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Chapter 1

Semianalytic Methods for Studying
L ocalized Modes Within
Two-Dimensional Photonic Crystals

The design of photonic crystal (PC) based optical elements has often relied on numerical ssimula-
tions using methods such as finite-difference time-domain (FDTD) [6, 7]. While FDTD provides
awealth of detailed information about the system under consideration, it has the drawback of be-
ing rather computationally intensive and time consuming. In this chapter, | detail two approximate
analytic methods that are of great use in studying planar PC cavities (fig. 1.1). Thefirst is a group-
theory-based analysis [24] that provides information about the symmetries and dominant Fourier
components of defect modes within hexagonal and square lattice PC cavities. The second method
[25] is a Wannier-like equation analysis that describes how the photonic lattice provides localiza-
tion for the cavity modes. Taken together, these two techniques can provide approximate modal
field patterns that reproduce many of the detailed features of the cavity modes generated by FDTD
simulations. They thus serve as a starting point from which amore detailed analysis or optimization

of the cavity design can proceed.

1.1 Symmetry-based analysis

1.1.1 Introduction

The work described in this section is largely based on ref. [24], and is presented here in a dightly
different form, where | have omitted some results that are not utilized in the rest of this thesisin
favor of more detailed derivations of some basic results. The principal thrust of the analysis is

contained in sections 1.1.2 and 1.1.3, which outline the application of group theory in producing
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Figure 1.1: lllustration of atwo-dimensional photonic crystal cavity in a slab waveguide structure.

an approximate description of the resonant modes of the defect cavities in hexagona and square
host photonic lattices. Section 1.1.4 then presents the results of FDTD simulations, confirming the
results of the approximate group theory analysis while providing detailed properties of the defect
mode resonances beyond the scope of the simple symmetry analysis.

The spatial symmetrieswithin Maxwell’s equations are determined by the translation and rotary-
reflection symmetries of the dielectric function, €(r) [90]. The theory of space groups [91] can
then be used to predict and categorize the resonant modes of defects within PC structures. A two-
step process is implemented here. First, modes of the unperturbed slab waveguide are used as
a symmetry basis to generate approximate field patterns for the PC modes at the high symmetry
points of the first Brillouin zone (IBZ) boundary. The curvature of the photonic bands at these
points are such that peaks and valleys are created in the energy-momentum dispersion surface. It is
these peaks and valleys that are the seeds from which localized states are formed. The second step
in our approach then utilizes the PC band-edge states created from the unperturbed slab waveguide
mode symmetry basis to generate approximate forms for the localized defect modes lying within
the bandgap.

The host PC structures that we consider consist of a symmetric planar geometry with a two-
dimensionally patterned core layer surrounded by spatially uniform cladding layers. A structure
which has been the basis of many previously fabricated devices is depicted in cross section in fig.
1.1. The semiconductor core dielectric material has an approximate refractive index of 3.4, and the

cladding in these membrane-type structures is air with a refractive index of 1. For the structures
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studied in this and following sections, the ratio of the core thickness, d, to lattice constant, a, is
chosen so as to maintain the single-mode nature of the vertical waveguide for wavelengths within
the first-order guided-mode bandgap of the PC lattice. The modes of a symmetric slab waveguide,
patterned or unpatterned, separate into modes of even or odd parity with respect to amirror planein
the middle of the dielectric slab. Of interest here are the fundamental guided modes. Limiting our
analysis to the fundamental guided modes of the PC dlab effectively reduces the spatial dimension
of the problem from three to two.

Within the mirror plane of the waveguide in these symmetric quasi-2D systems, the fundamental
even and odd modes can be represented by scalar fields H, and E,, respectively. As has been
described elsewhere [4], for connected 2D lattices such as those investigated here, the extent of
the photonic bandgap for modes with electric field polarization in the plane of the 2D patterning
(TE) islarger than for modes with normal electric field polarization (TM). For this reason, we will
focus our attention on the fundamental even modes of the 2D PC waveguides which are TE-like
(although the fundamental even and odd modes of the patterned slab are not purely TE or TM, they
are significantly TE-like or TM-like in nature). An extension to TM-like modes has been presented
in ref. [37], asit finds specific application in the study of quantum cascade photonic crystal lasers,
dueto the TM polarization of the intersubband transitions within quantum cascade heterostructures.
In the analysis below, we consider two of the most common 2D geometries for the host PC |attice,
the square | attice and the hexagonal or trigonal lattice. We begin with an analysis of the hexagonal
lattice.

1.1.2 Hexagonal lattice photonic crystals

The point group symmetry of a 2D hexagonal PC is Dgp, with a single horizontal mirror plane (cp)
lying in the waveguide center. Narrowing our scope to TE-like modes of a symmetric dab, the
point group symmetry of the hexagonal PC system can be effectively reduced to Cg,=Dgn/0on. A
plot of the approximate in-plane bandstructure for the fundamental TE-like guided modes of a half-
wavelength thick hexagonally patterned slab waveguide is given in fig. 1.2(a).! This bandstructure
was cal culated through the plane wave expansion technique, as reviewed in ref. [5].

Within the mirror plane of the slab, the magnetic field pattern for the (fundamental) TE-like

eigenmodes of the unpatterned slab waveguide can be written asHy (r ) = 2e-ikim) wherek |

1in this calculation a 2D hexagonal PC with host dielectric constant given by the effective index of the fundamental
TE mode of the half-wavelength thick slab is analyzed [7].



43

—
Q

~
o
fee)

0.6

0.4

0.2

normalized frequency (a/A,)

Figure 1.2: (a) Fundamental TE-like guided mode bandstructure (r /a = 0.36, Nga = Neft = 2.65).
The bandgap extends over a normalized frequency of 0.29-0.41. The air (cladding) light line is
shown as a solid black line. (b)-(c) Illustration of the real and reciprocal spaces of the two-
dimensiona hexagonal PC. The high-symmetry points of the hexagonal lattice, referenced to the
center of an air hole, area = (0,0), b = (a/2,0), and c = (0,a/+/3). (b) Real space. |a1| = |a| = a.
(c) Reciprocal space. |G1| = |G| = 4r/+/3a, |kx| = 2n/+/3a, |k;| = 4r/3a.

and r | arein-plane wavenumber and spatial coordinates, respectively (in order to simplify notation
we drop the L label in the equations that follow). Upon patterning the slab waveguide, coupling
occurs between waveguide modes with similar unperturbed frequencies and identical propagation
constants modulo a reciprocal lattice vector G. This follows from the approximate conservation of
frequency and the exact conservation of crystal momentum. Of particular interest for the resonant
cavity designs and devices described below are those modes which comprise the frequency bands
defining thefirst order bandgap. The Bloch modes at the band-edges defining the first order bandgap
are predominantly formed from modes of the unpatterned waveguide with in-plane wavevector lying
at the boundary of the IBZ; other unpatterned waveguide modes with additional in-plane momentum
equal to someinteger multiple of areciprocal lattice vector contribute much less, owing to their large
(unperturbed) frequency difference. For the symmetry analysis described here we will be satisfied
with considering the contribution from only the degenerate lowest frequency unpatterned waveguide
modes at the first zone boundary.

The high symmetry points within and on the boundary of the IBZ of the hexagonal lattice are
(see fig. 1.2(c)): the six X points ({£(0, )kx, £(v/3/2,1/2)kx, +(/3/2,—1/2)kx}), the six J
points ({£(1/2,v/3/2)ks, +(1/2,—/3/2)k;, £(1,0)k;}), and the T point=(0,0). The first-order
bandgap of the hexagonal lattice (see fig. 1.2(a)) is defined from above by the X point and below
by the J point. In analogy to the electronic bands in semiconductor crystals, the high frequency



Table 1.1: Point group character tables for the hexagonal lattice.

Cov |[E Co 2C3 2Cs 304 3oy

A1 1 11 1 1

Ay 1 1 1 1 -1 -1

B/ |1 -1 1 -1 1 -1

B, |1 -1 1 -1 -1 1

E, |2 -2 -1 1 O

E, |2 2 -1 -1 0 O

d1 3 -3 0 0 1 -1

a2 0 2 0 -2 0

213 3 0 0 -1 -1

Cn |E G ox(own) Gy((5d2)

AL |1 1 1 1

A |1 1 -1 -1

B |1 -1 —1 1

B, |1 -1 1 -1

sd | 3 -3 -1 1

gd |3 1 -1 1

a2 0 0 -2

2|3 3 -1 -1

a3 3 -1 -1

Cavos | E 2C3 304 Cas, | E 2C3 3oy

AL 1 A |1 1 1

A, 11 1 -1 A1 1

E 2 -1 0 E |2 -1 0
13 0 -1
sal 2 -1 0
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band defining the first-order bandgap is called the conduction band, and the low frequency band
is the valence band [4]. In the approximate analysis of the defect states to follow we will need to
include all the degenerate satellite peaks (conduction band) and valleys (valence band). The group
of the wavevector, which defines the point group symmetry of a plane wave modulo G within the
dielectric lattice, isCyy, C3y, and Cg, for the X, J, and T points of the hexagonal lattice, respectively.
Character tables [92] for these groups are given in table 1.1.

1121 X-point

For the frequency bands defining the first-order bandgap, the unpatterned waveguide modes which
aremost strongly coupled together to form the Bloch modes at the X-point aregiven by H = 2% "
wherei = 1,2, ...,6. The unperturbed frequencies of these modes are degenerate and can be written
as oX =~ clkx|/nef, Where ne is an effective index taking into account the vertical waveguiding
perpendicular to the slab.

The star of k (xk) at the X-point, formed from the independent satellite X-points within the
IBZ, consists of wavevectors {kx,,Kx,,Kx, }, with all other X-points being equivalent to one of
these vectors modulo a reciprocal lattice vector. A symmetry basis for the modes of the patterned
slab waveguide at the X;-satellite point can be found by applying the symmetry operations of the
group of the wave vector (Gok, = Ca) to the seed vector Hiy, - In this case, the basis is simply
(Hiyg - Hokex, )

Using these basis vectors, we calculate the 2 x 2 matrices that represent the different point group
operations of C,,, noting that the magnetic field transforms like a pseudovector [93] (unlike the

electric field). Thisyields the following:

S

1
&
|
&
I
£
1

(1.1)

The character values for these operations are xe=2, xc,=0, Xs,=—2, and x,=0. These character
values are consistent with a reducible representation that decomposes as A, @ B;. The projection

operators [92] onto these IRREP spaces are calculated as:
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4 01 10 0 -1 -1 0 11
(1.2

1 10 01 -1 0 0 -1 11 -1

P, = 11 +(-1) +(-1) +(1) =3
01 10 0 -1 -1 0 -1 1
(1.3)
Applying these projection operators to the seed vector Hy, yields:
Hﬁ; = 2cos(kx, - r%),

(1.9

Héi - 2Sil’](kxl : ra)v

where A; and B; label the IRREP spaces of C,, (see table 1.1), and the index a is used to denote
the location of the origin within the hexagonal lattice (marked in fig. 1.2(b)). As the magnetic
field of Hﬁ; overlaps strongly with the air holes of the hexagonal PC (its electric field lying largely
in the dielectric) it represents the lower frequency “valence” band mode, while Héi represents the
“conduction” band mode. This is a result of the tendency for modes with electric field concen-
trated within regions of high dielectric constant to be lower frequency than those with electric field
concentrated in low dielectric regions [4].

In order to fully define the modes at the X-point all modes of the xk must be included. In the
case of the X-point this corresponds to successive rotations by n/6 (Cg rotation). The result is the

following set of degenerate valence band modes,

Vx, cos(kx, - r?)

VBI = [ v, | =2| costkx, -r?) | » (1.5)

Vg cos(kx, - r?)
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and degenerate conduction band modes,

Cx, sin(kx, -r?)
CBY =[x, | =2| sin(ky, -r?) | - (16)
Cxs sin(ky, - r?)

fig. 1.3 shows the magnetic field amplitude for each of the valence and conduction band modes at

al the satellite X-points of the hexagonal lattice.
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Figure 1.3: Magnetic field (amplitude) patterns of the valence band modes (top) and conduction
band modes (bottom) of the hexagonal lattice at the three different X-points generated by the sym-
metry basesVB} and CB}.

1.1.2.2 J-point

A similar procedure may be performed in order to determine approximate forms for the TE-like
valence and conduction band modes of the hexagonal |attice at the J-point of the IBZ. Approximate
forms for the valence band edge and conduction band edge modes at the J-point are (with point a

taken asthe origin):
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Figure 1.4 shows the magnetic field amplitude for each of the valence and conduction band modes
at the J-point of the hexagonal lattice. Although not obvious from first inspection of equations
(1.7) and (1.8), the plotsin these two tables show that the modes of the symmetry basis VB have a
magnetic field amplitude predominantly overlapping the air holeswhile the magnetic field amplitude
of the modes of CB overlap the dielectric regions, a property that allows us to classify the modes
as valence and conduction band, respectively. Thisresult is also quite encouraging, given the fact
that our symmetry basis is quite primitive and yet can reproduce this property of the valence and
conduction band modes so critical to the formation of afrequency bandgap.

The approximate valence and conduction band edge modes derived above all have their origin
at the center of an air hole of the lattice. The hexagonal |attice has two other high-symmetry points
around which one may center a defect, points b and ¢ shown in fig. 1.2(b). Unlike point a, pointsb
and c are of lower symmetry than the point group of the hexagonal lattice. A defect centered about
point b will be limited to a point group of symmetry C,,, and those about point ¢ to point group
Cavs,. The point group symmetry operations for each of these types of defects are centered about
different points within the lattice. So as to be clear about the position of the origin to be used for
point symmetry operations, we label the Bloch mode symmetry bases with an index corresponding
to the location of the origin around which it is expanded. For example, VB is the X-point valence
band basis of equation (1.5) written in a shifted coordinate system with point b at the origin. In the
equations to follow, r2, r®, and r¢ are coordinate systems with origin located at point a, b, and ¢ of

the hexagonal lattice, respectively.
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Figure 1.4: Magnetic field (amplitude) pat-
terns of the valence band (top) and conduc-
tion band (middle and bottom) modes of the
hexagonal lattice at the J-point, generated by
the symmetry bases VB3 and CB.
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1.1.2.3 Conduction band donor modes

In an attempt to form localized resonances, the diglectric constant in a small region of a periodic
photonic crystal lattice may be altered from its unperturbed value, breaking the regular periodicity
of the lattice and mixing the Bloch modes. If the perturbation corresponds to alocal increasein the
dielectric constant (fig. 1.5(a)), the localized modes are formed predominantly from the conduction
band, specifically the modes at the band edge. Thisisaresult of the tendency for mode frequencies
to decrease with increasing diel ectric constant [4], pulling the conduction band edge modes into the
bandgap of the photonic crystal near the defect. Thistype of localized mode istermed a donor mode
in analogy to the electronic defect statesin crystalline materials [94].

For the hexagonal PC lattice the minimum in the conduction band occurs at the X-point (see
fig. 1.2(a)). Therefore, the appropriate symmetry basis to use for describing localized donor modes
are the degenerate conduction band edge modes of CBX, CBY, and CB for defect regions centered
around pointsa, b, and c.

Let us consider the formation of conduction band donor modes within defects that maintain the

full Ce, symmetry of the lattice. Using the symmetry basis CBX, we calculate the matrix represen-
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tation of the point group operators:.

100 1.0 0 0 -1 0 0 0 1
Ecex=|0 1 0|Ccex=]|0 -1 0 |Gemx=|0 0 -1|Csx=|-1 0 o0
001 0o 0 -1 10 0 0 -1 0

(L9)

00 -1 0 10 0 -1 0 10 0
Cocex=10 0 |Coasx=| 0 0 1|Cucex=|-1 0 0|O%wex=|0 0 -1
01 0 100 0 0 1 0 -1 0

(1.10)

001 100 0o 0 -1 01 0

OdscBXx = |0 1 0|Oweex=| 0 0 1|Owmecex=] 0 -1 0 |Owecex=1]1 0 O
100 0 10 1.0 0 00 -1

(1.12)

The character valuesfor these operationsare ye=3, yc,=-3, Xc;=0, Xcs=0, Xs,=1, adxs,=-1. These
character values are consistent with a reducible representation that decomposes as 91 = E; ¢ B,
aslisted in table 1.1. For the B] representation, the calculation of the projection operator is done
using the same method as was used to calculate the projectors for the conduction band modes at
the X-point. For the E; representation, there is an additional step because it is a two-dimensional

representation. Recalling that E; can be spanned by the coordinate pair (x,y), we write out two-
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dimensional matrices for E;:

1) [ N 3
Ee = Ec, = Ec, = Ec;i = (1.12)

01) o 1) g 2 7

1 3 1 -8 -1 3 1 0

2 2 2 2 2 2
= -3 1 = V3 o1 R V- ” 0 -1

2 2 2 2 2 2

7 ¥ 10 ;¥ ;o
Eoqs Eou = Eo. = Eos =

-3 1 0 1 AR -3 1

2 2 2 2 2 2

(1.14)

The diagonal elements of these matrices are then used in the cal culation of the two projectorswithin

this subspace. Overall, we arrive at the following projection operatorsfor the conduction band donor

modes:
1 -1 1 4 2 -2 000
X X X
Pl =3|-1 1 —1| P =8|2 1 -1| PEE =3[0 1 1| @15
1 -1 1 -2 -1 1 011

Note that the coefficientsin front of these projection matrices are eventually dropped as the approx-
imate solutions that we give are not absolutely normalized, although the relative amplitudes of the
different Fourier components are certainly kept (and are captured by the projection matrices them-
selves, without the prefactors). Using these projection operators on CBX, aset of basis functions for

the localized conduction band donor modes centered about point a of the hexagonal lattice isfound:
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Hg’/lfjl = 2<si N(kx, - r?) —sin(kx, - r?) 4+ sin(kx, - ra)>

H2' = 2<2s,in(kxl 18) 4sin(kx, - r%) —sin(kx, - fa)) (1.16)

Hgf; — 2<sin(kx2 1%) 4 sin(ky, - ra)),

Similar techniques are used to find the character values of representation %91 of the CB%< basis
under Cyy and representation S*91 of the CBY basis under Cay,, and they are given in table 1.1.
From the character tables we find that these representations decompose as 9 = A ¢ A> & B; and
S = E@ AY. We then use the appropriate projection operators to find basis functions for the

localized conduction band donor modes centered about point b:

HAt = 2<cos(kx2 -r®) — cos(ky, - rb)>
Halt = 2<cos(k><2 -12) + cos(kx, - rb)> (1.17)
Hg’ldl = 2<Sin(kxl ) rb)> )

and point c:

Hi' = 2(sin(kxl-r°— 5) —sn(ker+3%)
+gn(ky€.rc_g))

S CUC PG =

_§ qe_ T
sin (kx3 r 3) >
HES — 2<sin<kx2 o g) +sin(kx3 oo g))
Figure 1.6 shows plots of the amplitude of the 2Z-component of the magnetic field for each of the
localized donor modes centered about point a, as generated by the symmetry analysis. In these plots
(and in all plots generated from the symmetry analysisto follow), the localization of each mode has

been taken into account by multiplying a two-dimensional Gaussian envelope function with each
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Figure 1.6; Magnetic field amplitude of the symmetry analysis conduction band donor modes cen-
tered about point a of the hexagonal lattice.

dominant Fourier component, where the two axes of the Gaussian envelope are taken as parallel and
perpendicular to the direction of the Fourier component. This set of envelope function transforms
astheidentity under symmetry operations of the group of the wavevector, and as such does not alter
the transformation properties of each k component. Consequently, the IRREP classification of the
defect modes given above is maintained. This particular choice of envelope function, apart from
symmetry, is rather arbitrary, only chosen to capture the localized nature of the defect modes and
highlight the dominant Fourier components. In section 1.2, a Wannier-like equation for the envelope
of localized photon states is studied and shown to have ground state solutions invariant under those
elements of the group of the wavevector that are also symmetries of the defect perturbation. The
ground state envelope solutions then leave the IRREP classification of the above analysis for the
defect modes unchanged.

Returning to equation (1.16) describing the localized donor modes about point a of the hexago-
nal lattice, we note that the (d1, B} ) donor mode transforms like ahexapole, whereas the degenerate
(d1,E;) modestransform asan (x,y)-dipole pair. By introducing defect regions with lower symme-
try than the host photonic lattice one is able to remove degeneraciesin the localized mode spectrum.
The effects of this symmetry lowering can be simply determined using group theory by virtue of the
compatibility relations between the IRREPs of the full and reduced symmetry groups.



Cov — Cov

adl a,dl1
e e, (1.19)
H2Y — H3™ (x-dipole)

Hg;{; — HZ® (y-dipole).

In the case of cavities with C,, symmetry, group theory predicts the splitting of the degenerate
dipole-like modes into x and y dipole-like modes with differing frequencies. This has been studied

in numerical simulations and experimental measurements of such devices|[2].

1.1.2.4 Valence band acceptor modes

If the dielectric constant had been reduced in asmall region within the photonic lattice, by enlarging
an air hole for instance (fig. 1.5(b)), then instead of pulling the conduction band modes down into
the photonic crystal bandgap the valence band modes are pushed up into the bandgap. In this case
modes localized to the defect region are formed predominantly from mixtures of Bloch modes from
the valence band edge. Thistype of defect mode istermed an acceptor mode, again in ana ogy to the
electronic statesin acrystal [94]. For the hexagonal |attice the maximum of the valence band occurs
at the J-point (seefig. 1.2(a)). The obvious symmetry basis to use to describe the acceptor modesis
the set of degenerate valence band modes at the J-point, VB3 in the case of defects centered around
point a, and VB} and VB for defects about points b and c, respectively.

The characters of the representation S of VB under the Cq, point symmetry group, the
representation %2 of VB} under Cyy,, and the representation S*& of VB under Cay, are given
in table 1.1. %3 decomposes into irreducible blocks A} @ By, S8 = Ay @By, and S = E .
Using the projection operators, the basis functions VB3 are coupled together to form the following

acceptor modes about point a:

HaA’,z,al = 2<cos(k31 -1®) +cos(ky, - r?) + cos(ky, - ra)>
(1.20)

He)" = 2<9n(k31 1%) +sin(ky, %) +sinky, ra>>.

Similarly, projecting the basis functionsVBfJ onto the IRREPs of C,, and the basis functions VB
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Figure 1.7: Magnetic field amplitude of the symmetry analysis valence band acceptor modes cen-
tered about point a of the hexagonal lattice.

onto the IRREPs of Cs, 5,, We get for the acceptor modes about point b:

(1.21)
He™ = 2<Sin(k31 -r®) 4-sin(ky, - r?) —sin(ky, - rb)>,
and the acceptor modes about point c:
c,al 5 c ZTC c 275
Hgp =2 cos(le I+ 3) +cos<k33 T — ?>
+COS<kJ5 : r°>)
(1.22)

H‘é’f‘zl = 2<sin<k31 e 2;) +Sin<k33 ré— 2—“)

Figure 1.7 shows plots of the z-component of the magnetic field for each of the localized acceptor
modes centered about point a of the hexagonal lattice generated by the symmetry analysis.

2.8l transform as A, and B, IRREPS, re-

In modified cavities with Coy symmetry, H3™ and HE;

spectively:
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Cev — Cov

Hae — Has, (1.23)

aal a,al
HB,Z, — HBz .

For defect regionsthat strongly perturb the photonic latticeit is possible that alarger number of
localized defect modes will form than can be described by the limited symmetry basis used above.
Thisis the case for the Y-split cavity described in ref. [24] and illustrated in fig. 1.5(c), where the
defect region is composed of two enlarged holes and has arelatively deep potential well for acceptor
modes. As aresult, in the FDTD simulations of the Y-split cavity, an additional shallow acceptor
type mode (Y-A2p), not covered by the VB] symmetry basis, is present.

In order to more fully capture the possible defect modes in a deep potential well, the symmetry
basis can be expanded in a number of ways [24]. The method we adopt here is based upon the
observation that, for defect regions which provide a deep potential well, it is possible that defect
modes will form which are composed of unperturbed photonic crystal modes located not just at
the edge of the bandgap, but also at other nearby (in frequency) high-symmetry k-points within
the IBZ. In order to represent these additional localized resonant modes the unperturbed photonic
crystal modes at the additional high-symmetry k-points must be included in the symmetry basis.
For the hexagonal lattice the valence band at the X-point is close in frequency to the bandgap edge
at the J-point (seefig. 1.2(a)). The symmetry basis for the X-point valence band edge is the triply
degenerate VB basis set. The representation of VBX under Cqy, labeled $*32, has the character
values shown in table 1.1 and decomposes into irreducible spaces E, and A;. The acceptor type
modes formed from the X-point valence band modes in a symmetric defect cavity centered about

point aiin the lattice are:

Hi’,z?z = 2<cos(kx1 -1?) +cos(kx, - r?) + cos(kx, - ra)> ,
Hgﬁ = 2<2cos(k><1 -1%) — cos(kx, - r®) — cos(Kxs - ra)> : (1.24)
HE’:}% = 2<cos(kx2 -12) — cos(Kx, - ra)> .

The Y-split cavity does not have Cg, symmetry, but rather C,, symmetry. This reduction of
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Figure 1.8: Magnetic field amplitude of the symmetry analysis acceptor modes formed from the
valence band modes at the X-point of the hexagonal lattice.

symmetry causes the E; IRREP space to split into A; & A, and the A; space to transfer over into an
Ay IRREP space:

Cev — Cov
a,a2 a,azl
HAg — HA2 ,

a,a2 a,a2,2
HE2,1 - HA2 )

(1.25)

a,a2 a,a2
HE2,2 — HAl .

Figure 1.8 shows the magnetic field patterns of the acceptor modes predicted by the symmetry
analysis to form out of the valence band at the X-point. The shallow acceptor mode (Y-A2p) found
in FDTD simulations of the Y-split cavity [24] transforms as the A, IRREP under Cy, symmetry
operations. The dominant Fourier component within the FDTD generated field pattern of Y-A2g is

kx,, from which we can conclude that this mode is given by Hi’zaz’z as opposed to Hf_{fz’l.

1.1.3 Squarelattice photonic crystals

Aswith the hexagonal | attice we concern oursel ves here with only the fundamental even modes (TE-
like) of the slab waveguide. The point group symmetry of the square lattice photonic crystal canthen
be reduced to Cay=Dan/ch. A plot of the approximate in-plane bandstructure for the fundamental
TE-like guided modes of a half-wavelength thick slab waveguide with a square array patterning of

air holesisgiveninfig. 1.9(a).



58

o)
Q

-
IS)
©

o o
~ o

o
N

o

—
<

normalized frequency (a/A,)

Figure 1.9: (a8) Fundamental TE-like guided mode bandstructure (r /a = 0.35, Nga = Netf = 2.65)
for asgquarelattice of air holes. The bandgap is seen to be much smaller for the squarelattice than in
the case of the hexagonal lattice. The air (cladding) light line is shown as a solid black line. (b)-(c)
Illustration of the real and reciprocal spaces of the two-dimensional PC with a square array of air
holes. The high-symmetry points of the square lattice, referenced to the center of an air hole, are
d=(0,0),e=(0,a/2), and f = (a/2,a/2). (b) Real space. |a1| = |az| = a. (c) Reciproca space.
‘Gl| = |G2’ = 27t/a, “(x| :n/a, kM‘ = \/in/a.

The high symmetry points on the boundary or within the IBZ are (see fig. 1.9(c)): the four X
points ({#(1,0)kx, =(0,1)kx}), the four M points ((v/2/2,+v/2/2)ky), and the T" point=(0, 0).
The first-order band edges of the square lattice (see fig. 1.9(a)) are defined from above by the X
point (conduction band edge) and below by the M point (valence band edge). The group of the wave
vector at the X, M, and " pointsis Cyy, Cay, and Cyy, respectively. Character tables[92] for the two

groups are given in table 1.2.

1.1.3.1 X-point

A symmetry basis for the modes of the square lattice PC at the X-point can be found by applying
the symmetry operations of the group of the wave vector (Gok, = Cyy) to the seed vector H kg - IN
this case, the basisis simply (Hx, ,H_k,, ). Projecting this symmetry basis onto the IRREP spaces
of Cyy yields:

HX = 2cos(Kx, - I)
R ' (1.26)
Ha: = 2sin(kx, 1),

where A, and By label the IRREP spaces of Cy, 6, (see table 1.2). With the origin at the center of an
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Table 1.2: Point group character tables for the square lattice.
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Figure 1.10: Magnetic field (amplitude)
patterns of the valence band (top) and
conduction band (bottom) modes of the
square lattice at the X-points of the IBZ,
generated by the symmetry basis VB}
and CB}.

<

air hole of the lattice (point d of fig. 1.9), H ﬁ; corresponds to the “valence” band mode and H’Bfi to
the “conduction” band mode.
In order to fully define the modes at the X-point all modes of the xk must be included. The

result is the following set of degenerate valence band modes,

v cos(kx, - rd
VBi=| | =2 (kg 15) , (1.27)
Vi, cos(ky, - 9)
and degenerate conduction band modes,
C sin(ky, - rd
cpx— | O] Zaf SNk (1.29)
Cx, sin(ky, - r%)

The magnetic field amplitude patterns of the approximate valence and conduction band modes of

the square lattice at the X-points of the IBZ are given in fig. 1.10.
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1.1.3.2 M-point

A similar procedure may be performed in order to determine approximate forms for the TE-like
valence and conduction band modes at the M-point of the IBZ. The symmetry basis, S, in this case
includes all the M-points of the IBZ, S = (H,, ,Hky,,H Ky, ,H ky,). As determined from its
character under Cyy (table 1.2), SM = E & AJ & BY. The doubly degenerate IRREP E must represent
a higher energy level band as the conduction and valence band edges are non-degenerate at the
M-point as shown in fig. 1.9(a). Using only the A] and B] IRREPs, an approximate form for the
valence band edge and conduction band edge modes at the M-point are calculated by projecting
the symmetry basis onto these IRREP spaces. With the origin centered at point d, the valence and

conduction band edge modes are:

VBY = (VM) = 2<cos(k,v|l-rd)+cos(kM2-rd)> (1.29)

CBy' = <C1M> = 2(cos(k,\/.l.rd) —cos(kM2~rd)>- (1.30)

Approximate modes for the degenerate higher frequency conduction bands represented by the

IRREP E are, in one particular basis,

c2 sin(ky, - r9) —sin(kp, - r¢
capz - [ G| _ | Stk msinte 1)) (1.31)

c3um sin(ku, -r9) +sin(ky, - r?)

These higher frequency bands will be unimportant in our present analysis where we focus on the
band edge modes defining the first order bandgap. The magnetic field amplitude patterns of the
valence and conduction band modes at the M-point of the IBZ of the square lattice are given in fig.
111

In the square lattice there are three different high-symmetry points around which one may center
adefect. These pointsarelabeled d, e, and f infig. 1.9. Pointsd and f maintain the C4y, point group
of the square lattice, and point e has a lowered symmetry given by the point group Cyg,. Aswas

done for the hexagonal lattice, Bloch mode symmetry bases written with their origin at pointsd, €,
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Figure 1.11: Magnetic field (amplitude) patterns of the valence and conduction band modes of the
square lattice at the M-points of the IBZ generated by the symmetry analysis (VBY and CBY).

or f will be indexed as such. Coordinates centered about points d, e, and f of the lattice are also

labeled asr9, re, and r f, respectively.

1.1.3.3 Conduction band donor modes

For the square PC lattice the minimum in the conduction band occurs at the X-point (fig. 1.9(a)).
The representations describing how the CBX, CBY, and CBY symmetry bases transform under the
appropriate point group are given by S*91, 5241 and Sf.91) respectively. From their charactersin
table 1.2 we find that S¥4! = E, 91 = A2 B2, and S9! = A} @ B}. Projecting the symmetry

bases onto the different IRREPs gives the following conduction band donor modes:

(1.32)
Hadt — Z(Sin(kxz rdy ),
centered about point d,
Higl = 2(cos(kxl : re))
(1.33)

HeB’glzi(sin(kxz-re)),

centered about point e, and
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H/iédl 2<cos(kx1 1"y +cos(ky, -r)

f.dl
H B;Z,

9

) (1.34)
)

2<cos(kx1 1"y —cos(ky, -r")

centered about point f.

For the points d and f, defects may be formed with lower symmetry than the Ca, Symmetry
of the square lattice. We may use the compatibility relations between the IRREPs of the full and
reduced symmetry groups to determine the new mode structure. For a defect of Cy, symmetry with

mirror planes along the X and y directions of fig. 1.9(a) (Cyy6,) We have the following reduction:

Cay — Coyg,

HES — HE™ (x-dipole)

HEG — HE™ (y-dipole) (1.35)
pidl szdl,l

A12/
pidl | yfdi2

B A
If instead, the defect at points d and f contain the mirror planes o4, the symmetry is Cyy s, and the

compatibility relations give a mode decomposition:

Cay — C2\40d
HET +HES' — HE™ (X-dipole)
HET —HEG — Hg;zdl (y-dipole) (1.36)
f,d1 f,d1
HA,Z, — HA/2
f,d1 f,d1
HB/Z/ — HA/l .
Magnetic field patterns of the different localized donor-type defect modes formed about point d, e,
and f of the square lattice are given in fig. 1.12, where we have chosen to decompose the fields

according to Cpyg, -
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Figure 1.12: Magnetic field amplitude of the localized donor modes centered about pointsd, e, and
f of the square lattice.
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1.1.3.4 Valence band acceptor modes

For the sguare lattice the maximum of the valence band occurs at the M-point (fig. 1.9(a)). For the
square lattice the valence band edge modes at the M-point consist of a single non-degenerate mode.
This can be traced back to the fact that the M-point in the square lattice is highly symmetric, and the
group of the wave vector mixes al four of the M-points on the IBZ boundary. The symmetries and
fundamental momentum components of the possible acceptor modes formed from the M-point band
edge modes (the approximate defect modes) are then trivialy given by the single M-point valence
band edge mode.

For the high-symmetry pointsd and f of the squarelattice, assuming that the defect is symmetric

enough so as to maintain the C4, sSymmetry of the square | attice, the single acceptor mode is

H/‘f\;z,al = 2<cos(k,\/.1 -19) + cos(Kp, - rd)>, (1.37)
about point d, and
Hé’,l,al = 2<cos(kM1 1"y —cos(kw, - rf)> , (1.38)

about point f. The character of the representation S of the M-point valence band edge mode under
symmetry transformations Cpy, about point e is given in table 1.2. From its character, §* = By,

the approximate acceptor mode of a defect centered about point eis

Hg = Z(Sin(le r®) —sin(ky, - re)>. (1.39)

For defects of reduced symmetry about points d and f we have the following compatibility

relations;

Cao — C2v,0'\, C4v - C2v,<5d

d,al d,al d,al d,al
Har — HR™ and HE™ — HY (1.40)
Hf7a1 Hf,al Hf,al Hf7a1

B AL By A
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Figure 1.13: Magnetic field amplitude of the acceptor-type modes formed the val ence band M-point
modes of the sgquare lattice.

Figure 1.13 shows the magnetic field patterns of the acceptor-type modes formed from the M-point
of the IBZ of the square lattice for defects centered about pointsd, e, and f. Again, asfor the donor

modes, the modes are shown for the Cy,,, symmetry basis.

1.1.4 Comparison with FDTD simulations

In order to establish the effectiveness of the above symmetry analysis of the modes of relatively
localized defects within photonic crystals, we provide results of numerical calculations using the
FDTD method. The FDTD simulation results provide information about the resonant fregquency,
radiation pattern, and modal loss of PC defect cavity resonant modes. The cavity studied in this
section has been of particular relevance to the initial work on PC microcavity lasers performed by
Painter et a. [3, 8].

The FDTD calculations (additional details provided in appendix B) were performed on a mesh
with 20 points per lattice spacing. Excitation of the cavity modes was performed by an initial field
(Hz) with alocalized Gaussian profile, located in a position of low symmetry so as not to exclude
any possible resonant modes. The even modes of the patterned slab waveguide were selected out by
using an even mirror symmetry (6, = +1) in the middle of the slab waveguide. In order to choose
a consistent mode basis (only important for degenerate modes), as well as to reduce computation
time, apair of vertical mirror planes (ox, oy) were used to filter out cavity modes according to their
projection on the IRREPs of C,,. Each cavity mode is thus labeled by the Cy, IRREP by which it
transforms and an index corresponding to its energy (frequency) level.

The simplest cavity geometry that can be readily implemented consists of a single missing hole
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Figure 1.14: (a) Scavity (b) FDTD spectrum of a S-type defect cavity with a= 515 nm, r /a= 0.36
nominally, nga, = 3.4, and d /a = 0.4009.

(schematically shown in fig. 1.14(a)). We will refer to this cavity as a symmetric or S cavity as it
retains the full point group symmetry of the hexagonal lattice (Cg,). A FDTD-simulated spectrum
of adefect cavity with a central missing hole and a linear grade in r /a (from the center outwards)
of 0.38-0.34 is plotted in fig. 1.14(b) as a dashed line.? The spectrum is plotted versus normal-
ized frequency, o, = a/Ao, Where a is the lattice spacing and A, is the free-space wavelength. A
normalized slab thickness, d/a, of 0.41 was used in the simulated structures to be consistent with
the fabricated devices. To reduce computation time, the number of mirror periods (p) surrounding
the central missing hole was limited to five in the simulations, save for the more extended modes
for which cavities with eight periods were also simulated in order to more accurately estimate the
modal losses present in the fabricated devices (seetable 1.3).

Infig. 1.14, there appear to be two distinct resonance peaks within the guided mode bandgap
of the TE-like modes. Performing a mode filter [7] using the Cy, mirror planes, we find that each
resonance peak contains two different modes, yielding a total of four different localized modes
whose magnetic field patterns within the mirror symmetry plane of the dlab are shown in table 1.3.
The two resonant modes (accidentally degenerate) associated with the peak near the valence band
edge correspond to shallow acceptor (SA) modes which transform as the A; and B, IRREPs of
;}12/ and Hgé of the symmetry
analysisin section 1.1.2. The addition of these SA modes is aresult of the linear grading in hole

Cev,> and have the same dominant in-plane Fourier components as H

2As aresult of non-ideslities in the fabrication process [95], the air holes near the center of the cavity are larger than
those at the perimeter in the fabricated devices. A linear grading of the hole radius of 10% is quite common.

3Careful inspection of the FDTD generated magnetic field plot for these two modes shows that the mode patterns
appear to have lower symmetry than that quoted in the text. Thisis a consegquence of the way in which the modes were
simulated, using vertical mirror planes to reduce the computation domain by afactor of four. Due to discretization of the
computation grid, the mirror symmetry distorts the structure dightly, resulting in an asymmetry in the field pattern.
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Table 1.3; Characteristics and magnetic field amplitude patterns of the resonant modes in a sym-
metric cavity with r /alinearly graded from 0.38 t0 0.34 (d/a = 0.409, ngap = 3.4, p=15).

A2 (-1,-1) B1(—1,+1) B2 (+1,—1)

SAZy SBlo

SB2;

L abel Grp. ®n
S-A20 (H) SA (= —) 0.320
SBlo (HE, DD dipole (x) 0.361
S-B2o (Hg)) SA (+,-) 0.322
SB2; (HE, DD dipole (y) 0.360

radius, which forms a potential well for acceptor type modes. Of particular interest are the strongly
localized pair of degenerate deep donor (DD) dipole-like modes near the center of the bandgap.
From the plots of the electric field intensity of the x and y dipole modes shown in fig. 1.15(a)-(b),
we see that the fundamental k-components of the x and y dipole-like modes correspond nicely with
the approximate field patterns predicted by the symmetry analysis (fig. 1.15(c)-(d)). Even the subtle
difference in the in-plane radiation pattern of the x and y dipole modes as calculated humerically
using FDTD is contained within the symmetry analysis as can be seen by the lack of athird standing
wave component in the y-dipole (H ‘é},z) mode.

A list of properties of the two SA and two DD localized defect modesis givenin table 1.3. The
numerically calculated losses of each cavity mode are represented by effective in-plane and out-of -
plane quality factors [7], Q and Q_, respectively. A detailed analysis of quality factors within PC

cavities will be discussed in detail in the following chapter.
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Figure 1.15: In-plane radiation losses (el ectric field amplitude saturated) of the x and y dipole mode
(degenerate case) are shown in (&) and (b), respectively, as calculated by FDTD simulations. The
electric field amplitude of the corresponding defect modes generated by the symmetry analysis are
shown in (c) and (d) for comparison. In (€) and (f) the FDTD-generated vector plot of the electric
field of the (x,y)-dipole modesin the middle of the slab waveguide are shown.
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1.2 Wannier-like approach for describing localized modesin photonic

crystals

1.2.1 Introduction

The work described in this sectionis largely based on ref. [25]. In analogy to the study of localized
impurity states of electrons in periodic crystals [96, 97, 98, 99], we develop a Wannier-like wave
eguation to describe the envelope of resonant modes of localized perturbations within periodic di-
electric structures. This has been done previoudly, in a more restrictive setting by Johnson et al.
[100], and more recently in a general way by Charbonneau-Lefort et a. [101] and Istrate et al.
[102] in the study of photonic crystal heterostructures. In these works, a wave equation for local-
ized modes of non-uniform photonic crystals using an envel ope approximation has been devel oped;
however, in each case the envelope equation was formulated as a generalized Hermitian eigenvalue
equation in terms of the electric field, and more importantly, only localized modes formed from
non-degenerate satellite extremawere considered. In the analysis presented here we (i) consider the
magnetic field and (ii) incorporate the mixing amongst the degenerate peaks or valleys of the orbit
of k in the bandstructure, resulting in a set of coupled Wannier-like equations describing a multi-
envelope system. This alows us to more easily apply the envelope formalism to resonant cavity
modes of PC slab waveguides, which in atwo- or three-dimensional crystal mix Bloch modes near
the degenerate satellite extrema of the orbit of k. We also focus on the magnetic field as it can be
approximately treated as a scalar for TE-like polarization modes of PC slabs®. From the shape and
symmetry of the envelope of alocalized resonant mode, and its relation to the underlying photonic
bandstructure, one may better design features of planar 2D PC resonant cavities, such as in-plane
and vertical emission, resonator-waveguide coupling, and the quality factor of resonant modes. In
addition, the Wannier-like eguation for localized defect modes more clearly and rigorously relates
the curvature of the bandstructure to the formation of donor and acceptor modes for different types
of local perturbations of a dielectric lattice.

This section is organized as follows. In section 1.2.2 we derive a set of coupled Wannier-like
equationsfor the envelope functions of localized TE-like statesin planar 2D PC structures, where as
predicted by the Wannier theorem, the underlying bandstructure of the periodic dielectric structure

givesriseto an effective mass tensor. We al so derive an approximate form for the effective potential

41t should be noted that the envelopeis always ascalar field, regardless of the vector nature of the electric or magnetic
field.
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in the Wannier envelope equation in terms of the local perturbation to the dielectric lattice. In
section 1.2.3 we use the approximate symmetry basisfor the TE-like Bloch modes at the valence and
conduction band edge of the first-order bandgap in a 2D photonic crystal consisting of a hexagonal
array of air holes derived in the previous section to obtain approximate relations for the effective
mass tensor of the Wannier equation In conjunction with the symmetry analysis, which determines
the mixing amongst the degenerate satellite extrema, we find an approximate form for the localized
donor and acceptor modes of a hexagonal lattice with a parabolically graded filling fraction. For
comparison, FDTD calculations of the acceptor and donor modes of such a defect cavity are also

presented.

1.2.2 Wannier theorem for photonsin periodic dielectric structures

In studying the localized electronic states associated with impurities within a crystalline material, it
is often helpful to transform Schrodinger’s equation into Fourier space, simplify the set of coupled
equations through the limited Fourier decomposition of the perturbing potential, and then transform
back to real-space coordinates, where a wave equation for the envelope of the localized states is
generated. The Wannier theorem [103] captures the essence of this procedure in using the under-
lying energy-(crystal)momentum dispersion generated by the periodic Coulombic potential of the
crystal in a spatialy coarse-grained theory of electron dynamics. One application of the Wannier
theorem is in the calculation of bound electronic states of crystal impurities [96, 99, 97, 98, 104].

The basic form of the Wannier equation for the envelope of impurity statesis

<(E —En(h71p)) +AV(r)>r(r) =0, (1.42)

where En(h1p) is the energy-(crystal)momentum dispersion relation of the nth energy band with
wavevector k replaced by the canonical momentum operator p = —ihAV, AV(r) is the impurity
potential, and I'(r ) is the envelope function describing the localized electronic state.

We would like to find asimilar Wannier-like equation for the envel ope of localized photon states
in periodic dielectric lattices. Of particular interest are the localized resonant modes of planar 2D
PCsformed in optically thin dielectric slabs (seefig. 1.1). Thefundamenta TE-like even modesand
TM-like odd modes of asymmetric 2D patterned dielectric slab waveguide can be approximated by
scalar fields. In what follows we shall focus on the TE-like modes (as discussed in ref. [25], a
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similar theory may also be derived for the TM-like modes of the PC dab).

We begin with Maxwell’s equations in a (lossless) dielectric medium free of currents and free

charge,

V xE = —iowH,
V x H = +ion%egE,
(1.42)
V. (n%eE) =0,
V- wH =0,

where E and H are the harmonic complex electric and magnetic fields, respectively, with time
dependence et (the physical fields are found by taking the real part of the complex fields). The
velocity of light in vacuum is represented by ¢, and we have assumed that the materia is non-
magnetic (L= Ho). We aso assume here that the dielectric function does not depend on spatia or
temporal frequency, £(m,k,r) = g,n?(r). From the above Maxwell relations, a wave equation for

both the electric and magnetic fields can be generated:

n(r) (v XV x E) - (%)ZE, (143)
V x <n(r)V X H) = (%)ZH, (1.44)

wheren(r) = 1/n?(r).

Aswe have discussed in the previous section, we separate modesinto TE and TM polarizations,
keeping in mind that this separation isonly truly valid for purely 2D structures (for slab waveguides,
the modes are only approximately TE and TM in nature). For TE modes the magnetic field is
described by a scalar field, H = ZHy (where the subscript d stands for “defect mode”). Aswe have
assumed that the refractive index does not vary (or the variation can be approximately neglected) in
the Z-direction, d,n(r) = 0. The Hermitian eigenval ue equation which results from equation (1.44)
and V-H = 0is(inthe 2D case we only consider variations with respect to the in-plane coordinates,
V=V)),
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L EHg = AgHg, (1.45)

with the TE eigenoperator given by,

LE=—(Vn)-V—mV2 (1.46)

The form of TE eigenoperator is easily obtained from equation (1.44) by using standard vector
calculus identities as found in ref. [93], for example. The eigenvalue, Ay, is related to the square
of the frequency of the mode, Ag = (wg/C)2. N = Mo + An, wheren, is given by the inverse of the
square of the refractive index of the unperturbed photonic crystal, 1/n2,(r), and An represents the
localized perturbation to 1/n2,(r). The eigenoperator Ly (we drop the TE superscript from here
on) can be separated into an unperturbed photonic crystal part, I:H7o =—-V(Mo)-V—1,V?, and a
perturbation part due to the defect, L/, = —V(An) -V — AnV2.

The (2D approximate) modes of the perfect crystal are eigenmodes of Ly 0

L oHik = A1 kHik, (1.47)

where | labels the band index and k |abels the in-plane crystal momentum. As the H, x are Bloch

waves they can be written as

Hix = %h.,k(r)ék'f, (1.48)

with L2 equal to the area of the 2D photonic crystal and the set of periodic functions, hk(r), a
crystal momentum k, satisfying their own set of orthogonality relations (normalized over the lattice

unit cell v),

1
(e lPigv = 2 / Arh hy e =By (1.49)
\"
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Informing adefect state by perturbing thelatticein alocalized region of space, the Bloch modes
in proximity to the degenerate satellite extrema of aband edge, the {k;;i = 1,2,...,M} points of the
xk (from here on, the xk refersimplicitly to the orbit of this band edge), are most strongly coupled
together [98]:

Ha(r) =2ci;ﬁ<k—ki>%hl,kék*, (150)

TheT; areaset of Fourier space envelope functions, which in the spirit of the effective mass theory

have amplitudes localized around k = k;j. Note that throughout this analysis the band of interest at

the band edge is considered to be non-degenerate and we neglect inter-band mixing [98].
Assuming that the h; x do not vary significantly (using a similar argument asin ref. [97]) over

the range of each Fourier space envel ope function,

Ha(r) =~ Zci %thieiki'r (Zf. (Ak)eiAk'r> , (1.51)
i Ak

where Ak = k — kj. Writing the envelope functionsin real space,

Ti(r) = Y Ti(Ak)e*kT, (1.52)
Ak

allows us to rewrite equation (1.51) as,

Ha(r) ~ ;Ci%hl,kieiki'rri(r)a (1.53)

It is in this way that the real space envelope of localized defect modes can be interpreted in the
Fourier domain [97] as a result of the intra-band mixing of the unperturbed Bloch modes of the
crystal.

Returning to equation (1.45), we now proceed to find an eigenvalue equation for the envelope
functions. Multiplying both sides of equation (1.45) by Hy -, where k' is chosen in a neighborhood
of ki, and integrating over the in-plane spatia coordinates gives,
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e Y Tk —kj) (Hrw|(Ag— Ak — Li)Hix) = 0. (1.54)
i k

We rewrite r as R; +r, where R; gives the center of the i™ unit cell and r is now confined to the
interior of the unit cell. Using the orthonormality of the Bloch waves and the normalization of their

periodic parts described in equation (1.49),

1N NR _—
(Hir k| (Ad— A1 k)H k) = (Ad —Al,k)F Y dkKIR /dzr s oy e )
i=1 v (1.55)

= (Ad— Ar k)01 18k k-

Note that areciprocal lattice vector was not included in & x asboth k” and k (through the localized
nature of the 1~“i) are assumed to lie within a neighborhood of one of the wavevectors comprising the

*xk, which by definition are not linked by areciprocal lattice vector. Equation (1.54) then becomes

Gi(Ag— AT (k' — ki)

R ~ (1.56)
— 2.6 > (Hrw|LiHix)Tj(k —kj) = 0.
i K
Fourier expanding the defect perturbation in reciprocal space,
=Y Ang e, (1.57)
k//
we can write the mode-mixing term <H|,_,k,y|1,q H k) in equation (1.56) as:
(k+K"—K')-R Aﬂk” 2, (kK —K')T s "
<H|rk/|LHH|k z Ze' d rel h ik"- (V+ik)
k" i=1
+V2+2ik-V—|k|z>h|7k> (1.58)

= ZZ(E]W Kiri (K’ k, G) + AN (iK”) - Ly (K k, G)) Ok’ k4G ks
G k//
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where the G are reciprocal lattice vectors, and we have defined scalar and vector coupling matrix

elements as
Kii (KK, G) /dzre'Grh,/k,(VerZik-V—|k|2)h|7k
(1.59)
= —(hyw|€CT (V24 2ik -V — k| |hy kv,
and
Ly (K k,G) /dzre'Grhl,k,(VHk)th
(1.60)

= —<h|/7k/ |e'G" (V + ik)|h|’k>v.

Substituting equation (1.58) into equation (1.56) while keeping only termsthat mix stateswithin
the Ith band results in the following Fourier space representation of the magnetic field master equa-

tion:

Ci(Ad— Ak F, k —ki) zzcjz‘((ZT/]kuKU(k/,k/—k//—i—G,G)
« (L61)
+5ﬁk~<ik">-L|,|<k',k'—k"+e,e>)fj(<k/—k~+e>—k,->> =0.

For defect perturbations which are localized in k-space as well as in real-space, the strongest
mixing terms will be those with k” nearest the origin. As such, a further simplification can be
made by including only those reciprocal lattice vectors G which minimize the magnitude of k” in
coupling the different neighborhoods of the xk (satellite extrema). Thelocal mixing of states within
the neighborhood of each k; will thus be dominated by the Fourier components of Eﬁ about the
origin with G = 0. Similarly, the mixing between neighborhoods of k; and kj, wherei # |, will be
dominated by a single G which minimizes the magnitude of the vector G — (kj —k;). Writing this
reciprocal lattice vector as G;; and only including the dominant coupling terms in equation (1.61)

collapses the sum over G and yields,
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Ci ((Ad — A|7k/)f‘i(k/ — ki) — Z(E]k”KU (ki,ki,O) —i—AT‘]ku(ik”) . L|’| (ki,ki,0)>
k//

Li((K k")~ ')) ECJz<(&ﬁk”Kl,l(ki>k]’Gj,i)+&ﬁk”(ik”)'Ll,l(kivk]vGJJ)) (162)
i#] Kk’

T (K = (K" =Gjj) - kj)) =0,

where we have neglected the variation of K ; and L, | within the local neighborhoods of the k; € k.
Implicit in the derivation of equation (1.62) isthat the T; arelocalized around the k; in reciprocal
space. In order to make this explicit (which will be necessary when transforming back to real-space

coordinates) we expand A, i in the vicinity of each ki,

A = (A o+ Al (AK)) +O(AK), (1.63)

where A , is the top(bottom) of the band edge, Ak = k' —k;, and A ; only contains terms up to
second-order in elements of Ak [98]. In the case of those k; located at an extrema of a given
(non-degenerate) band the resulting dispersion relation may be written in the form, A’ i(Ak) = Ak -
MI - Ak, where the matrix M, , is an effective mass tensor defined by the curvature of the band.

Substituting equation (1.63) into equation (1.62) gives,

Ci <(AAd — I/,i (Ak))lzi (Ak) — Z(E]k” K|"| (ki,ki,O) +&1v”|ku(ik”) . LI,I (ki7ki70>>
o

T (Ak — k”> ZCJz<<gﬁkuKl,l(kiakiaGLi)+Kﬁk”(ikﬂ)'LI’I(ki’kj’Gj’i)) (169
iZ] Kk

f‘j((Ak—f-Gj?i — Ak i) —k//)) =0,

where AAg = Aq— A o isthe eigenval ue referenced to the top(bottom) of the band edge, and Ak j =
kj —ki.

Equation (1.64) is the Fourier space representation of an approximate master equation for the
localized magnetic field envel ope functions of defect states. Transforming back to real space results

in aset of coupled Wannier-like equations,
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6 (880 A7, (1729)) — An1, (1) i) = Sy (& O 390 am () )y =0, (168)
i#]

Anj(r) = M(r)Ki(ki,kj, Gji) +V(an(r)) - Li(ki.kj, Gji), (1.66)

where p = —ikV asin quantum mechanics, and An’j?i (r) isan effective perturbation potential.
Assuming that the amplitude of the relatively large Fourier components of An(r) associated
with mixing of states between neighborhoods of different satellite points of the xk are much smaller
than the amplitude of the small Fourier components which mix states within a given neighborhood
of a point of the xk, we can treat the inter-k; mixing as a perturbation to the envelope functions
formed from the local k-space mixing [104]. This alows us to write an independent Wannier-like

equation for each of the I'j(r) envelope functions,

((AAd — Al”i(fflf))) — Ani’J(r)) Ti(r) =0. (1.67)

Of most importance for the types of resonant cavities studied here are the ground state solutions
to equation (1.67). This is due to the relatively localized nature of the defect regions. For de-
localized defect regions extending over many lattice periods a more extensive set of envelope func-
tions, including higher order functions with added nodes and antinodes must be included. Choice
of such aset of envelope functions will depend on the geometry of the boundary of the defect [105].
For the present work then, we take I'j (r) equal to the ground state envelope, I o(r ).

Asthe ground state of a system isin general invariant under the symmetries of the Hamiltonian
of that system [106, 104], the ground state envelope function should transform as the identity of
the point group of the Wannier-like equation given in equation (1.67). The spatial symmetries of
equation (1.67) are those of AI’J(h‘lf)) and Anj;(r). As discussed in ref. [24], it then follows
that the point symmetries of the Wannier-like equation for the ground state envel ope functions are
givenby G’ NGy, where G’ isthe point group of the defect perturbation (independent of the crystal
lattice) and G’i is the point group isomorphic to the group of the wavevector (of the underlying

Bravais lattice) at the point k; in the IBZ. With this knowledge the coefficients ¢; of the defect state
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in equation (1.53) can then be determined using symmetry arguments.

1.2.3 Envelope function calculation

We will consider two examples of how the Wannier-like equation of the previous section can be
used to calculate an approximate envelope function for a localized photon state in a hexagonal
lattice photonic crystal. The first example is alocalized donor-type mode formed at the band edge
occurring at the X-point of the reciprocal lattice where the bandstructure (fig. 1.2(a)) has a local
minimum and isgiven by asimple parabol oid in aneighborhood of the X-point. The second example
isthat of alocalized acceptor-type mode formed from the J-point where the bandstructure has alocal

maximum.

1.2.3.1 Donor modes at the X-point

We begin by recalling equations 1.5 and 1.6 of section 1.1.2.1, which give an approximate repre-

sentation for the band edge modes at the X-point of the hexagonal lattice. In particular, we found

Vx, cos(kx, - r#)
VB = Vx, =7 COS(kXZ . ra) y (168)
Vg cos(kx, - r#)

as an approximate form for the X-point valence band modes, and

Cx, sin(kx, -r?)
CBa = CXZ = 2 s'n(kxz . ra) . (169)
Cxs sin(ky, - r?)

as an approximate form for the X-point conduction band modes. Separating the plane wave and

periodic parts of the above Bloch modes allows us to write,
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Vx = z(:I__+_efi2k><i~ra)eikxi,ra7
? (1.70)
ox = (1 ety
i2
with normalized periodic functions given by
hvk, = (1/\/5)(1_'_e7i2kxi,ra)7
- (1.71)

hc,kxi = (1/i\/§)(1 —e %% _ra)'
We now use the above set of modes to calculate the local dispersion of the conduction band
at the X-point. The Hermitian operator acting on the space of periodic functions at point k in the
reciprocal lattice, for the quasi-2D case studied here, is

Lhk = —VYV(Mo) - (ik+ V) +no(|k|2 = 2ik -V — V?), (1.72)

with associated eigenvalue equation given by,

Lrxhik = Arkhi. (1.73)

Asin“k-p” theory for Bloch electronsin crystalline materials, we expand I:H7k about point ko,

Crik = Cro + L aks (1.74)

with

LLi ax = NolAK[? + AK - (—iV(no) + 2noKo — 2iNo V). (1.75)

Treating I:,Qh Ak @S aperturbation to I:H,ko, and expanding hy i in terms of the h|,k0,5 gives to second

5Asdiscussedinref. [107], theh k, arenot completein the space of | attice periodic functions dueto the divergencel ess
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order in elements of Ak,

Al kko = Al ko +AK - (N o [ (=1V (M) + 2NoKo — 2iMoV) [N ko v + [AK (1 kg Mo M ko )v
|AK - (hy i, | (—1V(Mo) 4 2n0Ko — 2o V) [hr kv |2 (1.76)
= (At ko —Ar k) ‘

If ko corresponds to an extremal point within the bandstructure, then the linear Ak terms in
equation (1.76) are identically zero. One can check that for the X-point conduction and valence
band modes of equation (1.70), this is indeed the case. Substituting the periodic functions of the
conduction and valence band modes of equation (1.71) into equation (1.76) gives the local X-point

bandstructure of the conduction band as:

Ac,k~k><i = Ac,kxi + ‘Ak|2<hc,kxi |T]o’hc:,kxi v

1K (o (¥ (o) + 200k, — 200 s o (L.77)
AAx ’

where AAx = (Ac7k>< - Av,kx )

Fourier expanding 1o,

Mo = Y Moc€®", (1.78)
G

allows the bandstructure to be evaluated in terms of the Fourier coefficients of the dielectric PC.
Since n, is a lattice periodic real function, G are reciprocal lattice vectors and Mo = (Mo—c)*.
With the origin located at point a of the lattice (seefig. 1.2(a)), the hexagonal PC has Cg, Symmetry.
As aresult the Fourier coefficients of the hexagonal lattice are al real (inversion symmetry of the
lattice), and ﬁo,zkxi = ﬁo,ZKXJ, for all kx,kx, € xk. Also, as point a lies within the center of an
ar hole, the fundamental Fourier coefficients of the lattice, ﬁo,kaiv must be positive. Substituting

equation (1.78) into equation (1.77) gives,

nature of the magnetic field. In order to form a complete basis one must include zero frequency unphysical solutions.
As we neglect the contribution of remote bands in our analysis, which the zero frequency solutions certainly are, no
significant additional error is to be expected.
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4)(Ak - kx,)[2(Mo,0)? (1.79)

Ac,k~kxi = Acky +]AK ’2 (ﬁo.,o - 1io,ka) + AAx ’

where the index i has been dropped from ky, in those quantities that have the same value for each
element of the xk.
The bandgap at the X-point, AAx, may also be approximately determined in terms of the Fourier

coefficientsno . The magnetic field eigenoperator I:H can be written as,

Ch = —T00V? — Y, oc€C (V2 +iMocG - V)). (1.80)
G#£0

Treating Ane = ZGﬂ,ﬁo?GéG" as a perturbation to the average dielectric o, and considering
only the coupling between the forward and backward normalized plane wave states at the X-point,

(Ikx),| —kx)), resultsin the following two band magnetic field eigenoperator:

MoolKx|?  —To2ky [Kx|?

| )
IXx
Il

(1.81)
~MNozky [Kx|2  Moolkx|?

Theeigenvaluesof LY areno olkx|2= (To.2ky ) |Kx |2, Which givesfor the bandgap, AAx = 2(To 2k, ) [Kx 2.
Choosing a coordinate basis X; with X; orthogonal to kx, and y; parallel to kx,, allows usto write

for the local bandstructure of the conduction band in the vicinity of the X;-point,

2 2
NG A
Mexx  Mexy

AC,kaxi - AC7kx + (182)

with effective “masses’® defined as,

6We use the term “mass” here in analogy to solid-state physics where the curvature of the bandstructure is related to
theinverse of an effective electron mass. m* as defined hereis unitless.
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! = T~10,0<1— %>

mié,x,xi No,0 (183)
*l =Moo (1— n—B’ZkX + ~2n0"0 )
Me X i Noo Mok

For a PC formed from dielectric materials with real refractive indices greater than that of vacuum,
0 <mo(r) < 1. Consequently, Noo > 0 and Moo > 2noc for al G. The effective masses for the
conduction band at the X-point are thus both positive.

Evaluating the scalar and vector coupling matrix elements using the X;-point conduction band
modes of equation (1.71) gives: K (kx,kx,0) = |kx|? and L (kx,kx,0) = 0. Substituting these
coupling matrix elementsinto equation (1.66), the effective Wannier potential is,

A (r) = [kx|*An(r). (1.84)

Lastly, upon substituting the local bandstructure of equation (1.82) and the effective Wannier po-
tential of equation (1.84) into equation (1.67), we have for the Wannier equation of the conduction
band envelope at the ith X-point:

2

(Ag—A )—( —Vx +_—V>2/i+|k ‘ZAT](I’)> Teky (r)=0 (1.85)
d c,kx n’f‘;xyxi m;)(’yi X ckx . .

We now see from the Wannier-like equation for the conduction band edge at the X-point that asare-
sult of the positive effective mass coefficients, localized resonant modes will form for perturbations
to the hexagonal lattice in which An(r) is locally reduced, that is for which the refractive index is
locally increased.

Here we consider a defect which results in an approximate harmonic perturbation potential. By
appropriately varying the holeradii of aphotonic crystal consisting of a hexagonal array of air holes
in ahost dielectric material, the inverse of thefilling fraction of the hexagonal crystal can be graded
in aroughly parabolic fashion. The filling fraction of the lattice, f, asafunction of air hole radius

is,



fo1— %(;)2 (1.86)

where r is the hole radius and a is the nearest neighbor distance between holes of the hexagonal
lattice. For a host dielectric material of refractive index ng, the average dielectric constant of the
patterned crystal ise = f(no)2. The slowly varying envelope of 1, (T,,), neglecting rapid variations
on the scale of the lattice spacing, is proportional to 1/f, f, = (no)~2/f. For an approximate

harmonic potential then, the filling fraction of the lattice should vary as,

11 k(%ﬁ (1.87)

with p representing the radial distance from the center of the defect, f,, the filling fraction given by
the air hole radius at the center of the defect, and k the lattice grading coefficient. Thefilling fraction
as used hereisalocal approximation, based upon the local hole radius, of the truefilling fraction of
acrystal lattice. The resulting slowly varying envelope of the effective Wannier potential is,

2

7 P2 ( kx|

/.. — L LAl

Ai(p) =k(2) ( . (1.89)
The ground state solution to equation (1.85) with the harmonic effective potential of equation

(1.88) isthe 2D Gaussian,

Teioy (1) = 00— (/i +y2/7) . (1.89)
with decay constants,
1 1., 1
P = é( rnC,X7Xi)27
1 1 .- N (2.90)
_ * 2
2 5 (KMExy)?,

where k = k(|kx|/ane)2.
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Figure 1.16: (a) Graded hexagonal lattice donor-type cavity, (b) graded hexagonal lattice acceptor-
type cavity (parameters are given in table 1.4).

Table 1.4: Hexagona PC parameters for the donor- and acceptor-type defect cavities.

cavity o (L), fo kK ka2 (L), oz

a No,0

donor 265 025 077 001 0019 04 0.2%4

acc. 265 035 056 -0.006 0015 020 0.23

From equation (1.86), in order to obtain the parabolic grade in filling fraction, the normalized
hole radius of the defect cavity must vary with p as,

r2 +3 1
(5) :2_n<1_f01+f0k(p/a_)2>' (1.91)

With grading parameters given in table 1.4, the donor-type defect cavity we consider here is plotted

infig. 1.16(a). The calculated parameters of the approximate envel ope function for the donor modes
of this defect cavity are givenintable 1.5.

The point group symmetry of the donor-type defect cavity of fig. 1.16(a) centered about point

Table 1.5: Donor mode (X-point) ground state Wannier envel ope parameters.

> > K Y
Mexx  Mexy, a a

a

1.7 072 23 41
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Figure 1.17: Magnetic field (2-component) plot of the donor modes of the graded hexagonal donor-
type cavity: (a) symmetry analysis HZ%} (x-dipole) mode, (b) symmetry analysis H2 (y-dipole)
mode, (¢) FDTD simulated x-dipole mode, and (d) FDTD simulated y-dipole mode. Comparison
of: (e) Wannier and (g) FDTD envelope functions for Ha d1 1 (x-dipole) donor mode. (f) and (h) show
line scans of the FDTD filtered envelope (solid line) al ong the X- and y-directions, respectively. The
Gaussian fit to the FDTD envelope along these principal directions are also plotted (dashed line).

a of the hexagonal lattice is that of the underlying hexagonal lattice, Cg,. A set of basis functions
for the localized conduction band donor modes was given in Equation 1.16, and has been rewritten

here to include the conduction band envelope functions Tk

dl
Haé” ’CX1>FC7kx1 - ‘CX2>FC,kx2 + ’CX3>FC,kx37

d
HELT = 216 Teky, + 1656 ek, —1066) Tekog (1.92)
Ha,dl

E1,2 — ’CX2>FC-,|<X2 + ‘CX3>FC,|<X3’

Infig. 1.17(a)-(b) the magnetic field intensity is plotted for the dipole-like modes of the E; IRREP
with envelope functions given by the I'c . of equation (1.89). The calculated decay parameters for
the Gaussian Leky are tabulated in table 1.5. Note that the coefficients of the expansion for each
donor mode (c;) are determined solely by the transformation properties of the basis CB%; the enve-
lope functions transform effectively as the identity and do not modify the expansion coefficients.
For comparison, 2D FDTD simul ations were performed on the donor-type cavity of fig. 1.16(a).
Plotsof the FDTD calculated magnetic field patterns (and their Fourier transforms) of the two modes
most deep within the first order bandgap are given in fig. 1.17(c)-(d). The modes transform as the
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Table 1.6: FDTD calculated mode envelope parameters.

(%) 1@

HE'l 177 302

mode

SIS

HA™ 465 452

H3™ 520 448

B} and B} IRREPs of the C,, point group (the FDTD simulation was performed with mirror plane
symmetries to reduce the size of the computation, thus projecting the modes onto the Cy, IRREPS),
equivalent to thek and  basisof theCs, IRREP E; (the basis chosen for modes HE"} and HE). The
FDTD generated field patterns show good correspondence with the field patterns of the approximate
symmetry analysis (fig. 1.17(a)-(b)).

A more quantitative estimate of the envelope of the FDTD-generated localized modes can be
obtained by considering the form of the approximate symmetry analysis modes of equation (1.92).
Multiplying a donor mode which contains a dominant Fourier component at kx, by cos(kx; - r#)
will produce a term proportional to I'c, , thus shifting the envelope to the origin in Fourier space.
Applying alow-pass spatia filter to the product of the mode and the cosine function will then leave
only the envelope corresponding to T'ck,. . Infig. 1.17(f)-(h) we plot the result of such a procedure
applied to the FDTD calculated HEld} (x-dipole) mode (fig. 1.17(e) shows a plot of the envelope
calculated using the Wannier-like equation). The FDTD generated envelope is oriented paralel to
kx,, and as can be seen from fig. 1.17(f),(h) is Gaussian in nature. The fit decay parameters along
X and y; directions are given in table 1.6, and although smaller than estimated (table 1.5), they are
in nearly the precise ratio predicted by the Wannier equation

1.2.3.2 Acceptor modesat the J-point

As mentioned above, the valence band edge of the fundamental bandgap for TE-like modes occurs
at the J-point of the reciprocal lattice for the hexagonal PC. From section 1.1.2.2, the approximate
form for the band edge states at the J-point is:

jky, re iky,rd ikgr2
Vy, [T T s
VBS = =z _ , , (1.93)
(Wz) (e"‘Jz‘ra+é"J4'fa+e"‘Je'fa



for valence band modes, and

cl J
CR2 — c2 h
C:I.‘]2

c2 J
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ek 1 | grikar®  peikag 1

e—ile-ra _ efik\]s-l’a
=2

efik‘]z-l'a + efik\]4-l’a _ 2e7i|(‘]6~l’a

e—ika‘ra _e iky,-r#

(1.94)

for conduction band modes. The normalized periodic functions of the above Bloch modes are,

Py, =

Pk, =

hCl7 k i =

hCl7 k X =

hCZ,kJ2 = E

(1+e—I2kxl +e—i2kx2~l’a)’
\/§

(1+e—I2kx2 +e—i2kx3~l’a)’
V3
1 i ra i ra
_(1+e i2kx, -1 —2e i2kx, 1 )’

V6

. (1471200 _ pgmiZhxg ™)

V6

1 -
heok,, = 5 (1—e 20T,

(1.95)

(1.96)

(1.97)

The loca bandstructure for the valence band at the J;-point, upon evaluating equation (1.76)

using the approximate J;-point valence and conduction band modes above, is
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Av,k~kJ1 = A\/,kj + |Ak|2 (ﬁo,o + 2ﬁ072k><)

(Z(ﬁo,o)z + 3 (Mo,2kx )2+ 2(M0,0) (Mo, 2kx ))
— | |Ak -ky,|?
2 AA;

4
51K k2

(2(T~10,0)2 + 3 (Moaky )2+ Z(ﬁo,o)(ﬁo,ka))
AAj )

kl? (2(0.0)2 + § (o) + 2(Tl00) (o2 )

= Ak, + |AK|? (ﬁo,o + 2No2ky — AL

(1.98)

where Ak = k — kj,. To second order in the elements of Ak, the local bandstructure around the
Ji-point of the valence band is centro-symmetric. As aresult, the local bandstructure in the neigh-
borhood of each of the J points of the xk is also given by equation (1.98). In order to determine
the sign of the curvature of the valence band, the bandgap at the J-point, AA;, is evaluated using a
similar procedure asfor the bandgap at the X-point. The three band eigenoperator, in the normalized

plane wave basis of (|ky,), |Ka), |Kx)), is:

~ 1~ 1~
MNo,0 —5Mo,%kx  —35Mo,2kx
~J 2 1= ~ 1~
Lt = [Kal” | —3Mo.21x No,0 —5MNo2ky | - (1.99)
1= 1= =
—5MNo,2kx  —5Mo,2kx No,0

The eigenvalues of L} consist of the single eigenvalue Ayk, = |K3|2(To.0 — Mo.2ky ), and the double
eigenvalue Ack, = |K3|2(Mo.0+Mo.2kx/2). Thebandgap at the J-point isthen, AA; = (3/2)To 2x, |KJ |-
Substituting this value of AA; into the equation (1.98) we have for the local bandstructure at each
of the J-points,

Ak|?
Avk~k; = Avk; + |”\7’ . (1.100)
J

where the effective mass of the valence band is,
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my, 3

No,0 (ﬁo,O) (ﬁo,ka ) (1.101)

= n A((To.0)2 — 2(Mo9x )2
: 1T]o,o (1+ Moz | ((Mo0) (Mo,2kx ) )) .

As expected for the valence band, the effective massis negative at the J-point.

The scalar and vector coupling matrix elements, evaluated using the J;-point valence band mode
of equation (1.95), are: Kyy(ky,ky,0) = |kj | and Lvv(K3,,K3,,0) = 0. The resulting effective
Wannier potential at the J-point is given by,

AN i(r) = [kg[An(r). (1102)

With the local bandstructure of equation (1.100) and the effective potentia of equation (1.102), the

Wannier equation of the valence band envelope at the J-point is:

<(Ad — Avk;) — <_*V2 + k3 |2Aﬂ(f)) > Ty, (1) =0. (1.103)
m,,

Due to the negative effective mass coefficient, localized resonant modes will form for local per-
turbations to the hexagonal lattice in which the refractive index is locally decreased. The acceptor-
type defect is taken to consist of a grade in the radius of the air holes of the hexagonal crystal as
defined in equation (1.91), with grading coefficient k = —0.006. The values of the parameters of
the acceptor-type cavity are given in table 1.4 and a plot of the acceptor-type cavity is shown in fig.
1.16(b).

Aswasthe case for the donor-type cavity, this grade in the hole radius results in an approximate
parabolic potential well. Therefore, we take as our approximate ground state envel ope function the

Gaussian,

Tyk,(r) = exp[—(p/K)z}, (1.104)

with p = |r | | thein-plane radius, and k a single parameter decay constant given by,



91

Table 1.7: Acceptor mode (J-point) ground state Wannier envelope parameters

m; f=%=%
068 444
1 1= . \1
= = 5 (KIms))?, (1.105)

wherek = K| (|k3|/ang)?. The value of k/a as calculated for the acceptor-type defect of fig. 1.16(b)
isgivenintable 1.7.
From equation (1.20), we have aform for acceptor modes formed at the J-point of the hexagonal

lattice. Rewriting these equations to include the Wannier envel ope functions, we arrive at:

1
HZ’; = |VJ1>FV,kJ + ‘VJZ>FV;kJ

o< 2(cos(ky, - ) +cos(Ky, - 1) + cos(ky, - 1)) Tk,

1.106
aal ( )
HB,Z, = |V3) Tk, — [Va) Tuk,

oc 2(Sin(k31 -r)+sin(ky,-r) +Sin(kJ3 . r))rv,kj,

where the I'yk, are equivalent for each element of the xk due to the isotropic effective mass of the
J-point valence band. A plot of the magnetic field (2-component) for the symmetry basis modes

Hy; and HE™ are given in fig. 1.18(a)-(b).

2D FDTD simulations of the acceptor-type cavity of fig. 1.16(b) and table 1.4 were also per-
formed. The two deepest modes within the first order bandgap are found to be of A] and B} sym-
metry, the same symmetry as the modes predicted by the approximate analysis. Plots of the FDTD
calculated magnetic field patterns of these modes are given in fig. 1.18(c)-(d), again showing a
strong resemblance to the approximately generated field patterns. Figure 1.18(e)-(h) shows a series

a,al

of plots of the envelope (I'yk, ) of the acceptor mode H A The size and shape (isotropic) of the

FDTD calculated mode envelope corresponds very nicely with the approximate Wannier envelope

as can be seen by the Gaussian fitsin fig. 1.18(f)-(h) and the values of the fit decay constants given

a,al

intable 1.6. A similar envelope was extracted for mode HBZ , with its fit decay constants given in
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Figure 1.18: Magnetic field (Z-component) plots of the acceptor modes of the graded hexagonal
|attice acceptor-type cavity: (a) symmetry analysis A7 mode, (b) symmetry analysis B mode, (c)
FDTD Aj mode, and (d) FDTD B3 mode. Comparison of: (e) Wannier (seetable 1.7) and (g) FDTD
envelope functions for the H acceptor mode. (f) and (h) show line scans of the FDTD filtered
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envel ope along these principal directions are also plotted (dashed line).

table 1.6 aswell.





