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Abstract

Optical microcavities can be characterized by two key quantities. an effective mode volume Vg,
which describes the per photon electric field strength within the cavity, and a quality factor Q,
which describes the photon lifetime within the cavity. Cavities with a small Vg and a high Q of-
fer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics
(cavity QED). Chip-based devices are particularly appealing, as planar fabrication technology can
be used to make optical structures on a semiconductor chip that confine light to wavelength-scale
dimensions, thereby creating strong enough electric fields that even a single photon can have an ap-
preciable interaction with matter. When combined with the potential for integration and scal ability
inherent to microphotonic structures created by planar fabrication techniques, these devices have
enormous potential for future generations of experimentsin cavity QED and quantum networks.

Thisthesisislargely focused on the devel opment of ultrasmall Vg, high-Q semiconductor opti-
cal microcavities. In particular, we present work that addresses two major topics of relevance when
trying to observe coherent quantum interactions within these semiconductor-based systems: (1) the
demonstration of low optical losses in a wavelength-scale microcavity, and (2) the development of
an efficient optical channel through which the sub-micron-scale optical field in the microcavity can
be accessed. The two microcavities of specific interest are planar photonic crystal defect resonators
and microdisk resonators.

The first part of this thesis details the development of photonic crystal defect microcavities.
A momentum space analysis is used to design structures in graded square and hexagonal lattice
photonic crystals that not only sustain high Qs and small Vs, but are also relatively robust to im-
perfections. These designs are then implemented in a number of experiments, starting with device
fabrication in an InAsP/InGaAsP multi-quantum-well material to create low-threshold lasers with
Qs of 1.3x 10* and followed by fabrication in a silicon-on-insulator system to create passive res-
onators with Qs as high as 4.0 x 10%. In the latter experiments, an optical fiber taper waveguide

is used to couple light into and out of the cavities, and we demonstrate its utility as an optical



viii
probe that provides spectral and spatial information about the cavity modes. For a cavity mode with
Q ~ 4 x 10*, we demonstrate mode |ocalization data consistent with Vegs ~ 0.9(A/n)3.

In the second part of thisthesis, we describe experimentsin a GaAs/AlGaAs material containing
self-assembled InAs quantum dots. Small diameter microdisk cavities are fabricated with Q ~
3.6 x 10° and Vigr ~ 6(A/N)3, and with Q ~ 1.2 x 10° and Vgt ~ 2(A/n)3. These devices are used
to create room-temperature, continuous-wave, optically pumped lasers with thresholds as low as
1UW of absorbed pump power. Optical fiber tapers are used to efficiently collect emitted light from
the devices, and alaser differentia efficiency as high as 16% is demonstrated. Furthermore, these
microdisk cavities have the requisite combination of high Q and small Vi to enable strong coupling
to a single InAs quantum dot, in that the achievable coupling rate between the quantum dot and
a single photon in the cavity is predicted to exceed the decay rates within the system. Quantum
master equation simulations of the expected behavior of such fiber-coupled devices are presented,

and progress towards such cavity QED experiments is described.
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CcQED, or cavity QED Cavity quantum electrodynamics

DBR Distributed Bragg reflection

DWELL Epitaxy consisting of alayer of quantum dots embedded in a quantum well (dot-
in-a-well)

EL Electroluminescence

FEMLAB Commercia software, written by the Comsol Group, for solving partia differ-
ential equations by the finite element method

FDTD Finite-difference time-domain

FSR Free spectral range

| CP-RIE Inductively coupled plasma reactive ion etch

M BE Molecular beam epitaxy

MQW Multi-quantum-well

NA Numerical aperture

OSA Optical spectrum analyzer

PC Photonic crystal

PCWG Photonic crystal waveguide

PECVD Plasma enhanced chemical vapor deposition

PL Photoluminescence

Q Quality factor

QC Quantum cascade

QC-PCSEL Quantum cascade photonic crystal surface-emitting laser
QD Quantum dot

SEM Scanning electron microscope

SOl Silicon-on-insulator
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TE Transverse electric polarization, defined in this thesisto have electric field components
predominantly in-plane and a magnetic field primarily out-of-plane
TM Transverse magnetic polarization, defined in this thesis to have magnetic field compo-
nents predominantly in-plane and an electric field primarily out-of-plane
Ve Effective mode volume
WGM Whispering gallery mode
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