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Chapter 2

Momentum Space Design of High-Q
Photonic Crystal Microcavities

2.1 Introduction

As I have discussed in the preface, there has been a considerable amount of interest in extending

cavity QED experiments to the semiconductor regime. In these experiments, coherent interactions

between a single quantum dot (QD) and a single photon within the semiconductor microcavity can

take place if the system is in the so-called strong coupling regime [9], where the QD-cavity coupling

strength g exceeds the QD dephasing rate γ⊥ and the cavity decay rate κ. As of just a few years

ago (i.e, at the start of our work in the area), no semiconductor microcavity had been demonstrated

that had the requisite combination of a high quality factor (Q) and small mode volume (Veff) to

achieve strong coupling (κ ∼ 1/Q, g ∼ 1/V 1/2
eff ). Photonic crystal (PC) microcavities seemed to be

a particularly appealing route to semiconductor-based strong coupling; the ultrasmall volumes to

which they confined light (smaller than the modal confinement that had been achieved in micropost

or microdisk cavities, for example) implied that the Q values needed to achieve strong coupling

would be more modest than in other geometries. The focus of this chapter is on the design of PC

microcavities with sufficiently high Qs for these applications. It is based largely on references [21]

and [23], which were published in July 2002 and March 2003.

While the PC microcavities studied in ref. [8] had very small mode volumes and loss properties

sufficient to sustain lasing, the measured Q values were still less than 1000. In particular, the

radiation losses were predominantly out of plane, while the in-plane losses were in comparison

small [7]. Although refinements in design [11] and fabrication [12] had since increased the total

measured Q to as high as 2,800, applications in cavity QED require Q values on the order of 104 to
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achieve strong coupling (assuming Veff ∼ (λ/n)3).

The limitations on Q stem from a number of possible factors, including intrinsic material ab-

sorption, etch-induced surface roughness and surface-state absorption, and other fabrication irregu-

larities that prevent ideal replication of a given design. These issues aside, the fundamental design

of these cavities had left room for improvement, and as such, the focus of this chapter primarily lies

here. Our main objective is to consider simple design rules that can be used to significantly reduce

the vertical losses from these structures, while maintaining or even improving upon the in-plane

losses. In section 2.2, we describe a simple picture which illustrates that the vertical radiation loss

of a mode is characterized by the presence of momentum components within the light cone of the

cladding of the host slab waveguide (WG). We then consider (section 2.3) the use of symmetry to

eliminate in-plane momentum components (k⊥) at k⊥ = 0 (DC), thereby reducing the vertical loss

in the structure. Drawing heavily from chapter 1, we summarize the different defect modes available

in hexagonal and square lattice PCs, and proceed to choose target symmetries for modes in these

lattices based upon the constraints they impose on the dominant field components of the modes.

In section 2.4, we propose simple defect geometries that support such modes and present the re-

sults of three-dimensional (3D) finite-difference time-domain (FDTD) calculations of their relevant

properties. In section 2.5, we consider further improvements in the designs based on a Fourier space

tailoring of the defect geometries that reduces coupling of the mode’s dominant Fourier components

to components that radiate. The results of FDTD simulations of these improved designs in a square

lattice are presented, and show that a modal Q-factor approaching 105 can be achieved by a careful

consideration of the mode and defect geometry in Fourier space. Similar considerations are given

in sections 2.6 and 2.7, where we consider the design of high-Q defect modes within standard and

compressed hexagonal lattice photonic crystals. Comparable results in terms of Q (∼ 105) and Veff

(∼ (λ/n)3) are achieved in these lattices.

2.2 Momentum space consideration of vertical radiation loss

The optical cavities studied here are comprised of defects situated in 2D PC slab WGs (fig. 2.1). As

a result, the in-plane confinement of the cavity modes is governed by the distributed Bragg reflection

(DBR) of the surrounding photonic lattice. Leakage of light in the plane of the PC slab WG from

the cavity is thus determined by the number of periods of the host lattice surrounding the defect and

the width and angular extent of the in-plane guided mode bandgap. Vertical confinement, on the
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Figure 2.1: 2D hexagonal PC slab waveguide structure and cladding light cone.

other hand, is due to standard waveguiding by total internal reflection. Vertical radiation loss occurs

when the magnitude of the in-plane momentum component, k⊥, is inappropriate to support guiding.

More concretely, we note that the energy-momentum dispersion relationship for a homogenous

dielectric cladding (refractive index n) of the PC slab WG is (nω/c)2 = k2
⊥ + k2

z , where ω is the

angular frequency, kz is the momentum normal to the slab, and c is the speed of light. For an air

clad PC WG as studied here, k2
⊥ = (ω/c)2 defines a cone in (kx,ky,ω) space, commonly referred

to as the “light cone” (fig. 2.1). Modes that radiate vertically will have small in-plane momentum

components that lie within the light cone of the cladding, thereby creating an oscillatory (radiating)

field in the air instead of an evanescently decaying field. Equivalently, from a ray optics perspective,

modes with in-plane momenta lying within the cladding light cone do not meet the total internal

reflection condition at the semiconductor-air interface. This simple rule serves as our fundamental

guideline in designing cavities that limit vertical radiation loss. In particular, we seek out structures

that support resonant modes whose in-plane momentum components are primarily situated outside

of the cladding light cone.

Before discussing methods to improve the vertical loss properties of PC defect cavities, it is

instructive to consider the characteristics of the previously studied [7] dipole-like defect modes in a

hexagonal lattice PC. Consider the x-dipole donor mode produced by a symmetric defect consisting

of the removal of a single air hole from a hexagonal lattice of air holes in a 2D slab WG, as discussed

in the previous chapter. Following the symmetry analysis presented in chapter 1, we see that this

mode is composed of dominant Fourier components directed along ±{kX1 ,kX2 ,kX3}, where the

kX directions are shown in the hexagonal PC reciprocal space lattice of fig. 2.2(a). The 2D spatial

Fourier Transform (FT) of the x-dipole field component Ex at the middle of the PC slab WG is given
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Figure 2.2: Real and reciprocal space lattices of (a) a 2D hexagonal lattice, and (b) a 2D square
lattice. For the hexagonal lattice: |a1| = |a2| = a, |G1| = |G2| = 4π/

√
3a, |kX | = 2π/

√
3a, |kJ| =

4π/3a. For the square lattice: |a1| = |a2| = a, |G1| = |G2| = 2π/a, |kX | = π/a, |kM| = √
2π/a.

in fig. 2.3(a). It shows the E-field to be primarily composed of momentum components located

about the X points, with ±kX1 as the strongest components. Note that the field has a significant

amplitude for momentum components lying within the light cone, the boundary of which is shown

in fig. 2.3(a) as a dashed white circle. These low momentum components radiate and are the cause

of the mode’s relatively low effective vertical Q-factor (Q⊥ ≈ 1000).

2.3 Summary of the symmetry analysis of defect modes in hexagonal

and square lattices

There are a number of ways to limit the presence of small in-plane momentum components in the

localized resonant modes of PC slab WG defect cavities. For example, the geometry of the defect

and the surrounding holes can be tailored to reduce the magnitude of these components, as was

done in ref. [11], where the authors report a predicted Q of 30,000. One particularly appealing

way to limit the presence of small in-plane momentum components is to use symmetry to enforce

specific boundary conditions on the Fourier space representation of the mode. A defect will support

one or more resonant modes with symmetries that are compatible with the nature of the defect

and the surrounding PC. Of particular interest are modes whose symmetry is odd about mirror

planes normal to the dominant Fourier components of the mode. In the context of our symmetry

analysis, the fields of the approximate TE-like modes have in-plane electric field polarization normal
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Figure 2.3: Spatial FT of x-dipole donor mode in a hexagonal lattice (r/a = 0.30) with a central
missing air hole. (a) in 2D, (b) along the ky direction with kx = 0.

to the direction of their dominant Fourier components. In Fourier space, our choice of symmetry is

equivalent to eliminating these in-plane electric field polarizations at k⊥ = 0 (DC). This elimination

of DC momentum components is the first step in reducing vertical radiation loss, and serves as our

fundamental criterion for choosing the desired symmetry for our defect modes.1 In addition, as we

shall discuss later within this thesis (chapter 4), this use of a symmetry as a primary mechanism for

reducing vertical radiation loss is also important from the standpoint of making cavities whose Qs

are relatively robust to perturbations in their geometries.

The defect modes of a PC cavity are generally classified into donor- and acceptor-type modes

[94], based upon whether the defect creates modes from the conduction band edge (donor modes)

or valence band edge (acceptor modes). For the hexagonal lattice, whose real and reciprocal space

depictions are given in fig. 2.2(a), the valence band edge is at the J-point and the conduction

band edge is at the X-point (fig. 2.4(a)), while the square lattice of fig. 2.2(b) has its valence

band edge at the M-point and conduction band edge at the X-point (fig. 2.4(b)). The dominant

Fourier components and symmetry of a defect mode are determined by the type of mode (donor

or acceptor) under consideration, the symmetry of the surrounding PC lattice, and the point group

symmetry of the defect. The use of such an analysis to produce approximate forms for the modes

in hexagonal and square lattice PC defect cavities was the focus of section 1.1, and as a result,

here, we primarily incorporate the results of that chapter and describe their implications towards the

1This can be viewed in the far-field as elimination of lower-order multi-pole radiation components, as has been con-
sidered by Johnson and co-workers [108]
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(a) Hexagonal Lattice in-plane bandstruc-
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(b) Square Lattice in-plane bandstructure.

Figure 2.4: Fundamental TE-like (even) guided mode bandstructure for hexagonal and square lat-
tices, calculated using a 2D plane-wave expansion method with an effective index for the vertical
guiding: (a) hexagonal lattice with r/a = 0.36, nslab = neff = 2.65, (b) square lattice with r/a = 0.40,
nslab = neff = 2.65.

design of high-Q defect resonators. The course of study is the following: we use the results of this

group-theory-based analysis to determine the symmetry and dominant Fourier components for the

available donor and acceptor type modes formed at different high symmetry points within hexagonal

and square lattice PCs. Candidate modes for high-Q resonators are then chosen from these sets of

available modes based upon the criteria placed on the mode’s momentum components as described

above. Within the mirror plane of the slab WG (coordinates r⊥) the TE modes are described by the

field components Ex, Ey, and Hz. Since the magnetic field is exactly scalar within this mirror plane,

the criterion reduces to looking for modes in which the magnetic field pattern is spatially even in

the directions of its dominant Fourier components. This is equivalent to having the in-plane electric

field components spatially odd in these directions.

2.3.1 Hexagonal lattice

For a hexagonal lattice, the high symmetry points about which a defect may be formed are points a

(C6v symmetry), b (C2v symmetry), and c (C3v,σv symmetry) shown in fig. 2.2(a). Here, we consider

donor and acceptor modes formed only at points a and b, as from the analysis presented in the

previous chapter, those centered at point c do not contribute modes with the requisite symmetry

and dominant Fourier components. We also examine reduced symmetry modes formed at point

a, where the reduction of symmetry from C6v to C2v is accomplished by choosing a defect that
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Table 2.1: Symmetry classification and dominant Fourier components for the H-field of conduction
band donor modes in a hexagonal lattice.

Defect Center C6v Modes Fourier Comp. (σd,σv)a C2v Modes (σx,σy)a

(0,0) Ha,d1
B′′

1
±{kX1 ,kX2 ,kX3} (+,−) Ha,d1,1

B1
(−,+)

(0,0) Ha,d1
E1,1

±{kX1 ,kX2 ,kX3} (0,0) Ha,d1,2
B1

(−,+)

(0,0) Ha,d1
E1,2

±{kX2 ,kX3} (0,0) Ha,d1
B2

(+,−)

(a/2,0) N/Ab ±{kX2 ,kX3} N/A Hb,d1
A1

(+,+)

(a/2,0) N/A ±{kX2 ,kX3} N/A Hb,d1
A2

(−,−)

(a/2,0) N/A ±{kX1} N/A Hb,d1
B1

(−,+)
a Character values.
b Not applicable. Modes centered at point b are of C2v symmetry.

breaks the symmetry of the lattice and is compatible with C2v. Based upon the analysis of chapter

1, we create table 2.1 for donor modes and table 2.2 for acceptor modes. These tables provide the

labeling scheme for the C6v and C2v modes, the dominant Fourier components of the modes, and

their transformation properties about the available mirror planes (the mirror plane properties are

represented by their character values [92]).

Donor modes of C6v symmetry, formed at point a in the lattice, have their dominant Fourier

components in the ±{kX1 ,kX2 ,kX3} directions, and we thus require that σd = −1, where the σdi

are the mirror planes labeled in fig. 2.2(a). However, σd �= −1 for the modes listed in table 2.1.

Reducing the symmetry of the mode to C2v (through a modified defect at point a or re-centering to

point b) results in modes with dominant Fourier components that are not orthogonal to the available

mirror planes, or as in the case of the Hb,d1
B1

mode, have incorrect spatial symmetry.

Out of the C6v acceptor modes in table 2.2, the Ha,a1
A′′

2
mode satisfies the symmetry criteria. The

Hb,a1
A2

mode produced at position b does not quite satisfy our criteria, as two of the three pairs

of dominant Fourier components (±{kJ1 ,kJ3}) are not orthogonal to the mirror planes; however,

distortions of the lattice that preferentially select for the ±kJ5 Fourier components over ±kJ1 and

±kJ3 can be made so that the symmetry condition is satisfied. Such lattice distortions are addressed

in section 2.7. As a reference, the approximate form for the Ha,a1
A′′

2
mode, given previously in equation

(1.20), is listed below:
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Table 2.2: Symmetry classification and dominant Fourier components for the H-field of valence
band acceptor modes in a hexagonal lattice.

Defect Center C6v Modes Fourier Comp. (σd ,σv) C2v Modes (σx,σy)

(0,0) Ha,a1
A′′

2
±{kJ1 ,kJ3 ,kJ5} (−,−) Ha,a1

A2
(−,−)

(0,0) Ha,a1
B′′

2
±{kJ1 ,kJ3 ,kJ5} (−,+) Ha,a1

B2
(+,−)

(a/2,0) N/A ±{kJ1 ,kJ3 ,kJ5} N/A Hb,a1
A2

(−,−)

(a/2,0) N/A ±{kJ1 ,kJ3 ,kJ5} N/A Hb,a1
B2

(+,−)

Ha,a1
A′′

2
= ẑ

(
cos(kJ1 · ra

⊥)+ cos(kJ3 · ra
⊥)+ cos(kJ5 · ra

⊥)
)

, (2.1)

where ra
⊥ denotes in-plane coordinates referenced to point a.

2.3.2 Square lattice

The square lattice of air holes in a dielectric slab, whose real and reciprocal space representations

are shown in fig. 2.2(b), and whose TE-mode bandstructure is depicted in fig. 2.4(b), also provides

a photonic lattice from which low-loss defect modes can be formed. Defects in a square lattice may

be centered at the C4v symmetry points d and f , or the C2v symmetry point e. Again, following the

analysis of chapter 1, we produce tables 2.3 and 2.4 for the square lattice defect modes.

Based on their properties under mirror reflection, the H f ,d1
A′′

2
, H f ,d1

B′′
2

, and He,d1
A2 donor modes all

meet the symmetry condition we have placed on the modes. By suitable modification of the defect

geometry, the symmetry of modes formed at points d and f can be reduced to C2v,σv or C2v,σd , where

the subscript σv denotes symmetry with respect to the (σx,σy) mirror planes and the subscript σd

refers to the (σx′ ,σy′) mirror planes (fig. 2.2(b)). The modes at f continue to satisfy the symmetry

criteria under C2v,σv , but no longer do so under C2v,σd , as the σd mirror planes are not orthogonal to

the modes’ dominant Fourier components.

The acceptor states formed from the valence band edge at the M-point are analyzed in a similar

fashion, and in this case, the modes at points d and f are candidates. The reduced symmetry C2v,σv

modes at points d and f are ruled out, while the C2v,σd modes at these two high symmetry points



101

Table 2.3: Symmetry classification and dominant Fourier components for the H-field of conduction
band donor modes in a square lattice.

Defect center C4v Fourier Comp. (σd ,σv) C2v,σv (σx,σy) C2v,σd (σx′ ,σy′)

(0,0) Hd,d1
E,1 ±{kX1} (0,0) Hd,d1

B1
(−,+) Hd,d1

B′
1

(−,−)

(0,0) Hd,d1
E,2 ±{kX2} (0,0) Hd,d1

B2
(+,−) Hd,d1

B′
2

(+,−)

(a/2,a/2) H f ,d1
A′′

2
±{kX1 ,kX2} (−,−) H f ,d1,1

A2
(−,−) H f ,d1

A′
2

(−,−)

(a/2,a/2) H f ,d1
B′′

2
±{kX1 ,kX2} (−,+) H f ,d1,2

A2
(−,−) H f ,d1

A′
1

(−,−)

(0,a/2) N/Aa ±{kX1} N/A He,d1
A2 (−,−) N/A N/A

(0,a/2) N/A ±{kX2} N/A He,d1
B2 (+,−) N/A N/A

a Not applicable. Modes centered at point e are of C2v symmetry.

Table 2.4: Symmetry classification and dominant Fourier components for the H-field of valence
band acceptor modes in a square lattice.

Defect Center C4v Fourier Comp. (σd,σv) C2v,σv (σx,σy) C2v,σd (σx′ ,σy′)

(0,0) Hd,a1
A′′

2
±{kM1 ,kM2} (−,−) Hd,a1

A2
(−,−) Hd,a1

A′
2

(−,−)

(a/2,a/2) H f ,a1
B′′

1
±{kM1 ,kM2} (+,−) H f ,a1

A1
(+,+) H f ,a1

A′
2

(−,−)

(0,a/2) N/A ±{kM1 ,kM2} N/A He,a1
B1

(−,+) N/A N/A

remain on the list. As a reference, the approximate forms for the candidate donor and acceptor

modes are given in table 2.5 below.



102

Table 2.5: Candidate donor and acceptor modes in a square lattice.

Donor Modes Acceptor Modes

H f ,d1
A′′

2
= ẑ

(
cos(kX1 · r f

⊥)+ cos(kX2 · r f
⊥)
)

Hd,a1
A′′

2
= ẑ

(
cos(kM1 · rd

⊥)+ cos(kM2 · rd
⊥)
)

H f ,d1
B′′

2
= ẑ

(
cos(kX1 · r f

⊥)− cos(kX2 · r f
⊥)
)

H f ,a1
B′′

1
= ẑ

(
cos(kM1 · r f

⊥)− cos(kM2 · r f
⊥)
)

He,d1
A2 = ẑ

(
cos(kX1 · re

⊥)
)

2.4 Initial FDTD simulation results

The symmetry analysis presented in the previous section determined the modes satisfying our sym-

metry criteria, chosen to reduce vertical radiation losses from the PC slab WG. For a hexagonal

lattice, we singled out the acceptor mode of equation (2.1), while for the square lattice, a number of

options were available, as summarized in table 2.5. We begin the 3D FDTD analysis of high-Q PC

resonant cavities by choosing particular defects in the hexagonal and square lattices that will support

one of these modes. Results from the FDTD analysis will provide a measure of the benefits obtained

in using modes of such symmetries, and will also give an indication of what further improvements

are needed. This will lead naturally to the Fourier space tailoring of the lattice discussed in sections

2.5 and 2.6.

The FDTD calculations presented in this section (see appendix B for more details) were per-

formed on a mesh with 20 points per lattice spacing (greater than 70 points per free space wave-

length or 20 points per wavelength in the dielectric). Cavity modes were excited by an initial field

(Hz) with a localized Gaussian profile, and even modes of the slab WG were preferentially selected

by using an even mirror symmetry condition (σh = 1) in the middle of the slab. In order to main-

tain a single vertical mode of the PC slab waveguide (within the frequency band of interest), we

choose a normalized slab thickness d/a = 0.75 in this section. Where appropriate, the mirror planes

(σx,σy) were used to filter out cavity modes according to their projection onto the irreducible rep-

resentations (IRREPs) of C2v,σv . Mur’s absorbing boundary conditions were used to terminate the

FDTD simulation domain in all other directions. Q values are calculated by determining the power

absorbed in the boundaries (Pabs) and the stored energy in the mode (U), and taking Q = ω0U/Pabs,

where ω0 is the angular frequency of the mode. By distinguishing between power flow to vertical
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and in-plane boundaries, effective Q values Q⊥ and Q‖ are calculated, with the total quality factor

being determined by 1/Q = 1/Q‖ + 1/Q⊥ [7]. It should be noted that a number of other methods

were also used to estimate the Q values, including the modal energy decay rate and the radiated

power calculated from the near field momentum components lying within the cladding light cone,

all resulting in consistent values. The effective volume [109, 110] of the cavity modes, Veff in the

tables below, is calculated using the peak in the electric field energy density and is given in units of

cubic wavelengths in the material.2 The explicit form of Veff is:

Veff =
∫
V ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2] (2.2)

2.4.1 Hexagonal lattice

The Ha,a1
A′′

2
mode, our candidate mode for study, is formed by enlarging holes in a manner consistent

with the C6v symmetry of the lattice, so that an acceptor mode is formed. We choose the defect

geometry shown in table 2.6, where the central hole (about point a) is enlarged from radius r to r′.

The defect is surrounded by a total of 8 periods of the hexagonal lattice in the x̂-direction and 12

periods in the ŷ-direction. The magnetic field amplitude and Fourier-transformed momentum space

electric field components Ẽx and Ẽy of mode Ha,a1
A′′

2
are given in table 2.6 for two different pairs of

values (r,r′). The dominant Fourier components are seen to be ±{kJ1 ,kJ3 ,kJ5}, as predicted by the

symmetry analysis. Examining Ẽx and Ẽy, it is also clear that, although the power within the light

cone has been reduced in comparison to the x-dipole donor mode, it is still significant. This fact is

evidenced in Q⊥ which, at 4,900 for r/a = 0.35 and r′/a = 0.45, is larger than that obtained for the

x-dipole mode. By reducing the frequency, and consequently the radius of the light cone, the PC

cavity with r/a = 0.30 and r′/a = 0.45 has an improved vertical Q of 8,800 (although its in-plane

Q has degraded due to a reduction in the in-plane bandgap for smaller lattice hole radii).

2In our original papers [21, 23], we quoted modal volumes in terms of cubic wavelengths in air (λ3); this unit has
meaning in terms of describing the physical volume of the field. However, to compare differing cavity geometries across
different material systems, the unit of cubic wavelengths in the material ((λ/n)3) is more appropriate, and I have thus
chosen this unit for all of the Veff values quoted in this chapter and the rest of the thesis. In addition, certain phenomena,
such as the enhanced radiative rate of an emitter within a cavity (the Purcell effect) are most straightforwardly calculated
when the volume is quoted in units of (λ/n)3. In other works within the field, mode volumes will sometimes be quoted
in terms of cubic half-wavelength in the material ((λ/2n)3), to provide a comparison against a theoretical cavity that can
confine an optical mode to a half-wavelength in the material in all three dimensions (i.e., the optical analog of the particle
in a 3D infinite square well from quantum mechanics).
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Table 2.6: Characteristics of the Ha,a1
A′′

2
resonant mode in a hexagonal lattice (images are for a PC

cavity with r/a = 0.35, r′/a = 0.45, d/a = 0.75, and nslab = 3.4).

Geometry |H| |Ẽx| |Ẽy|

r' r

a -10 -5 0 5 10

-10

-5

0

5

10

kx (a=1)

k y
 (
a=

1)

-10 -5 0 5 10

-10

-5

0

5

10

kx (a=1)

k y
 (
a=

1)

r/a r′/a ωn = a/λo Q‖ Q⊥ Qtot Veff((λ/n)3)

0.35 0.45 0.265 34,100 4,900 4,300 0.54

0.30 0.45 0.248 5,300 8,800 3,300 0.84

2.4.2 Square lattice

We choose the He,d1
A2 mode as our candidate for study. This mode, centered in the dielectric at point

e in the lattice, is appealing in that it has Fourier components primarily situated at ±kX1 , while the

other modes of correct symmetry have a larger number of Fourier components. This simplifies the

design considerations of section 2.5. To create the mode, we consider the structure depicted in table

2.7. Defining point e as the origin, (0,0), we see that the structure consists of a standard square

lattice of air holes in which the two holes centered at (0,±a/2) are decreased in size so as to create

a donor mode of A2 symmetry. In the FDTD simulations, the structure consists of 12 rows and 8

columns of air holes surrounding the defect holes.

Starting with r/a = 0.30, r′/a = 0.28, and d/a = 0.75, we produce a mode with normalized

frequency ωn = a/λo = 0.264. The magnetic field amplitude and 2D spatial FTs (Ẽx and Ẽy) of the

mode are given in table 2.7. As the amplitude of Ẽy is small in comparison to that of Ẽx, the mode

is predominantly made up of components centered at ±kX1 , as predicted. The effective vertical Q

of this mode is approximately 54,000, easily exceeding the values obtained in ref. [8] for a mode

of even symmetry. The small Q‖ (17,400) is a result of the weak defect perturbation and extended

nature of the cavity mode (Veff = 2.11(λ/n)3). Improving the localization of the mode by lowering

r′/a of the defect to 0.25 improves Q‖ to a value of 60,000 and lowers Veff by a factor of almost

two. Surprisingly, Q⊥ has also increased from 54,000 to 69,000 despite the stronger localization of

the mode and its expected broadening in Fourier space. This rather counterintuitive result indicates
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Table 2.7: Characteristics of the He,d1
A2 resonant mode in a square lattice (images are for a PC cavity

with r/a = 0.30, r′/a = 0.28, d/a = 0.75, and nslab = 3.4).

Geometry |H| |Ẽx| |Ẽy|

e

r

r'

a
-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

kx (a=1)

k y
 (a

=
1)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

kx (a=1)

k y
 (a

=
1)

r/a r′/a ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.30 0.28 0.265 17,400 54,000 13,000 2.11

0.30 0.25 0.262 60,100 69,200 32,000 1.08

that a more detailed study of the effects of the defect geometry on cavity loss is required. This is

the focus of the following section.

2.5 Momentum space design of the defect geometry in a square lattice

The results for the simple square lattice cavities studied in the previous section are quite encourag-

ing, and we will thus begin by examining cavity design within these square lattice structures before

returning to the hexagonal lattice in a later section. The results given thus far indicate that improv-

ing the loss properties of the defect mode resonators requires isolation of the mode’s momentum

components to regions outside the light cone to maintain a high Q⊥, and to those regions for which

the in-plane bandgap is substantial for a high Q‖. To determine how to tailor the defect geometries

to accomplish these goals, we consider a simple model to illustrate the couplings induced in Fourier

space between the dominant momentum components of a given defect mode and those modes which

radiate. We employ a two-step process where in the first step, the approximate form of the defect

mode is taken based on symmetry arguments, as outlined in section 2.3, with the allowance for finite

k-space bandwidths in the dominant Fourier components due to the localization of the defect mode.

We then consider couplings of this approximate symmetry mode to other modes of the PC slab WG

through the dielectric perturbation Δη(r), where η = 1/ε is the inverse of the dielectric profile of

the lattice. The most important mode couplings from the perspective of increasing the Q are those
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between the dominant Fourier components and “leaky cavity modes.” The leaky cavity modes con-

sist of vertical radiation modes and guided modes of the PC slab WG which are not reflected by the

PC and thus leak in-plane. Δη induces the change δHd(r) in the defect mode, and this change is

written as a superposition over the set of nearly (frequency) degenerate guided and radiation modes

of the PC slab WG. The coupling amplitude between the symmetry mode composed of the dominant

Fourier components, Hd
o(r), and a leaky cavity mode, Hlcm

o (r), of the unperturbed PC slab is given

by the following matrix element:

∫
d3r

(
Hlcm

o (r)
)∗(

∇×
(

Δη(r)∇×Hd
o(r)

))
∼

∫
d2k⊥
(2π)4

(
H̃lcm

z,o

)∗([
Δ̃η∗ (|k⊥|2H̃d

z,o

)]
+
[(

kxΔ̃η
)∗ (kxH̃

d
z,o

)]
+
[(

kyΔ̃η
)∗ (kyH̃

d
z,o

)])
(2.3)

where ∗ denotes convolution. In converting from the real space integral to momentum space, we

have neglected the variation of η(r) and Δη(r) in the ẑ-direction, so that Hd
o(r) ≈ Hz,o

d(r⊥) (TE-

like mode). From this equation, it is clear that the Fourier Transform of the dielectric perturbation,

Δ̃η(k⊥), is the key quantity that couples Fourier components between the basis modes of the system.

By tailoring this quantity appropriately, we can thus limit couplings that lead to in-plane and vertical

leakage.

The formula given above is meant to be a qualitative guide to help build physical intuition; it

is not a rigorous formula that can be expected to be quantitatively accurate. Such a formula can

be conceived, however, by considering the Wannier analysis provided in the previous chapter. In

particular, in equation (1.58), we showed that the mixing of the Bloch modes of the PC due to the

presence of the defect perturbation, L̂ ′
H = −∇(Δη) ·∇− (Δη)∇2, is given by:

〈Hl′,k′ |L̂ ′
HHl,k〉 = ∑

G
∑
k′′

(
Δ̃ηk′′Kl′,l(k′,k,G)+ Δ̃ηk′′(ik′′) ·Ll′,l(k′,k,G)

)
δk′−k′′+G,k, (2.4)

where Δ̃ηk′′ is the k′′th Fourier coefficient of Δη(r), l and k label the band index and crystal momen-

tum of the Hl,k Bloch wave, the G are reciprocal lattice vectors, and Kl′,l(k′,k,G) and Ll′,l(k′,k,G)

are scalar and vector coupling matrix elements, respectively, which depend upon the Bloch waves.

As expected, this formula indicates the importance of the Fourier transform of the dielectric pertur-

bation, Δ̃η(k⊥), in determining the coupling of different Bloch modes of the unperturbed crystal.
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Figure 2.5: Illustration showing the mode coupling for the He,d1
A2 mode in k-space through the Δ̃η

perturbation.

Our candidate mode within the square lattice, He,d1
A2 , has dominant in-plane Fourier components

at ±kX1 . We must therefore modify the defect so that Δ̃η does not couple the ±kX1 momentum

components to those regions in k-space which are “leaky.” In order to reduce radiation normal to the

PC slab through coupling to the light cone, the amplitude of Δ̃η in the neighborhood of ky = ±π/a

should be minimized. In addition, for the square lattice designs investigated here the bandgap

between the conduction band edge at the X-point and the valence band edge at the M-point is at best

very narrow, consequently, we look to reduce coupling between neighborhoods surrounding the X-

and M-points. This implies that it will also be necessary to reduce the amplitude of Δ̃η in the region

about kx = ±π/a.

The crux of the argument described above is depicted in fig. 2.5, where lossy couplings are

illustrated for the upper region of k-space (the negative ky region will behave identically in this

case). Here we have assumed that the defect mode frequency lies below the conduction band edge

at the X-point but slightly within the valence band near the M-point, resulting in an annular region

of k-space about the M-point which is strongly coupled to. With reference to this simple schematic,

the Fourier components of Δ̃η that lead to radiation losses from the defect cavity are approximately:

Δ̃η
(
|kx| � (klc +Δx), |ky ±|kX1 || � (klc +Δy)

)
=⇒ coupling to light cone,

Δ̃η
(
|kx ±|kX2 || � Δx, |ky| � Δy

)
=⇒ coupling to leaky M-point.

(2.5)

where klc is the radius of the light cone, and Δx and Δy are the widths of the dominant Fourier peaks

in the k̂x- and k̂y-directions, respectively.

Before attempting any design modifications, we first consider the simple defect geometry stud-
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Figure 2.6: Δ̃η(k⊥) for dielectric structure of table 2.7.

ied in section 2.4, where the holes located at (0,±a/2) were reduced from the standard hole radius r

to a radius r′. The perturbation Δη is given by the difference in η with and without the defect holes,

and thus simply consists of a pair of annuli, each of width (r− r′), centered at (0,±a/2). The 2D

spatial FT of this function can be obtained analytically [5], and is separable into the form

Δ̃η(k⊥) = F(k⊥;r,r′)cos

(
kya

2

)
, (2.6)

where F(k⊥;r,r′) is a function of the magnitude of the in-plane momentum, with r and r′ as parame-

ters. This function, along with one-dimensional (1D) slices along the kx and ky axes, is shown in fig.

2.6 (the figure shown is actually the direct FT of the structure used in FDTD calculations, to take

into account any staircasing effects in the rendering of the holes; however, the difference between

it and the analytic function are insignificant.). We notice, as is clear from examining equation (2.6),

that Δ̃η = 0 at ky = ±π/a. Our choice of defect was thus a fortuitous one, as the zero amplitude

of Δ̃η at the X points eliminated coupling between the dominant Fourier components of the He,d1
A2

mode and DC. Of course, a localized defect mode has a finite bandwidth in Fourier space about its

dominant momentum components, and the light cone encompassing the radiation modes is of finite

radius as well. As a result it is desirable to minimize the Fourier components of the dielectric per-

turbation over an extended region about ky =±π/a. Note that Δ̃η for the hexagonal lattice design of

the previous section does not have zero amplitude at any of the kJ , and thus the Q⊥ values are much

smaller than those of the square lattice. To increase Q⊥ in the hexagonal lattice, future designs must

therefore tailor the lattice in a way so that this amplitude is significantly reduced.
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It is also necessary to modify the dielectric to improve Q‖. The most straightforward way

to immediately do so is to increase the r/a of the host PC, as that will provide a bandgap for

an increased range of momentum values. This also tends to decrease Q⊥, as the increased r/a

will produce a mode of higher frequency, resulting in a cladding light cone of increased radius

encompassing a larger range of momentum values. Fortunately, this does not necessarily have to

hold for a general defect geometry. In particular, the hole radius can be kept relatively small in the

region where the mode is primarily located, but can be graded outside this region to increase the

in-plane reflectivity. The choice of grading can be determined by considering the need to limit the

in-plane momentum components of the mode to regions in which the bandgap is substantial (note

that for the simple two-hole design considered in section 2.4, Δ̃η is quite large in this region of

momentum space about kx = ±π/a). The benefit of this approach is that it does not necessarily

result in increased vertical radiation loss, thus allowing for both a large Q‖ and Q⊥.
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Figure 2.7: Properties of the graded square lattice.

Consider the graded lattice shown in fig. 2.7(a). The standard defect holes at (0,±a/2) have

r/a = 0.23, while their immediate neighbors have r/a = 0.253. The hole radii are then increased

parabolically outwards for 5 periods in the x̂-direction and 7 periods in the ŷ-direction, after which

they are held constant. The nature of this grading is shown in fig. 2.7(a), where the r/a profiles

are given for slices along y = a/2 and x = 0. Along these axes the maximum value r/a attains is

0.31, but along the diagonal directions r/a grows to be as large as 0.35. The dielectric perturbation,

which now consists of a series of annuli of decreasing width from the center to the edges, has a FT
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Table 2.8: Field characteristics of the graded square lattice shown in fig. 2.7(a).

|H| |Ẽy| |Ẽx| |Ẽx| along ky axis

-10 -5 0 5 10
ky (a=1)

|F
T
(E

x)
| light

cone

d/a ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.75 0.245 470,000 110,000 89,000 1.23

0.85 0.239 422,000 128,000 98,000 1.28

0.95 0.235 296,000 139,000 95,000 1.33

1.05 0.231 280,000 145,000 96,000 1.38

given in fig. 2.7(b). Examining both the 2D image and the 1D line scans of the FT, we see that

our grading has greatly diminished the amplitude of Δ̃η in the regions surrounding ky = ±π/a and

kx = ±π/a.

The FDTD simulations of the defect mode of this structure largely confirm the ideas described

thus far. Q⊥ has increased to over 110,000, while Q‖ has improved even further to approximately

470,000, giving an overall Qtot ≈ 89,000. The predicted mode volume Veff ∼ 1.2(λ/n)3, so that the

combination of Q and Veff achievable in this cavity is very promising from the standpoint of cavity

QED experiments. This will be described in further detail in later chapters within this thesis.

The magnetic field amplitude and FT of the in-plane electric field components in table 2.8

provide further indication of the success of this design in suppressing radiation loss. In particular,

consider the line scan of Ẽx along the ky axis. It shows that the grading has met with success,

as power has largely been eliminated within the light cone. This point is particularly striking when

contrasted with the corresponding image shown in fig. 2.3(b) for the low Q x-dipole mode we took as

our baseline. Note that Δ̃η(kx = 0,ky = ±π/a) is identically zero regardless of the grade, due to the

position of the defect holes with respect to the center of the defect, whereas Δ̃η(kx = ±π/a,ky = 0)

is not automatically zero. It may be advantageous to identically zero Δ̃η(kx = ±π/a,ky = 0) as this

will allow for the formation of a more localized mode that is still of high Q‖. Such a mode would

be centered at the f -point of the square lattice, and would either be the H f ,d1
A′′

2
or H f ,d1

B′′
2

mode.

Before concluding, there are a couple of points concerning the chosen lattice that are worth
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mentioning. The first is that the initial jump in r/a between the defects at (0,±a/2) and their

neighbors is an important element of this design. Acting as a potential well, the jump helps confine

the mode in real space, allowing r/a to increase quickly to a value for which the in-plane reflectivity

is high without significantly increasing the modal frequency. The size of the jump is also important;

if incorrectly sized the resulting dielectric perturbation contains larger Fourier amplitudes which

couple the mode to the M-point for which the PC is no longer reflective and to the light cone in

which light radiates vertically. An optimum defect design is found when a compromise is struck

between the minimization of the Fourier components of Δ̃η which couple the dominant momentum

components of the defect mode to regions of k-space which radiate, and the degree to which the

dominant momentum components of the mode broaden due to in-plane confinement by the defect.

It should again be emphasized that the increased Q⊥ for these graded lattice designs is not

solely the result of real-space delocalization of the mode, which has been an approach considered

by other authors [108, 111]. It is instead largely due to the aforementioned reduction of amplitude

for those Fourier components of the dielectric perturbation that couple the dominant momentum

components of the defect mode to those which radiate. Of course, real-space localization plays a

role in determining the spread in k-space of the dominant Fourier components of the mode, and if

this spread exceeds the size of the region about ±kX1 that Δ̃η has been flattened, vertical radiation

will result. An increase in the slab thickness also effects the performance of the structure. It causes

a decrease in the frequency of the mode, thus increasing Q⊥. It also slightly reduces the size of the

in-plane bandgap, decreasing Q‖. This is in fact seen in the results of FDTD simulations compiled

in table 2.8.

Finally, we note that the criteria for choosing the geometries presented in this paper were en-

tirely based on Q considerations, and optimization of the lattice grading to further increase Q can

still be made. Changes may also be made to improve other aspects of the design. In particular,

reducing the mode volume may be of importance to applications in quantum optics, while reducing

the complexity of the design (in terms of the number and size of holes comprising the defect) may

be of interest from a fabrication standpoint. Alternately, as we shall discuss in chapter 4, this graded

lattice geometry is distinguished by supporting a mode whose Q is relatively insensitive to perturba-

tions in the cavity geometry; one could envision making such robustness a prerequisite along with

high-Q and small-Veff in future designs of photonic crystal cavities. The approach to such designs

can be aided through the Fourier space consideration of the dielectric perturbation as has been de-

scribed in this section. Doing so will elucidate the potential lossy couplings that occur when the
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defect mode is formed, and will help determine whether a given structure is able to sustain a high-Q

mode.

2.6 Tailoring of the defect geometry for the Ha,a1
A′′

2
mode in the hexago-

nal lattice

When comparing defect modes of a square lattice with those of a hexagonal lattice in the context

of forming high-Q microcavities, there are a number of salient points that merit consideration. The

first is that the square lattice designs adopted above provided a natural “geometric” advantage in

that Δ̃η(k⊥) (even in the simplest case of two reduced size air holes) was automatically zero at

the dominant Fourier components (kx = 0,ky = ±π/a), thereby reducing coupling between those

components and small momentum components that radiate. Furthermore, these dominant Fourier

components were in directions orthogonal to the available mirror planes of the system, maximizing

the symmetry-based reduction of small momentum components as discussed in section 2.2. In the

hexagonal lattice, it is difficult to obtain a similar set of circumstances. The only mode consistent

with the symmetry criteria is the Ha,a1
A′′

2
mode, but defects that create such a mode have Δ̃η(k⊥) that

is non-zero at the mode’s dominant Fourier components (±{kJ1 ,kJ3 ,kJ5}). Conversely, a mode such

as Hb,d1
A2

, formed by a defect such as two reduced size holes at (0,±a
√

3/2), could have Δ̃η(k⊥) = 0

at its dominant Fourier components (±{kX2 ,kX3}), but these Fourier components are oriented along

directions that are not orthogonal to the available mirror planes of the system.

Despite these potential obstacles, it is certainly possible to design high-Q defect cavities in

a hexagonal lattice. One advantage of the hexagonal lattice is that it exhibits a relatively large

and complete in-plane bandgap for TE-like modes due to its nearly circular first Brillouin zone

(IBZ) boundary. This essentially guarantees the ability to achieve high in-plane Q provided that

the mode is suitably positioned within the bandgap, and that a sufficient number of periods of the

photonic lattice are used (it is still important not to entirely neglect in-plane considerations in cavity

designs as the mode volume can be affected significantly). To address vertical radiation losses, the

defect geometry can be tailored to reduce couplings to the light cone, even though Δ̃η(k⊥) does

not necessarily have the automatic zeros it had in the case of the square lattice. Examining such

tailorings is the focus of this section.

Our first goal is to reduce couplings between the dominant Fourier components of the Ha,a1
A′′

2
mode

and the light cone. As was demonstrated above for the square lattice, this can be accomplished
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Table 2.9: FDTD simulation results for graded hexagonal lattice geometries (images are for the first
PC cavity listed below; d/a=0.75 in all designs).

Lattice |H| |Ẽx| |Ẽy|

(r/a)c (r/a)nn (r/a)e ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.36 0.325 0.225 0.250 400,000 180,000 123,000 2.41

0.40 0.380 0.30 0.271 1,540,000 76,000 72,000 1.67

0.36 0.355 0.225 0.252 800,000 107,000 94,000 1.18

through a grade in the hole radii as a function of distance from the center of the cavity. In this case,

we reduce the hole radius as we move outwards from the central defect. An example of a graded

lattice defect design is given in table 2.9, where only the central region of the cavity is shown to

help the reader visualize the hole radii grading (the actual cavity used in FDTD simulations has 10

periods of the hexagonal lattice in each direction). The design consists of two levels of confinement.

The first level of confinement has a centrally enlarged air hole ((r/a)c = 0.35) followed by a rela-

tively large decrease in hole radius ((r/a)nn = 0.325) for the nearest neighbor holes. The hole radii

are then parabolically decreased in moving radially outwards (down to (r/a)e = 0.225 at the edge

of the crystal), forming the second level of confinement. The effect this has on Δ̃η(k⊥) is evident in

fig. 2.8(a)-(b), where we plot this function for the single enlarged hole design of the previous sec-

tion and for the graded lattice design just described. It is clear that Δ̃η(k⊥) has been dramatically

reduced at ±{kJ1 ,kJ3 ,kJ5}, limiting the coupling between the dominant Fourier components and the

light cone. The magnetic field amplitude and the Fourier transform of the mode’s in-plane electric

field components are shown in table 2.9. The resulting Q values and mode volume, as listed in table

2.9, are Q⊥ = 1.8×105, Q‖ = 4×105, and Veff = 2.41(λ/n)3. As previously mentioned, Q‖ could

be made larger by simply increasing the number of periods in the photonic lattice; however, this

will not have an appreciable effect on the mode volume, which is somewhat large in this case.

Having achieved a design with a high Q⊥, we would like to modify it so as to reduce the mode
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Figure 2.8: (a) Δ̃η(k⊥) for single enlarged hole design in hexagonal lattice (r/a = 0.30, r′/a =
0.45). (b) Δ̃η(k⊥) for graded hexagonal lattice design shown in table 2.9.

volume, which, at Veff = 2.41(λ/n)3, is roughly twice that which we had for square lattice designs.

We employ two different modifications to do so; an increase in the average hole radius and a faster

grade in the hole radii (the grading occurs over a smaller number of periods than in the first exam-

ple), both of which should improve in-plane confinement. The results of these modifications are

given in the second row of table 2.9; as expected, the in-plane Q has increased considerably, to a

value of Q‖ = 1.54× 106, and the mode volume has decreased to Veff = 1.67(λ/n)3, but at the ex-

pense of a decreased vertical Q, now at Q⊥ = 76,000. The decreased Q⊥ is the result of a number of

factors. The improved in-plane localization widens the mode in Fourier space, broadening the dom-

inant Fourier components to the extent that they extend into the cladding light cone. The modified

grade also changes the magnitude of Δ̃η(k⊥) at ±{kJ1 ,kJ3 ,kJ5}, increasing the amount of coupling

between the mode’s dominant Fourier components and the light cone. In addition, the increase in

modal frequency correspondingly increases the radius of the cladding light cone.

As a final example, we consider adjusting the first level of confinement to reduce the mode

volume. Starting with our original graded cavity design (the first design of table 2.9), the size of

the holes adjacent to the central defect are increased to a value of (r/a)nn = 0.355. The results are

for the most part intermediate to the first two examples, with Q‖ = 8× 105 and Q⊥ = 1.07× 105.

One important exception is that Veff = 1.17(λ/n)3 is actually much smaller than both of the original

designs. Upon further consideration, this result is not too surprising; the smaller mode volume and
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the relatively large Q⊥ are a result of the stronger yet more extended central perturbation to the

photonic lattice.

2.7 Defect modes in a compressed hexagonal lattice

Although we have thus far focused on two regular photonic lattices, there are certainly a number of

other lattices and structures that are of potential interest. In this section, we consider the use of a

compressed hexagonal lattice. The lattice compression introduces additional degeneracies amongst

the satellite extrema of the bandstructure, thus providing an additional level of design flexibility that

in this case, allows us to efficiently localize defect modes both vertically and in the plane of the

dielectric slab.

The defect modes of the previous section were centered about an air hole; for other applications,

such as lasers, it may be of interest to have designs centered about a dielectric region, where strong

overlap of the optical field with the semiconductor is desirable. Such a mode would be centered

about the b-point in fig. 2.2(a). From the standpoint of designing a high-Q mode, the donor and

acceptor modes formed at this point do not meet our symmetry criteria, as the dominant Fourier

components of the modes (as listed in tables 2.1 and 2.2) are not orthogonal to the available mirror

planes (σx and σy for the C2v symmetry found at the b-point). This is a reflection of the fact that

the kXi are not mutually orthogonally (nor are the kJi). Thus, our motivation behind distorting

the photonic lattice is to modify the dominant Fourier components of the defect modes, with the

potential of creating a mode, centered about the dielectric, whose properties are in accordance with

our momentum space design rules.

2.7.1 Preliminary analysis

We would like to create a mode whose dominant Fourier components are orthogonal to σx and

σy. Such a mode would have dominant Fourier components ±kX1 and/or ±kJ2 . Let us begin by

considering acceptor modes. By compressing the lattice in the ŷ-direction, so that the spacing

between two adjacent rows of holes is less than its usual value (changing it from a
√

3/2 to γa
√

3/2,

where γ is the compression factor), we intuitively expect the position of the band edges in that

direction of Fourier space (corresponding to ±kX1) to increase in frequency, perhaps to the point

where the valence band edge at X1 is nearly degenerate with the valence band edge at the J-points.

Of course, this qualitative justification leaves many questions unanswered (such as the position of
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Figure 2.9: (a) Real and reciprocal space lattices of a compressed 2D hexagonal lattice. Refer to
table 2.10 for more identification of key geometrical quantities; (b) fundamental TE-like (even)
guided mode bandstructure for a compressed hexagonal lattice, calculated using a 2D plane-wave
expansion method with an effective index for the vertical guiding; r/a = 0.35, nslab = neff = 2.65,
γ = 0.7.

the band edges at the other high symmetry points in the lattice). To properly answer these questions,

we formulate a symmetry analysis of defect modes in compressed hexagonal lattices, using the

methods of chapter 1.

Consider the real and reciprocal space representations of the compressed hexagonal lattice as

illustrated in fig. 2.9(a). Compression has reduced the point group symmetry of the lattice to C2v,

and the irreducible Brillouin zone (IrBZ) is no longer a 30◦ − 60◦ − 90◦ triangle, but is now a

quadrilateral, traced between Γ−X1 − J1 −X2 − J2 −Γ. The modifications in various geometrical

quantities associated with the real and reciprocal space compressed lattice are given in table 2.10.

Note that, in particular, the group of the wavevector Gok at the X and J points has been reduced

in symmetry, and that |kX1 | �= |kX2 | (the kJi are still equal in magnitude). Furthermore, |kX1 | now

approaches |kJ|. Indeed, for a compression factor γ = 1/
√

3, the vectors coincide and the resulting

lattice is in fact square. For compression factors between 0.8 and 1/
√

3, the vectors are still quite

close in magnitude, and we qualitatively expect that the lowest frequency band (the valence band)

will be very nearly degenerate at the X1 and J points. It is in this way that the compressed hexagonal

lattices considered in this section are intermediate to the hexagonal and square lattices. In using

the compressed hexagonal lattice we hope to take advantage of the large in-plane bandgap of the

hexagonal lattice and the favorable symmetry of the square lattice.
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Table 2.10: Key geometrical quantities associated with the standard and compressed hexagonal
lattices.

Crystal Parameter(s) Hexagonal Lattice Compressed Hexagonal Lattice

Ga
a C6v C2v

Gb
b C2v C2v

{a1,a2} {(a
2 , a

√
3

2 ),(a,0)} {(a
2 , a

√
3γ

2 ),(a,0)}
{G1,G2} {(0, 4π

a
√

3
),(2π

a ,− 2π
a
√

3
)} {(0, 4π

a
√

3γ),(
2π
a ,− 2π

a
√

3γ)}
±X1 (0,± 2π

a
√

3
) (0,± 2π

a
√

3γ)

±X2 (±π
a ,± π

a
√

3
) (±π

a ,± π
a
√

3γ)

±X3 (±π
a ,∓ π

a
√

3
) (±π

a ,∓ π
a
√

3γ)

±J1 (± 2π
3a ,± 2π

a
√

3
) (±π

a (1− 1
3γ2 ),± 2π

a
√

3γ)

±J2 (± 4π
3a ,0) (±π

a (1+ 1
3γ2 ),0)

±J3 (± 2π
3a ,∓ 2π

a
√

3
) (±π

a (1− 1
3γ2 ),∓ 2π

a
√

3γ)

Go,kXi

c C2v C2v

Go,kJ1
C3v C1v = {e,σy}

Go,kJ2
C3v C1 = {e}

Go,kJ3
C3v C1v = {e,σy}

a Point Group for defect at point a of lattice.
b Point Group for defect at point b of lattice.
c Group of the wavevector.

Using the 2D plane wave expansion method with an effective index to account for vertical

waveguiding, we arrive at the bandstructure shown in fig. 2.9(b). The compression ratio (γ) has

been set at a value of 0.7 for this calculation. We see that the valence band is nearly degenerate at

points X1, J1, and J2, and thus, we expect an acceptor mode to be formed by mixing the valence band

modes formed at all of these points in Fourier space. Following the symmetry analysis techniques

described in chapter 1, we determine approximate forms for valence band modes at these points.

Grouping all of them together, we arrive at the following expressions for modes formed about the

high symmetry point a shown in fig. 2.9(a):
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VBa = ẑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(kX1 · ra
⊥)

e−ikJ1 ·ra
⊥ + e−ikJ3 ·ra

⊥

e−ikJ4 ·ra
⊥ + e−ikJ6 ·ra

⊥

e−ikJ2 ·ra
⊥

e−ikJ5 ·ra
⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.7)

Note that the valence band modes formed about the high symmetry point b (found by taking

rb
⊥ = ra

⊥−b) differ from these only by constant phase factors and hence the modes above can be used

for investigations about b as well. Both the a and b points have C2v symmetry, and the representation

of the VBa basis under C2v, labeled Sa,a1, is given by Sa,a1 = 3A2 ⊕ 2B2, where A2 and B2 label

irreducible representations (IRREPs) of C2v. In our previous analysis, we were able to take such a

representation and use projection operators on the basis functions to get approximate forms for the

localized modes. In this case, we have no such luxury, as there is no way to distinguish between

the modes of the different A2 (or B2) subspaces without some additional physical knowledge of the

system. The best we can do is to form one projection operator for a composite A2 subspace and

another for a composite B2 subspace. Doing so yields the following matrices, where the rows and

columns are ordered in accordance with that which was chosen for the VBa modes above:

PA2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, PB2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 −1 0 0

0 −1 1 0 0

0 0 0 1 −1

0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.8)

By the form of these projection matrices, it is clear that the A2 modes can potentially be formed

from any of the degenerate band edge points {±kX1 ,±kJ1 ,±kJ2 ,±kJ3}, while the B2 modes do not

include ±kX1 . It is our hope to design defects that produce A2 modes which only contain ±kX1 and

±kJ2 , to satisfy our symmetry criteria from section 2.2. To see if this can be the case, in the next

section we consider FDTD simulations of defect cavities in this lattice.

Before moving on to discuss FDTD simulations, for the sake of completeness, let us briefly

consider donor modes in this lattice. Such modes will be formed from the conduction band edge
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located at point X2 in fig. 2.9(b). Using a symmetry analysis similar to that described above, we

determine the conduction band modes for the a and b high symmetry points:

CBa = ẑ

⎛⎝sin(kX2 · ra
⊥)

sin(kX3 · ra
⊥)

⎞⎠ , CBb = ẑ

⎛⎝cos(kX2 · rb
⊥)

cos(kX3 · rb
⊥)

⎞⎠ , (2.9)

where rb
⊥ = ra

⊥−b.

The representation of the CBa basis under C2v (the defect symmetry), labeled Sa,d1, is given

by Sa,d1 = B1 ⊕B2, while the representation of the CBb basis under C2v, labeled Sb,d1 is given by

Sb,d1 = A1 ⊕A2. Projecting the CBa and CBb bases onto the irreducible representations above, we

get

Ha,d1
B1

= ẑ

(
sin(kX2 · ra

⊥)− sin(kX3 · ra
⊥)
)

,

Ha,d1
B2

= ẑ

(
sin(kX2 · ra

⊥)+ sin(kX3 · ra
⊥)
)

,

Hb,d1
A1

= ẑ

(
cos(kX2 · rb

⊥)− cos(kX3 · rb
⊥)
)

,

Hb,d1
A2

= ẑ

(
cos(kX2 · ra

⊥)+ cos(kX3 · rb
⊥)
)

,

(2.10)

as approximate forms for the donor modes at points a and b.

2.7.2 FDTD results

As discussed in the previous sections, we are interested in forming an A2 symmetry mode in the

compressed hexagonal lattice, centered about the b-point, whose dominant Fourier components

are situated at {±kX1 ,±kJ2}, to be consistent with the symmetry criterion we have prescribed.

The group theory analysis just presented has indicated that the modes of the correct symmetry

are acceptor-type modes, and have {±kX1 ,±kJ1 ,±kJ2 ,±kJ3} as their potential dominant Fourier

components. We thus begin our FDTD design in the compressed hexagonal lattice by analyzing the

dominant Fourier components produced by a simple defect geometry.

Consider the defect geometry depicted in fig. 2.10(a), consisting of four enlarged holes sur-

rounding the b-point in a compressed hexagonal lattice with compression factor γ = 0.7. FDTD

simulations of such a design (choosing, for example, r/a = 0.30 and r′/a = 0.35), give the mag-
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Figure 2.10: Modal characteristics of a simple defect mode in a compressed hexagonal lattice
(d/a = 0.75).

netic field amplitude and Fourier transformed dominant electric field components shown in fig.

2.10(b)-(d). We see that our defect geometry has produced a mode with dominant Fourier compo-

nents centered at {±kX1 ,±kJ2}, as desired. Having produced a mode consistent with our symmetry

criterion, our next step is to tailor the defect geometry so as to produce a high-Q mode.

The procedure followed is the same as what has been done in the square and hexagonal lattices,

namely, we modify the lattice (and therefore Δ̃η(k⊥)) to reduce couplings between the mode’s

dominant Fourier components (in this case, {±kX1 ,±kJ2}) and the light cone. We do so by start-

ing with a defect consisting of the four enlarged holes surrounding the b-point (we choose r′/a =

(r/a)c = 0.30), and then parabolically decreasing the hole radius as we move away from the de-

fect center (down to a value of (r/a)e = 0.225 at the edge of the crystal). The resulting lattice is

shown in table 2.11 (only the central region has been shown; in total there are 10 periods of air

holes in x̂ and 8 periods in ŷ surrounding the defect center), along with the magnetic field amplitude

and Fourier transformed electric field components for the defect mode. FDTD calculations predict

Q⊥ = 1.5×105, Q‖ = 7.5×105, Qtot = 1.3×105, and Veff = 1.7(λ/n)3 for this design.

The modifications to the lattice have largely accomplished our objectives, as we have simulta-

neously achieved high vertical and in-plane Qs, while keeping the modal volume reasonably small

(although this value is still larger than our previous designs). Improvements can still be made;

for example, simulation results indicate that there are still momentum components present within

the light cone of Ẽy; hence a further tailoring of the lattice in the x̂-direction (Ẽy has its dominant

Fourier components along ±kJ2) should help increase Q⊥, though potentially at the expense of a

larger mode volume.
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Table 2.11: FDTD simulation results for graded compressed hexagonal lattice geometries.

Lattice |H| |Ẽx| |Ẽy|

(r/a)c (r/a)e ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.30 0.225 0.323 755,000 152,000 127,000 1.72

2.8 Summary

The design of high-Q defect modes in a 2D PC slab WG has been developed through use of mo-

mentum space methods. Starting with the fundamental criterion that the reduction of vertical ra-

diation losses requires an elimination of momentum components within the light cone of the slab

waveguide, we proceed to present methods by which this is accomplished. The first is through a

judicious choice of the mode’s symmetry so that it is odd about mirror planes orthogonal to the

mode’s dominant Fourier components. To determine the precise nature of the symmetry for such

modes in square and hexagonal lattices, we refer to the symmetry analysis of chapter 1, from which

we produce a set of candidate modes that satisfy this momentum space criterion. Although sym-

metry alone can reduce vertical radiation loss, further modifications of the defect geometry based

upon Fourier space considerations can be used to increase Q even further. Tailoring the lattice to

avoid momentum space couplings which lead to in-plane and vertical radiation losses, we present

graded square lattice structures for which Q⊥ exceeds 105 while maintaining Q‖ in the 3-5× 105

range, demonstrating the possibility of producing high-Q modes in a planar PC slab WG by using

these techniques. Similarly, we have used these techniques to produce cavity geometries within the

regular and compressed hexagonal lattices that have total Qs in excess of 105. The ability to create

high-Q cavity geometries in three different lattices is an indication of the generality of this Fourier

space-based approach.

As I have mentioned in the preface, after our contributions to the area of high-Q cavity design

[21, 23], a number of groups have continued this work and have succeeded in developing designs
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with predicted Q factors in excess of 106 [26, 27, 28, 29, 30]. Momentum space design principles

remain the basis for most of these works, and in particular, the analysis of the spatial Fourier trans-

form of the cavity mode field patterns has more or less become a standard approach in PC cavity

design. The physical intuition behind the adoption of different cavity geometries is often thought of

in different ways. The picture that we have followed is one that involves an examination of modal

couplings in Fourier space, where the dielectric perturbation that forms the defect (or more precisely,

its Fourier transform) is the key quantity that should be tailored to avoid the creation of modes that

contain leaky Fourier components, where such problematic regions of Fourier space are well known

to be the cladding light cone (for vertical radiation loss) and the range of angles and momenta for

which the photonic lattice is not highly reflective (for in-plane losses). As a slightly different take

on this, one can consider what the field profile of such a ‘good’ mode (i.e., one that does not contain

small momentum components) looks like in real space, and then consider how to tailor the a given

defect geometry to achieve this. This is essentially the approach taken in ref. [51]. More recently,

some authors [28, 30] have used a PC waveguide mode as the starting point for creating PC cavities;

that is, the cavity is formed through some localized modification to the geometry of a PC waveg-

uide. This has been done by both changing the lattice constant within some region of the waveguide

[28] and by shifting the position of some small number of holes within the structure [30]. Although

there a number of different ways in which one can view these designs, a simple way to think about

this is that a PC waveguide mode has the advantage of having a well-defined in-plane momentum

along the waveguide (its propagation constant) which lies outside of the cladding light cone. It thus

makes intuitive sense that there is a benefit to starting the cavity design with such a mode that, in

principle, is free of radiation losses. As a side comment, this class of design is actually not that far

astray from the graded square lattice cavity design presented in this chapter. The PCWG designed

in ref. [33] is based upon our square lattice cavity design, where the grade in hole radius along

the x̂-axis is essentially kept, but the structure is not graded along the ŷ-axis (it has translational

periodicity in this dimension). One could imagine creating a cavity that consists of a short section

of this PCWG sandwiched between a pair of appropriately designed DBR mirrors that could, for

example, be PCWGs with a different lattice constant or grade in hole radius. Such a design would,

in principle, be very similar to those of refs. [28, 30]. This is actually relatively close to what has

already been done, where the end mirrors can be thought of as the uniform PC lattice surrounding

the graded section. The key to additional improvements would be to further tailor the geometry to

better avoid radiation losses. At some level, this becomes somewhat difficult to do within the square
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lattice because of the small in-plane bandgap, which means that in-plane losses can not be neglected

(they often can be within the hexagonal lattice). In addition, it should be noted that the cavity design

procedure adopted in this chapter is in part based on the utilization of modes of odd spatial sym-

metry in order to reduce vertical radiation losses, and as further described in chapter 4, to create a

cavity design that is relatively robust to fabrication-induced imperfections. These restrictions could

potentially be relaxed in future designs, in favor of other mechanisms for accomplishing the same

goals. In particular, as the ability to precisely reproduce designs in fabricated structures improves,

the necessity for a robust cavity design is reduced.

The momentum space analysis described in this chapter essentially tells us which portions of

Fourier space to avoid to create high-Q structures; one might then expect that this could be used as

the input to some type of automated computational technique that would generate the field patterns,

and the associated dielectric functions, for modes that satisfy the criteria. Additional constraints on

the mode volume and the robustness of the cavity geometry to imperfections, for example, could be

added to such an analysis. Initial attempts to incorporate at least some amount of this inverse design

approach, along with optimization methods for determining the highest possible Q and associated

dielectric function within some region of parameter space, have been reported in refs. [31, 29]. Such

approaches have a lot of merit in that they can eliminate the trial-and-error approach that is often

used to design high-Q structures. This is particularly important in the design of these PC cavities,

as FDTD simulations are often computationally intensive (a 3D simulation of the cavity field and

the determination of its quality factor often takes one day of computing time on our Pentium III ma-

chines). However, one has to be mindful of the large parameter space over which such optimization

techniques must, in principle, operate. At the most complex level, one can imagine that the only

constraint on the physical structure is that the dielectric function at every grid point in the simula-

tion can only be one of two values (that of the semiconductor material or that of air). Obviously,

the simulation can be further constrained to only allow those dielectric functions that are physically

realizable (some minimum feature size can be specified). Nevertheless, the number of potential

configuration over which an optimization, for example, must be run is still quite considerable. The

physical insight gained by techniques such as the group theory and Wannier analysis of chapter 1,

as well as the momentum space design of this chapter, is thus very important from the standpoint

of further constraining these problems by, for example, specifying the lattice to be considered, the

high symmetry point about which a defect is to be formed, or the type of mode (donor or acceptor)

to be considered. The specification of the lattice may be dictated by the desire to create modes of a
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certain polarization, dominant emission direction, or location of the peak electric field, for example.




