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Chapter 1

Semianalytic Methods for Studying
Localized Modes Within
Two-Dimensional Photonic Crystals

The design of photonic crystal (PC) based optical elements has often relied on numerical simula-

tions using methods such as finite-difference time-domain (FDTD) [6, 7]. While FDTD provides

a wealth of detailed information about the system under consideration, it has the drawback of be-

ing rather computationally intensive and time consuming. In this chapter, I detail two approximate

analytic methods that are of great use in studying planar PC cavities (fig. 1.1). The first is a group-

theory-based analysis [24] that provides information about the symmetries and dominant Fourier

components of defect modes within hexagonal and square lattice PC cavities. The second method

[25] is a Wannier-like equation analysis that describes how the photonic lattice provides localiza-

tion for the cavity modes. Taken together, these two techniques can provide approximate modal

field patterns that reproduce many of the detailed features of the cavity modes generated by FDTD

simulations. They thus serve as a starting point from which a more detailed analysis or optimization

of the cavity design can proceed.

1.1 Symmetry-based analysis

1.1.1 Introduction

The work described in this section is largely based on ref. [24], and is presented here in a slightly

different form, where I have omitted some results that are not utilized in the rest of this thesis in

favor of more detailed derivations of some basic results. The principal thrust of the analysis is

contained in sections 1.1.2 and 1.1.3, which outline the application of group theory in producing
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Figure 1.1: Illustration of a two-dimensional photonic crystal cavity in a slab waveguide structure.

an approximate description of the resonant modes of the defect cavities in hexagonal and square

host photonic lattices. Section 1.1.4 then presents the results of FDTD simulations, confirming the

results of the approximate group theory analysis while providing detailed properties of the defect

mode resonances beyond the scope of the simple symmetry analysis.

The spatial symmetries within Maxwell’s equations are determined by the translation and rotary-

reflection symmetries of the dielectric function, ε(r) [90]. The theory of space groups [91] can

then be used to predict and categorize the resonant modes of defects within PC structures. A two-

step process is implemented here. First, modes of the unperturbed slab waveguide are used as

a symmetry basis to generate approximate field patterns for the PC modes at the high symmetry

points of the first Brillouin zone (IBZ) boundary. The curvature of the photonic bands at these

points are such that peaks and valleys are created in the energy-momentum dispersion surface. It is

these peaks and valleys that are the seeds from which localized states are formed. The second step

in our approach then utilizes the PC band-edge states created from the unperturbed slab waveguide

mode symmetry basis to generate approximate forms for the localized defect modes lying within

the bandgap.

The host PC structures that we consider consist of a symmetric planar geometry with a two-

dimensionally patterned core layer surrounded by spatially uniform cladding layers. A structure

which has been the basis of many previously fabricated devices is depicted in cross section in fig.

1.1. The semiconductor core dielectric material has an approximate refractive index of 3.4, and the

cladding in these membrane-type structures is air with a refractive index of 1. For the structures
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studied in this and following sections, the ratio of the core thickness, d, to lattice constant, a, is

chosen so as to maintain the single-mode nature of the vertical waveguide for wavelengths within

the first-order guided-mode bandgap of the PC lattice. The modes of a symmetric slab waveguide,

patterned or unpatterned, separate into modes of even or odd parity with respect to a mirror plane in

the middle of the dielectric slab. Of interest here are the fundamental guided modes. Limiting our

analysis to the fundamental guided modes of the PC slab effectively reduces the spatial dimension

of the problem from three to two.

Within the mirror plane of the waveguide in these symmetric quasi-2D systems, the fundamental

even and odd modes can be represented by scalar fields Hz and Ez, respectively. As has been

described elsewhere [4], for connected 2D lattices such as those investigated here, the extent of

the photonic bandgap for modes with electric field polarization in the plane of the 2D patterning

(TE) is larger than for modes with normal electric field polarization (TM). For this reason, we will

focus our attention on the fundamental even modes of the 2D PC waveguides which are TE-like

(although the fundamental even and odd modes of the patterned slab are not purely TE or TM, they

are significantly TE-like or TM-like in nature). An extension to TM-like modes has been presented

in ref. [37], as it finds specific application in the study of quantum cascade photonic crystal lasers,

due to the TM polarization of the intersubband transitions within quantum cascade heterostructures.

In the analysis below, we consider two of the most common 2D geometries for the host PC lattice,

the square lattice and the hexagonal or trigonal lattice. We begin with an analysis of the hexagonal

lattice.

1.1.2 Hexagonal lattice photonic crystals

The point group symmetry of a 2D hexagonal PC is D6h, with a single horizontal mirror plane (σh)

lying in the waveguide center. Narrowing our scope to TE-like modes of a symmetric slab, the

point group symmetry of the hexagonal PC system can be effectively reduced to C6v=D6h/σh. A

plot of the approximate in-plane bandstructure for the fundamental TE-like guided modes of a half-

wavelength thick hexagonally patterned slab waveguide is given in fig. 1.2(a).1 This bandstructure

was calculated through the plane wave expansion technique, as reviewed in ref. [5].

Within the mirror plane of the slab, the magnetic field pattern for the (fundamental) TE-like

eigenmodes of the unpatterned slab waveguide can be written as Hk⊥(r⊥) = ẑe−i(k⊥·r⊥), where k⊥
1In this calculation a 2D hexagonal PC with host dielectric constant given by the effective index of the fundamental

TE mode of the half-wavelength thick slab is analyzed [7].
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Figure 1.2: (a) Fundamental TE-like guided mode bandstructure (r/a = 0.36, nslab = neff = 2.65).
The bandgap extends over a normalized frequency of 0.29-0.41. The air (cladding) light line is
shown as a solid black line. (b)-(c) Illustration of the real and reciprocal spaces of the two-
dimensional hexagonal PC. The high-symmetry points of the hexagonal lattice, referenced to the
center of an air hole, are a = (0,0), b = (a/2,0), and c = (0,a/

√
3). (b) Real space. |a1|= |a2|= a.

(c) Reciprocal space. |G1| = |G2| = 4π/
√

3a, |kX | = 2π/
√

3a, |kJ| = 4π/3a.

and r⊥ are in-plane wavenumber and spatial coordinates, respectively (in order to simplify notation

we drop the ⊥ label in the equations that follow). Upon patterning the slab waveguide, coupling

occurs between waveguide modes with similar unperturbed frequencies and identical propagation

constants modulo a reciprocal lattice vector G. This follows from the approximate conservation of

frequency and the exact conservation of crystal momentum. Of particular interest for the resonant

cavity designs and devices described below are those modes which comprise the frequency bands

defining the first order bandgap. The Bloch modes at the band-edges defining the first order bandgap

are predominantly formed from modes of the unpatterned waveguide with in-plane wavevector lying

at the boundary of the IBZ; other unpatterned waveguide modes with additional in-plane momentum

equal to some integer multiple of a reciprocal lattice vector contribute much less, owing to their large

(unperturbed) frequency difference. For the symmetry analysis described here we will be satisfied

with considering the contribution from only the degenerate lowest frequency unpatterned waveguide

modes at the first zone boundary.

The high symmetry points within and on the boundary of the IBZ of the hexagonal lattice are

(see fig. 1.2(c)): the six X points ({±(0,1)kX , ±(
√

3/2,1/2)kX , ±(
√

3/2,−1/2)kX}), the six J

points ({±(1/2,
√

3/2)kJ , ±(1/2,−√
3/2)kJ , ±(1,0)kJ}), and the Γ point=(0,0). The first-order

bandgap of the hexagonal lattice (see fig. 1.2(a)) is defined from above by the X point and below

by the J point. In analogy to the electronic bands in semiconductor crystals, the high frequency
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Table 1.1: Point group character tables for the hexagonal lattice.

C6v E C2 2C3 2C6 3σd 3σv

A′′
1 1 1 1 1 1 1

A′′
2 1 1 1 1 −1 −1

B′′
1 1 −1 1 −1 1 −1

B′′
2 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

Sa,d1 3 −3 0 0 1 −1

Sa,a1 2 0 2 0 −2 0

Sa,a2 3 3 0 0 −1 −1

C2v E C2 σx(σv1) σy(σd2)

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 −1 1

B2 1 −1 1 −1

Sa,d1 3 −3 −1 1

Sb,d1 3 1 −1 1

Sa,a1 2 0 0 −2

Sa,a2 3 3 −1 −1

Sb,a1 3 3 −1 −1

C3v,σd E 2C3 3σd

A′
1 1 1 1

A′
2 1 1 −1

E 2 −1 0

C3v,σv E 2C3 3σv

A′′′
1 1 1 1

A′′′
2 1 1 −1

E 2 −1 0

Sc,d1 3 0 −1

Sc,a1 2 −1 0
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band defining the first-order bandgap is called the conduction band, and the low frequency band

is the valence band [4]. In the approximate analysis of the defect states to follow we will need to

include all the degenerate satellite peaks (conduction band) and valleys (valence band). The group

of the wavevector, which defines the point group symmetry of a plane wave modulo G within the

dielectric lattice, is C2v, C3v, and C6v for the X , J, and Γ points of the hexagonal lattice, respectively.

Character tables [92] for these groups are given in table 1.1.

1.1.2.1 X-point

For the frequency bands defining the first-order bandgap, the unpatterned waveguide modes which

are most strongly coupled together to form the Bloch modes at the X-point are given by H = ẑe−ikXi ·r,

where i = 1,2, ...,6. The unperturbed frequencies of these modes are degenerate and can be written

as ωX
o ≈ c|kX |/neff, where neff is an effective index taking into account the vertical waveguiding

perpendicular to the slab.

The star of k (�k) at the X-point, formed from the independent satellite X-points within the

IBZ, consists of wavevectors {kX1 ,kX2 ,kX3}, with all other X-points being equivalent to one of

these vectors modulo a reciprocal lattice vector. A symmetry basis for the modes of the patterned

slab waveguide at the X1-satellite point can be found by applying the symmetry operations of the

group of the wave vector (GokX = C2v) to the seed vector HkX1
. In this case, the basis is simply

(HkX1
,H−kX1

).

Using these basis vectors, we calculate the 2×2 matrices that represent the different point group

operations of C2v, noting that the magnetic field transforms like a pseudovector [93] (unlike the

electric field). This yields the following:

SX
E =

⎛⎜⎝1 0

0 1

⎞⎟⎠ SX
C2

=

⎛⎜⎝0 1

1 0

⎞⎟⎠ SX
σx

=

⎛⎜⎝−1 0

0 −1

⎞⎟⎠ SX
σy

=

⎛⎜⎝ 0 −1

−1 0

⎞⎟⎠ . (1.1)

The character values for these operations are χE=2, χC2=0, χσx=−2, and χσy=0. These character

values are consistent with a reducible representation that decomposes as A2 ⊕B1. The projection

operators [92] onto these IRREP spaces are calculated as:
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PA2 =
1
4

{
1

⎛⎜⎝1 0

0 1

⎞⎟⎠+1

⎛⎜⎝0 1

1 0

⎞⎟⎠+(−1)

⎛⎜⎝−1 0

0 −1

⎞⎟⎠+(−1)

⎛⎜⎝ 0 −1

−1 0

⎞⎟⎠}
=

1
2

⎛⎜⎝1 1

1 1

⎞⎟⎠
(1.2)

PB1 =
1
4

{
1

⎛⎜⎝1 0

0 1

⎞⎟⎠+(−1)

⎛⎜⎝0 1

1 0

⎞⎟⎠+(−1)

⎛⎜⎝−1 0

0 −1

⎞⎟⎠+(1)

⎛⎜⎝ 0 −1

−1 0

⎞⎟⎠}
=

1
2

⎛⎜⎝ 1 −1

−1 1

⎞⎟⎠
(1.3)

Applying these projection operators to the seed vector HkX1
yields:

HX1
A2

= ẑcos(kX1 · ra),

HX1
B1

= ẑsin(kX1 · ra),
(1.4)

where A2 and B1 label the IRREP spaces of C2v (see table 1.1), and the index a is used to denote

the location of the origin within the hexagonal lattice (marked in fig. 1.2(b)). As the magnetic

field of HX1
A2

overlaps strongly with the air holes of the hexagonal PC (its electric field lying largely

in the dielectric) it represents the lower frequency “valence” band mode, while HX1
B1

represents the

“conduction” band mode. This is a result of the tendency for modes with electric field concen-

trated within regions of high dielectric constant to be lower frequency than those with electric field

concentrated in low dielectric regions [4].

In order to fully define the modes at the X-point all modes of the �k must be included. In the

case of the X-point this corresponds to successive rotations by π/6 (C6 rotation). The result is the

following set of degenerate valence band modes,

VBX
a =

⎛⎜⎜⎜⎜⎝
vX1

vX2

vX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
cos(kX1 · ra)

cos(kX2 · ra)

cos(kX3 · ra)

⎞⎟⎟⎟⎟⎠ , (1.5)
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and degenerate conduction band modes,

CBX
a =

⎛⎜⎜⎜⎜⎝
cX1

cX2

cX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
sin(kX1 · ra)

sin(kX2 · ra)

sin(kX3 · ra)

⎞⎟⎟⎟⎟⎠ . (1.6)

fig. 1.3 shows the magnetic field amplitude for each of the valence and conduction band modes at

all the satellite X-points of the hexagonal lattice.

vX1 vX2 vX3

cX1 cX2 cX3

Figure 1.3: Magnetic field (amplitude) patterns of the valence band modes (top) and conduction
band modes (bottom) of the hexagonal lattice at the three different X-points generated by the sym-
metry bases VBX

a and CBX
a .

1.1.2.2 J-point

A similar procedure may be performed in order to determine approximate forms for the TE-like

valence and conduction band modes of the hexagonal lattice at the J-point of the IBZ. Approximate

forms for the valence band edge and conduction band edge modes at the J-point are (with point a

taken as the origin):



48

VBJ
a =

⎛⎜⎝vJ1

vJ2

⎞⎟⎠ = ẑ

⎛⎜⎝e−ikJ1 ·ra
+ e−ikJ3 ·ra

+ e−ikJ5 ·ra

e−ikJ2 ·ra
+ e−ikJ4 ·ra

+ e−ikJ6 ·ra

⎞⎟⎠ , (1.7)

CBJ
a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1J1

c2J1

c1J2

c2J2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ẑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−ikJ1 ·ra
+ e−ikJ3 ·ra −2e−ikJ5 ·ra

e−ikJ1 ·ra − e−ikJ3 ·ra

e−ikJ2 ·ra
+ e−ikJ4 ·ra −2e−ikJ6 ·ra

e−ikJ2 ·ra − e−ikJ4 ·ra

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.8)

Figure 1.4 shows the magnetic field amplitude for each of the valence and conduction band modes

at the J-point of the hexagonal lattice. Although not obvious from first inspection of equations

(1.7) and (1.8), the plots in these two tables show that the modes of the symmetry basis VBJ
a have a

magnetic field amplitude predominantly overlapping the air holes while the magnetic field amplitude

of the modes of CBJ
a overlap the dielectric regions, a property that allows us to classify the modes

as valence and conduction band, respectively. This result is also quite encouraging, given the fact

that our symmetry basis is quite primitive and yet can reproduce this property of the valence and

conduction band modes so critical to the formation of a frequency bandgap.

The approximate valence and conduction band edge modes derived above all have their origin

at the center of an air hole of the lattice. The hexagonal lattice has two other high-symmetry points

around which one may center a defect, points b and c shown in fig. 1.2(b). Unlike point a, points b

and c are of lower symmetry than the point group of the hexagonal lattice. A defect centered about

point b will be limited to a point group of symmetry C2v, and those about point c to point group

C3v,σv . The point group symmetry operations for each of these types of defects are centered about

different points within the lattice. So as to be clear about the position of the origin to be used for

point symmetry operations, we label the Bloch mode symmetry bases with an index corresponding

to the location of the origin around which it is expanded. For example, VBX
b is the X-point valence

band basis of equation (1.5) written in a shifted coordinate system with point b at the origin. In the

equations to follow, ra, rb, and rc are coordinate systems with origin located at point a, b, and c of

the hexagonal lattice, respectively.
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vJ1 vJ2

c1J1 c2J1

c1J2 c2J2

Figure 1.4: Magnetic field (amplitude) pat-
terns of the valence band (top) and conduc-
tion band (middle and bottom) modes of the
hexagonal lattice at the J-point, generated by
the symmetry bases VBJ

a and CBJ
a.

1.1.2.3 Conduction band donor modes

In an attempt to form localized resonances, the dielectric constant in a small region of a periodic

photonic crystal lattice may be altered from its unperturbed value, breaking the regular periodicity

of the lattice and mixing the Bloch modes. If the perturbation corresponds to a local increase in the

dielectric constant (fig. 1.5(a)), the localized modes are formed predominantly from the conduction

band, specifically the modes at the band edge. This is a result of the tendency for mode frequencies

to decrease with increasing dielectric constant [4], pulling the conduction band edge modes into the

bandgap of the photonic crystal near the defect. This type of localized mode is termed a donor mode

in analogy to the electronic defect states in crystalline materials [94].

For the hexagonal PC lattice the minimum in the conduction band occurs at the X-point (see

fig. 1.2(a)). Therefore, the appropriate symmetry basis to use for describing localized donor modes

are the degenerate conduction band edge modes of CBX
a , CBX

b , and CBX
c for defect regions centered

around points a, b, and c.

Let us consider the formation of conduction band donor modes within defects that maintain the

full C6v symmetry of the lattice. Using the symmetry basis CBX
a , we calculate the matrix represen-
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(a) (b) (c)
Figure 1.5: Example defect cavity
geometries in the hexagonal lattice.
(a) Donor-type cavity, (b) Acceptor-
type cavity, (c) Y -split acceptor-
type cavity.

tation of the point group operators:

ECBX =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠C2,CBX =

⎛⎜⎜⎜⎜⎝
−1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎟⎟⎠C3,CBX =

⎛⎜⎜⎜⎜⎝
0 −1 0

0 0 −1

1 0 0

⎞⎟⎟⎟⎟⎠C−1
3,CBX =

⎛⎜⎜⎜⎜⎝
0 0 1

−1 0 0

0 −1 0

⎞⎟⎟⎟⎟⎠
(1.9)

C6,CBX =

⎛⎜⎜⎜⎜⎝
0 0 −1

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎠C−1
6,CBX =

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 1

−1 0 0

⎞⎟⎟⎟⎟⎠σd1,CBX =

⎛⎜⎜⎜⎜⎝
0 −1 0

−1 0 0

0 0 1

⎞⎟⎟⎟⎟⎠σd2,CBX =

⎛⎜⎜⎜⎜⎝
1 0 0

0 0 −1

0 −1 0

⎞⎟⎟⎟⎟⎠
(1.10)

σd3,CBX =

⎛⎜⎜⎜⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎟⎟⎟⎠σv1,CBX =

⎛⎜⎜⎜⎜⎝
−1 0 0

0 0 1

0 1 0

⎞⎟⎟⎟⎟⎠σv2,CBX =

⎛⎜⎜⎜⎜⎝
0 0 −1

0 −1 0

−1 0 0

⎞⎟⎟⎟⎟⎠σv3,CBX =

⎛⎜⎜⎜⎜⎝
0 1 0

1 0 0

0 0 −1

⎞⎟⎟⎟⎟⎠
(1.11)

The character values for these operations are χE=3, χC2=-3, χC3=0, χC6=0, χσd =1, and χσv=-1. These

character values are consistent with a reducible representation that decomposes as Sa,d1 = E1 ⊕B′′
1,

as listed in table 1.1. For the B′′
1 representation, the calculation of the projection operator is done

using the same method as was used to calculate the projectors for the conduction band modes at

the X-point. For the E1 representation, there is an additional step because it is a two-dimensional

representation. Recalling that E1 can be spanned by the coordinate pair (x,y), we write out two-
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dimensional matrices for E1:

EE =

⎛⎜⎝1 0

0 1

⎞⎟⎠ EC2 =

⎛⎜⎝−1 0

0 −1

⎞⎟⎠ EC3 =

⎛⎜⎝ −1
2

√
3

2

−√
3

2
1
2

⎞⎟⎠ EC−1
3

=

⎛⎜⎝−1
2

−√
3

2
√

3
2

−1
2

⎞⎟⎠ (1.12)

EC6 =

⎛⎜⎝ 1
2

√
3

2

−√
3

2
1
2

⎞⎟⎠ EC−1
6

=

⎛⎜⎝ 1
2

−√
3

2
√

3
2

1
2

⎞⎟⎠ Eσd1 =

⎛⎜⎝−1
2

√
3

2
√

3
2

1
2

⎞⎟⎠ Eσd2 =

⎛⎜⎝1 0

0 −1

⎞⎟⎠ (1.13)

Eσd3 =

⎛⎜⎝ −1
2

−√
3

2

−√
3

2
1
2

⎞⎟⎠ Eσv1 =

⎛⎜⎝−1 0

0 1

⎞⎟⎠ Eσv2 =

⎛⎜⎝ 1
2

√
3

2
√

3
2

−1
2

⎞⎟⎠ Eσv3 =

⎛⎜⎝ 1
2

−√
3

2

−√
3

2
1
2

⎞⎟⎠
(1.14)

The diagonal elements of these matrices are then used in the calculation of the two projectors within

this subspace. Overall, we arrive at the following projection operators for the conduction band donor

modes:

PCBX

B′′
1

= 1
3

⎛⎜⎜⎜⎜⎝
1 −1 1

−1 1 −1

1 −1 1

⎞⎟⎟⎟⎟⎠ PCBX

E1,1
= 1

6

⎛⎜⎜⎜⎜⎝
4 2 −2

2 1 −1

−2 −1 1

⎞⎟⎟⎟⎟⎠ PCBX

E1,2
= 1

2

⎛⎜⎜⎜⎜⎝
0 0 0

0 1 1

0 1 1

⎞⎟⎟⎟⎟⎠ (1.15)

Note that the coefficients in front of these projection matrices are eventually dropped as the approx-

imate solutions that we give are not absolutely normalized, although the relative amplitudes of the

different Fourier components are certainly kept (and are captured by the projection matrices them-

selves, without the prefactors). Using these projection operators on CBX
a , a set of basis functions for

the localized conduction band donor modes centered about point a of the hexagonal lattice is found:
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Ha,d1
B′′

1
= ẑ

(
sin(kX1 · ra)− sin(kX2 · ra)+ sin(kX3 · ra)

)
Ha,d1

E1,1
= ẑ

(
2sin(kX1 · ra)+ sin(kX2 · ra)− sin(kX3 · ra)

)
Ha,d1

E1,2
= ẑ

(
sin(kX2 · ra)+ sin(kX3 · ra)

)
,

(1.16)

Similar techniques are used to find the character values of representation Sb,d1 of the CBX
b basis

under C2v and representation Sc,d1 of the CBX
c basis under C3v,σv , and they are given in table 1.1.

From the character tables we find that these representations decompose as Sb,d1 = A1⊕A2⊕B1 and

Sc,d1 = E ⊕A′′′
2 . We then use the appropriate projection operators to find basis functions for the

localized conduction band donor modes centered about point b:

Hb,d1
A1

= ẑ

(
cos(kX2 · rb)− cos(kX3 · rb)

)
Hb,d1

A2
= ẑ

(
cos(kX2 · rb)+ cos(kX3 · rb)

)
Hb,d1

B1
= ẑ

(
sin(kX1 · rb)

)
,

(1.17)

and point c:

Hc,d1
A′′′

2
= ẑ

(
sin

(
kX1 · rc − π

3

)
− sin

(
kX2 · rc +

π
3

)
+ sin

(
kX3 · rc − π

3

))
Hc,d1

E,1 = ẑ

(
2sin

(
kX1 · rc − π

3

)
+ sin

(
kX2 · rc +

π
3

)
− sin

(
kX3 · rc − π

3

))
Hc,d1

E,2 = ẑ

(
sin

(
kX2 · rc +

π
3

)
+ sin

(
kX3 · rc − π

3

))
,

(1.18)

Figure 1.6 shows plots of the amplitude of the ẑ-component of the magnetic field for each of the

localized donor modes centered about point a, as generated by the symmetry analysis. In these plots

(and in all plots generated from the symmetry analysis to follow), the localization of each mode has

been taken into account by multiplying a two-dimensional Gaussian envelope function with each
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Figure 1.6: Magnetic field amplitude of the symmetry analysis conduction band donor modes cen-
tered about point a of the hexagonal lattice.

dominant Fourier component, where the two axes of the Gaussian envelope are taken as parallel and

perpendicular to the direction of the Fourier component. This set of envelope function transforms

as the identity under symmetry operations of the group of the wavevector, and as such does not alter

the transformation properties of each k component. Consequently, the IRREP classification of the

defect modes given above is maintained. This particular choice of envelope function, apart from

symmetry, is rather arbitrary, only chosen to capture the localized nature of the defect modes and

highlight the dominant Fourier components. In section 1.2, a Wannier-like equation for the envelope

of localized photon states is studied and shown to have ground state solutions invariant under those

elements of the group of the wavevector that are also symmetries of the defect perturbation. The

ground state envelope solutions then leave the IRREP classification of the above analysis for the

defect modes unchanged.

Returning to equation (1.16) describing the localized donor modes about point a of the hexago-

nal lattice, we note that the (d1,B′′
1) donor mode transforms like a hexapole, whereas the degenerate

(d1,E1) modes transform as an (x,y)-dipole pair. By introducing defect regions with lower symme-

try than the host photonic lattice one is able to remove degeneracies in the localized mode spectrum.

The effects of this symmetry lowering can be simply determined using group theory by virtue of the

compatibility relations between the IRREPs of the full and reduced symmetry groups:



54

C6v →C2v

Ha,d1
B′′

1
→ Ha,d1,1

B1

Ha,d1
E1,1

→ Ha,d1,2
B1

(x-dipole)

Ha,d1
E1,2

→ Ha,d1
B2

(y-dipole).

(1.19)

In the case of cavities with C2v symmetry, group theory predicts the splitting of the degenerate

dipole-like modes into x and y dipole-like modes with differing frequencies. This has been studied

in numerical simulations and experimental measurements of such devices [2].

1.1.2.4 Valence band acceptor modes

If the dielectric constant had been reduced in a small region within the photonic lattice, by enlarging

an air hole for instance (fig. 1.5(b)), then instead of pulling the conduction band modes down into

the photonic crystal bandgap the valence band modes are pushed up into the bandgap. In this case

modes localized to the defect region are formed predominantly from mixtures of Bloch modes from

the valence band edge. This type of defect mode is termed an acceptor mode, again in analogy to the

electronic states in a crystal [94]. For the hexagonal lattice the maximum of the valence band occurs

at the J-point (see fig. 1.2(a)). The obvious symmetry basis to use to describe the acceptor modes is

the set of degenerate valence band modes at the J-point, VBJ
a in the case of defects centered around

point a, and VBJ
b and VBJ

c for defects about points b and c, respectively.

The characters of the representation Sa,a1 of VBJ
a under the C6v point symmetry group, the

representation Sb,a1 of VBJ
b under C2v, and the representation Sc,a1 of VBJ

c under C3v,σv are given

in table 1.1. Sa,a1 decomposes into irreducible blocks A′′
2 ⊕B′′

2, Sb,a1 = A2 ⊕B2, and Sc,a1 = E .

Using the projection operators, the basis functions VBJ
a are coupled together to form the following

acceptor modes about point a:

Ha,a1
A′′

2
= ẑ

(
cos(kJ1 · ra)+ cos(kJ3 · ra)+ cos(kJ5 · ra)

)
Ha,a1

B′′
2

= ẑ

(
sin(kJ1 · ra)+ sin(kJ3 · ra)+ sin(kJ5 · ra)

)
.

(1.20)

Similarly, projecting the basis functions VBJ
b onto the IRREPs of C2v and the basis functions VBJ

c
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Figure 1.7: Magnetic field amplitude of the symmetry analysis valence band acceptor modes cen-
tered about point a of the hexagonal lattice.

onto the IRREPs of C3v,σv , we get for the acceptor modes about point b:

Hb,a1
A2

= ẑ

(
cos(kJ1 · rb)+ cos(kJ3 · rb)− cos(kJ5 · rb)

)
Hb,a1

B2
= ẑ

(
sin(kJ1 · rb)+ sin(kJ3 · rb)− sin(kJ5 · rb)

)
,

(1.21)

and the acceptor modes about point c:

Hc,a1
E,1 = ẑ

(
cos

(
kJ1 · rc +

2π
3

)
+ cos

(
kJ3 · rc − 2π

3

)
+ cos

(
kJ5 · rc

))
Hc,a1

E,2 = ẑ

(
sin

(
kJ1 · rc +

2π
3

)
+ sin

(
kJ3 · rc − 2π

3

)
+ sin

(
kJ5 · rc

))
.

(1.22)

Figure 1.7 shows plots of the ẑ-component of the magnetic field for each of the localized acceptor

modes centered about point a of the hexagonal lattice generated by the symmetry analysis.

In modified cavities with C2v symmetry, Ha,a1
A′′

2
and Ha,a1

B′′
2

transform as A2 and B2 IRREPs, re-

spectively:
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C6v →C2v

Ha,a1
A′′

2
→ Ha,a1

A2
,

Ha,a1
B′′

2
→ Ha,a1

B2
.

(1.23)

For defect regions that strongly perturb the photonic lattice it is possible that a larger number of

localized defect modes will form than can be described by the limited symmetry basis used above.

This is the case for the Y -split cavity described in ref. [24] and illustrated in fig. 1.5(c), where the

defect region is composed of two enlarged holes and has a relatively deep potential well for acceptor

modes. As a result, in the FDTD simulations of the Y -split cavity, an additional shallow acceptor

type mode (Y -A20), not covered by the VBJ
a symmetry basis, is present.

In order to more fully capture the possible defect modes in a deep potential well, the symmetry

basis can be expanded in a number of ways [24]. The method we adopt here is based upon the

observation that, for defect regions which provide a deep potential well, it is possible that defect

modes will form which are composed of unperturbed photonic crystal modes located not just at

the edge of the bandgap, but also at other nearby (in frequency) high-symmetry k-points within

the IBZ. In order to represent these additional localized resonant modes the unperturbed photonic

crystal modes at the additional high-symmetry k-points must be included in the symmetry basis.

For the hexagonal lattice the valence band at the X-point is close in frequency to the bandgap edge

at the J-point (see fig. 1.2(a)). The symmetry basis for the X-point valence band edge is the triply

degenerate VBX
a basis set. The representation of VBX

a under C6v, labeled Sa,a2, has the character

values shown in table 1.1 and decomposes into irreducible spaces E2 and A′′
2. The acceptor type

modes formed from the X-point valence band modes in a symmetric defect cavity centered about

point a in the lattice are:

Ha,a2
A′′

2
= ẑ

(
cos(kX1 · ra)+ cos(kX2 · ra)+ cos(kX3 · ra)

)
,

Ha,a2
E2,1

= ẑ

(
2cos(kX1 · ra)− cos(kX2 · ra)− cos(kX3 · ra)

)
,

Ha,a2
E2,2

= ẑ

(
cos(kX2 · ra)− cos(kX3 · ra)

)
.

(1.24)

The Y -split cavity does not have C6v symmetry, but rather C2v symmetry. This reduction of
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A2
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Figure 1.8: Magnetic field amplitude of the symmetry analysis acceptor modes formed from the
valence band modes at the X-point of the hexagonal lattice.

symmetry causes the E2 IRREP space to split into A1⊕A2, and the A′′
2 space to transfer over into an

A2 IRREP space:

C6v →C2v

Ha,a2
A′′

2
→ Ha,a2,1

A2
,

Ha,a2
E2,1

→ Ha,a2,2
A2

,

Ha,a2
E2,2

→ Ha,a2
A1

.

(1.25)

Figure 1.8 shows the magnetic field patterns of the acceptor modes predicted by the symmetry

analysis to form out of the valence band at the X-point. The shallow acceptor mode (Y -A20) found

in FDTD simulations of the Y -split cavity [24] transforms as the A2 IRREP under C2v symmetry

operations. The dominant Fourier component within the FDTD generated field pattern of Y -A20 is

kX1 , from which we can conclude that this mode is given by Ha,a2,2
A2

as opposed to Ha,a2,1
A2

.

1.1.3 Square lattice photonic crystals

As with the hexagonal lattice we concern ourselves here with only the fundamental even modes (TE-

like) of the slab waveguide. The point group symmetry of the square lattice photonic crystal can then

be reduced to C4v=D4h/σh. A plot of the approximate in-plane bandstructure for the fundamental

TE-like guided modes of a half-wavelength thick slab waveguide with a square array patterning of

air holes is given in fig. 1.9(a).
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Figure 1.9: (a) Fundamental TE-like guided mode bandstructure (r/a = 0.35, nslab = neff = 2.65)
for a square lattice of air holes. The bandgap is seen to be much smaller for the square lattice than in
the case of the hexagonal lattice. The air (cladding) light line is shown as a solid black line. (b)-(c)
Illustration of the real and reciprocal spaces of the two-dimensional PC with a square array of air
holes. The high-symmetry points of the square lattice, referenced to the center of an air hole, are
d = (0,0), e = (0,a/2), and f = (a/2,a/2). (b) Real space. |a1| = |a2| = a. (c) Reciprocal space.
|G1| = |G2| = 2π/a, |kX | = π/a, |kM| = √

2π/a.

The high symmetry points on the boundary or within the IBZ are (see fig. 1.9(c)): the four X

points ({±(1,0)kX , ±(0,1)kX}), the four M points ((±√
2/2,±√

2/2)kM), and the Γ point=(0,0).

The first-order band edges of the square lattice (see fig. 1.9(a)) are defined from above by the X

point (conduction band edge) and below by the M point (valence band edge). The group of the wave

vector at the X , M, and Γ points is C2v, C4v, and C4v, respectively. Character tables [92] for the two

groups are given in table 1.2.

1.1.3.1 X-point

A symmetry basis for the modes of the square lattice PC at the X-point can be found by applying

the symmetry operations of the group of the wave vector (GokX = C2v) to the seed vector HkX1
. In

this case, the basis is simply (HkX1
,H−kX1

). Projecting this symmetry basis onto the IRREP spaces

of C2v yields:

HX1
A2

= ẑcos(kX1 · r)
HX1

B1
= ẑsin(kX1 · r),

(1.26)

where A2 and B1 label the IRREP spaces of C2v,σv (see table 1.2). With the origin at the center of an
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Table 1.2: Point group character tables for the square lattice.

C4v E C2 2C4 2σv 2σd

A′′
1 1 1 1 1 1

A′′
2 1 1 1 −1 −1

B′′
1 1 1 −1 1 −1

B′′
2 1 1 −1 −1 1

E 2 −2 0 0 0

SM 4 0 0 0 −2

Sd,d1 2 −2 0 0 0

S f ,d1 2 2 0 −2 0

C2v,σd E C2 σx′(σd1) σy′(σd2)

A′
1 1 1 1 1

A′
2 1 1 −1 −1

B′
1 1 −1 −1 1

B′
2 1 −1 1 −1

C2v,σv E C2 σx(σv1) σy(σv2)

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 −1 1

B2 1 −1 1 −1

SX1 2 0 0 −2

Se,d1 2 0 0 −2
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vX1 vX2

cX1 cX2

Figure 1.10: Magnetic field (amplitude)
patterns of the valence band (top) and
conduction band (bottom) modes of the
square lattice at the X-points of the IBZ,
generated by the symmetry basis VBX

d
and CBX

d .

air hole of the lattice (point d of fig. 1.9), HX1
A2

corresponds to the “valence” band mode and HX1
B1

to

the “conduction” band mode.

In order to fully define the modes at the X-point all modes of the �k must be included. The

result is the following set of degenerate valence band modes,

VBX
d =

⎛⎜⎝vX1

vX2

⎞⎟⎠ = ẑ

⎛⎜⎝cos(kX1 · rd)

cos(kX2 · rd)

⎞⎟⎠ , (1.27)

and degenerate conduction band modes,

CBX
d =

⎛⎜⎝cX1

cX2

⎞⎟⎠ = ẑ

⎛⎜⎝sin(kX1 · rd)

sin(kX2 · rd)

⎞⎟⎠ . (1.28)

The magnetic field amplitude patterns of the approximate valence and conduction band modes of

the square lattice at the X-points of the IBZ are given in fig. 1.10.
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1.1.3.2 M-point

A similar procedure may be performed in order to determine approximate forms for the TE-like

valence and conduction band modes at the M-point of the IBZ. The symmetry basis, SM, in this case

includes all the M-points of the IBZ, SM = (HkM1
,HkM2

,H−kM1
,H−kM2

). As determined from its

character under C4v (table 1.2), SM = E ⊕A′′
2 ⊕B′′

1. The doubly degenerate IRREP E must represent

a higher energy level band as the conduction and valence band edges are non-degenerate at the

M-point as shown in fig. 1.9(a). Using only the A′′
2 and B′′

1 IRREPs, an approximate form for the

valence band edge and conduction band edge modes at the M-point are calculated by projecting

the symmetry basis onto these IRREP spaces. With the origin centered at point d, the valence and

conduction band edge modes are:

VBM
d =

(
vM

)
= ẑ

(
cos(kM1 · rd)+ cos(kM2 · rd)

)
(1.29)

CBM
d =

(
c1M

)
= ẑ

(
cos(kM1 · rd)− cos(kM2 · rd)

)
. (1.30)

Approximate modes for the degenerate higher frequency conduction bands represented by the

IRREP E are, in one particular basis,

CBM,2
d =

⎛⎜⎝c2M

c3M

⎞⎟⎠ = ẑ

⎛⎜⎝sin(kM1 · rd)− sin(kM2 · rd)

sin(kM1 · rd)+ sin(kM2 · rd)

⎞⎟⎠ . (1.31)

These higher frequency bands will be unimportant in our present analysis where we focus on the

band edge modes defining the first order bandgap. The magnetic field amplitude patterns of the

valence and conduction band modes at the M-point of the IBZ of the square lattice are given in fig.

1.11.

In the square lattice there are three different high-symmetry points around which one may center

a defect. These points are labeled d, e, and f in fig. 1.9. Points d and f maintain the C4v point group

of the square lattice, and point e has a lowered symmetry given by the point group C2v,σv . As was

done for the hexagonal lattice, Bloch mode symmetry bases written with their origin at points d, e,
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Figure 1.11: Magnetic field (amplitude) patterns of the valence and conduction band modes of the
square lattice at the M-points of the IBZ generated by the symmetry analysis (VBM

d and CBM
d ).

or f will be indexed as such. Coordinates centered about points d, e, and f of the lattice are also

labeled as rd , re, and r f , respectively.

1.1.3.3 Conduction band donor modes

For the square PC lattice the minimum in the conduction band occurs at the X-point (fig. 1.9(a)).

The representations describing how the CBX
d , CBX

e , and CBX
f symmetry bases transform under the

appropriate point group are given by Sd,d1, Se,d1, and S f ,d1, respectively. From their characters in

table 1.2 we find that Sd,d1 = E, Se,d1 = A2⊕B2, and S f ,d1 = A′′
2 ⊕B′′

2. Projecting the symmetry

bases onto the different IRREPs gives the following conduction band donor modes:

Hd,d1
E,1 = ẑ

(
sin(kX1 · rd)

)
Hd,d1

E,2 = ẑ

(
sin(kX2 · rd)

)
,

(1.32)

centered about point d,

He,d1
A2 = ẑ

(
cos(kX1 · re)

)
He,d1

B2 = ẑ

(
sin(kX2 · re)

)
,

(1.33)

centered about point e, and
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H f ,d1
A′′

2
= ẑ

(
cos(kX1 · r f )+ cos(kX2 · r f )

)
H f ,d1

B′′
2

= ẑ

(
cos(kX1 · r f )− cos(kX2 · r f )

)
,

(1.34)

centered about point f .

For the points d and f , defects may be formed with lower symmetry than the C4v symmetry

of the square lattice. We may use the compatibility relations between the IRREPs of the full and

reduced symmetry groups to determine the new mode structure. For a defect of C2v symmetry with

mirror planes along the x̂ and ŷ directions of fig. 1.9(a) (C2v,σv) we have the following reduction:

C4v →C2v,σv

Hd,d1
E,1 → Hd,d1

B1
(x-dipole)

Hd,d1
E,2 → Hd,d1

B2
(y-dipole)

H f ,d1
A′′

2
→ H f ,d1,1

A2

H f ,d1
B′′

2
→ H f ,d1,2

A2
.

(1.35)

If instead, the defect at points d and f contain the mirror planes σd , the symmetry is C2v,σd and the

compatibility relations give a mode decomposition:

C4v →C2v,σd

Hd,d1
E,1 +Hd,d1

E,2 → Hd,d1
B′

1
(x′-dipole)

Hd,d1
E,1 −Hd,d1

E,2 → Hd,d1
B′

2
(y′-dipole)

H f ,d1
A′′

2
→ H f ,d1

A′
2

H f ,d1
B′′

2
→ H f ,d1

A′
1

.

(1.36)

Magnetic field patterns of the different localized donor-type defect modes formed about point d, e,

and f of the square lattice are given in fig. 1.12, where we have chosen to decompose the fields

according to C2v,σv .
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Figure 1.12: Magnetic field amplitude of the localized donor modes centered about points d, e, and
f of the square lattice.
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1.1.3.4 Valence band acceptor modes

For the square lattice the maximum of the valence band occurs at the M-point (fig. 1.9(a)). For the

square lattice the valence band edge modes at the M-point consist of a single non-degenerate mode.

This can be traced back to the fact that the M-point in the square lattice is highly symmetric, and the

group of the wave vector mixes all four of the M-points on the IBZ boundary. The symmetries and

fundamental momentum components of the possible acceptor modes formed from the M-point band

edge modes (the approximate defect modes) are then trivially given by the single M-point valence

band edge mode.

For the high-symmetry points d and f of the square lattice, assuming that the defect is symmetric

enough so as to maintain the C4v symmetry of the square lattice, the single acceptor mode is

Hd,a1
A′′

2
= ẑ

(
cos(kM1 · rd)+ cos(kM2 · rd)

)
, (1.37)

about point d, and

H f ,a1
B′′

1
= ẑ

(
cos(kM1 · r f )− cos(kM2 · r f )

)
, (1.38)

about point f . The character of the representation Sa1
e of the M-point valence band edge mode under

symmetry transformations C2v,σv about point e is given in table 1.2. From its character, Sa1
e = B1,

the approximate acceptor mode of a defect centered about point e is

He,a1
B1

= ẑ

(
sin(kM1 · re)− sin(kM2 · re)

)
. (1.39)

For defects of reduced symmetry about points d and f we have the following compatibility

relations:

C4v →C2v,σv

Hd,a1
A′′

2
→ Hd,a1

A2

H f ,a1
B′′

1
→ H f ,a1

A1
,

and

C4v →C2v,σd

Hd,a1
A′′

2
→ Hd,a1

A′
2

H f ,a1
B′′

1
→ H f ,a1

A′
2

.

(1.40)
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Figure 1.13: Magnetic field amplitude of the acceptor-type modes formed the valence band M-point
modes of the square lattice.

Figure 1.13 shows the magnetic field patterns of the acceptor-type modes formed from the M-point

of the IBZ of the square lattice for defects centered about points d, e, and f . Again, as for the donor

modes, the modes are shown for the C2v,σv symmetry basis.

1.1.4 Comparison with FDTD simulations

In order to establish the effectiveness of the above symmetry analysis of the modes of relatively

localized defects within photonic crystals, we provide results of numerical calculations using the

FDTD method. The FDTD simulation results provide information about the resonant frequency,

radiation pattern, and modal loss of PC defect cavity resonant modes. The cavity studied in this

section has been of particular relevance to the initial work on PC microcavity lasers performed by

Painter et al. [3, 8].

The FDTD calculations (additional details provided in appendix B) were performed on a mesh

with 20 points per lattice spacing. Excitation of the cavity modes was performed by an initial field

(Hz) with a localized Gaussian profile, located in a position of low symmetry so as not to exclude

any possible resonant modes. The even modes of the patterned slab waveguide were selected out by

using an even mirror symmetry (σh = +1) in the middle of the slab waveguide. In order to choose

a consistent mode basis (only important for degenerate modes), as well as to reduce computation

time, a pair of vertical mirror planes (σx, σy) were used to filter out cavity modes according to their

projection on the IRREPs of C2v. Each cavity mode is thus labeled by the C2v IRREP by which it

transforms and an index corresponding to its energy (frequency) level.

The simplest cavity geometry that can be readily implemented consists of a single missing hole
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Figure 1.14: (a) S cavity (b) FDTD spectrum of a S-type defect cavity with a = 515 nm, r/a = 0.36
nominally, nslab = 3.4, and d/a = 0.409.

(schematically shown in fig. 1.14(a)). We will refer to this cavity as a symmetric or S cavity as it

retains the full point group symmetry of the hexagonal lattice (C6v). A FDTD-simulated spectrum

of a defect cavity with a central missing hole and a linear grade in r/a (from the center outwards)

of 0.38-0.34 is plotted in fig. 1.14(b) as a dashed line.2 The spectrum is plotted versus normal-

ized frequency, ωn = a/λo, where a is the lattice spacing and λo is the free-space wavelength. A

normalized slab thickness, d/a, of 0.41 was used in the simulated structures to be consistent with

the fabricated devices. To reduce computation time, the number of mirror periods (p) surrounding

the central missing hole was limited to five in the simulations, save for the more extended modes

for which cavities with eight periods were also simulated in order to more accurately estimate the

modal losses present in the fabricated devices (see table 1.3).

In fig. 1.14, there appear to be two distinct resonance peaks within the guided mode bandgap

of the TE-like modes. Performing a mode filter [7] using the C2v mirror planes, we find that each

resonance peak contains two different modes, yielding a total of four different localized modes

whose magnetic field patterns within the mirror symmetry plane of the slab are shown in table 1.3.

The two resonant modes (accidentally degenerate) associated with the peak near the valence band

edge correspond to shallow acceptor (SA) modes which transform as the A′′
2 and B′′

2 IRREPs of

C6v,3 and have the same dominant in-plane Fourier components as Ha1
A′′

2
and Ha1

B′′
2

of the symmetry

analysis in section 1.1.2. The addition of these SA modes is a result of the linear grading in hole

2As a result of non-idealities in the fabrication process [95], the air holes near the center of the cavity are larger than
those at the perimeter in the fabricated devices. A linear grading of the hole radius of 10% is quite common.

3Careful inspection of the FDTD generated magnetic field plot for these two modes shows that the mode patterns
appear to have lower symmetry than that quoted in the text. This is a consequence of the way in which the modes were
simulated, using vertical mirror planes to reduce the computation domain by a factor of four. Due to discretization of the
computation grid, the mirror symmetry distorts the structure slightly, resulting in an asymmetry in the field pattern.
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Table 1.3: Characteristics and magnetic field amplitude patterns of the resonant modes in a sym-
metric cavity with r/a linearly graded from 0.38 to 0.34 (d/a = 0.409, nslab = 3.4, p = 5).

A2 (−1,−1) B1 (−1,+1) B2 (+1,−1)

S-A20 S-B10 S-B20 S-B21

Label Grp. (σx,σy) ωn

S-A20 (Ha1
A′′

2
) SA (−,−) 0.320

S-B10 (Hd1
E1,1) DD dipole (x) 0.361

S-B20 (Ha1
B′′

2
) SA (+,−) 0.322

S-B21 (Hd1
E1,2) DD dipole (y) 0.360

radius, which forms a potential well for acceptor type modes. Of particular interest are the strongly

localized pair of degenerate deep donor (DD) dipole-like modes near the center of the bandgap.

From the plots of the electric field intensity of the x and y dipole modes shown in fig. 1.15(a)-(b),

we see that the fundamental k-components of the x and y dipole-like modes correspond nicely with

the approximate field patterns predicted by the symmetry analysis (fig. 1.15(c)-(d)). Even the subtle

difference in the in-plane radiation pattern of the x and y dipole modes as calculated numerically

using FDTD is contained within the symmetry analysis as can be seen by the lack of a third standing

wave component in the y-dipole (Hd1
E1,2) mode.

A list of properties of the two SA and two DD localized defect modes is given in table 1.3. The

numerically calculated losses of each cavity mode are represented by effective in-plane and out-of-

plane quality factors [7], Q|| and Q⊥, respectively. A detailed analysis of quality factors within PC

cavities will be discussed in detail in the following chapter.
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(a) In-plane x-dipole mode radiation
pattern.

(b) In-plane y-dipole mode radiation
pattern.

(c) Symmetry analysis x-dipole
mode.

(d) Symmetry analysis y-dipole
mode.

(e) x-dipole vector plot. (f) y-dipole vector plot.

Figure 1.15: In-plane radiation losses (electric field amplitude saturated) of the x and y dipole mode
(degenerate case) are shown in (a) and (b), respectively, as calculated by FDTD simulations. The
electric field amplitude of the corresponding defect modes generated by the symmetry analysis are
shown in (c) and (d) for comparison. In (e) and (f) the FDTD-generated vector plot of the electric
field of the (x,y)-dipole modes in the middle of the slab waveguide are shown.
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1.2 Wannier-like approach for describing localized modes in photonic

crystals

1.2.1 Introduction

The work described in this section is largely based on ref. [25]. In analogy to the study of localized

impurity states of electrons in periodic crystals [96, 97, 98, 99], we develop a Wannier-like wave

equation to describe the envelope of resonant modes of localized perturbations within periodic di-

electric structures. This has been done previously, in a more restrictive setting by Johnson et al.

[100], and more recently in a general way by Charbonneau-Lefort et al. [101] and Istrate et al.

[102] in the study of photonic crystal heterostructures. In these works, a wave equation for local-

ized modes of non-uniform photonic crystals using an envelope approximation has been developed;

however, in each case the envelope equation was formulated as a generalized Hermitian eigenvalue

equation in terms of the electric field, and more importantly, only localized modes formed from

non-degenerate satellite extrema were considered. In the analysis presented here we (i) consider the

magnetic field and (ii) incorporate the mixing amongst the degenerate peaks or valleys of the orbit

of k in the bandstructure, resulting in a set of coupled Wannier-like equations describing a multi-

envelope system. This allows us to more easily apply the envelope formalism to resonant cavity

modes of PC slab waveguides, which in a two- or three-dimensional crystal mix Bloch modes near

the degenerate satellite extrema of the orbit of k. We also focus on the magnetic field as it can be

approximately treated as a scalar for TE-like polarization modes of PC slabs4. From the shape and

symmetry of the envelope of a localized resonant mode, and its relation to the underlying photonic

bandstructure, one may better design features of planar 2D PC resonant cavities, such as in-plane

and vertical emission, resonator-waveguide coupling, and the quality factor of resonant modes. In

addition, the Wannier-like equation for localized defect modes more clearly and rigorously relates

the curvature of the bandstructure to the formation of donor and acceptor modes for different types

of local perturbations of a dielectric lattice.

This section is organized as follows. In section 1.2.2 we derive a set of coupled Wannier-like

equations for the envelope functions of localized TE-like states in planar 2D PC structures, where as

predicted by the Wannier theorem, the underlying bandstructure of the periodic dielectric structure

gives rise to an effective mass tensor. We also derive an approximate form for the effective potential

4It should be noted that the envelope is always a scalar field, regardless of the vector nature of the electric or magnetic
field.
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in the Wannier envelope equation in terms of the local perturbation to the dielectric lattice. In

section 1.2.3 we use the approximate symmetry basis for the TE-like Bloch modes at the valence and

conduction band edge of the first-order bandgap in a 2D photonic crystal consisting of a hexagonal

array of air holes derived in the previous section to obtain approximate relations for the effective

mass tensor of the Wannier equation In conjunction with the symmetry analysis, which determines

the mixing amongst the degenerate satellite extrema, we find an approximate form for the localized

donor and acceptor modes of a hexagonal lattice with a parabolically graded filling fraction. For

comparison, FDTD calculations of the acceptor and donor modes of such a defect cavity are also

presented.

1.2.2 Wannier theorem for photons in periodic dielectric structures

In studying the localized electronic states associated with impurities within a crystalline material, it

is often helpful to transform Schrödinger’s equation into Fourier space, simplify the set of coupled

equations through the limited Fourier decomposition of the perturbing potential, and then transform

back to real-space coordinates, where a wave equation for the envelope of the localized states is

generated. The Wannier theorem [103] captures the essence of this procedure in using the under-

lying energy-(crystal)momentum dispersion generated by the periodic Coulombic potential of the

crystal in a spatially coarse-grained theory of electron dynamics. One application of the Wannier

theorem is in the calculation of bound electronic states of crystal impurities [96, 99, 97, 98, 104].

The basic form of the Wannier equation for the envelope of impurity states is

((
E −En(�−1p̂)

)
+ΔV (r)

)
Γ(r) = 0, (1.41)

where En(�−1p̂) is the energy-(crystal)momentum dispersion relation of the nth energy band with

wavevector k replaced by the canonical momentum operator p̂ = −i�∇, ΔV (r) is the impurity

potential, and Γ(r) is the envelope function describing the localized electronic state.

We would like to find a similar Wannier-like equation for the envelope of localized photon states

in periodic dielectric lattices. Of particular interest are the localized resonant modes of planar 2D

PCs formed in optically thin dielectric slabs (see fig. 1.1). The fundamental TE-like even modes and

TM-like odd modes of a symmetric 2D patterned dielectric slab waveguide can be approximated by

scalar fields. In what follows we shall focus on the TE-like modes (as discussed in ref. [25], a
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similar theory may also be derived for the TM-like modes of the PC slab).

We begin with Maxwell’s equations in a (lossless) dielectric medium free of currents and free

charge,

∇×E = −iωµ0H,

∇×H = +iωn2ε0E,

∇∇∇ · (n2ε0E) = 0,

∇ ·µ0H = 0,

(1.42)

where E and H are the harmonic complex electric and magnetic fields, respectively, with time

dependence e+iωt (the physical fields are found by taking the real part of the complex fields). The

velocity of light in vacuum is represented by c, and we have assumed that the material is non-

magnetic (µ = µo). We also assume here that the dielectric function does not depend on spatial or

temporal frequency, ε(ω,k,r) = εon2(r). From the above Maxwell relations, a wave equation for

both the electric and magnetic fields can be generated:

η(r)
(

∇×∇×E
)

=
(ω

c

)2
E, (1.43)

∇×
(

η(r)∇×H
)

=
(ω

c

)2
H, (1.44)

where η(r) ≡ 1/n2(r).

As we have discussed in the previous section, we separate modes into TE and TM polarizations,

keeping in mind that this separation is only truly valid for purely 2D structures (for slab waveguides,

the modes are only approximately TE and TM in nature). For TE modes the magnetic field is

described by a scalar field, H = ẑHd (where the subscript d stands for “defect mode”). As we have

assumed that the refractive index does not vary (or the variation can be approximately neglected) in

the ẑ-direction, ∂zη(r) = 0. The Hermitian eigenvalue equation which results from equation (1.44)

and ∇ ·H = 0 is (in the 2D case we only consider variations with respect to the in-plane coordinates,

∇ ≡ ∇∇∇⊥),
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L̂TE
H Hd = ΛdHd, (1.45)

with the TE eigenoperator given by,

L̂TE
H = −(∇η) ·∇−η∇2. (1.46)

The form of TE eigenoperator is easily obtained from equation (1.44) by using standard vector

calculus identities as found in ref. [93], for example. The eigenvalue, Λd, is related to the square

of the frequency of the mode, Λd = (ωd/c)2. η = ηo + Δη, where ηo is given by the inverse of the

square of the refractive index of the unperturbed photonic crystal, 1/n2
2D(r), and Δη represents the

localized perturbation to 1/n2
2D(r). The eigenoperator L̂H (we drop the TE superscript from here

on) can be separated into an unperturbed photonic crystal part, L̂H,o = −∇(ηo) ·∇−ηo∇2, and a

perturbation part due to the defect, L̂ ′
H = −∇(Δη) ·∇−Δη∇2.

The (2D approximate) modes of the perfect crystal are eigenmodes of L̂H,o,

L̂H,oHl,k = Λl,kHl,k, (1.47)

where l labels the band index and k labels the in-plane crystal momentum. As the Hl,k are Bloch

waves they can be written as

Hl,k =
1
L

hl,k(r)eik·r, (1.48)

with L2 equal to the area of the 2D photonic crystal and the set of periodic functions, hl,k(r), at

crystal momentum k, satisfying their own set of orthogonality relations (normalized over the lattice

unit cell v),

〈hl′,k|hl,k〉v ≡ 1
v

∫
v

d2rh∗l′,khl,k = δl′,l. (1.49)
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In forming a defect state by perturbing the lattice in a localized region of space, the Bloch modes

in proximity to the degenerate satellite extrema of a band edge, the {ki; i = 1,2, ...,M} points of the

�k (from here on, the �k refers implicitly to the orbit of this band edge), are most strongly coupled

together [98]:

Hd(r) = ∑
i

ci ∑
k

Γ̃i(k−ki)
1
L

hl,keik·r, (1.50)

The Γ̃i are a set of Fourier space envelope functions, which in the spirit of the effective mass theory

have amplitudes localized around k = ki. Note that throughout this analysis the band of interest at

the band edge is considered to be non-degenerate and we neglect inter-band mixing [98].

Assuming that the hl,k do not vary significantly (using a similar argument as in ref. [97]) over

the range of each Fourier space envelope function,

Hd(r) ≈ ∑
i

ci
1
L

hl,ki e
iki·r

(
∑
Δk

Γ̃i(Δk)eiΔk·r
)

, (1.51)

where Δk ≡ k−ki. Writing the envelope functions in real space,

Γi(r) = ∑
Δk

Γ̃i(Δk)eiΔk·r, (1.52)

allows us to rewrite equation (1.51) as,

Hd(r) ≈ ∑
i

ci
1
L

hl,ki e
iki·rΓi(r), (1.53)

It is in this way that the real space envelope of localized defect modes can be interpreted in the

Fourier domain [97] as a result of the intra-band mixing of the unperturbed Bloch modes of the

crystal.

Returning to equation (1.45), we now proceed to find an eigenvalue equation for the envelope

functions. Multiplying both sides of equation (1.45) by Hl′,k′ , where k′ is chosen in a neighborhood

of ki, and integrating over the in-plane spatial coordinates gives,
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∑
j

c j ∑
k

Γ̃ j(k−k j)〈Hl′,k′ |(Λd −Λl,k − L̂ ′
H)Hl,k〉 = 0. (1.54)

We rewrite r as Ri + r, where Ri gives the center of the ith unit cell and r is now confined to the

interior of the unit cell. Using the orthonormality of the Bloch waves and the normalization of their

periodic parts described in equation (1.49),

〈Hl′,k′ |(Λd −Λl,k)Hl,k〉 = (Λd −Λl,k)
1
L2

N

∑
i=1

ei(k−k′)·Ri

∫
v
d2r h∗l′,k′hl,kei(k−k′)·r

= (Λd −Λl′,k′)δl′,lδk′,k.

(1.55)

Note that a reciprocal lattice vector was not included in δk′,k as both k′ and k (through the localized

nature of the Γ̃i) are assumed to lie within a neighborhood of one of the wavevectors comprising the

�k, which by definition are not linked by a reciprocal lattice vector. Equation (1.54) then becomes

ci(Λd −Λl,k′)Γ̃i(k′ −ki)

−∑
j

c j ∑
k
〈Hl′,k′ |L̂ ′

HHl,k〉Γ̃ j(k−k j) = 0.
(1.56)

Fourier expanding the defect perturbation in reciprocal space,

Δη(r) = ∑
k′′

Δ̃ηk′′eik′′·r, (1.57)

we can write the mode-mixing term 〈Hl′,k′ |L̂ ′
HHl,k〉 in equation (1.56) as:

〈Hl′,k′ |L̂ ′
HHl,k〉 = −∑

k′′

(
N

∑
i=1

ei(k+k′′−k′)·Ri
Δ̃ηk′′

L2

∫
v
d2r ei(k+k′′−k′)·rh∗l′,k′

(
ik′′ · (∇+ ik)

+∇2 +2ik ·∇−|k|2
)

hl,k

)
= ∑

G
∑
k′′

(
Δ̃ηk′′Kl′,l(k′,k,G)+ Δ̃ηk′′(ik′′) ·Ll′,l(k′,k,G)

)
δk′−k′′+G,k,

(1.58)
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where the G are reciprocal lattice vectors, and we have defined scalar and vector coupling matrix

elements as

Kl′,l(k′,k,G) = −1
v

∫
v
d2r eiG·rh∗l′,k′(∇2 +2ik ·∇−|k|2)hl,k

≡−〈hl′,k′ |eiG·r(∇2 +2ik ·∇−|k|2)|hl,k〉v,

(1.59)

and

Ll′,l(k′,k,G) = −1
v

∫
v
d2r eiG·rh∗l′,k′(∇+ ik)hl,k

≡−〈hl′,k′ |eiG·r(∇+ ik)|hl,k〉v.

(1.60)

Substituting equation (1.58) into equation (1.56) while keeping only terms that mix states within

the lth band results in the following Fourier space representation of the magnetic field master equa-

tion:

ci(Λd −Λl,k′)Γ̃i(k′ −ki)−∑
G

∑
j

c j ∑
k′′

((
Δ̃ηk′′Kl,l(k′,k′ −k′′ +G,G)

+ Δ̃ηk′′(ik′′) ·Ll,l(k′,k′ −k′′ +G,G)
)

Γ̃ j
(
(k′ −k′′ +G)−k j

))
= 0.

(1.61)

For defect perturbations which are localized in k-space as well as in real-space, the strongest

mixing terms will be those with k′′ nearest the origin. As such, a further simplification can be

made by including only those reciprocal lattice vectors G which minimize the magnitude of k′′ in

coupling the different neighborhoods of the �k (satellite extrema). The local mixing of states within

the neighborhood of each ki will thus be dominated by the Fourier components of Δ̃η about the

origin with G = 0. Similarly, the mixing between neighborhoods of ki and k j, where i �= j, will be

dominated by a single G which minimizes the magnitude of the vector G− (k j −ki). Writing this

reciprocal lattice vector as G j,i and only including the dominant coupling terms in equation (1.61)

collapses the sum over G and yields,
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ci

(
(Λd −Λl,k′)Γ̃i(k′ −ki)−∑

k′′

(
Δ̃ηk′′Kl,l(ki,ki,0)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,ki,0)

)
Γ̃i
(
(k′ −k′′)−ki

))−∑
i�= j

c j ∑
k′′

((
Δ̃ηk′′Kl,l(ki,k j,G j,i)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,k j,G j,i)

)
Γ̃ j
(
(k′ − (k′′ −G j,i))−k j

))
= 0,

(1.62)

where we have neglected the variation of Kl,l and Ll,l within the local neighborhoods of the ki ∈ �k.

Implicit in the derivation of equation (1.62) is that the Γ̃i are localized around the ki in reciprocal

space. In order to make this explicit (which will be necessary when transforming back to real-space

coordinates) we expand Λl,k′ in the vicinity of each ki,

Λl,k′ ≈ (
Λl,o +Λ′

l,i(Δk)
)
+O(Δk3), (1.63)

where Λl,o is the top(bottom) of the band edge, Δk = k′ − ki, and Λ′
l,i only contains terms up to

second-order in elements of Δk [98]. In the case of those ki located at an extrema of a given

(non-degenerate) band the resulting dispersion relation may be written in the form, Λ′
l,i(Δk) = Δk ·

M−1
l,∗ ·Δk, where the matrix Ml,∗ is an effective mass tensor defined by the curvature of the band.

Substituting equation (1.63) into equation (1.62) gives,

ci

((
ΔΛd −Λ′

l,i(Δk)
)
Γ̃i(Δk)−∑

k′′

(
Δ̃ηk′′Kl,l(ki,ki,0)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,ki,0)

)
Γ̃i(Δk−k′′)

)
−∑

i�= j

c j ∑
k′′

((
Δ̃ηk′′Kl,l(ki,k j,G j,i)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,k j,G j,i)

)
Γ̃ j
(
(Δk+G j,i −Δk j,i)−k′′)) = 0,

(1.64)

where ΔΛd = Λd−Λl,o is the eigenvalue referenced to the top(bottom) of the band edge, and Δk j,i ≡
k j −ki.

Equation (1.64) is the Fourier space representation of an approximate master equation for the

localized magnetic field envelope functions of defect states. Transforming back to real space results

in a set of coupled Wannier-like equations,
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ci

((
ΔΛd −Λ′

l,i(�
−1p̂)

)−Δη′
i,i(r)

)
Γi(r)−∑

i�= j

c j

(
e−i(G j,i−Δk j,i)·rΔη′

j,i(r)
)

Γ j(r) = 0, (1.65)

Δη′
j,i(r) = Δη(r)Kl,l(ki,k j,G j,i)+∇(Δη(r)) ·Ll,l(ki,k j,G j,i), (1.66)

where p̂ = −i�∇ as in quantum mechanics, and Δη′
j,i(r) is an effective perturbation potential.

Assuming that the amplitude of the relatively large Fourier components of Δη(r) associated

with mixing of states between neighborhoods of different satellite points of the �k are much smaller

than the amplitude of the small Fourier components which mix states within a given neighborhood

of a point of the �k, we can treat the inter-ki mixing as a perturbation to the envelope functions

formed from the local k-space mixing [104]. This allows us to write an independent Wannier-like

equation for each of the Γi(r) envelope functions,

((
ΔΛd −Λ′

l,i(�
−1p̂)

)−Δη′
i,i(r)

)
Γi(r) = 0. (1.67)

Of most importance for the types of resonant cavities studied here are the ground state solutions

to equation (1.67). This is due to the relatively localized nature of the defect regions. For de-

localized defect regions extending over many lattice periods a more extensive set of envelope func-

tions, including higher order functions with added nodes and antinodes must be included. Choice

of such a set of envelope functions will depend on the geometry of the boundary of the defect [105].

For the present work then, we take Γi(r) equal to the ground state envelope, Γi,o(r).

As the ground state of a system is in general invariant under the symmetries of the Hamiltonian

of that system [106, 104], the ground state envelope function should transform as the identity of

the point group of the Wannier-like equation given in equation (1.67). The spatial symmetries of

equation (1.67) are those of Λ′
l,i(�

−1p̂) and Δη′
i,i(r). As discussed in ref. [24], it then follows

that the point symmetries of the Wannier-like equation for the ground state envelope functions are

given by G ′ ∩G ′
ki

, where G ′ is the point group of the defect perturbation (independent of the crystal

lattice) and G ′
ki

is the point group isomorphic to the group of the wavevector (of the underlying

Bravais lattice) at the point ki in the IBZ. With this knowledge the coefficients ci of the defect state
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in equation (1.53) can then be determined using symmetry arguments.

1.2.3 Envelope function calculation

We will consider two examples of how the Wannier-like equation of the previous section can be

used to calculate an approximate envelope function for a localized photon state in a hexagonal

lattice photonic crystal. The first example is a localized donor-type mode formed at the band edge

occurring at the X-point of the reciprocal lattice where the bandstructure (fig. 1.2(a)) has a local

minimum and is given by a simple paraboloid in a neighborhood of the X-point. The second example

is that of a localized acceptor-type mode formed from the J-point where the bandstructure has a local

maximum.

1.2.3.1 Donor modes at the X-point

We begin by recalling equations 1.5 and 1.6 of section 1.1.2.1, which give an approximate repre-

sentation for the band edge modes at the X-point of the hexagonal lattice. In particular, we found

VBa
X =

⎛⎜⎜⎜⎜⎝
vX1

vX2

vX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
cos(kX1 · ra)

cos(kX2 · ra)

cos(kX3 · ra)

⎞⎟⎟⎟⎟⎠ , (1.68)

as an approximate form for the X-point valence band modes, and

CBa
X =

⎛⎜⎜⎜⎜⎝
cX1

cX2

cX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
sin(kX1 · ra)

sin(kX2 · ra)

sin(kX3 · ra)

⎞⎟⎟⎟⎟⎠ . (1.69)

as an approximate form for the X-point conduction band modes. Separating the plane wave and

periodic parts of the above Bloch modes allows us to write,
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vXi =
ẑ
2
(1+ e−i2kXi ·ra

)eikXi ·ra
,

cXi =
ẑ
i2

(1− e−i2kXi ·ra
)eikXi ·ra

,

(1.70)

with normalized periodic functions given by

hv,kXi
= (1/

√
2)(1+ e−i2kXi ·ra

),

hc,kXi
= (1/i

√
2)(1− e−i2kXi ·ra

).
(1.71)

We now use the above set of modes to calculate the local dispersion of the conduction band

at the X-point. The Hermitian operator acting on the space of periodic functions at point k in the

reciprocal lattice, for the quasi-2D case studied here, is

L̂H,k = −∇(ηo) · (ik+∇)+ηo(|k|2 −2ik ·∇−∇2), (1.72)

with associated eigenvalue equation given by,

L̂H,khl,k = Λl,khl,k. (1.73)

As in “k · p̂” theory for Bloch electrons in crystalline materials, we expand L̂H,k about point ko,

L̂H,k = L̂H,ko + L̂ ′
H,Δk, (1.74)

with

L̂ ′
H,Δk ≡ ηo|Δk|2 +Δk · (−i∇(ηo)+2ηoko −2iηo∇). (1.75)

Treating L̂ ′
H,Δk as a perturbation to L̂H,ko , and expanding hl,k in terms of the hl,ko ,

5 gives to second

5As discussed in ref. [107], the hl,ko are not complete in the space of lattice periodic functions due to the divergenceless
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order in elements of Δk,

Λl,k∼ko = Λl,ko +Δk · 〈hl,ko |(−i∇(ηo)+2ηoko −2iηo∇)|hl,ko〉v + |Δk|2〈hl,ko |ηo|hl,ko〉v

+ ∑
l′ �=l

|Δk · 〈hl′,ko |(−i∇(ηo)+2ηoko −2iηo∇)|hl,ko〉v|2
(Λl,ko −Λl′,ko)

.
(1.76)

If ko corresponds to an extremal point within the bandstructure, then the linear Δk terms in

equation (1.76) are identically zero. One can check that for the X-point conduction and valence

band modes of equation (1.70), this is indeed the case. Substituting the periodic functions of the

conduction and valence band modes of equation (1.71) into equation (1.76) gives the local X-point

bandstructure of the conduction band as:

Λc,k∼kXi
= Λc,kXi

+ |Δk|2〈hc,kXi
|ηo|hc,kXi

〉v

+
|Δk · 〈hv,kXi

|(−i∇(ηo)+2ηokXi −2iηo∇)|hc,kXi
〉v|2

ΔΛX
,

(1.77)

where ΔΛX ≡ (Λc,kX −Λv,kX ).

Fourier expanding ηo,

ηo = ∑
G

η̃o,GeiG·ra
, (1.78)

allows the bandstructure to be evaluated in terms of the Fourier coefficients of the dielectric PC.

Since ηo is a lattice periodic real function, G are reciprocal lattice vectors and η̃o,G = (η̃o,−G)∗.

With the origin located at point a of the lattice (see fig. 1.2(a)), the hexagonal PC has C6v symmetry.

As a result the Fourier coefficients of the hexagonal lattice are all real (inversion symmetry of the

lattice), and η̃o,2kXi
= η̃o,2kXj

, for all kXi ,kXj ∈ �k. Also, as point a lies within the center of an

air hole, the fundamental Fourier coefficients of the lattice, η̃o,2kXi
, must be positive. Substituting

equation (1.78) into equation (1.77) gives,

nature of the magnetic field. In order to form a complete basis one must include zero frequency unphysical solutions.
As we neglect the contribution of remote bands in our analysis, which the zero frequency solutions certainly are, no
significant additional error is to be expected.
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Λc,k∼kXi
= Λc,kX + |Δk|2

(
η̃o,0 − η̃o,2kX

)
+

4|(Δk ·kXi)|2(η̃o,0)2

ΔΛX
, (1.79)

where the index i has been dropped from kXi in those quantities that have the same value for each

element of the �k.

The bandgap at the X-point, ΔΛX , may also be approximately determined in terms of the Fourier

coefficients η̃o,G. The magnetic field eigenoperator L̂H can be written as,

L̂H = −η̃o,0∇2 − ∑
G�=0

η̃o,GeiG·r(∇2 + iη̃o,GG ·∇)). (1.80)

Treating Δηo = ∑G�=0 η̃o,GeiG·r as a perturbation to the average dielectric η̃o,0, and considering

only the coupling between the forward and backward normalized plane wave states at the X-point,

(|kXi〉, |−kXi〉), results in the following two band magnetic field eigenoperator:

L̂Xi
H =

⎛⎜⎝ η̃o,0|kX |2 −η̃o,2kX |kX |2

−η̃o,2kX |kX |2 η̃o,0|kX |2

⎞⎟⎠ . (1.81)

The eigenvalues of L̂Xi
H are η̃o,0|kX |2±(η̃o,2kX )|kX |2, which gives for the bandgap, ΔΛX = 2(η̃o,2kX )|kX |2.

Choosing a coordinate basis x̂i with x̂i orthogonal to kXi and ŷi parallel to kXi , allows us to write

for the local bandstructure of the conduction band in the vicinity of the Xi-point,

Λc,k∼kXi
= Λc,kX +

Δk2
xi

m∗
c,X ,xi

+
Δk2

yi

m∗
c,X ,yi

, (1.82)

with effective “masses”6 defined as,

6We use the term “mass” here in analogy to solid-state physics where the curvature of the bandstructure is related to
the inverse of an effective electron mass. m∗ as defined here is unitless.



83

1
m∗

c,X ,xi

= η̃o,0

(
1− η̃o,2kX

η̃o,0

)
1

m∗
c,X ,yi

= η̃o,0

(
1− η̃o,2kX

η̃o,0
+

2η̃o,0

η̃o,2kX

)
.

(1.83)

For a PC formed from dielectric materials with real refractive indices greater than that of vacuum,

0 ≤ ηo(r) ≤ 1. Consequently, η̃o,0 ≥ 0 and η̃o,0 ≥ 2η̃o,G for all G. The effective masses for the

conduction band at the X-point are thus both positive.

Evaluating the scalar and vector coupling matrix elements using the Xi-point conduction band

modes of equation (1.71) gives: Kl,l(kXi ,kXi ,0) = |kX |2 and Ll,l(kXi ,kXi ,0) = 0. Substituting these

coupling matrix elements into equation (1.66), the effective Wannier potential is,

Δη′
i,i(r) = |kX |2Δη(r). (1.84)

Lastly, upon substituting the local bandstructure of equation (1.82) and the effective Wannier po-

tential of equation (1.84) into equation (1.67), we have for the Wannier equation of the conduction

band envelope at the ith X-point:

(
(Λd −Λc,kX )−

( −∇2
xi

m∗
c,X ,xi

+
−∇2

yi

m∗
c,X ,yi

+ |kX |2Δη(r)
))

Γc,kXi
(r) = 0. (1.85)

We now see from the Wannier-like equation for the conduction band edge at the X-point that as a re-

sult of the positive effective mass coefficients, localized resonant modes will form for perturbations

to the hexagonal lattice in which Δη(r) is locally reduced, that is for which the refractive index is

locally increased.

Here we consider a defect which results in an approximate harmonic perturbation potential. By

appropriately varying the hole radii of a photonic crystal consisting of a hexagonal array of air holes

in a host dielectric material, the inverse of the filling fraction of the hexagonal crystal can be graded

in a roughly parabolic fashion. The filling fraction of the lattice, f , as a function of air hole radius

is,
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f = 1− 2π√
3

( r
a

)2
, (1.86)

where r is the hole radius and a is the nearest neighbor distance between holes of the hexagonal

lattice. For a host dielectric material of refractive index no, the average dielectric constant of the

patterned crystal is ε̄ = f (no)2. The slowly varying envelope of ηo (ηo), neglecting rapid variations

on the scale of the lattice spacing, is proportional to 1/ f , ηo = (no)−2/ f . For an approximate

harmonic potential then, the filling fraction of the lattice should vary as,

1
f (ρ)

=
1
fo

+ k
(ρ

a

)2
, (1.87)

with ρ representing the radial distance from the center of the defect, fo the filling fraction given by

the air hole radius at the center of the defect, and k the lattice grading coefficient. The filling fraction

as used here is a local approximation, based upon the local hole radius, of the true filling fraction of

a crystal lattice. The resulting slowly varying envelope of the effective Wannier potential is,

Δη′
i,i(ρ) = k

(ρ
a

)2
( |kX |

no

)2

. (1.88)

The ground state solution to equation (1.85) with the harmonic effective potential of equation

(1.88) is the 2D Gaussian,

Γc,kXi
(r) = exp

[
−(x2

i /κ2 + y2
i /γ2)], (1.89)

with decay constants,

1
κ2 =

1
2

(
k̄m∗

c,X ,xi

) 1
2 ,

1
γ2 =

1
2

(
k̄m∗

c,X ,yi

) 1
2 ,

(1.90)

where k̄ = k(|kX |/ano)2.
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(a) (b)

Figure 1.16: (a) Graded hexagonal lattice donor-type cavity, (b) graded hexagonal lattice acceptor-
type cavity (parameters are given in table 1.4).

Table 1.4: Hexagonal PC parameters for the donor- and acceptor-type defect cavities.

cavity no
(

r
a

)
o fo k k̄/a2

(
r
a

)
e

η̃o,2kX
η̃o,0

donor 2.65 0.25 0.77 0.01 0.019 0.4 0.294

acc. 2.65 0.35 0.56 −0.006 0.015 0.20 0.23

From equation (1.86), in order to obtain the parabolic grade in filling fraction, the normalized

hole radius of the defect cavity must vary with ρ as,

( r
a

)2
=

√
3

2π

(
1− fo

1
1+ fok(ρ/a)2

)
. (1.91)

With grading parameters given in table 1.4, the donor-type defect cavity we consider here is plotted

in fig. 1.16(a). The calculated parameters of the approximate envelope function for the donor modes

of this defect cavity are given in table 1.5.

The point group symmetry of the donor-type defect cavity of fig. 1.16(a) centered about point

Table 1.5: Donor mode (X-point) ground state Wannier envelope parameters.

m∗
c,X ,xi

m∗
c,X ,yi

κ
a

γ
a

7.7 0.72 2.3 4.1
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Figure 1.17: Magnetic field (ẑ-component) plot of the donor modes of the graded hexagonal donor-
type cavity: (a) symmetry analysis Ha,d1

E1,1
(x-dipole) mode, (b) symmetry analysis Ha,d1

E1,2
(y-dipole)

mode, (c) FDTD simulated x-dipole mode, and (d) FDTD simulated y-dipole mode. Comparison
of: (e) Wannier and (g) FDTD envelope functions for Ha,d1

E1,1
(x-dipole) donor mode. (f) and (h) show

line scans of the FDTD filtered envelope (solid line) along the x̂- and ŷ-directions, respectively. The
Gaussian fit to the FDTD envelope along these principal directions are also plotted (dashed line).

a of the hexagonal lattice is that of the underlying hexagonal lattice, C6v. A set of basis functions

for the localized conduction band donor modes was given in Equation 1.16, and has been rewritten

here to include the conduction band envelope functions Γc,kXi
:

Ha,d1
B′′

1
= |cX1〉Γc,kX1

−|cX2〉Γc,kX2
+ |cX3〉Γc,kX3

,

Ha,d1
E1,1

= 2|cX1〉Γc,kX1
+ |cX2〉Γc,kX2

−|cX3〉Γc,kX3
,

Ha,d1
E1,2

= |cX2〉Γc,kX2
+ |cX3〉Γc,kX3

,

(1.92)

In fig. 1.17(a)-(b) the magnetic field intensity is plotted for the dipole-like modes of the E1 IRREP

with envelope functions given by the Γc,kXi
of equation (1.89). The calculated decay parameters for

the Gaussian Γc,kXi
are tabulated in table 1.5. Note that the coefficients of the expansion for each

donor mode (ci) are determined solely by the transformation properties of the basis CBa
X ; the enve-

lope functions transform effectively as the identity and do not modify the expansion coefficients.

For comparison, 2D FDTD simulations were performed on the donor-type cavity of fig. 1.16(a).

Plots of the FDTD calculated magnetic field patterns (and their Fourier transforms) of the two modes

most deep within the first order bandgap are given in fig. 1.17(c)-(d). The modes transform as the
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Table 1.6: FDTD calculated mode envelope parameters.

mode κ
a (κx

a ) γ
a (κy

a )

Ha,d1
E1,1

1.77 3.02

Ha,a1
A2

4.65 4.52

Ha,a1
B2

5.29 4.48

B′′
1 and B′′

2 IRREPs of the C2v point group (the FDTD simulation was performed with mirror plane

symmetries to reduce the size of the computation, thus projecting the modes onto the C2v IRREPs),

equivalent to the x̂ and ŷ basis of the C6v IRREP E1 (the basis chosen for modes Ha,d1
E1,1

and Ha,d1
E1,2

). The

FDTD generated field patterns show good correspondence with the field patterns of the approximate

symmetry analysis (fig. 1.17(a)-(b)).

A more quantitative estimate of the envelope of the FDTD-generated localized modes can be

obtained by considering the form of the approximate symmetry analysis modes of equation (1.92).

Multiplying a donor mode which contains a dominant Fourier component at kXi by cos(kXi · ra)

will produce a term proportional to Γc,kXi
, thus shifting the envelope to the origin in Fourier space.

Applying a low-pass spatial filter to the product of the mode and the cosine function will then leave

only the envelope corresponding to Γc,kXi
. In fig. 1.17(f)-(h) we plot the result of such a procedure

applied to the FDTD calculated Ha,d1
E1,1

(x-dipole) mode (fig. 1.17(e) shows a plot of the envelope

calculated using the Wannier-like equation). The FDTD generated envelope is oriented parallel to

kX1 , and as can be seen from fig. 1.17(f),(h) is Gaussian in nature. The fit decay parameters along

x̂i and ŷi directions are given in table 1.6, and although smaller than estimated (table 1.5), they are

in nearly the precise ratio predicted by the Wannier equation

1.2.3.2 Acceptor modes at the J-point

As mentioned above, the valence band edge of the fundamental bandgap for TE-like modes occurs

at the J-point of the reciprocal lattice for the hexagonal PC. From section 1.1.2.2, the approximate

form for the band edge states at the J-point is:

VBa
J =

⎛⎝vJ1

vJ2

⎞⎠ = ẑ

⎛⎝eikJ1 ·ra
+ eikJ3 ·ra

+ eikJ5 ·ra

eikJ2 ·ra
+ eikJ4 ·ra

+ eikJ6 ·ra

⎞⎠ , (1.93)
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for valence band modes, and

CBa
J =

⎛⎜⎜⎜⎜⎜⎜⎝
c1J1

c2J1

c1J2

c2J2

⎞⎟⎟⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎜⎜⎝
e−ikJ1 ·ra

+ e−ikJ3 ·ra −2e−ikJ5 ·ra

e−ikJ1 ·ra − e−ikJ3 ·ra

e−ikJ2 ·ra
+ e−ikJ4 ·ra −2e−ikJ6 ·ra

e−ikJ2 ·ra − e−ikJ4 ·ra

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.94)

for conduction band modes. The normalized periodic functions of the above Bloch modes are,

hv,kJ1
=

1√
3
(1+ e−i2kX1 ·ra

+ e−i2kX2 ·ra
),

hv,kJ2
=

1√
3
(1+ e−i2kX2 ·ra

+ e−i2kX3 ·ra
),

(1.95)

hc1,kJ1
=

1√
6
(1+ e−i2kX1 ·ra −2e−i2kX2 ·ra

),

hc1,kJ2
=

1√
6
(1+ e−i2kX2 ·ra −2e−i2kX3 ·ra

),
(1.96)

hc2,kJ1
=

1√
2
(1− e−i2kX1 ·ra

),

hc2,kJ2
=

1√
2
(1− e−i2kX2 ·ra

).
(1.97)

The local bandstructure for the valence band at the J1-point, upon evaluating equation (1.76)

using the approximate J1-point valence and conduction band modes above, is
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Λv,k∼kJ1
= Λv,kJ + |Δk|2

(
η̃o,0 +2η̃o,2kX

)
−
(
|Δk ·kJ2 |2

(
2(η̃o,0)2 + 1

2(η̃o,2kX )2 +2(η̃o,0)(η̃o,2kX )
)

ΔΛJ

+
4
3
|Δk ·kX1 |2

(
2(η̃o,0)2 + 1

2(η̃o,2kX )2 +2(η̃o,0)(η̃o,2kX )
)

ΔΛJ

)

= Λv,kJ + |Δk|2
(

η̃o,0 +2η̃o,2kX −
|kJ|2

(
2(η̃o,0)2 + 1

2(η̃o,2kX )2 +2(η̃o,0)(η̃o,2kX )
)

ΔΛJ

)
,

(1.98)

where Δk = k− kJ1 . To second order in the elements of Δk, the local bandstructure around the

J1-point of the valence band is centro-symmetric. As a result, the local bandstructure in the neigh-

borhood of each of the J points of the �k is also given by equation (1.98). In order to determine

the sign of the curvature of the valence band, the bandgap at the J-point, ΔΛJ , is evaluated using a

similar procedure as for the bandgap at the X-point. The three band eigenoperator, in the normalized

plane wave basis of (|kJ1〉, |kJ3〉, |kJ5〉), is:

L̂J1
H = |kJ|2

⎛⎜⎜⎜⎝
η̃o,0 − 1

2 η̃o,2kX − 1
2 η̃o,2kX

− 1
2 η̃o,2kX η̃o,0 − 1

2 η̃o,2kX

− 1
2 η̃o,2kX − 1

2 η̃o,2kX η̃o,0

⎞⎟⎟⎟⎠ . (1.99)

The eigenvalues of L̂J1
H consist of the single eigenvalue Λv,kJ = |kJ|2(η̃o,0 − η̃o,2kX ), and the double

eigenvalue Λc,kJ = |kJ|2(η̃o,0+η̃o,2kX /2). The bandgap at the J-point is then, ΔΛJ = (3/2)η̃o,2kX |kJ|2.

Substituting this value of ΔΛJ into the equation (1.98) we have for the local bandstructure at each

of the J-points,

Λv,k∼kJ = Λv,kJ +
|Δk|2
m∗

v,J
. (1.100)

where the effective mass of the valence band is,
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1
m∗

v,J
= −1

3
η̃o,0

(
1+3

η̃o,2kX

η̃o,0
+

4
(
(η̃o,0)2 −2(η̃o,2kX )2

)
(η̃o,0)(η̃o,2kX )

)
. (1.101)

As expected for the valence band, the effective mass is negative at the J-point.

The scalar and vector coupling matrix elements, evaluated using the J1-point valence band mode

of equation (1.95), are: Kv,v(kJ1 ,kJ1 ,0) = |kJ|2 and Lv,v(kJ1 ,kJ1 ,0) = 0. The resulting effective

Wannier potential at the J-point is given by,

Δη′
i,i(r) = |kJ|2Δη(r). (1.102)

With the local bandstructure of equation (1.100) and the effective potential of equation (1.102), the

Wannier equation of the valence band envelope at the J-point is:

(
(Λd −Λv,kJ)−

(−∇2

m∗
v,J

+ |kJ|2Δη(r)
))

Γv,kJ (r) = 0. (1.103)

Due to the negative effective mass coefficient, localized resonant modes will form for local per-

turbations to the hexagonal lattice in which the refractive index is locally decreased. The acceptor-

type defect is taken to consist of a grade in the radius of the air holes of the hexagonal crystal as

defined in equation (1.91), with grading coefficient k = −0.006. The values of the parameters of

the acceptor-type cavity are given in table 1.4 and a plot of the acceptor-type cavity is shown in fig.

1.16(b).

As was the case for the donor-type cavity, this grade in the hole radius results in an approximate

parabolic potential well. Therefore, we take as our approximate ground state envelope function the

Gaussian,

Γv,kJ (r) = exp
[
−(ρ/κ

)2
]
, (1.104)

with ρ = |r⊥| the in-plane radius, and κ a single parameter decay constant given by,
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Table 1.7: Acceptor mode (J-point) ground state Wannier envelope parameters

m∗
v,J

κ
a = κx

a = κy

a

−0.68 4.44

1
κ2 =

1
2

(
k̄ |m∗

v,J|
) 1

2 , (1.105)

where k̄ = |k|(|kJ|/ano)2. The value of κ/a as calculated for the acceptor-type defect of fig. 1.16(b)

is given in table 1.7.

From equation (1.20), we have a form for acceptor modes formed at the J-point of the hexagonal

lattice. Rewriting these equations to include the Wannier envelope functions, we arrive at:

Ha,a1
A′′

2
= |vJ1〉Γv,kJ + |vJ2〉Γv,kJ

∝ ẑ
(
cos(kJ1 · r)+ cos(kJ2 · r)+ cos(kJ3 · r)

)
Γv,kJ ,

Ha,a1
B′′

2
= |vJ1〉Γv,kJ −|vJ2〉Γv,kJ

∝ ẑ
(
sin(kJ1 · r)+ sin(kJ2 · r)+ sin(kJ3 · r)

)
Γv,kJ ,

(1.106)

where the Γv,kJ are equivalent for each element of the �k due to the isotropic effective mass of the

J-point valence band. A plot of the magnetic field (ẑ-component) for the symmetry basis modes

Ha,a1
A′′

2
and Ha,a1

B′′
2

are given in fig. 1.18(a)-(b).

2D FDTD simulations of the acceptor-type cavity of fig. 1.16(b) and table 1.4 were also per-

formed. The two deepest modes within the first order bandgap are found to be of A′′
2 and B′′

2 sym-

metry, the same symmetry as the modes predicted by the approximate analysis. Plots of the FDTD

calculated magnetic field patterns of these modes are given in fig. 1.18(c)-(d), again showing a

strong resemblance to the approximately generated field patterns. Figure 1.18(e)-(h) shows a series

of plots of the envelope (Γv,kJ1
) of the acceptor mode Ha,a1

A′′
2

. The size and shape (isotropic) of the

FDTD calculated mode envelope corresponds very nicely with the approximate Wannier envelope

as can be seen by the Gaussian fits in fig. 1.18(f)-(h) and the values of the fit decay constants given

in table 1.6. A similar envelope was extracted for mode Ha,a1
B′′

2
, with its fit decay constants given in
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Figure 1.18: Magnetic field (ẑ-component) plots of the acceptor modes of the graded hexagonal
lattice acceptor-type cavity: (a) symmetry analysis A′′

2 mode, (b) symmetry analysis B′′
2 mode, (c)

FDTD A′′
2 mode, and (d) FDTD B′′

2 mode. Comparison of: (e) Wannier (see table 1.7) and (g) FDTD
envelope functions for the Ha,a1

A2
acceptor mode. (f) and (h) show line scans of the FDTD filtered

envelope (solid line) along the x̂- and ŷ-directions, respectively. The Gaussian fit to the FDTD
envelope along these principal directions are also plotted (dashed line).

table 1.6 as well.




