the classical normalization of the functional equation s 7→ 4 − s). In this situation,

a conjecture of Bloch-Kato ([BK], page 376) predicts that an associated Selmer group is positive

dimensional. This expectation was proved for ` ordinary for f in [SU] (that is, a`(f) is an `-adic

unit), and our object in this section is to make progress on the conjecture when ` is supersingular.

Let λ|` be a finite place of Q̄, with ` outside a finite set, such that ρ̄f,λ is irreducible. We fix a

prime q - N` such that the following two conditions hold:

• qi 6= 1 (mod `) for i = 1, . . . , 4,

• ρ̄f,λ(Frobq) has a fixed vector.

Here Frobq is a fixed geometric Frobenius in the Galois group of Q. Then, by Theorem D, there

exists a cuspidal automorphic representation Π of PGSp(4) such that Π∞ is the cohomological

holomorphic discrete series representation, Πp is unramified and tempered for p - Nq,

• ρΠ,λ is irreducible, but ρ̄Π,λ ' ρ̄f,λ ⊕ ω̄−1
` ⊕ ω̄−2

` ,

• Πq is of type IIIa (hence tempered, generic and ramified),

• Πp is para-spherical for all primes p dividing N .
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Recall that ρΠ,λ is the four-dimensional λ-adic representation associated to the form Π by Weissauer

and Laumon, and that ρ̄Π,λ is its reduction modulo λ.

In the following, we let V denote the space of ρΠ,λ. This is a four-dimensional vector space over

the `-adic field L. We let O be the ring of integers in L. By abuse of notation, λ also denotes the

maximal ideal it generates in O. Moreover, F is the residue field O/λ.

6.2 Choosing a Lattice

Under our assumptions, ρ̄Π,λ(Frobq) has eigenvalues {1, q, q2, q3}. By banality they are all distinct,

so by Hensel’s lemma ρΠ,λ(Frobq) has eigenvalues {α, β, γ, δ} reducing to {1, q, q2, q3} modulo λ.

We let v ∈ V be an eigenvector for α ≡ 1 (mod λ). Then consider the module it generates,

Λ = O[Gal(Q̄/Q)] · v.

This is a non-zero Galois stable cyclic O-module. By the irreducibility of ρΠ,λ, we must have

Λ⊗ L = V , implying that Λ is a Galois-stable O-lattice in V . We look at its reduction ΛF. This is

cyclic, generated by the class of v. Hence ρ̄f,λ is the unique irreducible quotient of ΛF.

6.3 Kummer Theory

It is known from Kummer theory that H1
f (Q, ω`) = 0 (as it should be since ζ(0) is nonzero). Here,

as in Proposition 5.1 in [Bel], we observe that the analogous statement modulo ` is true.

Lemma 15. H1
f (Q, ω̄`) = 0.

Proof . The connecting homomorphism for the Kummer sequence yields a canonical isomorphism

H1(Q, ω̄`) ' Q∗/Q∗`.

Fix a ∈ Q∗ and let δ(a) be the corresponding cohomology class. Clearly, δ(a) is unramified at p 6= `

if and only if ` divides ordp(a). By the discussion on page 26 in Rubin’s book [Rub] it is also true

that δ(a) restricts to a class in H1
f (Q`, ω̄`) if and only if ` divides ord`(a). Therefore H1

f (Q, ω̄`) = 0.
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6.4 Kato’s Result

Since ρf,λ(1) has positive weight, the Bloch-Kato conjecture predicts that H1
f (Q, ρf,λ(1)) = 0. This

was proved by Kato in [Ka]. Here we deduce the analogous result modulo ` from this.

Lemma 16. H1
f (Q, ρ̄f,λ(1)) = 0, for almost all `.

Proof . In this proof let V be the space of ρf,λ(1), and let Λ be a Galois-stable lattice in V . Let W

denote the quotient V/Λ. By Lemma 1.5.4 on page 22 in [Rub], there is a natural surjection

H1
f (Q, Λ/λΛ) ³ H1

f (Q, W )[λ].

This is in fact an isomorphism, for almost all `, since H0(Q,W ) = 0 by Proposition 14.11 on page

241 in [Ka]. However, H1
f (Q,W ) = 0 by Theorem 14.2 on page 235 in [Ka].

6.5 Existence of Certain Submodules

In this section we show that ω̄−2
` embeds in ΛF. Suppose it does not. Then ω̄−1

` is the unique

irreducible subrepresentation of ΛF. Writing down a composition series, we get non-split extensions

0 → ω̄` → X → 1 → 0 and 0 → ρ̄f,λ(1) → Y → 1 → 0.

Up to a Tate twist, X and Y ∨ are subquotients of ΛF. By Lemma 15 and 16, to get a contradiction,

it suffices to show that one of the corresponding cohomology classes lies in the Selmer group.

Lemma 17. X and Y are both Fontaine-Laffaille at `.

Proof . Since Π is neither CAP nor endoscopic, it follows from [W3] that ρΠ,λ is the representation

on the ΠK
f -isotypic component of the etale intersection cohomology (for the middle perversity):

IH3
et(S̄K ×Q Q̄, Q̄`).

Here K is paramodular at primes dividing N , Klingen at q, and hyperspecial outside Nq. Moreover,

S̄K denotes the Satake compactification of the Siegel threefold SK . The latter has good reduction at

` - Nq, so ρΠ,λ is crystalline, with Hodge-Tate weights contained in {0, 1, 2, 3}. See page 41 in [SU].

Now, X and Y ∨ are both torsion subquotients of ρΠ,λ(2). If ` − 1 is bigger than the Hodge-Tate

weights, that is if ` > 5, then X and Y ∨ are Fontaine-Laffaille by Theorem 3.1.3.3 in [BM].
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From the theory of Fontaine-Laffaille [FL], reviewed by Breuil and Messing in [BM], it follows that

the above extensions are reductions of lattices in certain crystalline representations. See Theorem

3.1.3.2 and 3.1.3.3 in [BM]. Consequently, their cohomology classes at ` restrict to something in the

finite part.

Now consider a prime p 6= `. Clearly, X and Y are then both unramified at p - Nq. We are thus

left with the two cases p|N and p = q. In the first case we need to show exactness of

0 → ρ̄f,λ(1)Ip → Y Ip → 1 → 0,

where Ip is the inertia group at p, and similarly for X. This requires our minimality assumption

that ρ̄f,λ is ramified at all primes p|N . Moreover, we need to appeal to Conjecture 1.

Lemma 18. Conjecture 1 implies that X and Y both have good reduction at all p|N .

Proof . Let us first consider X. We need to show it is unramified at p|N . Since ρ̄f,λ is the unique

irreducible quotient of ΛF, the quotient of ΛF(2) by X is ρ̄f,λ(2). Therefore, we have inequalities

3− dim XIp ≤ dim V Ip − dim XIp ≤ dimΛIp

F − dim XIp ≤ dim ρ̄
Ip

f,λ ≤ 1.

The first inequality follows from Conjecture 1, and the last is our minimality assumption. It follows

that X is unramified. Next, let us consider Y . Here the dual of the quotient of ΛF by ω̄−1
` equals

Y (2). By the same arguments as before, we then have the following string of inequalities:

2 ≤ dim V Ip − 1 ≤ dim ΛIp

F − 1 ≤ dim Y Ip ≤ dim ρ̄
Ip

f,λ + 1 ≤ 2.

We conclude that all these inequalities are in fact equalities, so dim Y Ip = 2.

To get a contradiction, it now suffices to show that X or Y is unramified at q. For this, we invoke

a result of Genestier and Tilouine [GT] on the order of the monodromy operator.

Lemma 19. X or Y is unramified at q.

Proof . In this proof, let N be the monodromy operator on V at q. From Appendix B, we see that

Πq has a unique line fixed by the Klingen parahoric since it is of type IIIa. Then part (1) of Theorem

2.2.5 on page 12 in [GT] tells us that N2 = 0. The operator preserves Λ and the composition series
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of ΛF. Suppose X and Y are both ramified. Then, in some basis, N has the form

N ∼




0 e a b

0 c d

0 0

0




with e and (c, d) non-zero. However, this cannot happen since N2 = 0. Contradiction.

This contradicts Lemmas 15 and 16, and therefore ω̄−2
` does embed into ΛF.

6.6 Proof of Theorem E

Embed ω̄−2
` as a submodule of ΛF, and extend it to a composition series. This gives an extension

0 → ρ̄f,λ(2) → Z → 1 → 0,

which is non-split since ρ̄f,λ is the unique irreducible quotient of ΛF. Up to a twist, Z∨ is the

quotient of ΛF by ω̄−2
` . The exact same arguments as in the previous section then shows that Z has

good reduction away from q (assuming Conjecture 1). It remains to deal with the prime q.

Lemma 20. Z is unramified at q.

Proof . The extension Z determines a cohomology class in H1(Qq, ρ̄f,λ(2)). Let c be a cocycle

representing this class. Since ρ̄f,λ(2) is unramified at q, the cocycle restricts to a homomorpism

from the inertia group Iq to the space of ρ̄f,λ(2). As q 6= ` it obviously factors through the tame

quotient. Indeed it factors through the homomorphism t` : Iq ³ Z`. Recall, see [Ta] page 21, that

t`(Frob−1
q · σ · Frobq) = q · t`(σ)

for σ ∈ Iq. Clearly the left-hand side is independent of the choice of a Frobenius Frobq in the Galois

group of Qq. We then immediately deduce an analogous relation satisfied by c. Now we invoke the

cocycle relation satisfied by c. Using it twice we find that

c(Frob−1
q · σ · Frobq) = c(Frob−1

q ) + Frob−1
q · c(σ · Frobq) = Frob−1

q · c(σ)
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for σ ∈ Iq, since ρ̄f,λ is unramified at q, and

c(Frob−1
q ) = −Frob−1

q · c(Frobq).

The action of Frob−1
q on the vector c(σ) is given by the Tate twist ρ̄f,λ(2). That is,

Frob−1
q · c(σ) = ρ̄f,λ(Frob−1

q ) · q2c(σ).

Consequently, we end up with the following identity:

ρ̄f,λ(Frobq) · c(σ) = q · c(σ).

Therefore, if c(σ) 6= 0 for some σ ∈ Iq, we see that c(σ) is an eigenvector for ρ̄f,λ(Frobq) with

eigenvalue q. However, the eigenvalues of ρ̄f,λ(Frobq) are {1, q3} by assumption.

This finishes the proof.
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Appendix A. Iwahori-Spherical Representations of GSp(4)

The following is essentially Table 1 in the paper [Sch]. We include it here for the convenience

of the reader. We are grateful to Ralf Schmidt for his permission to do so. Throughout we use the

notation of [ST]. Let B be the Borel subgroup of upper triangular matrices in GSp(4). Let Pα and

Pβ be the maximal parabolic subgroups containing B. Their matrix realizations are given in section

2.3. If χ1, χ2, and σ are characters of GL(1), we denote by χ1×χ2oσ the representation of GSp(4)

obtained by normalized induction from the following character of B:




a

b

cb−1

ca−1



7→ χ1(a)χ2(b)σ(c).

Similarly, if τ is a representation of GL(2), we let τ o σ be the representation induced from




g

cτg−1


 7→ σ(c)τ(g).

Moreover, σ o τ denotes the representation induced from the Klingen parabolic,




c

g

c−1 det g



7→ σ(c)τ(g).

In the table below, ν = | · | is the normalized absolute value, χ0 is the unique non-trivial unramified

quadratic character, St is the Steinberg representation, 1 is the trivial representation, and L((−))

denotes the unique irreducible quotient when it exists.
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constituent of representation tempered L2 generic

I χ1 × χ2 o σ χ1 × χ2 o σ |χi| = |σ| = 1 •
II a ν1/2χ× ν−1/2χo σ, χStGL(2) o σ |χ| = |σ| = 1 •

b χ2 /∈ {ν±1, ν±3} χ1GL(2) o σ

III a χ× ν o ν−1/2σ, χo σStGL(2) |χ| = |σ| = 1 •
b χ /∈ {1, ν±2} χo σ1GL(2)

IV a ν2 × ν o ν−3/2σ σStGSp(4) • • •
b L((ν2, ν−1σStGL(2)))

c L((ν3/2StGL(2), ν
−3/2σ))

d σ1GSp(4)

V a νξ0 × ξ0 o ν−1/2σ, δ([ξ0, νξ0], ν−1/2σ) • • •
b ξ2

0 = 1, ξ0 6= 1 L((ν1/2ξ0StGL(2), ν
−1/2σ))

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ))

d L((νξ0, ξ0 o ν−1/2σ))

VI a ν × 1o ν−1/2σ τ(S, ν−1/2σ) • •
b τ(T, ν−1/2σ) •
c L((ν1/2StGL(2), ν

−1/2σ))

d L((ν,1o ν−1/2σ))

Table A: Iwahori-spherical representations of GSp(4)
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Appendix B. Parahoric Fixed Spaces

The following is essentially Table 3 in [Sch]. Here K is hyperspecial, K̃ is paramodular, I

is Iwahori, and Jα and Jβ denote the Klingen- and Siegel-parahoric subgroups, respectively. For

example, Jα is the inverse image of Pα over the residue field under the natural reduction map.

representation remarks K K̃ Jα Jβ I

I χ1 × χ2 o σ 1 2 4 4 8

II a χStGL(2) o σ 0 1 2 1 4

b χ1GL(2) o σ 1 1 2 3 4

III a χo σStGL(2) 0 0 1 2 4

b χo σ1GL(2) 1 2 3 2 4

IV a σStGSp(4) 0 0 0 0 1

b L((ν2, ν−1σStGL(2))) not unitary 0 0 1 2 3

c L((ν3/2StGL(2), ν
−3/2σ)) not unitary 0 1 2 1 3

d σ1GSp(4) irrelevant 1 1 1 1 1

V a δ([ξ0, νξ0], ν−1/2σ) 0 0 1 0 2

b L((ν1/2ξ0StGL(2), ν
−1/2σ)) 0 1 1 1 2

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ)) 0 1 1 1 2

d L((νξ0, ξ0 o ν−1/2σ)) 1 0 1 2 2

VI a τ(S, ν−1/2σ) 0 0 1 1 3

b τ(T, ν−1/2σ) 0 0 0 1 1

c L((ν1/2StGL(2), ν
−1/2σ)) 0 1 1 0 1

d L((ν,1o ν−1/2σ)) 1 1 2 2 3

Table B: Dimensions of the parahoric fixed spaces
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