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Abstract

Optical microcavities can be characterized by two key quantities: an effective mode volume Veff,

which describes the per photon electric field strength within the cavity, and a quality factor Q,

which describes the photon lifetime within the cavity. Cavities with a small Veff and a high Q of-

fer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics

(cavity QED). Chip-based devices are particularly appealing, as planar fabrication technology can

be used to make optical structures on a semiconductor chip that confine light to wavelength-scale

dimensions, thereby creating strong enough electric fields that even a single photon can have an ap-

preciable interaction with matter. When combined with the potential for integration and scalability

inherent to microphotonic structures created by planar fabrication techniques, these devices have

enormous potential for future generations of experiments in cavity QED and quantum networks.

This thesis is largely focused on the development of ultrasmall Veff, high-Q semiconductor opti-

cal microcavities. In particular, we present work that addresses two major topics of relevance when

trying to observe coherent quantum interactions within these semiconductor-based systems: (1) the

demonstration of low optical losses in a wavelength-scale microcavity, and (2) the development of

an efficient optical channel through which the sub-micron-scale optical field in the microcavity can

be accessed. The two microcavities of specific interest are planar photonic crystal defect resonators

and microdisk resonators.

The first part of this thesis details the development of photonic crystal defect microcavities.

A momentum space analysis is used to design structures in graded square and hexagonal lattice

photonic crystals that not only sustain high Qs and small Veffs, but are also relatively robust to im-

perfections. These designs are then implemented in a number of experiments, starting with device

fabrication in an InAsP/InGaAsP multi-quantum-well material to create low-threshold lasers with

Qs of 1.3×104, and followed by fabrication in a silicon-on-insulator system to create passive res-

onators with Qs as high as 4.0×104. In the latter experiments, an optical fiber taper waveguide

is used to couple light into and out of the cavities, and we demonstrate its utility as an optical
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probe that provides spectral and spatial information about the cavity modes. For a cavity mode with

Q ∼ 4×104, we demonstrate mode localization data consistent with Veff ∼ 0.9(λ/n)3.

In the second part of this thesis, we describe experiments in a GaAs/AlGaAs material containing

self-assembled InAs quantum dots. Small diameter microdisk cavities are fabricated with Q ∼
3.6×105 and Veff ∼ 6(λ/n)3, and with Q ∼ 1.2×105 and Veff ∼ 2(λ/n)3. These devices are used

to create room-temperature, continuous-wave, optically pumped lasers with thresholds as low as

1µW of absorbed pump power. Optical fiber tapers are used to efficiently collect emitted light from

the devices, and a laser differential efficiency as high as 16% is demonstrated. Furthermore, these

microdisk cavities have the requisite combination of high Q and small Veff to enable strong coupling

to a single InAs quantum dot, in that the achievable coupling rate between the quantum dot and

a single photon in the cavity is predicted to exceed the decay rates within the system. Quantum

master equation simulations of the expected behavior of such fiber-coupled devices are presented,

and progress towards such cavity QED experiments is described.
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Preface

The intent of this preface is to present an informal history of my research as a graduate student at

Caltech. It is my hope that this introduction will provide a readable overview of my research, which

will be described in much greater technical detail in the bulk of the thesis. In addition, I hope that

this section will help the reader understand the logic behind our choices in research topics. On a

personal note, the work described in this thesis has consumed an enormous amount of my time and

energy, and I would like to take this opportunity to document some aspects of our research that are

not included in journal papers. This includes tasks such as infrastructure building, which take place

in any graduate career, but are particularly prevalent when you work for a newly minted faculty

member. Finally, I will use this preface as a means to discuss how our work fits in with the work of

others, and will attempt to provide the reader with some sense of the progress that has been made

subsequent to our contributions in a given area.

Starting graduate school

Although I officially started graduate school in September, 2001, my introduction to optical

microcavities and photonic crystals began a couple of months earlier, in discussions with Dr. Oskar

Painter, who had not yet joined the faculty at Caltech, but whom I already knew through our work at

XPonent Photonics (a start-up company in nearby Monrovia, CA). Oskar gave me the opportunity

to work with him on a couple of papers he was writing. The first was a review article on how one can

tailor the properties of photonic crystal microcavities [1], while the second was a short letter on the

polarization properties of a pair of modes within a single defect, hexagonal lattice photonic crystal

microcavity [2]. Along with a careful reading of his thesis [3] and Joannopoulos’s and Sakoda’s

books on photonic crystals [4, 5], working on these papers gave me a thorough introduction to

photonic crystal (PC) microcavities. During this time, Oskar and I had several discussions as to

what type of research he would pursue upon starting at Caltech (as a Visiting Associate in the fall of

2001, and as an Assistant Professor in January, 2002). I committed to joining his group, confident

that I would have the opportunity to engage in the electromagnetic design, fabrication, and optical
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characterization of microphotonic devices.

The two projects that Oskar and I discussed in greatest detail were the development of high

quality factor (Q) photonic crystal microcavities, and efficient evanescent coupling between optical

fiber tapers and photonic crystal waveguides (PCWGs). We agreed that I would pursue the former

topic, while my officemate Paul Barclay, who joined Oskar’s group a few weeks after I did, would

focus on the latter. From my experiences at XPonent Photonics, I was already very familiar with the

finite-difference time-domain (FDTD) method for electromagnetic simulations [6], which is well

suited for studying the loss properties of wavelength-scale devices. As a result, there were very few

barriers to plunging into research during my first year of graduate school.

Designing photonic crystal microcavities

One of the most interesting and useful aspects of photonic crystal microcavities is their ability

to confine light to an extremely small mode volume (Veff), approaching a cubic half-wavelength

in the material [7, 8]. These ultrasmall volumes correspond to extremely large per photon electric

field strengths, which translate to strong light-matter interactions. This is at the heart of a number

of potential applications in quantum optics, nonlinear optics, laser physics, and sensing/detection.

The advantages of an ultrasmall volume are most potent when combined with a high cavity quality

factor (Q), which corresponds to a long photon lifetime within the cavity. One specific application of

interest to us is strong coupling in cavity quantum electrodynamics (cavity QED, or cQED), which

examines the coherent interaction of a quantized electromagnetic field with a two-level system,

such as an atom or a semiconductor quantum dot (which, at a first level of approximation, is a

two-level system). Strong coupling places very strict requirements on the cavity used: the atom-

photon coupling rate g, which scales as 1/
√

Veff, must exceed the atom decay rate γ⊥ and the cavity

decay rate κ, which scales as 1/Q. The strong coupling regime (fig. 1) is one in which coherent

interactions between a single atom and a single photon can take place, and is at the core of many

applications of cavity QED in quantum information processing and computing.

Within the optical domain, cavity QED experiments have typically taken place in a system

consisting of a single atom coupled to a mode of a high-finesse Fabry-Perot cavity [9]. Over the

past several years, there has been a real push to extend this work to semiconductor-based systems,

where the Fabry-Perot cavity would be replaced by some semiconductor microcavity, and the atom

would be replaced by a semiconductor quantum dot [10]. There are a number of motivating factors

behind this drive, as semiconductor-based systems offer significant experimental simplification in

comparison to the atom-Fabry-Perot systems. In particular, the semiconductor microcavities are
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κ

γ

g=-d.E

g = -d.E = quantum dot-
        photon coupling rate
E = electric field strength
    ~ 1/Veff

1/2

κ = cavity field decay rate
    ~ 1/Q
γ = quantum dot decay rate

Figure 1: Schematic of quantum-dot-photon coupling in a photonic crystal cavity.

monolithic elements that should not require active stabilization, and a semiconductor quantum dot

can be naturally integrated in a microcavity during the initial growth of the material comprising

the device. Furthermore, the quantum dot is physically trapped within the device, eliminating the

infrastructure required to trap atoms. Finally, these devices are potentially scalable and easy to

integrate, as a result of the planar processing techniques by which they are created.

As I mentioned above, one of the key properties of semiconductor microcavities is the very

small volumes to which they confine light. These small volumes lead to a very strong coupling rate

to even a single quantum dot, so that g/2π ∼ 10 GHz for Veff ∼ (λ/n)3. For comparison, typical

coupling rates in an atom-Fabry-Perot system are on the order of 10–100 MHz. Nevertheless,

even for coupling strengths of several GHz, a cavity Q ∼ 104 is needed to be within the strong

coupling regime. As of a couple of years ago, these Qs were not accessible to ultrasmall volume

semiconductor microcavities.

Indeed, when I first started this work, the performance of photonic crystal (PC) microcavities,

in terms of Q, was significantly worse than it is today. The highest predicted Qs from simulations

were on the order of 104 [7, 11], and the highest experimentally demonstrated Qs were an order

of magnitude less at 2,800 [12]. Nevertheless, PC microcavities still seemed to be a preferred

architecture, as the experimentally demonstrated Qs in semiconductor microdisk cavities (∼ 12,000

in ref. [13] and ∼ 20,000 in ref. [14]) were not sufficiently high to compensate for their increased

modal volumes (over 10 times larger than those of the PC microcavities). Micropost cavities [15,

16] had experimentally demonstrated Qs that were even lower than those of the PC cavities, for

slightly larger mode volumes. Table 1 presents, to the best of my knowledge, the state of the art

for microcavities in early 2002 (in this table, I have only considered experimentally demonstrated

results). The cavities are generally classified into two types; large mode volume, ultra-high Q

structures such as Fabry-Perot cavities and microspheres, and wavelength-scale, relatively low-Q
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Table 1: Q and Veff for several experimentally demonstrated microcavity structures, as of 2002

Fabry-Perot Microsphere Micropost Microdisk Photonic Crystal

κ

Geometry Material Q Veff((λ/n)3) Reference

Fabry-Perot Air (w/dielectric mirrors) 109 105 [17, 18]

microsphere SiO2 109 104 [19, 20]

micropost GaAs/AlGaAs 2×103 5 [15]

microdisk GaAs/AlGaAs 1.2×104 6 [13]

photonic crystal InP/InGaAsP 500 0.3 [8]

GaAs/AlGaAs 2.8×103 0.4 [12]

structures such as semiconductor microdisks, microposts, and photonic crystals. As our interests

were focused on cavity QED with semiconductor quantum dots, we were most interested in the

development of semiconductor microcavities. The PC cavities appeared to be the most promising

candidate, as their ultrasmall volumes implied that the requisite Qs for achieving strong coupling

would be less than what would be necessary in a micropost or microdisk.

In approaching the design of PC microcavities, Oskar and I set the following goal: a theoretical

Q � 5×104 for Veff ∼ (λ/n)3. These numbers were chosen because they would be sufficient, in the

ideal case, to allow for strong coupling experiments in cQED. More important than these numbers,

we wanted to understand and elucidate the causes for radiation loss in these devices, and to develop a

fairly general framework that could be used to design high-Q PC cavities. Of particular interest to us

was the development of designs that would be robust to perturbations such as those that one might

encounter in the fabrication of the cavities. This seemed to us to be a crucial point, as relatively

small discrepancies between a fabricated device and the intended structure would, in many designs,

cause the maximum achievable Q to degrade by almost an order of magnitude, such as in ref. [12].

As I describe in chapter 2, the natural way to study losses in these devices is in momentum

space. In particular, by considering the Fourier components of the cavity mode, one can understand

the sources of loss; small momentum components lead to vertical radiation losses, while in-plane

losses occur when the cavity mode contains components in regions of momentum space for which
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the photonic lattice is no longer reflective. Taking the spatial Fourier transform of a generated cavity

mode serves as a diagnostic for understanding the source of loss in a given design. In addition to our

paper on this topic [21], which was published in July, 2002, Vučković and co-workers published a

paper during the same month that also noted the relationship between vertical radiation loss and the

presence of small momentum components within the spatial Fourier transform of the cavity mode

[22].

Rather than just having a diagnostic tool for understanding the performance of a given design,

we were also interested in the development of the designs. Knowing which parts of momentum

space are to be avoided is the first step toward this. As a second step, we chose to consider modes of

a specific odd symmetry, as this leads to zero DC Fourier components and an automatic reduction

in vertical radiation loss. We combined this with a methodology for tailoring the defect regions in

these cavities in such a way so as to avoid problematic regions in Fourier space, and used FDTD

simulations to quantitatively calculate the properties of the designs we generated. We were able to

meet our goals, and develop designs in both square and hexagonal lattice photonic crystals with Qs

as high as 105 and Veff ∼ (λ/n)3 [21, 23]. These designs used a grading of the hole radius in the

cavity, both to help achieve high-Qs and to make the cavity robust to perturbations to the design.

We did not attempt to optimize our results, as Qs of 105 were sufficient for the initial experiments of

interest to us, and more importantly, at the time, the experimentally demonstrated Qs for PC cavities

were significantly lower than what had been predicted theoretically, so it was unclear whether further

design optimization would be beneficial.

In addition to using FDTD, we were able to develop a number of semianalytic tools to aid in

the cavity design (chapter 1). One of the most useful tools was a simple symmetry-based analy-

sis that used the basic tools of point group theory to classify the symmetries of PC defect cavity

modes and determine their dominant Fourier components [1, 3]. The results of this analysis meshed

perfectly with the cavity design principles described above, and we relied upon it heavily in our

high-Q designs [21, 23]. In particular, this analysis identified the modes within defect cavities in

square and hexagonal lattice photonic crystals that satisfied our symmetry criterion for reducing

vertical radiation loss. Oskar and I wrote a separate article that fully details the development of this

symmetry-based analysis [24], which was published in July, 2003. In the same month, we published

another article [25], which details the development of a Wannier-like equation that yields the en-

velope for resonant modes within PC defect cavities. These two methods are very complementary.

The group theory analysis identifies and classifies the symmetries of defect modes within PC cavi-



6

ties, but has nothing to say about the localization of the modes. The Wannier analysis, on the other

hand, describes the localizing effect of the PC lattice on the defect modes. When combined with the

symmetry analysis, this Wannier method qualitatively matches the results of the FDTD simulations.

After these initial publications [21, 23, 24, 25], we did not return to the topic of PC microcav-

ity design, but several research groups across the world continued to work on this topic, and have

succeeded in developing designs with predicted Q factors in excess of 106 [26, 27, 28, 29, 30]. Mo-

mentum space design principles remain the basis for most of these works, albeit in combination with

new geometries such as modified photonic crystal waveguides [28, 30], and the use of inverse design

and optimization methods [31, 29] to help reduce the dependence on the trial-and-error approach

that dominated early cavity design work. From my perspective, the Wannier and symmetry-based

methods remain attractive starting points for any cavity design (whether or not the focus is on high-

Q structures), as they provide a wealth of information with very little computational expense, and

can be used to build physical insight on how to appropriately tailor the cavity geometry for the ap-

plication of interest. Ultimately, FDTD or some other numerical simulation method will be used to

calculate the cavity properties in detail, and it is likely that some further amount of tweaking of the

cavity design will be required. During this step, the aforementioned optimization and inverse design

methods will be of great use.

Building the cleanroom and characterization lab

While developing the PC cavity design techniques, I also spent a great deal of time helping

Oskar plan the setup of our labs. Oskar, Paul, and I were able to attend meetings with the project

manager in charge of building our labs, and we carefully designed a cleanroom facility and a char-

acterization lab that would be able to support the experiments that we had planned for the first few

years of the research group. The centerpiece of the cleanroom would be an Oxford Instruments

Plasma Technology (OIPT) inductively coupled plasma reactive ion etch (ICP-RIE) tool clustered

to a plasma-enhanced chemical vapor deposition (PECVD) tool. This tool, along with a Hitachi

cold cathode, field emission scanning electron microscope (SEM), would allow us to do all of the

fabrication steps necessary for creation of optical devices such as the photonic crystal waveguides

and cavities that Paul and I were studying. The ICP-RIE/PECVD and SEM would be located in a

Class 1000 portion of the cleanroom, and would be adjacent to service chaises that would house

the support equipment for the machines (such as vacuum pumps, chillers, gas lines, and bottles). In

addition, the cleanroom would contain a Class 100 section that would house fume hoods, a spinner,

and a mask aligner for doing optical lithography. Our characterization lab would initially contain se-
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tups that would allow for the fabrication of tapered optical fibers, optical probing of microfabricated

devices in the telecommunications band (λ ∼1.5 µm) using these tapers, and microphotolumines-

cence measurements of light-emitting devices. Within the period of September 2001–June 2002,

we ordered the bulk of all of the equipment to be housed in the cleanroom and characterization labs,

and helped install basic equipment such as the optical tables. By June 2002, I had finished the bulk

of our work on the design of high-Q PC microcavities as well as coursework for the year, so that I

could focus exclusively on lab work. That summer, we installed the SEM and ICP-RIE, the latter

of which required a considerable amount of setup time. Oskar, Paul, Tom Johnson (another gradu-

ate student of Oskar’s who had just joined the group), and I did all of the stainless steel and PVC

plumbing required to service the machines and their accompanying vacuum pumps. By August, we

were ready to begin using the tools that we had spent the last couple of months installing.

In August 2002, Oskar and I flew to Murray Hill, New Jersey, to meet with members of the

quantum cascade laser group at Bell Laboratories, headed by Dr. Federico Capasso. Our primary

collaborator at Bell Laboratories was Dr. Raffaele Colombelli, and he and Dr. Mariano Troccoli

met with us and discussed a project that they and Oskar had initiated earlier, which was the in-

corporation of photonic crystal microcavities within a quantum cascade heterostructure to create

electrically injected microcavity laser arrays operating at mid-infrared wavelengths. Initially, our

role was primarily to provide photonic crystal design expertise. However, after visiting Raffaele and

Mariano, we learned that they were having great difficulty etching the quantum cascade heterostruc-

tures using their plasma etching system. Oskar and I agreed to attempt this part of the fabrication at

Caltech, while Bell Labs would remain responsible for material growth, all other device fabrication

steps, and subsequent device characterization.

Developing fabrication processes

After returning from Bell Labs, I began work in the cleanroom in earnest. Having had some

experience in the development of plasma etching processes, I took the lead on developing the ICP-

RIE etch recipes, while Paul was in charge of getting the electron beam lithography to work. For

Paul, this meant starting with a code that had originally been written by a Caltech undergraduate,

Oliver Dial, to control the scan coils and stage of a Hitachi SEM. Paul needed to update the code

for our SEM (a different model than that originally used), data acquisition card, and operating

system. For me, the ICP-RIE etching would involve building upon my previous experience in

plasma processing to develop recipes for etching silicon and InP-based materials. We had decided

on silicon-on-insulator (SOI) as a platform for near-infrared (near-IR) PCs, due to its low optical
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losses in this wavelength range and the ready availability of high quality wafers from commercial

vendors such as SOITEC. InP-based materials were of potential interest for future experiments with

PC microcavity lasers in quantum-well-based materials, including the quantum cascade photonic

crystal laser project we had agreed to work on with Bell Laboratories.

The development of fabrication processes for creating micro-optical devices is really at the heart

of the work that I have done in graduate school. Very simply put, the physical phenomena that we

have been interested in require superior device performance. For example, as described above, to

reach the strong coupling regime in cQED, wavelength-scale PC microcavities with Qs in excess

of 104 are required. Thus, all fabrication-induced losses (such as roughness-induced scattering and

etch-induced absorption) had to be minimized as much as possible.

The process flow for fabricating a device such as a photonic crystal microcavity typically con-

sists of 1) deposition of a hard mask layer, 2) coating of the sample in electron beam resist and

subsequent electron beam lithography, 3) plasma etching (also known as dry etching) of the mask

layer, and 4) plasma etching of the primary material layer (typically a semiconductor layer in the ap-

plications we consider). For some devices, such as the passive PC resonators and optically pumped

lasers described in this thesis, these steps are followed by a wet etch step to undercut the devices.

For more complicated structures, such as electrically contacted devices, a number of additional

fabrication steps are required. In appendix C, I provide a qualitative overview of some of the con-

siderations that must be taken into account when developing dry etch processes for microphotonic

structures.

The first material system that we had significant success with was the quantum cascade material,

a heterostructure containing dozens of InP-based layers. The requirements on this etch were rela-

tively strict; we needed to etch 4−5 µm deep holes (with a radius of ∼ 1 µm) that were as vertical

as possible. In this case, we had the fortune of starting with a very good etch mask, consisting of a

500 nm thick SiO2 PC mask that had been fabricated by our colleagues at Bell Labs. The process

we developed for etching the semiconductor layers, which will be described briefly in appendixes

A and C, was able to meet our requirements, and gave us the first indication that we would be able

to fabricate world-class structures with our system.

At the same time, we also worked towards fabricating near-IR PCs in silicon and InP. Our group

was exclusively responsible for the fabrication of these devices, so that we needed to develop the

electron beam lithography and all subsequent etches. By September 2002, Paul had succeeded in

adapting the control software to allow us to do the lithography with our SEM, and we began by
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using polymethylmethacrylate (PMMA) as our electron beam resist. We were able to do reasonably

good lithography with this resist, but its performance under dry etching was very poor. There was

no question that we would need to use a dielectric mask before transferring the PC pattern into the

semiconductor layer (either Si or InP), but the performance of the PMMA under dry etching was so

bad that it seemed unlikely that we would be able to suitably etch our dielectric mask (SiO2) with

it. For about four months, we struggled with the fabrication, and attempted to use a two-level mask

consisting of a Au metal layer on top of SiO2, with the hope that the PMMA would be more robust

to the etch that would transfer the PC pattern to Au, at which point the Au would serve as a strong

etch mask for the SiO2 layer. Although we made some progress, none of our results were up to our

expectations, and we did not attempt to optically characterize any of the devices created using these

processes.

In January 2003, we switched electron beam resists to ZEP-520A, manufactured by Zeon Chem-

icals. Oskar had heard of this resist while at a conference, and in looking at its specifications, we

realized that it was developed to be significantly more dry etch resistant than PMMA. Paul and I

were quickly able to recalibrate our lithography for this new resist, and the resulting PC patterns

looked very good. For the time being, we decided to exclusively focus on Si fabrication, and fur-

thermore, we scrapped the original process we were working on (an Ar/Cl2 etch) and started from

scratch, using a SF6/C4F8 chemistry. As briefly described in chapter 4 and in more detail in ap-

pendix C, this chemistry etches silicon beautifully, particularly for our purposes, where deep etches

were not required (in such instances, a cryogenic temperature etch or the Bosch process etch are

typically used). We were quickly able to develop an etch that produced smooth, vertical sidewalls.

Equally important, this was a low power etch, so that the ZEP electron beam mask suffered minimal

etch damage. As a result, we tried using this electron beam resist as the only etch mask for the

silicon layer, foregoing the dielectric mask that we had previously attempted to use. This worked

extremely well, so that creation of testable PC devices was imminent. Paul and I calibrated the

electron beam lithography to create patterns that matched our designs (for waveguides and cavities,

respectively), and the final processing step, undercutting of the sample, was relatively simply ac-

complished through a hydrofluoric acid wet etch to remove the underlying SiO2 layer of the SOI

material. By the end of February 2003, we were ready to test our devices.

Our plan was to use optical fiber taper waveguides as a method for coupling light into and

out of these PC devices, and to study the characteristics of this coupling to understand the device

properties. Such coupling had previously been demonstrated to silica devices such as microsphere
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cavities [32, 20], and these works served as an inspiration for our research. However, our devices

were significantly different from what had been used in previous demonstrations; we were working

with high-index semiconductor microphotonic elements in which the modal fields, particularly in

the PC microcavities, were significantly more spatially localized. Overcoming the refractive index

mismatch between the fiber taper and the PCWG was at the heart of Paul’s work, as they had been

designed [33] to have a phase velocity (and hence effective refractive index) equal to that of light

propagating through the optical fiber. As a result, it was clear that phase matched coupling should be

achievable. When combined with the significant field overlap between the taper and PCWG modes,

this would enable efficient power transfer to take place over the length of the waveguide. For the

PC cavities, we did not employ any specific technique to overcome the refractive index mismatch.

Instead, we were essentially hoping that the field overlap between the fiber taper mode and the

cavity mode would be strong enough to enable some amount of coupling between the two devices;

efficient power transfer was not our initial goal. Rather, we simply hoped to have enough coupling

to be able to use the taper as a means to learn about the modes of these PC cavities.

Quantum cascade photonic crystal microcavity lasers

As I touched on above, while working on the high-Q PC cavity project, I also had the opportu-

nity to collaborate with Bell Labs on a project involving the integration of PC cavities with quantum

cascade heterostructures. As this project lies somewhat outside the focus of the rest of this thesis,

I have chosen to include a summary of the technical details within appendix A. Nevertheless, this

work presented an exciting opportunity for us, both in terms of collaborating with a very accom-

plished group of scientists at Bell Labs and also in terms of the technical potential of the project.

The basic goal of the project was to create quantum cascade, photonic crystal surface-emitting

lasers, or QC-PCSELs. These devices were of interest to us for a number of reasons. For quantum

cascade lasers, they offered the potential for direct surface emission, a non-trivial property due to

the transverse magnetic (TM) polarization of the intersubband transitions in QC lasers, but a highly

desirable one for applications such as trace gas sensing (one of the most important applications of

QC lasers). In addition, PC cavities offered the promise of device miniaturization and integration,

allowing for the realization of multi-wavelength laser arrays on a single chip, again of great potential

for sensing applications. For PC microcavities, success would represent the first demonstration of

an electrically injected PC microcavity laser, and an important milestone for PC devices.

The PC microcavity design we initially decided to employ was a very simple geometry within

the hexagonal lattice, as our initial goal was simply to demonstrate lasing from a QC-PCSEL, with-
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out particular regard for how high the Q of the cavity was (of course, the Q needed to be high

enough for gain to overcome loss in the cavity). By the time I started working on the project in

earnest in August 2002, the main obstacle was not in design but in fabrication of the devices, and

in particular, the dry etch of the quantum cascade heterostructure. As mentioned above, by the end

of 2002, we had developed a suitable dry etch, and Raffaele and Mariano had worked out all of the

other processing steps. Toward the end of 2002 and in early 2003, they began measurements on

fabricated devices, and lasing action was observed. After carefully examining the data, it became

clear that the cavity modes that we observed in electroluminescence measurements were not due to

defect modes, but were rather due to band-edge states (low group velocity modes) in the photonic

lattice. From the perspective of what we had set out to demonstrate, this distinction was relatively

unimportant as the band-edge modes were still confined within the microcavity structure and had

reasonable far-field distributions. However, for future applications, the increased localization and

higher Qs of the defect modes are of considerable interest.

To verify our understanding of these devices, the initial electroluminescence data, which showed

the tuning of the cavity resonances as a function of the cavity geometry (lattice constant and hole

size) as well as lasing for certain modes that were well aligned with the QC material gain, was

supplemented by additional measurements of the laser mode’s polarization and far-field distribu-

tion. These experimental measurements were complemented by FDTD simulations and simple

symmetry-based arguments, and by May 2003, we had a good understanding of how the devices

were functioning. Our principal results were presented in ref. [34], and subsequent publications

presented detailed discussions of device fabrication [35] and lasing mode identification [36].

Around the time of completion of this first round of work, there was a redistribution of the

Bell Labs group to different universities (Raffaele went to Université Paris-Sud as a research faculty

member, Mariano became a postdoc in Federico Capasso’s newly formed research group at Harvard,

and Claire Gmachl became a faculty member at Princeton). On our end at Caltech, I continued to

work on the cavity design some [37], but otherwise stopped working on the project to focus all of

my efforts on the near-IR high-Q microcavities. Raviv Perahia has taken over the project at Caltech,

and has been working on developing the capability to do a larger chunk of the fabrication at Caltech

(including the electron beam lithography and dielectric mask etching), and on new etch recipes to

handle different QC heterostructures. Initial efforts will be focused on achieving room temperature

operation of the devices (the first devices operated at ∼10 K), through improvement of a number of

device characteristics, including the QC material quality, the cavity design and fabrication, and the
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efficiency of current injection.

First attempts at taper coupling and near-IR photonic crystal microcavity lasers

While I worked with Paul and Oskar on developing the fabrication processes to implement our

photonic crystal cavity and waveguide designs, Matt Borselli took the lead on building a station to

fabricate optical fiber tapers and a second station for probing microphotonic structures with them.

The former essentially consists of a pair of motorized stages that pull on the fiber (in opposite

directions) while it is being heated by the flame from a hydrogen torch. The characterization setup

consists of a motorized xy stage upon which the sample sits, and a motorized z stage upon which

the optical fiber taper is attached. A scanning tunable laser is used as the input to the fiber taper,

and the transmission past the microphotonic element is detected by a simple InGaAs photodetector.

By February 2003, these two setups were ready to be used in conjunction with our newly fabricated

silicon devices.

My initial attempts at probing our PC cavities with fiber tapers were unsuccessful and somewhat

discouraging; we were not able to see any spectral characteristics of our cavity modes within the

taper’s transmission spectrum. After spending about a week testing a number of different devices,

we became concerned that the technique was simply ill suited for our application; the coupling

between the waveguide mode of the fiber taper and our ultrasmall volume PC cavity mode was just

too small for appreciable power transfer to take place. While I contemplated this possibility, Paul

took over the testing setup and was almost immediately successful in seeing coupling between his

PCWGs and the fiber tapers. His initial results in this area were sent out for publication in late

March, 2003 [38], and demonstrated some of the basic principles of this technique. Over the next

few months, Paul continued to study taper coupling to PCWGs, and was able to not only demonstrate

highly efficient power transfer to the PCWG mode of interest [39], but also the utility of fiber tapers

as a probe for the spatial and dispersive properties of PCWGs [40].

Soon after our initial failure at taper coupling to PC cavities, I decided that it was worthwhile

to pursue another route to an experimental demonstration of our high-Q designs. One method

that had been commonly used for studying the Qs of semiconductor microcavities was the use of

an active material to create a light-emitting structure whose emission properties could be studied

[41, 13, 8, 14, 12, 42]. I was aware that this method had some limitations, such as the need to

pump the structure to material transparency in order to achieve a true estimate of the bare cavity

Q, but it was nevertheless an already established technique that would, at the least, give us a strong

indication as to whether we were able to create PC cavities with a Q > 104. Furthermore, active
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devices such as microcavity lasers were an area of research that we had planned on investigating at

some point, and we had in fact already ordered and set up many of the components necessary to do

microphotoluminescence measurements. Of course, one drawback was that active devices would

require the development of new etch processes. More importantly, as of January 2003, we did not

have access to any material from which such devices could be fabricated.

Luckily, in February 2003, Claire Gmachl put us in touch with Dr. Jianxin Chen, a Bell Labs

scientist with expertise in the growth of InP-based quantum well structures. Jianxin had in fact

already grown 1.3 µm InAsP/InGaAsP multi-quantum-well laser material that was very close in

design to what was of interest to us. We agreed to collaborate on this project, and by mid-April,

Jianxin had provided us with laser material from which we could make our PC microcavity devices.

Starting in March, I began focusing on InP-based PC microcavity lasers in earnest (chapter

3). The fabrication promised to be challenging, as InP is typically considered to be a much more

difficult material to dry etch than Si. Although there are other possible chemistries that can be used,

we were committed to an Ar/Cl2 etch due to its relative cleanliness, which is an absolute necessity

for us as we use a single ICP-RIE to etch a number of different material systems with a number of

different gas chemistries. While clean, one problem with the Ar/Cl2 chemistry is that the InClx etch

byproducts are not volatile at room temperature, so that the material will not etch cleanly unless

steps are taken to increase the volatility. The most common way to do this is through heating; in

our QC work, this heating was accomplished by the plasma itself. Although the material that we

etched in the QC project was very similar to the material we wanted to etch for these near-IR PC

microcavity lasers, it quickly became clear that we could not use the same etch. The QC etch is very

nonlinear in time, resulting from the finite amount of time (at least a couple of minutes) required

for the etch to heat the sample to some sufficiently high temperature. For the QC lasers, this was

not a problem, as we had a 500 nm thick SiO2 etch mask that could withstand the etch for several

minutes. Such a thick etch mask was possible due to the mid-IR operating wavelength (λ ∼8 µm)

of these devices, which allows the use of a chemically amplified photoresist (which is relatively

dry etch resistant) as an electron beam resist. For the near-IR (λ ∼1.3 µm) PC microcavity lasers,

we had to use an electron beam resist with much better resolution (such as ZEP 520A), due to the

much smaller feature sizes. These resists are much less dry etch resistant, limiting the thickness of

dielectric mask that could be used.

Fortunately, we had another option to heat the sample and increase the InClx volatility, which

was to directly increase the temperature of the ICP-RIE lower electrode using a resistive heating
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element that the tool came equipped with. We quickly added the necessary plumbing to allow us

to run the ICP-RIE in this heated wafer table mode, which would let us achieve temperatures in

excess of 250 ◦C. Initial tests indicated that temperatures greater than ∼ 150◦C would be sufficient

for achieving the volatility necessary to etch the InP cleanly.

Of course, such elevated temperatures precluded any possibility of directly etching into the InP

using only the electron beam resist as a mask, as we did with silicon. We decided to use SiO2 as

an etch mask, and for the next several weeks, I spent a considerable amount of time and energy in

trying to develop etch recipes for both the SiO2 mask and for the InP-based heterostructure layers.

I was eventually able to develop a reasonable SiO2 etch, although it was somewhat fickle in its

performance, and has remained so to this day. One difficulty in etching so many different materials

in one chamber is that it is hard to be certain that you are starting your etch from some well-known

initial condition. As a result, it is very important for us to develop relatively robust processes.

Nevertheless, the SiO2 etch seemed to be at least adequate, and the subsequent InP etch did not

take long to optimize once we committed to using elevated temperatures. By early May 2003, all

of the steps, including the subsequent wet etching steps to release the PC membranes (which are

somewhat more complicated for these structures than the SOI ones), had been worked out to make

the lasers. Chapter 3 discusses the development of these fabrication procedures in detail.

Oskar and I tested the initial rounds of devices together, and we were immediately rewarded

with lasing action in photoluminescence measurements of the first devices we tested. Over the next

couple of weeks, we tested many devices, and were able to measure cavity Qs of 1.3×104 at material

transparency. This principal result was very exciting, and represented about a 5 times increase in Q

over what had been demonstrated for a PC microcavity to date [12]. In addition, we were encouraged

to see that our measured Qs were essentially limited by the resolution of the spectrometer, and

furthermore, were very reproducible from device to device. These results, along with studies of

the lasing mode polarization, light-in-light-out characteristic, and approximate mode localization,

were submitted for publication in late May, and were published in September [43]. In addition, we

wrote a detailed article describing the fabrication of these devices [44], which, along with our new

cavity designs, was clearly instrumental in their superior performance. This point was particularly

apparent to us as Oskar’s own graduate research involved fabrication of PC microcavity lasers in

InP-based multi-quantum-wells, and the discrepancy between our new fabrication processes and the

fabrication processes he had used (which employed a chemically-assisted ion beam etch) was quite

pronounced.
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We initially had many plans for continuing work on these InP multi-quantum-well lasers, in-

cluding studying laser performance as a function of the number of quantum wells in the device,

developing surface passivation methods to reduce non-radiative recombination, and starting a pro-

gram to investigate some interesting phenomena in microcavity physics (such as enhanced radiative

rates due to the Purcell effect or measurements of the spontaneous emission coupling factor). These

plans were never followed up on, however. Initially, we were more interested in giving the taper

coupling approach another try, and in the long term, quantum-dot-based materials seemed to be a

more suitable choice for some of the microcavity physics experiments. As a result, we stopped ef-

forts of InP-based near-IR PC lasers after this initial round of success. Nevertheless, the Qs that we

demonstrated remain the highest values that have been demonstrated for an InP-based PC micro-

cavity (to the best of my knowledge), and quantum-well-based lasers do have potential for various

applications, such as fluid-based sensing [45, 46, 47] where the additional quantum confinement

provided by quantum dots is not needed. Furthermore, the fabrication processes developed can cer-

tainly be used in combination with structures incorporating InP-based quantum dots in an InP-based

matrix [48].

Fiber taper probing of silicon photonic crystal microcavities

After completing work on the high-Q PC microcavity lasers in June 2003, we returned the idea

of using the fiber tapers to investigate the cavities. We felt that there were many good techni-

cal reasons for doing so. In particular, Q measurements involving emission from a light-emitting

material are complicated by the need to pump the material to transparency; in practice, the pump

level at which this condition is achieved can be hard to experimentally identify. In addition, these

emission-based measurements are limited by the resolution of the spectrometer used; for us, this

was ∼ 0.1nm, but even for instruments with a longer path length, achieving resolutions better than

0.01 nm can be difficult. Other resolving instruments, such as Fabry-Perot optical filters could pos-

sibly be used, but would rely upon collecting a significant amount of emitted power from the PC

cavities, a non-trivial feat. A strictly passive measurement, which we proposed, would instead probe

the cavity transmission (or reflection) through the fiber taper as a function of the wavelength of the

input probe light. The wavelength resolution in such a measurement would then be limited by the

probe laser’s linewidth, which could be less than 10 MHz (< 0.1 pm). Passive measurements of PC

microcavities had certainly been done in the past [49], in experiments where an in-plane waveguide

had been fabricated to couple light into and out of the cavity. However, such experiments had their
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own difficulties; coupling light into a PCWG is itself non-trivial, and furthermore, somewhat inflex-

ible in that a waveguide must be fabricated for each cavity on the chip, and the waveguide position,

and therefore the waveguide-cavity coupling, is fixed and cannot be adjusted. On the other hand,

an optical fiber taper waveguide can be fabricated with very little loss (< 10%), and a single device

could be used to probe all of the PC cavities on a chip, in a rapid and flexible manner. In that sense,

we envisioned the taper acting as an optical probe for chip-based resonant microphotonic elements.

Furthermore, Paul’s experiences in coupling between tapers and PCWGs convinced us that our

initial failures in coupling to cavities were not fundamental, but were rather due to simple technical

difficulties that could easily be remedied. In particular, he discovered some problems with how our

detectors were set up, which would have prevented us from measuring modest changes in the trans-

mitted signal. As the taper-PC cavity coupling was not expected to be particularly strong (unlike the

taper-PCWG coupling), this was a vitally important discovery. At the time of our previous attempt

at taper-PC cavity coupling, we also had not properly calibrated our SEM, so that our measurements

of the dimensions of our cavity (such as the hole radius and lattice spacing) were overestimated by

around 10%. As the scanning range of the laser source used in the taper probing measurements was

around 5% of the center wavelength (λ=1595 nm), it was certainly important to know the cavity

geometry to a reasonably high degree of accuracy.

Thus, when we began our second attempt at taper coupling to the PC cavities (chapter 4), we

were much better prepared. We were immediately able to see some amount of coupling between

a taper and the first set of new SOI PC cavities that we fabricated, and were able to confirm that

the modes were localized defect states. In particular, we were able to demonstrate coupling to the

high-Q mode of interest from our design work (chapter 2), and by July 2003, we had used the

taper probing technique to measure cold-cavity Qs as high as 25,000. This measurement technique

worked extremely well; we could easily probe all of the devices on a chip with a single taper,

and the cold-cavity Q could be accurately determined by measuring the linewidth of the cavity

resonance (within the taper’s transmission spectrum) when the taper was positioned several hundred

nanometers away from the cavity (to reduce taper loading effects).

In addition to using the taper to determine the resonant wavelength and Q of the cavity modes,

we also began to consider its use as a tool to study the spatial properties of the modes. In particular,

by varying the taper’s position with respect to the cavity, the position-dependent coupling could

be ascertained. This coupling was clearly a function of the overlap between the taper and cavity

fields, and would thus, at some level, describe the spatial localization of the cavity mode. We
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fabricated new devices that could be probed along both axes of the cavity, and took measurements

of this position-dependent coupling as the taper was moved along each of these axes. This data

was then compared to the results of a simple coupled mode theory [50] that took into account the

analytically determined taper field and FDTD-calculated cavity field, and the experimental data and

numerical results matched very well. In early September 2003, we submitted a paper detailing the

taper-based measurements of a Si PC microcavity with an experimentally measured Q∼ 40,000 and

spatial localization consistent with Veff ∼ 0.9(λ/n)3 to the journal Nature. Although the Qs that we

measured were only a factor of 3 times larger than what we had demonstrated in the multi-quantum-

well laser cavities, we felt that the taper probing technique, which confirmed the simultaneous

demonstration of high-Q and ultrasmall Veff in our PC microcavities, added a significant amount

of content to the work. The demonstrated Q and Veff values were particularly exciting from the

perspective of cQED, where they would satisfy the strong coupling requirements for both neutral

alkali atoms and self-assembled semiconductor quantum dots, with the potential for coupling rates

on the order of tens of GHz, which would exceed both the cavity and atom (quantum dot) decay

rates.

About three weeks later, we learned that Nature had just decided to accept another paper, by

Susumu Noda’s group at Kyoto University, Japan, detailing the experimental demonstration of high

Qs in PC microcavities, and therefore would not consider publication of our work. The Kyoto group

work [51], which was published at the end of October 2003, showed measurements of Qs as high

as 45,000 in an SOI PC microcavity, using the in-plane waveguide coupling approach. Our rejected

manuscript was submitted to Physical Review in September 2003, and was eventually published as

a Rapid Communication in Physical Review B in August 2004 [52]

On the surface, the Kyoto work and our work seem to be very similar, but I have always felt

that within the context of PCs and optical microcavities, there are several important differences. As

I have already mentioned, our work was partly focused on the application of fiber taper probing

to wavelength-scale semiconductor microcavities, and in demonstrating that the fiber taper could

serve as a useful tool for studying both the spectral and spatial properties of the cavity modes (in

particular, measuring both Q and Veff). In addition, although both designs employed Fourier space

methods to reduce vertical radiation loss from the cavities, there were some important differences.

Upon glancing upon the geometry of the cavities, the most glaring difference would seem to be

in the complexity of the design; the Kyoto group design simply consists of three missing holes

and two shifted holes within a hexagonal lattice PC. In contrast, our design incorporated a graded
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square lattice in which the hole radius continuously changed as a function of position within the

lattice. While we did use this to achieve our highest Qs, it was not completely essential for obtaining

reasonably high Qs. We were previously able to show, in our simulation work, that Qs of ∼40,000

could be achieved in simple square lattice cavities in which the defect consisted of the reduction

in size of two air holes in the lattice. In addition to increasing this maximum achievable Q to

∼ 105, part of the reason for incorporating the grade in hole radius was to make the design robust

to fabrication imperfections, so that Qs in excess of 104 could be achieved even when the cavity

significantly deviated from the prescribed geometry. On the other hand, the Kyoto group design (as

well as other designs involving the fine tuning of a small number of holes in the PC lattice) required

very precise control of the cavity geometry to achieve high Qs; small variations in the geometry

could easily reduce the Q by a factor of 10.

We spent the next couple of months exploring this idea more quantitatively, fabricating and

testing different devices and comparing the results to simulations. We amassed the data from several

devices, and were able to conclude that our design was indeed robust to fabrication imperfections,

from both an experimental and a theoretical standpoint. In particular, we were able to show that the

cavity Q could remain above 20,000 even in the presence of variations in the cavity geometry that

caused the resonant frequency to vary by ∼ 10% of its nominal value. These geometrical variations

included perturbations that broke the desired symmetry of the structure, as well as variations in the

hole radius that were significantly different from the intended grade in hole radius. As described

in chapter 4, there are relatively simple physical explanations for this robustness, which I believe

can be incorporated as principles in future designs of high-Q PC microcavities. We published some

of these ideas and numerical and experimental data on the robustness of our cavities in an article

in Optics Express in April 2004 [53]. Although robustness has not necessarily gained widespread

recognition as an important element of PC cavity designs, I think that eventually it will, particularly

as optimization and inverse design techniques [31, 29] become more commonly used, as robustness

can possibly be entered as a condition within such algorithms. Certainly, from the perspective of

an experimentalist, I can attest to the practical utility of having every device on the chip support a

high-Q mode, rather than an isolated number of devices that precisely match the nominal design.

At this point, although we had been able to show the versatility of the fiber taper as a probe for

the spectral and spatial properties of PC microcavities, as described in detail in a review article [54],

one important thing that we had not yet demonstrated was highly efficient coupling to the cavities.

Our results thus far had been limited to maximum coupling depths of around 10%-20%. On the one
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hand, such levels of coupling were fairly high because the taper is such a low-loss device; coupling

losses to an in-plane waveguide using standard end-fire coupling approaches can easily be in excess

of 3 dB per coupling junction (for a total of 6 dB, or 75 %). On the other hand, phase matched

coupling, such as that which had been achieved for silica microsphere and microtoroid cavities

[20, 55, 56], and by Paul for PCWGs [38, 39, 40], could achieve coupling efficiencies approaching

100 %. There was thus significant room for improvement.

The strategy we adopted, in work led by Paul, was to first couple light from the taper to the

PCWG, which we had shown could be very efficient, and then couple light from the PCWG to the

PC cavity. This had been our plan from the outset, as the PCWGs had been specifically designed

to mode match to our PC cavities [33]. In addition to potentially allowing for very high coupling

efficiencies, this technique had the advantage of more optimally loading the cavity than direct taper

probing does, so that the loaded Qs can typically be much higher. Paul’s results [57] showed a

loaded Q of 3.8×104 for ∼ 44% coupling efficiency to a cavity with an unloaded Q of 4.7×104. In

comparison, for direct taper coupling, the loaded Q was ∼ 2.0×104 for a coupling depth of about

10 % to a cavity with an unloaded Q of 4.0×104. Having achieved these impressive results by May

2004, Paul then worked on an initial demonstration of what could be done with these fiber-coupled

PC cavities by studying the nonlinear response of these devices. He was able to show evidence

of optical bistability at very low input powers of a couple hundred microWatts, corresponding to

femtoJoule internal cavity energies. These results were published in February 2005 [57], and were

soon followed by several additional studies of nonlinear optics in silicon PC microcavities (see ref.

[58] and its follow-up articles, for example).

Since the initial publications on high-Q PC cavities from our group [43, 52, 53] and the Kyoto

group [51], there has continued to be impressive progress in the experimental demonstration of

higher and higher Q PC cavities. The Kyoto group was able to fine tune their initial design to achieve

Qs of ∼ 105 [59], and more recently, have employed an entirely different design to achieve Q ∼
6.0×105. This very interesting and impressive result relies upon the slight modification (through

adjustment of the lattice constant) of a PCWG mode to form a cavity that has very little vertical

radiation loss, and still has Veff ∼1-2(λ/n)3 [28]. Even more recently, the group of Masaya Notomi

at NTT Laboratories has used a similar design (this time adjusting the size and position of some

of the PCWG holes) to achieve Q ∼ 9.0×105 [30]. One key to these designs is that the PCWG

modes, in principle, have no vertical radiation loss, so that they serve as a good starting point from

which the cavity design can be built. Another key is that strong localization in these PC lattices can
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be achieved through very weak perturbations to the lattice, which allows for the creation of defect

modes that do not contain lossy Fourier components (such as those within the cladding light cone).

In some ways, these results mirror, and of course amplify, what we have been able to see in our

graded lattice PC designs, particularly in regards to the idea that a seemingly weak modification

to the PC lattice can still confine light to an ultrasmall volume, which was perhaps not appreciated

in the earliest PC cavity work. This can be seen in the evolution of PC cavity designs, starting

from Oskar’s original work [7, 8] employing a single missing air hole in a hexagonal PC lattice,

to some of our designs that graded the lattice hole radius, to these latest designs that utilize small

modifications to a PCWG.

Switching to AlGaAs: Even more fabrication

As soon as we achieved our first results on passive probing of high-Q Si PC microcavities in

June 2003, we began to consider their potential use in cavity QED experiments. There were two

specific experiments of interest to us, involving trapped neutral atoms and self-assembled quantum

dots, respectively. Of course, our group does not have expertise in either atomic physics or material

growth, so both projects would require a collaboration with other groups. At Caltech, we are fortu-

nate to have two research groups in the physics department, those of Professors Hideo Mabuchi and

H. Jeff Kimble, that are world leaders in atomic physics and its application to cQED. Hideo’s group,

in particular, had already began to consider the potential for incorporating PC cavities with mag-

netostatic atom chips to create integrated devices in a scalable architecture [60]. Hideo’s student,

Benjamin Lev, had already developed the ability to trap and guide neutral Cs atoms on microfab-

ricated atom chips [61]. However, despite some initial design work [31], their group had not yet

experimentally demonstrated high-Qs in their PC microcavities, and perhaps more importantly, had

not been able to effectively address the issue of coupling light into and out of the devices.

In early July 2003, Paul, Oskar, and I met with Ben and Hideo to discuss the potential for a

collaboration, and we agreed that it was something of interest to all parties. Initially, there was not

that much that we could do on our end, as Paul and I still had much work to do in establishing the

efficacy of the taper probing for PC microcavities. Nevertheless, it was useful for us to meet with

Ben on a periodic basis, to learn about his atom trapping setup, and to understand what some of

the biggest obstacles in this experiment would be. The basic proposal and some simple simulations

for the experiment that we planned to do, optical detection of single atom transits through a PC

microcavity, were put together in article that we coauthored with Ben and was published in July

2004 [62].
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It was immediately apparent that the one issue that was most pressing on our end was the demon-

stration of a high-Q, ultrasmall Veff at the near-visible wavelengths at which atomic cavity QED

experiments are conducted. The Si microcavities we had developed would not be option, as Si is

opaque at wavelengths below 1 µm. InP-based structures were a possibility, but we instead decided

to go with GaAs-based devices, as that would be the most likely host material for any future exper-

iments with semiconductor quantum dots (QDs). For the atomic physics experiments, pure GaAs

was not a possibility, as it too was opaque at the Cs transition wavelength of interest (the D2 transi-

tion at λ∼ 852.3 nm). Instead, we would use an AlGaAs structure (with an Al percentage of ∼ 30%)

which in principle, would be transparent at 852 nm. As the refractive index of the AlGaAs structure

would be very close to that of Si, the PC cavity design would not change, with the exception of the

proper scaling for operating at shorter wavelengths. The fabrication, however, would be completely

different. Although optimization of device fabrication in yet another material system was not a very

attractive project for me, it was certainly a necessity for us to be able to move forward with cavity

QED experiments. Indeed, we placed more importance on this than on any efforts to improve on

the performance of our Si PC microcavities.

After taking my candidacy examination in February 2004, I began calibration of etch processes

for AlGaAs-based microcavities. By this point, we had begun a collaboration with Professors An-

dreas Stintz and Sanjay Krishna at the Center for High Technology Materials at the University of

New Mexico. Andreas and Sanjay are experts at material growth and in particular, have a good

deal of experience in growing self-assembled QDs for applications such as lasers and hyperspec-

tral detectors. They had agreed to provide us with both pure Al0.3Ga0.7As waveguides for the Cs

cavity QED experiments and QD-containing waveguides for the creation of microcavity lasers and

eventual studies of single photon, single QD interactions.

In a very qualitative sense, AlGaAs tends to etch somewhat less easily than Si but more easily

than InP. As a result, it was not clear as to whether we would have to use a dielectric mask in our

processing, or if we could transfer the PC pattern directly from the electron beam resist as we had

done in the Si devices. Other groups had used the direct transfer approach, but the air holes used in

their devices were significantly larger than what ours would be, so that achieving a vertical etch for

our devices would be somewhat more difficult. Furthermore, the demonstrated Qs for AlGaAs PC

microcavities had been relatively modest [12, 63] (a few thousand at best), and in order to improve

upon this, we wanted to optimize the fabrication processes as much as possible, even if this meant

resorting to the added steps required to use a dielectric etch mask.
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As I discuss in appendix C, we eventually settled on a process that made use of a SiNx dielectric

etch mask for the subsequent dry etch of the AlGaAs layer. The key here is that the SiNx can

be etched using a recipe similar to that we used for etching Si. This low power etch minimally

damages the electron beam resist, allowing for the initial cavity pattern to be faithfully reproduced

in the dielectric layer. By August 2004, we were in a position to start testing devices.

Over the previous several months, Matt had begun research on Si microdisk cavities. This was

a natural follow-up to our Si PC cavity work in many ways. The etch processes needed to fabricate

the devices would be identical to what we had already developed, and the devices could be tested

using the fiber taper waveguides. At that point the highest demonstrated Qs for small mode volume

devices were on the order of 104 [13, 14].

Matt’s results, which were published in October 2004 [64], were truly impressive; he was able

to measure Qs as high as ∼ 5×105 for a mode volume of ∼ 6(λ/n)3. These results, in terms of the

metrics Q/Veff and Q/
√

Veff, which are relevant to processes such as enhanced spontaneous emis-

sion and strong atom-photon coupling, were actually better than what we (or any other group) had

achieved in PC cavities. For applications requiring the introduction of another material to couple to

the optical field, such as cavity QED with neutral atoms or colloidal quantum dots, the microdisk

geometry was not optimal, as its peak electric field lies buried within the semiconductor layer. How-

ever, for experiments involving embedded materials, such as semiconductor quantum dots (which

was to be my primary focus), they are completely suitable. Furthermore, one particularly attractive

aspect of Matt’s results was that coupling depths of ∼ 50% could be achieved while still maintaining

a loaded Q > 105. Thus, not only could the fiber taper be used to probe the Q and spatial localization

of the microdisk modes, it could serve as an efficient coupler as well. Although Paul had already

established the method for efficiently coupling to our high-Q PC microcavities by this point, the

simplicity of being able to directly couple to the microdisk while still maintaining a high-Q was

certainly appealing.

In my estimation, the microdisks seemed to be a good starting point for future experiments. For

much of the work we intended to do, including microcavity-quantum-dot lasers and chip-based cav-

ity QED involving single quantum dot, single photon interactions, the cavity geometry is by itself

not necessarily important; all of the important device properties are encapsulated by the cavity’s Q,

Veff (more precisely, the peak electric field strength at the location of the emitter), and η0, a parame-

ter that defines the collection efficiency of photons from the cavity. Matt’s results had clearly shown

that the microdisks were very competitive in these regards. In addition, from a purely practical
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standpoint, high quality microdisks are in many ways much easier to fabricate than PC cavities (in

terms of the requirements on sidewall angle, as one example). Thus, when starting new experiments,

it seemed like an appropriate strategy was to first use microdisk cavities as a way to observe the ba-

sic physical phenomena of interest. Ultimately, PC cavities have a number of interesting properties

that are somewhat unique to them (for example, very high spontaneous emission coupling factors),

and they are certainly interesting from the perspective of future experiments involving integration

of multiple devices on a chip, where the truly planar geometry of the PCs is a significant advantage.

We thus planned to begin experiments by using microdisk cavities, and would switch to PC cavities

when many of the experimental details had been worked out, or when we were interested in studying

phenomena that would be specific to them.

Quantum dot microdisk lasers

Fabrication of the AlGaAs microdisk cavities was accomplished through largely the same fab-

rication steps as what we had developed for the PC cavities. The primary differences were slight

adjustments in the etch chemistries for the SiNx and AlGaAs dry etches, to make the disk sidewalls

as smooth as possible, even at the expense of sidewall verticality. The reason for this is that for

most microdisk geometries, sidewall angle is not nearly as important an influence on Q as it is for

PC cavities, but sidewall roughness is. Another important element of the microdisk fabrication is

a resist reflow process that Tom had developed for the Si microdisk cavities. This process largely

eliminates radial variations in the mask, thereby improving the circularity of the disk and reduc-

ing surface scattering losses. Matt and Tom had recently used this technique to demonstrate Qs as

high as 5×106 in a 60 µm radius disk, and they also made devices that exhibited Q ∼ 1.25×106 for

Veff ∼ 14(λ/n)3 [65].

The first devices I tested were microdisks fabricated in a passive Al0.3Ga0.7As waveguide (no

quantum dots), for potential use in the neutral Cs atom cavity QED experiments. At the desired

operation wavelength of λ ∼ 852 nm, the devices did not perform as well as hoped, and we did not

observe Qs greater than ∼ 2×104. On the other hand, the devices performed much better at longer

wavelengths, with Q ∼ 1.5×105 exhibited in the 1500 nm band. Over the next several months, this

behavior was observed repeatedly, both by me and by Paul, who took over our group’s portion of the

neutral atom cavity QED project upon completion of his work on nonlinear optics in Si PC cavities

[57]. Our working hypothesis is that deep impurity states (caused by O2 incorporation, for example)

in the AlGaAs are causing absorption at wavelengths above the semiconductor bandgap (around 700

nm for Al0.3Ga0.7As) but below 1 µm. There is some support for this theory in literature, through
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measurements of waveguide loss [66]. We are currently working with Kevin Hennessy in the group

of Professor Evelyn Hu at UC Santa Barbara to study this phenomenon a bit more closely, with Chris

Michael taking the lead on this project from our end. If true, this will have a significant impact on

QD-microcavity devices, as much of the current work is being done at wavelengths below 1 µm.

Our measurements within the 1500 nm band were quite promising as far as our QD-based de-

vices were concerned, as they were grown by Andreas and Sanjay to operate in the 1.2-1.3 µm band.

The most immediate application for these devices would be room-temperature lasers. We began this

investigation, described in chapter 5, by fabricating disks in an epitaxy containing three stacked lay-

ers of quantum dots. Such an epitaxy (often times containing even more layers of dots) is often used

in QD laser research as a result of the increased amount of gain relative to a single layer of QDs.

We were quickly able to demonstrate optically pumped lasing from such devices, and the thresholds

were quite low, close to the predicted transparency level for the material. These low thresholds were

consistent with the cavities sustaining very high Qs. Indeed for a cavity Q � 3×104, the modal gain

from a single layer of dots was predicted to be sufficient to achieve lasing. This would be a signifi-

cant demonstration, as at that point, no other microcavity-based device had been able to demonstrate

room temperature lasing from a single layer of QDs (due to the relatively high Qs required).

We were soon able to demonstrate optically pumped lasing from a single layer of QDs, at room

temperature, for both pulsed and continuous wave pumping. The threshold pump values were again

quite close to the predicted transparency levels, indicating that the cavity Qs were most likely much

larger than the minimum value (Q ∼ 3×104) needed for lasing. As this value is already higher

than what could be resolved with our spectrometer (which has a resolution limit of around 0.1

nm), this would typically be all that could be quantitatively said about the cavity Q using standard

measurement techniques. There is the possibility of fitting the lasing data with a rate equation model

with the Q as a free parameter, but such fits depend upon a number of different parameters, such as

the QD radiative lifetime, internal efficiency, and collection efficiency, which will not necessarily

be precisely known, and the estimated Qs will have a relatively large uncertainty.

Using the fiber taper probing technique in conjunction with knowledge about the microdisk

mode structure allowed us to learn a great deal more, however. In particular, we used the taper to

probe the cavity modes within the 1.4 µm wavelength band, which was far enough red detuned from

the emission wavelength that we did not expect to see any effects related to the absorption by the QD

gain material, thus giving us an accurate estimate of the cold-cavity Qs of the modes. This would

give us the desired information about the quality of our fabrication, and would let us know whether
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our cavities were good enough for future experiments, such as those in cQED. It would also give

us additional information about the lasing modes we had studied through photoluminescence. Of

course, a mode that we study in the 1.4 µm band is not the same mode that is lasing. However, by

carefully studying the cavity’s spectrum and comparing it to simulation results, we can study a mode

within the 1.4 µm band that has the same polarization and vertical and radial order as the lasing

mode, and only differs in its azimuthal mode number (i.e., the number of lobes in the azimuthal

direction). As long as the radiation loss that occurs when the mode tunnels around the disk perimeter

is not the dominant loss mechanism, modes whose azimuthal orders are only slight different will

behave very similarly; in fact, modes at the longer wavelength will have lower radiation-limited Qs.

As losses due to mechanisms such as surface scattering, surface absorption, and bulk absorption are

not expected to be drastically different between the 1.2 µm and 1.4 µm bands, the Q measured in

the 1.4 µm band can give a good estimate of the Q expected for the lasing mode in the 1.2 µm band.

Using this taper coupling technique, we were able to demonstrate Qs as high as 3.6×105. These

Qs were over a factor of 10 higher than anything that had been demonstrated in an AlGaAs mi-

crocavity. The high-Q resonances we saw were actually doublets, corresponding to standing wave

modes that form when the traditional clockwise and counterclockwise modes of the disk are coupled

and split by surface scattering. Such doublet modes were also seen by Matt in his investigation of Si

disks [64], and are indicative of a cavity loss rate that is low enough that coherent coupling between

the propagating modes of the disk can occur. For our disk geometries (255 nm thick and 4.5 µm

in diameter), Veff ∼ 6(λ/n)3. For optimal coupling to a single quantum dot, this corresponded to

a QD-cavity coupling rate g/2π ∼ 11 GHz, which would greatly exceed (by over a factor of 10)

the demonstrated cavity decay rate κ/2π ∼ 0.4 GHz and typical QD decay rates of γ⊥/2π ∼1 GHz.

These results indicated the potential for strong coupling in this system.

In addition to the Veff and cold-cavity Q of these cavities, we were also able to demonstrate rel-

atively efficient coupling to them, with power transfers very similar to what Matt had demonstrated

in the Si microdisks. We measured coupling depths as great as 60 % for a loaded Q ∼ 105. This was

a key result; it indicated that we could still achieve strong coupling (with g/κ ∼10) while also ob-

taining efficient coupling into and out of a coupled QD-microdisk system. For future experiments,

this will be of great importance. Experiments in quantum optics will involve very low light levels,

and efficient light collection is necessary from a detection standpoint, particularly at wavelengths

greater than 1 µm, where InGaAs detectors, which suffer from significantly poorer performance

characteristics than the Si detectors used at shorter wavelengths, are used. From the standpoint of
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future work in quantum information processing, applications in linear optics quantum computing

[67, 68] require a near-unity collection efficiency of single photon pulses. Although not currently

at that level, our results were a significant step towards these goals, and the path to more efficient

coupling through tailoring of the disk geometry was apparent. Indeed, Matt and Tom have since

demonstrated critical coupling in the Si microdisks.

This first set of results on optical loss and lasing characteristics in AlGaAs microdisk cavities

with embedded quantum dots was submitted for publication in December 2004, and was published

in April 2005 [69]. At this point, we began to seriously consider the possibility of doing cavity

QED experiments in these resonators. By this point, vacuum Rabi splitting due to the interaction of

a single QD with a microcavity had just been demonstrated by three groups [70, 71, 72], through

measurements of the spontaneous emission from the devices. Although our devices had the potential

for exhibiting Rabi splitting with a greater ratio of g/κ, it was clear to us that the most important

contribution that we could make was to develop cavity QED experiments using the fiber taper as an

input-output channel, as it appeared to be the key to opening up a number of future experiments and

device applications. This would require us to set up a number of different pieces of equipment in the

lab, such as a spectrometer with a very sensitive detector for studying the emission from single QDs,

a laser source for doing near-resonant pumping and spectroscopy of the coupled QD-microcavity

system, and the integration of the fiber-coupled devices in a liquid He cryostat. The last point was

particulary important and challenging, as it had not yet been demonstrated and was essentially at

the heart of our proposed experiments.

While waiting for some of the experimental equipment to arrive, we decided to further investi-

gate the performance of our microdisk-QD lasers at room temperature (chapter 6). In particular, we

were interested in explicitly demonstrating the utility of the fiber taper for future measurements of

QD-containing microdisks. To this point, we had used the taper as means to probe the microdisk

Qs, but there obviously was significant potential for using the taper as means to collect the emis-

sion from optically pumped devices, and furthermore, as a way to pump the devices as well (to this

point, our pumping and collection was done through standard free-space optics). To most explicitly

compare the efficiency of fiber taper collection with free-space collection, we revamped our pho-

toluminescence measurement setup to allow for the microdisks to simultaneously be probed with

optical fiber tapers while still allowing for standard free-space pumping and collection. This al-

lowed us to continue to pump the devices with a free-space beam while comparing the amount of

collected power through the free-space optics with that collected through the fiber taper. The differ-
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ence was quite dramatic; whereas before we were only able to collect hundreds of picoWatts from

our lasers, we were now able to collect as much as a couple hundred nanoWatts from the devices. To

most precisely quantify our results, we compared the differential efficiency ξ of the laser with and

without the fiber taper collection, and saw that the taper collection improved ξ by almost two orders

of magnitude. By collecting a significant fraction of the laser emission, we put ourselves in the

position to more quantitatively study some aspects of the laser’s behavior, particularly subthreshold,

where the poor collection typically obtained through free-space optics makes careful investigations

of device behavior difficult.

Not only is the collected power significantly greater when using the fiber tapers, but the num-

ber and variety of modes that are observed is strikingly different. This is not too surprising; for

microdisks, free-space collection essentially relies upon imperfections in the disk to scatter light

vertically into our collection optics. This is a relatively inefficient process, and becomes increas-

ingly more inefficient as device fabrication improves and higher and higher Q devices are realized.

The fiber taper, on the other hand, directly evanescently couples light out of the disk WGMs, and

can be a very efficient process. Although loading due to the taper does degrade the cavity Q, the

key point is that this loading is efficient in that the added loss is primarily due to coupling into an

observable channel (the fiber taper); the lost photons are collected into the fiber and are free to in-

teract with some other part of the system, such as another cavity or photon counting detectors. This

is not the same as loss due to absorption, for example, where the lost photons are not detectable

and are of no benefit. This point is somewhat obvious in that it is true for all cavities; in a simple

Fabry-Perot cavity, for example, one typically degrades the reflectivity of one of the mirrors to allow

for light to be coupled out of the cavity. Despite the simplicity of this concept, it is nevertheless

often misunderstood in the literature.

In the early part of 2005, we gained access to two new laser sources, which allowed us to do

two additional measurements. The first laser source was a 980 nm external cavity laser that had

been built by some members of our lab; we were able to use this as a source for optically pumping

our microdisks directly through the fiber taper. We were thus able to make purely fiber-coupled

devices that no longer relied upon any free-space optics. From a technological standpoint, the device

simply consists of a fiber input, to be hooked up to an optical pump source, and a fiber output,

through which the emitted laser light would propagate. Such purely fiber-coupled devices had

been previously demonstrated by the Vahala group at Caltech in the context of erbium-doped glass

microsphere and microtoroid cavities [73, 74]; our work extended this to the regime of wavelength-
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scale, semiconductor-based devices, for which interesting gain materials such as quantum well and

quantum dot layers can be incorporated. The second laser source we acquired was a 1250 nm

scanning tunable laser. The primary purpose of this laser was for future experiments employing

near-resonant pumping of QDs at cryogenic temperatures (Andreas and Sanjay had recently grown

new samples for us that emit at ∼ 1.32 µm at room temperature and ∼1.25 µm at 4 K). For the

time being, we were able to use it in conjunction with our current devices (which emitted at ∼1.2

µm) to measure the cavity Q at a wavelength that was much closer to the peak of the QD emission

spectrum. Because the wavelength dependence of surface state and material absorption in AlGaAs

is not particularly well known, and in addition, we had already seen strong differences in the cavity

Qs between the 850-1000 nm band and the 1400 nm band, it was important for us to be sure that the

Qs would still be high at wavelengths relevant to future cavity QED experiments. We were indeed

able to measure Q > 2×105 at ∼1250 nm, with the discrepancy in Q between the 1400 nm band

and the 1250 nm band likely being due to absorption from the tail end of the inhomogeneous QD

spectrum.

We wrote a relatively detailed paper on the various results concerning photoluminescence mea-

surements using optical fiber tapers and submitted it for publication in June 2005; it was published

a few months later in November [75]. We subsequently continued our study of these QD-microdisk

devices by considering how device performance (cavity Q, Veff, and lasing threshold) scales in go-

ing to smaller sized disks. In particular, we were interested in seeing how these microdisks could

compare to devices such as photonic crystal microcavities, both in theory and in practice. On

the theoretical end, we employed a finite element eigenfrequency solver method to calculate the

radiation-limited quality factor Qrad and mode volume Veff of the first order radial modes of D=1.5-

3 µm diameter microdisks in the 1200-1400 nm band. These simulations had been developed using

the FEMLAB software by Matt, who had in turn received some assistance from Sean Spillane (a

graduate student in Professor Vahala’s group who had previously used FEMLAB to study micro-

toroid resonators). From the simulations, we were able to see that standing wave modes in the

microdisks could have Qrad > 105 for Veff ∼ 2(λ/n)3, corresponding to a disk diameter of ∼1.5 µm.

Furthermore, Qrad sharply increases as the diameter increases, so that Qrad > 108 can be achieved for

Veff ∼ 3.5(λ/n)3. Such values are quite comparable to the highest values predicted for 2D photonic

crystal microcavities [28, 30]. From these simulation results, we could then calculate the predicted

coupling and decay rates for interactions with a single QD. One significant difference between QD-

based cavity QED and atomic-based cavity QED is in the emitter decay rates; a typical QD might
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have a radiative decay rate γsp/2π ∼0.2 GHz, but due to non-radiative dephasing, the total decay

rate γ⊥/2π will often be closer to 1 GHz (a neutral Cs atom, on the other hand, has a transverse

decay rate γ⊥/2π ∼ 2.6 MHz). An equivalent cavity decay rate would correspond to Q ∼ 105; this

indicates that there is some optimum diameter at which the ratio of the QD-microcavity coupling

rate g to the maximum decay rate in the system (either γ⊥ or the cavity decay rate κ) is maximum.

From our simulations, this diameter is ∼1.5-2 µm.

We then fabricated 2 µm diameter microdisks and studied their Qs and lasing properties using

the taper coupling techniques we had already established. These devices were fabricated in the

latest material that Andreas and Sanjay had grown, which had been optimized for room temperature

emission at ∼1.32 µm and low temperature (4K) emission at ∼1.25 µm. By taper testing the devices

in the 1.4 µm band, we were able to demonstrate Qs as high as 1.2×105 for Veff ∼ 2.2(λ/n)3. We also

observed room-temperature, continuous-wave lasers with threshold pump powers as low as 1 µW

of absorbed power, and used the fiber taper to create devices with differential collection efficiencies

as high as 16 %. From a pure device performance standpoint, these devices were outstanding; the

demonstrated lasing thresholds were orders of magnitude smaller than what had been demonstrated

by other groups for microcavity-QD lasers. This is a result of the ultrasmall volume of these cavities

and the correspondingly small number of QDs that need to be inverted (all the more so because we

are only using a single layer of QDs); the ability to achieve lasing from such a small amount of

gain is made possible by having a high cavity Q. Our study of these small diameter microdisks

with embedded quantum dots was submitted for publication in November 2005, and published in

February 2006 [76].

Towards cavity QED experiments

The most recent devices we had fabricated showed significant promise for cavity QED experi-

ments, and over the past few months, we have begun to equip our lab to do such work. This includes

setting up a continuous flow liquid He cryostat, which would allow us to reduce our sample tem-

peratures to ∼4 K, a necessity in order to reduce non-radiative dephasing in the QDs, as well as a

0.5 m spectrometer system with a liquid-nitrogen-cooled InGaAs detector. Even with such a detec-

tor, single QD detection at wavelengths above 1 µm is very difficult, due to the already-mentioned

poorer performance of InGaAs detectors relative to Si detectors.

With this equipment in place, we are in principle in the position to observe vacuum Rabi split-

ting in the spontaneous emission from a single QD in a semiconductor cavity, as has been recently

demonstrated by three groups at the end of 2004 [70, 71, 72]. This is not to say that such a demon-
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stration will be trivial; we certainly have to work hard to optimize our photoluminescence setup to

be sure that we can observe single QD emission, but the techniques for doing so have been estab-

lished by many research groups, although fewer have done so at the longer wavelengths at which

our devices operate. We are most interested in performing a slightly different experiment, however,

where Rabi splitting will be observed in the transmission (or reflection) past the cavity. This will

be a unique experiment as a result of our capability to efficiently couple light into and out of the

cavity, which can allow us measure the cavity response as opposed to spontaneous emission. In

this sense, it will make our semiconductor-based system quite analogous to the neutral atom cavity

QED experiments, where Rabi splitting is typically observed in the cavity’s transmission spectrum

[77, 78]. Most important, however, is the potential of this fiber-coupled system for observations be-

yond vacuum Rabi splitting, such as photon blockade [79] or few photon nonlinear optics. Chapter

8 presents a further discussion of some of these topics.

As our goal was to make the fiber taper an integral part of our cavity QED experiments, it was

necessary to figure out how to best integrate it within our liquid He cryostat. In some ways, our

problem paralleled the problem that Paul and Ben were facing in trying to integrate fiber-coupled

microcavities into a UHV chamber for neutral atom cavity QED. They had decided that the appro-

priate way to tackle this latter problem was to try to robustly mount the taper to our microcavity

chip with a UV-curable epoxy. This would result in a fiber-pigtailed device that, ideally, would be

portable and easy to integrate in existing setups. Paul spent many weeks tackling this challenging,

yet tedious task. There was little room for error, as a taper movement on the order of a micron

would eliminate coupling to the cavity. A number of different methods and strategies were tried but

were at best partially successful. Towards the end of the summer of 2005, however, he developed

a technique that affixed the taper to on-chip support structures using microdroplets of UV-curable

epoxy. This technique worked amazingly well, to the point that it was easier to break the support

structures free from the rest of the chip than it was to remove the taper was from the support struc-

tures. Paul submitted these results, along with some impressive measurements of Q ∼ 4×106 for

a SiNx microdisk with Veff ∼ 15(λ/n)3, for publication in April 2006 [80]. These SiNx microdisks

are transparent at λ ∼ 852 nm, making them suitable for the Cs atom cavity QED experiments.

In the summer of 2005, Christopher Michael began working full-time in our group, and began

working with me on the QD-microcavity project. In particular, he took the lead on trying to adapt the

mounting techniques that Paul had developed for our low temperature setup. Of course, the primary

concern here was the behavior of the UV epoxy at low temperatures. Chris was quickly able to
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reproduce Paul’s mounting results for our AlGaAs microdisks at room temperature, and we had no

significant difficulties in physically integrating the taper-coupled device into our cryostat. During

the cooldown, however, the taper came free at around 200 K. Chris and I made multiple additional

attempts at cooling down mounted samples over the next few weeks, and tried a number of heat-

curable epoxies that in principle had good low temperature performance. None of these attempts

succeeded, however. One important point is that the microdroplets of epoxy that we were using

were significantly less than what any of these epoxies had been tested at during manufacturing. By

mid-November 2005, we began to re-assess the situation.

Because Paul and Ben were tackling a similar problem, it seemed to make sense to try to leverage

their recent success. In doing so, we overlooked the important point that Paul and Ben were doing

taper mounting, rather than active positioning with mechanical stages, in part out of necessity, as

they needed to make a device that was of low enough profile to avoid impeding any of the cooling

and trapping laser beams within their vacuum chamber. This was not an all an issue for our QD

work. Although the experiments using taper-mounted devices would potentially be relatively simple

and elegant (and inexpensive), it is certainly not necessary, particularly in early experiments where

the primary focus is on the physical phenomena we hope to see. We thus began to explore the

possibility of incorporating a positioning setup within the cryostat. By the end of December 2005,

I had worked out a design that would significantly modify our cryostat and let us integrate piezo-

actuated stages into the chamber. The cryostat manufactures (Janis research) began construction of

the modified parts in early 2006, and we ordered a set of piezo-actuated stages that were specifically

engineered for operation at low temperatures and high vacuums.

While waiting for the new equipment to arrive, I began to more quantitatively investigate some

of the phenomena we might expect to see in our experiments. This gave me the opportunity to learn

some of the quantum master equation and quantum trajectory formalisms common to quantum

optics research. Using the Quantum Optics Toolbox for Matlab developed by Sze Tan [81, 82], we

began to simulate a coupled QD-microdisk system using the Q and Veff values we would expect

for our devices. One question of particular interest to us was how, if at all, the QD-microcavity

interaction would differ in our devices, which had Qs that were high enough that surface scattering

would couple the propagating modes of the disk and create standing wave modes. One immediate

consequence of having standing wave modes is that their mode volumes are approximately half that

of the traveling wave modes; the peak electric field strength for a standing wave mode is therefore
√

2 times larger than that for a traveling wave mode. Of course, another consequence is that the
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Table 2: Experimentally demonstrated optical microcavities as of early 2006. The scanning electron
microscope (SEM) images are for devices fabricated in the Painter research group (Si µdisk image
courtesy of M. Borselli and SiNx µdisk image courtesy of P.E. Barclay).

InP PC Si PC Si µdisk AlGaAs µdisk SiNx µdisk

10 μm

425 nm
x

y 1 μm

Geometry Material Q Veff((λ/n)3) Reference

photonic crystal InP/InGaAsP 1.3×104 1.2 [43]

Si 9.0×105 1.7 [30]

Si 6.0×105 1.2 [28]

GaAs/AlGaAs 2.0×104 1.0 [71]

microdisk Si 1.3×106 14 [64]

5.0×106 188 [65]

GaAs/AlGaAs 3.6×105 6 [69]

1.2×105 2.2 [76]

SiNx 3.6×106 15 [80]

microtoroid SiO2 1.0×108 500 [56]

4.0×108 160 [83]

micropost GaAs/AlGaAs 1.3×104 16 [84]

2.8×104 79 [84]

AlGaAs/AlOx 4.8×104 51 [85]

new standing wave field would have nodes for which the QD-cavity interaction would be zero. We

wanted to understand a bit more quantitatively how the system’s spectral response would behave

within different parameter regimes, where the quantities of interest are the QD-photon coupling rate

g, the cavity decay rate κ, the QD decay rate γ⊥, and the amplitude and phase of the backscattering

parameter β. Finally, the per photon electric field strengths within these cavities are so large that

nonlinear optics at the single photon level becomes a possibility. Our initial consideration of these

topics are the focus of chapter 8.

In table 2, I have updated table 1 to report overall progress in the field that has occurred during

the time of my graduate research. This table, which contains experimentally demonstrated values

for Q and Veff for a number of different microcavity geometries in different materials, is a good

indication of the large amount of effort that has been placed on developing microphotonic struc-



33

tures with low optical losses (other types of devices, such as PC waveguides, have also exhibited

markedly reduced losses over the last few years, although I have not included these structures within

the table).1 In addition to the semiconductor microcavities that I have focused on in this thesis, there

has been significant progress in the development of chip-based dielectric cavities, such as the SiO2

microtoroid cavities first demonstrated by Deniz Armani in Professor Kerry Vahala’s group at Cal-

tech [56], which exhibit Qs in excess of 100 million, and the SiNx cavities demonstrated by Paul in

our group [80], which have Qs of a few million and mode volumes that are significantly reduced in

comparison to the microtoroid geometries. As these structures are fabricated in materials that are

transparent throughout the visible and near-IR spectrum (unlike high-index semiconductors such as

Si, GaAs, and InP), they have potential for integration with a number of systems, including colloidal

quantum dots, impurity states in crystalline films, and alkali atoms, which all have optical transitions

at less than 1 µm. In general, the results of table 2 indicate that the field has significantly and rapidly

matured, through a combination of progress in fabrication technology, our understanding of how to

design these devices, and in the development of tools with which these devices can be probed. For

quantum optics applications, this means that we are finally in the position to take advantage of the

intense electric fields that are supported by these ultrasmall volume microcavities, in order to study

coherent light-matter interactions in solid-state systems.

The organization of this thesis is as follows. Part I details the design and experimental realization

of ultrasmall volume, high quality factor photonic crystal microcavities. Measurements of InP-based

multi-quantum-well lasers and passive Si resonators are presented. Part II is focused on microdisk

resonators in the AlGaAs system. These microdisks contain an integral layer of InAs quantum dots,

and measurements of the loss properties and lasing characteristics of these devices are presented.

Simulations of the predicted behavior of these structures in the strong coupling regime of cavity

QED are also considered. Finally, the appendixes contain relevant background material for the

topics discussed within the body of the thesis.

1In addition to the cavities described in this table, there have been significant efforts in developing new cavity geome-
tries. These include defect cavities in full three-dimensional photonic crystals [86] and other types of cavities employing
the distributed Bragg reflection confinement mechanism, including circular Bragg resonators [87, 88] and Bragg ”onion”
resonators [89].
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Part I

Development of Ultrasmall Volume,

High-Q Photonic Crystal Microcavities
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The first part of this thesis details work on planar photonic crystal microcavities. Chapter 1 dis-

cusses two semi-analytic tools for studying modes within these structures, while chapter 2 reviews

a methodology for design of high quality factor cavities, and presents cavity designs within differ-

ent photonic crystal lattices. Finally, chapters 3 and 4 describe the experimental implementation

of these designs within an InP-based multi-quantum-well material and within silicon, respectively.

The former chapter presents photoluminescence measurements of the InP-based devices, while the

latter chapter utilizes an optical fiber taper waveguide to passively probe the properties of the silicon

resonators.



40

Chapter 1

Semianalytic Methods for Studying
Localized Modes Within
Two-Dimensional Photonic Crystals

The design of photonic crystal (PC) based optical elements has often relied on numerical simula-

tions using methods such as finite-difference time-domain (FDTD) [6, 7]. While FDTD provides

a wealth of detailed information about the system under consideration, it has the drawback of be-

ing rather computationally intensive and time consuming. In this chapter, I detail two approximate

analytic methods that are of great use in studying planar PC cavities (fig. 1.1). The first is a group-

theory-based analysis [24] that provides information about the symmetries and dominant Fourier

components of defect modes within hexagonal and square lattice PC cavities. The second method

[25] is a Wannier-like equation analysis that describes how the photonic lattice provides localiza-

tion for the cavity modes. Taken together, these two techniques can provide approximate modal

field patterns that reproduce many of the detailed features of the cavity modes generated by FDTD

simulations. They thus serve as a starting point from which a more detailed analysis or optimization

of the cavity design can proceed.

1.1 Symmetry-based analysis

1.1.1 Introduction

The work described in this section is largely based on ref. [24], and is presented here in a slightly

different form, where I have omitted some results that are not utilized in the rest of this thesis in

favor of more detailed derivations of some basic results. The principal thrust of the analysis is

contained in sections 1.1.2 and 1.1.3, which outline the application of group theory in producing
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Substrate (n=3.2) Undercut Region (n=1)

Defect Region λ/2 waveguide (n=3.4)
Etched Air Holes (n=1)

Total Internal Reflection (TIR)
Distributed Bragg Reflection (DBR)

}

Figure 1.1: Illustration of a two-dimensional photonic crystal cavity in a slab waveguide structure.

an approximate description of the resonant modes of the defect cavities in hexagonal and square

host photonic lattices. Section 1.1.4 then presents the results of FDTD simulations, confirming the

results of the approximate group theory analysis while providing detailed properties of the defect

mode resonances beyond the scope of the simple symmetry analysis.

The spatial symmetries within Maxwell’s equations are determined by the translation and rotary-

reflection symmetries of the dielectric function, ε(r) [90]. The theory of space groups [91] can

then be used to predict and categorize the resonant modes of defects within PC structures. A two-

step process is implemented here. First, modes of the unperturbed slab waveguide are used as

a symmetry basis to generate approximate field patterns for the PC modes at the high symmetry

points of the first Brillouin zone (IBZ) boundary. The curvature of the photonic bands at these

points are such that peaks and valleys are created in the energy-momentum dispersion surface. It is

these peaks and valleys that are the seeds from which localized states are formed. The second step

in our approach then utilizes the PC band-edge states created from the unperturbed slab waveguide

mode symmetry basis to generate approximate forms for the localized defect modes lying within

the bandgap.

The host PC structures that we consider consist of a symmetric planar geometry with a two-

dimensionally patterned core layer surrounded by spatially uniform cladding layers. A structure

which has been the basis of many previously fabricated devices is depicted in cross section in fig.

1.1. The semiconductor core dielectric material has an approximate refractive index of 3.4, and the

cladding in these membrane-type structures is air with a refractive index of 1. For the structures
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studied in this and following sections, the ratio of the core thickness, d, to lattice constant, a, is

chosen so as to maintain the single-mode nature of the vertical waveguide for wavelengths within

the first-order guided-mode bandgap of the PC lattice. The modes of a symmetric slab waveguide,

patterned or unpatterned, separate into modes of even or odd parity with respect to a mirror plane in

the middle of the dielectric slab. Of interest here are the fundamental guided modes. Limiting our

analysis to the fundamental guided modes of the PC slab effectively reduces the spatial dimension

of the problem from three to two.

Within the mirror plane of the waveguide in these symmetric quasi-2D systems, the fundamental

even and odd modes can be represented by scalar fields Hz and Ez, respectively. As has been

described elsewhere [4], for connected 2D lattices such as those investigated here, the extent of

the photonic bandgap for modes with electric field polarization in the plane of the 2D patterning

(TE) is larger than for modes with normal electric field polarization (TM). For this reason, we will

focus our attention on the fundamental even modes of the 2D PC waveguides which are TE-like

(although the fundamental even and odd modes of the patterned slab are not purely TE or TM, they

are significantly TE-like or TM-like in nature). An extension to TM-like modes has been presented

in ref. [37], as it finds specific application in the study of quantum cascade photonic crystal lasers,

due to the TM polarization of the intersubband transitions within quantum cascade heterostructures.

In the analysis below, we consider two of the most common 2D geometries for the host PC lattice,

the square lattice and the hexagonal or trigonal lattice. We begin with an analysis of the hexagonal

lattice.

1.1.2 Hexagonal lattice photonic crystals

The point group symmetry of a 2D hexagonal PC is D6h, with a single horizontal mirror plane (σh)

lying in the waveguide center. Narrowing our scope to TE-like modes of a symmetric slab, the

point group symmetry of the hexagonal PC system can be effectively reduced to C6v=D6h/σh. A

plot of the approximate in-plane bandstructure for the fundamental TE-like guided modes of a half-

wavelength thick hexagonally patterned slab waveguide is given in fig. 1.2(a).1 This bandstructure

was calculated through the plane wave expansion technique, as reviewed in ref. [5].

Within the mirror plane of the slab, the magnetic field pattern for the (fundamental) TE-like

eigenmodes of the unpatterned slab waveguide can be written as Hk⊥(r⊥) = ẑe−i(k⊥·r⊥), where k⊥
1In this calculation a 2D hexagonal PC with host dielectric constant given by the effective index of the fundamental

TE mode of the half-wavelength thick slab is analyzed [7].
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Figure 1.2: (a) Fundamental TE-like guided mode bandstructure (r/a = 0.36, nslab = neff = 2.65).
The bandgap extends over a normalized frequency of 0.29-0.41. The air (cladding) light line is
shown as a solid black line. (b)-(c) Illustration of the real and reciprocal spaces of the two-
dimensional hexagonal PC. The high-symmetry points of the hexagonal lattice, referenced to the
center of an air hole, are a = (0,0), b = (a/2,0), and c = (0,a/

√
3). (b) Real space. |a1|= |a2|= a.

(c) Reciprocal space. |G1| = |G2| = 4π/
√

3a, |kX | = 2π/
√

3a, |kJ| = 4π/3a.

and r⊥ are in-plane wavenumber and spatial coordinates, respectively (in order to simplify notation

we drop the ⊥ label in the equations that follow). Upon patterning the slab waveguide, coupling

occurs between waveguide modes with similar unperturbed frequencies and identical propagation

constants modulo a reciprocal lattice vector G. This follows from the approximate conservation of

frequency and the exact conservation of crystal momentum. Of particular interest for the resonant

cavity designs and devices described below are those modes which comprise the frequency bands

defining the first order bandgap. The Bloch modes at the band-edges defining the first order bandgap

are predominantly formed from modes of the unpatterned waveguide with in-plane wavevector lying

at the boundary of the IBZ; other unpatterned waveguide modes with additional in-plane momentum

equal to some integer multiple of a reciprocal lattice vector contribute much less, owing to their large

(unperturbed) frequency difference. For the symmetry analysis described here we will be satisfied

with considering the contribution from only the degenerate lowest frequency unpatterned waveguide

modes at the first zone boundary.

The high symmetry points within and on the boundary of the IBZ of the hexagonal lattice are

(see fig. 1.2(c)): the six X points ({±(0,1)kX , ±(
√

3/2,1/2)kX , ±(
√

3/2,−1/2)kX}), the six J

points ({±(1/2,
√

3/2)kJ , ±(1/2,−√
3/2)kJ , ±(1,0)kJ}), and the Γ point=(0,0). The first-order

bandgap of the hexagonal lattice (see fig. 1.2(a)) is defined from above by the X point and below

by the J point. In analogy to the electronic bands in semiconductor crystals, the high frequency
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Table 1.1: Point group character tables for the hexagonal lattice.

C6v E C2 2C3 2C6 3σd 3σv

A′′
1 1 1 1 1 1 1

A′′
2 1 1 1 1 −1 −1

B′′
1 1 −1 1 −1 1 −1

B′′
2 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

Sa,d1 3 −3 0 0 1 −1

Sa,a1 2 0 2 0 −2 0

Sa,a2 3 3 0 0 −1 −1

C2v E C2 σx(σv1) σy(σd2)

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 −1 1

B2 1 −1 1 −1

Sa,d1 3 −3 −1 1

Sb,d1 3 1 −1 1

Sa,a1 2 0 0 −2

Sa,a2 3 3 −1 −1

Sb,a1 3 3 −1 −1

C3v,σd E 2C3 3σd

A′
1 1 1 1

A′
2 1 1 −1

E 2 −1 0

C3v,σv E 2C3 3σv

A′′′
1 1 1 1

A′′′
2 1 1 −1

E 2 −1 0

Sc,d1 3 0 −1

Sc,a1 2 −1 0
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band defining the first-order bandgap is called the conduction band, and the low frequency band

is the valence band [4]. In the approximate analysis of the defect states to follow we will need to

include all the degenerate satellite peaks (conduction band) and valleys (valence band). The group

of the wavevector, which defines the point group symmetry of a plane wave modulo G within the

dielectric lattice, is C2v, C3v, and C6v for the X , J, and Γ points of the hexagonal lattice, respectively.

Character tables [92] for these groups are given in table 1.1.

1.1.2.1 X-point

For the frequency bands defining the first-order bandgap, the unpatterned waveguide modes which

are most strongly coupled together to form the Bloch modes at the X-point are given by H = ẑe−ikXi ·r,

where i = 1,2, ...,6. The unperturbed frequencies of these modes are degenerate and can be written

as ωX
o ≈ c|kX |/neff, where neff is an effective index taking into account the vertical waveguiding

perpendicular to the slab.

The star of k (�k) at the X-point, formed from the independent satellite X-points within the

IBZ, consists of wavevectors {kX1 ,kX2 ,kX3}, with all other X-points being equivalent to one of

these vectors modulo a reciprocal lattice vector. A symmetry basis for the modes of the patterned

slab waveguide at the X1-satellite point can be found by applying the symmetry operations of the

group of the wave vector (GokX = C2v) to the seed vector HkX1
. In this case, the basis is simply

(HkX1
,H−kX1

).

Using these basis vectors, we calculate the 2×2 matrices that represent the different point group

operations of C2v, noting that the magnetic field transforms like a pseudovector [93] (unlike the

electric field). This yields the following:

SX
E =

⎛⎜⎝1 0

0 1

⎞⎟⎠ SX
C2

=

⎛⎜⎝0 1

1 0

⎞⎟⎠ SX
σx

=

⎛⎜⎝−1 0

0 −1

⎞⎟⎠ SX
σy

=

⎛⎜⎝ 0 −1

−1 0

⎞⎟⎠ . (1.1)

The character values for these operations are χE=2, χC2=0, χσx=−2, and χσy=0. These character

values are consistent with a reducible representation that decomposes as A2 ⊕B1. The projection

operators [92] onto these IRREP spaces are calculated as:
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PA2 =
1
4

{
1

⎛⎜⎝1 0

0 1

⎞⎟⎠+1

⎛⎜⎝0 1

1 0

⎞⎟⎠+(−1)

⎛⎜⎝−1 0

0 −1

⎞⎟⎠+(−1)

⎛⎜⎝ 0 −1

−1 0

⎞⎟⎠}
=

1
2

⎛⎜⎝1 1

1 1

⎞⎟⎠
(1.2)

PB1 =
1
4

{
1

⎛⎜⎝1 0

0 1

⎞⎟⎠+(−1)

⎛⎜⎝0 1

1 0

⎞⎟⎠+(−1)

⎛⎜⎝−1 0

0 −1

⎞⎟⎠+(1)

⎛⎜⎝ 0 −1

−1 0

⎞⎟⎠}
=

1
2

⎛⎜⎝ 1 −1

−1 1

⎞⎟⎠
(1.3)

Applying these projection operators to the seed vector HkX1
yields:

HX1
A2

= ẑcos(kX1 · ra),

HX1
B1

= ẑsin(kX1 · ra),
(1.4)

where A2 and B1 label the IRREP spaces of C2v (see table 1.1), and the index a is used to denote

the location of the origin within the hexagonal lattice (marked in fig. 1.2(b)). As the magnetic

field of HX1
A2

overlaps strongly with the air holes of the hexagonal PC (its electric field lying largely

in the dielectric) it represents the lower frequency “valence” band mode, while HX1
B1

represents the

“conduction” band mode. This is a result of the tendency for modes with electric field concen-

trated within regions of high dielectric constant to be lower frequency than those with electric field

concentrated in low dielectric regions [4].

In order to fully define the modes at the X-point all modes of the �k must be included. In the

case of the X-point this corresponds to successive rotations by π/6 (C6 rotation). The result is the

following set of degenerate valence band modes,

VBX
a =

⎛⎜⎜⎜⎜⎝
vX1

vX2

vX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
cos(kX1 · ra)

cos(kX2 · ra)

cos(kX3 · ra)

⎞⎟⎟⎟⎟⎠ , (1.5)
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and degenerate conduction band modes,

CBX
a =

⎛⎜⎜⎜⎜⎝
cX1

cX2

cX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
sin(kX1 · ra)

sin(kX2 · ra)

sin(kX3 · ra)

⎞⎟⎟⎟⎟⎠ . (1.6)

fig. 1.3 shows the magnetic field amplitude for each of the valence and conduction band modes at

all the satellite X-points of the hexagonal lattice.

vX1 vX2 vX3

cX1 cX2 cX3

Figure 1.3: Magnetic field (amplitude) patterns of the valence band modes (top) and conduction
band modes (bottom) of the hexagonal lattice at the three different X-points generated by the sym-
metry bases VBX

a and CBX
a .

1.1.2.2 J-point

A similar procedure may be performed in order to determine approximate forms for the TE-like

valence and conduction band modes of the hexagonal lattice at the J-point of the IBZ. Approximate

forms for the valence band edge and conduction band edge modes at the J-point are (with point a

taken as the origin):
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VBJ
a =

⎛⎜⎝vJ1

vJ2

⎞⎟⎠ = ẑ

⎛⎜⎝e−ikJ1 ·ra
+ e−ikJ3 ·ra

+ e−ikJ5 ·ra

e−ikJ2 ·ra
+ e−ikJ4 ·ra

+ e−ikJ6 ·ra

⎞⎟⎠ , (1.7)

CBJ
a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1J1

c2J1

c1J2

c2J2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ẑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−ikJ1 ·ra
+ e−ikJ3 ·ra −2e−ikJ5 ·ra

e−ikJ1 ·ra − e−ikJ3 ·ra

e−ikJ2 ·ra
+ e−ikJ4 ·ra −2e−ikJ6 ·ra

e−ikJ2 ·ra − e−ikJ4 ·ra

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.8)

Figure 1.4 shows the magnetic field amplitude for each of the valence and conduction band modes

at the J-point of the hexagonal lattice. Although not obvious from first inspection of equations

(1.7) and (1.8), the plots in these two tables show that the modes of the symmetry basis VBJ
a have a

magnetic field amplitude predominantly overlapping the air holes while the magnetic field amplitude

of the modes of CBJ
a overlap the dielectric regions, a property that allows us to classify the modes

as valence and conduction band, respectively. This result is also quite encouraging, given the fact

that our symmetry basis is quite primitive and yet can reproduce this property of the valence and

conduction band modes so critical to the formation of a frequency bandgap.

The approximate valence and conduction band edge modes derived above all have their origin

at the center of an air hole of the lattice. The hexagonal lattice has two other high-symmetry points

around which one may center a defect, points b and c shown in fig. 1.2(b). Unlike point a, points b

and c are of lower symmetry than the point group of the hexagonal lattice. A defect centered about

point b will be limited to a point group of symmetry C2v, and those about point c to point group

C3v,σv . The point group symmetry operations for each of these types of defects are centered about

different points within the lattice. So as to be clear about the position of the origin to be used for

point symmetry operations, we label the Bloch mode symmetry bases with an index corresponding

to the location of the origin around which it is expanded. For example, VBX
b is the X-point valence

band basis of equation (1.5) written in a shifted coordinate system with point b at the origin. In the

equations to follow, ra, rb, and rc are coordinate systems with origin located at point a, b, and c of

the hexagonal lattice, respectively.
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vJ1 vJ2

c1J1 c2J1

c1J2 c2J2

Figure 1.4: Magnetic field (amplitude) pat-
terns of the valence band (top) and conduc-
tion band (middle and bottom) modes of the
hexagonal lattice at the J-point, generated by
the symmetry bases VBJ

a and CBJ
a.

1.1.2.3 Conduction band donor modes

In an attempt to form localized resonances, the dielectric constant in a small region of a periodic

photonic crystal lattice may be altered from its unperturbed value, breaking the regular periodicity

of the lattice and mixing the Bloch modes. If the perturbation corresponds to a local increase in the

dielectric constant (fig. 1.5(a)), the localized modes are formed predominantly from the conduction

band, specifically the modes at the band edge. This is a result of the tendency for mode frequencies

to decrease with increasing dielectric constant [4], pulling the conduction band edge modes into the

bandgap of the photonic crystal near the defect. This type of localized mode is termed a donor mode

in analogy to the electronic defect states in crystalline materials [94].

For the hexagonal PC lattice the minimum in the conduction band occurs at the X-point (see

fig. 1.2(a)). Therefore, the appropriate symmetry basis to use for describing localized donor modes

are the degenerate conduction band edge modes of CBX
a , CBX

b , and CBX
c for defect regions centered

around points a, b, and c.

Let us consider the formation of conduction band donor modes within defects that maintain the

full C6v symmetry of the lattice. Using the symmetry basis CBX
a , we calculate the matrix represen-
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(a) (b) (c)
Figure 1.5: Example defect cavity
geometries in the hexagonal lattice.
(a) Donor-type cavity, (b) Acceptor-
type cavity, (c) Y -split acceptor-
type cavity.

tation of the point group operators:

ECBX =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠C2,CBX =

⎛⎜⎜⎜⎜⎝
−1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎟⎟⎠C3,CBX =

⎛⎜⎜⎜⎜⎝
0 −1 0

0 0 −1

1 0 0

⎞⎟⎟⎟⎟⎠C−1
3,CBX =

⎛⎜⎜⎜⎜⎝
0 0 1

−1 0 0

0 −1 0

⎞⎟⎟⎟⎟⎠
(1.9)

C6,CBX =

⎛⎜⎜⎜⎜⎝
0 0 −1

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎠C−1
6,CBX =

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 1

−1 0 0

⎞⎟⎟⎟⎟⎠σd1,CBX =

⎛⎜⎜⎜⎜⎝
0 −1 0

−1 0 0

0 0 1

⎞⎟⎟⎟⎟⎠σd2,CBX =

⎛⎜⎜⎜⎜⎝
1 0 0

0 0 −1

0 −1 0

⎞⎟⎟⎟⎟⎠
(1.10)

σd3,CBX =

⎛⎜⎜⎜⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎟⎟⎟⎠σv1,CBX =

⎛⎜⎜⎜⎜⎝
−1 0 0

0 0 1

0 1 0

⎞⎟⎟⎟⎟⎠σv2,CBX =

⎛⎜⎜⎜⎜⎝
0 0 −1

0 −1 0

−1 0 0

⎞⎟⎟⎟⎟⎠σv3,CBX =

⎛⎜⎜⎜⎜⎝
0 1 0

1 0 0

0 0 −1

⎞⎟⎟⎟⎟⎠
(1.11)

The character values for these operations are χE=3, χC2=-3, χC3=0, χC6=0, χσd =1, and χσv=-1. These

character values are consistent with a reducible representation that decomposes as Sa,d1 = E1 ⊕B′′
1,

as listed in table 1.1. For the B′′
1 representation, the calculation of the projection operator is done

using the same method as was used to calculate the projectors for the conduction band modes at

the X-point. For the E1 representation, there is an additional step because it is a two-dimensional

representation. Recalling that E1 can be spanned by the coordinate pair (x,y), we write out two-
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dimensional matrices for E1:

EE =

⎛⎜⎝1 0

0 1

⎞⎟⎠ EC2 =

⎛⎜⎝−1 0

0 −1

⎞⎟⎠ EC3 =

⎛⎜⎝ −1
2

√
3

2

−√
3

2
1
2

⎞⎟⎠ EC−1
3

=

⎛⎜⎝−1
2

−√
3

2
√

3
2

−1
2

⎞⎟⎠ (1.12)

EC6 =

⎛⎜⎝ 1
2

√
3

2

−√
3

2
1
2

⎞⎟⎠ EC−1
6

=

⎛⎜⎝ 1
2

−√
3

2
√

3
2

1
2

⎞⎟⎠ Eσd1 =

⎛⎜⎝−1
2

√
3

2
√

3
2

1
2

⎞⎟⎠ Eσd2 =

⎛⎜⎝1 0

0 −1

⎞⎟⎠ (1.13)

Eσd3 =

⎛⎜⎝ −1
2

−√
3

2

−√
3

2
1
2

⎞⎟⎠ Eσv1 =

⎛⎜⎝−1 0

0 1

⎞⎟⎠ Eσv2 =

⎛⎜⎝ 1
2

√
3

2
√

3
2

−1
2

⎞⎟⎠ Eσv3 =

⎛⎜⎝ 1
2

−√
3

2

−√
3

2
1
2

⎞⎟⎠
(1.14)

The diagonal elements of these matrices are then used in the calculation of the two projectors within

this subspace. Overall, we arrive at the following projection operators for the conduction band donor

modes:

PCBX

B′′
1

= 1
3

⎛⎜⎜⎜⎜⎝
1 −1 1

−1 1 −1

1 −1 1

⎞⎟⎟⎟⎟⎠ PCBX

E1,1
= 1

6

⎛⎜⎜⎜⎜⎝
4 2 −2

2 1 −1

−2 −1 1

⎞⎟⎟⎟⎟⎠ PCBX

E1,2
= 1

2

⎛⎜⎜⎜⎜⎝
0 0 0

0 1 1

0 1 1

⎞⎟⎟⎟⎟⎠ (1.15)

Note that the coefficients in front of these projection matrices are eventually dropped as the approx-

imate solutions that we give are not absolutely normalized, although the relative amplitudes of the

different Fourier components are certainly kept (and are captured by the projection matrices them-

selves, without the prefactors). Using these projection operators on CBX
a , a set of basis functions for

the localized conduction band donor modes centered about point a of the hexagonal lattice is found:
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Ha,d1
B′′

1
= ẑ

(
sin(kX1 · ra)− sin(kX2 · ra)+ sin(kX3 · ra)

)
Ha,d1

E1,1
= ẑ

(
2sin(kX1 · ra)+ sin(kX2 · ra)− sin(kX3 · ra)

)
Ha,d1

E1,2
= ẑ

(
sin(kX2 · ra)+ sin(kX3 · ra)

)
,

(1.16)

Similar techniques are used to find the character values of representation Sb,d1 of the CBX
b basis

under C2v and representation Sc,d1 of the CBX
c basis under C3v,σv , and they are given in table 1.1.

From the character tables we find that these representations decompose as Sb,d1 = A1⊕A2⊕B1 and

Sc,d1 = E ⊕A′′′
2 . We then use the appropriate projection operators to find basis functions for the

localized conduction band donor modes centered about point b:

Hb,d1
A1

= ẑ

(
cos(kX2 · rb)− cos(kX3 · rb)

)
Hb,d1

A2
= ẑ

(
cos(kX2 · rb)+ cos(kX3 · rb)

)
Hb,d1

B1
= ẑ

(
sin(kX1 · rb)

)
,

(1.17)

and point c:

Hc,d1
A′′′

2
= ẑ

(
sin

(
kX1 · rc − π

3

)
− sin

(
kX2 · rc +

π
3

)
+ sin

(
kX3 · rc − π

3

))
Hc,d1

E,1 = ẑ

(
2sin

(
kX1 · rc − π

3

)
+ sin

(
kX2 · rc +

π
3

)
− sin

(
kX3 · rc − π

3

))
Hc,d1

E,2 = ẑ

(
sin

(
kX2 · rc +

π
3

)
+ sin

(
kX3 · rc − π

3

))
,

(1.18)

Figure 1.6 shows plots of the amplitude of the ẑ-component of the magnetic field for each of the

localized donor modes centered about point a, as generated by the symmetry analysis. In these plots

(and in all plots generated from the symmetry analysis to follow), the localization of each mode has

been taken into account by multiplying a two-dimensional Gaussian envelope function with each
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Ha,d1
B′′

1
Ha,d1

E1,1
Ha,d1

E1,2

Figure 1.6: Magnetic field amplitude of the symmetry analysis conduction band donor modes cen-
tered about point a of the hexagonal lattice.

dominant Fourier component, where the two axes of the Gaussian envelope are taken as parallel and

perpendicular to the direction of the Fourier component. This set of envelope function transforms

as the identity under symmetry operations of the group of the wavevector, and as such does not alter

the transformation properties of each k component. Consequently, the IRREP classification of the

defect modes given above is maintained. This particular choice of envelope function, apart from

symmetry, is rather arbitrary, only chosen to capture the localized nature of the defect modes and

highlight the dominant Fourier components. In section 1.2, a Wannier-like equation for the envelope

of localized photon states is studied and shown to have ground state solutions invariant under those

elements of the group of the wavevector that are also symmetries of the defect perturbation. The

ground state envelope solutions then leave the IRREP classification of the above analysis for the

defect modes unchanged.

Returning to equation (1.16) describing the localized donor modes about point a of the hexago-

nal lattice, we note that the (d1,B′′
1) donor mode transforms like a hexapole, whereas the degenerate

(d1,E1) modes transform as an (x,y)-dipole pair. By introducing defect regions with lower symme-

try than the host photonic lattice one is able to remove degeneracies in the localized mode spectrum.

The effects of this symmetry lowering can be simply determined using group theory by virtue of the

compatibility relations between the IRREPs of the full and reduced symmetry groups:
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C6v →C2v

Ha,d1
B′′

1
→ Ha,d1,1

B1

Ha,d1
E1,1

→ Ha,d1,2
B1

(x-dipole)

Ha,d1
E1,2

→ Ha,d1
B2

(y-dipole).

(1.19)

In the case of cavities with C2v symmetry, group theory predicts the splitting of the degenerate

dipole-like modes into x and y dipole-like modes with differing frequencies. This has been studied

in numerical simulations and experimental measurements of such devices [2].

1.1.2.4 Valence band acceptor modes

If the dielectric constant had been reduced in a small region within the photonic lattice, by enlarging

an air hole for instance (fig. 1.5(b)), then instead of pulling the conduction band modes down into

the photonic crystal bandgap the valence band modes are pushed up into the bandgap. In this case

modes localized to the defect region are formed predominantly from mixtures of Bloch modes from

the valence band edge. This type of defect mode is termed an acceptor mode, again in analogy to the

electronic states in a crystal [94]. For the hexagonal lattice the maximum of the valence band occurs

at the J-point (see fig. 1.2(a)). The obvious symmetry basis to use to describe the acceptor modes is

the set of degenerate valence band modes at the J-point, VBJ
a in the case of defects centered around

point a, and VBJ
b and VBJ

c for defects about points b and c, respectively.

The characters of the representation Sa,a1 of VBJ
a under the C6v point symmetry group, the

representation Sb,a1 of VBJ
b under C2v, and the representation Sc,a1 of VBJ

c under C3v,σv are given

in table 1.1. Sa,a1 decomposes into irreducible blocks A′′
2 ⊕B′′

2, Sb,a1 = A2 ⊕B2, and Sc,a1 = E .

Using the projection operators, the basis functions VBJ
a are coupled together to form the following

acceptor modes about point a:

Ha,a1
A′′

2
= ẑ

(
cos(kJ1 · ra)+ cos(kJ3 · ra)+ cos(kJ5 · ra)

)
Ha,a1

B′′
2

= ẑ

(
sin(kJ1 · ra)+ sin(kJ3 · ra)+ sin(kJ5 · ra)

)
.

(1.20)

Similarly, projecting the basis functions VBJ
b onto the IRREPs of C2v and the basis functions VBJ

c
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Ha,a1
A′′

2
Ha,a1

B′′
2

Figure 1.7: Magnetic field amplitude of the symmetry analysis valence band acceptor modes cen-
tered about point a of the hexagonal lattice.

onto the IRREPs of C3v,σv , we get for the acceptor modes about point b:

Hb,a1
A2

= ẑ

(
cos(kJ1 · rb)+ cos(kJ3 · rb)− cos(kJ5 · rb)

)
Hb,a1

B2
= ẑ

(
sin(kJ1 · rb)+ sin(kJ3 · rb)− sin(kJ5 · rb)

)
,

(1.21)

and the acceptor modes about point c:

Hc,a1
E,1 = ẑ

(
cos

(
kJ1 · rc +

2π
3

)
+ cos

(
kJ3 · rc − 2π

3

)
+ cos

(
kJ5 · rc

))
Hc,a1

E,2 = ẑ

(
sin

(
kJ1 · rc +

2π
3

)
+ sin

(
kJ3 · rc − 2π

3

)
+ sin

(
kJ5 · rc

))
.

(1.22)

Figure 1.7 shows plots of the ẑ-component of the magnetic field for each of the localized acceptor

modes centered about point a of the hexagonal lattice generated by the symmetry analysis.

In modified cavities with C2v symmetry, Ha,a1
A′′

2
and Ha,a1

B′′
2

transform as A2 and B2 IRREPs, re-

spectively:
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C6v →C2v

Ha,a1
A′′

2
→ Ha,a1

A2
,

Ha,a1
B′′

2
→ Ha,a1

B2
.

(1.23)

For defect regions that strongly perturb the photonic lattice it is possible that a larger number of

localized defect modes will form than can be described by the limited symmetry basis used above.

This is the case for the Y -split cavity described in ref. [24] and illustrated in fig. 1.5(c), where the

defect region is composed of two enlarged holes and has a relatively deep potential well for acceptor

modes. As a result, in the FDTD simulations of the Y -split cavity, an additional shallow acceptor

type mode (Y -A20), not covered by the VBJ
a symmetry basis, is present.

In order to more fully capture the possible defect modes in a deep potential well, the symmetry

basis can be expanded in a number of ways [24]. The method we adopt here is based upon the

observation that, for defect regions which provide a deep potential well, it is possible that defect

modes will form which are composed of unperturbed photonic crystal modes located not just at

the edge of the bandgap, but also at other nearby (in frequency) high-symmetry k-points within

the IBZ. In order to represent these additional localized resonant modes the unperturbed photonic

crystal modes at the additional high-symmetry k-points must be included in the symmetry basis.

For the hexagonal lattice the valence band at the X-point is close in frequency to the bandgap edge

at the J-point (see fig. 1.2(a)). The symmetry basis for the X-point valence band edge is the triply

degenerate VBX
a basis set. The representation of VBX

a under C6v, labeled Sa,a2, has the character

values shown in table 1.1 and decomposes into irreducible spaces E2 and A′′
2. The acceptor type

modes formed from the X-point valence band modes in a symmetric defect cavity centered about

point a in the lattice are:

Ha,a2
A′′

2
= ẑ

(
cos(kX1 · ra)+ cos(kX2 · ra)+ cos(kX3 · ra)

)
,

Ha,a2
E2,1

= ẑ

(
2cos(kX1 · ra)− cos(kX2 · ra)− cos(kX3 · ra)

)
,

Ha,a2
E2,2

= ẑ

(
cos(kX2 · ra)− cos(kX3 · ra)

)
.

(1.24)

The Y -split cavity does not have C6v symmetry, but rather C2v symmetry. This reduction of
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Ha,a2,1
A2

Ha,a2,2
A2

Ha,a2
A1

Figure 1.8: Magnetic field amplitude of the symmetry analysis acceptor modes formed from the
valence band modes at the X-point of the hexagonal lattice.

symmetry causes the E2 IRREP space to split into A1⊕A2, and the A′′
2 space to transfer over into an

A2 IRREP space:

C6v →C2v

Ha,a2
A′′

2
→ Ha,a2,1

A2
,

Ha,a2
E2,1

→ Ha,a2,2
A2

,

Ha,a2
E2,2

→ Ha,a2
A1

.

(1.25)

Figure 1.8 shows the magnetic field patterns of the acceptor modes predicted by the symmetry

analysis to form out of the valence band at the X-point. The shallow acceptor mode (Y -A20) found

in FDTD simulations of the Y -split cavity [24] transforms as the A2 IRREP under C2v symmetry

operations. The dominant Fourier component within the FDTD generated field pattern of Y -A20 is

kX1 , from which we can conclude that this mode is given by Ha,a2,2
A2

as opposed to Ha,a2,1
A2

.

1.1.3 Square lattice photonic crystals

As with the hexagonal lattice we concern ourselves here with only the fundamental even modes (TE-

like) of the slab waveguide. The point group symmetry of the square lattice photonic crystal can then

be reduced to C4v=D4h/σh. A plot of the approximate in-plane bandstructure for the fundamental

TE-like guided modes of a half-wavelength thick slab waveguide with a square array patterning of

air holes is given in fig. 1.9(a).
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Figure 1.9: (a) Fundamental TE-like guided mode bandstructure (r/a = 0.35, nslab = neff = 2.65)
for a square lattice of air holes. The bandgap is seen to be much smaller for the square lattice than in
the case of the hexagonal lattice. The air (cladding) light line is shown as a solid black line. (b)-(c)
Illustration of the real and reciprocal spaces of the two-dimensional PC with a square array of air
holes. The high-symmetry points of the square lattice, referenced to the center of an air hole, are
d = (0,0), e = (0,a/2), and f = (a/2,a/2). (b) Real space. |a1| = |a2| = a. (c) Reciprocal space.
|G1| = |G2| = 2π/a, |kX | = π/a, |kM| = √

2π/a.

The high symmetry points on the boundary or within the IBZ are (see fig. 1.9(c)): the four X

points ({±(1,0)kX , ±(0,1)kX}), the four M points ((±√
2/2,±√

2/2)kM), and the Γ point=(0,0).

The first-order band edges of the square lattice (see fig. 1.9(a)) are defined from above by the X

point (conduction band edge) and below by the M point (valence band edge). The group of the wave

vector at the X , M, and Γ points is C2v, C4v, and C4v, respectively. Character tables [92] for the two

groups are given in table 1.2.

1.1.3.1 X-point

A symmetry basis for the modes of the square lattice PC at the X-point can be found by applying

the symmetry operations of the group of the wave vector (GokX = C2v) to the seed vector HkX1
. In

this case, the basis is simply (HkX1
,H−kX1

). Projecting this symmetry basis onto the IRREP spaces

of C2v yields:

HX1
A2

= ẑcos(kX1 · r)
HX1

B1
= ẑsin(kX1 · r),

(1.26)

where A2 and B1 label the IRREP spaces of C2v,σv (see table 1.2). With the origin at the center of an
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Table 1.2: Point group character tables for the square lattice.

C4v E C2 2C4 2σv 2σd

A′′
1 1 1 1 1 1

A′′
2 1 1 1 −1 −1

B′′
1 1 1 −1 1 −1

B′′
2 1 1 −1 −1 1

E 2 −2 0 0 0

SM 4 0 0 0 −2

Sd,d1 2 −2 0 0 0

S f ,d1 2 2 0 −2 0

C2v,σd E C2 σx′(σd1) σy′(σd2)

A′
1 1 1 1 1

A′
2 1 1 −1 −1

B′
1 1 −1 −1 1

B′
2 1 −1 1 −1

C2v,σv E C2 σx(σv1) σy(σv2)

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 −1 1

B2 1 −1 1 −1

SX1 2 0 0 −2

Se,d1 2 0 0 −2
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vX1 vX2

cX1 cX2

Figure 1.10: Magnetic field (amplitude)
patterns of the valence band (top) and
conduction band (bottom) modes of the
square lattice at the X-points of the IBZ,
generated by the symmetry basis VBX

d
and CBX

d .

air hole of the lattice (point d of fig. 1.9), HX1
A2

corresponds to the “valence” band mode and HX1
B1

to

the “conduction” band mode.

In order to fully define the modes at the X-point all modes of the �k must be included. The

result is the following set of degenerate valence band modes,

VBX
d =

⎛⎜⎝vX1

vX2

⎞⎟⎠ = ẑ

⎛⎜⎝cos(kX1 · rd)

cos(kX2 · rd)

⎞⎟⎠ , (1.27)

and degenerate conduction band modes,

CBX
d =

⎛⎜⎝cX1

cX2

⎞⎟⎠ = ẑ

⎛⎜⎝sin(kX1 · rd)

sin(kX2 · rd)

⎞⎟⎠ . (1.28)

The magnetic field amplitude patterns of the approximate valence and conduction band modes of

the square lattice at the X-points of the IBZ are given in fig. 1.10.
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1.1.3.2 M-point

A similar procedure may be performed in order to determine approximate forms for the TE-like

valence and conduction band modes at the M-point of the IBZ. The symmetry basis, SM, in this case

includes all the M-points of the IBZ, SM = (HkM1
,HkM2

,H−kM1
,H−kM2

). As determined from its

character under C4v (table 1.2), SM = E ⊕A′′
2 ⊕B′′

1. The doubly degenerate IRREP E must represent

a higher energy level band as the conduction and valence band edges are non-degenerate at the

M-point as shown in fig. 1.9(a). Using only the A′′
2 and B′′

1 IRREPs, an approximate form for the

valence band edge and conduction band edge modes at the M-point are calculated by projecting

the symmetry basis onto these IRREP spaces. With the origin centered at point d, the valence and

conduction band edge modes are:

VBM
d =

(
vM

)
= ẑ

(
cos(kM1 · rd)+ cos(kM2 · rd)

)
(1.29)

CBM
d =

(
c1M

)
= ẑ

(
cos(kM1 · rd)− cos(kM2 · rd)

)
. (1.30)

Approximate modes for the degenerate higher frequency conduction bands represented by the

IRREP E are, in one particular basis,

CBM,2
d =

⎛⎜⎝c2M

c3M

⎞⎟⎠ = ẑ

⎛⎜⎝sin(kM1 · rd)− sin(kM2 · rd)

sin(kM1 · rd)+ sin(kM2 · rd)

⎞⎟⎠ . (1.31)

These higher frequency bands will be unimportant in our present analysis where we focus on the

band edge modes defining the first order bandgap. The magnetic field amplitude patterns of the

valence and conduction band modes at the M-point of the IBZ of the square lattice are given in fig.

1.11.

In the square lattice there are three different high-symmetry points around which one may center

a defect. These points are labeled d, e, and f in fig. 1.9. Points d and f maintain the C4v point group

of the square lattice, and point e has a lowered symmetry given by the point group C2v,σv . As was

done for the hexagonal lattice, Bloch mode symmetry bases written with their origin at points d, e,
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vM c1M

Figure 1.11: Magnetic field (amplitude) patterns of the valence and conduction band modes of the
square lattice at the M-points of the IBZ generated by the symmetry analysis (VBM

d and CBM
d ).

or f will be indexed as such. Coordinates centered about points d, e, and f of the lattice are also

labeled as rd , re, and r f , respectively.

1.1.3.3 Conduction band donor modes

For the square PC lattice the minimum in the conduction band occurs at the X-point (fig. 1.9(a)).

The representations describing how the CBX
d , CBX

e , and CBX
f symmetry bases transform under the

appropriate point group are given by Sd,d1, Se,d1, and S f ,d1, respectively. From their characters in

table 1.2 we find that Sd,d1 = E, Se,d1 = A2⊕B2, and S f ,d1 = A′′
2 ⊕B′′

2. Projecting the symmetry

bases onto the different IRREPs gives the following conduction band donor modes:

Hd,d1
E,1 = ẑ

(
sin(kX1 · rd)

)
Hd,d1

E,2 = ẑ

(
sin(kX2 · rd)

)
,

(1.32)

centered about point d,

He,d1
A2 = ẑ

(
cos(kX1 · re)

)
He,d1

B2 = ẑ

(
sin(kX2 · re)

)
,

(1.33)

centered about point e, and
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H f ,d1
A′′

2
= ẑ

(
cos(kX1 · r f )+ cos(kX2 · r f )

)
H f ,d1

B′′
2

= ẑ

(
cos(kX1 · r f )− cos(kX2 · r f )

)
,

(1.34)

centered about point f .

For the points d and f , defects may be formed with lower symmetry than the C4v symmetry

of the square lattice. We may use the compatibility relations between the IRREPs of the full and

reduced symmetry groups to determine the new mode structure. For a defect of C2v symmetry with

mirror planes along the x̂ and ŷ directions of fig. 1.9(a) (C2v,σv) we have the following reduction:

C4v →C2v,σv

Hd,d1
E,1 → Hd,d1

B1
(x-dipole)

Hd,d1
E,2 → Hd,d1

B2
(y-dipole)

H f ,d1
A′′

2
→ H f ,d1,1

A2

H f ,d1
B′′

2
→ H f ,d1,2

A2
.

(1.35)

If instead, the defect at points d and f contain the mirror planes σd , the symmetry is C2v,σd and the

compatibility relations give a mode decomposition:

C4v →C2v,σd

Hd,d1
E,1 +Hd,d1

E,2 → Hd,d1
B′

1
(x′-dipole)

Hd,d1
E,1 −Hd,d1

E,2 → Hd,d1
B′

2
(y′-dipole)

H f ,d1
A′′

2
→ H f ,d1

A′
2

H f ,d1
B′′

2
→ H f ,d1

A′
1

.

(1.36)

Magnetic field patterns of the different localized donor-type defect modes formed about point d, e,

and f of the square lattice are given in fig. 1.12, where we have chosen to decompose the fields

according to C2v,σv .
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A2 He,d1

B2

H f ,d1,1
A2

H f ,d1,2
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Figure 1.12: Magnetic field amplitude of the localized donor modes centered about points d, e, and
f of the square lattice.
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1.1.3.4 Valence band acceptor modes

For the square lattice the maximum of the valence band occurs at the M-point (fig. 1.9(a)). For the

square lattice the valence band edge modes at the M-point consist of a single non-degenerate mode.

This can be traced back to the fact that the M-point in the square lattice is highly symmetric, and the

group of the wave vector mixes all four of the M-points on the IBZ boundary. The symmetries and

fundamental momentum components of the possible acceptor modes formed from the M-point band

edge modes (the approximate defect modes) are then trivially given by the single M-point valence

band edge mode.

For the high-symmetry points d and f of the square lattice, assuming that the defect is symmetric

enough so as to maintain the C4v symmetry of the square lattice, the single acceptor mode is

Hd,a1
A′′

2
= ẑ

(
cos(kM1 · rd)+ cos(kM2 · rd)

)
, (1.37)

about point d, and

H f ,a1
B′′

1
= ẑ

(
cos(kM1 · r f )− cos(kM2 · r f )

)
, (1.38)

about point f . The character of the representation Sa1
e of the M-point valence band edge mode under

symmetry transformations C2v,σv about point e is given in table 1.2. From its character, Sa1
e = B1,

the approximate acceptor mode of a defect centered about point e is

He,a1
B1

= ẑ

(
sin(kM1 · re)− sin(kM2 · re)

)
. (1.39)

For defects of reduced symmetry about points d and f we have the following compatibility

relations:

C4v →C2v,σv

Hd,a1
A′′

2
→ Hd,a1

A2

H f ,a1
B′′

1
→ H f ,a1

A1
,

and

C4v →C2v,σd

Hd,a1
A′′

2
→ Hd,a1

A′
2

H f ,a1
B′′

1
→ H f ,a1

A′
2

.

(1.40)



66

Hd,a1
A2

He,a1
B1

H f ,a1
A1

Figure 1.13: Magnetic field amplitude of the acceptor-type modes formed the valence band M-point
modes of the square lattice.

Figure 1.13 shows the magnetic field patterns of the acceptor-type modes formed from the M-point

of the IBZ of the square lattice for defects centered about points d, e, and f . Again, as for the donor

modes, the modes are shown for the C2v,σv symmetry basis.

1.1.4 Comparison with FDTD simulations

In order to establish the effectiveness of the above symmetry analysis of the modes of relatively

localized defects within photonic crystals, we provide results of numerical calculations using the

FDTD method. The FDTD simulation results provide information about the resonant frequency,

radiation pattern, and modal loss of PC defect cavity resonant modes. The cavity studied in this

section has been of particular relevance to the initial work on PC microcavity lasers performed by

Painter et al. [3, 8].

The FDTD calculations (additional details provided in appendix B) were performed on a mesh

with 20 points per lattice spacing. Excitation of the cavity modes was performed by an initial field

(Hz) with a localized Gaussian profile, located in a position of low symmetry so as not to exclude

any possible resonant modes. The even modes of the patterned slab waveguide were selected out by

using an even mirror symmetry (σh = +1) in the middle of the slab waveguide. In order to choose

a consistent mode basis (only important for degenerate modes), as well as to reduce computation

time, a pair of vertical mirror planes (σx, σy) were used to filter out cavity modes according to their

projection on the IRREPs of C2v. Each cavity mode is thus labeled by the C2v IRREP by which it

transforms and an index corresponding to its energy (frequency) level.

The simplest cavity geometry that can be readily implemented consists of a single missing hole
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Figure 1.14: (a) S cavity (b) FDTD spectrum of a S-type defect cavity with a = 515 nm, r/a = 0.36
nominally, nslab = 3.4, and d/a = 0.409.

(schematically shown in fig. 1.14(a)). We will refer to this cavity as a symmetric or S cavity as it

retains the full point group symmetry of the hexagonal lattice (C6v). A FDTD-simulated spectrum

of a defect cavity with a central missing hole and a linear grade in r/a (from the center outwards)

of 0.38-0.34 is plotted in fig. 1.14(b) as a dashed line.2 The spectrum is plotted versus normal-

ized frequency, ωn = a/λo, where a is the lattice spacing and λo is the free-space wavelength. A

normalized slab thickness, d/a, of 0.41 was used in the simulated structures to be consistent with

the fabricated devices. To reduce computation time, the number of mirror periods (p) surrounding

the central missing hole was limited to five in the simulations, save for the more extended modes

for which cavities with eight periods were also simulated in order to more accurately estimate the

modal losses present in the fabricated devices (see table 1.3).

In fig. 1.14, there appear to be two distinct resonance peaks within the guided mode bandgap

of the TE-like modes. Performing a mode filter [7] using the C2v mirror planes, we find that each

resonance peak contains two different modes, yielding a total of four different localized modes

whose magnetic field patterns within the mirror symmetry plane of the slab are shown in table 1.3.

The two resonant modes (accidentally degenerate) associated with the peak near the valence band

edge correspond to shallow acceptor (SA) modes which transform as the A′′
2 and B′′

2 IRREPs of

C6v,3 and have the same dominant in-plane Fourier components as Ha1
A′′

2
and Ha1

B′′
2

of the symmetry

analysis in section 1.1.2. The addition of these SA modes is a result of the linear grading in hole

2As a result of non-idealities in the fabrication process [95], the air holes near the center of the cavity are larger than
those at the perimeter in the fabricated devices. A linear grading of the hole radius of 10% is quite common.

3Careful inspection of the FDTD generated magnetic field plot for these two modes shows that the mode patterns
appear to have lower symmetry than that quoted in the text. This is a consequence of the way in which the modes were
simulated, using vertical mirror planes to reduce the computation domain by a factor of four. Due to discretization of the
computation grid, the mirror symmetry distorts the structure slightly, resulting in an asymmetry in the field pattern.
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Table 1.3: Characteristics and magnetic field amplitude patterns of the resonant modes in a sym-
metric cavity with r/a linearly graded from 0.38 to 0.34 (d/a = 0.409, nslab = 3.4, p = 5).

A2 (−1,−1) B1 (−1,+1) B2 (+1,−1)

S-A20 S-B10 S-B20 S-B21

Label Grp. (σx,σy) ωn

S-A20 (Ha1
A′′

2
) SA (−,−) 0.320

S-B10 (Hd1
E1,1) DD dipole (x) 0.361

S-B20 (Ha1
B′′

2
) SA (+,−) 0.322

S-B21 (Hd1
E1,2) DD dipole (y) 0.360

radius, which forms a potential well for acceptor type modes. Of particular interest are the strongly

localized pair of degenerate deep donor (DD) dipole-like modes near the center of the bandgap.

From the plots of the electric field intensity of the x and y dipole modes shown in fig. 1.15(a)-(b),

we see that the fundamental k-components of the x and y dipole-like modes correspond nicely with

the approximate field patterns predicted by the symmetry analysis (fig. 1.15(c)-(d)). Even the subtle

difference in the in-plane radiation pattern of the x and y dipole modes as calculated numerically

using FDTD is contained within the symmetry analysis as can be seen by the lack of a third standing

wave component in the y-dipole (Hd1
E1,2) mode.

A list of properties of the two SA and two DD localized defect modes is given in table 1.3. The

numerically calculated losses of each cavity mode are represented by effective in-plane and out-of-

plane quality factors [7], Q|| and Q⊥, respectively. A detailed analysis of quality factors within PC

cavities will be discussed in detail in the following chapter.
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(a) In-plane x-dipole mode radiation
pattern.

(b) In-plane y-dipole mode radiation
pattern.

(c) Symmetry analysis x-dipole
mode.

(d) Symmetry analysis y-dipole
mode.

(e) x-dipole vector plot. (f) y-dipole vector plot.

Figure 1.15: In-plane radiation losses (electric field amplitude saturated) of the x and y dipole mode
(degenerate case) are shown in (a) and (b), respectively, as calculated by FDTD simulations. The
electric field amplitude of the corresponding defect modes generated by the symmetry analysis are
shown in (c) and (d) for comparison. In (e) and (f) the FDTD-generated vector plot of the electric
field of the (x,y)-dipole modes in the middle of the slab waveguide are shown.
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1.2 Wannier-like approach for describing localized modes in photonic

crystals

1.2.1 Introduction

The work described in this section is largely based on ref. [25]. In analogy to the study of localized

impurity states of electrons in periodic crystals [96, 97, 98, 99], we develop a Wannier-like wave

equation to describe the envelope of resonant modes of localized perturbations within periodic di-

electric structures. This has been done previously, in a more restrictive setting by Johnson et al.

[100], and more recently in a general way by Charbonneau-Lefort et al. [101] and Istrate et al.

[102] in the study of photonic crystal heterostructures. In these works, a wave equation for local-

ized modes of non-uniform photonic crystals using an envelope approximation has been developed;

however, in each case the envelope equation was formulated as a generalized Hermitian eigenvalue

equation in terms of the electric field, and more importantly, only localized modes formed from

non-degenerate satellite extrema were considered. In the analysis presented here we (i) consider the

magnetic field and (ii) incorporate the mixing amongst the degenerate peaks or valleys of the orbit

of k in the bandstructure, resulting in a set of coupled Wannier-like equations describing a multi-

envelope system. This allows us to more easily apply the envelope formalism to resonant cavity

modes of PC slab waveguides, which in a two- or three-dimensional crystal mix Bloch modes near

the degenerate satellite extrema of the orbit of k. We also focus on the magnetic field as it can be

approximately treated as a scalar for TE-like polarization modes of PC slabs4. From the shape and

symmetry of the envelope of a localized resonant mode, and its relation to the underlying photonic

bandstructure, one may better design features of planar 2D PC resonant cavities, such as in-plane

and vertical emission, resonator-waveguide coupling, and the quality factor of resonant modes. In

addition, the Wannier-like equation for localized defect modes more clearly and rigorously relates

the curvature of the bandstructure to the formation of donor and acceptor modes for different types

of local perturbations of a dielectric lattice.

This section is organized as follows. In section 1.2.2 we derive a set of coupled Wannier-like

equations for the envelope functions of localized TE-like states in planar 2D PC structures, where as

predicted by the Wannier theorem, the underlying bandstructure of the periodic dielectric structure

gives rise to an effective mass tensor. We also derive an approximate form for the effective potential

4It should be noted that the envelope is always a scalar field, regardless of the vector nature of the electric or magnetic
field.
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in the Wannier envelope equation in terms of the local perturbation to the dielectric lattice. In

section 1.2.3 we use the approximate symmetry basis for the TE-like Bloch modes at the valence and

conduction band edge of the first-order bandgap in a 2D photonic crystal consisting of a hexagonal

array of air holes derived in the previous section to obtain approximate relations for the effective

mass tensor of the Wannier equation In conjunction with the symmetry analysis, which determines

the mixing amongst the degenerate satellite extrema, we find an approximate form for the localized

donor and acceptor modes of a hexagonal lattice with a parabolically graded filling fraction. For

comparison, FDTD calculations of the acceptor and donor modes of such a defect cavity are also

presented.

1.2.2 Wannier theorem for photons in periodic dielectric structures

In studying the localized electronic states associated with impurities within a crystalline material, it

is often helpful to transform Schrödinger’s equation into Fourier space, simplify the set of coupled

equations through the limited Fourier decomposition of the perturbing potential, and then transform

back to real-space coordinates, where a wave equation for the envelope of the localized states is

generated. The Wannier theorem [103] captures the essence of this procedure in using the under-

lying energy-(crystal)momentum dispersion generated by the periodic Coulombic potential of the

crystal in a spatially coarse-grained theory of electron dynamics. One application of the Wannier

theorem is in the calculation of bound electronic states of crystal impurities [96, 99, 97, 98, 104].

The basic form of the Wannier equation for the envelope of impurity states is

((
E −En(�−1p̂)

)
+ΔV (r)

)
Γ(r) = 0, (1.41)

where En(�−1p̂) is the energy-(crystal)momentum dispersion relation of the nth energy band with

wavevector k replaced by the canonical momentum operator p̂ = −i�∇, ΔV (r) is the impurity

potential, and Γ(r) is the envelope function describing the localized electronic state.

We would like to find a similar Wannier-like equation for the envelope of localized photon states

in periodic dielectric lattices. Of particular interest are the localized resonant modes of planar 2D

PCs formed in optically thin dielectric slabs (see fig. 1.1). The fundamental TE-like even modes and

TM-like odd modes of a symmetric 2D patterned dielectric slab waveguide can be approximated by

scalar fields. In what follows we shall focus on the TE-like modes (as discussed in ref. [25], a
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similar theory may also be derived for the TM-like modes of the PC slab).

We begin with Maxwell’s equations in a (lossless) dielectric medium free of currents and free

charge,

∇×E = −iωµ0H,

∇×H = +iωn2ε0E,

∇∇∇ · (n2ε0E) = 0,

∇ ·µ0H = 0,

(1.42)

where E and H are the harmonic complex electric and magnetic fields, respectively, with time

dependence e+iωt (the physical fields are found by taking the real part of the complex fields). The

velocity of light in vacuum is represented by c, and we have assumed that the material is non-

magnetic (µ = µo). We also assume here that the dielectric function does not depend on spatial or

temporal frequency, ε(ω,k,r) = εon2(r). From the above Maxwell relations, a wave equation for

both the electric and magnetic fields can be generated:

η(r)
(

∇×∇×E
)

=
(ω

c

)2
E, (1.43)

∇×
(

η(r)∇×H
)

=
(ω

c

)2
H, (1.44)

where η(r) ≡ 1/n2(r).

As we have discussed in the previous section, we separate modes into TE and TM polarizations,

keeping in mind that this separation is only truly valid for purely 2D structures (for slab waveguides,

the modes are only approximately TE and TM in nature). For TE modes the magnetic field is

described by a scalar field, H = ẑHd (where the subscript d stands for “defect mode”). As we have

assumed that the refractive index does not vary (or the variation can be approximately neglected) in

the ẑ-direction, ∂zη(r) = 0. The Hermitian eigenvalue equation which results from equation (1.44)

and ∇ ·H = 0 is (in the 2D case we only consider variations with respect to the in-plane coordinates,

∇ ≡ ∇∇∇⊥),
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L̂TE
H Hd = ΛdHd, (1.45)

with the TE eigenoperator given by,

L̂TE
H = −(∇η) ·∇−η∇2. (1.46)

The form of TE eigenoperator is easily obtained from equation (1.44) by using standard vector

calculus identities as found in ref. [93], for example. The eigenvalue, Λd, is related to the square

of the frequency of the mode, Λd = (ωd/c)2. η = ηo + Δη, where ηo is given by the inverse of the

square of the refractive index of the unperturbed photonic crystal, 1/n2
2D(r), and Δη represents the

localized perturbation to 1/n2
2D(r). The eigenoperator L̂H (we drop the TE superscript from here

on) can be separated into an unperturbed photonic crystal part, L̂H,o = −∇(ηo) ·∇−ηo∇2, and a

perturbation part due to the defect, L̂ ′
H = −∇(Δη) ·∇−Δη∇2.

The (2D approximate) modes of the perfect crystal are eigenmodes of L̂H,o,

L̂H,oHl,k = Λl,kHl,k, (1.47)

where l labels the band index and k labels the in-plane crystal momentum. As the Hl,k are Bloch

waves they can be written as

Hl,k =
1
L

hl,k(r)eik·r, (1.48)

with L2 equal to the area of the 2D photonic crystal and the set of periodic functions, hl,k(r), at

crystal momentum k, satisfying their own set of orthogonality relations (normalized over the lattice

unit cell v),

〈hl′,k|hl,k〉v ≡ 1
v

∫
v

d2rh∗l′,khl,k = δl′,l. (1.49)



74

In forming a defect state by perturbing the lattice in a localized region of space, the Bloch modes

in proximity to the degenerate satellite extrema of a band edge, the {ki; i = 1,2, ...,M} points of the

�k (from here on, the �k refers implicitly to the orbit of this band edge), are most strongly coupled

together [98]:

Hd(r) = ∑
i

ci ∑
k

Γ̃i(k−ki)
1
L

hl,keik·r, (1.50)

The Γ̃i are a set of Fourier space envelope functions, which in the spirit of the effective mass theory

have amplitudes localized around k = ki. Note that throughout this analysis the band of interest at

the band edge is considered to be non-degenerate and we neglect inter-band mixing [98].

Assuming that the hl,k do not vary significantly (using a similar argument as in ref. [97]) over

the range of each Fourier space envelope function,

Hd(r) ≈ ∑
i

ci
1
L

hl,ki e
iki·r

(
∑
Δk

Γ̃i(Δk)eiΔk·r
)

, (1.51)

where Δk ≡ k−ki. Writing the envelope functions in real space,

Γi(r) = ∑
Δk

Γ̃i(Δk)eiΔk·r, (1.52)

allows us to rewrite equation (1.51) as,

Hd(r) ≈ ∑
i

ci
1
L

hl,ki e
iki·rΓi(r), (1.53)

It is in this way that the real space envelope of localized defect modes can be interpreted in the

Fourier domain [97] as a result of the intra-band mixing of the unperturbed Bloch modes of the

crystal.

Returning to equation (1.45), we now proceed to find an eigenvalue equation for the envelope

functions. Multiplying both sides of equation (1.45) by Hl′,k′ , where k′ is chosen in a neighborhood

of ki, and integrating over the in-plane spatial coordinates gives,
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∑
j

c j ∑
k

Γ̃ j(k−k j)〈Hl′,k′ |(Λd −Λl,k − L̂ ′
H)Hl,k〉 = 0. (1.54)

We rewrite r as Ri + r, where Ri gives the center of the ith unit cell and r is now confined to the

interior of the unit cell. Using the orthonormality of the Bloch waves and the normalization of their

periodic parts described in equation (1.49),

〈Hl′,k′ |(Λd −Λl,k)Hl,k〉 = (Λd −Λl,k)
1
L2

N

∑
i=1

ei(k−k′)·Ri

∫
v
d2r h∗l′,k′hl,kei(k−k′)·r

= (Λd −Λl′,k′)δl′,lδk′,k.

(1.55)

Note that a reciprocal lattice vector was not included in δk′,k as both k′ and k (through the localized

nature of the Γ̃i) are assumed to lie within a neighborhood of one of the wavevectors comprising the

�k, which by definition are not linked by a reciprocal lattice vector. Equation (1.54) then becomes

ci(Λd −Λl,k′)Γ̃i(k′ −ki)

−∑
j

c j ∑
k
〈Hl′,k′ |L̂ ′

HHl,k〉Γ̃ j(k−k j) = 0.
(1.56)

Fourier expanding the defect perturbation in reciprocal space,

Δη(r) = ∑
k′′

Δ̃ηk′′eik′′·r, (1.57)

we can write the mode-mixing term 〈Hl′,k′ |L̂ ′
HHl,k〉 in equation (1.56) as:

〈Hl′,k′ |L̂ ′
HHl,k〉 = −∑

k′′

(
N

∑
i=1

ei(k+k′′−k′)·Ri
Δ̃ηk′′

L2

∫
v
d2r ei(k+k′′−k′)·rh∗l′,k′

(
ik′′ · (∇+ ik)

+∇2 +2ik ·∇−|k|2
)

hl,k

)
= ∑

G
∑
k′′

(
Δ̃ηk′′Kl′,l(k′,k,G)+ Δ̃ηk′′(ik′′) ·Ll′,l(k′,k,G)

)
δk′−k′′+G,k,

(1.58)
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where the G are reciprocal lattice vectors, and we have defined scalar and vector coupling matrix

elements as

Kl′,l(k′,k,G) = −1
v

∫
v
d2r eiG·rh∗l′,k′(∇2 +2ik ·∇−|k|2)hl,k

≡−〈hl′,k′ |eiG·r(∇2 +2ik ·∇−|k|2)|hl,k〉v,

(1.59)

and

Ll′,l(k′,k,G) = −1
v

∫
v
d2r eiG·rh∗l′,k′(∇+ ik)hl,k

≡−〈hl′,k′ |eiG·r(∇+ ik)|hl,k〉v.

(1.60)

Substituting equation (1.58) into equation (1.56) while keeping only terms that mix states within

the lth band results in the following Fourier space representation of the magnetic field master equa-

tion:

ci(Λd −Λl,k′)Γ̃i(k′ −ki)−∑
G

∑
j

c j ∑
k′′

((
Δ̃ηk′′Kl,l(k′,k′ −k′′ +G,G)

+ Δ̃ηk′′(ik′′) ·Ll,l(k′,k′ −k′′ +G,G)
)

Γ̃ j
(
(k′ −k′′ +G)−k j

))
= 0.

(1.61)

For defect perturbations which are localized in k-space as well as in real-space, the strongest

mixing terms will be those with k′′ nearest the origin. As such, a further simplification can be

made by including only those reciprocal lattice vectors G which minimize the magnitude of k′′ in

coupling the different neighborhoods of the �k (satellite extrema). The local mixing of states within

the neighborhood of each ki will thus be dominated by the Fourier components of Δ̃η about the

origin with G = 0. Similarly, the mixing between neighborhoods of ki and k j, where i �= j, will be

dominated by a single G which minimizes the magnitude of the vector G− (k j −ki). Writing this

reciprocal lattice vector as G j,i and only including the dominant coupling terms in equation (1.61)

collapses the sum over G and yields,
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ci

(
(Λd −Λl,k′)Γ̃i(k′ −ki)−∑

k′′

(
Δ̃ηk′′Kl,l(ki,ki,0)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,ki,0)

)
Γ̃i
(
(k′ −k′′)−ki

))−∑
i�= j

c j ∑
k′′

((
Δ̃ηk′′Kl,l(ki,k j,G j,i)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,k j,G j,i)

)
Γ̃ j
(
(k′ − (k′′ −G j,i))−k j

))
= 0,

(1.62)

where we have neglected the variation of Kl,l and Ll,l within the local neighborhoods of the ki ∈ �k.

Implicit in the derivation of equation (1.62) is that the Γ̃i are localized around the ki in reciprocal

space. In order to make this explicit (which will be necessary when transforming back to real-space

coordinates) we expand Λl,k′ in the vicinity of each ki,

Λl,k′ ≈ (
Λl,o +Λ′

l,i(Δk)
)
+O(Δk3), (1.63)

where Λl,o is the top(bottom) of the band edge, Δk = k′ − ki, and Λ′
l,i only contains terms up to

second-order in elements of Δk [98]. In the case of those ki located at an extrema of a given

(non-degenerate) band the resulting dispersion relation may be written in the form, Λ′
l,i(Δk) = Δk ·

M−1
l,∗ ·Δk, where the matrix Ml,∗ is an effective mass tensor defined by the curvature of the band.

Substituting equation (1.63) into equation (1.62) gives,

ci

((
ΔΛd −Λ′

l,i(Δk)
)
Γ̃i(Δk)−∑

k′′

(
Δ̃ηk′′Kl,l(ki,ki,0)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,ki,0)

)
Γ̃i(Δk−k′′)

)
−∑

i�= j

c j ∑
k′′

((
Δ̃ηk′′Kl,l(ki,k j,G j,i)+ Δ̃ηk′′(ik′′) ·Ll,l(ki,k j,G j,i)

)
Γ̃ j
(
(Δk+G j,i −Δk j,i)−k′′)) = 0,

(1.64)

where ΔΛd = Λd−Λl,o is the eigenvalue referenced to the top(bottom) of the band edge, and Δk j,i ≡
k j −ki.

Equation (1.64) is the Fourier space representation of an approximate master equation for the

localized magnetic field envelope functions of defect states. Transforming back to real space results

in a set of coupled Wannier-like equations,
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ci

((
ΔΛd −Λ′

l,i(�
−1p̂)

)−Δη′
i,i(r)

)
Γi(r)−∑

i�= j

c j

(
e−i(G j,i−Δk j,i)·rΔη′

j,i(r)
)

Γ j(r) = 0, (1.65)

Δη′
j,i(r) = Δη(r)Kl,l(ki,k j,G j,i)+∇(Δη(r)) ·Ll,l(ki,k j,G j,i), (1.66)

where p̂ = −i�∇ as in quantum mechanics, and Δη′
j,i(r) is an effective perturbation potential.

Assuming that the amplitude of the relatively large Fourier components of Δη(r) associated

with mixing of states between neighborhoods of different satellite points of the �k are much smaller

than the amplitude of the small Fourier components which mix states within a given neighborhood

of a point of the �k, we can treat the inter-ki mixing as a perturbation to the envelope functions

formed from the local k-space mixing [104]. This allows us to write an independent Wannier-like

equation for each of the Γi(r) envelope functions,

((
ΔΛd −Λ′

l,i(�
−1p̂)

)−Δη′
i,i(r)

)
Γi(r) = 0. (1.67)

Of most importance for the types of resonant cavities studied here are the ground state solutions

to equation (1.67). This is due to the relatively localized nature of the defect regions. For de-

localized defect regions extending over many lattice periods a more extensive set of envelope func-

tions, including higher order functions with added nodes and antinodes must be included. Choice

of such a set of envelope functions will depend on the geometry of the boundary of the defect [105].

For the present work then, we take Γi(r) equal to the ground state envelope, Γi,o(r).

As the ground state of a system is in general invariant under the symmetries of the Hamiltonian

of that system [106, 104], the ground state envelope function should transform as the identity of

the point group of the Wannier-like equation given in equation (1.67). The spatial symmetries of

equation (1.67) are those of Λ′
l,i(�

−1p̂) and Δη′
i,i(r). As discussed in ref. [24], it then follows

that the point symmetries of the Wannier-like equation for the ground state envelope functions are

given by G ′ ∩G ′
ki

, where G ′ is the point group of the defect perturbation (independent of the crystal

lattice) and G ′
ki

is the point group isomorphic to the group of the wavevector (of the underlying

Bravais lattice) at the point ki in the IBZ. With this knowledge the coefficients ci of the defect state
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in equation (1.53) can then be determined using symmetry arguments.

1.2.3 Envelope function calculation

We will consider two examples of how the Wannier-like equation of the previous section can be

used to calculate an approximate envelope function for a localized photon state in a hexagonal

lattice photonic crystal. The first example is a localized donor-type mode formed at the band edge

occurring at the X-point of the reciprocal lattice where the bandstructure (fig. 1.2(a)) has a local

minimum and is given by a simple paraboloid in a neighborhood of the X-point. The second example

is that of a localized acceptor-type mode formed from the J-point where the bandstructure has a local

maximum.

1.2.3.1 Donor modes at the X-point

We begin by recalling equations 1.5 and 1.6 of section 1.1.2.1, which give an approximate repre-

sentation for the band edge modes at the X-point of the hexagonal lattice. In particular, we found

VBa
X =

⎛⎜⎜⎜⎜⎝
vX1

vX2

vX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
cos(kX1 · ra)

cos(kX2 · ra)

cos(kX3 · ra)

⎞⎟⎟⎟⎟⎠ , (1.68)

as an approximate form for the X-point valence band modes, and

CBa
X =

⎛⎜⎜⎜⎜⎝
cX1

cX2

cX3

⎞⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎝
sin(kX1 · ra)

sin(kX2 · ra)

sin(kX3 · ra)

⎞⎟⎟⎟⎟⎠ . (1.69)

as an approximate form for the X-point conduction band modes. Separating the plane wave and

periodic parts of the above Bloch modes allows us to write,
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vXi =
ẑ
2
(1+ e−i2kXi ·ra

)eikXi ·ra
,

cXi =
ẑ
i2

(1− e−i2kXi ·ra
)eikXi ·ra

,

(1.70)

with normalized periodic functions given by

hv,kXi
= (1/

√
2)(1+ e−i2kXi ·ra

),

hc,kXi
= (1/i

√
2)(1− e−i2kXi ·ra

).
(1.71)

We now use the above set of modes to calculate the local dispersion of the conduction band

at the X-point. The Hermitian operator acting on the space of periodic functions at point k in the

reciprocal lattice, for the quasi-2D case studied here, is

L̂H,k = −∇(ηo) · (ik+∇)+ηo(|k|2 −2ik ·∇−∇2), (1.72)

with associated eigenvalue equation given by,

L̂H,khl,k = Λl,khl,k. (1.73)

As in “k · p̂” theory for Bloch electrons in crystalline materials, we expand L̂H,k about point ko,

L̂H,k = L̂H,ko + L̂ ′
H,Δk, (1.74)

with

L̂ ′
H,Δk ≡ ηo|Δk|2 +Δk · (−i∇(ηo)+2ηoko −2iηo∇). (1.75)

Treating L̂ ′
H,Δk as a perturbation to L̂H,ko , and expanding hl,k in terms of the hl,ko ,

5 gives to second

5As discussed in ref. [107], the hl,ko are not complete in the space of lattice periodic functions due to the divergenceless
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order in elements of Δk,

Λl,k∼ko = Λl,ko +Δk · 〈hl,ko |(−i∇(ηo)+2ηoko −2iηo∇)|hl,ko〉v + |Δk|2〈hl,ko |ηo|hl,ko〉v

+ ∑
l′ �=l

|Δk · 〈hl′,ko |(−i∇(ηo)+2ηoko −2iηo∇)|hl,ko〉v|2
(Λl,ko −Λl′,ko)

.
(1.76)

If ko corresponds to an extremal point within the bandstructure, then the linear Δk terms in

equation (1.76) are identically zero. One can check that for the X-point conduction and valence

band modes of equation (1.70), this is indeed the case. Substituting the periodic functions of the

conduction and valence band modes of equation (1.71) into equation (1.76) gives the local X-point

bandstructure of the conduction band as:

Λc,k∼kXi
= Λc,kXi

+ |Δk|2〈hc,kXi
|ηo|hc,kXi

〉v

+
|Δk · 〈hv,kXi

|(−i∇(ηo)+2ηokXi −2iηo∇)|hc,kXi
〉v|2

ΔΛX
,

(1.77)

where ΔΛX ≡ (Λc,kX −Λv,kX ).

Fourier expanding ηo,

ηo = ∑
G

η̃o,GeiG·ra
, (1.78)

allows the bandstructure to be evaluated in terms of the Fourier coefficients of the dielectric PC.

Since ηo is a lattice periodic real function, G are reciprocal lattice vectors and η̃o,G = (η̃o,−G)∗.

With the origin located at point a of the lattice (see fig. 1.2(a)), the hexagonal PC has C6v symmetry.

As a result the Fourier coefficients of the hexagonal lattice are all real (inversion symmetry of the

lattice), and η̃o,2kXi
= η̃o,2kXj

, for all kXi ,kXj ∈ �k. Also, as point a lies within the center of an

air hole, the fundamental Fourier coefficients of the lattice, η̃o,2kXi
, must be positive. Substituting

equation (1.78) into equation (1.77) gives,

nature of the magnetic field. In order to form a complete basis one must include zero frequency unphysical solutions.
As we neglect the contribution of remote bands in our analysis, which the zero frequency solutions certainly are, no
significant additional error is to be expected.
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Λc,k∼kXi
= Λc,kX + |Δk|2

(
η̃o,0 − η̃o,2kX

)
+

4|(Δk ·kXi)|2(η̃o,0)2

ΔΛX
, (1.79)

where the index i has been dropped from kXi in those quantities that have the same value for each

element of the �k.

The bandgap at the X-point, ΔΛX , may also be approximately determined in terms of the Fourier

coefficients η̃o,G. The magnetic field eigenoperator L̂H can be written as,

L̂H = −η̃o,0∇2 − ∑
G�=0

η̃o,GeiG·r(∇2 + iη̃o,GG ·∇)). (1.80)

Treating Δηo = ∑G�=0 η̃o,GeiG·r as a perturbation to the average dielectric η̃o,0, and considering

only the coupling between the forward and backward normalized plane wave states at the X-point,

(|kXi〉, |−kXi〉), results in the following two band magnetic field eigenoperator:

L̂Xi
H =

⎛⎜⎝ η̃o,0|kX |2 −η̃o,2kX |kX |2

−η̃o,2kX |kX |2 η̃o,0|kX |2

⎞⎟⎠ . (1.81)

The eigenvalues of L̂Xi
H are η̃o,0|kX |2±(η̃o,2kX )|kX |2, which gives for the bandgap, ΔΛX = 2(η̃o,2kX )|kX |2.

Choosing a coordinate basis x̂i with x̂i orthogonal to kXi and ŷi parallel to kXi , allows us to write

for the local bandstructure of the conduction band in the vicinity of the Xi-point,

Λc,k∼kXi
= Λc,kX +

Δk2
xi

m∗
c,X ,xi

+
Δk2

yi

m∗
c,X ,yi

, (1.82)

with effective “masses”6 defined as,

6We use the term “mass” here in analogy to solid-state physics where the curvature of the bandstructure is related to
the inverse of an effective electron mass. m∗ as defined here is unitless.
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1
m∗

c,X ,xi

= η̃o,0

(
1− η̃o,2kX

η̃o,0

)
1

m∗
c,X ,yi

= η̃o,0

(
1− η̃o,2kX

η̃o,0
+

2η̃o,0

η̃o,2kX

)
.

(1.83)

For a PC formed from dielectric materials with real refractive indices greater than that of vacuum,

0 ≤ ηo(r) ≤ 1. Consequently, η̃o,0 ≥ 0 and η̃o,0 ≥ 2η̃o,G for all G. The effective masses for the

conduction band at the X-point are thus both positive.

Evaluating the scalar and vector coupling matrix elements using the Xi-point conduction band

modes of equation (1.71) gives: Kl,l(kXi ,kXi ,0) = |kX |2 and Ll,l(kXi ,kXi ,0) = 0. Substituting these

coupling matrix elements into equation (1.66), the effective Wannier potential is,

Δη′
i,i(r) = |kX |2Δη(r). (1.84)

Lastly, upon substituting the local bandstructure of equation (1.82) and the effective Wannier po-

tential of equation (1.84) into equation (1.67), we have for the Wannier equation of the conduction

band envelope at the ith X-point:

(
(Λd −Λc,kX )−

( −∇2
xi

m∗
c,X ,xi

+
−∇2

yi

m∗
c,X ,yi

+ |kX |2Δη(r)
))

Γc,kXi
(r) = 0. (1.85)

We now see from the Wannier-like equation for the conduction band edge at the X-point that as a re-

sult of the positive effective mass coefficients, localized resonant modes will form for perturbations

to the hexagonal lattice in which Δη(r) is locally reduced, that is for which the refractive index is

locally increased.

Here we consider a defect which results in an approximate harmonic perturbation potential. By

appropriately varying the hole radii of a photonic crystal consisting of a hexagonal array of air holes

in a host dielectric material, the inverse of the filling fraction of the hexagonal crystal can be graded

in a roughly parabolic fashion. The filling fraction of the lattice, f , as a function of air hole radius

is,
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f = 1− 2π√
3

( r
a

)2
, (1.86)

where r is the hole radius and a is the nearest neighbor distance between holes of the hexagonal

lattice. For a host dielectric material of refractive index no, the average dielectric constant of the

patterned crystal is ε̄ = f (no)2. The slowly varying envelope of ηo (ηo), neglecting rapid variations

on the scale of the lattice spacing, is proportional to 1/ f , ηo = (no)−2/ f . For an approximate

harmonic potential then, the filling fraction of the lattice should vary as,

1
f (ρ)

=
1
fo

+ k
(ρ

a

)2
, (1.87)

with ρ representing the radial distance from the center of the defect, fo the filling fraction given by

the air hole radius at the center of the defect, and k the lattice grading coefficient. The filling fraction

as used here is a local approximation, based upon the local hole radius, of the true filling fraction of

a crystal lattice. The resulting slowly varying envelope of the effective Wannier potential is,

Δη′
i,i(ρ) = k

(ρ
a

)2
( |kX |

no

)2

. (1.88)

The ground state solution to equation (1.85) with the harmonic effective potential of equation

(1.88) is the 2D Gaussian,

Γc,kXi
(r) = exp

[
−(x2

i /κ2 + y2
i /γ2)], (1.89)

with decay constants,

1
κ2 =

1
2

(
k̄m∗

c,X ,xi

) 1
2 ,

1
γ2 =

1
2

(
k̄m∗

c,X ,yi

) 1
2 ,

(1.90)

where k̄ = k(|kX |/ano)2.
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(a) (b)

Figure 1.16: (a) Graded hexagonal lattice donor-type cavity, (b) graded hexagonal lattice acceptor-
type cavity (parameters are given in table 1.4).

Table 1.4: Hexagonal PC parameters for the donor- and acceptor-type defect cavities.

cavity no
(

r
a

)
o fo k k̄/a2

(
r
a

)
e

η̃o,2kX
η̃o,0

donor 2.65 0.25 0.77 0.01 0.019 0.4 0.294

acc. 2.65 0.35 0.56 −0.006 0.015 0.20 0.23

From equation (1.86), in order to obtain the parabolic grade in filling fraction, the normalized

hole radius of the defect cavity must vary with ρ as,

( r
a

)2
=

√
3

2π

(
1− fo

1
1+ fok(ρ/a)2

)
. (1.91)

With grading parameters given in table 1.4, the donor-type defect cavity we consider here is plotted

in fig. 1.16(a). The calculated parameters of the approximate envelope function for the donor modes

of this defect cavity are given in table 1.5.

The point group symmetry of the donor-type defect cavity of fig. 1.16(a) centered about point

Table 1.5: Donor mode (X-point) ground state Wannier envelope parameters.

m∗
c,X ,xi

m∗
c,X ,yi

κ
a

γ
a

7.7 0.72 2.3 4.1
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Figure 1.17: Magnetic field (ẑ-component) plot of the donor modes of the graded hexagonal donor-
type cavity: (a) symmetry analysis Ha,d1

E1,1
(x-dipole) mode, (b) symmetry analysis Ha,d1

E1,2
(y-dipole)

mode, (c) FDTD simulated x-dipole mode, and (d) FDTD simulated y-dipole mode. Comparison
of: (e) Wannier and (g) FDTD envelope functions for Ha,d1

E1,1
(x-dipole) donor mode. (f) and (h) show

line scans of the FDTD filtered envelope (solid line) along the x̂- and ŷ-directions, respectively. The
Gaussian fit to the FDTD envelope along these principal directions are also plotted (dashed line).

a of the hexagonal lattice is that of the underlying hexagonal lattice, C6v. A set of basis functions

for the localized conduction band donor modes was given in Equation 1.16, and has been rewritten

here to include the conduction band envelope functions Γc,kXi
:

Ha,d1
B′′

1
= |cX1〉Γc,kX1

−|cX2〉Γc,kX2
+ |cX3〉Γc,kX3

,

Ha,d1
E1,1

= 2|cX1〉Γc,kX1
+ |cX2〉Γc,kX2

−|cX3〉Γc,kX3
,

Ha,d1
E1,2

= |cX2〉Γc,kX2
+ |cX3〉Γc,kX3

,

(1.92)

In fig. 1.17(a)-(b) the magnetic field intensity is plotted for the dipole-like modes of the E1 IRREP

with envelope functions given by the Γc,kXi
of equation (1.89). The calculated decay parameters for

the Gaussian Γc,kXi
are tabulated in table 1.5. Note that the coefficients of the expansion for each

donor mode (ci) are determined solely by the transformation properties of the basis CBa
X ; the enve-

lope functions transform effectively as the identity and do not modify the expansion coefficients.

For comparison, 2D FDTD simulations were performed on the donor-type cavity of fig. 1.16(a).

Plots of the FDTD calculated magnetic field patterns (and their Fourier transforms) of the two modes

most deep within the first order bandgap are given in fig. 1.17(c)-(d). The modes transform as the
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Table 1.6: FDTD calculated mode envelope parameters.

mode κ
a (κx

a ) γ
a (κy

a )

Ha,d1
E1,1

1.77 3.02

Ha,a1
A2

4.65 4.52

Ha,a1
B2

5.29 4.48

B′′
1 and B′′

2 IRREPs of the C2v point group (the FDTD simulation was performed with mirror plane

symmetries to reduce the size of the computation, thus projecting the modes onto the C2v IRREPs),

equivalent to the x̂ and ŷ basis of the C6v IRREP E1 (the basis chosen for modes Ha,d1
E1,1

and Ha,d1
E1,2

). The

FDTD generated field patterns show good correspondence with the field patterns of the approximate

symmetry analysis (fig. 1.17(a)-(b)).

A more quantitative estimate of the envelope of the FDTD-generated localized modes can be

obtained by considering the form of the approximate symmetry analysis modes of equation (1.92).

Multiplying a donor mode which contains a dominant Fourier component at kXi by cos(kXi · ra)

will produce a term proportional to Γc,kXi
, thus shifting the envelope to the origin in Fourier space.

Applying a low-pass spatial filter to the product of the mode and the cosine function will then leave

only the envelope corresponding to Γc,kXi
. In fig. 1.17(f)-(h) we plot the result of such a procedure

applied to the FDTD calculated Ha,d1
E1,1

(x-dipole) mode (fig. 1.17(e) shows a plot of the envelope

calculated using the Wannier-like equation). The FDTD generated envelope is oriented parallel to

kX1 , and as can be seen from fig. 1.17(f),(h) is Gaussian in nature. The fit decay parameters along

x̂i and ŷi directions are given in table 1.6, and although smaller than estimated (table 1.5), they are

in nearly the precise ratio predicted by the Wannier equation

1.2.3.2 Acceptor modes at the J-point

As mentioned above, the valence band edge of the fundamental bandgap for TE-like modes occurs

at the J-point of the reciprocal lattice for the hexagonal PC. From section 1.1.2.2, the approximate

form for the band edge states at the J-point is:

VBa
J =

⎛⎝vJ1

vJ2

⎞⎠ = ẑ

⎛⎝eikJ1 ·ra
+ eikJ3 ·ra

+ eikJ5 ·ra

eikJ2 ·ra
+ eikJ4 ·ra

+ eikJ6 ·ra

⎞⎠ , (1.93)
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for valence band modes, and

CBa
J =

⎛⎜⎜⎜⎜⎜⎜⎝
c1J1

c2J1

c1J2

c2J2

⎞⎟⎟⎟⎟⎟⎟⎠ = ẑ

⎛⎜⎜⎜⎜⎜⎜⎝
e−ikJ1 ·ra

+ e−ikJ3 ·ra −2e−ikJ5 ·ra

e−ikJ1 ·ra − e−ikJ3 ·ra

e−ikJ2 ·ra
+ e−ikJ4 ·ra −2e−ikJ6 ·ra

e−ikJ2 ·ra − e−ikJ4 ·ra

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.94)

for conduction band modes. The normalized periodic functions of the above Bloch modes are,

hv,kJ1
=

1√
3
(1+ e−i2kX1 ·ra

+ e−i2kX2 ·ra
),

hv,kJ2
=

1√
3
(1+ e−i2kX2 ·ra

+ e−i2kX3 ·ra
),

(1.95)

hc1,kJ1
=

1√
6
(1+ e−i2kX1 ·ra −2e−i2kX2 ·ra

),

hc1,kJ2
=

1√
6
(1+ e−i2kX2 ·ra −2e−i2kX3 ·ra

),
(1.96)

hc2,kJ1
=

1√
2
(1− e−i2kX1 ·ra

),

hc2,kJ2
=

1√
2
(1− e−i2kX2 ·ra

).
(1.97)

The local bandstructure for the valence band at the J1-point, upon evaluating equation (1.76)

using the approximate J1-point valence and conduction band modes above, is
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Λv,k∼kJ1
= Λv,kJ + |Δk|2

(
η̃o,0 +2η̃o,2kX

)
−
(
|Δk ·kJ2 |2

(
2(η̃o,0)2 + 1

2(η̃o,2kX )2 +2(η̃o,0)(η̃o,2kX )
)

ΔΛJ

+
4
3
|Δk ·kX1 |2

(
2(η̃o,0)2 + 1

2(η̃o,2kX )2 +2(η̃o,0)(η̃o,2kX )
)

ΔΛJ

)

= Λv,kJ + |Δk|2
(

η̃o,0 +2η̃o,2kX −
|kJ|2

(
2(η̃o,0)2 + 1

2(η̃o,2kX )2 +2(η̃o,0)(η̃o,2kX )
)

ΔΛJ

)
,

(1.98)

where Δk = k− kJ1 . To second order in the elements of Δk, the local bandstructure around the

J1-point of the valence band is centro-symmetric. As a result, the local bandstructure in the neigh-

borhood of each of the J points of the �k is also given by equation (1.98). In order to determine

the sign of the curvature of the valence band, the bandgap at the J-point, ΔΛJ , is evaluated using a

similar procedure as for the bandgap at the X-point. The three band eigenoperator, in the normalized

plane wave basis of (|kJ1〉, |kJ3〉, |kJ5〉), is:

L̂J1
H = |kJ|2

⎛⎜⎜⎜⎝
η̃o,0 − 1

2 η̃o,2kX − 1
2 η̃o,2kX

− 1
2 η̃o,2kX η̃o,0 − 1

2 η̃o,2kX

− 1
2 η̃o,2kX − 1

2 η̃o,2kX η̃o,0

⎞⎟⎟⎟⎠ . (1.99)

The eigenvalues of L̂J1
H consist of the single eigenvalue Λv,kJ = |kJ|2(η̃o,0 − η̃o,2kX ), and the double

eigenvalue Λc,kJ = |kJ|2(η̃o,0+η̃o,2kX /2). The bandgap at the J-point is then, ΔΛJ = (3/2)η̃o,2kX |kJ|2.

Substituting this value of ΔΛJ into the equation (1.98) we have for the local bandstructure at each

of the J-points,

Λv,k∼kJ = Λv,kJ +
|Δk|2
m∗

v,J
. (1.100)

where the effective mass of the valence band is,
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1
m∗

v,J
= −1

3
η̃o,0

(
1+3

η̃o,2kX

η̃o,0
+

4
(
(η̃o,0)2 −2(η̃o,2kX )2

)
(η̃o,0)(η̃o,2kX )

)
. (1.101)

As expected for the valence band, the effective mass is negative at the J-point.

The scalar and vector coupling matrix elements, evaluated using the J1-point valence band mode

of equation (1.95), are: Kv,v(kJ1 ,kJ1 ,0) = |kJ|2 and Lv,v(kJ1 ,kJ1 ,0) = 0. The resulting effective

Wannier potential at the J-point is given by,

Δη′
i,i(r) = |kJ|2Δη(r). (1.102)

With the local bandstructure of equation (1.100) and the effective potential of equation (1.102), the

Wannier equation of the valence band envelope at the J-point is:

(
(Λd −Λv,kJ)−

(−∇2

m∗
v,J

+ |kJ|2Δη(r)
))

Γv,kJ (r) = 0. (1.103)

Due to the negative effective mass coefficient, localized resonant modes will form for local per-

turbations to the hexagonal lattice in which the refractive index is locally decreased. The acceptor-

type defect is taken to consist of a grade in the radius of the air holes of the hexagonal crystal as

defined in equation (1.91), with grading coefficient k = −0.006. The values of the parameters of

the acceptor-type cavity are given in table 1.4 and a plot of the acceptor-type cavity is shown in fig.

1.16(b).

As was the case for the donor-type cavity, this grade in the hole radius results in an approximate

parabolic potential well. Therefore, we take as our approximate ground state envelope function the

Gaussian,

Γv,kJ (r) = exp
[
−(ρ/κ

)2
]
, (1.104)

with ρ = |r⊥| the in-plane radius, and κ a single parameter decay constant given by,
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Table 1.7: Acceptor mode (J-point) ground state Wannier envelope parameters

m∗
v,J

κ
a = κx

a = κy

a

−0.68 4.44

1
κ2 =

1
2

(
k̄ |m∗

v,J|
) 1

2 , (1.105)

where k̄ = |k|(|kJ|/ano)2. The value of κ/a as calculated for the acceptor-type defect of fig. 1.16(b)

is given in table 1.7.

From equation (1.20), we have a form for acceptor modes formed at the J-point of the hexagonal

lattice. Rewriting these equations to include the Wannier envelope functions, we arrive at:

Ha,a1
A′′

2
= |vJ1〉Γv,kJ + |vJ2〉Γv,kJ

∝ ẑ
(
cos(kJ1 · r)+ cos(kJ2 · r)+ cos(kJ3 · r)

)
Γv,kJ ,

Ha,a1
B′′

2
= |vJ1〉Γv,kJ −|vJ2〉Γv,kJ

∝ ẑ
(
sin(kJ1 · r)+ sin(kJ2 · r)+ sin(kJ3 · r)

)
Γv,kJ ,

(1.106)

where the Γv,kJ are equivalent for each element of the �k due to the isotropic effective mass of the

J-point valence band. A plot of the magnetic field (ẑ-component) for the symmetry basis modes

Ha,a1
A′′

2
and Ha,a1

B′′
2

are given in fig. 1.18(a)-(b).

2D FDTD simulations of the acceptor-type cavity of fig. 1.16(b) and table 1.4 were also per-

formed. The two deepest modes within the first order bandgap are found to be of A′′
2 and B′′

2 sym-

metry, the same symmetry as the modes predicted by the approximate analysis. Plots of the FDTD

calculated magnetic field patterns of these modes are given in fig. 1.18(c)-(d), again showing a

strong resemblance to the approximately generated field patterns. Figure 1.18(e)-(h) shows a series

of plots of the envelope (Γv,kJ1
) of the acceptor mode Ha,a1

A′′
2

. The size and shape (isotropic) of the

FDTD calculated mode envelope corresponds very nicely with the approximate Wannier envelope

as can be seen by the Gaussian fits in fig. 1.18(f)-(h) and the values of the fit decay constants given

in table 1.6. A similar envelope was extracted for mode Ha,a1
B′′

2
, with its fit decay constants given in



92

-0.4

-0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

 -8  -6  -4  -2 0 2 4 6 8

 -8

 -6

 -4

 -2

0

2

4

6

8

x (a=1)

y 
(a

=
1)

-1  

-0.8

-0.6

-0.4

-0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

 -8  -6  -4  -2 0 2 4 6 8

 -8

 -6

 -4

 -2

0

2

4

6

8

x (a=1)

y 
(a

=
1)

-0.5

0   

0.5 

1   

 -8  -6  -4  -2 0 2 4 6 8

 -8

 -6

 -4

 -2

0

2

4

6

8

x (a=1)

y 
(a

=
1)

-1  

-0.8

-0.6

-0.4

-0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

 -8  -6  -4  -2 0 2 4 6 8

 -8

 -6

 -4

 -2

0

2

4

6

8

x (a=1)

y 
(a

=
1)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

-8 -4 0 4 8

-8

-4

0

4

8

x (a=1)

y 
(a

=
1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

-8 -4 0 4 8

-8

-4

0

4

8

x (a=1)

y 
(a

=
1)

0

-10 -8 -6 -4 -2 0 2 4 6 8 10
x (a=1)

filter
fit

-8 -6 -4 -2 0 2 4 6 8
y (a=1)

filter
fit

(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

Figure 1.18: Magnetic field (ẑ-component) plots of the acceptor modes of the graded hexagonal
lattice acceptor-type cavity: (a) symmetry analysis A′′

2 mode, (b) symmetry analysis B′′
2 mode, (c)

FDTD A′′
2 mode, and (d) FDTD B′′

2 mode. Comparison of: (e) Wannier (see table 1.7) and (g) FDTD
envelope functions for the Ha,a1

A2
acceptor mode. (f) and (h) show line scans of the FDTD filtered

envelope (solid line) along the x̂- and ŷ-directions, respectively. The Gaussian fit to the FDTD
envelope along these principal directions are also plotted (dashed line).

table 1.6 as well.
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Chapter 2

Momentum Space Design of High-Q
Photonic Crystal Microcavities

2.1 Introduction

As I have discussed in the preface, there has been a considerable amount of interest in extending

cavity QED experiments to the semiconductor regime. In these experiments, coherent interactions

between a single quantum dot (QD) and a single photon within the semiconductor microcavity can

take place if the system is in the so-called strong coupling regime [9], where the QD-cavity coupling

strength g exceeds the QD dephasing rate γ⊥ and the cavity decay rate κ. As of just a few years

ago (i.e, at the start of our work in the area), no semiconductor microcavity had been demonstrated

that had the requisite combination of a high quality factor (Q) and small mode volume (Veff) to

achieve strong coupling (κ ∼ 1/Q, g ∼ 1/V 1/2
eff ). Photonic crystal (PC) microcavities seemed to be

a particularly appealing route to semiconductor-based strong coupling; the ultrasmall volumes to

which they confined light (smaller than the modal confinement that had been achieved in micropost

or microdisk cavities, for example) implied that the Q values needed to achieve strong coupling

would be more modest than in other geometries. The focus of this chapter is on the design of PC

microcavities with sufficiently high Qs for these applications. It is based largely on references [21]

and [23], which were published in July 2002 and March 2003.

While the PC microcavities studied in ref. [8] had very small mode volumes and loss properties

sufficient to sustain lasing, the measured Q values were still less than 1000. In particular, the

radiation losses were predominantly out of plane, while the in-plane losses were in comparison

small [7]. Although refinements in design [11] and fabrication [12] had since increased the total

measured Q to as high as 2,800, applications in cavity QED require Q values on the order of 104 to
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achieve strong coupling (assuming Veff ∼ (λ/n)3).

The limitations on Q stem from a number of possible factors, including intrinsic material ab-

sorption, etch-induced surface roughness and surface-state absorption, and other fabrication irregu-

larities that prevent ideal replication of a given design. These issues aside, the fundamental design

of these cavities had left room for improvement, and as such, the focus of this chapter primarily lies

here. Our main objective is to consider simple design rules that can be used to significantly reduce

the vertical losses from these structures, while maintaining or even improving upon the in-plane

losses. In section 2.2, we describe a simple picture which illustrates that the vertical radiation loss

of a mode is characterized by the presence of momentum components within the light cone of the

cladding of the host slab waveguide (WG). We then consider (section 2.3) the use of symmetry to

eliminate in-plane momentum components (k⊥) at k⊥ = 0 (DC), thereby reducing the vertical loss

in the structure. Drawing heavily from chapter 1, we summarize the different defect modes available

in hexagonal and square lattice PCs, and proceed to choose target symmetries for modes in these

lattices based upon the constraints they impose on the dominant field components of the modes.

In section 2.4, we propose simple defect geometries that support such modes and present the re-

sults of three-dimensional (3D) finite-difference time-domain (FDTD) calculations of their relevant

properties. In section 2.5, we consider further improvements in the designs based on a Fourier space

tailoring of the defect geometries that reduces coupling of the mode’s dominant Fourier components

to components that radiate. The results of FDTD simulations of these improved designs in a square

lattice are presented, and show that a modal Q-factor approaching 105 can be achieved by a careful

consideration of the mode and defect geometry in Fourier space. Similar considerations are given

in sections 2.6 and 2.7, where we consider the design of high-Q defect modes within standard and

compressed hexagonal lattice photonic crystals. Comparable results in terms of Q (∼ 105) and Veff

(∼ (λ/n)3) are achieved in these lattices.

2.2 Momentum space consideration of vertical radiation loss

The optical cavities studied here are comprised of defects situated in 2D PC slab WGs (fig. 2.1). As

a result, the in-plane confinement of the cavity modes is governed by the distributed Bragg reflection

(DBR) of the surrounding photonic lattice. Leakage of light in the plane of the PC slab WG from

the cavity is thus determined by the number of periods of the host lattice surrounding the defect and

the width and angular extent of the in-plane guided mode bandgap. Vertical confinement, on the
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ω

cone in (kx,ky,ω)-space

kx

kyω = ωo

radiation
 mode

guided
mode

..

Figure 2.1: 2D hexagonal PC slab waveguide structure and cladding light cone.

other hand, is due to standard waveguiding by total internal reflection. Vertical radiation loss occurs

when the magnitude of the in-plane momentum component, k⊥, is inappropriate to support guiding.

More concretely, we note that the energy-momentum dispersion relationship for a homogenous

dielectric cladding (refractive index n) of the PC slab WG is (nω/c)2 = k2
⊥ + k2

z , where ω is the

angular frequency, kz is the momentum normal to the slab, and c is the speed of light. For an air

clad PC WG as studied here, k2
⊥ = (ω/c)2 defines a cone in (kx,ky,ω) space, commonly referred

to as the “light cone” (fig. 2.1). Modes that radiate vertically will have small in-plane momentum

components that lie within the light cone of the cladding, thereby creating an oscillatory (radiating)

field in the air instead of an evanescently decaying field. Equivalently, from a ray optics perspective,

modes with in-plane momenta lying within the cladding light cone do not meet the total internal

reflection condition at the semiconductor-air interface. This simple rule serves as our fundamental

guideline in designing cavities that limit vertical radiation loss. In particular, we seek out structures

that support resonant modes whose in-plane momentum components are primarily situated outside

of the cladding light cone.

Before discussing methods to improve the vertical loss properties of PC defect cavities, it is

instructive to consider the characteristics of the previously studied [7] dipole-like defect modes in a

hexagonal lattice PC. Consider the x-dipole donor mode produced by a symmetric defect consisting

of the removal of a single air hole from a hexagonal lattice of air holes in a 2D slab WG, as discussed

in the previous chapter. Following the symmetry analysis presented in chapter 1, we see that this

mode is composed of dominant Fourier components directed along ±{kX1 ,kX2 ,kX3}, where the

kX directions are shown in the hexagonal PC reciprocal space lattice of fig. 2.2(a). The 2D spatial

Fourier Transform (FT) of the x-dipole field component Ex at the middle of the PC slab WG is given
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Figure 2.2: Real and reciprocal space lattices of (a) a 2D hexagonal lattice, and (b) a 2D square
lattice. For the hexagonal lattice: |a1| = |a2| = a, |G1| = |G2| = 4π/

√
3a, |kX | = 2π/

√
3a, |kJ| =

4π/3a. For the square lattice: |a1| = |a2| = a, |G1| = |G2| = 2π/a, |kX | = π/a, |kM| = √
2π/a.

in fig. 2.3(a). It shows the E-field to be primarily composed of momentum components located

about the X points, with ±kX1 as the strongest components. Note that the field has a significant

amplitude for momentum components lying within the light cone, the boundary of which is shown

in fig. 2.3(a) as a dashed white circle. These low momentum components radiate and are the cause

of the mode’s relatively low effective vertical Q-factor (Q⊥ ≈ 1000).

2.3 Summary of the symmetry analysis of defect modes in hexagonal

and square lattices

There are a number of ways to limit the presence of small in-plane momentum components in the

localized resonant modes of PC slab WG defect cavities. For example, the geometry of the defect

and the surrounding holes can be tailored to reduce the magnitude of these components, as was

done in ref. [11], where the authors report a predicted Q of 30,000. One particularly appealing

way to limit the presence of small in-plane momentum components is to use symmetry to enforce

specific boundary conditions on the Fourier space representation of the mode. A defect will support

one or more resonant modes with symmetries that are compatible with the nature of the defect

and the surrounding PC. Of particular interest are modes whose symmetry is odd about mirror

planes normal to the dominant Fourier components of the mode. In the context of our symmetry

analysis, the fields of the approximate TE-like modes have in-plane electric field polarization normal
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Figure 2.3: Spatial FT of x-dipole donor mode in a hexagonal lattice (r/a = 0.30) with a central
missing air hole. (a) in 2D, (b) along the ky direction with kx = 0.

to the direction of their dominant Fourier components. In Fourier space, our choice of symmetry is

equivalent to eliminating these in-plane electric field polarizations at k⊥ = 0 (DC). This elimination

of DC momentum components is the first step in reducing vertical radiation loss, and serves as our

fundamental criterion for choosing the desired symmetry for our defect modes.1 In addition, as we

shall discuss later within this thesis (chapter 4), this use of a symmetry as a primary mechanism for

reducing vertical radiation loss is also important from the standpoint of making cavities whose Qs

are relatively robust to perturbations in their geometries.

The defect modes of a PC cavity are generally classified into donor- and acceptor-type modes

[94], based upon whether the defect creates modes from the conduction band edge (donor modes)

or valence band edge (acceptor modes). For the hexagonal lattice, whose real and reciprocal space

depictions are given in fig. 2.2(a), the valence band edge is at the J-point and the conduction

band edge is at the X-point (fig. 2.4(a)), while the square lattice of fig. 2.2(b) has its valence

band edge at the M-point and conduction band edge at the X-point (fig. 2.4(b)). The dominant

Fourier components and symmetry of a defect mode are determined by the type of mode (donor

or acceptor) under consideration, the symmetry of the surrounding PC lattice, and the point group

symmetry of the defect. The use of such an analysis to produce approximate forms for the modes

in hexagonal and square lattice PC defect cavities was the focus of section 1.1, and as a result,

here, we primarily incorporate the results of that chapter and describe their implications towards the

1This can be viewed in the far-field as elimination of lower-order multi-pole radiation components, as has been con-
sidered by Johnson and co-workers [108]
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(b) Square Lattice in-plane bandstructure.

Figure 2.4: Fundamental TE-like (even) guided mode bandstructure for hexagonal and square lat-
tices, calculated using a 2D plane-wave expansion method with an effective index for the vertical
guiding: (a) hexagonal lattice with r/a = 0.36, nslab = neff = 2.65, (b) square lattice with r/a = 0.40,
nslab = neff = 2.65.

design of high-Q defect resonators. The course of study is the following: we use the results of this

group-theory-based analysis to determine the symmetry and dominant Fourier components for the

available donor and acceptor type modes formed at different high symmetry points within hexagonal

and square lattice PCs. Candidate modes for high-Q resonators are then chosen from these sets of

available modes based upon the criteria placed on the mode’s momentum components as described

above. Within the mirror plane of the slab WG (coordinates r⊥) the TE modes are described by the

field components Ex, Ey, and Hz. Since the magnetic field is exactly scalar within this mirror plane,

the criterion reduces to looking for modes in which the magnetic field pattern is spatially even in

the directions of its dominant Fourier components. This is equivalent to having the in-plane electric

field components spatially odd in these directions.

2.3.1 Hexagonal lattice

For a hexagonal lattice, the high symmetry points about which a defect may be formed are points a

(C6v symmetry), b (C2v symmetry), and c (C3v,σv symmetry) shown in fig. 2.2(a). Here, we consider

donor and acceptor modes formed only at points a and b, as from the analysis presented in the

previous chapter, those centered at point c do not contribute modes with the requisite symmetry

and dominant Fourier components. We also examine reduced symmetry modes formed at point

a, where the reduction of symmetry from C6v to C2v is accomplished by choosing a defect that
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Table 2.1: Symmetry classification and dominant Fourier components for the H-field of conduction
band donor modes in a hexagonal lattice.

Defect Center C6v Modes Fourier Comp. (σd,σv)a C2v Modes (σx,σy)a

(0,0) Ha,d1
B′′

1
±{kX1 ,kX2 ,kX3} (+,−) Ha,d1,1

B1
(−,+)

(0,0) Ha,d1
E1,1

±{kX1 ,kX2 ,kX3} (0,0) Ha,d1,2
B1

(−,+)

(0,0) Ha,d1
E1,2

±{kX2 ,kX3} (0,0) Ha,d1
B2

(+,−)

(a/2,0) N/Ab ±{kX2 ,kX3} N/A Hb,d1
A1

(+,+)

(a/2,0) N/A ±{kX2 ,kX3} N/A Hb,d1
A2

(−,−)

(a/2,0) N/A ±{kX1} N/A Hb,d1
B1

(−,+)
a Character values.
b Not applicable. Modes centered at point b are of C2v symmetry.

breaks the symmetry of the lattice and is compatible with C2v. Based upon the analysis of chapter

1, we create table 2.1 for donor modes and table 2.2 for acceptor modes. These tables provide the

labeling scheme for the C6v and C2v modes, the dominant Fourier components of the modes, and

their transformation properties about the available mirror planes (the mirror plane properties are

represented by their character values [92]).

Donor modes of C6v symmetry, formed at point a in the lattice, have their dominant Fourier

components in the ±{kX1 ,kX2 ,kX3} directions, and we thus require that σd = −1, where the σdi

are the mirror planes labeled in fig. 2.2(a). However, σd �= −1 for the modes listed in table 2.1.

Reducing the symmetry of the mode to C2v (through a modified defect at point a or re-centering to

point b) results in modes with dominant Fourier components that are not orthogonal to the available

mirror planes, or as in the case of the Hb,d1
B1

mode, have incorrect spatial symmetry.

Out of the C6v acceptor modes in table 2.2, the Ha,a1
A′′

2
mode satisfies the symmetry criteria. The

Hb,a1
A2

mode produced at position b does not quite satisfy our criteria, as two of the three pairs

of dominant Fourier components (±{kJ1 ,kJ3}) are not orthogonal to the mirror planes; however,

distortions of the lattice that preferentially select for the ±kJ5 Fourier components over ±kJ1 and

±kJ3 can be made so that the symmetry condition is satisfied. Such lattice distortions are addressed

in section 2.7. As a reference, the approximate form for the Ha,a1
A′′

2
mode, given previously in equation

(1.20), is listed below:
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Table 2.2: Symmetry classification and dominant Fourier components for the H-field of valence
band acceptor modes in a hexagonal lattice.

Defect Center C6v Modes Fourier Comp. (σd ,σv) C2v Modes (σx,σy)

(0,0) Ha,a1
A′′

2
±{kJ1 ,kJ3 ,kJ5} (−,−) Ha,a1

A2
(−,−)

(0,0) Ha,a1
B′′

2
±{kJ1 ,kJ3 ,kJ5} (−,+) Ha,a1

B2
(+,−)

(a/2,0) N/A ±{kJ1 ,kJ3 ,kJ5} N/A Hb,a1
A2

(−,−)

(a/2,0) N/A ±{kJ1 ,kJ3 ,kJ5} N/A Hb,a1
B2

(+,−)

Ha,a1
A′′

2
= ẑ

(
cos(kJ1 · ra

⊥)+ cos(kJ3 · ra
⊥)+ cos(kJ5 · ra

⊥)
)

, (2.1)

where ra
⊥ denotes in-plane coordinates referenced to point a.

2.3.2 Square lattice

The square lattice of air holes in a dielectric slab, whose real and reciprocal space representations

are shown in fig. 2.2(b), and whose TE-mode bandstructure is depicted in fig. 2.4(b), also provides

a photonic lattice from which low-loss defect modes can be formed. Defects in a square lattice may

be centered at the C4v symmetry points d and f , or the C2v symmetry point e. Again, following the

analysis of chapter 1, we produce tables 2.3 and 2.4 for the square lattice defect modes.

Based on their properties under mirror reflection, the H f ,d1
A′′

2
, H f ,d1

B′′
2

, and He,d1
A2 donor modes all

meet the symmetry condition we have placed on the modes. By suitable modification of the defect

geometry, the symmetry of modes formed at points d and f can be reduced to C2v,σv or C2v,σd , where

the subscript σv denotes symmetry with respect to the (σx,σy) mirror planes and the subscript σd

refers to the (σx′ ,σy′) mirror planes (fig. 2.2(b)). The modes at f continue to satisfy the symmetry

criteria under C2v,σv , but no longer do so under C2v,σd , as the σd mirror planes are not orthogonal to

the modes’ dominant Fourier components.

The acceptor states formed from the valence band edge at the M-point are analyzed in a similar

fashion, and in this case, the modes at points d and f are candidates. The reduced symmetry C2v,σv

modes at points d and f are ruled out, while the C2v,σd modes at these two high symmetry points
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Table 2.3: Symmetry classification and dominant Fourier components for the H-field of conduction
band donor modes in a square lattice.

Defect center C4v Fourier Comp. (σd ,σv) C2v,σv (σx,σy) C2v,σd (σx′ ,σy′)

(0,0) Hd,d1
E,1 ±{kX1} (0,0) Hd,d1

B1
(−,+) Hd,d1

B′
1

(−,−)

(0,0) Hd,d1
E,2 ±{kX2} (0,0) Hd,d1

B2
(+,−) Hd,d1

B′
2

(+,−)

(a/2,a/2) H f ,d1
A′′

2
±{kX1 ,kX2} (−,−) H f ,d1,1

A2
(−,−) H f ,d1

A′
2

(−,−)

(a/2,a/2) H f ,d1
B′′

2
±{kX1 ,kX2} (−,+) H f ,d1,2

A2
(−,−) H f ,d1

A′
1

(−,−)

(0,a/2) N/Aa ±{kX1} N/A He,d1
A2 (−,−) N/A N/A

(0,a/2) N/A ±{kX2} N/A He,d1
B2 (+,−) N/A N/A

a Not applicable. Modes centered at point e are of C2v symmetry.

Table 2.4: Symmetry classification and dominant Fourier components for the H-field of valence
band acceptor modes in a square lattice.

Defect Center C4v Fourier Comp. (σd,σv) C2v,σv (σx,σy) C2v,σd (σx′ ,σy′)

(0,0) Hd,a1
A′′

2
±{kM1 ,kM2} (−,−) Hd,a1

A2
(−,−) Hd,a1

A′
2

(−,−)

(a/2,a/2) H f ,a1
B′′

1
±{kM1 ,kM2} (+,−) H f ,a1

A1
(+,+) H f ,a1

A′
2

(−,−)

(0,a/2) N/A ±{kM1 ,kM2} N/A He,a1
B1

(−,+) N/A N/A

remain on the list. As a reference, the approximate forms for the candidate donor and acceptor

modes are given in table 2.5 below.
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Table 2.5: Candidate donor and acceptor modes in a square lattice.

Donor Modes Acceptor Modes

H f ,d1
A′′

2
= ẑ

(
cos(kX1 · r f

⊥)+ cos(kX2 · r f
⊥)
)

Hd,a1
A′′

2
= ẑ

(
cos(kM1 · rd

⊥)+ cos(kM2 · rd
⊥)
)

H f ,d1
B′′

2
= ẑ

(
cos(kX1 · r f

⊥)− cos(kX2 · r f
⊥)
)

H f ,a1
B′′

1
= ẑ

(
cos(kM1 · r f

⊥)− cos(kM2 · r f
⊥)
)

He,d1
A2 = ẑ

(
cos(kX1 · re

⊥)
)

2.4 Initial FDTD simulation results

The symmetry analysis presented in the previous section determined the modes satisfying our sym-

metry criteria, chosen to reduce vertical radiation losses from the PC slab WG. For a hexagonal

lattice, we singled out the acceptor mode of equation (2.1), while for the square lattice, a number of

options were available, as summarized in table 2.5. We begin the 3D FDTD analysis of high-Q PC

resonant cavities by choosing particular defects in the hexagonal and square lattices that will support

one of these modes. Results from the FDTD analysis will provide a measure of the benefits obtained

in using modes of such symmetries, and will also give an indication of what further improvements

are needed. This will lead naturally to the Fourier space tailoring of the lattice discussed in sections

2.5 and 2.6.

The FDTD calculations presented in this section (see appendix B for more details) were per-

formed on a mesh with 20 points per lattice spacing (greater than 70 points per free space wave-

length or 20 points per wavelength in the dielectric). Cavity modes were excited by an initial field

(Hz) with a localized Gaussian profile, and even modes of the slab WG were preferentially selected

by using an even mirror symmetry condition (σh = 1) in the middle of the slab. In order to main-

tain a single vertical mode of the PC slab waveguide (within the frequency band of interest), we

choose a normalized slab thickness d/a = 0.75 in this section. Where appropriate, the mirror planes

(σx,σy) were used to filter out cavity modes according to their projection onto the irreducible rep-

resentations (IRREPs) of C2v,σv . Mur’s absorbing boundary conditions were used to terminate the

FDTD simulation domain in all other directions. Q values are calculated by determining the power

absorbed in the boundaries (Pabs) and the stored energy in the mode (U), and taking Q = ω0U/Pabs,

where ω0 is the angular frequency of the mode. By distinguishing between power flow to vertical
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and in-plane boundaries, effective Q values Q⊥ and Q‖ are calculated, with the total quality factor

being determined by 1/Q = 1/Q‖ + 1/Q⊥ [7]. It should be noted that a number of other methods

were also used to estimate the Q values, including the modal energy decay rate and the radiated

power calculated from the near field momentum components lying within the cladding light cone,

all resulting in consistent values. The effective volume [109, 110] of the cavity modes, Veff in the

tables below, is calculated using the peak in the electric field energy density and is given in units of

cubic wavelengths in the material.2 The explicit form of Veff is:

Veff =
∫
V ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2] (2.2)

2.4.1 Hexagonal lattice

The Ha,a1
A′′

2
mode, our candidate mode for study, is formed by enlarging holes in a manner consistent

with the C6v symmetry of the lattice, so that an acceptor mode is formed. We choose the defect

geometry shown in table 2.6, where the central hole (about point a) is enlarged from radius r to r′.

The defect is surrounded by a total of 8 periods of the hexagonal lattice in the x̂-direction and 12

periods in the ŷ-direction. The magnetic field amplitude and Fourier-transformed momentum space

electric field components Ẽx and Ẽy of mode Ha,a1
A′′

2
are given in table 2.6 for two different pairs of

values (r,r′). The dominant Fourier components are seen to be ±{kJ1 ,kJ3 ,kJ5}, as predicted by the

symmetry analysis. Examining Ẽx and Ẽy, it is also clear that, although the power within the light

cone has been reduced in comparison to the x-dipole donor mode, it is still significant. This fact is

evidenced in Q⊥ which, at 4,900 for r/a = 0.35 and r′/a = 0.45, is larger than that obtained for the

x-dipole mode. By reducing the frequency, and consequently the radius of the light cone, the PC

cavity with r/a = 0.30 and r′/a = 0.45 has an improved vertical Q of 8,800 (although its in-plane

Q has degraded due to a reduction in the in-plane bandgap for smaller lattice hole radii).

2In our original papers [21, 23], we quoted modal volumes in terms of cubic wavelengths in air (λ3); this unit has
meaning in terms of describing the physical volume of the field. However, to compare differing cavity geometries across
different material systems, the unit of cubic wavelengths in the material ((λ/n)3) is more appropriate, and I have thus
chosen this unit for all of the Veff values quoted in this chapter and the rest of the thesis. In addition, certain phenomena,
such as the enhanced radiative rate of an emitter within a cavity (the Purcell effect) are most straightforwardly calculated
when the volume is quoted in units of (λ/n)3. In other works within the field, mode volumes will sometimes be quoted
in terms of cubic half-wavelength in the material ((λ/2n)3), to provide a comparison against a theoretical cavity that can
confine an optical mode to a half-wavelength in the material in all three dimensions (i.e., the optical analog of the particle
in a 3D infinite square well from quantum mechanics).
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Table 2.6: Characteristics of the Ha,a1
A′′

2
resonant mode in a hexagonal lattice (images are for a PC

cavity with r/a = 0.35, r′/a = 0.45, d/a = 0.75, and nslab = 3.4).

Geometry |H| |Ẽx| |Ẽy|

r' r

a -10 -5 0 5 10

-10

-5

0

5

10

kx (a=1)

k y
 (
a=

1)

-10 -5 0 5 10

-10

-5

0

5

10

kx (a=1)

k y
 (
a=

1)

r/a r′/a ωn = a/λo Q‖ Q⊥ Qtot Veff((λ/n)3)

0.35 0.45 0.265 34,100 4,900 4,300 0.54

0.30 0.45 0.248 5,300 8,800 3,300 0.84

2.4.2 Square lattice

We choose the He,d1
A2 mode as our candidate for study. This mode, centered in the dielectric at point

e in the lattice, is appealing in that it has Fourier components primarily situated at ±kX1 , while the

other modes of correct symmetry have a larger number of Fourier components. This simplifies the

design considerations of section 2.5. To create the mode, we consider the structure depicted in table

2.7. Defining point e as the origin, (0,0), we see that the structure consists of a standard square

lattice of air holes in which the two holes centered at (0,±a/2) are decreased in size so as to create

a donor mode of A2 symmetry. In the FDTD simulations, the structure consists of 12 rows and 8

columns of air holes surrounding the defect holes.

Starting with r/a = 0.30, r′/a = 0.28, and d/a = 0.75, we produce a mode with normalized

frequency ωn = a/λo = 0.264. The magnetic field amplitude and 2D spatial FTs (Ẽx and Ẽy) of the

mode are given in table 2.7. As the amplitude of Ẽy is small in comparison to that of Ẽx, the mode

is predominantly made up of components centered at ±kX1 , as predicted. The effective vertical Q

of this mode is approximately 54,000, easily exceeding the values obtained in ref. [8] for a mode

of even symmetry. The small Q‖ (17,400) is a result of the weak defect perturbation and extended

nature of the cavity mode (Veff = 2.11(λ/n)3). Improving the localization of the mode by lowering

r′/a of the defect to 0.25 improves Q‖ to a value of 60,000 and lowers Veff by a factor of almost

two. Surprisingly, Q⊥ has also increased from 54,000 to 69,000 despite the stronger localization of

the mode and its expected broadening in Fourier space. This rather counterintuitive result indicates
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Table 2.7: Characteristics of the He,d1
A2 resonant mode in a square lattice (images are for a PC cavity

with r/a = 0.30, r′/a = 0.28, d/a = 0.75, and nslab = 3.4).

Geometry |H| |Ẽx| |Ẽy|

e

r

r'

a
-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

kx (a=1)

k y
 (a

=
1)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

kx (a=1)

k y
 (a

=
1)

r/a r′/a ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.30 0.28 0.265 17,400 54,000 13,000 2.11

0.30 0.25 0.262 60,100 69,200 32,000 1.08

that a more detailed study of the effects of the defect geometry on cavity loss is required. This is

the focus of the following section.

2.5 Momentum space design of the defect geometry in a square lattice

The results for the simple square lattice cavities studied in the previous section are quite encourag-

ing, and we will thus begin by examining cavity design within these square lattice structures before

returning to the hexagonal lattice in a later section. The results given thus far indicate that improv-

ing the loss properties of the defect mode resonators requires isolation of the mode’s momentum

components to regions outside the light cone to maintain a high Q⊥, and to those regions for which

the in-plane bandgap is substantial for a high Q‖. To determine how to tailor the defect geometries

to accomplish these goals, we consider a simple model to illustrate the couplings induced in Fourier

space between the dominant momentum components of a given defect mode and those modes which

radiate. We employ a two-step process where in the first step, the approximate form of the defect

mode is taken based on symmetry arguments, as outlined in section 2.3, with the allowance for finite

k-space bandwidths in the dominant Fourier components due to the localization of the defect mode.

We then consider couplings of this approximate symmetry mode to other modes of the PC slab WG

through the dielectric perturbation Δη(r), where η = 1/ε is the inverse of the dielectric profile of

the lattice. The most important mode couplings from the perspective of increasing the Q are those
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between the dominant Fourier components and “leaky cavity modes.” The leaky cavity modes con-

sist of vertical radiation modes and guided modes of the PC slab WG which are not reflected by the

PC and thus leak in-plane. Δη induces the change δHd(r) in the defect mode, and this change is

written as a superposition over the set of nearly (frequency) degenerate guided and radiation modes

of the PC slab WG. The coupling amplitude between the symmetry mode composed of the dominant

Fourier components, Hd
o(r), and a leaky cavity mode, Hlcm

o (r), of the unperturbed PC slab is given

by the following matrix element:

∫
d3r

(
Hlcm

o (r)
)∗(

∇×
(

Δη(r)∇×Hd
o(r)

))
∼

∫
d2k⊥
(2π)4

(
H̃lcm

z,o

)∗([
Δ̃η∗ (|k⊥|2H̃d

z,o

)]
+
[(

kxΔ̃η
)∗ (kxH̃

d
z,o

)]
+
[(

kyΔ̃η
)∗ (kyH̃

d
z,o

)])
(2.3)

where ∗ denotes convolution. In converting from the real space integral to momentum space, we

have neglected the variation of η(r) and Δη(r) in the ẑ-direction, so that Hd
o(r) ≈ Hz,o

d(r⊥) (TE-

like mode). From this equation, it is clear that the Fourier Transform of the dielectric perturbation,

Δ̃η(k⊥), is the key quantity that couples Fourier components between the basis modes of the system.

By tailoring this quantity appropriately, we can thus limit couplings that lead to in-plane and vertical

leakage.

The formula given above is meant to be a qualitative guide to help build physical intuition; it

is not a rigorous formula that can be expected to be quantitatively accurate. Such a formula can

be conceived, however, by considering the Wannier analysis provided in the previous chapter. In

particular, in equation (1.58), we showed that the mixing of the Bloch modes of the PC due to the

presence of the defect perturbation, L̂ ′
H = −∇(Δη) ·∇− (Δη)∇2, is given by:

〈Hl′,k′ |L̂ ′
HHl,k〉 = ∑

G
∑
k′′

(
Δ̃ηk′′Kl′,l(k′,k,G)+ Δ̃ηk′′(ik′′) ·Ll′,l(k′,k,G)

)
δk′−k′′+G,k, (2.4)

where Δ̃ηk′′ is the k′′th Fourier coefficient of Δη(r), l and k label the band index and crystal momen-

tum of the Hl,k Bloch wave, the G are reciprocal lattice vectors, and Kl′,l(k′,k,G) and Ll′,l(k′,k,G)

are scalar and vector coupling matrix elements, respectively, which depend upon the Bloch waves.

As expected, this formula indicates the importance of the Fourier transform of the dielectric pertur-

bation, Δ̃η(k⊥), in determining the coupling of different Bloch modes of the unperturbed crystal.
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Figure 2.5: Illustration showing the mode coupling for the He,d1
A2 mode in k-space through the Δ̃η

perturbation.

Our candidate mode within the square lattice, He,d1
A2 , has dominant in-plane Fourier components

at ±kX1 . We must therefore modify the defect so that Δ̃η does not couple the ±kX1 momentum

components to those regions in k-space which are “leaky.” In order to reduce radiation normal to the

PC slab through coupling to the light cone, the amplitude of Δ̃η in the neighborhood of ky = ±π/a

should be minimized. In addition, for the square lattice designs investigated here the bandgap

between the conduction band edge at the X-point and the valence band edge at the M-point is at best

very narrow, consequently, we look to reduce coupling between neighborhoods surrounding the X-

and M-points. This implies that it will also be necessary to reduce the amplitude of Δ̃η in the region

about kx = ±π/a.

The crux of the argument described above is depicted in fig. 2.5, where lossy couplings are

illustrated for the upper region of k-space (the negative ky region will behave identically in this

case). Here we have assumed that the defect mode frequency lies below the conduction band edge

at the X-point but slightly within the valence band near the M-point, resulting in an annular region

of k-space about the M-point which is strongly coupled to. With reference to this simple schematic,

the Fourier components of Δ̃η that lead to radiation losses from the defect cavity are approximately:

Δ̃η
(
|kx| � (klc +Δx), |ky ±|kX1 || � (klc +Δy)

)
=⇒ coupling to light cone,

Δ̃η
(
|kx ±|kX2 || � Δx, |ky| � Δy

)
=⇒ coupling to leaky M-point.

(2.5)

where klc is the radius of the light cone, and Δx and Δy are the widths of the dominant Fourier peaks

in the k̂x- and k̂y-directions, respectively.

Before attempting any design modifications, we first consider the simple defect geometry stud-
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Figure 2.6: Δ̃η(k⊥) for dielectric structure of table 2.7.

ied in section 2.4, where the holes located at (0,±a/2) were reduced from the standard hole radius r

to a radius r′. The perturbation Δη is given by the difference in η with and without the defect holes,

and thus simply consists of a pair of annuli, each of width (r− r′), centered at (0,±a/2). The 2D

spatial FT of this function can be obtained analytically [5], and is separable into the form

Δ̃η(k⊥) = F(k⊥;r,r′)cos

(
kya

2

)
, (2.6)

where F(k⊥;r,r′) is a function of the magnitude of the in-plane momentum, with r and r′ as parame-

ters. This function, along with one-dimensional (1D) slices along the kx and ky axes, is shown in fig.

2.6 (the figure shown is actually the direct FT of the structure used in FDTD calculations, to take

into account any staircasing effects in the rendering of the holes; however, the difference between

it and the analytic function are insignificant.). We notice, as is clear from examining equation (2.6),

that Δ̃η = 0 at ky = ±π/a. Our choice of defect was thus a fortuitous one, as the zero amplitude

of Δ̃η at the X points eliminated coupling between the dominant Fourier components of the He,d1
A2

mode and DC. Of course, a localized defect mode has a finite bandwidth in Fourier space about its

dominant momentum components, and the light cone encompassing the radiation modes is of finite

radius as well. As a result it is desirable to minimize the Fourier components of the dielectric per-

turbation over an extended region about ky =±π/a. Note that Δ̃η for the hexagonal lattice design of

the previous section does not have zero amplitude at any of the kJ , and thus the Q⊥ values are much

smaller than those of the square lattice. To increase Q⊥ in the hexagonal lattice, future designs must

therefore tailor the lattice in a way so that this amplitude is significantly reduced.
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It is also necessary to modify the dielectric to improve Q‖. The most straightforward way

to immediately do so is to increase the r/a of the host PC, as that will provide a bandgap for

an increased range of momentum values. This also tends to decrease Q⊥, as the increased r/a

will produce a mode of higher frequency, resulting in a cladding light cone of increased radius

encompassing a larger range of momentum values. Fortunately, this does not necessarily have to

hold for a general defect geometry. In particular, the hole radius can be kept relatively small in the

region where the mode is primarily located, but can be graded outside this region to increase the

in-plane reflectivity. The choice of grading can be determined by considering the need to limit the

in-plane momentum components of the mode to regions in which the bandgap is substantial (note

that for the simple two-hole design considered in section 2.4, Δ̃η is quite large in this region of

momentum space about kx = ±π/a). The benefit of this approach is that it does not necessarily

result in increased vertical radiation loss, thus allowing for both a large Q‖ and Q⊥.
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Figure 2.7: Properties of the graded square lattice.

Consider the graded lattice shown in fig. 2.7(a). The standard defect holes at (0,±a/2) have

r/a = 0.23, while their immediate neighbors have r/a = 0.253. The hole radii are then increased

parabolically outwards for 5 periods in the x̂-direction and 7 periods in the ŷ-direction, after which

they are held constant. The nature of this grading is shown in fig. 2.7(a), where the r/a profiles

are given for slices along y = a/2 and x = 0. Along these axes the maximum value r/a attains is

0.31, but along the diagonal directions r/a grows to be as large as 0.35. The dielectric perturbation,

which now consists of a series of annuli of decreasing width from the center to the edges, has a FT
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Table 2.8: Field characteristics of the graded square lattice shown in fig. 2.7(a).

|H| |Ẽy| |Ẽx| |Ẽx| along ky axis

-10 -5 0 5 10
ky (a=1)

|F
T
(E

x)
| light

cone

d/a ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.75 0.245 470,000 110,000 89,000 1.23

0.85 0.239 422,000 128,000 98,000 1.28

0.95 0.235 296,000 139,000 95,000 1.33

1.05 0.231 280,000 145,000 96,000 1.38

given in fig. 2.7(b). Examining both the 2D image and the 1D line scans of the FT, we see that

our grading has greatly diminished the amplitude of Δ̃η in the regions surrounding ky = ±π/a and

kx = ±π/a.

The FDTD simulations of the defect mode of this structure largely confirm the ideas described

thus far. Q⊥ has increased to over 110,000, while Q‖ has improved even further to approximately

470,000, giving an overall Qtot ≈ 89,000. The predicted mode volume Veff ∼ 1.2(λ/n)3, so that the

combination of Q and Veff achievable in this cavity is very promising from the standpoint of cavity

QED experiments. This will be described in further detail in later chapters within this thesis.

The magnetic field amplitude and FT of the in-plane electric field components in table 2.8

provide further indication of the success of this design in suppressing radiation loss. In particular,

consider the line scan of Ẽx along the ky axis. It shows that the grading has met with success,

as power has largely been eliminated within the light cone. This point is particularly striking when

contrasted with the corresponding image shown in fig. 2.3(b) for the low Q x-dipole mode we took as

our baseline. Note that Δ̃η(kx = 0,ky = ±π/a) is identically zero regardless of the grade, due to the

position of the defect holes with respect to the center of the defect, whereas Δ̃η(kx = ±π/a,ky = 0)

is not automatically zero. It may be advantageous to identically zero Δ̃η(kx = ±π/a,ky = 0) as this

will allow for the formation of a more localized mode that is still of high Q‖. Such a mode would

be centered at the f -point of the square lattice, and would either be the H f ,d1
A′′

2
or H f ,d1

B′′
2

mode.

Before concluding, there are a couple of points concerning the chosen lattice that are worth
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mentioning. The first is that the initial jump in r/a between the defects at (0,±a/2) and their

neighbors is an important element of this design. Acting as a potential well, the jump helps confine

the mode in real space, allowing r/a to increase quickly to a value for which the in-plane reflectivity

is high without significantly increasing the modal frequency. The size of the jump is also important;

if incorrectly sized the resulting dielectric perturbation contains larger Fourier amplitudes which

couple the mode to the M-point for which the PC is no longer reflective and to the light cone in

which light radiates vertically. An optimum defect design is found when a compromise is struck

between the minimization of the Fourier components of Δ̃η which couple the dominant momentum

components of the defect mode to regions of k-space which radiate, and the degree to which the

dominant momentum components of the mode broaden due to in-plane confinement by the defect.

It should again be emphasized that the increased Q⊥ for these graded lattice designs is not

solely the result of real-space delocalization of the mode, which has been an approach considered

by other authors [108, 111]. It is instead largely due to the aforementioned reduction of amplitude

for those Fourier components of the dielectric perturbation that couple the dominant momentum

components of the defect mode to those which radiate. Of course, real-space localization plays a

role in determining the spread in k-space of the dominant Fourier components of the mode, and if

this spread exceeds the size of the region about ±kX1 that Δ̃η has been flattened, vertical radiation

will result. An increase in the slab thickness also effects the performance of the structure. It causes

a decrease in the frequency of the mode, thus increasing Q⊥. It also slightly reduces the size of the

in-plane bandgap, decreasing Q‖. This is in fact seen in the results of FDTD simulations compiled

in table 2.8.

Finally, we note that the criteria for choosing the geometries presented in this paper were en-

tirely based on Q considerations, and optimization of the lattice grading to further increase Q can

still be made. Changes may also be made to improve other aspects of the design. In particular,

reducing the mode volume may be of importance to applications in quantum optics, while reducing

the complexity of the design (in terms of the number and size of holes comprising the defect) may

be of interest from a fabrication standpoint. Alternately, as we shall discuss in chapter 4, this graded

lattice geometry is distinguished by supporting a mode whose Q is relatively insensitive to perturba-

tions in the cavity geometry; one could envision making such robustness a prerequisite along with

high-Q and small-Veff in future designs of photonic crystal cavities. The approach to such designs

can be aided through the Fourier space consideration of the dielectric perturbation as has been de-

scribed in this section. Doing so will elucidate the potential lossy couplings that occur when the
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defect mode is formed, and will help determine whether a given structure is able to sustain a high-Q

mode.

2.6 Tailoring of the defect geometry for the Ha,a1
A′′

2
mode in the hexago-

nal lattice

When comparing defect modes of a square lattice with those of a hexagonal lattice in the context

of forming high-Q microcavities, there are a number of salient points that merit consideration. The

first is that the square lattice designs adopted above provided a natural “geometric” advantage in

that Δ̃η(k⊥) (even in the simplest case of two reduced size air holes) was automatically zero at

the dominant Fourier components (kx = 0,ky = ±π/a), thereby reducing coupling between those

components and small momentum components that radiate. Furthermore, these dominant Fourier

components were in directions orthogonal to the available mirror planes of the system, maximizing

the symmetry-based reduction of small momentum components as discussed in section 2.2. In the

hexagonal lattice, it is difficult to obtain a similar set of circumstances. The only mode consistent

with the symmetry criteria is the Ha,a1
A′′

2
mode, but defects that create such a mode have Δ̃η(k⊥) that

is non-zero at the mode’s dominant Fourier components (±{kJ1 ,kJ3 ,kJ5}). Conversely, a mode such

as Hb,d1
A2

, formed by a defect such as two reduced size holes at (0,±a
√

3/2), could have Δ̃η(k⊥) = 0

at its dominant Fourier components (±{kX2 ,kX3}), but these Fourier components are oriented along

directions that are not orthogonal to the available mirror planes of the system.

Despite these potential obstacles, it is certainly possible to design high-Q defect cavities in

a hexagonal lattice. One advantage of the hexagonal lattice is that it exhibits a relatively large

and complete in-plane bandgap for TE-like modes due to its nearly circular first Brillouin zone

(IBZ) boundary. This essentially guarantees the ability to achieve high in-plane Q provided that

the mode is suitably positioned within the bandgap, and that a sufficient number of periods of the

photonic lattice are used (it is still important not to entirely neglect in-plane considerations in cavity

designs as the mode volume can be affected significantly). To address vertical radiation losses, the

defect geometry can be tailored to reduce couplings to the light cone, even though Δ̃η(k⊥) does

not necessarily have the automatic zeros it had in the case of the square lattice. Examining such

tailorings is the focus of this section.

Our first goal is to reduce couplings between the dominant Fourier components of the Ha,a1
A′′

2
mode

and the light cone. As was demonstrated above for the square lattice, this can be accomplished
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Table 2.9: FDTD simulation results for graded hexagonal lattice geometries (images are for the first
PC cavity listed below; d/a=0.75 in all designs).

Lattice |H| |Ẽx| |Ẽy|

(r/a)c (r/a)nn (r/a)e ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.36 0.325 0.225 0.250 400,000 180,000 123,000 2.41

0.40 0.380 0.30 0.271 1,540,000 76,000 72,000 1.67

0.36 0.355 0.225 0.252 800,000 107,000 94,000 1.18

through a grade in the hole radii as a function of distance from the center of the cavity. In this case,

we reduce the hole radius as we move outwards from the central defect. An example of a graded

lattice defect design is given in table 2.9, where only the central region of the cavity is shown to

help the reader visualize the hole radii grading (the actual cavity used in FDTD simulations has 10

periods of the hexagonal lattice in each direction). The design consists of two levels of confinement.

The first level of confinement has a centrally enlarged air hole ((r/a)c = 0.35) followed by a rela-

tively large decrease in hole radius ((r/a)nn = 0.325) for the nearest neighbor holes. The hole radii

are then parabolically decreased in moving radially outwards (down to (r/a)e = 0.225 at the edge

of the crystal), forming the second level of confinement. The effect this has on Δ̃η(k⊥) is evident in

fig. 2.8(a)-(b), where we plot this function for the single enlarged hole design of the previous sec-

tion and for the graded lattice design just described. It is clear that Δ̃η(k⊥) has been dramatically

reduced at ±{kJ1 ,kJ3 ,kJ5}, limiting the coupling between the dominant Fourier components and the

light cone. The magnetic field amplitude and the Fourier transform of the mode’s in-plane electric

field components are shown in table 2.9. The resulting Q values and mode volume, as listed in table

2.9, are Q⊥ = 1.8×105, Q‖ = 4×105, and Veff = 2.41(λ/n)3. As previously mentioned, Q‖ could

be made larger by simply increasing the number of periods in the photonic lattice; however, this

will not have an appreciable effect on the mode volume, which is somewhat large in this case.

Having achieved a design with a high Q⊥, we would like to modify it so as to reduce the mode
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Figure 2.8: (a) Δ̃η(k⊥) for single enlarged hole design in hexagonal lattice (r/a = 0.30, r′/a =
0.45). (b) Δ̃η(k⊥) for graded hexagonal lattice design shown in table 2.9.

volume, which, at Veff = 2.41(λ/n)3, is roughly twice that which we had for square lattice designs.

We employ two different modifications to do so; an increase in the average hole radius and a faster

grade in the hole radii (the grading occurs over a smaller number of periods than in the first exam-

ple), both of which should improve in-plane confinement. The results of these modifications are

given in the second row of table 2.9; as expected, the in-plane Q has increased considerably, to a

value of Q‖ = 1.54× 106, and the mode volume has decreased to Veff = 1.67(λ/n)3, but at the ex-

pense of a decreased vertical Q, now at Q⊥ = 76,000. The decreased Q⊥ is the result of a number of

factors. The improved in-plane localization widens the mode in Fourier space, broadening the dom-

inant Fourier components to the extent that they extend into the cladding light cone. The modified

grade also changes the magnitude of Δ̃η(k⊥) at ±{kJ1 ,kJ3 ,kJ5}, increasing the amount of coupling

between the mode’s dominant Fourier components and the light cone. In addition, the increase in

modal frequency correspondingly increases the radius of the cladding light cone.

As a final example, we consider adjusting the first level of confinement to reduce the mode

volume. Starting with our original graded cavity design (the first design of table 2.9), the size of

the holes adjacent to the central defect are increased to a value of (r/a)nn = 0.355. The results are

for the most part intermediate to the first two examples, with Q‖ = 8× 105 and Q⊥ = 1.07× 105.

One important exception is that Veff = 1.17(λ/n)3 is actually much smaller than both of the original

designs. Upon further consideration, this result is not too surprising; the smaller mode volume and
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the relatively large Q⊥ are a result of the stronger yet more extended central perturbation to the

photonic lattice.

2.7 Defect modes in a compressed hexagonal lattice

Although we have thus far focused on two regular photonic lattices, there are certainly a number of

other lattices and structures that are of potential interest. In this section, we consider the use of a

compressed hexagonal lattice. The lattice compression introduces additional degeneracies amongst

the satellite extrema of the bandstructure, thus providing an additional level of design flexibility that

in this case, allows us to efficiently localize defect modes both vertically and in the plane of the

dielectric slab.

The defect modes of the previous section were centered about an air hole; for other applications,

such as lasers, it may be of interest to have designs centered about a dielectric region, where strong

overlap of the optical field with the semiconductor is desirable. Such a mode would be centered

about the b-point in fig. 2.2(a). From the standpoint of designing a high-Q mode, the donor and

acceptor modes formed at this point do not meet our symmetry criteria, as the dominant Fourier

components of the modes (as listed in tables 2.1 and 2.2) are not orthogonal to the available mirror

planes (σx and σy for the C2v symmetry found at the b-point). This is a reflection of the fact that

the kXi are not mutually orthogonally (nor are the kJi). Thus, our motivation behind distorting

the photonic lattice is to modify the dominant Fourier components of the defect modes, with the

potential of creating a mode, centered about the dielectric, whose properties are in accordance with

our momentum space design rules.

2.7.1 Preliminary analysis

We would like to create a mode whose dominant Fourier components are orthogonal to σx and

σy. Such a mode would have dominant Fourier components ±kX1 and/or ±kJ2 . Let us begin by

considering acceptor modes. By compressing the lattice in the ŷ-direction, so that the spacing

between two adjacent rows of holes is less than its usual value (changing it from a
√

3/2 to γa
√

3/2,

where γ is the compression factor), we intuitively expect the position of the band edges in that

direction of Fourier space (corresponding to ±kX1) to increase in frequency, perhaps to the point

where the valence band edge at X1 is nearly degenerate with the valence band edge at the J-points.

Of course, this qualitative justification leaves many questions unanswered (such as the position of
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Figure 2.9: (a) Real and reciprocal space lattices of a compressed 2D hexagonal lattice. Refer to
table 2.10 for more identification of key geometrical quantities; (b) fundamental TE-like (even)
guided mode bandstructure for a compressed hexagonal lattice, calculated using a 2D plane-wave
expansion method with an effective index for the vertical guiding; r/a = 0.35, nslab = neff = 2.65,
γ = 0.7.

the band edges at the other high symmetry points in the lattice). To properly answer these questions,

we formulate a symmetry analysis of defect modes in compressed hexagonal lattices, using the

methods of chapter 1.

Consider the real and reciprocal space representations of the compressed hexagonal lattice as

illustrated in fig. 2.9(a). Compression has reduced the point group symmetry of the lattice to C2v,

and the irreducible Brillouin zone (IrBZ) is no longer a 30◦ − 60◦ − 90◦ triangle, but is now a

quadrilateral, traced between Γ−X1 − J1 −X2 − J2 −Γ. The modifications in various geometrical

quantities associated with the real and reciprocal space compressed lattice are given in table 2.10.

Note that, in particular, the group of the wavevector Gok at the X and J points has been reduced

in symmetry, and that |kX1 | �= |kX2 | (the kJi are still equal in magnitude). Furthermore, |kX1 | now

approaches |kJ|. Indeed, for a compression factor γ = 1/
√

3, the vectors coincide and the resulting

lattice is in fact square. For compression factors between 0.8 and 1/
√

3, the vectors are still quite

close in magnitude, and we qualitatively expect that the lowest frequency band (the valence band)

will be very nearly degenerate at the X1 and J points. It is in this way that the compressed hexagonal

lattices considered in this section are intermediate to the hexagonal and square lattices. In using

the compressed hexagonal lattice we hope to take advantage of the large in-plane bandgap of the

hexagonal lattice and the favorable symmetry of the square lattice.
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Table 2.10: Key geometrical quantities associated with the standard and compressed hexagonal
lattices.

Crystal Parameter(s) Hexagonal Lattice Compressed Hexagonal Lattice

Ga
a C6v C2v

Gb
b C2v C2v

{a1,a2} {(a
2 , a

√
3

2 ),(a,0)} {(a
2 , a

√
3γ

2 ),(a,0)}
{G1,G2} {(0, 4π

a
√

3
),(2π

a ,− 2π
a
√

3
)} {(0, 4π

a
√

3γ),(
2π
a ,− 2π

a
√

3γ)}
±X1 (0,± 2π

a
√

3
) (0,± 2π

a
√

3γ)

±X2 (±π
a ,± π

a
√

3
) (±π

a ,± π
a
√

3γ)

±X3 (±π
a ,∓ π

a
√

3
) (±π

a ,∓ π
a
√

3γ)

±J1 (± 2π
3a ,± 2π

a
√

3
) (±π

a (1− 1
3γ2 ),± 2π

a
√

3γ)

±J2 (± 4π
3a ,0) (±π

a (1+ 1
3γ2 ),0)

±J3 (± 2π
3a ,∓ 2π

a
√

3
) (±π

a (1− 1
3γ2 ),∓ 2π

a
√

3γ)

Go,kXi

c C2v C2v

Go,kJ1
C3v C1v = {e,σy}

Go,kJ2
C3v C1 = {e}

Go,kJ3
C3v C1v = {e,σy}

a Point Group for defect at point a of lattice.
b Point Group for defect at point b of lattice.
c Group of the wavevector.

Using the 2D plane wave expansion method with an effective index to account for vertical

waveguiding, we arrive at the bandstructure shown in fig. 2.9(b). The compression ratio (γ) has

been set at a value of 0.7 for this calculation. We see that the valence band is nearly degenerate at

points X1, J1, and J2, and thus, we expect an acceptor mode to be formed by mixing the valence band

modes formed at all of these points in Fourier space. Following the symmetry analysis techniques

described in chapter 1, we determine approximate forms for valence band modes at these points.

Grouping all of them together, we arrive at the following expressions for modes formed about the

high symmetry point a shown in fig. 2.9(a):
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VBa = ẑ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(kX1 · ra
⊥)

e−ikJ1 ·ra
⊥ + e−ikJ3 ·ra

⊥

e−ikJ4 ·ra
⊥ + e−ikJ6 ·ra

⊥

e−ikJ2 ·ra
⊥

e−ikJ5 ·ra
⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.7)

Note that the valence band modes formed about the high symmetry point b (found by taking

rb
⊥ = ra

⊥−b) differ from these only by constant phase factors and hence the modes above can be used

for investigations about b as well. Both the a and b points have C2v symmetry, and the representation

of the VBa basis under C2v, labeled Sa,a1, is given by Sa,a1 = 3A2 ⊕ 2B2, where A2 and B2 label

irreducible representations (IRREPs) of C2v. In our previous analysis, we were able to take such a

representation and use projection operators on the basis functions to get approximate forms for the

localized modes. In this case, we have no such luxury, as there is no way to distinguish between

the modes of the different A2 (or B2) subspaces without some additional physical knowledge of the

system. The best we can do is to form one projection operator for a composite A2 subspace and

another for a composite B2 subspace. Doing so yields the following matrices, where the rows and

columns are ordered in accordance with that which was chosen for the VBa modes above:

PA2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, PB2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 −1 0 0

0 −1 1 0 0

0 0 0 1 −1

0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.8)

By the form of these projection matrices, it is clear that the A2 modes can potentially be formed

from any of the degenerate band edge points {±kX1 ,±kJ1 ,±kJ2 ,±kJ3}, while the B2 modes do not

include ±kX1 . It is our hope to design defects that produce A2 modes which only contain ±kX1 and

±kJ2 , to satisfy our symmetry criteria from section 2.2. To see if this can be the case, in the next

section we consider FDTD simulations of defect cavities in this lattice.

Before moving on to discuss FDTD simulations, for the sake of completeness, let us briefly

consider donor modes in this lattice. Such modes will be formed from the conduction band edge
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located at point X2 in fig. 2.9(b). Using a symmetry analysis similar to that described above, we

determine the conduction band modes for the a and b high symmetry points:

CBa = ẑ

⎛⎝sin(kX2 · ra
⊥)

sin(kX3 · ra
⊥)

⎞⎠ , CBb = ẑ

⎛⎝cos(kX2 · rb
⊥)

cos(kX3 · rb
⊥)

⎞⎠ , (2.9)

where rb
⊥ = ra

⊥−b.

The representation of the CBa basis under C2v (the defect symmetry), labeled Sa,d1, is given

by Sa,d1 = B1 ⊕B2, while the representation of the CBb basis under C2v, labeled Sb,d1 is given by

Sb,d1 = A1 ⊕A2. Projecting the CBa and CBb bases onto the irreducible representations above, we

get

Ha,d1
B1

= ẑ

(
sin(kX2 · ra

⊥)− sin(kX3 · ra
⊥)
)

,

Ha,d1
B2

= ẑ

(
sin(kX2 · ra

⊥)+ sin(kX3 · ra
⊥)
)

,

Hb,d1
A1

= ẑ

(
cos(kX2 · rb

⊥)− cos(kX3 · rb
⊥)
)

,

Hb,d1
A2

= ẑ

(
cos(kX2 · ra

⊥)+ cos(kX3 · rb
⊥)
)

,

(2.10)

as approximate forms for the donor modes at points a and b.

2.7.2 FDTD results

As discussed in the previous sections, we are interested in forming an A2 symmetry mode in the

compressed hexagonal lattice, centered about the b-point, whose dominant Fourier components

are situated at {±kX1 ,±kJ2}, to be consistent with the symmetry criterion we have prescribed.

The group theory analysis just presented has indicated that the modes of the correct symmetry

are acceptor-type modes, and have {±kX1 ,±kJ1 ,±kJ2 ,±kJ3} as their potential dominant Fourier

components. We thus begin our FDTD design in the compressed hexagonal lattice by analyzing the

dominant Fourier components produced by a simple defect geometry.

Consider the defect geometry depicted in fig. 2.10(a), consisting of four enlarged holes sur-

rounding the b-point in a compressed hexagonal lattice with compression factor γ = 0.7. FDTD

simulations of such a design (choosing, for example, r/a = 0.30 and r′/a = 0.35), give the mag-
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Figure 2.10: Modal characteristics of a simple defect mode in a compressed hexagonal lattice
(d/a = 0.75).

netic field amplitude and Fourier transformed dominant electric field components shown in fig.

2.10(b)-(d). We see that our defect geometry has produced a mode with dominant Fourier compo-

nents centered at {±kX1 ,±kJ2}, as desired. Having produced a mode consistent with our symmetry

criterion, our next step is to tailor the defect geometry so as to produce a high-Q mode.

The procedure followed is the same as what has been done in the square and hexagonal lattices,

namely, we modify the lattice (and therefore Δ̃η(k⊥)) to reduce couplings between the mode’s

dominant Fourier components (in this case, {±kX1 ,±kJ2}) and the light cone. We do so by start-

ing with a defect consisting of the four enlarged holes surrounding the b-point (we choose r′/a =

(r/a)c = 0.30), and then parabolically decreasing the hole radius as we move away from the de-

fect center (down to a value of (r/a)e = 0.225 at the edge of the crystal). The resulting lattice is

shown in table 2.11 (only the central region has been shown; in total there are 10 periods of air

holes in x̂ and 8 periods in ŷ surrounding the defect center), along with the magnetic field amplitude

and Fourier transformed electric field components for the defect mode. FDTD calculations predict

Q⊥ = 1.5×105, Q‖ = 7.5×105, Qtot = 1.3×105, and Veff = 1.7(λ/n)3 for this design.

The modifications to the lattice have largely accomplished our objectives, as we have simulta-

neously achieved high vertical and in-plane Qs, while keeping the modal volume reasonably small

(although this value is still larger than our previous designs). Improvements can still be made;

for example, simulation results indicate that there are still momentum components present within

the light cone of Ẽy; hence a further tailoring of the lattice in the x̂-direction (Ẽy has its dominant

Fourier components along ±kJ2) should help increase Q⊥, though potentially at the expense of a

larger mode volume.
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Table 2.11: FDTD simulation results for graded compressed hexagonal lattice geometries.

Lattice |H| |Ẽx| |Ẽy|

(r/a)c (r/a)e ωn Q‖ Q⊥ Qtot Veff((λ/n)3)

0.30 0.225 0.323 755,000 152,000 127,000 1.72

2.8 Summary

The design of high-Q defect modes in a 2D PC slab WG has been developed through use of mo-

mentum space methods. Starting with the fundamental criterion that the reduction of vertical ra-

diation losses requires an elimination of momentum components within the light cone of the slab

waveguide, we proceed to present methods by which this is accomplished. The first is through a

judicious choice of the mode’s symmetry so that it is odd about mirror planes orthogonal to the

mode’s dominant Fourier components. To determine the precise nature of the symmetry for such

modes in square and hexagonal lattices, we refer to the symmetry analysis of chapter 1, from which

we produce a set of candidate modes that satisfy this momentum space criterion. Although sym-

metry alone can reduce vertical radiation loss, further modifications of the defect geometry based

upon Fourier space considerations can be used to increase Q even further. Tailoring the lattice to

avoid momentum space couplings which lead to in-plane and vertical radiation losses, we present

graded square lattice structures for which Q⊥ exceeds 105 while maintaining Q‖ in the 3-5× 105

range, demonstrating the possibility of producing high-Q modes in a planar PC slab WG by using

these techniques. Similarly, we have used these techniques to produce cavity geometries within the

regular and compressed hexagonal lattices that have total Qs in excess of 105. The ability to create

high-Q cavity geometries in three different lattices is an indication of the generality of this Fourier

space-based approach.

As I have mentioned in the preface, after our contributions to the area of high-Q cavity design

[21, 23], a number of groups have continued this work and have succeeded in developing designs
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with predicted Q factors in excess of 106 [26, 27, 28, 29, 30]. Momentum space design principles

remain the basis for most of these works, and in particular, the analysis of the spatial Fourier trans-

form of the cavity mode field patterns has more or less become a standard approach in PC cavity

design. The physical intuition behind the adoption of different cavity geometries is often thought of

in different ways. The picture that we have followed is one that involves an examination of modal

couplings in Fourier space, where the dielectric perturbation that forms the defect (or more precisely,

its Fourier transform) is the key quantity that should be tailored to avoid the creation of modes that

contain leaky Fourier components, where such problematic regions of Fourier space are well known

to be the cladding light cone (for vertical radiation loss) and the range of angles and momenta for

which the photonic lattice is not highly reflective (for in-plane losses). As a slightly different take

on this, one can consider what the field profile of such a ‘good’ mode (i.e., one that does not contain

small momentum components) looks like in real space, and then consider how to tailor the a given

defect geometry to achieve this. This is essentially the approach taken in ref. [51]. More recently,

some authors [28, 30] have used a PC waveguide mode as the starting point for creating PC cavities;

that is, the cavity is formed through some localized modification to the geometry of a PC waveg-

uide. This has been done by both changing the lattice constant within some region of the waveguide

[28] and by shifting the position of some small number of holes within the structure [30]. Although

there a number of different ways in which one can view these designs, a simple way to think about

this is that a PC waveguide mode has the advantage of having a well-defined in-plane momentum

along the waveguide (its propagation constant) which lies outside of the cladding light cone. It thus

makes intuitive sense that there is a benefit to starting the cavity design with such a mode that, in

principle, is free of radiation losses. As a side comment, this class of design is actually not that far

astray from the graded square lattice cavity design presented in this chapter. The PCWG designed

in ref. [33] is based upon our square lattice cavity design, where the grade in hole radius along

the x̂-axis is essentially kept, but the structure is not graded along the ŷ-axis (it has translational

periodicity in this dimension). One could imagine creating a cavity that consists of a short section

of this PCWG sandwiched between a pair of appropriately designed DBR mirrors that could, for

example, be PCWGs with a different lattice constant or grade in hole radius. Such a design would,

in principle, be very similar to those of refs. [28, 30]. This is actually relatively close to what has

already been done, where the end mirrors can be thought of as the uniform PC lattice surrounding

the graded section. The key to additional improvements would be to further tailor the geometry to

better avoid radiation losses. At some level, this becomes somewhat difficult to do within the square
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lattice because of the small in-plane bandgap, which means that in-plane losses can not be neglected

(they often can be within the hexagonal lattice). In addition, it should be noted that the cavity design

procedure adopted in this chapter is in part based on the utilization of modes of odd spatial sym-

metry in order to reduce vertical radiation losses, and as further described in chapter 4, to create a

cavity design that is relatively robust to fabrication-induced imperfections. These restrictions could

potentially be relaxed in future designs, in favor of other mechanisms for accomplishing the same

goals. In particular, as the ability to precisely reproduce designs in fabricated structures improves,

the necessity for a robust cavity design is reduced.

The momentum space analysis described in this chapter essentially tells us which portions of

Fourier space to avoid to create high-Q structures; one might then expect that this could be used as

the input to some type of automated computational technique that would generate the field patterns,

and the associated dielectric functions, for modes that satisfy the criteria. Additional constraints on

the mode volume and the robustness of the cavity geometry to imperfections, for example, could be

added to such an analysis. Initial attempts to incorporate at least some amount of this inverse design

approach, along with optimization methods for determining the highest possible Q and associated

dielectric function within some region of parameter space, have been reported in refs. [31, 29]. Such

approaches have a lot of merit in that they can eliminate the trial-and-error approach that is often

used to design high-Q structures. This is particularly important in the design of these PC cavities,

as FDTD simulations are often computationally intensive (a 3D simulation of the cavity field and

the determination of its quality factor often takes one day of computing time on our Pentium III ma-

chines). However, one has to be mindful of the large parameter space over which such optimization

techniques must, in principle, operate. At the most complex level, one can imagine that the only

constraint on the physical structure is that the dielectric function at every grid point in the simula-

tion can only be one of two values (that of the semiconductor material or that of air). Obviously,

the simulation can be further constrained to only allow those dielectric functions that are physically

realizable (some minimum feature size can be specified). Nevertheless, the number of potential

configuration over which an optimization, for example, must be run is still quite considerable. The

physical insight gained by techniques such as the group theory and Wannier analysis of chapter 1,

as well as the momentum space design of this chapter, is thus very important from the standpoint

of further constraining these problems by, for example, specifying the lattice to be considered, the

high symmetry point about which a defect is to be formed, or the type of mode (donor or acceptor)

to be considered. The specification of the lattice may be dictated by the desire to create modes of a
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certain polarization, dominant emission direction, or location of the peak electric field, for example.
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Chapter 3

High-Q Photonic Crystal Microcavities
in InAsP/InGaAsP Multi-Quantum-Well
Membranes

3.1 Introduction

With the high-Q photonic crystal microcavity designs of chapter 2 in hand, the next step is the ex-

perimental demonstration of these devices. There have typically been two experimental techniques

that have been used to characterize PC microcavities. The first involves fabrication of the devices

within an active (light-emitting) material, where the properties of the cavity modes are studied by

optical pumping and examination of the characteristics of the resulting emission. This method has

been used in a number of studies, including refs. [8, 12, 42]. Alternately, other authors [49] have

chosen to fabricate the cavities within a passive (non-light-emitting) material, and have probed them

by using accompanying microfabricated waveguides to couple light into and out of the cavities. In

chapter 4, we will discuss the relative merits of these two approaches. For now, we will focus on our

efforts on the first technique, where we have fabricated cavities in a InP-based multi-quantum-well

(MQW) membrane and studied their emission characteristics. The results presented in this chapter

are largely based on refs. [43] and [44]. The former paper details the primary results of our mea-

surements, including the demonstration of Q ∼ 1.3×104 in a PC microcavity, which represented

an improvement by almost a factor of 5 over what had been demonstrated to that point (Q ∼2,800

in ref. [12]).1 The second paper is a detailed description of the fabrication processes developed to

create these InP-based structures, and in particular, highlights the advances in plasma etching that

1Q ∼4,000 had also been demonstrated in a PC cavity, albeit a larger mode volume design where the defect consisted
of several missing air holes [112].
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Figure 3.1: (a) Graded square lat-
tice cavity designed in ref. [21];
dotted lines show the grade in hole
radius (r/a) along the central x̂ and
ŷ axes of the cavity. For the A2

mode (a/λo = 0.25): (b) Magnetic
field amplitude (Hz) in the center of
the PC membrane, and (c) Fourier
transformed dominant electric field
component (Ex). The dashed cir-
cle in (c) denotes the cladding light
cone, showing that vertical radi-
ation has been significantly sup-
pressed.

have made the creation of high quality semiconductor microphotonic structures possible.

In chapter 2, high-Q PC cavities were designed by considering the Fourier space properties and

symmetry of cavity modes. An important feature of these designs is their robustness, in that per-

turbations to the size and shape of individual holes do not deteriorate the Q significantly. Vertical

radiation losses, which are characterized by the presence of power at in-plane momentum compo-

nents (k⊥) that lie within the light cone of the slab waveguide cladding, are reduced by choosing

modes of a specific symmetry. In particular, the modes selected are those that are odd about mirror

planes normal to the direction of the mode’s dominant Fourier components. For the square lattice

cavities studied in chapter 2, one such mode is a donor-type mode (labeled A2 due to its symmetry)

centered in the dielectric between two rows of air holes (point e in fig. 3.1). Further improvements

to both the in-plane and vertical loss are achieved by grading the lattice as shown in fig. 3.1(a). Fig-

ure 3.1(b)-(c) shows the magnetic field amplitude and Fourier transformed dominant electric field

component for the resulting A2 mode as calculated by finite-difference time-domain (FDTD) simu-

lations. FDTD calculations predict Q ∼ 105 for this mode, with a modal volume Veff ∼ 1.2(λ/n)3.

Calculations show that the grade used in fig. 3.1(a) can be varied fairly significantly without de-

grading the Q to a value less than ∼ 2x104.
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Table 3.1: Epitaxy for 1.3 µm PC microcavity lasers. 1.12Q stands for quaternary GaInAsP layers,
lattice matched to InP, with photoluminescence peak at 1.12 µm (Ga0.15In0.85As0.32P0.68). The quan-
tum well layers are InAs0.48P0.52 and the barrier layers are Ga0.24In0.76As0.32P0.68. Total membrane
thickness after undercutting the sacrificial InP layer is 252 nm.

Layer Materials Strain (rel. to InP) Thickness Doping (cm−3)

Separate confinement 1.12Q unstrained 810
◦
A undoped

Half-barrier GaInAsP 0.65% tens. 60
◦
A undoped

Active }
region

5 wells 1.5% comp. 60
◦
A undoped

4 barriers 0.65% tens. 120
◦
A undoped

Half-barrier GaInAsP 0.65% tens. 60
◦
A undoped

Separate confinement 1.12Q unstrained 810
◦
A undoped

Sacrificial buffer layer InP unstrained 15000
◦
A undoped

Etch stop InGaAs unstrained 200
◦
A undoped

Substrate InP unstrained N/A N/A

3.2 Fabrication of PC cavities in InP-based multi-quantum-well mem-

branes

To measure the properties of the donor-type A2 mode, graded square lattice PC cavities were fabri-

cated in an active material that was grown by Dr. Jianxin Chen at Bell Laboratories through solid-

source molecular beam epitaxy, as described elsewhere [113]. It consists of five InAsP compressively-

strained quantum wells separated by InGaAsP barriers, as shown in table 3.1. The peak emission

wavelength is at λ=1284 nm, and the epitaxy is designed so that, upon undercut of the 1.5µm sacrifi-

cial InP layer, a 252 nm thick free-standing membrane will be formed (the thickness is chosen to be

consistent with the emission wavelength of the quantum wells and the FDTD-calculated frequency

of the cavity mode). The creation of the 2D PC membrane is accomplished through electron beam

lithography, pattern transfer to a SiO2 mask using an inductively coupled plasma reactive ion etch

(ICP/RIE), and a high-temperature (205 oC) Ar-Cl2 ICP/RIE etch through the active material into a

sacrificial InP layer. The sample is undercut by removing the InP layer with a HCl:H2O (4:1) solu-

tion. These fabrication steps are described in detail in the following sections. In addition, appendix

C reviews some general considerations in the fabrication of microphotonic structures.
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500 nm

Figure 3.2: Angled view SEM im-
age of the SiO2 etch mask

3.2.1 Mask creation

A 200 nm thick SiO2 mask layer is deposited on the epitaxial wafer by an Oxford Instruments

Plasma Technology (OIPT) Plasmalab 100 plasma-enhanced chemical vapor deposition (PECVD)

tool. The PC patterns are created through electron beam (e-beam) lithography of an ∼ 350 nm thick

layer of resist, typically Zeon Chemical’s ZEP-520A. Each cavity consisted of a total of 32 rows

and 25 columns of air holes, with a lattice spacing of a = 305, 315, 325, or 335 nm (normalized

frequency of a/λ ∼ 0.25 at λ ∼ 1.3 µm), for total cavity dimensions on the order of 8x11µm. The

designed grade produces holes with radii between r = 70-110 nm.

To etch the SiO2 mask layer, an OIPT Plasmalab 100 ICP/RIE tool with a C4F8 gas chemistry

was used. The requirements of the process were that the etched sidewalls be as smooth and vertical

in slope as possible. Due to the relatively poor dry etch resistance of the e-beam resist, a third

requirement was to create a sufficiently low power etch to avoid excessive damage to the resist, so

that the desired shape and size of the holes remained intact. Along with this, the low etch selectivity

of the resist (∼1:1) placed an upper limit on the thickness of the oxide layer used.

The etch profile and sidewall roughness were examined as a function of ICP power (400-600

W), RF power (50-100 W), and C4F8:O2 gas chemistry (between 20:0 sccm and 15:5 sccm), keeping

a fixed chamber pressure (Pch=6 mTorr), lower electrode temperature (∼ 20 ◦C), and He backside

cooling (20 Torr, ∼ 20 sccm). To maintain the integrity of the ICP/RIE chamber, O2 plasma cleans

were periodically run between etches. For the process conditions examined, we did not observe

significant changes in the sidewall roughness. For a given set of RF and ICP powers, we saw an

increase in the sidewall verticality with increased C4F8 content, without any polymerization, so that

a pure C4F8 gas chemistry was finally chosen. The RF and ICP powers were then adjusted to reduce
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damage to the resist as much as possible without causing degradation of the sidewall profile. For

the final process conditions chosen (RF = 80 W, ICP = 600 W, 20 sccm C4F8), an etch time of

∼ 2 minutes etched through the oxide layer completely and produced a sidewall angle of ∼ 85◦ as

estimated through cross sectional SEM images. A scanning electron microscope (SEM) image of

the etched SiO2 mask layer is shown in fig. 3.2, where an O2 plasma has been used to remove the

remnants of the resist.

3.2.2 InAsP/InGaAsP membrane etch and undercut

The next step is an ICP/RIE etch through the InAsP/InGaAsP membrane layer into the InP sacrificial

layer. From the standpoint of cavity Q, it is of critical importance that the etched sidewalls be both

smooth and vertical, as sidewall roughness will produce scattering loss and an angled sidewall will

break the vertical symmetry of the slab and causes radiative coupling to modes of the opposite

symmetry (TM-like modes, for which there is no in-plane bandgap) [114]. As we shall discuss,

the requirements on the ICP/RIE etch are also influenced by the ensuing undercut wet etch, as the

necessity to undercut all of the holes in the lattice places a lower limit on the etch depth into the InP

layer.

Dry etching of In-containing III-V semiconductors is typically accomplished using one of two

gas chemistries [115]. The first, a CH4/H2 chemistry, is done at room temperature and can produce

smooth etched morphologies, but with the drawbacks of a relatively slow etch rate (� 60 nm/min)

and heavy polymer deposition during the process. Cl2-based plasmas have also been used, but the

low volatility of InClx products at room temperature necessitate some form of heating during the

etch. This has been done in the past using a high-density ICP-produced Cl2 plasma by Fujiwara et

al. [116], where the production of smooth etched surfaces is most likely due to a combination of

the plasma providing local surface heating of the sample and an increased efficiency in the sputter

desorption of the InClx products [115]. Alternately, a number of studies have successfully used a

heated wafer table (� 150 ◦C) with an Ar-Cl2 chemistry to achieve a volatility of the InClx products

sufficient to etch InP-related compounds with vertical sidewalls and smooth surface morphologies.

In a recent study [117], Rommel and his collaborators optimize this etch (using H2 to control the

sidewall profile) in an ICP/RIE system to produce sub-micron width racetrack resonators with a

Q of 8,000. We adopt an etch similar to the process used in that work. An important difference

between this work and much of the published work on InP etching is the geometry we are etching,

as the small features (∼ 150 nm diameter holes) likely inhibit both the flow of ionized source gases
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Figure 3.3: SEM cross sectional images of the InP etch for increasing wafer table temperature
(a) T=150 ◦C, tetch=120 s, etch depth = 650 nm, and (b) T=180 ◦C, tetch=165 s, etch depth = 1
µm. For these etches, RF=100 W, ICP=300 W, Pch = 2 mTorr, Ar:Cl2=12:3 sccm. The top 252
nm, highlighted in each SEM image, corresponds to the active waveguiding layer thickness (final
membrane thickness) in the actual InAsP/InGaAsP laser material used in the device fabrication.

to the etching surfaces as well as the removal of etched by-products. This will affect both the etch

rates we observe (often a factor of two or more lower than the etch rates in open areas) and the

resulting surface morphology.

We examined etched samples (initially etching pure InP rather than the InAsP/InGaAsP QW

material) primarily as a function of gas composition (Ar:Cl2 ratio between 9:6 sccm and 13:2 sccm),

stage temperature (20-225 ◦C), RF power (100-200 W), and ICP power (250-400 W). It quickly

became apparent that elevated temperatures were indeed necessary, as the InP did not etch cleanly

at room temperature. A preliminary etch with a stage temperature of 150 ◦C and an Ar:Cl2 ratio

of 12:3 sccm is shown in fig. 3.3(a). By further increasing the stage temperature (fig. 3.3(b)),

the profile of the holes becomes more vertical and the total etch rate increases. We chose a stage

temperature of 205 ◦C as temperatures above this value provided no added benefit to the sidewall

smoothness and profile of the etched holes. With a stage temperature of 205 ◦C, the Ar:Cl2 gas

ratio was varied around 12:3 sccm. It was found that higher concentrations of Cl2 produce a slight

amount of sidewall roughness, while lower concentrations produce a more pronounced overcut etch

profile. With a stage temperature of 205◦C and an Ar:Cl2 gas ratio of 12:3 sccm, the ICP and

RF powers were then varied about values of 300 W and 100 W, respectively. Larger RF powers

caused deterioration of the oxide mask, producing some sidewall erosion, while smaller RF powers

reduced the etch anisotropy. We noticed little variation in etch quality as a function of ICP power

over the range of ICP powers explored. The final InGaAsP material etch conditions that we settled
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Figure 3.4: (a) Illustration of the shape of the etched surfaces resulting from the crystallographic
nature of the InP wet etch (h = etch depth below waveguiding layer into InP sacrificial layer, r =
hole radius, a = lattice spacing, (a− 2r) = gap between holes). (b) SEM image of a partially
undercut membrane (where the membrane layer was etched with a CAIBE system) showing the
{111}In crystal plane facets. Both figures adapted from previous work [3].

on were: T=205 ◦C, Ar:Cl2=12:3 sccm, Pch=2 mTorr, RF=100 W, and ICP=300 W. With these

process conditions and an etch time of 120 seconds, an etch depth of 1.5 µm was achieved, with a

selectivity of ∼ 20:1 to the oxide mask.

To remove the sacrificial InP layer and undercut the membrane, an HCl:H2O (4:1) solution was

used. HCl etches the InP layer at a much faster rate than it does the active waveguide layer (com-

posed of lower Phosphorous (P) percentage alloys of InAsP and InGaAsP compounds), providing

the necessary degree of etch selectivity [118]. The resolution and selectivity of the etch are im-

proved by cooling the solution in an ice-water bath to ∼ 4 ◦C, thereby reducing the material etch

rates, and in particular, the total amount of waveguide material that is necessarily etched. The typ-

ical time to fully undercut the membrane was ∼ 12 minutes (depending on the lattice spacing and

hole size of the PC pattern). To protect the top sample surface, the remnants of the oxide mask layer

were removed only after the undercut etch was performed.

The HCl:H2O solution etches InP with a strong crystallographic dependence [119]. The result-

ing etch shape is determined by the differences in etch rate of different crystallographic planes as

well as boundary conditions imposed by masking layers (which limit the available etch angles).

The etch shape will ultimately converge to one determined by the slowest set of etch planes, which

are the Indium (In) rich {111} planes ({111}In) for the InGaAsP material system. For a (100) InP

wafer, the {111}In planes are at an angle of ∼ 55◦ from the surface normal as shown in fig. 3.4(a).

For concave mask openings, this results in an etch cross section which is an overcut V -shape in the

(011̄) plane and an undercut overhanging shape in the (011) plane. This is shown schematically
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Figure 3.5: SEM micrographs of fully fabricated devices: (a) previous work using CAIBE for the
membrane etch [3], and (b) the current work, using ICP/RIE for the membrane etch.

in fig. 3.4(a), and can also be seen clearly in the partially undercut holes of fig. 3.4(b). As in

fig. 3.4(b), once the etch has proceeded to the {111}In planes, unless there is an overlap between

the {111}In planes of adjacent holes, the etch will grind to a halt and the waveguiding layer will

not completely undercut (longer etch times and/or higher temperatures may be employed to further

undercut the structure, however, selectivity to the active waveguiding layer will have been lost). As

a result, the ICP/RIE dry etch depth into the underlying sacrificial InP layer sets a lower limit on the

radius (r) and lattice spacing (a) of holes that can be undercut. More precisely, using the nomencla-

ture of fig. 3.4(a), the adjacent {111}In planes in the (011̄) plane overlap for h�(a/2− r) tan(55◦),

so that h increases as r decreases for a given a. This was a limitation of previous work done using

an Ar:Cl2 chemically assisted ion-beam etch (CAIBE) [3], where total etch depths were typically

∼ 340 nm, corresponding to h ∼ 130 nm. For the fabricated lattice spacings in that work, a = 500

nm, this produces a minimum possible undercut hole radius of r/a = 0.32. The ability to undercut

smaller holes (preferably as small as r/a = 0.20) is of critical importance to the cavity Q, as holes

that are too large in size will significantly raise the frequency of a given mode and hence the size

of the cladding light cone, thereby increasing the amount of power radiating vertically [21]. Our

etch depth of ∼ 1.5 µm (h ∼ 1.25 µm) is not only deep enough to ensure that the {111}In crystal

planes overlap for even the smallest desired holes (r/a = 0.23), but also aids the undercut process

by reducing the total amount of material that needs to be removed.

Figure 3.5 compares the results of previous fabrication methods [3] with the current work. Both

images show smooth membrane sidewalls, but the sidewall profile is considerably more sloped in

the former work (this is also evident in fig. 3.4(b)). The higher degree of verticality and the ability
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(c)

2.5 μm

Figure 3.6: (a) SEM image of a
graded lattice PC microcavity in
the InAsP multi-quantum-well ma-
terial. Lattice constant a ∼ 305 nm,
membrane thickness d = 252 nm.
Optical image of cavity pumped
with a (b) diffuse beam and (c) fo-
cused beam (dashed rectangle rep-
resents the physical extents of the
undercut PC).

to undercut the smallest desired holes (r/a = 0.23) are the primary advantages of the present work.

Although optimization of all of the masking steps was necessary to achieve this result, the ICP/RIE

membrane etch is the critically important step that creates these advantages.

3.3 Photoluminescence measurements

Using the fabrication techniques described in the previous section, we created arrays of PC cavities

within the InP-based MQW epitaxy. Devices are optically pumped (10 ns pulse width, 300 ns

period) at room temperature with a semiconductor laser at 830 nm through a 20X objective lens,

also used to collect emitted photoluminescence (PL) into an optical spectrum analyzer (OSA). A

schematic of the setup that was used is shown in fig. 3.7. We initially pump the cavities with a

broad pump beam (see fig. 3.6(b), area ∼ 21µm2) for two reasons: (i) the broad pump beam covers

a significant portion of the cavity area, so that after diffusion of carriers, the majority of the cavity

should be pumped and therefore non-absorbing, and (ii) use of a broad pump beam limits the effects

of thermal broadening, which, as discussed below, are significant for focused pump beams.

A typical L-L (light-in versus light-out) curve using the broad pump beam condition is shown

in fig. 3.8(a) for a device with a = 335 nm, where the power in the laser line is taken over a 10 nm

bandwidth about the laser wavelength of λ = 1298.5 nm. In addition, the off-resonance background

emission at λ = 1310 nm was measured over a similar 10 nm bandwidth. For low pump powers (<

300 µW), the off-resonance emission and resonant wavelength emission linearly increase with pump

power and are essentially identical in level, i.e., no resonance feature is observed. Above 300 µW,

we begin to see a resonance peak in the spectrum and a characteristic super-linear transition from

below threshold to above threshold follows. To estimate the position of threshold we extrapolate
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Figure 3.7: Schematic of the photo-
luminescence measurement setup.
Acronyms used in this diagram:
NPBS: non-polarizing beamsplitter,
LD: laser diode, MM: multimode,
OSA: optical spectrum analyzer

back the L-L curve from above threshold (fig. 3.8(b)), giving an approximate threshold pump level

of 360 µW. A plot of the off-resonance emission (fig. 3.8(c)) shows a (weak) slope change around

365 µW giving a similar estimate for the threshold value. The kink in the off-resonance background

emission L-L curve can be attributed to the clamping of the carrier density (gain) in the region

of the cavity mode and consequent saturation of the off-resonance (non-lasing modes’) emission.

The background emission continues to increase after crossing threshold (rather than completely

saturating) as a result of the pumping of areas which are outside of the cavity mode volume and thus

not affected by the gain clamping (non-equilibrium carrier distributions [120] may also play a role).

In order to estimate the cold cavity Q value of the PC microcavity mode we measured the

linewidth of the resonance in the PL around threshold. The full-width half-maximum (FWHM)

linewidth narrows from 0.138 nm (at the lowest pump level we could accurately measure the

linewidth, 320 µW) down to 0.097 nm at threshold. A simple steady state rate equation model

[121] of the cavity photon and excited state populations estimates the threshold pump level (with

this beam size) to be ∼ 350 µW for Q ∼ 104 in this quantum well active material, close to the ex-

perimentally measured value. In this model the transparency carrier density occurs within 10% of

the threshold carrier density for cavity modes with Q > 104. A PL spectrum (fig. 3.8(a), inset) for

this device with the broad pump conditions, measured soon after detection of a resonance feature in

the spectrum and below the estimated threshold level by about 10%, shows a resonance linewidth

Δλ = 0.100 nm, corresponding to a best estimate of the cold cavity Q ∼ 1.3x104. Above threshold
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Figure 3.8: (a) L-L curve and subthreshold spectrum (inset) of a graded square lattice PC micro-
cavity pumped with a spatially broad pump beam (10 ns pulse, 300 ns period), and zoomed-in
plots of (b) laser threshold and (c) background emission for the same diffuse pump beam. (d) L-L
curve and subthreshold spectrum (inset) taken with a focused pump beam spot, showing increased
thermal broadening in comparison to the diffuse pump beam spectrum, and zoomed-in plots of (e)
laser threshold and (f) background emission. The “guide” lines displayed in (b), (c), (e), and (f) are
least-squares fits of the data taken over several points above and below the lasing transition region.

we do not see further linewidth narrowing due to the resolution limit of our scanning monochro-

mator (0.08 nm); thermal broadening of the emission line during the pump pulse and incomplete

saturation of the carrier density [120] may also play a role.

By using a more tightly focused beam (see fig. 3.6(c), area ∼ 8 µm2), the lasing threshold is

considerably reduced. In fig. 3.8(d)-(f), we plot the L-L curve for the laser line and off-resonance

background emission using such a pump beam. The plots are qualitatively similar to those for the

diffuse pump beam; we begin to see a resonance feature when the pump power exceeds 95 µW.

Estimates for the threshold pump power from the laser line curve and off-resonance background

emission are 120 µW and 125 µW, respectively. Through further optimization of the pump beam,

lasers with thresholds as low as ∼ 100 µW have been observed. From the subthreshold spectrum

shown in the inset of fig. 3.8(d) it is readily apparent that the lineshape has thermally broadened (the

measured linewidth is now 0.220 nm), as evidenced by its asymmetric shape on the short wavelength

side. To reduce the effects of this thermal broadening, the duty cycle can be decreased to 1% (1 µs

period and 10 ns pulse width), resulting in a less asymmetric resonance and subthreshold linewidth

of approximately 0.13 nm. Conversely, we have also increased the duty cycle to 25% (1 µs period

and 250 ns pulse width) and still observe lasing; heating in the membrane precludes lasing at even

higher duty cycles.

To determine whether the laser mode described above is indeed the localized A2 mode of fig. 3.1,
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Figure 3.9: (a) Emitted laser power as a function of pump position along the x̂ and ŷ axes of the
cavity. FDTD-generated Gaussian fits to the envelope of the electric field energy density of the
cavity mode are shown for comparison (note that the effective mode volume is calculated from the
peak electric field energy density). Lx and Ly correspond to the physical extent of the PC in the x̂-
and ŷ-direction, respectively. (b) Emitted laser power as a function of polarizer angle with respect
to the x̂ axis of the cavity.

we have measured polarized intensity in the far-field as well as the sensitivity of the emitted laser

power to pump position. The measurements show the mode to be predominantly polarized along the

x̂-axis (fig. 3.9(b)) of the cavity, consistent with FDTD results, and eliminating the possibility that

the mode is of the other potential symmetry supported by the cavity (B2, as discussed in chapters 1

and 2). Furthermore, the lasing mode discussed above is the longest wavelength mode observed in

the devices tested (higher frequency resonances are observed in some detuned devices), suggesting

that it is the fundamental mode shown in fig. 3.1(b), and not a higher order version of it. In fig.

3.9(a) we show measurements of the emitted laser power as a function of the pump beam position

(taken to be the center of the beam) relative to the center of the cavity (uncertainty in the pump

position is ∼ 0.25 µm). The measurements indicate the mode is highly localized within the center

of the cavity, consistent with simulations.

3.4 Summary

In summary, this chapter reports on the observation of linewidths of Δλ = 0.10 nm, corresponding

to a cavity Q of 1.3x104, in subthreshold measurements of graded square lattice photonic crystal

microcavity lasers fabricated in an InAsP/InGaAsP multi-quantum-well membrane. In addition,

lasing is seen at threshold peak external pump powers as low as 100 µW. Measurements of the
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emitted power as a function of pump position show the mode to be strongly localized and give

an estimate of the modal localization that is consistent with FDTD results. This realization of a

high Q, small mode volume microcavity is an important step in demonstrating the potential of PC

microcavities for use in optoelectronics and quantum optics.

The Q values that we demonstrated in these PC microcavity lasers were at the time, the highest

that had been seen in a PC microcavity, but were quickly exceeded by devices demonstrated by both

the group of S. Noda at Kyoto University [51], and by our own group at Caltech, in devices I created

in silicon membranes [52], which will be described in detail in the following chapter. To the best

of my knowledge, within the InP material system, there has not yet been a demonstration of a PC

microcavity with a Q higher than the devices described in this chapter.

More importantly, the measurements we performed on these devices give us some indication of

the limitations of these spectrometer-based studies using cavities fabricated in an active material.

The most obvious limitation is the resolution of the spectrometer; for the optical spectrum analyzer

we used, this was 0.1 nm, but even for instruments with a longer path length, resolutions better

than 0.01 nm are difficult to achieve. Of course, other resolving instruments, such as filters based

on Fabry-Perot cavities (which can be commercially obtained in both free-space and fiber-based

geometries), can be used to achieve much better resolution. That being said, it is still clear that there

are other advantages to adopting a measurement technique that did not require an active medium.

This would open up PC cavities fabricated in materials such as silicon (which had been shown to

have relatively low material loss at telecommunications wavelengths) for investigation, and it would

allow for a simple measurement of Q that would not be subject to the influence of material gain.

Most importantly, developing a technique to efficiently get light into and out of the PC microcavities

would make these devices much more functional and integrable within more sophisticated exper-

iments or systems. In the next chapter, I describe our work with a fiber-based probe that enables

such advances.
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Chapter 4

Optical-Fiber-Based Measurement of an
Ultrasmall Volume, High-Q Silicon
Photonic Crystal Microcavity

4.1 Introduction

This chapter details the measurements of photonic crystal microcavities within silicon membranes.

The cavity design is the graded square lattice geometry described in chapter 2 and examined exper-

imentally within InP-based multi-quantum-well membranes in the previous chapter. From a device

performance perspective, the primary result of importance in this chapter is the demonstration of a

quality factor Q ∼ 40,000 in a wavelength-scale PC cavity. Of equal importance, however, is the

development of an optical-fiber-based probing technique that is utilized to study the spectral and

spatial properties of resonant modes within these PC cavities. This technique, which essentially

involves evanescent coupling between an optical fiber taper waveguide and the PC cavity, allows

for quantitative measurements of two of the most important properties of a cavity mode, its Q and

spatial localization (related to Veff). From an experimentalist’s perspective, other benefits of this

fiber-based probing method are that it is relatively easy to implement and can be used to rapidly

characterize all of the devices on a chip.

The majority of this chapter (sections 4.2-4.7) is largely based on three articles; (i) ref. [52],

which describes our initial use of the fiber taper to demonstrate a high Q (∼ 40,000) and spatial

localization consistent with an ultrasmall Veff (∼ 0.9(λ/n)3) in a PC cavity, (ii) ref. [53], which uses

the fiber-based probe to study the robustness of the cavity Q in our graded lattice design with respect

to perturbations in the lattice, and (iii) ref. [54], which is a review article that we have written on the

use of the fiber taper as a probe for PC microcavities (and wavelength-scale semiconductor cavities
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in general).

In section 4.8, I briefly review some of the work that I was not the primary investigator on,

but which I had the opportunity to be a part of and is directly related to the work described in this

and subsequent chapters. The first topic [57] describes the work of my colleague Paul Barclay in

coupling light into our PC microcavities through use of an intermediate PC waveguide that is phase

matched to the fiber taper. This technique is critical in achieving coupling to the cavities that is

far more efficient than what is achieved through direct coupling from the fiber taper. The second

topic I examine is the work of Matt Borselli [64], who used fiber tapers to investigate Si microdisk

cavities. Matt was able to demonstrate Q/V ratios that were slightly higher than what we saw in the

PC cavities, and more importantly, was able to show that the fiber taper can directly couple light into

these devices in a relatively efficient manner. His work on these structures led to my subsequent

adoption of them in experiments involving AlGaAs microcavities with embedded quantum dots

(chapters 5-7).

4.2 Fabrication

We decided to fabricate our PC cavities within the silicon-on-insulator (SOI) material system, due

to its relatively low material loss in the 1.5 µm range and how readily available it is commercially.

The material, obtained from the company SOITEC, consists of a 340 nm thick silicon (Si) layer on

top of a 2 µm silicon dioxide layer. As our goal was to test our devices through evanescent coupling

with fiber tapers, we decided to fabricate our cavities on mesas that are isolated from the rest of

the chip (the specific reasons for this, and recent developments that have obviated it, are discussed

later within the chapter). The following processing steps were performed (additional details are

given in appendix C): (1) electron beam lithography of the PC pattern and accompanying cutouts

for removal of additional material from the mesa, (2) SF6/C4F8-based inductively-coupled plasma

reactive ion etching (ICP-RIE) through the silicon membrane layer, (3) removal of the electron

beam resist, (4) photolithography to define a mesa stripe that intersects the electron beam defined

cutouts, (5) removal of material surrounding the mesa (dry etching of the top silicon, underlying

oxide, and substrate silicon layers), (6) removal of the photoresist, and (7) wet etch (hydrofluoric

acid) of the underlying oxide layer to form a free-standing membrane. Figure 4.1 shows scanning

electron microscope (SEM) images of fully processed devices; in addition to being isolated to the

mesa stripe, additional cutout material (defined in step (1) above) surrounding each cavity has been
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removed to ensure that the taper interacts only with the cavity. Figure 4.2 shows close-up SEM

images of a fabricated PC cavity. From these images, we can observe the quality of the dry etch

processes that have been developed; the etched air holes are both smooth and vertical, each of which

is necessary to achieve devices that exhibit high Qs.

50 μm

50 μm

(a)

(b)
isolation mesa

PC microcavity

PC microcavity

isolation mesa

x
y

x

y

cutout region

(c)

Figure 4.1: (a)-(b) Scanning electron microscope (SEM) images of photonic crystal microcavity
arrays fabricated in silicon-on-insulator. The undercut PC microcavities are fabricated in a linear
array that is isolated from the rest of the chip by several microns. The devices in (a) have additional
material removed along the ŷ axis of the cavity, to allow for the fiber optic taper to be aligned along
that axis. The devices in (b) have additional material (‘cutout region’) removed along both the x̂
and ŷ axes, to allow probing along either axis. (c) Close-up low-angle image of a single PC cavity
within the array of devices in (b).

Within the linear array of devices, we fabricate two or three different lattice constants (with

a=380-430 nm, so that a/λ ∼ 0.25 for λ=1600 nm, to be consistent with simulation results for the

grade square lattice cavity design), and for a given a, the average hole radius (r̄/a) is varied. The

combination of varying a and r̄/a allows us to easily tune the cavity resonances through the range

of the scanning tunable laser (λ=1565-1625 nm) that we use in our measurements.

4.3 Measurement setup

The fiber tapers we use consist of a standard single mode optical fiber (9 µm core diameter, 125 µm

cladding diameter) that has been simultaneously heated and stretched down to a minimum diameter

(d) on the order of the wavelength of light (λ), so that for λ ∼1.6 µm as used in our experiments,

d ∼1-2 µm. To form the tapers used here, the heating mechanism is a hydrogen-based torch [122],

but other techniques such as use of a CO2 laser have also been studied by other groups [123]. In

a taper with a suitably adiabatic transition region, the insertion loss through the taper can be quite
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Figure 4.2: SEM micrographs of a
fully fabricated PC microcavity. (a)
Cross-sectional view. (b) Top view
of the portion of the cavity con-
tained within the dashed lines in (a).
Total cavity dimensions are ∼ 13µm
× 16µm. (c) Zoomed in angled
view of the dashed line region in (b)
showing the smoothness and verti-
cality of the etched air hole side-
walls, necessary to limit scattering
loss and radiative coupling to TM-
like modes.

low; the tapers we typically fabricate have an insertion loss of ∼ 10 %. The taper is mounted onto

an acrylic block in a u-shaped configuration (fig. 4.3(b)), and the block is then fastened to a DC

motor-controlled ẑ-axis stage with 50 nm step size resolution. Mounting the taper in this fashion

naturally keeps it under tension and prevents the taper position from excessively fluctuating due

to environmental factors (such as fluctuating air currents in the laboratory). The microcavity chip

is in turn mounted on a DC motor-controlled x̂− ŷ-axis stage with 50 nm step size resolution; in

this way, the fiber taper can be precisely aligned to a microcavity. The taper-cavity interaction re-

gion is imaged with a microscope onto a CCD camera. The vertical separation between the taper

and cavity can easily be calibrated by stepping the taper down in 50 nm increments until it just

touches the cavity (this can be seen optically through the microscope), establishing the motor read-

out corresponding to a zero gap. Determining the separation in this manner is made possible by the

mechanical robustness of the taper, which allows it to withstand contact to the semiconductor chip

without breaking.

The mounted taper is fusion spliced into the measurement setup (fig. 4.3(a)) so that a fiber-

coupled scanning tunable laser with polarization-controlling paddle wheels is connected to its input

and an InGaAs photodetector measures its output. The laser and photodetector output are attached

to a computer via GPIB interfaces, so that the wavelength-dependent transmission of the taper can

be recorded. In addition, the motorized stages on which the taper and PC chip are mounted are

also GPIB controlled, so that the taper transmission spectrum can be monitored as a function of the

taper’s position with respect to the cavity. When the taper is laterally aligned over the central region

of the cavity and positioned vertically within the cavity’s near field (typically < 1 µm), the cavity
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modes appear as resonances within this transmission spectrum. As we shall discuss in section 4.4,

measurements of the linewidth and depth of these resonances as a function of the taper’s position

with respect to the cavity can give us quantitative estimates of the cavity’s Q and Veff.
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Figure 4.3: (a) Experimental mea-
surement setup for probing opti-
cal microcavities with fiber tapers.
(b) Taper-cavity alignment setup
(dashed boxed region in (a)). The
fiber taper is mounted in a u-shaped
configuration and attached to a ẑ
axis stage with 50 nm resolution,
while the underlying PC chip can be
positioned in the x̂ − ŷ plane with
50 nm resolution. The fiber ta-
per is spliced into the setup in (a),
which allows for measurement of
its wavelength-dependent transmis-
sion spectrum. (c) Zoomed-in de-
piction of the taper-cavity interac-
tion region (dashed boxed region in
(b)).

In principle, the curvature of the looped taper shown in fig. 4.3(b) could be made large enough

so that only a small region of the fiber interacts with the PC chip, and the taper could then be used

to probe a full two-dimensional (2D) array of cavities on a chip; since the work described in this

thesis was completed, Chris Michael, a student in our group, has developed a technique and fiber

mounting strategy to do this. For the fiber tapers we have used in the experiments described here,

however, the region of the fiber that interacts with the chip is typically around 10 mm in length, and

is roughly equal to the length of the tapered region of the fiber as defined when the taper is formed.

One result of this relatively long 10 mm interaction length is that testing of a 2D array is not feasible,

and linear (1D) arrays of devices are tested. In addition, because coupling to the cavity requires the

taper to be positioned within a micron of the center region of cavity, control of the tip and tilt of the

sample with respect to the taper is necessary; this is accomplished through use of a goniometer stage

mounted to the motor-controlled x̂− ŷ sample stage. Finally, to prevent the taper from interacting

with extraneous portions of the chip, the cavities are isolated to a mesa stripe that is several microns

above the rest of the sample surface (fig. 4.1). By appropriately angling the goniometer stage with

respect to the taper, it can be ensured that when the taper is brought into contact with the chip, it
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only touches the cavity region.

4.4 Measurement results

The coupling between the tapered fiber waveguide and the PC microcavity can be understood using,

for example, the coupling of modes in time approach as in Manolatou et al. [50]. The degree

to which the taper mode couples to the cavity mode is a function of the parameter κ, which is

approximately given by the field overlap between the two modes over their interaction length. More

explicitly, for the taper aligned along the ŷ-axis of the cavity, it is given by:

κ = − iωε0

4

∫ L

0
e−iβydy

(∫∫
Ac

(n2 −n2
c)E

∗
c ·Etdxdz+

∫∫
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(n2 −n2
t )E

∗
c ·Etdxdz

)
,

(4.1)

where ω is the resonant cavity mode frequency, ε0 is the permittivity of free space, β is the prop-

agation constant of the taper mode, n is the refractive index of the background air, nc (nt) is the

refractive index profile of the cavity (taper), Ec (Et) is the electric field vector of the cavity (taper),

L is the interaction length of the coupling, and the integrals over Ac and At are two-dimensional in-

tegrals over the x-z cross section within the cavity and taper, respectively, for a given y value within

the interaction length. From this formula, we see that κ is dependent upon: (i) the magnitude of the

overlap between Ec and Et , (ii) the relative phase between Ec and Et , and (iii) the degree to which

Ec and Et share a common direction of polarization.

4.4.1 Polarization

Considering the latter point, for the taper aligned along the ŷ-axis of the cavity, as in fig. 4.4(a), the

polarization-controlling paddle wheels are used to select a linearly polarized state of the taper whose

dominant field component is aligned along the x̂-axis of the cavity. Thus, modes that couple most

strongly will have their x̂ field component overlap strongly with the x̂ component of the taper field.

By aligning the taper along a different axis of the cavity, polarization selectivity can be realized.

For the devices in Figs. 4.1(a) and 4.4(a), this is not possible, as aligning the taper along the x̂-axis

will couple the taper to multiple cavities. However, by fabricating the cavities at a 45◦ angle with
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Figure 4.4: (a)-(c) Optical micro-
graph image of a fiber taper aligned
along (a) the ŷ-axis of one of the
cavities from fig. 4.1(a); (b)-(c)
the ŷ and x̂ axes, respectively, of
one of the cavities from fig. 4.1(b).
(d) Normalized taper transmission
when the taper is ∼ 350 nm above a
PC cavity of the type shown in fig.
4.1(b); (top) Taper aligned along
the cavity’s ŷ-axis (bottom) Taper
aligned along the cavity’s x̂-axis.

respect to the isolation mesa stripe, as in fig. 4.1(b), the taper can be aligned along either of the

orthogonal cavity axes without coupling to multiple devices. In fig. 4.4(b)-(c), we show the optical

fiber taper aligned parallel to the ŷ and x̂ axes of one of the cavities from fig. 4.1(b). When the

taper is laterally aligned with the center of the cavity and brought vertically close to it, we observe

the cavity’s resonances. As shown in fig. 4.4(d), the coupling is polarization selective, so that those

resonances with dominant cavity field component Ex couple most strongly when the taper is aligned

along the ŷ-axis of the cavity (fig. 4.4(b)), while those with dominant cavity component Ey couple

most strongly when the taper is aligned along the cavity’s x̂-axis (fig. 4.4(c)). Thus, the shorter

wavelength resonance in fig. 4.4(d) is more strongly polarized along the ŷ-axis, while the longer

wavelength resonance is more strongly polarized along the x̂-axis. This data is consistent with

simulation and group theoretical results that predict that these square lattice microcavities support

modes of types A2 and B2 symmetry, which are predominantly polarized along the x̂ and ŷ axes of the

cavity, respectively [21]. The coupling depths of a few percent are typical values, and were found

to be adequate to achieve a sufficient signal-to-noise ratio for all of the measurements presented in

the upcoming sections.
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(a) (b)

(c)

PC chip

Figure 4.5: Summary of the design of
the graded square lattice photonic crys-
tal microcavity. (a) Schematic of the
undercut, two-dimensional PC micro-
cavity geometry. (b) Magnetic field am-
plitude (|B|) in the center of the PC
membrane for the A0

2 mode. The dashed
curves show the grade in hole radius
(r/a) along the central x̂ and ŷ axes
of the cavity (marked by dashed lines
through the dielectric lattice), and the
solid curves are slices of the field com-
ponent Bz along these directions.

4.4.2 High-Q measurements

For future microcavity-enhanced experiments within our graded square lattice PC geometry, the

fundamental TE-like mode of A2 symmetry, which we label as the A0
2 mode, is of particular interest,

on account of its predicted ultrasmall Veff and high Q factor. Let us briefly review some of the

key features of this mode: the PC cavity geometry employed is shown in fig. 4.5(a-b), and was

designed using group theoretical, Fourier space, and finite-difference time-domain (FDTD) analyses

as described in detail in chapter 2. The cavity consists of a localized defect in a square lattice of

air holes that are etched into an optically thin membrane of refractive index n=3.4. This geometry

provides in-plane modal localization via distributed Bragg reflection due to the lattice and vertical

confinement by total internal reflection at the membrane-air interface. The resulting TE-like A0
2

defect mode shown in fig. 4.5(b) is predicted to have Q∼ 105 and Veff ∼ 1.23 (λc/n)3. The important

aspects of the cavity design are: (1) the dominant electric field component, Ex, is odd about the x̂-

axis, thereby reducing vertical radiation loss from the patterned slab, (2) a grade in the hole radius

is used to both further confine the mode in-plane and reduce in-plane radiative losses, and (3) the

design is relatively insensitive to perturbations to the cavity, as verified through simulations where

the steepness of the grade and the average hole radius (r̄) have been varied significantly without

degrading the Q below ∼ 20,000.

To experimentally locate a device for which this mode appears within the scan range of the

laser we use (1565-1625 nm), we rely on the fact that it is the fundamental (and hence lowest

frequency) mode within the region of ω− k space under consideration. In particular, for a given

lattice constant a, we begin testing by examining the device with the largest r̄/a. Typically, the
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Figure 4.6: Fiber taper transmission measurements of the PC microcavities. (a) Taper transmission
spectrum for a cavity with a=409 nm, where the data has been normalized to a background spectrum
when the taper is far above the cavity. The highlighted long wavelength mode is the A0

2 resonant
mode. (b) Measured linewidth (dots) versus taper-cavity gap (Δz) for the A0

2 mode (a/λc ∼ 0.263) in
a sample with a=425 nm. The taper is vertically positioned by a stepper motor with 50 nm encoder
resolution. The solid curve is a fit to the experimental data. (inset) Normalized taper transmission
versus wavelength when the taper is 650 nm above the cavity surface.

resonances of this device are at frequencies that are above that covered by the laser scan range, and

hence, no resonances are observed in the taper’s transmission spectrum. We then move on and test

the next device in the array, which has a slightly smaller r̄/a and is thus predicted to have lower

frequency resonances than the previous device. This process is continued until we find a device

for which a resonance is seen in the transmission spectrum. The first resonance which appears in

the transmission spectrum (measuring from lowest frequency to highest frequency) is the A0
2 mode;

this identification procedure relies on having only small changes in r̄/a between successive devices

in the array, so that the cavity resonances can be smoothly tuned from frequencies above the laser

scan range to frequencies within the scan range. However, this identification of the A0
2 mode can be

confirmed, both by comparing the measured resonance frequency with that predicted from FDTD

simulations using the SEM-measured hole sizes, and as discussed later, by comparing the spatial

localization of the cavity mode with that predicted from simulations. In addition, as described in

the previous section, the polarization of the input light into the taper can be used to rule out modes

that are not of the correct polarization.

Having identified a device for which the A0
2 mode appears within the scan range of the laser (fig.

4.6(a)), we next examine its Q factor. In the inset of fig. 4.6(b), we show a wavelength scan of the
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taper transmission showing the resonance dip of the A0
2 mode for a device within the array shown

in fig. 4.1(b), where the vertical taper-cavity separation Δz=650 nm. An initial estimate of the Q

of this resonance (centered at wavelength λ0) is given by measuring its linewidth γ, with Q = λ0/γ.

For this device, λ0 ∼ 1618.75 nm and γ ∼ 0.047 nm (where these values are determined by fitting

the data to a Lorentzian curve), giving an estimate of Q ∼ 34,400. This Q is a lower bound for the

cold-cavity Q, due to the taper’s loading effects on the cavity, which cause its linewidth to broaden.

Loading by the taper results in out-coupling to the forward propagating fundamental taper mode

which, upon interference with the power directly transmitted past the cavity, results in the observed

resonant feature in the taper transmission. Parasitic taper loading effects could include coupling to

radiation modes, higher-order taper modes, and the backward propagating fundamental taper mode.

To estimate the taper loading effects on the A0
2 cavity mode, we examine γ as a function of Δz. The

resulting data (fig. 4.6(b)) shows that as Δz increases, the loading effects are reduced, until a regime

is reached where the taper does not significantly affect the cavity mode and the measured linewidth

asymptotically approaches the cold-cavity linewidth. Assuming that the loading is monoexponen-

tially related to Δz, we fit the measured linewidth to the function γ = γ0 +βe−αΔz, where γ0, β, and

α are all fitting parameters. The resulting fit value of γ0 is 0.041 nm, essentially identical to the

directly measured linewidth when Δz � 800 nm, and corresponds to a cold-cavity Q ∼ 39,500.1 To

compare this result directly with numerical calculations, we repeat our previous FDTD calculations

from chapter 2 but include an offset in r̄ of r/a = 0.05 to account for the increased size of the fab-

ricated holes (as measured by SEM) relative to the design of fig. 4.5. Doing so yields a predicted

Q ∼ 56,000 and a/λc ∼ 0.266, fairly close to the measured values, and Veff = 0.88(λc/n)3, smaller

than the original design due to the better in-plane confinement provided by the larger hole radii.

4.4.3 Spatial localization measurements

As mentioned earlier, the extremely small volumes to which light is confined within PC micro-

cavities is one of their distinguishing advantages over other optical microcavities, and is of critical

importance in many applications, as the per photon electric field strength within the cavity is pro-

portional to 1/
√

Veff. The ability to experimentally confirm such tight spatial localization using the

same probe that maps the spectral properties (such as the Q) of the cavity modes is an important

1Note that some parasitic taper loading effects may not diminish as a function of Δz as rapidly as does the coupling
between the fundamental taper mode and cavity mode of interest. This could prevent the measured linewidth γ from
reaching an asymptotic value as a function of Δz. In such cases, the best estimate of γ0 is the linewidth for as large a Δz
as can be reliably measured.
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Figure 4.7: Mode localization data for the cavity whose Q was measured in fig. 4.6. The measured
normalized taper transmission depth (black dots) is plotted as a function of taper displacement along
the (a) x̂-axis and (b) ŷ-axis of the cavity. The dashed line in (a)-(b) is a Gaussian fit to the data while
the solid line is a numerically calculated coupling curve based upon the FDTD-generated cavity field
and analytically determined fundamental fiber taper mode (taper diameter d ∼ 1.7 µm)

.

demonstration of the versatility of the optical fiber taper. Here, the same near field probe is used to

both excite the PC cavity modes and to map their spatial profile. Other works employing evanescent

coupling from eroded monomode fibers to excite silica microsphere whispering gallery modes have

used a secondary fiber tip to collect and map the mode profiles [124].

The spatial localization of the cavity mode is easily probed by examining the strength of cou-

pling between it and the taper as the taper is laterally scanned above the surface of the cavity. The

strength of coupling is reflected in the depth of the resonant dip in the taper transmission.2 In the

insets of fig. 4.7(a)-(b), we show the fiber taper aligned along the ŷ and x̂-axis of the photonic crys-

tal microcavity whose Q was measured to be ∼ 40,000. The position of the taper is varied along

the x̂ and ŷ axes of the cavity (at a fixed vertical taper-PC gap Δz = 200 nm), respectively, allow-

ing for measurements of the depth of coupling along these two orthogonal cavity directions. The

depth of the resonant transmission dip for the A0
2 cavity mode versus taper displacement is shown

in Figs. 4.7(a) and 4.7(b), respectively. These measurements show the mode to be well localized

to a micron-scale central region of the cavity, giving experimental confirmation that the A0
2 mode

of this cavity is both high-Q and small Veff. As might be expected, they do not reveal the highly

2The maximum transmission depth achieved for the mode of interest was ∼ 10%, though coupling to other modes
reached depths as large as ∼ 30%. Coupling in all cases was limited to the under-coupled regime [125, 20].
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oscillatory cavity near field, but instead an envelope of the field, due to the relatively broad taper

field profile. To compare this experimental data with FDTD calculations, we consider a simple

picture of waveguide-cavity coupling [50], where the coupling coefficient (κ) is approximated, to

save computation time, by taking the field overlap of the phase matched Fourier components of the

FDTD-generated cavity field with the analytically-determined taper field (the modes of a cylindrical

dielectric waveguide are derived in ref. [126], for example). The calculated resonant transmission

depth as a function of taper displacement is shown in Figs. 4.7(a)-(b) as a solid line and agrees

closely with the measured data, providing further confirmation that the mode studied is indeed the

A0
2 mode of interest. Assuming that the cavity mode is localized to the slab in the ẑ-direction (a good

assumption based upon measurements that show the depth of coupling between the taper and cavity

mode decreases exponentially as the taper-cavity separation is increased), the close correspondence

between the measured and calculated in-plane localization indicates that Veff ∼ 0.9(λc/n)3 for this

high-Q mode, where this Veff value was calculated through FDTD simulations which take into ac-

count the SEM-measured hole radii for this device.

Similar measurements of the higher-frequency resonant modes of the PC microcavity indicate

that they are more delocalized in-plane in comparison to the A0
2 mode, and sometimes contain mul-

tiple lobes within their coupling curves, as one might expect for higher-order modes of the cavity.

As an example of this, we show in fig. 4.8(a)-(b) the depth of coupling to a higher order mode

as a function of the taper’s position along the x̂ and ŷ axes of the cavity, respectively. The node

that appears within the coupling curve in fig. 4.8(a) results from the cavity and taper modes being

precisely out of phase so that the integral determining κ in equation 4.1 is zero, and is a result of

the measurement being sensitive to the fields within the cavity and taper rather than their intensities.

These results indicate that the mode is likely fundamental along the ŷ-axis (its width is close to that

measured in fig. 4.7(b)), while it is a higher order mode along the x̂-axis. Simulations confirm that

such modes are supported by the graded lattice geometry employed in this work.

With the exception of such cases where there is phase cancelation in κ, the resolution of the

fiber taper probe is limited by the transverse profile of the taper mode. This is the reason why the

measured coupling curves give an envelope of the cavity field rather than displaying its oscillatory

nature; in the measurements of fig. 4.7, for example, the calculated full width at half maximum

(FWHM) of the dominant taper field component at the center of the PC slab is ∼ λ0, while the

cavity mode oscillates on the scale of a lattice constant a (fig. 4.5(b)), and a/λ0 ∼ 0.25. The

taper used in these measurements had a diameter d ∼ 1.7 µm (d/(λ0/n) ∼ 1.52, where n ∼ 1.45 is
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Figure 4.8: Mode localization data for a higher order mode of the graded square lattice PC cavity.
The measured normalized taper transmission depth (black dots) is plotted as a function of taper
displacement along the (a) x̂-axis and (b) ŷ-axis of the cavity. The dashed line in (a) is a Hermite-
Gaussian fit to the data and the dashed line in (b) is a Gaussian fit to the data.

the refractive index of the silica taper), and intuitively, it might be expected that better resolution

could be achieved by further reducing its diameter. However, for the relatively small taper diameters

(∼ λ0) with which we operate, we note that the waveguiding properties of the taper begin to degrade

below some minimum diameter so that, even if a smaller taper is used, it does not necessarily

confine the mode any more tightly than a larger taper would.3 To better illustrate this, in fig. 4.9, we

plot the calculated normalized FWHM of the dominant taper field component at the center of the

PC slab for varying normalized taper diameter (d/(λ0/n)) and taper-PC slab separation (Δz/λ0).

As expected, the smallest FWHM∼ 1.23(λ0/n) occurs when Δz/λ0=0, that is, when the taper is

touching the slab.4 We also see that reducing d/(λ0/n) below some minimum value begins to

broaden the FWHM. Thus, for the spatial localization measurements, using smaller tapers will not

appreciably improve the resolution of the measurement. Possibilities for future improvement might

consist of partially aperturing the taper field (perhaps through a metallic coating on the taper), or

forming the waveguide probe from a higher index material. As it stands with the current silica

taper used, the width of the taper mode will limit the degree to which cavity modes of differing

3This simple point is very important when trying to compare the modal confinement properties of sub-micron diameter
silica waveguides, now commonly called nanowire waveguides, with those of high-index contrast waveguides like PCs.

4In practice, a non-zero Δz, on the order of ∼ 250 nm for λ0=1.6 µm, is preferable for doing spatial localization
measurements. This is due both to the relatively large amount of insertion loss that occurs when the taper touches the
cavity, and also to allow the taper to be freely moved above the cavity.
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Figure 4.9: Resolution of the
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ized full-width at half-maximum
(FWHM/(λ0/n)) of the dominant
taper electric field component at
the center of the PC slab, as a
function of normalized taper-slab
gap (Δz/λ0) and taper diameter
(d/(λ0/n)). λ0 is the operating
wavelength of the taper (and the
resonant frequency of the cavity
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spatial localizations can be distinguished (differences in cavity localization will be blended out in

the measured coupling curves, due to the effect of the convolution with the taper field). Nevertheless,

we have been able to distinguish modes with localizations corresponding to differences in Veff of

∼ 0.3(λ/n)3 in our work to this point.

4.5 Applications to quantum optics

To illustrate the potential applications of such a small Veff and high-Q microcavity, we briefly con-

sider two examples from quantum optics. The Purcell factor (FP), a measure of the microcavity-

enhanced spontaneous emission rate of an embedded active material, is given under suitable (maxi-

mal) conditions as (see appendix H and ref. [109]):

FP =
3

4π2

(λc

n

)3( Q
Veff

)
. (4.2)

For the A0
2 mode (Q ∼ 40,000, Veff ∼ 0.9(λc/n)3), the predicted FP is ∼ 3,500, an extremely large

value for a semiconductor-based microcavity (previous work on semiconductor microdisks [13]

have predicted FP ∼ 190, for example).

Another application is in cQED, where strongly coupled atom-photon systems have been pro-

posed as candidates to produce the quantum states required for quantum computing applications

[60]. For such applications, the regime of strong coupling (see Appendices G-H and ref. [9]), where
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the atom-photon coupling coefficient (g) exceeds the cavity and atomic decay rates (κ and γ⊥, re-

spectively), must be reached. Although strong coupling has been achieved in systems consisting of

an alkali atom and an actively stabilized Fabry-Perot cavity [9], in future applications, where higher

levels of integration are sought, chip-based cavities are of interest [60]. Using the measured Q and

estimated Veff for the A0
2 mode studied here, the relevant parameters for a commonly-used Cesium

(Cs) atomic transition (λ0 = 852 nm, γ⊥/2π = 2.6 MHz) [9], and the formulas (see appendix H)

g = ηγ⊥

√
3cλ2

0

4πγ⊥Veff

κ =
ω
2Q

(4.3)

we calculate g/2π ∼ 16 GHz and κ/2π ∼ 4.4 GHz, indicating that the coupled Cs-PC cavity system

could achieve strong coupling.5 In addition, the calculated critical atom number (N0 = 2κγ⊥/g2)

and saturation photon number (m0 = γ2
⊥/2g2) are N0 ∼ 8.8x10−5 and m0 ∼ 1.3x10−8, a regime

where a single atom would have a profound effect on the cavity field, and vice versa. More detailed

calculations using the optical bistability state equation and quantum master equation have been per-

formed [62], and confirm that it should be possible to detect single strongly coupled atoms in this

system. Such experiments are being explored by Paul Barclay and Ben Lev in a collaborative effort

between the Mabuchi and Painter groups at Caltech. In addition, calculations of the coupling and

decay parameters for an InAs semiconductor quantum dot [127] indicate that the current PC micro-

cavity would also be capable of reaching strong coupling in such a solid-state system. Calculations

based on the quantum master equation are the focus of chapter 8, and so I will refrain from adding

anything more on this here.

4.6 Fabrication-tolerant high-Q cavities

In this section, we investigate the robustness of the Q of the A0
2 mode in our PC cavity design to

imperfections in the lattice. The basic motivation for this work has been the observation that many

fabricated PC cavities exhibited Q factors that were significantly smaller than the values expected

from simulations. In some cases, this may have been due to issues such as surface state or bulk

5As Veff is defined relative to peak electric field energy density, rather than electric field strength, a factor η must be
included in g for dielectric cavities where the two values are not equal. η ∼ 0.42 for our cavity.
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material absorption, or due to problems with the etch used, resulting in angled sidewalls or rough

etched surfaces. The robustness I study in this chapter does not cover such instances. Here, I focus

purely on the response of the Q to variations in the size of the holes within the PC lattice. Although

covering only one subset of the imperfections that can occur during fabrication, it is an important

subset, as it is directly related to processes such as electron beam lithography, where incorrectly

sized holes can result from variations in the beam current during the writing step, and plasma dry

etching, where etches can undercut the mask and lead to larger holes than what were intended.

A range of designs have been employed in studies of high-Q PC microcavities [11, 21, 26, 51],

and in many cases, the experimental achievement of high-Q is predicated on the ability to fabricate

the design with a small margin for error. For example, in ref. [12], the discrepancy between the

fabricated device and the intended design led to a theoretical degradation of Q from 3.0× 104 to

4.4× 103, close to the measured Q of 2.8× 103. Extraordinary control over fabricated geometries

has been demonstrated in recent work [51], where a shift of ∼ 60 nm in the positions of holes

surrounding the cavity defect region reduced Qs as high as 4.5×104 by over an order of magnitude.

Here, we discuss a study of our PC microcavity design (chapter 2), which exhibits a degree of

robustness, both theoretically and experimentally, to deviations from the nominal design sufficient

for Qs above 104 to be maintained. This robustness in Q to changes in the PC cavity geometry is of

practical importance for future experiments, to provide insensitivity to fabrication imperfections, as

well as to maintain the flexibility in cavity design required to form resonant modes with a prescribed

field pattern and polarization.

Radiative losses in planar waveguide PC defect microcavities can be separated into in-plane

and out-of-plane components, quantified by the quality factors Q‖ and Q⊥, respectively, with the

total radiative Q given by Q−1 = Q−1
‖ +Q−1

⊥ . Q‖ is determined by the size and angular extent (in-

plane) of the photonic bandgap, while Q⊥ is determined by the presence of in-plane momentum

components (k) within the waveguide cladding light cone, which are not confined by total internal

reflection at the core-cladding interface. In chapter 2 and ref. [21], PC microcavities were designed

using two mechanisms to avoid radiative loss: (i) use of a mode that is odd about mirror planes

normal to its dominant Fourier components, in order to eliminate the DC (k = 0) part of the in-

plane spatial frequency spectrum and hence reduce vertical radiation loss, and (ii) use of a grade

in the hole radius to further confine the mode and reduce in-plane radiative losses. The resulting

PC microcavity design within the square lattice creates a TE-like donor-type defect mode (labeled

A0
2), as shown in fig. 4.5. FDTD simulations of this resonant mode predict a Q-factor of 105 and
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an effective modal volume of Veff ∼ 1.2(λ/n)3. We now show how use of mechanisms (i) and (ii)

above create a level of robustness in the cavity design.

Use of an odd symmetry mode to suppress vertical radiation loss is, at a basic level, independent

of changes in the size of the holes defining the defect cavity. This feature has been confirmed in

the simulations of simple defect cavity designs in square lattice photonic crystals in chapter 2,

where Q⊥ did not degrade below 104, despite significant changes (as much as 40%) in the size of

the (two) central defect holes. Perturbations that cause the cavity to be asymmetric create a mode

which, though not strictly odd, will be a perturbation to an odd mode, and hence will still largely

suppress DC Fourier components and exhibit high Q. However, for the square lattice photonic

crystal structures considered here, perturbations to the central defect hole geometry can result in a

degradation in Q‖, due in part to the lack of a complete in-plane bandgap within the square lattice.

This lack of a complete bandgap requires the defect geometry to be tailored so as to eliminate the

presence of Fourier components in directions where the lattice is no longer reflective.

This tailoring was achieved in chapter 2 by a grade in the hole radius moving from the center

of the cavity outwards. The grade, shown in fig. 4.5, serves to help eliminate couplings to in-plane

radiation modes along the diagonal axes of the square lattice (the M-point of the reciprocal lattice)

where the PC is no longer highly reflective, while simultaneously providing a means to keep the

in-plane reflectivity high along the ŷ axis (the direction of the mode’s dominant Fourier compo-

nents). The use of a large number of holes to define the defect region ensures that no single hole

is responsible for creating the potential well that confines the resonant mode, making the design

less susceptible to fluctuations in the size of individual holes. Instead, the continuous change in the

position of the conduction band edge resulting from the grade in hole radius creates an approxi-

mately harmonic potential well [25]. This smooth change in the position of the band edge creates

a robust way to mode match between the central portion of the cavity (where the mode sits) and

its exterior. In other work [51], softening of this transition is achieved by adjusting the position

of two holes surrounding the central cavity region (which consists of three removed air holes in a

hexagonal lattice). This method can achieve high-Q, but as mode-matching is achieved by tailoring

only two holes it is more sensitive to perturbations than the adiabatic transition created by a grade

in the hole radius. Finally, we note that even though a relatively large number of holes are modified

to create the graded lattice, Veff is still wavelength-scale, and remains between 0.8-1.4(λ/n)3 in all

of the devices considered in this work. In addition, the methods used here to achieve robustness in

Q are general and can be applied to cavities in other PC lattices [23].
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Figure 4.10: Grade in the normalized hole radius (r/a) along the central x̂ and ŷ axes of square
lattice PC cavities. Cavity r/a profiles for (a,b) FDTD cavity designs and (c,d) microfabricated Si
cavities.

To highlight these ideas, 3D FDTD simulations of cavities with varying grades and average

normalized hole radius (r̄/a) were performed. Figure 4.10(a)-(b) shows the grade in r/a along the

central x̂ and ŷ axes for several designs (PC-A through PC-E), and table 4.1 lists the calculated

resonant frequency, vertical, in-plane, and total Q factors. In all of these simulations, Q⊥ remains

close to 105, with PC-E showing more significant degradation largely as a result of the increased

modal frequency (creating a larger-sized cladding light cone). In addition, an inappropriate choice

of grade along the x̂-axis can lead to increased in-plane losses via coupling to M-point modes.

Nevertheless, the loss in any of the simulated devices did not cause Q to be reduced below 2×104.

To test the sensitivity of the design to perturbations experimentally, cavities were fabricated in a

d=340 nm thick silicon membrane through a combination of electron beam lithography, inductively-

coupled plasma reactive ion etching, and wet etching. Figure 4.10(c)-(d) shows the values of r/a

along the central x̂ and ŷ axes for a number of fabricated devices (PC-1 through PC-7), as measured

with a SEM. Cavities are passively tested using the optical fiber taper probing method described in

the previous sections.

Figure 4.11(a)-(b) shows measurements for devices PC-5 and PC-6, which have significantly

different r/a profiles (fig. 4.10(c)-(d)). The inset of fig. 4.11(c) shows the normalized taper trans-
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Table 4.1: Theoretical (PC-A through PC-E) and experimental (PC-1 through PC-7) normalized
frequency (a/λo) and quality factor (Q) values for the A0

2 mode of cavities with r/a profiles shown
in fig. 4.10.

Cavity d/a a/λ0 Q⊥ Q‖ Q

PC-A 0.750 0.245 1.1×105 4.7×105 9.0×104

PC-B 0.750 0.245 1.1×105 2.6×105 7.5×104

PC-C 0.750 0.247 1.0×105 3.7×105 8.0×104

PC-D 0.750 0.253 8.6×104 3.0×105 6.7×104

PC-E 0.750 0.266 6.2×104 6.5×105 5.6×104

PC-1 0.879 0.241 - - 1.6×104

PC-2 0.850 0.255 - - 1.8×104

PC-3 0.850 0.251 - - 1.7×104

PC-4 0.842 0.251 - - 2.4×104

PC-5 0.842 0.249 - - 2.5×104

PC-6 0.800 0.263 - - 4.0×104

PC-7 0.800 0.270 - - 1.3×104

mission as a function of wavelength when the taper is 350 nm above cavity PC-5. By measuring

the dependence of cavity mode linewidth (γ) on the vertical taper-PC gap (Δz) (fig. 4.11(a)), an

estimate of the true cold-cavity linewidth (γ0) is given by the asymptotic value of γ reached when

the taper is far from the cavity. For PC-5, γ0 ∼ 0.065 nm, corresponding to Q ∼ 2.5× 104. Figure

4.11(b) shows the linewidth measurement for PC-6. For this device, γ0 ∼ 0.041 nm, corresponding

to a Q ∼ 4.0×104.

Linewidth measurements for each of the cavities PC-1 through PC-7 are compiled in table 4.1.

The robustness of the Q to non-idealities in fabrication is clearly evident. Though all of the devices

exhibit a general grade in r/a, the steepness of the grade and the average hole radius (r̄/a) vary

considerably without reducing Q below 1.3× 104. These high-Q values are exhibited despite the

fact that many cavities are not symmetric (the odd boundary condition is thus only approximately

maintained), and the frequency of the cavity resonance varies over a 10% range, between a/λo =

0.243-0.270.

The measured Q values in table 4.1 are still lower than predicted from simulations. This discrep-

ancy is likely due in part to slightly angled etched sidewalls that have been shown in calculations

to lead to radiative coupling to TM-like modes [114]. This non-ideality helps explain why PC-1,
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Figure 4.11: (a) Measured data (blue dots) and exponential fit (red curve) for linewidth vs. taper-PC
gap of the A0

2 mode in PC-5. (Inset) Taper transmission for this device when the taper-PC gap is 350
nm. (b) Same as (c) for PC-6 (here, the taper transmission in the inset is shown when Δz=650 nm).
The transmission curves are normalized relative to transmission in the absence of the PC cavity.

which is closest in r/a value to the desired design (PC-A), does not exhibit the highest Q experi-

mentally. In particular, we have observed that the sidewall angle is poorer for smaller sized holes.

On the other end of the spectrum, cavities with the largest hole sizes such as PC-7, which may have

more vertical sidewalls, also begin to exhibit higher vertical radiation loss as a result of a larger

modal frequency and cladding light cone. In addition, surface roughness is a potential source of

loss; for PC-6, which exhibited the highest Q value, a chemical resist stripping process was used

(rather than a plasma descum) and may have produced a cleaner, smoother surface. More recently,

work on Si microdisk cavities [128] has indicated that absorption due to surface layers may be a

limitation. Proper termination of etched surfaces is an important consideration for achieving higher

Qs in these devices.

4.7 Fiber tapers as an optical probe for photonic crystal microcavities

The versatility of the optical fiber taper measurement technique has led us to think of it as a probe

for studying the properties of microphotonic structures. In this section, we further elaborate on

this idea, by comparing this method to some of the existing ways in which PC microcavities (and

wavelength-scale semiconductor microcavities in general) are tested.

In general, measurements of PC microcavities are not necessarily straightforward, in large part

due to their micron-scale Veff values, which limit the ability to effectively couple to them from free-
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space or through prism-based techniques, as can be done for larger microresonators such as Fabry-

Perot cavities [9] and microspheres [129]. This difficulty has extended to other types of wavelength-

scale cavities, such as small-diameter microdisks [13, 14]. Typically, there have been two techniques

to probe Q factors in wavelength-scale cavities. In the first, the microcavities are fabricated in an

active emitter material (such as a quantum well or quantum dot epitaxy), the cavities are optically

pumped, and the emitted resonance linewidth is studied subthreshold, near material transparency

[13, 43, 12]. This technique is limited both by difficulties in accurately establishing the pump

power at which transparency occurs and by the necessity that the cavity contain embedded emitters.

In particular, the latter requirement limits the variety of material systems in which the cavity can

be fabricated (silicon, for example, would not be an easy option) and is not suitable for passive

resonators in devices such as filters. For such devices, a second technique, consisting of fabricating

an on-chip in-plane waveguide to couple to the cavity, is often used [130, 49]. In this approach,

the problem of coupling light into the cavity is shifted to that of coupling light into the on-chip

waveguide, a technically less challenging problem that can be done through a number of end-fire

based approaches. A limitation of this technique is that it lacks a certain amount of flexibility due

to the necessity of fabricating an in-plane waveguide for each cavity on the chip. In addition, both

this approach and the emission-based approach described above do not provide a means to probe

the Veff of the cavity. To address this, several researchers have begun to investigate photonic crystal

microresonators using near field scanning optical microscopy (NSOM), taking advantage of the

sub-wavelength resolution that can be achieved in such measurements to map the localization of the

cavity modes [131, 132].

The technique we have described in this chapter employs an external waveguide to couple to

the cavity, where the external waveguide is a tapered optical fiber. Tapered optical fibers have been

successfully used in the past to excite the resonances of larger sized microcavities, such as silica

microspheres [32, 20] and microtoroids [56], and more recently, to excite the modes of a silicon-

based PC waveguide [38, 40]. In these implementations, phase matching between the mode of the

taper and the traveling wave mode of the resonator or the propagating mode of the waveguide was

critical in achieving highly efficient coupling [55, 39]; in the former case, phase matching occurred

primarily due to the silica-silica interface (same material index) between the taper and the micro-

sphere, while in the latter, the dispersion of the PC waveguide was engineered to compensate for the

disparate material indices (n=3.4 for silicon and n = 1.45 for silica) and achieve a PC waveguide

effective index that matched that of the taper.
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To study wavelength-scale cavities, we no longer rely on achieving phase matching, but rather

just use the taper as a convenient means to produce a micron-scale evanescent field for sourcing

and out-coupling the micron-scale cavity field. The taper effectively serves to bridges the disparate

length scales from conventional fiber and free-space optics to chip-based microoptics, and does so

entirely off the chip, so that on-chip structures do not require any additional complexity. Although

the coupling we observe might not be as efficient as phase matched coupling, the power transfer is

more than adequate enough to probe many of the important properties of the cavity. By using an

external waveguide as the coupling element, this method is inherently non-invasive, can be used to

rapidly characterize multiple devices on a chip, and the ability to vary the position of the taper with

respect to the cavity (not an option for microfabricated on-chip waveguides) allows for quantitative

investigation of not only the Q factor but also Veff. Furthermore, the resonant coupling from the ex-

ternal waveguide is polarization selective, providing additional information about the cavity modes

that is not easily obtainable through techniques such as NSOM. Knowledge of a mode’s spectral

position, polarization, Q, and Veff will in many cases be enough to unambiguously determine the

identity of the mode in comparison to simulation or theoretical results. Thus, in some respects, the

versatility of the fiber-based approach that we have described in this chapter makes the technique

an optical analog to electrical probes used to study microelectronic devices.

Another important aspect of this technique is the speed with which measurements can be made.

In particular, the critical alignment step required in this work is making sure that the taper is not

angled with respect to the surface of the chip, to ensure that coupling only occurs between the taper

and the cavity, and not some extraneous part of the chip. Once this is done, and once the taper is

aligned along the desired axis of the cavity, all of the devices within an array can be rapidly tested,

and the spectral positions of resonances in successive devices can be determined within tens of sec-

onds or faster. As an illustration of this, a movie showing the testing of two adjacent PC cavities has

been made and is freely available on the internet (http://copilot.caltech.edu/research/PC cav.avi).

This ability to easily probe an array of devices on a chip greatly speeds up the testing process and

shortens the turnaround time between device fabrication and measurement. Furthermore the sim-

plicity of the measurement technique is another attractive feature; a single fiber taper serves as both

the excitation and collection probe, and the taper is physically robust enough (will not break) so

that no active servo control of the taper position is required to prevent it from touching the sample

surface (in contrast to the more delicate probes used in NSOM techniques [132]).

Finally, we note that the optical fiber taper probe can be used to examine the spectral and spatial
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properties of a number of wavelength-scale microcavities, and is not limited to just PC microcav-

ities. The suitability of the fiber taper as a probe for a given microcavity will in large part be

determined by the overlap between the cavity and taper fields; simply put, if that overlap is suffi-

ciently large, an appreciable amount of power can be transferred from the taper to the cavity even

without phase matching (in general, phase matching will not be achieved, because of the index

mismatch between the silica fiber taper and the high refractive index semiconductors typically used

in wavelength-scale cavities). For the A0
2 PC microcavity mode studied in this work, the depth of

coupling is typically limited to ∼ 10%-20%, and at maximum levels of coupling, the cavity Q is

degraded due to the taper loading effects seen in fig. 4.6. However, due to the low-loss nature of the

optical fiber tapers (insertion losses are routinely as low as 10%), this is still a significant amount

of coupling into the cavity, and from the measurement standpoint, coupling levels of a few percent

are easily adequate to discern cavity resonances in the taper’s transmission, and to then probe the Q

and Veff of the cavity. For applications requiring highly efficient power transfer from the fiber into

the cavity, other approaches using an intermediate photonic crystal waveguide coupler have been

developed [57], and will be briefly described in the following section.

As an example of the application of this probing technique to other types of wavelength-scale

microcavities, fiber tapers have recently been used to probe the spectral and spatial properties of

whispering gallery modes in d < 10 µm diameter silicon microdisks [64] and AlGaAs microdisks

with embedded quantum dots [69] (the latter of which will be described in detail in the second

part of this thesis). Because the radiation losses in high-index-contrast microdisks are quite low

(Qrad > 108), measurements of Q in fabricated devices is a simple and elegant way to determine etch-

induced and bulk material losses within a given materials system [65, 128], allowing one to optimize

an etching process for the creation of low-loss structures. Because the fiber taper measurement is

a passive measurement (light-emitting material is not required), this probing technique provides

optical access to materials systems, such as silicon, which otherwise could only be accessed via

end-fire coupling to microfabricated on-chip waveguides. We briefly review some of the results on

Si microdisks in the following section.
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4.8 Efficient optical fiber coupling to photonic crystal microcavities

and microdisks

4.8.1 PC microcavities

To this point, we have demonstrated a PC microcavity that has a sufficiently high Q and small Veff to

enable strong coupling experiments in cQED, and we have shown that the Q is relatively robust to

fabrication imperfections. To do these measurements, we have used fiber tapers as a way to couple

light into and out of these devices. The above sections have detailed how the fiber taper can serve

as a very versatile probe for studying the spectral and spatial properties of PC cavity modes.

One thing that was not shown in the measurements above is that the fiber taper is an efficient way

to get light into and out of the PC cavities, and indeed, to this point, it has not been. In particular,

depths of coupling between the taper and cavity have been limited to values around 10%, and at

these highest levels of coupling, the Qs are significantly degraded (by about a factor of 2). It should

be emphasized that whenever light is coupled out of a cavity, its Q is going to be degraded relative

to its cold-cavity value. The important point is that the loss that is induced by coupling should be

effectively funneled into some collection channel (this loss can euphemistically be called ’good’

loss). For the direct fiber taper probing measurements, this clearly is not the case; the Q is degraded

by almost a factor of 2, indicating that significant loss has been induced by the interaction with the

taper, but only a small fraction of this loss has been collected, as evidenced by the small depths of

coupling. The additional (uncollected) loss, which we call ’bad’ loss, might be due to scattering or

coupling into undesirable taper modes. For cavity QED applications, the goal is to obtain a requisite

signal level without degrading the Q so far that the cavity is no longer in the strong coupling regime.

The ability to do this is somewhat compromised by the amount of ’bad’ loss present in the direct

probing method; nevertheless, its simplicity makes it a candidate for use in future experiments.

The ability to efficiently source and extract light from the cavity is of particular importance

for the low light intensities within the cavity in cavity QED experiments, where maximizing the

amount of out-coupled signal from the interaction is necessary. In a standard Fabry-Perot cavity,

the solution is perhaps obvious; one of the etalon mirrors is made to have slightly lower reflectivity.

This causes a degradation of the cavity Q, but this additional loss is ‘good’ in the sense that it can be

collected to comprise the measurement signal. Similarly, in a micropillar cavity, the top DBR mirror

can be tailored to allow light to leak vertically into the air, where it can be efficiently collected into
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Figure 4.12: Fiber-coupled PC microcavity using an intermediate PC waveguide. (i) the taper adia-
batically converts light injected into its input to a micron-scale field,(ii) light is contradirectionally
coupled to a phase matched PCWG with high (> 95%) efficiency, (iii) light tunnels from the end of
the PCWG into a mode-matched PC cavity, (iv) coupling from the cavity back to the fiber follows
the reverse process, so that the output from the cavity is detected in the reflected signal at the fiber
input. Refer to the paper of Barclay et al., for details [57].

an optical fiber [133]. However, in PC microcavities, the solution is not necessarily straightforward;

their wavelength-scale modal patterns are typically not suited for direct mode matching to the much

larger standard free-space and fiber optics. One solution is to integrate the cavity with an on-chip

photonic crystal waveguide (PCWG), and then use various end-fire-based approaches to couple into

and out of the PCWG. Despite significant improvement in techniques for such end-fire coupling,

losses of > 1 dB per coupling junction can still be expected in such systems [134].

To minimize the amount of ’bad’ loss when coupling to the cavities while still taking advan-

tage of the desirable properties of fiber tapers, my colleague Paul Barclay developed a technique

that makes use of an intermediate photonic crystal waveguide (PCWG) [57]. In this approach (fig.

4.12(a)), light is first efficiently (> 95%) transferred to the PC chip by phase matched evanescent

coupling between an optical fiber taper and a PCWG [39]. This coupling is so efficient because

the PCWG has been designed to phase match to the mode of the optical fiber taper (not the case in

direct coupling between the fiber and cavity), and has a significant enough spatial overlap with it

for near-complete power transfer over tens of microns. The PCWG is terminated by the PC cavity;

the two devices have been designed to be mode matched so that coupling between them is also very

efficient. Thus, light propagates through the PCWG, and when it reaches the PC cavity termination,

some amount of the light that is resonant with the cavity mode tunnels into it (the amount of tun-

neling can be adjusted by tailoring the PCWG-PC cavity junction). This light can then interact with
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material in the cavity (an atom or quantum dot, for example), and then tunnel back into the PCWG,

where it will be transferred back into the reflected signal of the optical fiber for measurement.

Experimental measurements of fabricated Si devices have yielded an unoptimized fiber-to-cavity

coupling efficiency of 44% for a cavity with a loaded (unloaded) Q of 38,000 (47,000). Importantly,

the limitations on the demonstrated coupling efficiency were not fundamental, but due to techni-

cal reasons, such as non-ideal taper-PCWG coupling and an imperfectly tailored PCWG-PC cavity

transition region.

4.8.2 Microdisk cavities

Complementing the work described in the previous sections of this chapter, my colleague Matt

Borselli has investigated silicon microdisk cavities, of the geometry shown in fig. 4.13. Microdisk

cavities support whispering gallery modes (WGMs) in which light circulates around the periphery

of the structure and is confined by total internal reflection at both the curved interface and the top and

bottom surfaces. In comparison to microsphere cavities [19, 20, 135], microdisks are an optically

thin dielectric slab in one dimension, which serves the dual purpose of dramatically reducing the

number of modes within the structure, as well as the volume of those modes.

These microdisk cavities were of particular interest because they could support modes with very

high radiation-limited quality factors (Qrad ∼ 108) for all but the smallest diameter structures (this

was verified by finite-element-method simulations [136, 128, 137]). This is a result of the large

refractive index contrast between the Si (n ∼3.4) layer and the surrounding air (n=1). This large

index contrast also suggests that modes with a much tighter spatial confinement (i.e., a smaller

Veff) than what is available in glass microcavities [19, 20, 56] can be supported. In addition to

their potential Q and Veff values, these cavities can be fabricated using the exact same fabrication

processes developed above (section 4.2), and can be probed using optical fiber tapers.

Reference [64] describes the first set of results obtained from these devices. Cold-cavity Qs

as high as ∼ 5×105 for Veff ∼ 6(λ/n)3 were demonstrated, as were loaded Qs of ∼ 1.5×105 for

a taper-cavity coupling depth of ∼ 50%. Since these initial results, Matt and another colleague,

Tom Johnson, have gone on to show that they could reach Qs as high as 5.0×106, albeit in larger

volume devices [65], and have achieved critical coupling and overcoupling to these devices [128].

These high Qs have been achieved through additional improvements to the fabrication procedure

described earlier, including the use of a resist reflow process to ensure very circular disk geometries

[65], and a sequence of cleaning steps at the end of the disk fabrication aimed at the removal of
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Figure 4.13: Scanning electron micro-
scope image of a silicon microdisk cav-
ity. Refer to the paper of Borselli et al.,
for further details [64].

highly absorbing surface layers from the devices [128].

From the perspective of the cavity QED experiments that have been a focus of this thesis,

these Si microdisk cavities are extremely appealing, particularly in conjunction with integrated self-

assembled quantum dots (QDs), where the field of the microdisk can optimally spatially overlap

with the QD. Although PC cavities can ultimately result in similar or even better performance in

terms of metrics such as Q/Veff [52, 51, 28, 30], and can be effectively coupled to through the use

of photonic crystal waveguides integrated with optical fiber tapers [57], these microdisk cavities are

quite competitive on both the Q/Veff and coupling fronts. More importantly, the simplicity of direct

fiber coupling (rather than use of an intermediate element as is necessary for the PC cavities) and the

relative ease of fabrication of these devices make them promising candidates for initial experiments.

This is described in further detail in the upcoming chapters.
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Part II

Fiber-Coupled Microdisk Cavities with

Embedded Quantum Dots
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The second part of this thesis studies the properties of AlGaAs microdisk cavities containing an

integral layer of self-assembled InAs quantum dots. Chapter 5 presents initial measurements of

high quality factors within 4.5 µm diameter disks, as well as photoluminescence measurements of

the devices. Chapter 6 examines the use of the fiber taper within photoluminescence measurements

of the cavities, to create fiber-coupled microdisk lasers with high differential efficiencies. Chapter

7 extends the work of the previous chapters to consider small diameter (D ∼ 2 µm) disks with high

quality factors, small mode volumes, and very low threshold powers. For cavity QED experiments,

the most important results from these chapters are that the demonstrated microdisk cavities have

the requisite combination of Q and Veff for strong coupling to a single QD, and the fiber coupling

technique provides an important tool that can enable future generations of experiments. Chapter

8 considers a first set of such experiments in detail, and in particular, presents quantum master

equation simulations of the expected behavior of these devices.
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Chapter 5

Optical Loss and Lasing Characteristics
of AlGaAs Microdisk Cavities with
Embedded Quantum Dots

5.1 Introduction

For future experiments in cavity QED with self-assembled quantum dots, the GaAs/AlGaAs system

is the most appropriate choice of material, due to the relative maturity of the growth of InAs/InGaAs

quantum dots [138, 139, 140] within this system. As the refractive index of GaAs and its alloys is

relatively close to that of Si (nGaAs ∼ 3.5 and nAlAs ∼ 2.9 at λ ∼ 1.25 µm), the PC cavity design of

chapter 2 remains applicable. Similarly, the high refractive index difference between GaAs/AlGaAs

and air suggests that the radiation-limited Qs for microdisk cavities would be quite high for all but

the smallest diameter disks. At the start of the work described in this chapter, what remained to

be seen was whether the fabrication processes and material losses within this new system would be

adequate to achieve a sufficiently high Q and small Veff for strong coupling experiments.

Recently, multiple research groups have demonstrated vacuum Rabi splitting in a semiconductor

system consisting of a single quantum dot (QD) exciton embedded in an optical microcavity [70, 71,

72]. These experiments have in many ways confirmed the potential of semiconductor microcavities

for chip-based cavity quantum electrodynamics (cQED) experiments. For future experiments, such

as those involving quantum state transfer in quantum networks [141], it will be important to further

improve upon the parameters of such QD-microcavity systems over what was demonstrated in the

above references. One clear improvement required is to move the system further within the regime

of strong coupling. In particular, the ratio of g (the QD-photon coupling rate) to the larger of κ

(the cavity decay rate) and γ⊥ (the QD decay rate) approximately represents the number of Rabi
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oscillations that can take place before the effects of dissipation destroy coherent energy exchange

[9]. In each of refs. [70, 71, 72], loss in the system was found to be dominated by the optical

cavity, with g � κ. As the low-temperature homogeneous linewidth in self-assembled InAs QDs

is typically a few µeV [142], corresponding to a QD dipole decay rate of γ⊥/2π ∼ 1 GHz, it will

be advantageous to develop cavities with quality factors such that κ/2π � 1 GHz, with further

improvements in Q serving mainly to improve the optical collection efficiency of emitted light. For

the λ ∼ 0.9-1.2 µm emission wavelength for InAs QDs [70, 71], this corresponds to an optical mode

quality factor of Q ∼ 1×105 (κ/2π = ω/4πQ). Achieving such low loss cavities is also important in

light of the difficulty in fabricating a structure where the QD is optimally positioned for maximum

coupling to the cavity mode.

In this chapter, we review results first presented in ref. [69], which details the creation of D=4.5

µm diameter AlGaAs microdisks that exhibit Q factors as high as 3.6×105 at λ ∼ 1.4 µm, a value

which, to our knowledge, exceeds the highest Q factors measured for AlGaAs microcavities to date

[13, 14, 70, 71]. These AlGaAs microdisks contain embedded quantum dots-in-a-well (DWELL)

[143, 144] that have a ground state emission at λ ∼ 1.2 µm, so that passive, fiber-taper-based mea-

surements are performed at λ ∼ 1.4 µm, where the QDs are relatively non-absorbing. The charac-

teristics of these devices are also investigated through photoluminescence measurements, and low

threshold, room temperature QD lasers are demonstrated.

5.2 Overview of microdisk cavity modes

5.2.1 Analytic approximation

In a perfectly circular microdisk structure, the cavity modes circulate around the periphery of the

device in traveling wave whispering gallery modes (WGMs). These WGMs are classified in terms

of their polarization (TE or TM), radial order (p), and azimuthal number (m).1 Unlike microspheres,

where the WGMs can be solved for analytically, microdisk modes do not have an analytic solution.

An approximate analytic solution can be easily found, however, and yields physical insight into the

properties of these modes. Such an approach has been considered by many authors; here, I follow

the derivation of Borselli et al., in ref. [65].

We begin with Maxwell’s equations in a charge-free, current-free medium:

1As the microdisks studied here are optically thin, only the first order TE and TM modes are considered.
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∇×E = −iωµ0H,

∇×H = +iωn2ε0E,

∇∇∇ · (n2ε0E) = 0,

∇ ·µ0H = 0,

(5.1)

where we have assumed that the fields oscillate in time as exp(iωt). For a piecewise homogeneous

medium, these equations can be used to derive the familiar wave equations:

∇∇∇2E+
n2ω2

c2 E = 0

∇∇∇2H+
n2ω2

c2 H = 0

(5.2)

As the form of equation (5.2) is the same for both E and H, from here on out we write everything

in terms of a single vector field F, which can stand for either of the two. In cylindrical coordinates

(ρ,φ,z), we can re-write this as:

(
∂2

∂ρ2 +
1
ρ

∂
∂ρ

+
1
ρ2

∂2

∂φ2 +
∂2

∂z2 +
(ω

c

)2
)

F = 0 (5.3)

We now invoke the major approximation used, which is to separate the modes into TE and TM

polarizations, which contain the field components {Eρ,Eφ,Hz} and {Hρ,Hφ,Ez}, respectively. For

actual structures, this separation is only approximate (it truly only holds within the center of the

slab WG). It provides the significant simplification of making equation (5.3) a scalar wave equation

in Fz, where Fz is Hz (Ez) for TE (TM) modes. We then use separation of variables [145] with

Fz = Ψ(ρ)Ω(φ)Z(z) to break up equation (5.3) into three equations, given as:

∂2Ω
∂φ2 +m2Ω = 0

∂2Z
∂z2 +

ω2

c2 (n2 − n̄2)Z = 0

∂2Ψ
∂ρ2 +

1
ρ

∂Ψ
∂ρ

+
(ω2n̄2

c2 − m2

ρ2

)
Ψ = 0

(5.4)
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where n̄ is the effective index. The first equation can immediately be solved, giving the azimuthal

dependence Ω(φ) = exp(imφ), where m is the azimuthal mode number (eigenvalue). The second

equation is nothing more than the standard equation for the mode of a slab waveguide, as discussed

in detail within ref. [126], for example. The third equation is used to solve for the radial dependence

of the cavity mode. The solutions to this equation are Bessel functions within the disk (ρ < R, where

R is the disk radius), and Hankel functions outside of it (ρ > R). As discussed in ref. [65], the Hankel

function solution can be approximated by a decaying exponential, so that the radial solution Ψ(ρ)

has the form:

Ψ(ρ) =

⎧⎪⎪⎨⎪⎪⎩
Jm(ω

c n̄ρ), ρ≤R

Jm(ω
c n̄R)exp(−α(ρ−R)), ρ≥R.

(5.5)

The decay constant α is given as α = ω
c (n̄2 − n0

2)1/2 (n0=1 for an air-clad disk). Finally, the

azimuthal mode number m is determined (for a given frequency ω, disk radius R, and effective index

n̄) by the boundary conditions on the fields at ρ = R. This yields the transcendental equation:

ω
c

n̄Jm+1(
ω
c

n̄R) =
(m

R
+ηα

)
Jm(

ω
c

n̄R) (5.6)

where η = n̄2/n2
0 for a TE mode and η = 1 for a TM mode.

For very rough estimates, a back of the envelope calculation of m can be useful. One that

is typically used is to require that m wavelengths fit in the circumference of the disk. Written

explicitly, this is stated as:

m
λm

ng
= 2πR (5.7)

where λm is the resonant wavelength of mode m, and ng is the group index of the waveguide mode,

which can be determined from the slope of the waveguide dispersion curve (through solving the

slab waveguide portion of equation (5.4) for ω as a function of β=n̄ω/c). The free spectral range

(FSR), which gives the separation between adjacent modes, is then:



171

Δν = νm+1 −νm =
c

2πRng
(5.8)

This is nothing more than the standard equation for the FSR of a Fabry-Perot cavity with the round-

trip length of the cavity equal to the circumference of the microdisk.

5.2.2 Finite-element method simulations

To quantitatively study the properties of the microdisk cavities, we use finite-element eigenfre-

quency simulations based on the Comsol FEMLAB commercial software. The specific implemen-

tation I have used is based on the work of Matt Borselli [128, 137], who in turn received assistance

from Sean Spillane [136]. By assuming azimuthal symmetry of the disk structures, only a two-

dimensional cross section of the disk is simulated, albeit using a full-vectorial model. That is,

the explicit azimuthal symmetry package offered within the software is not appropriate, because it

forces the calculated modes to be azimuthally symmetric (i.e., m=0). Instead, we essentially solve

the wave equation (5.3) assuming an azimuthal dependence of exp(imφ). We seek solutions close to

some nominal wavelength λnom, and specify an m value as found by solution of the transcendental

equation (5.6). The FEMLAB solver then determines the precise frequency λ0 at which the mode

of azimuthal number m occurs. It also provides the spatial mode profile, which is used to calculate

the cavity mode effective volume according to the already-mentioned formula:

Veff =
∫
V ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2] (5.9)

where ε(r) is the dielectric constant, |E(r)| is the electric field strength, and V is a quantization

volume encompassing the resonator and with a boundary in the radiation zone of the cavity mode

under study. The resonance wavelength λ0 and radiation limited quality factor Qrad are determined

from the complex eigenvalue (wavenumber) of the resonant cavity mode, k, obtained by the finite-

element solver, with λ0 = 2π/Re(k) and Qrad = Re(k)/(2Im(k)). For the microdisks studied in this

chapter and in chapter 6, Qrad is quite large (> 1014), and the finite element simulations are only

sparingly used. In chapter 7, however, we consider small enough diameter structures that Qrad is a

significant contributor to the overall Q of the devices. We will therefore consider these simulations



172

in greater detail within that chapter.

5.2.3 Standing wave whispering gallery modes

For the devices studied in this thesis, the high-Q modes are not traveling waves but are instead stand-

ing waves. This is a result of coherent coupling between the forwards and backwards propagating

disk modes (i.e., modes of azimuthal number ±m) as a result of surface roughness. The key behind

this coherent coupling is that the modal loss (due to factors such as absorption, scattering, radiation,

etc.) is low enough that the backscattering rate caused by the surface roughness is significant in

comparison to it.

This modal coupling has been observed experimentally and explained by many other authors,

including those of refs. [146, 147, 148, 135, 64]. Here, we present a simple analysis of this coupling.

This analysis is essentially an abridged version of that which appears in a recent paper by Borselli

et al. [65].

Maxwell’s wave equation for the electric field vector in the microdisk structure is

∇∇∇2E−µ0

(
ε0 +δε

)∂2E
∂t2 = 0, (5.10)

where µ0 is the permeability of free space, ε0 is the dielectric function for the ideal microdisk

and δε is the dielectric perturbation that is the source of mode coupling between the cw and ccw

modes. Assuming a harmonic time dependence, the modes of the ideal structure are written as

E0
j(r, t) = E0

j(r)exp(iω jt), and are solutions of equation 5.10 with δε = 0. Solutions to equation

(5.10) with δε �= 0 (i.e., modes of the perturbed structure) are assumed to be written as

E(r, t) = e−iω0t ∑
j

a j(t)E0
j(r). (5.11)

Plugging into equation (5.10), keeping only terms up to first order, and utilizing mode orthogonality,

we arrive at the coupled mode equations
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dak

dt
+ iΔωkak(t) = i∑

j

β jka j(t) (5.12)

β jk =
ω0

2

∫
δε
(

E0
j(r)

)∗
E0

k((r))dr∫
ε0|E0

k(r)|2dr
. (5.13)

Reference [65] presents a functional form for β in situations involving a small amount of surface

roughness. We now explicitly assume that only two modes (the cw and ccw modes of a given

polarization (TE or TM), azimuthal mode number m, and radial mode number p) are involved,

and that the amplitude of the backscattering rates are equal, so that |βcw,ccw| = |βccw,cw| = |β|. The

coupled mode equations then read as

dacw

dt
= −iΔωacw(t)+ i|β|eiξaccw(t) (5.14)

daccw

dt
= −iΔωaccw(t)+ i|β|e−iξacw(t), (5.15)

where we have taken β = |β|eiξ. These equations represent the time evolution of the two mode

amplitudes (acw,accw) of an isolated system, without loss or coupling to an external waveguide. The

inclusion of such terms will be considered later in this thesis, in chapter 8.

These two coupled equations can be uncoupled by introducing the variables asw,1 and asw,2,

which represent the standing wave mode amplitudes:

asw,1 =
1√
2

(
acw + eiξaccw

)
(5.16)

asw,2 =
1√
2

(
acw − eiξaccw

)
. (5.17)

As we saw earlier within this chapter, for an ideal microdisk, acw and accw have an azimuthal spatial

dependence of eimφ (where m is the azimuthal mode number and is a nonzero integer), so that asw,1

and asw,2 will have an azimuthal spatial dependence that will be a mixture of cos(mφ) and sin(mφ),

with the precise dependence being a function of the phase ξ of the backscattering parameter β.

Rewriting the coupled mode equations in terms of the standing wave mode amplitudes, we arrive

at:
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dasw,1

dt
= −iΔωasw,1(t)+ i|β|asw,1(t), (5.18)

dasw,2

dt
= −iΔωasw,2(t)− i|β|asw,2(t). (5.19)

From these equations, we see that the standing wave modes resonate at frequencies ±|β| detuned

from the original resonance frequency.

For cavity QED applications, one very important consequence of the distinction between trav-

eling wave and standing wave modes is in the effective volume of the mode Veff. Standing wave

WGMs have approximately half the volume of the traveling wave WGMs, so that the coupling rate

g between a single quantum dot and a single photon in a standing wave cavity mode is expected

to be
√

2 times that when the quantum dot is coupled to a traveling wave cavity mode. This of

course assumes the single QD is positioned at an antinode of the standing wave mode; alternately,

if it happens to be positioned at a node, the coupling rate g will be zero. Chapter 8 considers the

coupling of a QD to standing wave modes in a microdisk in much greater detail, invoking quantum

master equation simulations [149] to aid in the analysis.

5.3 Fabrication

The specific devices we consider are AlGaAs/GaAs microdisk cavities with embedded quantum

dots (QDs). The epitaxy used was grown by Professors Andreas Stintz and Sanjay Krishna at the

Center for High Technology Materials (CHTM) at the University of New Mexico, and is shown in

table 5.1. It consists of a single layer of InAs quantum dots embedded in an InGaAs quantum well

[144], which is in turn sandwiched between layers of AlGaAs and GaAs to create a 255 nm thick

waveguide. This DWELL (short for dot-in-a-well) material has a room temperature ground state

emission peak at around 1190 nm (fig. 5.1(b)), and is grown on top of a 1.5 µm Al0.70Ga0.30As layer

that eventually serves as a support pedestal for the microdisk.

The cavities are created through: (i) deposition of a 200 nm SiNx mask layer, (ii) electron beam

lithography and subsequent reflow of the e-beam resist to produce smooth and circular patterns,

(iii) SF6/C4F8 inductively coupled plasma reactive ion etching (ICP-RIE) of the deposited SiNx

mask layer (fig. 5.2(a)), (iv) Ar-Cl2 ICP-RIE etching of the Al0.3Ga0.7As layer and removal of the

remaining SiNx layer, (v) photolithography and isolation of the microdisk onto a mesa stripe that
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Figure 5.1: (a) Schematic of the DWELL epitaxy from which microdisk cavities are formed. (b)
Photoluminescence from an unprocessed region of the 1DWELL material.

Table 5.1: Epitaxy for 1-DWELL microcavity lasers.

Layer Materials Thickness

Surface cap layer GaAs 100
◦
A

Top waveguide layer Al0.30Ga0.70As 400
◦
A

Top waveguide layer GaAs 740
◦
A

Quantum well layer In0.15Ga0.85As 60
◦
A

Quantum dot layer InAs 2.4 monolayer

Barrier layer In0.15Ga0.85As 10
◦
A

Bottom waveguide layer GaAs 740
◦
A

Bottom waveguide layer Al0.30Ga0.70As 500
◦
A

Sacrificial buffer layer Al0.70Ga0.30As 15000
◦
A

Substrate GaAs N/A

is several microns above the rest of the chip (fig. 5.2(d)), and (vi) HF acid wet chemical etching

of the underlying Al0.7Ga0.3As layer to form the supporting pedestal (fig. 5.2(b)-(c)). The e-beam

lithography and SiNx etch steps are particularly important, as any roughness in the mask layer is

transferred into the AlGaAs region. A resist reflow process originally developed for use with Si

microdisks [65] is employed to create an initial mask pattern that is as circular as possible, and

the subsequent SiNx etch has been calibrated to produce as smooth a sidewall surface as possible

(fig. 5.2(a)), without particular concern for its verticality. The subsequent Ar-Cl2 etch is highly

selective so that the angled mask does not result in erosion of the AlGaAs sidewalls. The fabricated
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Figure 5.2: Scanning electron microscope (SEM) images of DWELL-containing microdisk cavities
after the (a) SiNx etch, and (b)-(c) AlGaAs etch and undercut. (d) Fully processed device, showing
the isolation mesa that is incorporated in order to aid in the taper testing. An optical fiber taper
aligned to the side of a microdisk is also visible in this image.

microdisks studied in this chapter are D ∼4.5 µm in diameter.2 Additional fabrication details are

given in appendix C.

5.4 Cavity Q measurements in the 1400 nm band

Initial passive measurements to measure the cold-cavity Q factor of the microdisk resonant modes

were performed using the optical-fiber-based evanescent coupling technique. As was the case for

measurements of the PC cavities in chapter 4, the optical fiber taper is formed by heating and

adiabatically stretching a standard single mode fiber until it reaches a minimum diameter of ∼ 1

µm. A fiber-coupled scanning tunable laser (< 5 MHz linewidth) operating in the 1400 nm band is

spliced to the taper’s input, and when the taper is brought within a few hundred nanometer (nm) of

the cavity, their evanescent fields interact, and power transfer can result. A schematic illustrating

the coupling geometry for this system is shown in fig. 5.3(a). The devices are tested in the 1400 nm

band because it is significantly red detuned from the QD spectrum (fig. 5.1), so that absorption due

to the DWELL layer will be negligible at these wavelengths.

The Q of a cavity mode is determined by examining the linewidth of the resulting resonance

in the taper’s wavelength dependent transmission spectrum. In fig. 5.3(b), we show a doublet

resonance of a microdisk (D=4.5 µm, 1-DWELL structure) in the 1400 nm wavelength band when

2The AlGaAs sidewalls do show a pronounced angle; this angle does reduce the maximum achievable (radiation-
limited) Q of the cavity modes, but for TE-like modes, this reduction does not prevent the devices from exhibiting
radiation-limited Qs in excess of 108 (for D ∼ 4.5 µm), even in the presence of the slant. As surface roughness is
expected to be a more serious source of loss, the tradeoff between smoothness and verticality is acceptable.
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Figure 5.3: (a) Schematic geometry for probing the microdisk cavities through side-coupling via an
optical fiber taper. (b) Normalized taper transmission (T = Pout/Pin) of a 4.5 µm diameter microdisk
for a taper-disk lateral separation (Δx) of ∼ 800 nm. (c) Normalized taper transmission for the same
device with Δx ∼ 200 nm. The overlying solid green curves are Lorentzian fits to the data.

the taper is ∼ 1 µm to the side of the disk; the separation is kept large in order to reduce taper

loading effects [52, 64]. The double resonance peaks correspond to standing wave modes formed

from mixtures of the degenerate clockwise and counterclockwise whispering gallery modes that

couple and split due to the disk-edge surface roughness [64, 148, 146], as discussed earlier within

the chapter. The linewidth (Δλ) of the shorter wavelength resonance corresponds to Q ∼ 3.6×105.

Similarly, in fig. 5.3(c), we show the spectral response of the doublet when the taper is positioned

much closer (∼ 200 nm) to the edge of the disk, so that the amount of coupling has increased. The

combination of increased coupling as well as parasitic loading due to the presence of the taper has

increased the total loss rate of the resonant mode, yielding a loaded Q ∼ 1.0×105. The depth of

coupling, however, has also considerably increased from 10% to 60%, corresponding to a photon

collection efficiency η0 (the ratio of “good” coupling to all other cavity losses including parasitic

and intrinsic modal loss) of approximately 20% (see appendix E for the exact definition of η0). It

is believed that the high Q values achieved in these measurements are due to a combination of the

resist reflow process that reduces radial variations and subsequent Rayleigh scattering in the disk,

and the optimized dry etching processes that create very smooth disk-edge sidewalls.

The demonstrated Q is high enough that, if used in cQED, the cavity will have a decay rate



178

κ/2π ∼ 0.35 GHz (at λ ∼ 1.2 µm), lower than the aforementioned typical low temperature QD

dipole decay rate of γ⊥/2π ∼ 1 GHz. After adjusting for the reduced wavelength of the QD reso-

nance, the current devices (D=4.5 µm) have a Veff ∼ 6(λ/n)3 for the standing wave resonant modes

studied here.3 For a maximally coupled InAs QD (spontaneous emission lifetime τ∼ 1 ns, oscillator

strength f ∼ 18 [110]), this mode volume corresponds to g/2π ∼ 11 GHz (refer to Appendices D

and H for the formulas used to calculate κ and g). Thus, even for the disk sizes considered here,

an appropriately positioned QD would place the system deep within the strong coupling regime. Of

additional importance is the fiber-based coupling technique used here. This method allows for the Q

to be accurately determined in a way that does not rely upon the (weak) background emission from

the QDs [70, 71, 72]; all that is required is a probe laser that can be slightly detuned from the QD

absorption lines. Furthermore, the taper also acts as a coupler that transfers light from an optical

fiber into the wavelength-scale mode volume of the cavity, where it can interact with the QDs, and as

a subsequent output coupler. Such integration could markedly improve the collection efficiency in

cavity QED experiments, particularly important for microdisk and photonic crystal cavities, which

typically do not have a radiation pattern that can be effectively collected by free-space optics or

a cleaved fiber [71]. Subsequent chapters further discuss the advantages of using the fiber taper

coupler in such experiments.

5.5 Initial measurements of lasing behavior

In addition to the fiber-based passive measurements of the microdisks at λ ∼ 1.4 µm, we performed

some initial room temperature photoluminescence measurements to study the QD emission in the

1.2 µm wavelength band. The cavities (D=5 µm in this case) were optically pumped at room tem-

perature using a pulsed 830 nm semiconductor laser, and the emitted laser light was collected by a

microscope objective and spectrally resolved in an optical spectrum analyzer (OSA). The setup that

was used was essentially identical to that used in chapter 3. Initial measurements were performed

on cavities containing 3 DWELLs due to their higher modal gain, roughly three times that of a

single DWELL layer [144]. Emission is observed for a small number (∼2-5) of modes in a given

microdisk (fig. 5.4(a)). Figure 5.4(b) shows a typical light-in-light-out (L-L) curve for a 3-DWELL

device pumped with a 300 ns period and 10 ns pulse width; the device exhibits lasing action with

an estimated threshold value of ∼22 µW.

3Our estimate of κ assumes that Q ∼ 3.6×105 is achievable at λ ∼ 1200 nm. In chapter 6, we present measurements
that show that such Qs are indeed achievable at the shorter wavelengths.
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Figure 5.4: (a) Photoluminescence spectrum of a 3-DWELL microdisk device (OSA resolution
bandwidth (RBW)= 1 nm). (b)-(d) L-L curves for: (b) pulsed 3-DWELL microdisk laser (inset
shows the subthreshold spectrum of a cavity mode), (c) pulsed 1-DWELL microdisk laser (inset
shows L-L curve near threshold), and (d) 1-DWELL microdisk laser under CW pumping conditions.
The dashed lines are least-square linear fits to the above-threshold data.

The saturated ground state modal gain for single DWELL structures has been estimated to be

∼ 3.6-5.4 cm−1 [144, 150]. Noting that modal gain approximately equals modal loss at threshold,

this indicates that a minimum cavity Q∼ 3-5×104 is required for this single layer of QDs to provide

enough gain compensation to achieve lasing. The fiber-based linewidth measurements described

earlier indicate that such Q factors should be achievable, and indeed, lasing from the QD ground

states is observed in these single dot layer devices (fig. 5.4(c)). The laser threshold pump power

for the 1-DWELL devices was measured to be as small as 16.4 µW, significantly lower than the 750

µW threshold values recently reported for similarly sized microdisk QD lasers [151]. Furthermore,

as shown in fig. 5.4(d), continuous wave (CW), room temperature lasing was also obtained, albeit

with a somewhat higher laser threshold.

The laser threshold values we report here are the peak pump powers incident on the sample

surface; the absorbed power is estimated to be roughly 16% of this value, determined by calculating

the expected reflectivities at the disk interfaces and assuming an absorption coefficient of 104 cm−1

in the GaAs and quantum well layers [152]. The threshold absorbed pump power for the 1-DWELL

lasers is thus ∼ 2.6 µW. From this, the equivalent threshold current density, useful for comparing the

performance of the microdisk lasers to previously demonstrated broad-area stripe lasers, can be esti-

mated. Given the pump spot size (∼ 16 µm2), and assuming an internal quantum efficiency ∼ 1, we

arrive at an equivalent threshold current density of 11 A/cm2 for the 1-DWELL devices. In compar-

ison, the estimated transparency current density in previous work on broad-area 1-DWELL lasers

was 10.1 A/cm2 [144]. The proximity of the demonstrated laser threshold to this transparency value

indicates that non-intrinsic optical losses within the microdisk cavity have largely been eliminated.

In conclusion, AlGaAs microdisks as small as 4.5 µm in diameter and supporting standing wave
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resonant modes with Q factors as high as 3.6×105 in the 1400 nm wavelength band have been

demonstrated. These cavities contain integral InAs quantum dots, and initial room temperature

photoluminescence measurements have yielded laser threshold values as low as 16.4 µW, nearing

the transparency level of the material. In the following chapters, we will extend this work along two

primary fronts: (i) use of the fiber taper within the photoluminescence measurements as a means

to effectively collect (and source) light from the cavities, thereby creating fiber-coupled lasers, and

(ii) consideration of smaller diameter disks, where the additional size reduction is important from

the standpoint of increasing the peak electric field strength within the devices, to push cavity QED

experiments further within the regime of strong coupling.
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Chapter 6

Photoluminescence Measurements of
Quantum-Dot-Containing Microdisks
Using Optical Fiber Tapers

The ability to efficiently couple light into and out of semiconductor microcavities is an impor-

tant aspect of many microphotonic technologies [153], and plays a vital role in chip-based im-

plementations of cavity quantum electrodynamics (cQED) for quantum networking and cryptogra-

phy [60, 9, 154]. While some geometries, such as micropillar cavities, exhibit highly directional

emission that can be effectively collected [16, 109], coupling to wavelength-scale semiconductor

microcavities is in general non-trivial [120, 155, 156, 154], due to a number of factors. These

include the size disparity between the modes of the microcavity and those of standard free-space

and fiber optics, the refractive index difference between semiconductors and glass or air, and the

potentially complicated cavity mode profiles sustained by these devices. In this thesis, we have pre-

sented evanescent coupling through optical fiber tapers as a way to couple efficiently to semicon-

ductor microcavities. As we have already discussed, such fiber tapers have been used as near-ideal

coupling channels for glass-to-glass coupling with silica-based microcavities such as microspheres

[32, 157, 20, 55] and microtoroids [56]. In addition, as described in chapters 4 and 5, our recent

experiments have indicated that they can also serve as efficient couplers to high-refractive index

semiconductor-based devices, such as photonic crystal waveguides [39], photonic crystal cavities

[52, 57] and microdisks [64, 69]. While the work described in the previous chapter primarily uti-

lized fiber tapers for passive measurements such as the characterization of cavity quality factors, in

this chapter, which is largely based on ref. [75], we focus on using the fiber taper as an efficient

coupler for injecting pump light into and extracting the light emitted by semiconductor quantum

dots into microdisk whispering gallery modes. The immediate device application that we study
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here is room-temperature, fiber-coupled microdisk-quantum-dot lasers, but the results described are

directly applicable to future studies of cavity QED phenomena in semiconductor-based systems.

In section 6.1, we qualitatively describe the issues addressed in this chapter, as well as the

experimental setup we use. In section 6.2, we briefly review passive measurements in the 1200

nm wavelength band to determine the optical losses of the optical resonant cavities under study. In

section 6.3, we present experimental results demonstrating the improvements that result when free-

space collection is replaced by fiber-based collection in photoluminescence measurements, while

in section 6.4, we present initial results on microdisk lasers that employ both fiber pumping and

fiber collection. Finally, in section 6.5, we consider some of the applications of this work to future

experiments.

6.1 Preliminary discussion and experimental methods

The free-space collection from a whispering gallery mode (WGM) of a microdisk is a function of

a number of factors, including the position and numerical aperture (NA) of the collection lens, and

the radiation pattern and quality factor (Q) of the resonant mode. Optical losses from the microdisk

include not only the (ideal) radiation due to radial tunneling of light from the disk periphery, but also

scattering losses due to surface roughness imperfections at the disk edge and material absorption.

For high-refractive index (n ∼ 3.5) III-V semiconductor microdisks, surface roughness scattering

is typically the dominant form of radiation from the microcavity. The intrinsic radiation loss of

semiconductor microdisks is almost negligible in all cases, save the smallest of microdisks; the

radiation Q of the lowest radial order WGM of the D ∼ 4.5 µm microdisks studied here is greater

than 1014 at the QD emission wavelength of 1200 nm, and is greater than 106 for D ∼ 2.0 µm

(FEMLAB calculations are shown in chapter 7). As such, any light that is collected through free-

space methods is the result of scattering of the WGM off imperfections in the microdisk [155],

a relatively inefficient and non-directional process. Bulk material absorption and absorption due

to surface states may also play a role, particularly when considering devices in which the Q due

to surface scattering can be in excess of 105. This results in a situation where the more perfect

the microdisk is made (through reduction in surface roughness), and the further the Q factor is

improved, the more difficult it becomes to collect light from the resonant modes. Although there

may be some potential in modifying the disk geometry [155, 154] to improve this situation (for

example, by etching a shallow second-order grating in the microdisk surface), the ability to do this
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while maintaining high Q factors could be of potential difficulty. The most successful method to date

for increasing collection efficiency from semiconductor microdisk resonators seems to be placement

of the collection optics in the plane of the disk [13, 14], resulting in more effective capture of the

predominantly low-angle scattered light.

The fiber taper offers an attractive alternative because it provides a means to directly couple

light out of the WGMs, without relying upon the weak intrinsic radiation of the microdisk or the

non-directionality of surface roughness scattering. This evanescent near field coupling, which is

a function of the integrated modal overlap of the microdisk and taper modes over the interaction

region [50, 137], has been demonstrated to be appreciable in previous works with small diameter

semiconductor microdisks [64, 69] where phase matching between the glass fiber taper waveguide

and the semiconductor microdisk is not as limiting. While the fiber taper does load the cavity mode,

and thus degrade its Q, the key point is that the added loss is primarily good loss in the sense that it

can be efficiently collected into the taper mode of interest [55, 57]. This allows for the loaded Q to be

maintained at a high value while simultaneously obtaining high collection efficiency [64, 69]. The

situation is analogous to the case of a Fabry-Perot cavity where one mirror is intentionally made

to have a slightly lower reflectivity for output coupling, which limits the Q of the cavity, but not

beyond some acceptable level. While in that case, the cavity Q is fixed by the mirror reflectivities,

here we have some flexibility over the Q and the amount of loading by adjusting the cavity-taper

separation.

To compare free-space and fiber-taper-based collection, we use the experimental setup depicted

in fig. 6.1, which consists of a fiber taper probing station that has been incorporated into a standard

photoluminescence (PL) measurement setup. Passive measurements of the resonator modes are

performed by connecting the input of the fiber taper to a 1200 nm band scanning tunable laser,

with the polarization of the laser output at the taper-microdisk interaction region controlled using a

paddle wheel polarization controller. The entire taper probing setup (motorized stages, microcavity

chip, and fiber taper waveguide) is mounted onto a larger manually actuated X-Y-Z stage that is

positioned underneath an ultra-long working distance objective lens (NA = 0.4). This microscope

objective is part of a PL setup that provides normal incidence pumping and free-space collection

from the samples. The pump laser in the majority of the measurements is a 830 nm laser diode that is

operated in quasi-continuous-wave operation (280 ns pulse width, 300 ns period). The pump beam

is shaped into a Gaussian-like profile by sending the laser beam through a section of single mode

optical fiber, and is then focused onto the sample with a spot size that is slightly larger than the size
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Figure 6.1: (a) Experimental setup for studying the QD-microdisk devices, where the pump laser
and photoluminescence beams are shown as light gray and black arrows, respectively. The inset
shows a fiber taper aligned to a microdisk that is being optically pumped from the top. Acronyms
used in the diagram: polarization controller (PC), numerical aperture (NA), non-polarizing beam-
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(SMF), multi-mode fiber (MMF), optical spectrum analyzer (OSA). (b) Schematic of the fiber taper
probing geometry. (c) Schematic of the taper-to-microdisk interaction region, showing the resonant
fiber taper coupling to WGMs of the microdisk.

of the microdisk (area ∼ 18 µm2). The free-space pump laser power is monitored by using a 830

nm wavelength 50/50 non-polarizing beamsplitter (NPBS) with a calibrated photodetector (PD) on

one of the ports. The QD free-space photoluminescence in the 1200 nm band is collected at normal

incidence from the sample surface using the same objective lens for pump focusing, is transmitted

through the 830 nm NPBS and a long-pass pump rejection filter (LPF), and is finally collected into

a multi-mode fiber (MMF) using an objective lens with NA = 0.14. The luminescence collected by

this MMF is wavelength resolved by a Hewlett Packard 70452B optical spectrum analyzer. For fiber

taper measurements, the fiber taper is strung across the sample and positioned in the near field of the

microdisk from above, allowing simultaneous (normal incidence) free-space and fiber taper optical

pumping and photoluminescence collection. The output of the fiber taper can either be connected to
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an InGaAs photodetector (PD) for wavelength scans using the tunable laser source, or to the OSA

for analysis of the photoluminescence from the microdisk. Alignment of the pump beam and the

fiber taper to the microdisk is performed by imaging through the pump and collection objective lens,

as shown in the inset (a mirror flips in-and-out of the free-space photoluminescence beam path to

direct the image to a 12X zoom imaging system). All of the measurements presented here were

performed with the sample maintained in a room temperature environment, with no active cooling

or temperature control.

This integrated setup allows for a number of different measurements to be made. Passive mea-

surements of the microdisk resonant modes are performed by sending a tunable laser into the taper’s

input and monitoring the wavelength-dependent transmission at the taper’s output. Photolumines-

cence measurements can be done in any of four potential configurations (i) free space pumping, free

space collection: here, the fiber taper plays no role, and the vertically emitted power from the disks

is collected into a multimode optical fiber that is then fed into the optical spectrum analyzer (OSA);

(ii) free space pumping, fiber taper collection: here, the output of the fiber taper is connected to the

OSA; (iii) fiber taper pumping, free space collection: here, the input of the fiber taper is connected

to a fiber-coupled pump laser; (iv) fiber taper pumping, fiber taper collection: here, the free-space

optics used in the standard PL measurements play no role.

6.2 Measurement of cavity Q in the 1200 nm wavelength band

The devices studied in this work have been previously characterized in the 1400 nm band, and Qs as

high as 3.6×105 have been measured (chapter 5). Those measurements were done at wavelengths

significantly red detuned from the QD emission band, where QD absorption and material absorption

in the GaAs/AlGaAs waveguide layers are expected to be quite small. To confirm that the cavity

Qs are still high near the ground state QD emission wavelength (peaked near 1190 nm as shown in

fig. 6.2(a)), we perform passive fiber-taper-based measurements [52, 64, 69] in the 1200 nm band.1

The high-Q resonances within the transmission spectrum (fig. 6.2(b)), under closer inspection, are

seen to be doublets (inset to fig. 6.2(b)), as was the case for the measurements in the 1400 nm band

shown in chapter 7.

FEMLAB solutions of the WGM resonances of the microdisks studied in this chapter show

1The WGMs in the 1400 nm wavelength band are expected to have very similar radiation and scattering losses as
those in the 1200 nm band for the microdisk geometries studied here. Differences in Q at these two wavelengths are thus
expected to be indicative of wavelength-dependent material absorption losses.
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that the free spectral range (FSR) is ∼ 40 nm for TE-polarized modes of low radial mode number

(q = 1,2,3,4) in the 1200 nm wavelength band. Higher radial order WGMs (q ≥ 5) are expected

to show up only very weakly in the fiber taper transmission owing to their relatively small radiation

limited Q factors (� 104) and significantly larger overlap with the support pedestal. From the broad

spectral wavelength scan shown in fig. 6.2(b), a pair of deeply coupled resonant modes separated by

a full FSR are observed (λ ∼ 1222 and 1263 nm), as well as several other deeply coupled resonant

modes. Due to the extended nature of the higher order radial modes and their better phase matching

to a low-index glass waveguide such as the fiber taper, the coupling to the lowest order q = 1 WGM

is typically lower than that of the q = 2 mode for similar sized microdisks [137]. We believe that

these doublet modes at λ ∼ 1222 nm and λ ∼ 1263 nm are first order (q = 1) radial modes, while

the mode at λ ∼ 1242 nm is probably a q = 2 radial mode. The broader and more weakly coupled

intermediate modes are most likely higher order radial modes, q = 3,4 (higher order slab modes

in the vertical direction of microdisk are also a possibility, though less likely due to their reduced

radiation Q). Examining the linewidth of the doublet resonances when the taper is relatively far

away from the microdisk gives an estimate for the cold-cavity, unloaded Q of the modes. Qs as high

as 2.2×105 at ∼1260 nm and as high as 1.9×105 at ∼1220 nm are measured in these microdisks

(insets of fig. 6.2(b)), the latter of which is only 30 nm red detuned from the peak of the QD emission

spectrum (fig. 6.2(a)). These Q factors are quite high for a wavelength-scale AlGaAs microcavity

[13, 14, 71, 84, 158], and correspond to a cavity decay rate of κ/2π ∼ 0.6 GHz for resonant modes

with an effective mode volume of only Veff ∼ 7(λ/n)3. Nevertheless, some degradation in the quality

factors from those previously measured in the 1400 nm band is observed. These are believed to be

at least in part due to absorption in the QD layers, as evidenced by the emission in the PL spectrum

at these wavelengths (fig. 6.2(a)).

Additional measurements in the 980 and 850 nm wavelength bands on similar microdisk res-

onators formed in AlGaAs (without a QD layer) have indicated a trend of optical loss which signif-

icantly increases below a wavelength of 1 µm. This trend in optical loss is similar to that reported

in ref. [66], where material absorption that extended 350 meV within the bandgap was attributed to

incorporation of oxygen impurities into the AlGaAs lattice. We are currently investigating this more

carefully, in a project headed by Chris Michael in collaboration with the group of Evelyn Hu at UC

Santa Barbara. This wavelength-dependent loss was one of the main reasons we wanted to test the

devices in the 1200 nm band as well as the 1400 nm band; fortunately, as we have seen above, the

achievable Qs at 1200 nm are still quite high.
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6.3 Improved collection efficiency with fiber tapers

We now turn to the heart of the current work, which is a study of the gains in efficiency that can be

achieved by using optical fiber tapers as a collection tool in PL measurements. This is initially done

by comparing the amount of power obtained in free-space and fiber taper collection configurations,

while maintaining identical free-space pumping conditions (in terms of pump-beam intensity and

pump beam position). The free-space collection for a microdisk that has been pumped at normal

incidence with ∼ 580 W/cm2 at 830 nm is shown in fig. 6.3(a). This pump intensity is near the laser

threshold for this device (see below), and we see that the peak height at λ ∼ 1193.5 nm is ∼ 30 pW.

For comparison to the fiber taper collection described below, an estimate of the optical losses in the

free-space collection setup were made (after removal of the pump rejection filter). By measuring the

collected pump laser power reflected off of the mirror-quality surface of the AlGaAs epitaxy, and

assuming a 30% reflection coefficient from the AlGaAs surface, 43% of the reflected pump beam

was collected into the OSA. Additional limitations in the normal incidence free-space collection

stem from the finite numerical aperture of the collecting lens (NA=0.4) which covers only 4% of
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Figure 6.3: (a) Emission spectrum
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the full 4π steradians.

Next, we consider the use of the optical fiber taper as a collection optic in the PL measurements.

To obtain an estimate of the amount of coupling between the taper and the microdisk, the free-space

pump beam is blocked, and passive measurements at wavelengths that are slightly red detuned from

the QD emission are performed as described above in section 6.2. Since the FSR for the low radial

number WGMs of the microdisks studied here is ∼ 41 nm in the 1200 nm wavelength band, the

modes coupled to and studied passively are typically a single FSR red detuned from the lasing

mode. For most experiments, the taper is placed in direct contact with the top edge or side of the

microdisk, which increases the amount of coupling from that shown in fig. 6.2(b) to transmission

depths between 30% and 60%. For this initial measurement, a resonance depth of ∼38% is obtained

for a cavity mode at λ ∼ 1238.1nm, which gives us a qualitative estimate for the coupling to WGMs

overlapping the peak of the gain spectrum.2 This coupling depth corresponds to a taper collection

efficiency η0 ∼ 11%, where η0 is defined (ref. [57] and appendix E) as the fraction of the optical

power from the cavity resonant mode that is coupled into the fundamental fiber taper mode in

the forward propagating transmission direction. Other loss channels from the microdisk include

intrinsic loss of the cavity in absence of the taper, parasitic coupling into higher-order, non-collected

modes of the fiber taper, and for the standing wave modes studied here, coupling into the backwards

2The coupling between the taper and microdisk can be different for different cavity modes, so this technique is used
primarily as a qualitative guide.
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propagating fundamental taper mode. For the moderate coupling depths measured here, the taper

coupling efficiency into the forward and backward propagation directions is approximately equal,

thus yielding an overall taper coupling efficiency of η′
0 ∼ 22% for this WGM.

Once this level of coupling has been achieved, the tunable laser output is blocked, the free-space

pump beam is unblocked, and the output of the fiber taper is disconnected from the photodetector

and connected to the OSA to measure the emitted power from the microdisk. fig. 6.3(c) shows the

resulting spectrum collected by the fiber taper in the forward propagating transmission direction.

We see that at the wavelength λ ∼ 1193.5 nm, the peak height is ∼ 725 pW, which is nearly a factor

of 25 times improvement over the peak height observed in normal incidence free-space collection.

In addition, a significant amount of power is present within modes that were not detectable in the

free-space case (the noise floor of the OSA was approximately 1 pW), due to the poor efficiency of

collection in this configuration.

This straightforward comparison of the collected powers for a single pump power is not neces-

sarily the most appropriate comparison, however. The reason for this is that the fiber taper loads the

cavity, thus decreasing the Q of the resonant modes and increasing the threshold pump power, so

that for a given pump power the laser is not equally above threshold in the two measurements. An-

other, more appropriate comparison is the differential collection efficiency above threshold, which

we label ξ. This is determined by measuring a light-in-light-out (L-L) curve for the microdisk and

taking the slope of this curve above threshold. In these curves, the light out is taken to be the total

power within the laser line, while the light in is taken to be the estimated absorbed pump power.

The absorbed pump power is determined by multiplying the pump beam intensity by the area of

the microdisk to get an incident pump power (the beam overlaps the entirety of the disk), and then

multiplying this value by the absorption of the microdisk at 830 nm. We estimate this absorption

to be ∼ 10%, assuming an absorption coefficient of 104 cm−1 in the GaAs, quantum well, and QD

layers [152], and a reflection coefficient of 30% at the GaAs-air interfaces at the top and bottom of

the disk. The resulting L-L curves are shown in fig. 6.3(b),(d) for both free-space and fiber-taper

collection. We see that the threshold pump power has indeed increased in the case of fiber-taper

collection, but that the differential efficiency has also significantly improved and is more than 70

times that of the free-space value.

To study the tradeoffs between ξ and threshold more closely, in fig. 6.4(a) several L-L curves

are plotted, each for a different taper position with respect to the microdisk (note that the microdisk

studied here is not the same as the one studied above, but the qualitative behavior is identical). The
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Figure 6.4: (a) L-L curves for free-space pumping and fiber taper collection at different taper posi-
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efficiency (ξ). (b) Scatter plot of the differential efficiency for fiber taper (filled circles) and free-
space collection (open circles) for a number of different microdisk lasers. For these measurements
the fiber taper collected power included that from the forward propagating transmission channel
only.

different taper positions correspond to a varying level of coupling between the microdisk and taper,

which we again qualitatively estimate through measurements of the coupling to a microdisk WGM

that is red detuned from the QD emission in the 1200 nm band. From fig. 6.4(a), we see that in

general, both the threshold power and ξ increase with increasing η0. As might be expected, in the

course of these measurements it was possible in some cases to load the microdisk strongly enough

to degrade the initial laser mode’s Q to the point that it no longer lases, and a different mode (with

a higher loaded Q) begins to lase.

A number of different microdisk devices have been studied, and the results described above are

fairly consistent from device to device, with ξ routinely 1-2 orders of magnitude larger when fiber

taper collection is employed. A scatter plot for some of this data is shown in fig. 6.4(b). Despite the

significant improvement obtained using the fiber taper, we see that the largest ξ measured is roughly

10 nW/µW, which means that only 1% of the pump photons are converted to a collected signal

photon, and we should thus consider why ξ is far below unity. We first note that when considering

collection into both directions of the fiber taper, ξ is actually 2% for the standing wave WGMs of

the microdisks studied here. A measure of the fiber taper collection efficiency of the microdisk

WGM laser light, η0, from the passive wavelength scans described above indicate that the external
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Figure 6.5: (a) L-L curves for non-lasing modes of the disk studied in fig. 6.3. (b) Total power
in the non-lasing modes (shown by open circles), showing saturation for pump values close to the
threshold value for the lasing mode (shown by asterisks). Note that the y-axis scale for the lasing
mode is 15 times larger than that for the non-lasing modes.

fiber taper collection efficiency should be as high as ∼ 22% (corresponding to 11% for the forward

transmission direction only). The total loss through the fiber taper and all of the fusion-splices and

connections in the fiber path was measured to be ∼ 1.6dB, so that, if symmetric loss in the taper

about the microdisk coupling region is assumed, ∼ 17% of the WGM laser photons collected by the

taper are lost before they reach the OSA. Taken together, these two factors put an estimate of the

upper bound on the fiber-coupled external laser efficiency of 18% for collection into both directions

of the fiber.

The roughly order of magnitude difference between the measured (2%) and expected (18%)

differential laser efficiency may be a result of several factors involving the complex dynamics within

the DWELL active region. Previous measurements of DWELL injection lasers in stripe geometries

[144] indicate that the internal quantum efficiency of the quantum dots is ηQD
i ∼ 0.5 (this is roughly

the percentage of carriers captured by the QDs in the DWELL structure that contribute to stimulated

emission above threshold). This factor can certainly change from growth to growth, and given that

the laser threshold values are roughly 2-2.5 times higher than that measured in previous work on

identically fabricated devices from a different wafer growth [69], we might qualitatively expect ξ to

be reduced by a factor of ∼ 4−5 due to ηQD
i .

Both the spectral and spatial distribution of carriers within the microdisk may also lead to reduc-

tions in the laser differential efficiency through incomplete clamping of the spontaneous emission

into the non-lasing modes of the microdisk above threshold. To examine such effects in our struc-



192

tures, we measure L-L curves (fig. 6.5(a)) for a number of the most prominent non-lasing WGMs of

the microdisk studied in fig. 6.3. We see that the emission into these modes is largely clamped above

the threshold for the lasing mode (estimated to be 10.7µW of absorbed pump power). The aggregate

effect is clearly seen in fig. 6.5(b), where the power into the non-lasing WGMs has been summed

and plotted along with the L-L curve for the lasing mode. Such clamping has been reported by other

authors for similarly sized microdisks [159], while smaller microcavity devices with a larger laser

mode spontaneous emission rate, have exhibited a gradual rollover and/or incomplete clamping of

spontaneous emission [120, 159, 160, 43]. Measurement of the background spontaneous emission

into non-WGM, radiation modes of the microdisk was performed using free-space collection (the

fiber taper is much more sensitive to WGM emission than to emission from the center of the mi-

crodisk into radiation modes), and did show incomplete clamping of the spontaneous emission.

This sort of spatial hole burning has been predicted in numerical modeling of microdisk cavities

[161]. If this is the case, the effective pump area is limited to a region about the WGM. Assuming

that the WGM radial width is approximately (λ/neff), where neff is the effective refractive index in

the plane of the microdisk,3 this corresponds to a 7µm2 area in the devices under test here. Since

the total disk area is ∼ 16µm2, then only 7/16 of the pump photons would be effectively pumping

the WGM. Including this factor brings the expected value of ξ within the range of experimentally

measured values.

Aside from reducing taper loss (loss < 0.5dB can be easily achieved in our lab), η0 is the main

parameter that can be improved upon to increase ξ. This can be done by adjusting the geometry of

the disk (using thinner disks, for example) to bring the index of the WGMs of the semiconductor

microdisks closer to that of the silica fiber taper, so that more efficient coupling can be obtained.

A study of such modifications in Si microdisk structures has been undertaken, and the regimes of

critical coupling and overcoupling have been achieved [137]. In addition, if spatial hole burning is

significant, another factor that could potentially be improved is the method of pumping. In particu-

lar, the pumping beam could be shaped to preferentially pump the perimeter of the microdisk (i.e.,

an annular-shaped beam could be used). Alternately, as discussed below, a fiber taper could be used

to pump the microdisk.

3Finite-element simulations have shown this to be an accurate estimate.
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6.4 Fiber-pumped microdisk lasers

In addition to improving the collection efficiency, optical fiber tapers have the potential for improv-

ing the pump efficiency of these QD-containing microdisks; such an effect has in fact been demon-

strated in previous work on doped glass microcavities [162, 73, 74]. In particular, if the pump laser

is resonant with a WGM of the microdisk, light can be absorbed with high efficiency, and in the case

of critical coupling, complete power transfer can be achieved. This should be contrasted with the

case of free-space pumping, where only a small percent (10% for the devices we have considered

here) of the incident pump light is absorbed by the device, and some of this absorption is in a region

(the center of the microdisk) that does not contribute to useful gain for the resonant WGMs [161].

For an initial demonstration, we use a tunable laser operating in the 980 nm band as a pump

source. The 830 nm pump laser is not used because the absorption within the microdisk at this

wavelength is too large to allow uniform pumping of the microdisk perimeter, as the pump light

is absorbed before a single round trip around the cavity can be made. At 980 nm, the material

absorption is still relatively high (the quantum well layer will be highly absorbing), so that the

Q980 of WGM modes near the pump wavelength are not expected to exceed a few hundred. The

pump laser is connected to the fiber taper input, and the fiber taper output is connected to the OSA.

The taper is contacted to the side of the microdisk, and the pump wavelength and polarization

are manually adjusted until the collected power in the OSA is maximized (this is necessary in

order to resonantly couple to a mode within the pump wavelength band). A typical L-L curve

and subthreshold spectrum are shown in fig. 6.6. We see that a significant amount of power is

collected into the fiber taper, and that in particular, the subthreshold spectrum shows a number of

well-resolved modes with a good signal-to-noise ratio. The estimated absorbed pump power in the

microdisk displayed in fig. 6.6(a) corresponds to 66% of the input power in the fiber taper, and

is found by taking the difference in the 980 nm band taper transmission between when the taper

is displaced tens of microns above the microdisk (no coupling) and when it is in contact with the

microdisk (strongly coupled). We note that the pump threshold value in this pumping geometry is

only about a factor of two less than the incident pump power in the 830 nm free-space pumping, and

is significantly larger than what might be expected (ideally, the pump power here should be less than

the absorbed pump power in the 830 nm pumping). This is most likely a result of the relatively crude

method we have employed to estimate the power absorbed in the microdisk; a much more accurate

method for determining the coupled pump power uses the wavelength-dependent transmission of the
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Figure 6.6: (a) L-L curve for a QD-microdisk device where the fiber taper is used for both pumping
(at λ = 967.6 nm) and collection. The absorbed power was estimated to be 66% of the input power
in the fiber taper. (b) Sub-threshold spectrum for this device taken at an estimated absorbed power
of 37 µW (highlighted point in (a)).

fiber taper to map out the resonance line due to the WGM at the pump wavelength. Here, the strong

absorption of the microdisk in the 980 nm band makes it difficult to separate resonantly coupled

power from scattering losses at the taper-microdisk junction. In order to more carefully study the

efficiency of this fiber-pumping and fiber-collecting configuration, experiments in which an excited

state of the quantum dots is resonantly pumped through the fiber taper are currently underway.

6.5 Discussion and future applications

As mentioned in the introduction, efficient optical access to wavelength-scale microcavities is of

great importance to quantum optics and information processing applications currently being inves-

tigated within cavity QED systems. In almost any application involving the coherent transfer or

manipulation of quantum information, loss is a significant detriment. As described in ref. [68], cur-

rent implementations of linear optics quantum computing require a near-unity collection efficiency

of emitted photons from a single photon source. The same is true for applications involving quan-

tum repeaters in a quantum network [141]. A solution that is often proposed is to embed the single

photon emitter within a microcavity with a high spontaneous emission coupling factor β, so that the

majority of emitted photons are coupled into the microcavity mode. However, it is important to note

that even for a β = 1 microcavity, it is still necessary to have a method to effectively collect all of

the photons that are radiated by that one cavity mode [163]. Also, from a very practical perspec-
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tive, efficient collection of emitted light from a microcavity is of premium importance for optical

telecommunication wavelengths > 1µm, where the dark count rates from single photon counters are

often 2-3 orders of magnitude larger than the Si single photon counters used at shorter wavelengths

[164].

An efficient coupling channel can also enable a number of different types of experiments. Hav-

ing access to this coupling channel makes the cavity transmission (and reflection) an experimentally

accessible parameter whose behavior can be monitored to detect signatures of specific types of sys-

tem behavior. In recent experimental measurements of coupling between a single quantum dot and

a resonant mode of a semiconductor microcavity [71, 158, 70, 16, 109], spontaneous emission from

the coupled system is the only parameter measured. Alternatively, using fiber tapers, vacuum Rabi

splitting can be detected by simply measuring the transmission through the cavity as a function of

the input wavelength to the cavity; such an experiment is directly analogous to the experiments

done with cooled alkali atoms coupled to a Fabry-Perot cavity [77, 78]. Non-linear effects, such as

optical bistability and photon blockade, and coherent control of the quantum system are also more

easily observed through the optical transmission or reflection channel of a microcavity. Perhaps

most importantly, by knowing the precise level of coupling between the fiber taper and the micro-

cavity, the number of photons injected into the cavity can be precisely calibrated. This is obviously

of paramount importance in experiments that involve few or single cavity photons. Finally, we note

that although many of the advantages we have described are also applicable to in-plane waveguides

that are microfabricated next to the cavities, the fiber taper provides a level of flexibility that, for

example, allows for rapid device characterization, as described in detail in ref. [54].
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Chapter 7

Cavity Q, Mode Volume, and Lasing
Threshold in Small Diameter Microdisks
with Embedded Quantum Dots

In this chapter, we continue our study of taper-coupled microdisk-QD structures by considering

device performance as the disks are scaled down in size. In section 7.1, we use finite element

simulations to examine the behavior of Q and Veff as a function of disk diameter. We relate these

parameters to those used in cQED, and from this, determine that disks of 1.5-2 µm in diameter are

optimal for use in future experiments with InAs QDs. In sections 7.2 and 7.3, we present experi-

mental measurements of fabricated devices. Through passive characterization (section 7.2), cavity

Qs as high as 1.2×105 are demonstrated for devices with a predicted Veff ∼ 2.2(λ/n)3. In addition,

photoluminescence measurements (section 7.3) show that the devices operate as lasers with room

temperature (RT), continuous-wave thresholds of ∼1 µW of absorbed pump power. Finally, the op-

tical fiber taper is used to increase the efficiency of out-coupling by nearly two orders of magnitude,

so that an overall fiber-coupled laser differential efficiency of ξ ∼ 16% is achieved. We conclude

by presenting some estimates of the number of QDs contributing to lasing and the spontaneous

emission coupling factor (β) of the devices. The majority of this chapter is based on ref. [76].

7.1 Simulations

As described in chapter 5, finite-element eigenfrequency simulations [136, 128] using the Comsol

FEMLAB software are used to study the radiation-limited quality factor (Qrad) and mode volume

(Veff) of the microdisk cavities. Here, we consider how these parameters scale as a function of the

disk size.
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Figure 7.1: (a) Scanning electron microscope (SEM) image of a fabricated microdisk device. The
disk thickness t=255 nm and sidewall angle θ = 26◦ from vertical are taken as fixed in the finite-
element simulations presented in the work. The measured average diameter for this device (i.e., the
diameter at the center of the slab) is ∼ 2.12 µm. (b) Finite-element-calculated |E|2 distribution for
the TEp=1,m=11 WGM of a microdisk with a diameter of ∼ 2.12 µm at the center of the slab. For
this mode, λ ∼ 1265.41 nm, Qrad ∼ 107, and Veff ∼ 2.8(λ/n)3.

Figure 7.1(a) shows a scanning electron microscope (SEM) image of a fabricated microdisk.

The devices are formed using the same fabrication techniques discussed in chapter 5, where the em-

phasis of sidewall smoothness over verticality during fabrication leads to an etched sidewall angle

that is approximately 26◦ from vertical. These parameters are included in the simulations as shown

fig. 7.1(b). Here, we will focus on resonant modes in the 1200 nm wavelength band, correspond-

ing to the low temperature (T=4 K) ground state exciton transition of the QDs, relevant for future

cavity QED experiments. We confine our attention to the more localized transverse electric (TE)

polarized modes of the microdisk, and only consider the first order radial modes. In what follows

we use the notation TEp,m to label whispering gallery modes (WGMs) with electric field polariza-

tion dominantly in the plane of the microdisk, radial order p, and azimuthal mode number m. The

refractive index of the microdisk waveguide is taken as n = 3.36 in the simulations, corresponding

to the average of the refractive indices of the GaAs and AlGaAs layers at λ = 1200 nm. In addition,

the modes that we study are standing wave modes that are superpositions of the standard clockwise

(CW) and counterclockwise (CCW) traveling wave modes typically studied in microdisks. As pre-

viously mentioned, the effective mode volume for a standing wave mode, as defined in Equation

5.9, is roughly half that of a traveling wave mode.

Figures 7.1(b) and 7.2 show the results of the finite element simulations. We see that Veff for

these standing wave modes can be as small as 2(λ/n)3 while maintaining Qrad > 105. Indeed, for
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Figure 7.2: Finite-element method simulation results: (a) Modal volume Veff (left) and radiation-
limited cavity quality factor Qrad (right) as a function of microdisk diameter (taken at the center of
the slab), calculated for standing wave modes of disks of the shape shown in fig. 7.1. The modes
studied are TEp=1,m WGMs with resonance wavelength within the 1200 nm band. (b) Coherent
coupling rate g/2π (left) and cavity decay rate κ/2π (right) as a function of microdisk diameter. A
QD spontaneous emission lifetime τsp = 1 ns is assumed in the calculation of g.

microdisk average diameters D > 2 µm,1 radiation losses are not expected to be the dominant loss

mechanism as Qrad quickly exceeds 107, and other sources of field decay such as material absorption

or surface scattering are likely to dominate. To translate these results into the standard parameters

studied in cavity QED, we calculate the cavity decay rate κ/2π = ω/(4πQ) (assuming Q = Qrad) and

the coherent coupling rate g between the cavity mode and a single QD exciton. In this calculation,

a spontaneous emission lifetime τsp = 1 ns is assumed for the QD exciton, and g = d ·E/� is the

vacuum coherent coupling rate (see appendix H) between cavity mode and QD exciton, given by

[9, 110]:

1The average diameter is taken at the center of the slab, or equivalently, is the average of the top and bottom diameters.
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g =
1

2τsp

√
3cλ2

0τsp

2πn3Veff
, (7.1)

where c is the speed of light and n is the refractive index at the location of the QD. This formula

assumes that the QD is optimally positioned within the cavity field, so that the calculated g is the

maximum possible coupling rate. The resulting values for g and κ are displayed in fig. 7.2(b),

and show that g/2π can exceed κ/2π by over an order of magnitude for a range of disk diameters.

In addition, for all but the smallest-sized microdisks, κ/2π < 1 GHz. A decay rate of 1 GHz is

chosen as a benchmark value as it corresponds to a linewidth of a few µeV at these wavelengths,

on par with the narrowest self-assembled InAs QD exciton linewidths that have been measured at

cryogenic temperatures [142]. Indeed, because dissipation in a strongly coupled QD-photon system

can either be due to cavity decay or quantum dot dephasing, in fig. 7.3 we examine the ratio of g to

the maximum decay rate in the system assuming a fixed QD dephasing rate γ⊥/2π=1 GHz.2 This

ratio is roughly representative of the number of coherent exchanges of energy (Rabi oscillations)

that can take place between QD and photon. We see that it peaks at a value of about 18 for a disk

diameter D ∼ 1.5 µm. For diameters smaller than this, loss is dominated by cavity decay due to

radiation (so that g/max(γ⊥,κ) = g/κ), while for larger diameters, the dominant loss mechanism is

due to dephasing of the QD (g/max(γ⊥,κ) = g/γ⊥).

2Note that γ⊥ is in general greater than half the total radiative decay rate (γ||/2 = 1/2τsp) for QD excitons, due to
near-elastic scattering or dephasing events with, for example, acoustic phonons of the lattice.
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Figure 7.4: Finite-element-calculated |E|2 distribution for the TEp=1,m=11 WGM in (a) microdisk
with a vertical sidewall and (b) microdisk with a slanted sidewall equivalent to what has been seen
in experimentally fabricated devices.

For other types of atomic-like media besides the self-assembled InAs QDs considered here one

need not assume a limit of γ⊥/2π = 1 GHz, and we note that due to the exponential dependence

of Qrad and approximately linear dependence of Veff on microdisk diameter, Qrad/Veff rapidly rises

above 107 for microdisks of diameter D = 2.5 µm. These values of Qrad and Veff are comparable

to those found in recent high-Q photonic crystal microcavity designs [21, 26, 28, 30, 27]. In fact a

similar scaling for high-Q planar photonic crystal microcavities, in which one may trade off a linear

increase in Veff for an exponential increase in Q, has recently been described by Englund et al., in

ref. [29]. For our purposes here, however, we take the ratio g/max(γ⊥,κ) with γ⊥/2π = 1 GHz as

our metric, and as such focus on 1.5-2 µm diameter microdisks.

Finally, we consider what effect the sidewall angle in our structures has on Qrad. To do this,

we compare Qrad for the slanted structure with that for a disk with a vertical sidewall and diameter

equal to the average diameter of the slanted disk. Figure 7.4 compares the electric field intensity

for the TE1,11 modes in each of these structures. We find the following: for the TE1,11 modes, the

vertical disk has λ0 ∼ 1262 nm, Qrad ∼ 1.4×107, and Veff ∼ 2.75(λ/n)3, while the slanted disk has

λ0 ∼ 1265 nm, Qrad ∼ 9.8×106, and Veff ∼ 2.80(λ/n)3. For the TE1,9 modes, the vertical disk has

λ0 ∼ 1435 nm, Qrad ∼ 4.8×105, and Veff ∼ 2.14(λ/n)3, while the slanted disk has λ0 ∼ 1438 nm,

Qrad ∼ 3.7×105, and Veff ∼ 2.20(λ/n)3. Although Qrad is indeed smaller for the slanted disks, the

reduction is likely modest in comparison to the losses that would be suffered if a more vertical

dry etch was employed, due to the accompanying increase in surface roughness in such an etch

(appendix C).
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Table 7.1: Finite-element calculated TEp=1,m modes of a D = 2 µm microdisk.

Mode label λ0 Qrad Veff application

TE1,9 1438 nm 3.7×105 2.2 (λ/n)3 passive RT testing

TE1,10 1346 nm 1.9×106 2.5 (λ/n)3 RT lasers

TE1,11 1265 nm 9.8×106 2.8 (λ/n)3 low-T cQED

7.2 Passive measurement of cavity Q

Similar to the devices studied in previous chapters, the samples used here were grown (by our

collaborators at the University of New Mexico) through molecular beam epitaxy, and consist of a

single layer of InAs QDs embedded in an In0.15Ga0.85As quantum well, which is in turn sandwiched

between layers of Al0.30Ga0.70As and GaAs to form a 255 nm thick waveguide layer. This dot-in-a-

well (DWELL) structure is grown on top of a 1.5 µm thick Al0.70Ga0.30As buffer layer that is later

undercut to form the disk pedestal. Growth parameters were adjusted [165] to put the material’s RT

ground state emission peak at λ = 1317 nm (fig. 7.5(a)). The basic reason for choosing a material

with a red-shifted emission relative to what was used in previous investigations is to ensure that the

low temperature (∼10 K) emission of the QDs lies within the scan range of our 1200 nm tunable

laser. This is essential for future cavity QED experiments employing near-resonant pumping of the

QDs. Fabrication of the microdisk cavities follows the same process as was described in chapter 5.

We begin our measurements by using the fiber taper to passively probe the Q of the microdisks.

Based on the simulations presented in section 7.1, we have focused on 2 µm diameter microdisks.

Due to the small diameter of these microdisks, the finite-element-calculated free-spectral range of

resonant modes is relatively large, with resonances occurring at 1265, 1346, and 1438 nm for the

TEp=1 WGMs with azimuthal mode numbers m = 11, 10, and 9, respectively. The simulations

presented in section 7.1 were all done for the TE1,11 mode in the λ = 1200 nm band due to the ap-

plicability of that wavelength region for future low temperature cavity QED experiments. However,

for the current room-temperature measurements, the absorption due to the QD layer at those wave-

lengths is significant, so we probe the devices within the λ = 1400 nm band (∼100 nm red detuned

from the peak ground state manifold QD emission). At these longer wavelengths the radiation-

limited Qrad for a given disk diameter will be smaller than its value in the shorter λ = 1200 nm

band. Table 7.1 summarizes the properties of the TEp=1 WGMs within the 1200-1400 wavelength
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Figure 7.5: (a) Photoluminescence
from an unprocessed region of the
1DWELL material whose growth
has been tailored for 1.3 µm room-
temperature emission. (b) Normal-
ized transmission spectrum when a
fiber taper is positioned a few hun-
dred nm away from the edge of a
∼2 µm diameter microdisk fabri-
cated from this material.

band for a D = 2 µm microdisk with shape as shown in fig. 7.1.

Figure 7.5(b) shows a wavelength scan of the transmitted signal when a fiber taper is positioned

a few hundred nanometers away from the disk edge. The doublet resonance appearing at λ ∼
1440 nm in the spectrum is once again the signature of the standing wave modes described earlier.

The measured linewidths correspond to Q factors of 1.2×105, and in general, Qs of 0.9-1.3×105

have been measured for these 2 µm diameter microdisks. The Qs of these modes are approaching

the radiation-limited value of 3.7×105, and are some of the highest measured values for near-IR

wavelength-scale microcavities in AlGaAs [71, 13, 69, 84]. The corresponding cavity decay rates

are κ/2π ∼ 0.8− 1.3 GHz, over an order of magnitude smaller than the predicted coupling rate g

for an optimally placed QD. In addition, these Qs, if replicated within the QD emission band at

λ = 1300 nm are high enough to ensure that room-temperature lasing should be achievable from

the single layer of QDs in these devices [165]. From calculations of the intrinsic radiation loss,

the shorter 1300 nm wavelength modes should in fact have a significantly increased Qrad of 2×106,

although surface scattering may also slightly increase due to its approximate cubic dependence on

wavelength [65].

7.3 Measurements of lasing behavior

The emission properties of the QD-containing microdisks are tested at room temperature by continuous-

wave optical pumping through a high-NA objective lens at normal incidence and, initially, collecting
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the normal incidence emitted light through the same lens. A light-in versus light-out (L-L) curve for

one of the D ∼ 2 µm microdisks with a resonant emission peak at λ ∼ 1345 nm is shown in fig. 7.6,

and displays a lasing threshold kink at approximately 1.0 µW of absorbed pump power. The laser

mode wavelength corresponds well with the TEp=1,m=10 mode from finite-element simulations (see

table 7.1). The absorbed pump power is estimated to be 11% of the incident pump power on the

microdisk, and was determined assuming an absorption coefficient of 104 cm−1 for the GaAs layers

and quantum well layer. This threshold level is approximately two orders of magnitude smaller than

those in recent demonstrations of RT, continuous-wave microdisk QD lasers [166, 167], although

the active regions in those devices contain five stacked layers of QDs while the devices presented

here contain only a single layer of QDs.

The low lasing threshold of the device presented in fig. 7.6 was consistently measured for the set

of devices on this sample (approximately 20 devices). In fig. 7.7(a) we show another L-L curve, this

time for a device that has a TEp=1,m=10 WGM emission peak at λ = 1330 nm and has a threshold

absorbed pump power of 1.1 µW. As described in the previous chapter and in ref. [75], the same

fiber taper used to measure the cavity Q can efficiently out-couple light from the lasing mode. We

do this by maintaining the free-space pumping used above while contacting a fiber taper to the side

of the microdisk as shown in the inset of fig. 7.7(b). From the corresponding L-L curve (fig. 7.7(b))

we see that the laser threshold under fiber taper loading has increased from 1.1 µW to 1.6 µW, but

in addition the differential laser efficiency ξ is now 4% compared to 0.1% when employing free-

space collection (fig. 7.7(a)-(b)). Furthermore, because the microdisk modes are standing waves
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Figure 7.7: (a) (left) L-L curve for another microdisk device operated with free-space collection,
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collect the emission. Pth has increased to 1.6 µW while ξ increased to 4% for collection in the
forward fiber taper channel. (inset) Optical microscope image of the taper output coupler aligned to
the microdisk. (right) Spectrum of the fiber taper collected light below threshold.

they radiate into both the forwards and backwards channels of the fiber. With collection from both

the forward and backward channels the differential efficiency was measured to be twice that of

the single forward channel. Collecting from both channels and adjusting for all fiber losses in the

system (roughly 50% due to fiber splices and taper loss), the total differential laser efficiency with

fiber taper collection is 16%. Due to the difference in photon energy of the pump and microdisk

lasers, this laser differential efficiency corresponds to a conversion efficiency of 28% from pump

photons to fiber-collected microdisk laser photons. 28% is thus a lower bound on the fiber-taper

collection efficiency and/or quantum efficiency of the QD active region.

In addition to the improved laser differential efficiency of the TEp=1,m=10 laser mode when

using the fiber taper to out-couple the laser light, we also see in the below-threshold spectrum of fig.

7.7(b) that two additional resonances appear at λ = 1310 nm and λ = 1306 nm. The long wavelength

mode is identified as TMp=1,m=8 and the short wavelength mode as TEp=2,m=7 from finite-element
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Figure 7.8: L-L curve experimental data (red circles) and rate-equation model fit (blue line) to data
for the fiber taper coupled laser of fig. 7.7(b) : (a) log-log plot and (b) linear plot (inset shows deep
subthreshold data and fit). β′ ∼ 3% is the spontaneous emission factor estimated directly from the
slope change in the data, and thus includes a large non-radiative component, while β ∼ 15.5% is the
value used in the rate-equation model fit.

simulations. These modes are not discernible in the free-space collected spectrum due to their low

radiation-limited Q factors (800 and 5000 for the TE2,7 and TM1,8, respectively), but show up in the

taper coupled spectrum due to their alignment with the QD ground state exciton emission peak and

the heightened sensitivity of the taper coupling method. The single-mode lasing and limited number

of WGM resonances (6 when including the degeneracy of the WGMs) in the emission spectrum in

these D = 2 µm microdisks is a result of the large 80-100 nm free-spectral-range of modes in the

1300-1500 wavelength band. As a result, one would expect the spontaneous emission factor (β) of

these microdisk lasers to be relatively high.

A log-log plot of the fiber taper coupled laser emission of fig. 7.7(b) is shown in fig. 7.8(a)

along with a rate-equation model fit to the data. Of particular note is the well defined subthreshold

linear slope of the log-log plot. In this case the sensitivity of the fiber taper collection allows for the

subthreshold slope to be accurately estimated at m=1.67, corresponding to a near quadratic depen-

dence of spontaneous emission intensity on pump power (fig. 7.8(b), inset) and indicating that there

is likely significant non-radiative recombination. Assuming that radiative recombination occurs as a

biparticle process,3 the larger than unity power law dependence of subthreshold emission on pump

power is indicative of single-particle non-radiative recombination processes such as surface recom-

3As has been discussed recently in ref. [168] this may not be an accurate model for QD state filling, but for our simple
analysis here it will suffice.
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bination [121]. Given the close proximity of the WGM laser mode to the periphery of the microdisk

and the above-band pumping, the presence of significant surface recombination is not surprising.

Unfortunately, due to this large non-radiative component one can only provide a weak lower bound

β′ for the β-factor directly from the L-L curve. From fig. 7.8 we estimate β ≥ β′ ∼ 3%.

A rate-equation model (see appendix F) incorporating bi-particle spontaneous emission propor-

tional to N2 and surface recombination with a N1.22 carrier dependence (the ratio of the power law

dependence is set equal to the measured subthreshold slope of m=1.67) is fit to the data and shown

as a solid curve in fig. 7.8. In this model the measured fiber taper collection efficiency was used,

along with the previously measured and estimated QD density, maximum gain, and quantum effi-

ciency from stripe lasers [165]. An estimate for the actual radiative β-factor of 15.5% was used,

corresponding closely with the partitioning of spontaneous emission amongst the 6 localized and

high-Q WGM resonances within the QD ground state manifold emission band.4. The reference

spontaneous emission lifetime of the ground state QD exciton in bulk was taken as τsp = 1 ns. The

data was fit by varying only the effective surface recombination velocity. As seen in fig. 7.8, the

fit is quite good over the entire subthreshold and threshold regions of the laser data. The inferred

surface recombination velocity from the fit is vs ∼ 75 cm/s, extremely slow for the AlGaAs material

system [152] but perhaps indicative of the fast capture rate of carriers and subsequent localization

into QDs [170, 171]. Due to the large perimeter-to-area ratio in these small D = 2 µm microdisks,

even with this low velocity the model predicts that laser threshold pump power is dominated by

surface recombination with an effective lifetime τs ∼ 300 ps. Such a surface recombination lifetime

has also been estimated by Ide and Baba et al., in their recent work on QD-microdisk lasers [151].

The number of QDs contributing to lasing in these small microdisks can also be estimated. From

the finite-element simulations the area of the standing wave WGM lasing mode in the plane of the

QD layer is approximately 1 µm2, and the predicted QD density for this sample is 300 µm−2, so

that ∼ 300 QDs are spatially aligned with the cavity mode. Assuming a RT homogeneous linewidth

on the order of a few meV [142], compared to a measured inhomogeneous Gaussian broadening of

35 meV, and considering the location of the lasing mode in the tail of the Gaussian distribution, we

estimate < 10% of these dots are spectrally aligned with the cavity mode. By this estimate, on the

order of 25 QDs contribute to lasing.

4This estimate was based upon considering Purcell enhancement at RT for QDs spatially and spectrally aligned with
the WGMs (FP ∼ 6), and suppression of spontaneous emission for QDs spatially and spectrally misaligned from the
WGMs (FP ∼ 0.4) This estimate is consistent with FDTD calculations of similar sized microdisks [169].
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Chapter 8

Prospects for Strong Coupling Between
a Single Quantum Dot and Standing
Wave Whispering Gallery Modes of a
Semiconductor Microdisk Cavity

8.1 Introduction

In the previous three chapters, we have demonstrated AlGaAs microdisk cavities that, in principle,

can be used for strong coupling experiments with semiconductor quantum dots. By this, we mean

that the cavities have sufficiently high Q and small Veff values that the maximum coupling rate

between a single photon and a single QD in the cavity is larger than the decay rate of the cavity

mode and the QD exciton. Of course, in practice, experimentally accessing the strong coupling

regime will require addressing a number of technical issues, as will be reviewed in the subsequent

chapter (chapter 9). In this chapter, we will assume that these experimental challenges can be

overcome, and will focus on what we should expect to see when the experiments are conducted.

Recent demonstrations of vacuum Rabi splitting in systems consisting of a semiconductor mi-

crocavity and a single quantum dot (QD) [70, 71, 72] represent an important milestone in investi-

gations of cavity QED in solid-state materials. The experimental configuration utilized in these ex-

periments is schematically shown in fig. 8.1(a); the microcavity-QD system is incoherently pumped

with an excitation beam at an energy above the bandgap of both the QD and the surrounding cav-

ity material (usually GaAs or some form of its alloy AlGaAs). This pump light is absorbed and

generates carriers in the GaAs system that can eventually (through phonon relaxation) fill the QD;

under weak enough pumping conditions, a single electron-hole pair can fill the QD, forming a bound
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exciton state. The electron-hole pair eventually recombines, leading to spontaneous emission that

is modified by the presence of the microcavity. When the cavity is of small enough volume, the

coupling (g) between the QD exciton and the cavity can be large, and if the cavity decay rate κ and

QD decay rate γ⊥ are smaller than g, the system is said to be strongly coupled [9], in that the QD

exciton and cavity mode are no longer truly separate entities but are instead bound together. In the

experiments described in refs. [70, 71, 72], the evidence of this strong coupling has been presented

in the form of spontaneous emission measurements from the QD-microcavity system, which display

a double-peaked structure, rather than the single peak associated with either the cavity mode or QD

exciton alone. This vacuum Rabi splitting [172, 173] is one signature of the strong coupling regime

in cQED.

Applications of strongly coupled QD-microcavity systems to areas such as nonlinear optics

[174, 175, 176, 177, 178] will also require an ability to effectively couple light into and out of the

microcavity-QD device. That is, rather than measuring the spontaneous emission of the system

alone, it is also important to have access to the cavity’s response (transmission or reflection). This

is true if, for example, one wants to examine the effect of a coupled QD-cavity system on the

propagation of a subsequent beam through the cavity [174, 79], or if one wants to use the phase

of the emerging transmitted signal within some type of logic gate [179]. Indeed, in ‘traditional’

cavity QED experiments, it is the cavity’s transmitted or reflected signal that is typically observed

[77, 17, 18, 78].

As we have described in previous chapters within this thesis, following demonstrations of cou-

pling to silica-based cavities such as microspheres [32, 20] and microtoroids [56], we have shown

that optical fiber tapers [122, 32] are an effective means to couple light into and out of wavelength-

scale, semiconductor microcavities such as photonic crystals and microdisks. In addition, the mi-

crodisk cavities we have demonstrated are very promising for semiconductor cQED experiments,

with cavity Qs in excess of 105 for devices with Veff ∼ 2-6(λ/n)3. These Q values are significantly

larger than those utilized in refs. [70, 71, 72], and as a result, the devices that we consider are

poised to operate well within the strong coupling regime, where coherent interactions between the

QD and photon occur. It is envisioned that initial experiments in this fiber-coupled microcavity-QD

system (fig. 8.1(b)) will examine vacuum-Rabi splitting through measurements of the transmission

spectrum past the cavity; such measurements will be directly analogous to recent measurements of

vacuum Rabi splitting from one-and-the-same atom in a Fabry-Perot cavity [78].

The goal of this chapter is to provide a theoretical basis, accompanied by numerical simulations,
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Figure 8.1: Illustrations of the various experimental configurations utilized in studying coupling
between a semiconductor microcavity (microdisk in this case) and a single QD. g=QD-microcavity
coupling rate, κ=cavity decay rate, and γ⊥=QD decay rate. (a) Incoherent pumping (Epump >Egs)
above the bandgap of the microcavity material. Here, strong coupling between a single QD and the
microcavity mode is observed through measurements of vacuum Rabi splitting in the spontaneous
emission from the QD. (b) Near-resonant driving (Epump ∼ Egs) using a fiber taper to couple light
into and out of the microdisk. Evidence of coupling between the QD and microcavity will be
observed through measurements of the transmitted signal through the fiber taper as a function of
input wavelength. (c) Near-resonant driving of a realistic microdisk-QD system, including both
clockwise and counterclockwise propagating modes of the disk, and potential coupling, at a rate β,
between the two modes due to surface scattering.

for the experiments to be performed with single QDs in fiber-coupled microdisk cavities. Of partic-

ular concern is the proper treatment of the whispering gallery modes (WGMs) in the cavities. More

specifically, for a given polarization (TE or TM), the WGMs have a degeneracy of 2, as modes with

azimuthal number ±m have the same frequency, but circulate around the disk in opposite direc-

tions. The WGMs are typically excited through an external waveguide (such as a fiber taper), and

in a perfect WGM resonator, the forward propagating mode through the waveguide excites only the

clockwise propagating mode in the resonator (see fig. 8.1(b)). As we have described several times

within this thesis, imperfections in the resonator will change this, as they cause backscattering that

can couple the clockwise (cw) and counterclockwise (ccw) propagating modes (fig. 8.1(c)). If the

loss rates in the system (due to material absorption, other scattering and radiation loss, etc.) are low

enough, the backscattering can lead to coherent coupling of the cw and ccw modes, producing a pair

of standing wave modes. Our interest is to then study the interaction of a single quantum dot with

the microdisk WGMs in the presence of this backscattering (which has been present in all of our
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experiments to this point), and determine the spectral response of the system for varying degrees

of quantum-dot-cavity coupling (g), backscattering (β), and modal loss (κ). We examine how the

phase of the backscattering parameter affects the coupling between one or both cavity modes and

the QD, and how the QD itself serves to couple the cavity modes together.

The organization of this chapter is as follows: in section 8.2, we review the simple classical cou-

pled mode theory for modal coupling in microdisk cavities in absence of a QD. The starting point is

the analysis from section 5.2, where we have derived the coupled mode equations for backscattering-

induced coupling between the clockwise and counterclockwise propagating modes in a microdisk.

In section 8.2, we further develop this theory by including input-output coupling from a waveguide

(appendix E). Section 8.3 presents the quantum mechanical analysis of this system in the presence

of a QD. We review the quantum master equation for this system and look at semiclassical approxi-

mations for specific choices of the backscattering parameter. As we have previously noted, standing

wave WGMs have half the effective modal volume of traveling wave modes, and it is therefore

expected that the peak electric field strengths they sustain are
√

2 times larger; this is explicitly

confirmed in the derivation of the quantum master equation and associated Heisenberg equations of

motion. In section 8.4, we present the results of numerical solutions of the quantum master equation

for parameters that are accessible in current experiments. Finally, in section 8.5, we consider low

power switching as one potential experiment beyond the observation of vacuum Rabi splitting in a

fiber-coupled microdisk-QD system.

8.2 Modal coupling of two whispering gallery modes due to surface

scattering

We start by reviewing the simple (classical) coupled mode theory for surface-roughness-induced

coupling of the cw and ccw whispering gallery modes in an empty microcavity [146, 135, 147, 148]

(without a quantum dot). Our analysis begins where we left off in section 5.2, with the coupled

mode equations:

dacw

dt
= −iΔωacw(t)+ i|β|eiξaccw(t), (8.1)

daccw

dt
= −iΔωaccw(t)+ i|β|e−iξacw(t), (8.2)
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These equations represent the time evolution of the two mode amplitudes {acw,accw} of an isolated

system, without loss or coupling to an external waveguide. For the experiments considered in our

work, the waveguide coupler will be an optical fiber taper through which light is traveling in the

forward propagating mode. Light will then be coupled into the clockwise WGM of the microdisk

structure, and this can be included (appendix E) through the addition of the term ks to equation

(8.1), where k is a coupling coefficient, and |s|2 is the normalized input power (the mode amplitudes

acw,ccw are normalized to energy). Loss is introduced to the coupled mode equations by use of the

phenomenological field decay rate κT , taken to be the same for both the cw and ccw modes (though

in general this does not have to be the case). This total field decay rate is broken into a contribution

from intrinsic microdisk absorption and scattering loss (κi) and a contribution due to coupling back

into the waveguide (κe), so that κT = κi + κe. Assuming lossless coupling and time reciprocity, it

can be shown [125] that |k|2 = 2κe. The coupled mode equations then read:

dacw

dt
= −

(
κT + iΔω

)
acw(t)+ i|β|eiξaccw(t)+ is

√
2κe (8.3)

daccw

dt
= −

(
κT + iΔω

)
accw(t)+ i|β|e−iξacw(t), (8.4)

Here, the phase of the coupling coefficient was chosen to reflect the π/2 phase shift that occurs when

light is coupled from the waveguide into the cavity. These two coupled equations can be rewritten

as uncoupled equations in terms of the variables asw,1 and asw,2, which represent the standing wave

mode amplitudes

asw,1 =
1√
2

(
acw + eiξaccw

)
asw,2 =

1√
2

(
acw − eiξaccw

)
.

(8.5)

For an ideal microdisk, acw and accw have an azimuthal spatial dependence of eimφ (where m is the

azimuthal mode number and is a nonzero integer), so that asw,1 and asw,2 will have an azimuthal

spatial dependence that will be a mixture of cos(mφ) and sin(mφ), with the precise dependence

being a function of the phase ξ of the backscattering parameter β.

The transmitted and reflected signals can be determined in either the basis of {acw,accw} or

{asw,1,asw,2}; because our formulation of the problem has an external waveguide input s that is a



212

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1.0

Δω/ω (x10-4)

Tr
an

sm
is

si
o

n
/R

ef
le

ct
io

n

(a)

QT/Q β=β/κT=8

Qi/Q T=κT/κi=3

Qi=3x105

QT/Q β=β/κT=1

Qi/Q T=κT/κi=3

Qi=3x105

-2 -1 0 1 2
Δω/ω (x10-4)

(b)

-2 -1 0 1 2
Δω/ω (x10-4)

(c)

QT/Q β=β/κT=1

Qi/Q T=κT/κi=20

Qi=3x105

Figure 8.2: Normalized transmitted (solid line) and reflected (dashed line) signal for standing wave
whispering gallery modes, determined through steady state solution of the coupled mode equations
given in equation (8.3). (a) β/κT = 8, κT /κi = 3 (b) β/κT = 1, κT /κi = 3, and (c) β/κT = 1,
κT /κi = 20. Qi = 3×105 in all cases.

source for acw, it is most natural to solve for these quantities in the traveling wave mode basis, and

they are given by |t|2 = |− s− i
√

2κeacw|2 and |r|2 = |√2κeaccw|2 (appendix E). Steady state solu-

tions for the normalized transmitted and reflected signals from the cavity for a number of different

parameters are shown in fig. 8.2. For β > κT (fig. 8.2(a)), we see the formation of a distinct pair of

resonances, located at ω = ω0 ±β. These dips correspond to standing wave resonances that result

from a backscattering rate (β) that exceeds all other losses in the system (κT ), so that coherent cou-

pling between the cw and ccw modes can take place. As we see in fig. 8.2(b)-(c), for β ∼ κT , the

resonances begin to overlap and are no longer distinguishable.

For cavity QED applications, one very important consequence of the distinction between travel-

ing wave and standing wave modes is in the effective volume of the mode (Veff), as the peak electric

field strength (per photon) in the cavity scales as 1/
√

Veff. In particular, we recall the definition of

Veff as:

Veff =
∫

ε|E(r)|2
max[ε|E(r)|2] . (8.6)

Standing wave WGMs have approximately half the volume of the traveling wave WGMs, so that

the coupling rate g between a single quantum dot and a single photon in a standing wave cavity

mode is expected to be
√

2 times that when the quantum dot is coupled to a traveling wave cavity

mode. This of course assumes the single QD is positioned at an antinode of the standing wave

mode; alternately, if it happens to be positioned at a node, the coupling rate g will be zero.
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These arguments again rely upon having a physical system in which the coupling between cw

and ccw modes is sufficiently strong enough compared to all other loss rates to allow for coherent

modal coupling to form standing wave modes. They have also assumed that the QD does not

introduce loss into the system. This is clearly not the case if the QD is strongly coupled to a cavity

mode. In strong coupling, energy oscillates back and forth between the QD and the cavity, so

that QD decay terms can also cause loss. In this case, we might expect that standing wave modes

can be maintained provided that the modal coupling rate β exceeds not only κT , but also the QD

spontaneous emission rate γsp and non-radiative dephasing rate γp. To verify our physical intuition

and understand the system in better detail, we consider a quantum master equation approach [149]

to take into account the QD-field interaction.

8.3 Quantum master equation model

We begin by considering the Hamiltonian for an empty microdisk cavity (resonance frequency ωc)

with field operators âcw and âccw and mode coupling parameter β, written in a frame rotating at the

driving frequency ωl (see appendix G for details):

H0 = Δωcl â
†
cwâcw +Δωcl â

†
ccwâccw −βâ†

cwâccw −β∗â†
ccwâcw + i(Eâ†

cw −E∗âcw), (8.7)

where Δωcl = ωc −ωl . Here, the clockwise (cw) propagating mode is driven by an intracavity field

E = −i
√

2κPin, where κ = ωc/2Q is the cavity field decay rate and Pin is the input power into the

cavity. In this and all equations that follow, Planck’s constant � = 1. From this Hamiltonian, the

classical coupled-mode equations without dissipation can easily be derived through an application

of Ehrenfest’s theorem and assuming that quantum mechanical expectation values correspond to

classical variables (i.e., < âcw >= acw, for example).

Modeling the QD as a two-level system, we add the term H1 to the Hamiltonian (appendix G):

H1 = Δωalσ̂+σ̂− + ig(â†
cwσ̂−− âcwσ̂+)+ ig(â†

ccwσ̂−− âccwσ̂+) (8.8)

where Δωal = ωa −ωl (ωa is the frequency separation between the ground and first excited state

of the QD). The equation of motion for the system’s density matrix ρ can then be found from the
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equation:

dρ
dt

=
1
i
[H0 +H1,ρ]+Lρ (8.9)

where the term Lρ = (L1 +L2 +L3)ρ allows for the inclusion of decay through cavity loss (at a rate

κ), quantum dot spontaneous emission (at a rate γ‖, which we previously called γsp), and phase-

destroying collisional processes (at a rate γp), which are of particular importance for quantum dots,

as unlike atoms, they are embedded in a semiconductor matrix that can serve as a phonon bath.

These loss terms are given by (refs. [149, 180] and appendix G):

L1ρ = κ(2âcwρâ†
cw − â†

cwâcwρ−ρâ†
cwâcw)+κ(2âccwρâ†

ccw − â†
ccwâccwρ−ρâ†

ccwâccw) (8.10)

L2ρ =
γ‖
2

(2σ̂−ρσ̂+− σ̂+σ̂−ρ−ρσ̂+σ̂−) (8.11)

L3ρ =
γp

2
(σ̂zρσ̂z −ρ) (8.12)

From this master equation, we can numerically calculate the steady state density matrix ρss and

relevant operator expectation values such as < â†
cwâcw >ss, which will then allow us to determine

the transmission and reflection spectrum of the coupled QD-cavity system, using formulas that are

analogous to those used in the classical model of section 8.2. These calculations are the subject

of the following section. For now, however, we consider what intuition may be gained by further

analytical study of the master equation. We take operator expectation values (< Â >= Tr(ρ̂Â) and

< ˙̂A >= Tr(ρ̂ ˙̂A)) to arrive at:

d
dt

< âcw >= −iΔωcl < âcw > +iβ < âccw > +g < σ̂− > −κ < âcw > +E

d
dt

< âccw >= −iΔωcl < âccw > +iβ∗ < âcw > +g < σ̂− > −κ < âccw >

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +g(< σ̂zâcw > + < σ̂zâccw >)

d
dt

< σ̂z >= −2g(< σ̂−â†
cw > + < σ̂+âcw >)−2g(< σ̂−â†

ccw > + < σ̂+âccw >)

− γ‖(1+ < σ̂z >)

(8.13)

where we have noted that [σ̂+, σ̂−] = σ̂z, and have taken γ⊥ = γ‖/2+ γp.
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In the semi-classical approximation, we assume that expectation values of products of operators

equal the product of the expectation values (< σ̂zâcw >=< σ̂z >< âcw >, for example). Writing

β = |β|eiξ, these equations then reduce to

d
dt

< âcw >= −iΔωcl < âcw > +i|β|eiξ < âccw > +g < σ̂− > −κ < âcw > +E

d
dt

< âccw >= −iΔωcl < âccw > +i|β|e−iξ < âcw > +g < σ̂− > −κ < âccw >

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +g(< σ̂z >< âcw > + < σ̂z >< âccw >)

d
dt

< σ̂z >= −2g < σ̂− >
(
< â†

cw > + < â†
ccw >

)
−2g < σ̂+ >

(
< âcw > + < âccw >

)
− γ‖(1+ < σ̂z >)

(8.14)

From equation 8.5 of section 8.2, we expect that the first two equations above can be uncoupled

if written in terms of standing wave operators:

âsw,1 =
1√
2

(
âcw + eiξâccw

)
âsw,2 =

1√
2

(
âcw − eiξâccw

)
.

(8.15)

Re-writing the operator evolution equations in terms of these quantities, we arrive at:

d
dt

< âsw,1 >= −i
(

Δωcl −|β|
)

< âsw,1 > +g
1+ eiξ
√

2
< σ̂− > −κ < âsw,1 > +E

d
dt

< âsw,2 >= −i
(

Δωcl + |β|
)

< âsw,2 > +g
1− eiξ
√

2
< σ̂− > −κ < âsw,2 > +E

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +
g < σ̂z >√

2

(
< âsw,1 > (1+ e−iξ)+ < âsw,2 > (1− e−iξ)

)
d
dt

< σ̂z >= −
√

2g < σ̂− >
(
< â†

sw,1 > (1+ eiξ)+ < â†
sw,2 > (1− eiξ)

)
−
√

2g < σ̂+ >
(
< âsw,1 > (1+ e−iξ)+ < âsw,2 > (1− e−iξ)

)
− γ‖(1+ < σ̂z >)

(8.16)

These equation indicate that, in this basis, we have a modified QD-photon coupling strength

for each standing wave mode, which have shifted in frequency in comparison to the traveling wave

modes and are now centered at ωc ∓ |β|. For the first mode, corresponding to field operator âsw,1,
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the effective coupling strength is gsw,1 = g(1+ eiξ)/
√

2, while for the second mode, corresponding

to field operator âsw,2, the effective coupling strength is gsw,2 = g(1− eiξ)/
√

2. These coupling

strengths are thus dependent on the phase ξ of the backscattering parameter β; they can be as

large as
√

2g and as small as zero. This result is consistent with what we would expect based

upon the physical intuition that the superposition of traveling wave modes will result in a pair of

standing wave modes whose volume Veff is one-half that of the traveling wave modes. The two

modes are phase shifted from each other in the azimuthal direction by π/2, and as a result, if the

QD is positioned in the antinode of one mode (ξ=0, so that gsw,1 =
√

2g), it is within a node of the

other mode (so that gsw,2 = 0), and vice versa for the situation when ξ=π. Note that these results

can also easily be seen by substituting the equations for the standing wave field operators into the

original Hamiltonian H0 +H1 (the two approaches are equivalent).

The semiclassical rate equations can be solved in steady state to yield information about the

cavity response as a function of drive strength and detunings. In the case of a single cavity mode

coupled to a two-level system, this leads to the standard optical bistability state equation (OBSE)

(refs. [181, 182] and appendix G). Such a semiclassical solution might be of increased importance

in the current work because of the potentially large system size that needs to be considered in the

numerical simulations of the quantum master equation, due to the presence of two cavity modes.

This will be particularly true when considering relatively large driving fields, which could be of

interest in nonlinear spectroscopy of the system, for example, as in ref. [183]. For now, we consider

a couple of simple examples, beginning with the case of ξ=0. Defining the following parameters:

ns =
γ⊥γ‖
4g2 ,

C =
g2

2κγ⊥
,

Y =
E
κ

ns
−1/2,

Xsw,1 =< ˆasw,1 > ns
−1/2,

Xsw,2 =< ˆasw,2 > ns
−1/2,

(8.17)

we solve (in steady state) the semiclassical equations of motion in the standing wave basis (equation

8.16) to arrive at the following expression:
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Xsw,1 =
Y

1+ 4
√

2C
2X2

sw,1+( Δωal
γ⊥ )2+1

+ i
(√

2(Δωcl−β)
κ −

4
√

2C

(
Δωal
γ⊥

)
2X2

sw,1+( Δωal
γ⊥ )2+1

)

Xsw,2 =
Y

1+ i
(

Δωcl+β
κ

)
(8.18)

We are most interested in obtaining an expression for the transmission (or reflection) past the

cavity and into our collection fiber, which will be the quantity measured in experiment. In the

formalism presented in section 8.2, the transmission and reflection are given in terms of the traveling

wave mode operators. These operators can easily be recovered here by adding and subtracting Xsw,1

and Xsw,2, as the standing wave mode operators are related to the traveling wave mode operators

through equation (8.15).

As discussed earlier, the cases of ξ = 0 and ξ=π (which is identical except that the roles of Xsw,1

and Xsw,2 are swapped) essentially involve coupling between a single standing wave WGM and the

QD. For most choices of ξ, however, both WGMs will couple to the QD, but obtaining an equation

analogous to the OBSE for an arbitrary ξ is somewhat algebraically tedious. As a simple example,

we consider ξ = π/2. In this case, it is perhaps easiest to start with the semiclassical equations of

motion in the traveling wave basis (equation 8.14), from which we derive:

Y =
√

2X+
|β|
κ

+
√

2X+(
1+ |β|/κ

1+i
Δωcl

κ

)[(1− |β|
κ

+
4C

2X2
+ +(Δωal

γ⊥ )2 +1

)
+ i

(Δωcl

κ
−

4C
(

Δωal
γ⊥

)
2X2

+ +(Δωal
γ⊥ )2 +1

)]

X− =
|β|
κ X+ +Y/

√
2

1+ iΔωcl
κ

(8.19)

where X+ =
(
< âcw > + < âccw >

)
ns

−1/2 and X− =
(
< âcw > − < âccw >

)
ns

−1/2. From X+ and

X−, < âcw > and < âccw > can easily be found, and the transmitted and reflected signals from the

cavity can be calculated.
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8.4 Solutions to the steady state quantum master equation in the weak

driving regime

The quantum master equation (QME) presented in the previous section is solved numerically using

the Quantum Optics Toolbox [81, 82] for Matlab. In addition to the general framework provided

by the Toolbox, the accompanying manual [81] provides many basic programs that are the basis of

the calculations presented below; the PhD theses of Ben Lev [184] and Kevin Birnbaum [185] were

also very helpful in this regard. We begin by considering steady state solutions, and calculate the

transmitted and reflected signals from the cavity in the weak driving regime. As a starting point,

we eliminate the quantum dot from the problem by taking the coupling rate g = 0. As expected, the

resulting solutions (not displayed here) are identical to those obtained using the classical coupled

mode equations and presented in fig. 8.2. Having confirmed that the QME solution is consistent

with the classical solution in the empty cavity limit, we move on to study interactions with the

quantum dot. To connect these simulations to ongoing experiments, we choose physical parameters

consistent with the devices that we have described in this thesis.

In fig. 8.3(a), we plot the calculated Veff as a function of Davg for traveling wave modes of a

microdisk, as calculated by finite-element method simulations (see chapters 5 and 7 for a review of

these simulations). From these values for Veff we can calculate the maximum QD-photon coupling

strength g = d ·E/�, given by (see refs. [9, 110] and appendix H):

g =
1

2τsp

√
3cλ2

0τsp

2πn3Veff
, (8.20)

where τsp is the spontaneous emission lifetime of the QD exciton, which we take as 1 ns in our

calculations, consistent with what has been seen experimentally [142]. The results are plotted in fig.

8.3(b), and we see that g/2π can be as high as ∼16 GHz. We note that in these calculations of g,

the traveling wave mode volume was used, because it is the value that is entered directly into the

quantum master equations presented in section 8.3. However, as we shall see below, in the presence

of strong backscattering, standing wave modes are formed, and when coupled to a single QD, the

resulting vacuum Rabi splitting is consistent with an effective coupling strength of g
√

2, as expected

due to the decreased volume of the standing wave modes.

As discussed in chapter 7, for such modes, Qrad > 105 for all but the smallest diameter disks
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Figure 8.3: Finite-element method simulation results: (a) Modal volume Veff as a function of mi-
crodisk diameter (taken at the center of the slab), calculated for traveling wave modes. The modes
studied are TEp=1,m WGMs with resonance wavelength within the 1200 nm band. (b) Coherent cou-
pling rate g/2π as a function of microdisk diameter. A QD spontaneous emission lifetime τsp = 1
ns is assumed in the calculation of g.

(Davg < 1.5 µm). We have confirmed this in experiments, with Qs as high as 3.6×105 achieved,

so that cavity decay rates κ/2π on the order of 1 GHz can reasonably be expected. Such devices

exhibited doublet splittings that were on the order of 10-100 pm, corresponding to a backscattering

rate |β|/2π = 1-10 GHz. This rate can thus be very close in magnitude to do the QD-photon cou-

pling rate, and we thus expect the simulation results to be particularly helpful in interpreting future

experimental data.

8.4.1 β > g > (κ,γ⊥)

The first situation we study is one in which the backscattering rate β exceeds the coupling rate g,

which in turn exceeds the cavity and QD decay rates κ and γ⊥. We choose β/2π=9.6 GHz, with

g/2π=6 GHz, κ/2π=1.2 GHz (corresponding to Q=100,000), and τsp=1 ns (γ‖/2π∼ 0.16 GHz). The

unperturbed cavity frequency (i.e., the resonance frequency of the traveling wave modes) is fixed

at ωc = 0, and three different QD-cavity detunings, Δ = ωa −ωc={0,β,−β} are considered. For

each value of Δ, we calculate the steady state transmission and reflection spectra from the cavity in

three different limits: (i) g=0; here, there is no QD-cavity coupling, and the response should be that

of an empty cavity, (ii) g/2π=6 GHz, γp/2π=0 GHz; here, we neglect all non-radiative dephasing,

which becomes a better and better approximation as the temperature of the QD-microcavity sample

is lowered, and (iii) g/2π=6 GHz, γp/2π=2.4 GHz; here, we allow for a significant amount of non-
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Figure 8.4: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). (a) Δ = ωa −ωc=0, (b) Δ=β, and (c) Δ=−β. ωc is the
resonance frequency of the traveling wave whispering gallery modes. In these plots, g/2π=6 GHz,
β/2π=9.6 GHz, κ/2π=1.2 GHz, and τsp=1 ns.

radiative dephasing, corresponding to a QD exciton linewidth of ∼10 µeV (at an energy of 1 eV),

which is consistent with what has been observed experimentally at temperatures of around 10-20K

[142].

The results are plotted in fig. 8.4. In all of the results, we see that the primary function of γp is

to damp and broaden the resonances, in some cases significantly, but as expected, γp does not cause

the features to shift in position. In fig. 8.4(a), we see that the presence of the QD has caused the

lower frequency mode to shift slightly, while the higher frequency mode has not changed position.

In fig. 8.4(b), the higher frequency mode remains unshifted, and the lower frequency dip has shifted

even less. Finally, in fig. 8.4(c), the higher frequency mode again remains unshifted, while the

lower frequency mode has split into two resonances.

The interpretation of these results is as follows: as a result of the modal coupling due to

backscattering, which has formed standing wave modes through a superposition of the initial trav-

eling wave modes, only the lower frequency mode of the doublet has any spatial overlap with the

QD, and thus, we should only expect the low frequency mode to exhibit any frequency shifts or

splittings. In fig. 8.4(a), the QD, spectrally located at Δ=0, is detuned from both modes (which are

located at ±β), and thus, although the low frequency mode exhibits a frequency shift, we do not

see the symmetric vacuum Rabi splitting that would occur on resonance. As expected, due to the

spatial misalignment, the higher frequency mode remains unshifted. In fig. 8.4(b), the QD is now

on resonance with the higher frequency mode, so that it is detuned from the low frequency mode by

2β. Thus, the shift exhibited by the low frequency mode is smaller than that in fig. 8.4(a). Finally in
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Figure 8.5: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). These plots are calculated using identical parameters as
those used in fig. 8.4, with the exception that the phase of the backscattering parameter β has been
changed from ξ=0 to ξ=π, so that β/2π=-9.6 GHz.

fig. 8.4(c), the QD is on resonance with the low frequency mode, and is also spatially aligned with

it, so that we see the familiar vacuum Rabi splitting of this resonance. We note that the separation

ΩR in this case is 2g
√

2 rather than 2g; this is consistent with the mode volume of the standing wave

modes being one half that of the traveling wave modes, as g ∼ 1/
√

Veff.

The question then arises as to what parameter preferentially selected the low frequency mode

to be spatially aligned with the QD over the high frequency mode. That parameter is the phase of

the backscattering rate β, which we called ξ in the previous section. For the example above, ξ = 0.

We now consider what happens if we take ξ = π, so that β is negative. Our expectation is that this

phase shift should switch which mode is spatially aligned with the QD, so that the higher frequency

mode should now be selected. This prediction is confirmed in fig. 8.5, as we see that the results are

the mirror image of those in fig. 8.4, where now the high frequency mode is spatially aligned with

the QD and exhibits frequency shifts and vacuum Rabi splitting.

Finally, we consider an intermediate backscattering phase ξ = π/2. Here, we expect both modes

to have an equal (but non-optimal) spatial alignment with the QD. For example, for modes with a

cos(mφ) and sin(mφ) azimuthal dependence, this would correspond to having the QD located at a

position where cos(mφ)=sin(mφ) <, e.g., mφ=π/4. The results, displayed in fig. 8.6, show that this

is indeed the case. In fig. 8.6(a), for example, we see a symmetric spectrum, consistent with both

modes being equally spatially coupled to the QD and equally (and oppositely) spectrally detuned

from it. In fig. 8.6(b)-(c), we see that the spectra are no longer symmetric, as the QD is on resonance

with the high frequency mode in fig. 8.6(b), and with the low frequency mode in fig. 8.6(c). In each
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Figure 8.6: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). These plots are calculated using identical parameters as
those used in fig. 8.4, with the exception that the phase of the backscattering parameter β has been
changed from ξ=0 to ξ=π/2, so that β/2π=i*9.6 GHz, where i =

√−1.

case, we see Rabi splitting about the mode on resonance with the QD, and only a small shift for

the non-resonant mode. The Rabi splitting between the peaks is no longer at the maximum value of

2g
√

2, but at a value closer to 2g. This makes sense because the maximum value of g is still larger

than it would be for a traveling wave mode by a factor of
√

2, but this gain is negated by having the

QD positioned away from the peak of the field.

The situation described by fig. 8.6(a), where the QD is equally spatially coupled to the two

cavity modes, and spectrally positioned in between them, might be particularly interesting, due to

the presence of a transmission dip at zero laser-QD detuning. It is anticipated that this resonance can

be used as a means to inject photons into the system for applications such as nonlinear switching.

The advantage of this configuration, in comparison to a QD coupled to a single mode, is that the

position of this zero detuning resonance is fixed, regardless of the input power. This is in contrast to

what one observes for a QD coupled to a single cavity mode, where the position of the transmission

dips will shift as a function of driving power, so that the amount of power that can be coupled into

the cavity at a given frequency is limited.

8.4.2 g > β > (κ,γ⊥)

Here, we switch regimes slightly to one in which the QD-cavity coupling rate dominates all other

rates in the system, including the backscattering rate β. In particular, we choose g/2π=12 GHz,

with β/2π=4.8 GHz, κ/2π=1.2 GHz, and τsp=1 ns (γ‖/2π ∼ 0.16 GHz). The qualitative behavior

that we expect to see is identical to that of the previous section, as both g and β represent coherent
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processes, so that their relative values compared to each other are not as important as their values

in comparison to the dissipative rates in the system. This is seen in fig. 8.7(a), where the QD is

spectrally located at −β, so that it is resonant with the low frequency mode of the standing wave

doublet. Predictably, the interaction with the QD causes this resonance to split, with a splitting

ΩR=2g
√

2. The higher frequency mode remains unaffected, as the choice of ξ=0 causes it to be

spatially misaligned from the QD.

8.4.3 κ > g > β > γ⊥

Now, we take the cavity loss rate κ/2π=9.6 GHz to exceed both g/2π=6 GHz and β/2π=1.2 GHz

(in addition, γ‖/2π=0.16 GHz and γp/2π=0 or 0.7 GHz), so that κ > γ⊥. In the absence of a QD,

we know that when κ � β, we expect to see a single transmission dip rather than a doublet. This

is confirmed in simulation by the black dotted line in fig. 8.7(b). With the addition of a QD, taken

to be resonant with the center frequency of the single cavity transmission dip, we expect to see this

single dip split into two, with the dips not being completely resolved due to having κ > g. This is

confirmed in fig. 8.7(b), where the splitting ΩR/2π = 14.8 GHz lies between the expected splitting

for a purely traveling wave cavity mode (ΩR=2g) and the expected splitting for a purely standing

wave cavity mode (ΩR=2g
√

2), and lies closer to the latter due to the degree to which κ exceeds β.
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Figure 8.7: Normalized transmit-

ted and reflected signal for a QD

coupled to a microdisk cavity, cal-

culated through numerical solution

of the steady state quantum master

equation under weak driving. (a)

g > β > (κ,γ⊥), (b) κ > g > β > γ⊥,

(c) γ‖ > g > β > κ, and (d) g > κ >

β > γ⊥.
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8.4.4 γ‖ > g > β > κ

Here, the roles of κ and γ‖ are swapped in comparison to the previous subsection, so that γ‖/2π=9.6

GHz is the dominant dissipative rate, exceeding both g/2π=6 GHz and β/2π=1.2 GHz (the trans-

verse decay rate γ⊥ ∼ 4.8 GHz ∼ g). Unlike our previous example, in absence of a QD, we do expect

to see a pair of standing wave modes form, as β > κ. This is confirmed in fig. 8.7(c) (plot with the

black dashed lines). Now, we introduce a QD that is spectrally aligned with the low frequency

mode at −β. Because QD decay is so large in this case, however, we expect that the standing wave

character of the modes is going to largely be erased when coupled to the QD; standing wave modes

form only when the decay processes in the system are small enough that coherent coupling can take

place between the cw and ccw propagating modes. When a QD is introduced, we expect the energy

to oscillate between the QD and the cavity modes, and that standing wave modes can still form if

the energy decay is not too large, both when the system is primarily ‘QD-like’ and ‘cavity-like.’

Clearly, for γ‖ � β, this is not the case.

To confirm this intuition, we examine the calculated transmission spectrum in fig. 8.7(c). The

low frequency mode does indeed split, but the splitting ΩR/2π = 14.4 GHz is much less than the

expected splitting of 2g
√

2 for standing wave modes, and lies much closer to the 2g splitting for

traveling wave modes. The situation thus mimics that of the previous example. One major difference

is the relatively poor contrast (transmission depth) exhibited by the split resonances; this is due to

the fact that the dominant loss channel in this case, QD decay, is not collected in this measurement,

unlike cavity loss (for which a large fraction is collected).

8.4.5 g > κ > β > γ⊥

8.4.5.1 Steady state analysis

Finally, we consider an intermediate scenario where QD-cavity coupling g/2π = 12 GHz is the

dominant rate in the system, but where cavity decay κ/2π=6 GHz exceeds the backscattering rate

β/2π=1.2 GHz. Again, in absence of a QD, we see a single transmission dip (fig. 8.7(d)), as κ > β.

If a QD is now spectrally aligned to the center of this dip (Δ=0), however, we see three dips appear

within the transmission spectrum of fig. 8.7(d), as opposed to the two dips that appeared in fig.

8.7(b). The central dip is at frequency of 1.2 GHz=β/2π, and corresponds to the frequency of one

of the two standing wave modes that can form through an appropriate combination of the traveling

wave modes. As this mode is spatially misaligned from the QD, we do not expect its frequency to
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have shifted due to interaction with the QD. The other two dips correspond to the splitting of the

low frequency standing wave mode from its original position at −β/2π = −1.2 GHz. The splitting

of ΩR/2π=33.6 GHz is very close to the maximum possible value of 2g
√

2, which is the expected

value for standing wave modes (indeed, if the QD was actually spectrally aligned at −β/2π = −1.2

GHz, ΩR would be even closer to 2g
√

2).

However, the question remains as to why the picture presented is largely consistent with a QD

interacting with a standing wave mode when, in absence of a QD, the system is consistent with a

traveling wave mode. The basic reason is as described above; when interacting with a QD, the sys-

tem oscillates between being ‘QD-like’ and ‘cavity-like’, and in each phase, undergoes decoherence

due to the corresponding decay channel. As a result, the fast cavity decay rate in this example is

somewhat mitigated by the very slow QD decay rate, to the point that coherent coupling between the

clockwise and counterclockwise traveling wave modes can be achieved and standing wave modes

can be formed.

8.4.5.2 Time-dependent analysis

The density matrix calculations presented above are all steady state calculations (dρ
dt = 0). To get a

feeling for the time-dependence of the system, we can use the Quantum Optics Toolbox to numer-

ically integrate the differential equation for the density matrix [81, 82]. One of the first things we

can look at is the evolution of the cavity transmission spectrum as a function of time, to understand

the time required to reach steady state. The results are plotted in fig. 8.8, along with the already

calculated steady state solution. We see that the time-dependent solution approaches the steady state

solution in a time of about 0.1 ns, which is on the order of the Rabi oscillation time τR ∼ 1/g.
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Figure 8.8: Normalized transmitted signal for

a QD coupled to a microdisk cavity, calcu-

lated as a function of time through numeri-

cal integration of the quantum master equa-

tion under weak driving.
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Figure 8.9: Number of intracavity photons in the microdisk clockwise (solid red curves) and coun-
terclockwise (dashed blue curves) propagating WGMs, calculated by numerical integration of the
quantum master equation. A driving field consisting of a Gaussian pulse in time is used (shown as
a black dashed line), with ωl=-β. (a) g/2π=0, κ/2π=1.2 GHz, β/2π=0 GHz, (b) g/2π=0, κ/2π=1.2
GHz, β/2π=6 GHz, (c) g/2π=0, κ/2π=6 GHz, β/2π=1.2 GHz, and (d) g/2π=12 GHz, κ/2π=6
GHz, β/2π=1.2 GHz.

For the purposes of better understanding why the cavity spectrum appears as it does (and in par-

ticular, why the mode splitting is consistent with that expected for a QD interacting with a standing

wave mode instead of a traveling wave mode), we examine the intracavity photon number (< â†â >)

for the clockwise and counterclockwise modes as a function of time. Rather than using a constant

(time-independent) driving field, the cavity is driven by a short pulse (Gaussian in shape, with a

drive power of 0.1 photons/sec), and is centered at a frequency ωl=-β. For an ideal microdisk struc-

ture (no surface roughness) that is not coupled to a QD (g = 0), the forward propagating mode of

the fiber taper will only couple to the clockwise mode of the microdisk. This is confirmed in fig.

8.9(a), as < â†
ccwâccw > remains zero for all times, while < â†

cwâcw > rises as light is coupled into

the clockwise mode, and decays due to cavity radiation after the drive field is switched off. Next,

we consider the empty cavity (g = 0) with β/2π=6 GHz and κ/2π=1.2 GHz, so that β > κ. As

we have described in the previous sections, in this regime, we expect to see coupling between the
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propagating WGMs to form standing wave modes. We thus expect to see non-zero photon numbers

for both clockwise and counterclockwise modes, with the count rates damped due to cavity loss.

This behavior is confirmed in fig. 8.9(b).

We now move on to the situation considered in steady state in section 8.4.5.1, starting without

the QD. As the cavity decay rate κ/2π=6 GHz is significantly larger than the backscattering rate

β/2π=1.2 GHz, we expect that the clockwise mode will suffer significant decay before an appre-

ciable amount of power can be coupled into the counterclockwise mode. This is confirmed in fig.

8.9(c). Now, we introduce a QD with γ‖/2π=0.16 GHz, and spectrally located at zero detuning

(for simplicity, we have taken γp=0 in this calculation). The calculated steady state transmission

spectrum (fig. 8.7(d)) indicated that the QD mediates coupling between the clockwise and counter-

clockwise modes, allowing for standing waves to form, with the low frequency mode (at Δω = −β)

spatially aligned with the QD. This behavior is confirmed in fig. 8.9(d), where we see that the pho-

ton number for the counterclockwise mode increasing much more quickly than it does in fig. 8.9(c),

confirming that energy transfer occurs through some process other than backscattering. Once the

driving field is switched off, the photon count rates in the two modes die down, as a result of both

cavity and QD decay.

The density matrix calculations performed up to this point show the evolution of the system

in an ensemble-averaged sense. To provide us with further physical insight, quantum trajectory

calculations can be considered [149]. In these simulations, the Schrodinger wavefunction for the

system is calculated under the influence of a non-Hermitian Hamiltonian Heff, defined in terms of

collapse operators for the cavity modes and the QD. At random times within this evolution, the

wavefunction is subject to collapses, corresponding to detection events. The quantum trajectory

approach thus models the conditional evolution of a system, and can provide insight into what

will be observed in a measurement (such as the homodyne photocurrent). If the results of many

trajectories are averaged, the results of the density matrix calculations can be reproduced. This

latter point has been examined in quantum trajectory simulations of the systems studied in fig. 8.9,

where 50 trajectories have been averaged, and it has been confirmed that the results match those

of the density matrix calculations well. As only weak driving has been thus far considered, the

computational benefit of using a wavefunction-based approach rather than the density matrix is

minimal. However, for future studies, both the physical insight into the dynamics of these systems

and the reduction in computational cost of the quantum trajectory method may be very important.
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8.4.6 β = 0;g > κ > γ⊥

The basic result that the above examples demonstrate is that the QD can effectively serve as a means

to couple the cavity modes, even in instances where the backscatter parameter is small relative

to other rates in the system. As a final illustration of this, we consider the situation where the

backscatter parameter is zero. In absence of the QD, we then see a single Lorentzian dip in the

transmission spectrum through the fiber taper. When the QD is added, one would might expect to

just see this Lorentzian dip split into two dips separated by 2g. From fig. 8.10, we see that the

mode does split, but that the splitting exceeds 2g (it is actually 2g
√

2). Furthermore, we also see

the presence of a Lorentzian dip at the original cavity frequency, but with the transmission contrast

reduced in amplitude.
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mitted and reflected signal (steady

state), for the case where the
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clockwise and counterclockwise

WGMs (β) is zero. Coupling to the

atom serves to mediate coupling

between the cavity modes.

The interpretation of these results is that the QD has effectively served to mediate coupling

between the two traveling wave modes, creating a pair of standing wave resonances. The standing

wave mode that is spatially aligned with the QD splits into the resonances at ±g
√

2, while the other

standing wave mode does not overlap with the QD at all, and appears as an unperturbed resonance at

the original cavity frequency. Unlike the standing wave modes formed through surface-roughness-

induced backscattering, this standing wave mode has not shifted in frequency with respect to the

original traveling wave modes because it sees the exact same dielectric function as the traveling

wave modes.1

1Standing wave modes that form through backscattering from structural variations see different dielectric functions,
one which includes more of the air regions and the other that includes more of the dielectric regions, resulting in frequen-
cies that are shifted above and below the original resonance frequency, respectively.
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8.5 Potential for low power switching in the microdisk-QD system

The ultrasmall volumes sustained by these semiconductor microcavities offer the potential to ob-

serve phenomena in nonlinear optics at very small input powers, due to the large per photon electric

field strengths within the devices. The saturation photon number, m0, which represents the average

number of intracavity photons needed to saturate the QD transition, can give us some idea of how

low these powers might be. This quantity is given by [9]:

m0 =
γ⊥γ‖
4g2 (8.21)

where γ⊥ is the transverse relaxation rate given by γ⊥ = γ‖/2 + γp (note that m0 was called ns

previously). Let us first consider the case where γp is small, so that the QD is radiative-limited, and

m0 = γ2
‖/8g2. For g/2π∼ 10 GHz, which is certainly reasonable for the microdisk cavities we study,

and γ‖/2π ∼ 0.16 GHz (τsp ∼ 1 ns), which is typical for self-assembled InAs QDs, m0 ∼ 10−5. This

value indicates the degree to which one photon in the cavity can affect a single QD.

To study this in a bit more detail, we use steady state solutions to the semiclassical optical

bistability state equation (OBSE) and the quantum master equation (QME) to look at the cavity

response as a function of the drive strength. For our purposes here, we will restrict ourselves to

looking at a single (standing wave) cavity mode coupled to the QD; as we saw in the previous

sections, this can occur within our system if the phase of the backscattering parameter is such that

the QD is only spatially aligned with one of the two standing wave cavity modes. This simplification

is also necessary as our calculations here are not done in the weak driving limit, so that a significant

number of Fock space basis elements are needed to describe the cavity mode; this would become

computationally untenable in the case of two cavity modes. The QME and OBSE for a single cavity

mode coupled to a two-level system are discussed in appendix G.

We begin by considering a system with (g,κ,γ‖,γp)/2π = (6,2.4,0.16,0) GHz, and with the

atom, cavity, and driving field all on resonance. The corresponding saturation photon number

(equation (8.21)) and cooperativity parameter (equation (8.17)) are m0 ∼ 9×10−5 and C ∼ 94.

The critical atom number [9], which describes the number of atoms (or QDs in this case) needed to

have an appreciable effect on the intracavity field, is given by N0 = 1/C and is 0.01 in this example.

We first plot, on a linear scale, the normalized steady state intracavity field Xss =< â > m0
−1/2 as
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Figure 8.11: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid line) and
quantum master equation (dots), showing normalized intracavity field amplitude |Xss| as a function
of normalized drive field |Y |. In these simulations, ωa = ωc = ωl , and g/2π=6 GHz, κ/2π=2.4 GHz,
γp=0, and γ‖/2π=0.16 GHz. Correspondingly, m0 ∼ 9×10−5 and C ∼ 94.

a function of the normalized drive field Y = (E/κ)m0
−1/2 in fig. 8.11(a). The semiclassical solu-

tion displays bistability, so that in the intermediate (multi-valued) portion of the curve, the top and

bottom branches are stable solutions, and the middle branch is unstable. However, the quantum

master equation solution looks very different, and the bistability has been washed away.2 Plotted

on a logarithmic scale over a wider range (fig. 8.11(b)), we confirm the absence of bistability in the

quantum master equation solution, but see that it does follow the semiclassical solution in regions

of small Y and large Y .

In an experiment, we will measure the transmission or reflection response of the cavity as a

function of drive power through the taper input. This is plotted in fig. 8.12, where we have displayed

the cavity reflection as a function of the average number of intracavity drive photons and the input

drive power, for a number of different cavity decay rates (we have assumed critical coupling between

the taper and cavity). We again see that the quantum master equation solutions do not match the

prediction of optical bistability that the semiclassical equation solutions make, but do indicate that

switching between near-zero and unity reflection can occur for relatively small input powers, on

the order of tens of nanoWatts. We note that there is a general trade-off between the contrast in

reflection, which increases as the cavity Q increases, and the switching power. Similar behavior can

be observed in the transmitted signal by setting the laser drive frequency ωl = ±g.

In order to achieve radiative-limited operation of the QDs, low temperatures (T�10 K) are

required. It is interesting to consider whether functional devices can be created that operate at room

2This discrepancy has been observed and discussed by several authors in the context of atomic cQED [176, 186].
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Figure 8.12: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid lines) and
quantum master equation (dots), showing cavity reflection as a function of (a) average number of
intracavity drive photons (b) input drive power, for varying cavity decay rates. In these simulations,
ωa = ωc = ωl , and g/2π=6 GHz. We assume γp=0, and γ‖/2π=0.16 GHz. The cavity reflection
spectrum at selected drive strengths, indicated by the gray circles in (a) and labeled i-iv, are shown
in (c).

temperature, where non-radiative dephasing of the QD broadens its linewidth, to values on the order

of ∼5 meV (for a QD exciton line at ∼1 eV). Equation (8.21) predicts m0 ∼0.4 for g/2π ∼10 GHz,

indicating that a single photon can still have an appreciable effect on a single QD. However, the

significant non-radiative dephasing would also suggest that any switching devices will not function

as efficiently as they do at low temperature.

We first plot Xss as a function of Y (fig. 8.13(a)) for a system with g/2π=17 GHz and κ/2π=0.1

GHz. We now see that neither the semiclassical nor the quantum master equation solutions display

bistability, and that the two solutions match much more closely than they did in the previous exam-

ple. Despite the absence of bistability, the shape of the curve is very similar to the quantum master

equation solution in the radiative-limited case, indicated the potential for switching between low

reflection and high reflection values at relatively low powers.

The reflected signal from the cavity as a function of average number of intracavity drive photons

and input drive power for a couple of different combinations of κ and g are plotted in fig. 8.14. These

solutions indicate that low switching powers can still be achieved, but that the reflection contrast

is significantly diminished as a result of the non-radiative dephasing. Relatively large cavity Qs

(> 106) are then needed to achieve ∼20 dB of contrast. As mentioned above, switching in the
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Figure 8.14: Steady state solutions to the quantum master equation, showing cavity reflection as a
function of (a) average number of intracavity drive photons and (b) input drive power (right), for a
system with large non-radiative dephasing (linewidth ∼ 5 meV). In these simulations, ωa = ωc = ωl .

transmitted signal can be achieved by tuning the drive field to ωl = ±g.

The simulations presented above are just a preliminary examination of switching possibilities in

these fiber-coupled microcavity-QD systems. A more detailed bifurcation analysis of the semiclas-

sical model and quantum trajectory analysis to study the time-dependent properties of the system

must be conducted better understand the system and the various types of behavior that can be ac-

cessed for different parameter regimes. The recent analysis of Armen and Mabuchi [178] will be

quite useful in this regard.
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Chapter 9

Conclusions and Future Outlook

In this concluding chapter, we briefly summarize some of the remaining challenges to accessing the

strong coupling regime in our experiments. Addressing these challenges is an on-going effort, and

is essentially the primary focus of my current research.

Semiconductor microcavity-QD vacuum Rabi splitting has been demonstrated in the experi-

ments of three groups in late 2004 [70, 71, 72]. The procedure in these experiments is as follows: 1)

the sample is cooled within a liquid He cryostat, in order to reduce non-radiative dephasing in the

QDs, 2) the sample is incoherently pumped at energies above the bandgap of the dominant material

in the microcavity (e.g., 870 nm for GaAs), in order to efficiently generate carriers that can fill the

QDs, and 3) spontaneous emission from the device is collected through free-space optics and dis-

persed by a spectrometer onto a linear array of detectors (typically a CCD for measurements below

1 µm, or an InGaAs detector array for wavelengths above 1 µm). The primary technical hurdles in

such experiments are creating a sufficiently high-Q cavity to be within the strong coupling regime,

and achieving spectral and spatial alignment of a single QD with the cavity mode. In addition, ef-

ficient collection of emitted light can be difficult, and is particularly necessary for work at longer

wavelengths (> 1 µm), where the InGaAs detector dark count rates are significantly greater than

those of Si detectors used at shorter wavelengths [164].

We are interested in being able to observe vacuum Rabi splitting within the spontaneous emis-

sion spectrum of incoherently pumped devices, but beyond this, our goal is to use the fiber taper

to provide efficient near-resonant pumping. Initial experiments will examine the spectral response

of a coupled microcavity-QD system as a function of the frequency of a weak probe beam, provid-

ing a slightly different measurement of vacuum Rabi splitting than has been accomplished in refs.

[70, 71, 72]. Such fiber-taper-based measurements have been discussed in detail in the context of

microdisk cavities in chapter 8. Beyond vacuum Rabi splitting, further experiments will explore
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phenomena like switching or other nonlinear optical effects in a strongly coupled microcavity-QD

system. In such measurements, the fiber taper (or some other form of efficient input-output cou-

pling) is basically a necessity.

Incorporating the fiber taper within a liquid He cryostat is thus a critically important step, and

one that is specific to the experiments we wish to conduct. As mentioned in the preface to this

thesis, our initial hope was to create fiber-pigtailed devices using the taper mounting technique

developed by Paul Barclay for use in ultra-high-vacuum chambers and atomic physics experiments

[80]. Our attempts at using such structures were unsuccessful, due to the mechanical failure of

the epoxy joints (used to affix the taper onto the microcavity chip) at low temperatures. On the

positive side, the fiber taper itself showed no degradation (in terms of its transmission properties, for

example) at low temperatures. Current efforts are focused on utilizing low-temperature-compatible

micropositioners to actively position the taper with respect to the cavity in the same way we do so

at room temperature.

The other principal technical challenges that we face are common to the field as a whole, rather

than our specific experiments. As mentioned above, foremost amongst these is achieving spectral

and spatial alignment of a single QD with the cavity mode. Let us first consider spectral alignment.

Unlike atomic systems, for which the transition wavelength of interest is known (e.g., 852.3 nm for

the Cs D2 transition) and as a result, so is the desired cavity mode resonance wavelength, there is

typically a non-uniform size distribution of QDs within a sample. For example, the inhomogeneous

linewidth of the QD exciton ground state transition in our samples is ∼50 nm. Devices are then

fabricated to have cavity mode resonances lying within this inhomogeneous QD spectrum, and

precise spectral alignment is achieved through some tuning mechanism of the cavity mode and/or

the QD exciton line. This is sometimes accomplished through temperature tuning [187], where

the differing tuning rates of the QD exciton line and the cavity mode can be exploited to tune the

two into resonance. There are significant limitations here, however; in ref. [187], for example, the

InAs quantum dot shifts by ∼1 nm when the sample temperature is changed between ∼4 K and

40 K, while the cavity mode shifts by less than one-quarter of this. The tuning range is limited

by the maximum sample temperature at which QD non-radiative dephasing is acceptable; even at

20 K, non-radiative dephasing can be significant [142]. If the QD exciton and cavity mode are

more widely separated than what can be compensated for through temperature tuning, the cavity

geometry can be slightly modified, through etching away a thin layer of material to blue-shift the

resonances, for example [188, 48]. One drawback of this method is that it has to be done outside
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of the cryostat, and therefore lacks the flexibility and of an in situ tuning mechanism. Red shifting

of the cavity modes can be accomplished through deposition of a thin dielectric layer by a process

such as PECVD (again, not an in situ process), or through condensation (of an introduced gas such

as Xenon, for example) on the sample surface within the cryostat [189, 190].

Spatial alignment of the QD with the cavity mode is typically achieved by playing the percent-

ages, rather than any sort of active positioning technique. For example, the material we use in our

experiments typically has a QD areal density of around 100-300 µm−2. For a microcavity mode

with an area of 1 µm2 (e.g., a standing wave mode in a 2 µm diameter microdisk), this means that

100-300 QDs are expected to be spatially located within the cavity mode. By choosing cavity modes

that are located within the long wavelength tail end of the QD spectrum, a small number of these

QDs (ideally one) will be within temperature tuning range of the cavity mode. Of course, just be-

cause a single QD is on-resonance with the cavity mode and is spatially located within it does not

mean the coupling is optimal. Optimal coupling is achieved if the electric dipole vector is aligned

parallel to the cavity field, and if the QD is located at a field maximum. For cavity geometries like

photonic crystals and microdisks, the field is highly oscillatory in-plane, so that relatively small

displacements (∼200 nm) of the QD with respect to the position of the field maximum can cause

the observed coupling strength g to be significantly smaller than the maximum achievable coupling

strength g0. As our experiments (and the vast majority of the experiments within the field) stand,

we have no way to account for this other than to create a number of devices and hope to have some

number of those devices exhibit sufficiently good QD positioning for strong coupling to be obtained.

A more deterministic approach for achieving QD-cavity alignment is really contingent upon contin-

ued progress in the growth of QDs. There has recently been some exciting progress in this area by

the group at the University of California at Santa Barbara [158]. In this work, very dilute samples of

QDs (QD density ∼0.01 µm−2) are grown, so that at most one QD will be located within the cavity

mode. Furthermore, above each QD, a stack of five red-shifted QDs was grown all the way up to

the sample surface, so that the in-plane position of the QDs within the sample could be ascertained

by imaging the material (with an SEM, for example). Alignment features are then fabricated on

the sample surface, and PC cavities are aligned to these features in such a way so that the a single

QD is appropriately positioned within each of the cavities. For future demonstrations, it will be of

great use if the QD positions can not only be identified, but specified, within a regular 2D matrix,

for example. This will ultimately be necessary for applications involving the integration of multiple

QD-cavity systems, such as in quantum networks [141]. This topic is of interest to a number of
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other important applications (such as lasers), and as such, ordered quantum dot growth is an active

area of research. Techniques under consideration include growth on patterned substrates [191, 192],

where recent work [193] has shown great promise, with the QDs in a hexagonal array (spacing of 5

µm) displaying an inhomogeneous spectral width of 7.6 meV and a homogeneous spectral width of

140 µeV.
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Appendix A

Quantum Cascade Photonic Crystal
Surface-Emitting Injection Lasers

A.1 Introduction

In this appendix, I review the results of a collaborative project between our group at Caltech and

the quantum cascade (QC) laser group at Bell Laboratories, aimed at the development of photonic

crystal microcavity lasers within quantum cascade heterostructures. The results I described are the

focus of refs. [34, 35, 36]. Unlike the main part of this thesis, the focus here was not on the

development of high-Q, small-Veff resonators for cavity QED, but to instead utilize other important

properties of planar PC cavities, such as their scalability and potential for surface emission, to create

novel QC lasers, termed QC-PCSELs (quantum cascade, photonic crystal surface-emitting lasers).

In addition, another main distinction in comparison to the PC lasers studied in chapter 3 is that these

QC PC lasers are electrically injected devices. As electrical injection is a desirable characteristic

for many devices, some of the techniques utilized in this work are of potential significance for

applications involving high Q, small Veff PC lasers.

Research in semiconductor heterostructures has led to the development of a number of optoelec-

tronic devices in which the flow of electrons is controlled with great precision [194]. The quantum

cascade laser [195, 196], one product of such progress in electronic bandstructure engineering, op-

erates based upon intraband optical transitions (within conduction band states, or subbands) where

electrons flow through a semiconductor superlattice ”staircase”, emitting a photon at each step. Such

devices are hence unipolar (single carrier), and thus operate in a fundamentally different manner

than standard semiconductor lasers, which rely upon electron-hole recombination for light genera-

tion. QC lasers have established themselves as the leading tunable coherent semiconductor source
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in the mid- and far-infrared (IR) ranges of the electromagnetic spectrum [197, 198, 199].

However, due to the transverse magnetic (TM) polarization of intersubband transitions, QC

lasers are intrinsically only in-plane emitters. The electric field vector is perpendicular to the semi-

conductor layers, and surface emission, desirable for several applications, cannot be easily achieved.

The PC microcavity that we employ acts both as a source of optical feedback and as the means for

diffracting light vertically from the chip to provide surface emission. In addition to enabling surface

emission, our devices are greatly scaled down from standard QC devices, enabling miniaturization

and on-chip integration of QC lasers, with potential applications such as multi-wavelength two-

dimensional laser arrays for spectroscopy envisioned. In addition, QC PC lasers are an interesting

system for research on photonic bandgap structures, as their unipolar nature, operation through elec-

trical injection, and long emission wavelengths (and hence larger device feature sizes) are unique

and advantageous aspects in comparison to previously studied interband PC lasers. In particular, the

demonstration of an electrically-injected PC microcavity laser is an important step in the develop-

ment of PC technology for practical applications.1 In our QC PC lasers, an etched pattern penetrates

through the laser active region, deep into the bottom waveguide cladding. This etch produces the

same 2D PC pattern in the lower refractive index bottom cladding as in the waveguide core, allow-

ing for efficient vertical confinement of the guided mode [201]. This design reduces the diffraction

of radiation into the substrate, while providing a high-index contrast semiconductor-air 2D grating

for strong in-plane feedback. As a result, our devices use only 10 periods of the photonic lattice

(less than eight wavelengths in diameter), hence, their classification as microcavity lasers.

A.2 Basic design and fabrication

The details of the device design and measurement are given elsewhere (ref. [34] and references

therein). For our purposes here, the key background information is an overview of the principles of

the device operation and an understanding of the PC design strategy. fig. A.1(a) shows a schematic

view of a QC-PCSEL device. Electronic current transport through a cascade of active regions and

injectors within the QC heterostructure results in photon emission at λ ∼ 8 µm. Optical feedback

is provided by a PC microcavity consisting of an array of air holes that has been etched through

the active region and bottom cladding of the QC heterostructure. The lattice of air holes provides

distributed Bragg reflection (DBR) in two dimensions parallel to the chip.

1At the time of publication of this work, the QC PC lasers described here were the first electrically injected PC micro-
cavity lasers. Since that time, electrically injected PC lasers at near-IR wavelengths have also been demonstrated[200].
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Figure A.1: (a) Schematic of a QC-
PCSEL device. (b) Scanning elec-
tron microscope (SEM) image of an
array of QC-PCSELs (inset shows
a zoomed in top-view of a device).
(c) Calculated two-dimensional in-
plane TM bandstructure. The flat-
band regions (A,B, and C) are in-
dicated by dark gray bands. (d)
Sub-threshold (dashed) and lasing
(solid) emission spectra from a QC-
PCSEL with lattice geometry tai-
lored for emission centered at the A
flat-band region.

The PC lattice consists of a hexagonal array of air holes, chosen primarily due to its connected

nature (unlike a lattice of rods, for example), necessary for efficient electrical injection. The in-

tersubband transitions in quantum wells are naturally TM-polarized (electric field normal to the

epitaxial layers). Using the plane-wave expansion method [202], we thus calculate the in-plane

bandstructure for TM modes, shown in fig. A.1(c) for a device with hole radius (r) to lattice con-

stant (a) ratio r/a = 0.30, and with an effective index neff = 3.35 taken to account for vertical

waveguiding. Highlighted in this bandstructure are three frequency regions of interest, labeled A,

B, and C, which overlap flat-band regions. These flat-band regions are formed through mixing of

forward and backward propagating plane waves at high-symmetry points of the PC reciprocal lat-

tice. In these flat-band regions, low-loss resonant modes can be localized in finite lattice structures

(such as our cavities) due to the reduction in group velocity over an extended region of wavevector

space. Regions A, B, and C are specifically highlighted because they surround the flat-band regions

in the frequency range close to the second-order Bragg condition. Close to the second-order Bragg

condition, light can radiate into the air for surface emission, as coupling occurs to plane waves with

near-zero in-plane momentum. These are the components which lie above the air-light cone (light

gray region of fig. A.1(c)) and can radiate vertically. Choosing a ∼ 3 µm for a hexagonal lattice

with r/a=0.30 aligns these flat-band regions with the QC material gain spectrum (λ ∼ 8 µm).

Vertical optical confinement is determined by the semiconductor and metal layers comprising

the QC laser structure. A key element of our design is the use of a surface-plasmon waveguide
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Figure A.2: (a) QC epitaxy and surface plasmon waveguide mode. (b) Cross-sectional SEM of an
etched QC PC laser.

for vertical confinement [203]. This waveguide exhibits an electric field intensity maximum at the

top semiconductor-metal interface (fig. A.2(a)). Particularly relevant to this work is the thinner

epitaxial material (2.4 µm compared with 5.2 µm for a standard waveguide) and the absence of

AlInAs cladding layers. Both of these characteristics dramatically ease the etching process, which

must penetrate into the bottom InP cladding to suppress radiation into the substrate [201].

The PC patterns are created by electron beam lithography, mask transfer to a dielectric ox-

ide layer, and transfer into the heterostructure material by inductively-coupled plasma reactive ion

etching. The deep etch through the vertical waveguide core region into the bottom cladding layer

(see appendix C) produces a high index contrast semiconductor-air grating (fig. A.2(b)), reducing

substrate radiation losses and ensuring that only a small number of PC periods (less than 8 optical

wavelengths in diameter) are required to provide strong optical feedback, in contrast to traditional

second order grating based devices which typically employ a shallow etch (weak grating) and re-

quire several hundred periods of the lattice.

After etching of the PC pattern, an insulating silicon nitride layer is deposited surrounding

the PC cavities, and top and back metal contact layers are evaporated, with the etched sidewalls

sufficiently vertical to prevent electrical shorting. In addition, a thin metal layer, used to create the

bound surface plasmon mode in the vertical direction of the waveguide, is evaporated on the surface

of the cavities. An array of fully-processed QC-PCSEL devices is shown in fig. A.1(b).

A.3 Electroluminescence and lasing measurements

As described in ref. [34], low-temperature electroluminescence measurements of microfabricated

devices reveal three sets of emission peaks, corresponding to regions A, B, and C in fig. A.1(c).
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Figure A.3: (a) Emission spectra from devices with different a and r/a. The gray shaded area
corresponds to the FWHM of the QC gain spectrum.(b) Tuning of the laser emission wavelength as
a function of a and r/a for several different devices located on the same semiconductor chip. The
lasers operate predominantly in single mode (see inset) with a side-mode suppression of at least 20
dB.

Laser emission was achieved (operating in pulsed mode with 50 ns pulse width at 5 kHz repetition

rate), and is seen to tune with the hole radius and lattice spacing of the PC cavity in accordance with

simulation predictions (fig. A.3). Figure A.1(d) shows the subthreshold and lasing emission spectra

for a device with lattice geometry chosen to align the gain peak to the A flat-band region. Lasing

always originated from the highest frequency (wavenumber) resonance within the A-peak. The

majority of the devices exhibit single mode laser emission in pulsed mode. By selecting devices

with different values for a or r, multi-wavelength emission from the same semiconductor chip is

achieved (fig. A.3).

As described in ref. [36], a careful analysis of the experimental data (spectral information,

far-field emission measurements and polarized intensity measurements) and numerical simulations

shows a close correspondence between theory and simulation, and provides a unique identification

of the lasing mode. The first step in the process of identification of the laser mode is to determine

its symmetry. Here, we consider the behavior of the laser mode under reflection about the cavity’s x̂

and ŷ axes (see fig. A.1(b) for the definition of these axes with respect to the cavity). The polarized

spatial distribution of the laser’s vertically emitted field intensity is studied by placing a polarizer

in front of a micro-bolometer camera fitted with a lens (fig. A.4(a-b)). The nodal lines (lines of

near-zero intensity in the images) along the x̂ and ŷ axes of fig. A.4(b) for the ŷ-polarized intensity

pattern are consistent exclusively with an electromagnetic field mode which is odd (parity -1) under
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Figure A.4: (a) Polarized emis-
sion pattern (taken in a plane close
to the near field of the PC cav-
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the cavity. FDTD-generated (c) x̂-
polarized and (d) ŷ-polarized verti-
cal emission pattern at a few wave-
lengths above the PC cavity.

a mirror symmetry about the ŷ-axis and which is even (parity +1) under a mirror symmetry about

the x̂-axis. Such a mode is said to have B1 symmetry, using the nomenclature of chapter 1. A

similar conclusion is reached by studying the x̂-polarized intensity pattern of fig. A.4(a), which has

anti-nodes along both the x̂- and ŷ-axis. Thus, the two polarized intensity patterns of fig. A.4(a-b)

indicate that the laser emission is single mode and of B1 symmetry.

To better understand the vertical emission characteristics of the PC microcavity modes, full

3D-FDTD simulations were performed. The hole depth was taken to be 5 microns and a 200 nm

thick idealized ’perfectly conducting’ metal top contact was used to guide the TM surface wave (at a

wavelength of 8 µm this is a reasonable approximation for a gold metal contact [204, 93]). To reduce

the size and time of the simulation, the cavity was limited to 6 periods of the hexagonal lattice as

opposed to the 10 periods used in the experiment. Mirror boundary conditions were used to project

the modes of the hexagonally symmetric cavity onto a basis compatible with the symmetry of a

rectangle whose principal axes lie along the x̂- and ŷ-axis of the PC microcavity.

The highest frequency resonant mode of the A-peak was found to be of B1 symmetry (we refer

to this mode simply as the B1 mode from here on). This is consistent with the experimentally

measured emission spectrum (fig. A.1(d)) and with the laser near field symmetry (fig. A.4(a-b)).

Figure A.5(a-b) shows the electric field component normal to the semiconductor-metal surface (Ez)

and its in-plane spatial Fourier transform (Ẽz) for the B1 mode. It is interesting to note that this

mode has only a small overlap with the central region of the PC cavity, a characteristic which
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may partially explain its preferential selection as the lasing mode, due to the expected in-plane

spreading resistance in the etched PC region and consequent higher current injection and gain in the

periphery of the PC. Calculations of the vertically emitted radiation field, taken in a plane several

wavelengths above the cavity surface, were performed by eliminating the non-propagating FDTD

near field components and introducing, to simulate the experimental conditions, a 30◦ collection

angle cut-off for the imaging optics. The resulting x̂- and ŷ- polarized intensity patterns of the B1

mode are shown in fig. A.4(c-d), and closely match the polarized micro-bolometer camera images

(fig. A.4(a-b)).

As a final consistency check, far-field emission measurements and calculations were performed.

Figure A.5(c) shows a typical far-field intensity pattern of the B1 lasing mode, measured by scanning

a 300× 300 µm nitrogen-cooled HgCdTe detector in a plane parallel to the semiconductor chip

surface at a distance of approximately 10 cm without any intermediate optics. The theoretical far-

field emission pattern was calculated by transforming the FDTD generated radiation field into the

far-field [205] and is shown in fig. A.5(d). The increased intensity of the two lobes on the ŷ-

axis in fig. A.4(c) of the x̂-polarized intensity and in fig. A.5(d) of the far-field pattern is likely a

result of inadvertent symmetry breaking of the hexagonal symmetry of the PC cavity in the FDTD

simulation.2 In this case, the computed near field under the metal contact is still very symmetric, as

shown in fig. A.5(a). The symmetry breaking in the measured far field (experimentally we observe

2This may result from discretization error in employing the mirror boundary conditions and/or the rectangular bound-
ary of the simulation volume.
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the opposite effect, more intensity in the ŷ-polarization), is possibly a result of the rectangular metal

contact geometry and/or non-uniform current injection.

The FDTD-calculated radiative quality factor (Q) of the B1 mode was found to be roughly a

factor of two higher than the Q value of the neighboring A-peak resonant modes, helping explain

why it is the first mode to lase. The calculated in-plane, top, and substrate radiation rates, as given by

effective cavity quality-factors, were Q‖=600, Qt=10,000, and Qs=7,000, respectively. An estimate

for the Q value associated with internal loss in the metal and semiconductor at 8 microns (αi =

40 cm−1) is Qa=800. Thus, the total vertical extraction efficiency of the PC microcavity laser

is estimated to be ηt = Q−1
t /(Q−1

‖ + Q−1
t + Q−1

s + Q−1
a ) = 3%. The vertical extraction of light

in this case is due to the radiation of small in-plane Fourier components near the Γ-point of the

hexagonal PC reciprocal lattice (fig. A.5(b)), as in second-order Bragg diffraction. The coupling of

radiation from the bottom semiconductor-metal interface to the top metal-air interface (from which

the radiation finally escapes) is mediated through the air holes [204], as well as through the metal

itself (although this last effect has not been included in our simulations).

These PC microcavity lasers combine the electronic bandgap engineering exploited in QC lasers

and the optical dispersion engineering of photonic crystals. The result is a photonic crystal injection

laser that may open new horizons in device design and application in the mid- to far-IR ranges of

the electromagnetic spectrum. In particular, multi-wavelength surface emission makes these devices

interesting from the perspective of spectroscopy applications, as many trace gases and complex

molecules can be probed in this wavelength region [206, 207]. The open cavity architecture of these

holey devices makes them interesting from the perspective of integration with fluids; microfluidic

technology [208, 209] can, in principle, be integrated with these devices to allow for precise delivery

of these fluids to the cavity regions. The introduction of the fluid should affect the L-I characteristic

(light out versus injected current) of the device, for example, through a modification of the laser

threshold current. Electrical readout (a kind of ’detectorless’ spectroscopy) within these systems is

a promising possibility with QC-PCSEL-based devices.

Significant improvements in device performance must be made in order for these applications

to become accessible. In particular, the operating temperature must be increased, and the thresh-

old current needs to be reduced. Current efforts, led by Raviv Perahia at Caltech, are focused on

reducing current spreading in the devices as a means to help achieve these goals.
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Appendix B

Finite-Difference Time-Domain
Simulations

The photonic crystal cavities studied in this thesis are numerically investigated through the finite-

difference time-domain (FDTD) method, reviewed in detail by Taflove [6]. The FDTD algorithm

discretizes Maxwell’s equation, replacing derivatives with finite differences that are second order

accurate. The implementation that is commonly used is based on the Yee algorithm [210], which is

essentially a direct solution to Maxwell’s curl equations, solving for both the electric and magnetic

fields in time and space. The Yee algorithm follows a grid (fig. B.1(a)) in which every electric field

component (E) is surrounded by four circulating magnetic field components (H), and vice versa.

This arrangement means that Faraday’s and Ampere’s laws (which are integral forms of Maxwell’s

equations) are automatically satisfied, as are Gauss’s divergence laws. In terms of boundary condi-

tions, this arrangement naturally assures the continuity of tangential field components across mate-

rial boundaries that follow the cartesian grid.

FDTD is very appropriate for modeling structures such as our PC cavities, where the refractive

index varies significantly on the sub-wavelength scale; other techniques that approximate Maxwell’s

equations with a wave equation usually require a slowly varying refractive index. In addition, be-

cause it does not require matrix inversion techniques, FDTD can be used to do full three-dimensional

modeling of microphotonic structures. Accurate estimates of important properties such as the fre-

quency, quality factor, and modal volume can be obtained.

The code that we use was originally written by Brian D’Urso, an undergraduate in Professor

Axel Scherer’s group at Caltech, and has since been modified by a number of graduate students. Full

three-dimensional simulations of PC cavities are typically performed in the following fashion. To

reduce the simulation time, only one-eighth of the cavity volume is simulated (the upper octant, for
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Figure B.1: Setup for FDTD simulations. (a) Yee space lattice, as formulated in ref. [210]. Figure
adapted from ref. [6] (b) Typical simulation volume for 3D photonic crystal cavities. Mirror bound-
ary conditions are applied along the planes x=0, y=0, and z=0; Mur’s absorbing boundary conditions
are applied along the other three faces of the simulation volume.

example), with mirror conditions chosen for three of the cavity boundaries. Absorbing conditions

are chosen for the other three boundaries, and an air region, typically on the order of two-thirds of

a free-space wavelength, is placed above the cavity to allow the field to adequately decay before it

reaches the boundary. In the in-plane dimensions, the field has already decayed within the photonic

crystal region so that only a small air region (or no air region at all) is needed in those dimensions.

Figure B.1(b) shows a schematic of this. To adequately represent the field within the structure, we

choose a discretization of 20 points per lattice constant (which typically translates to about 80 points

per free space wavelength for the devices we study). With this resolution, the total number of grid

points is typically on the order of 2×106 (200x200x50, for example).

To calculate the cavity mode field patterns in chapter 2, a two-step process is used. We first

calculate the time evolution of an initial field placed within the cavity, and record this time evolution

at some small number of judiciously chosen spatial points (∼5-10). The initial field is a delta

function in time and has a Gaussian spatial profile, and is chosen to have the polarization of interest

(TE or TM). Modes of a specific symmetry can be chosen through proper choice of the mirror

boundary conditions; alternately, if a full structure is simulated, the initial field is spatially located

off-center to allow for excitation of modes of both even and odd spatial symmetry. The field as a

function of time is fourier transformed to give its spectral content. Cavity modes appear as peaks

within this spectrum.
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Figure B.2: FDTD spectra and mode field patterns for TM-polarized donor type defect modes in a
square lattice photonic crystal. (a)-(c) Spectra for modes of (a) B1, (b) B2, and (c) A2 symmetry.
(d)-(f) |E| for the specified modes in (a)-(c)

Figure B.2(a)-(c) shows examples of such spectra, taken from ref. [37]. The system studied

here is a simple square lattice donor-type defect centered about point e in the lattice (see chapters

1 and 2 for the labeling of high symmetry points in the square lattice), where we are focused on

TM-polarized modes due to their applicability for QC lasers. From the group theory analysis of

chapter 1 (extended to cover TM modes), we know that the two X-point donor type defect modes

off the first conduction band are predicted to have B1 and B2 symmetry, and the donor type mode off

the M-point of a higher frequency band is predicted to have A2 symmetry. This knowledge allows

us to specify the mirror boundary conditions; a separate simulation is run for each symmetry type

(three simulations in all here).

The second step of the process is to determine the spatial field profiles for the cavity modes. To

solve for the field profile for a given mode, we take the modal frequency determined through the

spectral calculation described above, and use it as the center frequency for a bandpass filter. The

initial field (chosen to have the appropriate polarization) is then convolved in time with the bandpass

filter [211], whose width is slowly decreased as the initial field evolves and begins to stabilize. The

cavity Q is calculated by determining the stored energy in the cavity (U) and the radiated power to

the boundaries (Pd), with Q = ωU/Pd . Example modal field patterns generated by this technique

are shown in fig. B.2(d)-(f).
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In the design of high-Q cavities presented in chapter 2, we made frequent use of the spatial

Fourier transform of the cavity mode as a diagnostic tool for understanding radiation losses within a

given design. In these calculations, we Fourier transform the complex field pattern E(r). By doing

so, we capture all of the spatial Fourier components, regardless of the time at which the snapshot

of the field is taken. The real, physical electric field can be written in terms of this complex field

pattern as E(r, t) = (E(r)e−iω0t + E∗(r)eiω0t)/2. To generate the complex field pattern, we take

snapshots of the real field at times t and t + T/4, where T/4 is a quarter period (T = 2π/ω0), so

that E(r) = E(r, t)+ iE(r, t + T/4). Typically, the times are chosen so that they coincide with the

magnetic field maximum (at time t, for example) and the electric field maximum (at time t +T/4).
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Appendix C

Fabrication Notes

In this appendix, I have compiled some notes that, for the most part, focus on the etching of mate-

rials using an inductively coupled plasma reactive ion etch (ICP-RIE) tool. The initial part gives a

general overview of some of the considerations taken into account when processing these materials

when the focus is on the creation of microphotonic structures. I then consider fabrication within

specific material systems that are relevant to this thesis, including Si, GaAs/AlGaAs, and the quan-

tum cascade heterostructures considered in appendix A. As fabrication of photonic crystal cavities

within the InP-based multi-quantum-well material was considered in detail in chapter 3, no specific

further consideration of those devices is given here.

C.1 Process flow and general considerations

The process flow for fabricating a device such as a photonic crystal microcavity (fig. C.1) typically

consists of 1) deposition of a hard mask layer (occasionally not required), 2) spin coating of the

sample in electron beam resist and subsequent electron beam lithography, 3) plasma etching (also

known as dry etching) of the mask layer, and 4) plasma etching of the primary material layer (typi-

cally a semiconductor layer in the applications we consider). For some devices, such as the passive

PC resonators and optically pumped lasers described in this thesis, these steps are followed by a wet

etch step to undercut the devices. For more complicated structures, such as electrically-contacted

devices, a number of additional fabrication steps are required.

The creation of low loss optical devices requires an optimization of the steps listed above. For

the plasma etching steps, there are a number of factors to take under consideration. One of the

most important is the mask layer used during the etching; the strength and quality of the mask layer

determines what types of etches can be used. Due to the small feature sizes needed for most of
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Figure C.1: Process flow for fabrication of microphotonic devices such as photonic crystals.

our structures, the starting point will always be an electron beam mask. A relatively soft mask

(such as an electron beam resist mask) that is easily damaged through the dry etching procedures

necessitates the use of a low impact dry etch, while harder masks such as dielectric layers provide

greater etch selectivity and the ability to use a wider variety of etches, but come at the expense

of having to develop a method to fabricate the dielectric mask. For semiconductor etches that are

deeper than a few hundred nanometers, a hard mask is typically a necessity. For most of the devices

we consider in this thesis (with the exception of the QC lasers), the required etch depth is just a

couple hundred nanometers (corresponding to a half-wavelength of light in the material). In such

cases, direct etching into the semiconductor using the electron beam resist is a possibility, although

the benefits (and drawbacks) of this simpler approach must be weighed against the merits of using

a dielectric mask. To use a dielectric mask, one has to develop a suitable etch recipe for transferring

the pattern from the electron beam resist to the dielectric layer, and this can be, in some cases, as

difficult as etching the semiconductor layer directly.

Once a masking material is chosen, the plasma etching processes can be calibrated. Plasma

etching is used because of the anisotropic etch profiles that it can create; PC cavities, for example,

require vertical sidewalls to sustain high Qs. Wet etching, on the other hand, can produce very

smooth etched surfaces, but the etch profiles are often slanted and control of feature sizes can be

difficult (due to undercutting of the mask layer). The system we use for plasma etching is an Oxford

Instruments Plasma Technology (OIPT) ICP-RIE, which has the advantage of allowing for indepen-

dent control of the plasma density (through variation of the ICP power) and the kinetic energy of the

resulting ions (through application of RF power to the wafer table/electrode upon which the sample

sits). This allows for the development of processes that employ a precise combination of chemi-

cal etching and physical etching (ion milling) to create anisotropic, smooth sidewalls. In addition,
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we have control over gas chemistry (Ar, N2, H2, O2, Cl2, SF6, and C4F8 are our available gases),

chamber pressure, and sample temperature (either through control of the temperature of the lower

electrode or the application of He to the backside of the sample). Typically, we begin development

of an etch process by starting with an etch recipe provided by OIPT, or by searching the technical

journals (particularly the Journal of Vacuum Science and Technology B) to see what work has been

done by other groups. This essentially serves to give us a starting point, but the final etch is often

quite different from this initial recipe. One reason for this is that the low loss, micro-optical struc-

tures of interest to us are often quite different than the applications for which many previous etch

recipes have been developed, so that the requirements on the etch can also be significantly differ-

ent. In addition, structures such as PCs contain very small confined spaces whose etch behavior is

markedly altered relative to that of more open structures (both the delivery of source gases and the

removal of etched by-products can be modified within these confined regions). Finally, most etch

recipes in the literature are calibrated using photoresist, a dielectric layer, or a metal layer as an etch

mask. While we will often use a dielectric etch mask immediately before etching of a semiconduc-

tor layer, the initial mask, where the cavity geometry is first defined, and from which the dielectric

mask is created, is usually an electron beam layer.

Before considering the specific processes employed to create the structures studied in this thesis,

let us review some of the process parameters involved in the plasma etching. The gas chemistry

used is determined by the material system being etched; chlorine-based chemistries, for example,

are known to be effective in etching III-V heterostructures, while fluorine-based chemistries are

often used for silicon, silicon dioxide, and silicon nitride. Reference [212], for example, lists many

of the common etch chemistries used to etch semiconductor materials. Once a chemistry is selected,

gas flows must be chosen. Here, the important things to consider are the ratio of the gas flows (for

example, the ratio of Ar to the ratio of Cl2 when etching GaAs) and the total gas flow. The total

gas flow needs to be chosen in such a way that a sufficient amount of gas reaches the sample (so

that the etch is not reactant-limited), but should not be so high that the gas does not have a sufficient

amount of time to react with the material. Typical total gas flows are on the order of 20-30 sccm

(standard cubic centimeters per minute) for the processes we have used. The ratio of the gas flows

will, among other things, affect the etched sidewall angle and smoothness; examples of this will be

shown below.

The chamber pressure is another important process parameter. Typically, the chamber is held at

a baseline pressure of ∼ 10−7 torr when no process is being run; typical process pressures are ∼ 10
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mTorr. The effect of the chamber pressure on the etch behavior can be somewhat difficult to gauge.

In principle, if the etch is one in which chemical etching is the dominant mechanism, an increased

chamber pressure will increase the concentration of the reactive elements and can speed up the etch

(though the etch rate may eventually saturate). If the etch is primarily a physical milling process,

an increased pressure will also initially increase the etch rate, but may eventually cause it to slow,

as the increased pressure may cause collisions between ions that will reduce the kinetic energy with

which they bombard the surface.

The ICP power level sets the density of ionized atoms. In addition, it can have an effect on the

sample temperature; dense plasmas generated by high ICP powers can cause heating of the sample,

which can dramatically influence the etch rate, sidewall profile, and sidewall roughness. This effect

has been exploited in our etching of QC heterostructures, as described below in section C.4. The RF

power level sets a DC Bias, which is basically a potential difference between the plasma coils and

the lower electrode upon which the sample sits. This DC Bias drives the ions into the sample; a large

DC Bias will impart significant kinetic energy into the ions, making physical etching a dominant

process. A large ion milling component will significantly affect the etch mask as well, so that high

DC Bias etches typically require use of a hard dielectric etch mask. In addition, a high DC Bias can

heat the sample.

C.2 Si-based devices

We have been able to create high aspect ratio Si PC structures through direct transfer using an

electron beam resist; this has basically been made possible as a result of the relative ease with which

Si can be etched and the relatively thin (∼ 350 nm) waveguide layer we employ in our devices. The

starting point for our process was an OIPT recipe that called for a relatively low RF power (50 W),

a high ICP power (1200 W), and a C4F8/SF6 etch chemistry. This was a very appealing etch in that

it did not require the special operating conditions that other Si etches do (such as cryo-cooling or

gas chopping).

The first step in the etch calibration was to determine the gas flows to be used. This was done

by fixing a total gas flow and varying the ratio of C4F8 to SF6. The behavior of the etch as a func-

tion of this ratio was very controllable; higher SF6 flows would increase the verticality of the etch

(though flows that are too high would undercut the mask), while C4F8 could be used to smoothen

the sidewalls and counteract the chemical etching by SF6. After a suitable flow ratio was chosen,
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Figure C.2: SEM images of the
Si ICP-RIE etch with varying gas
flow and RF power. (a) RF=50 W,
C4F8=11 sccm, SF6=12 sccm (b)
RF=50W, C4F8=22 sccm, SF6=12
sccm (c) RF=50W, C4F8=11
sccm, SF6=12 sccm (d) RF=20W,
C4F8=11 sccm, SF6=12 sccm.

(b)
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Figure C.3: (a) Angled and (b) top view SEM images of the Si etch used in fabrication of high-Q
PC cavities.

the RF power was varied to limit mask erosion as much as possible. Figure C.2 shows SEM images

of an etched sidewall as function of different process parameters. The initial etch calibration was

done using a photoresist mask consisting of a relatively large circle. After a reasonable etch had

been achieved with this mask, PC patterns in an electron beam resist were used in the final etch

optimization. The primary modification here in comparison to the process used in fig. C.2(d), for

example, is a further reduction in RF power and a bit of an increase in the C4F8 gas flow. Fig-

ure C.3(a) shows an angled SEM image of an etched PC pattern, showing the sidewalls to be both

smooth and vertical. Figure C.3(b) is a top view SEM image of an etched structure, indicating that

the holes are smooth and circular, which is a good indication that the etch that has been employed

does not significantly damage the electron beam mask, thereby allowing faithful transfer of the PC

pattern into the Si layer.
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Figure C.4: Top view and cross sectional SEM images of AlGaAs PC cavities fabricated using an
SiO2 etch mask.

C.3 AlGaAs-based devices

As briefly mentioned in the preface, the GaAs/AlGaAs system dry etches with an ease that, quali-

tatively, is somewhere between Si (easy) and InP (hard). At the time we began our work on etching

AlGaAs structures, we had already developed an etch recipe for InP using an SiO2 mask (chapter

3), and our hope was to simply use this mask. We would then use some form of an Ar/Cl2 chemistry

to plasma etch the AlGaAs layer, and the PC membrane would be undercut with a dilute HF acid

wet etch. In general, fabrication processes can be difficult to reproduce, as the condition of the

etch chamber is continuously changing over time, particularly for chambers (such as ours) in which

multiple materials are etched. As a result, even after a process has nominally been completely de-

veloped, there is often some kind of re-calibration period needed prior to fabrication of a new set of

devices, particularly if it has been a few weeks since the last round of fabrication. When I started

doing SiO2 etches for the purpose of AlGaAs fabrication, it had been about 8 months since our InP-

based PC microcavity laser work, and our ICP-RIE had mostly been used for Si etching during that

time. For reasons that were never completely explainable, we were unable to replicate our previous

success with the SiO2 etch; the etch now seemed to burn the resist somewhat, and produced mis-

shapen holes, even after many attempts at modifying the etch to make it less damaging to the resist.

We were able to develop a subsequent AlGaAs etch that could produce smooth, vertical sidewalls

for a range of hole sizes, but the problems we had with the lack of circularity in the holes seemed to

be significant enough to warrant investigation of other masks. Figure C.4 shows the results of our

AlGaAs processing with an SiO2 etch mask. The AlGaAs etch employed was a simple derivative

of the InP etch described in chapter 3, but now done at room temperature, with modifications to the

Ar/Cl2 gas flows (the Ar/Cl2 ratio was now typically 10/5 sccm) and slight adjustments to the RF

and ICP powers.
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Figure C.5: SEM images of Al-
GaAs photonic crystals using di-
rect pattern transfer from an elec-
tron beam mask. (a) top view, (b)
angled view, and (c)-(d) cross sec-
tional view, showing the different
sidewall angles for different hole
sizes.

Another possibility was to transfer the PC pattern directly from the electron beam resist to the

AlGaAs layer. We spent a few weeks working this out, and developed a reasonably good AlGaAs

etch that was able to do this while maintaining good hole shapes and without overly damaging

the resist. This etch was again a derivative of the InP etch, performed at room temperature, with

significantly lower RF powers (now ∼70 W) and an Ar/Cl2 gas ratio of ∼10/5 sccm. The electron

beam resist seemed to be less adversely affected by the Ar/Cl2 chemistry (in terms of the hole

shape) than the C4F8/O2 chemistry used to etch the SiO2, even though the RF power and DC Bias

levels used were fairly similar. However, maintaining sidewall verticality over the range of hole

sizes used in our graded lattice designs was difficult, and it was clear that the etch did undercut the

electron beam mask, so that producing a desired hole size would take some amount of calibration

(this seemed particularly difficult in that the hole size varies widely in our graded lattice design). As

angled sidewalls can cause a significant increase in loss in planar photonic crystals [114], we decided

that a dielectric etch mask would probably be a necessity. The advantage in using a dielectric mask

is that the range of RF powers that can be used is significantly larger (with the electron beam mask,

we had to limit the RF power to avoid etching the mask away too quickly or beginning to burn

the mask). Nevertheless, the direct transfer approach, summarized by the SEM images in fig. C.5,

remains a potentially viable option, particularly if further optimization can be done to help improve

the sidewall verticality.

In order to etch a dielectric mask without burning the electron beam resist, we wanted to adopt

an etch that would be similar to what we used for Si, where we were able to transfer the PC patterns

into the Si device layer while only using an electron beam mask. This did not seem far-fetched,
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Figure C.6: SEM images of pho-
tonic crystal patterns in a SiNx mask
and subsequent transfer into Al-
GaAs. (a)-(b) Top view and angled
image of the SiNx mask. (c)-(d) Top
view and cross sectional image of
the AlGaAs layer using the SiNx as
an etch mask.

as both Si and SiO2 can be dry etched using a fluorinated chemistry. However, when we tried to

etch the SiO2 with this low RF power etch, it was not very successful; the etch proceeded very

slowly and the sidewalls were not vertical. Another option for the mask was SiNx, which we could

also deposit with our PECVD. The nitride mask was a great choice, primarily because it could be

effectively etched using essentially the same conditions as what we used for Si. The etch rate was

certainly much slower than what it was for Si, but on the positive side, the resist was not burned

or misshapen during the etch, and we had a sufficiently thick resist layer to be able to etch through

the nitride mask (∼ 200 nm thick). Results for the nitride etch are shown in fig. C.6(a)-(b); typical

process conditions were quite similar to the Si etch described above. Once this etch was developed,

we used an AlGaAs etch (fig. C.6(c)-(d)) that was essentially identical to that used when we tried

an SiO2 mask, as the SiNx had nearly the same etch selectivity.

We used the SiNx and AlGaAs etches developed for PC cavities as a basis for etching the mi-

crodisk structures investigated in the second part of this thesis. The main difference in the etches

were the gas chemistries and RF powers used; we typically decreased the chemical nature of the

etches (increased C4F8 for the SiNx, decreased Cl2 for the AlGaAs), and slightly reduced the ap-

plied RF power. With the microdisk cavities, the primary objective is to make the disk sidewall

smooth; this has led to us adopting etches where sidewall verticality has been sacrificed in favor of

smoothness.

The SiNx etch can be a bit unpredictable in practice. In particular, if the C4F8 flow is too low, the

etched sidewalls can be very rough. Figure C.7 shows the results of some poor etches; the sidewall

roughness in the mask is clearly transferred into the AlGaAs layer. As the state of our etching
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Figure C.7: SEM images of pho-
tonic crystal and microdisk patterns
when the SiNx etch does not turn
out properly, most likely because of
too low a flow of C4F8. (a)-(b) SiNx

PC and microdisk mask and (c)-(d)
AlGaAs layer using the SiNx as an
etch mask.

chamber is essentially constantly varying in time, we typically have to re-calibrate the SiNx etch

before each new processing batch. This usually involves a couple of practice etches that are used

to determine the precise C4F8 and SF6 flows and RF power that will etch the material appropriately

given the current state of the etch chamber. In addition, chamber cleaning runs are periodically run,

in principle, to reset the condition of the chamber.

C.4 ICP-RIE etching of quantum cascade heterostructures

The quantum cascade lasers discussed in appendix A required a dry etch optimization to be able to

create relatively deep (∼ 4-5 µm), etched features (∼2 µm diameter holes) with vertical sidewalls

in an InP-based heterostructure. The starting point was a 500 nm thick SiO2 mask (etched at Bell

Laboratories) that had smooth and relatively vertical sidewalls (> 85◦). Our efforts on developing

this etch are reported in ref. [35].

Dry etching of In-containing III-V semiconductor materials is typically accomplished using one

of two gas chemistries [115]. The first, using a CH4/H2 mixture, is performed at room temperature

but is relatively slow (< 60 nm/min) and suffers from heavy polymer deposition during the process.

Cl2-based plasmas have also been used, but the low volatility of InClx products at room temperature

requires some form of heating to be employed. One method for producing smoothly etched, vertical

sidewalls in an InP-based semiconductor system is direct heating of the wafer table (> 150 ◦C).

Such a process was employed to etch the near-IR PC lasers of chapter 3, for example.

The Cl2-based plasma etch that we discuss in this appendix does not make use of direct wafer

table heating, but rather uses the high density plasma produced by the ICP system to provide local
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surface heating of the sample and an increased efficiency in the sputter desorption of the InClx

products [115]. Such an etch has been used by Fujiwara et al., to etch 8 µm diameter, 3.6 µm deep

holes in a photonic bandgap structure [116].

The ICP-RIE etch was studied as a function of ICP power (300-500 W) and RF power (100-

350 W), with the chamber pressure (Pch = 3 mTorr) and Ar:Cl2 gas chemistry (12 sccm:8 sccm)

kept fixed, and no He backside cooling. The final ICP and RF powers chosen were 350 and 250

W, respectively, and produced vertical sidewalls with an acceptable amount of sidewall roughness

(fig. C.8). Lower RF powers produced extremely pitted (and slightly angled) sidewalls throughout

both the core and cladding layers (which we attribute to the decreased volatility of the InClx etch

products, resulting from the lower sample temperature and/or lower desorption rate caused by the

reduced RF power), while higher RF powers created smooth sidewalls in the lower cladding and InP

layers but increased roughness in the core layer (attributed to pitting that occurs in Al-containing

layers that are etched at too hot a temperature). Similar effects on the sidewall roughness were

observed as the ICP power was varied. These results suggest that the sample temperature (generated

by the plasma) is a leading factor affecting sidewall roughness. The percentage of Cl2 in the gas

mixture, which can also play a role, has been varied between 30% and 50%, with a value of 35% (7

sccm) finally chosen as the best compromise between decreased sidewall roughness (seen for lower

Cl2 percentages) and improved sidewall angle (seen for higher Cl2 percentages). For our typical

etch times (t∼4.75 min), etch depths of 5 µm are achieved.

Using the plasma as a mean of increasing the sample temperature indicates that the etch rate (and

therefore etch depth) will be a nonlinear function of time, as some amount of time is required for the

temperature to reach a value hot enough for the InClx compounds to be sufficiently volatile. This has

been observed experimentally, as etch times under 3 min have produced devices with angled holes

and non-volatile InClx etch products. Note that the change in sample temperature as a function of

time for a number of different process parameters has been investigated in detail by Thomas III et

al. [213], and confirms that some minimum etch time (dependent upon the RF and ICP powers) is

required for the sample to reach the requisite temperature (> 150 ◦C).

Our etch creates a nearly 90◦ sidewall angle but suffers from roughness in the core layer. We

believe that this is the result of the elevated sample temperature created by the high density plasma,

which probably causes pitting of Al-containing layers. In the optimal case, control of the sample

temperature (or some other critical process parameter) as a function of time would be employed to

allow for varying etch conditions depending on the layer composition. This will be of particular
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Figure C.8: SEM images of a typical QC-PCSEL device after the semiconductor etch, but before
the deposition of electrical contacts. (a)-(c) Images of a cleaved device at different magnifications,
showing (a) the verticality and relative smoothness of the etch, (b) the etch depth compared to the
active region thickness of the QC device, and (c) the uniformity of the etch across the whole device.
(d) SEM image of a device from the top surface.

use in standard vertical waveguide designs that have both top and bottom semiconductor cladding

layers (often composed of AlInAs).
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Appendix D

Cavity Q and Related Quantities

There are a number of physical quantities related to a cavity quality factor (Q) that appear in the

literature. I have made an attempt to summarize some of these quantities in this appendix.

The definition of a cavity’s quality factor is essentially Q = ωτph, where ω is the cavity mode

frequency and τph is the photon lifetime within the cavity (τph = 1/Δω, where Δω is the spectral

width of the cavity mode). Q is defined in terms of the energy of the field, so that 1/τph = ω/Q is

an energy decay rate. The field’s decay rate is one-half this amount, so that:

κ =
ω
2Q

. (D.1)

Written like this, κ has units of radians/second. To convert this to Hz, we divide by 2π. I have tried

to adopt the convention of explicitly writing κ/2π when quoting cavity decay rates in units of Hz,

to avoid any confusion.

It is sometimes convenient to consider a cavity decay length Lph, which can be defined through

τph =
Lph

c/n
(D.2)

where c/n is the speed of light within the cavity. More precisely, n is not the material refractive

index but instead is the group index of the mode within the cavity, ng. The Q of the cavity can be

written in terms of Lph as:
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Q =
2πngLph

λ
(D.3)

Typically, a decay length Lph might not be quoted, but rather, an inverse decay length α = L−1
ph

is. This is in particular true for structures such as waveguides, for which a loss per unit length

(sometimes in units of cm−1 for example, and other times in units such as dB/cm) is a common

metric. Equation (D.3) above is then important for being able to compare waveguide loss to a cavity

Q. Perhaps more important, material absorption losses are often quoted in terms of a loss per unit

length, and equation (D.3) then tells us how to compute the equivalent absorption-limited Q.

A cavity’s Q physically represents the number of cycles the optical field undergoes before its

energy decay to a value that is 1/e time its original value. This is nothing more than saying that the

cavities energy decays in time as e−ωt/Q, or equivalently

dU
dt

= −ω
Q

U (D.4)

Where U is the stored energy within the cavity, and Pd = − dU
dt is the dissipated power. This leads

to another common definition of Q,

Q = ω
U
Pd

(D.5)

If we write the cavity frequency ω = 2π
T , where T is period of the field, this equation can be re-

written as

Q = 2π
U

Ul,c
(D.6)

where Ul,c is the energy loss per cycle (period). For traveling wave mode cavities, such as Fabry-

Perots or WGM-based devices, it is common to quote a cavity finesse F , which is given by
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F =
U

Ul,rt
(D.7)

where Ul,rt is the energy loss per round trip length (where the round trip length is 2L for a Fabry-

Perot cavity of length L and 2πR for a WGM cavity of radius R). The finesse is then related to the

Q (modulo 2π) by the ratio of Ul,c to Ul,rt . This ratio is simply the number of optical cycles within

a round trip length Lrt , which is Lrt/(λ/ng). Plugging into equation (D.7), we have:

F =
Q
2π

λ
ngLrt

(D.8)

Finally, our equation for the decay length Lph (equation (D.3)), can be used to simply write the

finesse as:

F =
Lph

Lrt
(D.9)

A cavity finesse of 1 then means that the field decays to its 1/e point after one complete round

trip.
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Appendix E

Resonator-Waveguide Coupled Mode
Theory

In this appendix, I briefly review some of the key equations of the coupling of modes in time

approach of Haus et al. [125] that is often used to study resonator-waveguide coupling. There are

many references that treat this topic; the discussion below has been primarily influenced by refs.

[50, 57, 55]. Other helpful works include refs. [214, 215, 216].

E.1 Traveling wave mode resonator

We first consider coupling between a single mode waveguide and a single mode of a cavity; an

example of this would be coupling between the forward propagating mode of a waveguide and the

clockwise propagating WGM of a microdisk resonator, as shown in fig. E.1. The cavity’s intrinsic

loss rate is γi, and its loss rate into the waveguide is γe. Note that the γ’s are energy decay rates,

γi

γe

s t

acw

Figure E.1: Schematic for single mode coupling between a resonator and waveguide. The cavity’s
intrinsic energy loss rate is γi, and its energy loss rate into the waveguide is γe. The cavity, whose
mode amplitude is called acw, is excited by a waveguide mode s, and the transmitted field past the
cavity is t. Note that acw is normalized to energy, while s and t are normalized to power.
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related to the field decay rates by a factor of 2, as discussed in appendix D. The waveguide input

field is labeled s, and it couples to a cavity mode of amplitude acw. The transmitted field past the

cavity is t, with s and t normalized to power, and acw normalized to energy [125].

The time evolution of the mode amplitude acw is given by:

dacw

dt
= iω0acw − γT

2
acw + kes (E.1)

where γT is the total energy decay rate of the cavity mode (equal to γ0+γe above), and ke is the

waveguide-resonator coupling coefficient.1 The above equation simply states that the mode ampli-

tude acw oscillates in time with a frequency ω0 (first term on the right hand side), decays with a loss

rate γT (second term), and is driven by an input field s with coupling coefficient ke (third term).

The transmitted signal t will have a contribution due to that portion of the input signal s that

does not couple into the cavity, and a contribution from the signal coupled out of the cavity. We

thus expect t = α1s+α2acw, where α1 and α2 are coefficients to be determined. We can determine

α1 and α2 through a power conservation argument, where we equate the power transfer into the

cavity with the change in the cavity’s internal energy plus the dissipated power. That is, we write:

|s|2 −|t|2 =
d|acw|2

dt
+ γ0|acw|2 (E.2)

Plugging in equation (E.1) along with t = α1s + α2acw yields three equations for the variables α1

and α2 (which are complex). We have

1−|α1|2 = 0

|α2|2 = γe

−α1α∗
2 = ke

(E.3)

One simple choice of solution is α1=-1, α2 = k∗e (with |ke|2 = γe), giving the transmitted signal as:

1Coupling coefficients are often denoted by the symbol κ. However, we have already reserved κ for the field decay
rate, so we choose k instead.
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t = −s+ k∗eacw (E.4)

From equations (E.1) and (E.4), we can find the steady state (normalized) transmission through

the waveguide, given by T = | t
s |2. Before doing this, we expand our formalism a bit to let γT =

γe + γ0 + γp, where γp is a loss term representing parasitic coupling between the waveguide and

resonator (for example, coupling-induced scattering into radiation modes). From this, we solve for

T , and arrive at:

T =

∣∣∣∣∣γe − (γ0 + γp)−2iΔω
γe +(γ0 + γp)+2iΔω

∣∣∣∣∣
2

(E.5)

where Δω = ω−ω0, the difference between the drive frequency and the cavity resonance frequency.

As a function of ω, T is a Lorentzian centered at ω = ω0.

On resonance (Δω=0), we can rewrite this equation as

T =
(1−K

1+K

)2
(E.6)

where K is called the coupling parameter [55, 57], and is defined as

K =
γe

γ0 + γp
(E.7)

K is the ratio of coupling into the waveguide with coupling into intrinsic and parasitic loss chan-

nels. K=1 is called critical coupling (corresponding to complete power transfer, where waveguide-

cavity coupling equals intrinsic and parasitic loss), while K < 1 (K > 1) is called the undercoupled

(overcoupled) regime. These important regimes are discussed in many other works [125, 20, 55,

214].

Experimentally, we always measure QT = ω0/γT , although we have control over γe by control-

ling the taper-cavity separation. In practice, we can increase the taper-cavity separation to the point

that γe is quite small, giving us an estimate of the cold-cavity quality factor Qi (assuming that γp
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also becomes quite small as the separation becomes large). Without changing the taper-cavity sep-

aration, we can get an estimate of Qi+p, the Q due to intrinsic decay and parasitic waveguide-cavity

coupling, by knowing K, or equivalently, the transmission depth on resonance (equation (E.6)). In

particular,

Qi+P =
ω0

γ0 + γp
=

ω0

γ0 + γe + γp
· γ0 + γe + γp

γ0 + γp

= QT (1+K)
(E.8)

Another important parameter is called the ideality I, which is the ratio of the coupling into the

waveguide mode of interest with the coupling into all waveguide channels. That is,

I =
γe

γe + γp
(E.9)

I=1 implies that the resonator-waveguide coupling is ideal in the sense that all coupling is into the

desired waveguide channel.

Next, let us consider the case of an emitter within the cavity. A fraction β of the emitter’s

spontaneous emission will be coupled into the cavity mode of interest. The fraction of these photons

that are then coupled into the waveguide mode of interest is given by the parameter η0, with

η0 =
γe

γe + γ0 + γp
(E.10)

This can easily be rewritten in terms of the coupling parameter K as:

η0 =
1

1+1/K
(E.11)

We see that η0 approaches unity as the system is driven into the overcoupled regime; at critical

coupling (K=1), η0 = 50%. In the literature, much attention is paid to β, with a high-β cavity

often seen as a solution to efficiently collecting photons from an emitter, such as a self-assembled

quantum dot within a high-index semiconductor. Although it is somewhat obvious, we note here
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that η0 also plays an important role, with βη0 giving the total fraction of emitted photons that are

actually collected into the channel of interest, which could be the forward propagating fundamental

taper mode in our experiments, or some well-defined free-space collection channel for experiments

with a Fabry-Perot cavity.

The ratio of the total (loaded) quality factor QT to the intrinsic quality factor Qi can be written

in terms of η0 and I as:

QT

Qi
=

γ0

γ0 + γe + γp
=

γ0 + γe + γp

γ0 + γe + γp
− γe + γp

γ0 + γe + γp

= 1− γe

γe + γ0 + γp

γe + γp

γe

= 1− η0

I

(E.12)

Finally, we consider two quantities of importance to many processes that occur within optical

microcavities. The internal cavity energy U can be written as the product of the dropped power

into the cavity, Pd , and the photon lifetime due to intrinsic and parasitic losses, τi+P. Noting that

Pd = (1−T )Pin, where Pin is the input power into the waveguide, and plugging in for T in terms of

the coupling parameter K, we have:

U = (1−T )Pinτi+P

=
4K

(1+K)2 Pin
Qi+P

ω0

=
4K

1+K
Pin

QT

ω0

(E.13)

Equations (E.12) and (E.11) can then be used to relate U to the intrinsic quality factor Qi, ideality

I, and coupling parameter K. This yields:

U =
4K

(1+K)2 (I +K(I−1))
Qi

ω0
Pin (E.14)

This quantity is maximized when K = I/(2− I), for which U = I(Qi/ω0)Pin.

The circulating intensity within the cavity, ℑ, is given as ℑ = (U/Veff)vg, where vg is the group

index of the cavity mode. For critical coupling (K = 1) with unity ideality (I = 1), we can simply
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write this as:

ℑ = vg
U

Veff

=
c
ng

Qi

ω0Veff
Pin

= Pin
λ0

2πng

Qi

Veff

(E.15)

E.2 Standing wave mode resonator

We next briefly consider the case where the resonator supports a standing wave mode rather than

a traveling wave mode. This is true, for example, in the photonic crystal microcavities studied in

the first part of this thesis. The main difference is that the standing wave mode decays equally

into the forward and backward propagating modes of the waveguide. If we continue to consider

γe to be the loss rate into the forward propagating waveguide mode, the total loss rate γT is given

as γT = 2γe + γ0 + γp. The formula for the normalized transmission is then determined through an

analogous set of equations as used above, with:

T =

∣∣∣∣∣γe − (γe + γ0 + γp)−2iΔω
γe +(γe + γ0 + γp)+2iΔω

∣∣∣∣∣
2

(E.16)

On resonance (Δω=0), we can rewrite this equation as:

T =
(1−K

1+K

)2
(E.17)

where the coupling parameter K is now written as

K =
γe

γe + γ0 + γp
(E.18)

We see that the form of T (K) is exactly the same as what is was for coupling to a traveling wave

mode, but the range of values that K can attain is restricted to K ≤ 1.

In coupling to a standing wave mode, there is now a reflected signal coming out of the input
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port, with the normalized reflection R given as R = | r
s |2. In this equation, r = k∗easw, where asw is

the standing wave mode amplitude. We then arrive at:

R =

∣∣∣∣∣ 2γe

γe +(γe + γ0 + γp)+2iΔω

∣∣∣∣∣
2

(E.19)

so that on resonance, this is rewritten in terms of K as:

R =
4K2

(1+K)2 (E.20)

Finally, we consider the parameter η0. Assuming that photons are only collected from one of

the waveguide modes, it is defined as:

η0 =
γe

2γe + γ0 + γp
(E.21)

and can again be rewritten in terms of the coupling parameter K as:

η0 =
1

1+1/K
(E.22)

provided that K is defined as in equation (E.18). We see that η0 ≤ 50%, which makes sense because

the cavity mode equally decays into the forwards and backwards channels of the waveguide, so that

at most 50% of the cavity photons can be collected out of any one channel. For the experiments we

have conducted thus far (chapters 6 and 7), collection from both channels can be easily achieved,

so that this is not a significant limitation. However, this might not always be the case, particularly if

the cavity-waveguide unit is to be a node within a more complex system.
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Appendix F

Laser Rate Equations

A rate equation approach [152, 217, 218] is often a simple way to study aspects of the steady state

and dynamical behavior of lasers. Although a full quantum mechanical approach can be more rigor-

ous, rate equation techniques are typically relatively simple and easier to solve, while still including

fluctuations (i.e., spontaneous emission into the laser mode), albeit at a relatively basic level. In

contrast, purely semi-classical theories, beginning at the level of the Maxwell-Bloch equations, for

example, neglect fluctuations altogether [219]. In what follows, we present an overview of a simple

rate equation model used in the fits of our 2 µm diameter microdisk-quantum-dot lasers studied in

chapter 7. There are a number of good treatments of rate equation modeling in the literature; I have

personally benefitted from studying the text of Coldren and Corzine [152].

For semiconductor lasers, the rate equations are often a pair of equations that describe the time

evolution of the carrier number (N) and photon number in the cavity mode of interest (Np) within

the structure. Here, we are considering a semiconductor material where light emission occurs as a

result of electron-hole recombination, and where the active material maintains charge neutrality, so

that the electron number Ne is equal to the hole number Nh, and we keep track of a single carrier

number N. The rate of change of N will be given by the difference between carrier generation

processes and carrier recombination processes. Carrier generation (occurring at a rate L) can occur

through current injection or optical pumping, for example. Recombination processes can include

stimulated and spontaneous emission (Rst and Rsp) and non-radiative recombination (Rnr) (carrier

leakage can also be a factor, although we do not consider it here). Calling the volume of the active

region V , we can write this explicitly as:
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dN
dt

= L− (Rnr +Rsp +Rst)V (F.1)

The rate of change of Np will be given by difference in photon generation and photon removal

processes. Photon generation will be due to stimulated and spontaneous emission, while photon

removal will be due to cavity loss. We can write this equation as:

dNp

dt
= (Rst +βRsp)V − Np

τph
(F.2)

where γph = 1/τph is the photon number loss rate from the cavity (=ω/Q). As we have mentioned

in other parts of this thesis, β is called the spontaneous emission coupling factor, and is the fraction

of spontaneous emission emitted into the cavity mode of interest. In this equation, we have not

explicitly made use of the modal confinement factor Γ, which basically takes into account the fact

that the volume of the cavity mode of interest will often be different than the volume of the active

region. This is because our equations are in terms of carrier number and photon number; if we had

instead written them in terms of densities, use of Γ would be necessary, because the photon number

Np is not taken over the active region volume V , but rather a mode volume.

From this point, an essentially phenomenological approach is often used to describe the different

recombination processes; the specifics often depend on the gain medium under consideration. For

our purposes in chapter 7, the gain medium is a single layer of quantum dots. Let us first consider

stimulated recombination Rst . By a stimulated process, we mean that photon generation requires

the presence of seed photons. It is therefore taken to be proportional to the photon number Np;

for example, Rst = vgglNp as in Coldren and Corzine [152], where vg is the group velocity of the

cavity mode and gl is the gain per unit length. Equivalently, it can be written in terms of a gain

per unit time g as Rst = gNp. Next, the spontaneous recombination term Rsp is often taken to

be a bi-particle process (electron-hole recombination), so that Rsp = BN2, where B is called the

bimolecular recombination rate. Non-radiative recombination is usually a combination of processes

with varying power law dependencies on N. One process is surface recombination, which is often

taken as Rsr = AN, where A is some material-dependent coefficient. Another process is Auger

recombination, the transfer of kinetic energy from an electron-hole pair to another electron (or
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hole). It is often taken as RA = CN3, where C is called the Auger recombination coefficient.

The rate equations we use to model the microdisk lasers of chapter 7 are:

dN
dt

= L− [
N1.22

τs
+

N2

τ′sp
]−gNp (F.3)

dNp

dt
= (g− γph)Np +

βN2

τ′sp
(F.4)

Here, we have assumed an N2 dependence for radiative recombination, no Auger recombination,

and have taken the surface recombination term to have a N1.22 dependence (as discussed in chapter

7, this is done to match the measured subthreshold slope of the light-in-light-out curve). In these

equations, the proportionality coefficients in front of the N-dependent terms have been written as

lifetimes, with τs being the surface recombination lifetime and τ′sp being the Purcell-factor-modified

(appendix H) spontaneous emission lifetime of the quantum dots (where the unmodified lifetime is

taken to be 1 ns).

In our microdisk cavities, carrier generation is accomplished through optical pumping, where

the measured quantity is the pump power incident on the sample surface, Pinc. L is related to Pinc

through:

L =
Pincηabsηint

Eph,pump

Am

Apump
(F.5)

where ηabs is the fraction of incident pump power that is absorbed, ηint is the internal efficiency of

carrier generation, Eph,pump is the energy per pump photon, Am is the modal area, and Apump is the

pump beam area. Basically, PincηabsAm/Apump gives the absorbed pump power by the disk, dividing

by Eph,pump converts this to an absorbed photon number rate, and multiplying by ηint converts this

to a carrier generation rate.

The surface recombination lifetime τs is taken as:

τs =
1

2(2πRρA,QD)vs
(F.6)

Here, ρA,QD is the areal quantum dot density, a quantity estimated by the material growers (300
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µm−2 for the QD material we use), so that 2πRρA,QD gives a linear QD density along the perimeter

of the device (the additional factor of 2 in the equation takes into account the degeneracy of the QD

ground state). vs is a surface recombination velocity, which we take as a fit parameter.

The gain per unit time g is taken to have the form:

g = g′(N −Ntr) (F.7)

where g′ is the differential gain and Ntr = ρA,QDAm is the transparency carrier number (the total

number of available states is 2ρA,QDAm due to degeneracy, and the transparency level is half of this).

g′ is taken to be the maximum modal gain if all QD ground states interacting with the cavity mode

are inverted divided by the total number of QD states.

We thus solve the rate equations (equation (F.3)) in steady state to give us the steady state

photon number Np,ss as a function of pump power. To match our experimental data, the collected

laser power (Lout) is related to Np,ss through:

Lout = ηcollEphγphNp,ss (F.8)

where Eph is the emitted photon energy (Eph = �ω) and ηcoll is the collection efficiency. Finally,

we have:

ηcoll = ξ
Eph,pump

Eph
ηint (F.9)

where ξ is the laser’s differential efficiency (which we directly measure, as discussed in chapter 7),

and Eph,pump/Eph is the ratio of the energies of the pump and emission photons. The steady state

solutions to the rate equations, using the relationships outlined above, produce the solid fits to the

experimental data in fig. 7.8.
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Appendix G

The Jaynes-Cummings Model

The interaction of an atom with an electromagnetic field is approached in a number of different

ways, depending on how the atom and field are treated (classically or quantum mechanically).

Semiclassical models treat the field classically and the atom quantum mechanically. The Jaynes-

Cummings model [220, 221, 222] treats both quantum mechanically, but makes several simplifying

assumptions. In particular, the atom is treated as a two-level system, and driving and dissipation

terms are not included. In this appendix, I first briefly review the Jaynes-Cummings model. I then

consider extensions of this model to include driving and damping terms, following the quantum

master equation approach as outlined by Carmichael in his books [149, 180].

G.1 The Jaynes-Cummings Hamiltonian and eigenvalue spectrum

The Jaynes-Cummings Hamiltonian HJC can be written as:

HJC = Hatom +Hfield +Hint, (G.1)

where Hatom, Hfield, and Hint are terms due to the free atom, the free field, and the atom-field inter-

action, respectively. The first two terms can be written as:

Hatom =
1
2

�ωaσ̂z Hfield = �ω f

(
â†â+

1
2

)
(G.2)

where σ̂z is the Pauli spin operator (inversion), ωa and ω f are the atomic transition and electromag-

netic field frequencies, and â (â†) is the electromagnetic field annihilation (creation) operator. The
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1
2�ω f term is often left out of the free-field Hamiltonian, as it is just adds a constant energy shift to

the eigenstates.

The dipole interaction term is Hint = −d̂ · Ê, where d̂ is the dipole operator, and can be written

as d̂ = deg|e >< g|+d∗
eg|g >< e|. Here, |g > and |e > are the ground and excited states of the atom,

and we have assumed that they are states of definite parity, so that the dipole operator only contains

off-diagonal terms. The terms |e >< g| and |g >< e| are just the Pauli matrices σ+ and σ−, so that:

d̂ = degσ̂+ +d∗
egσ̂− (G.3)

Quantizing the electromagnetic field [223], we write the electric field operator as:

Ê(r) = iEmax
(
f(r)â− f∗(r)â†) (G.4)

where f(r) describes the spatial variation of the electric field (it is essentially a normalized version

of the electric field), and Emax is the amplitude of the field (see appendix H). From this equation,

along with the expression for d̂, we write the interaction term Hint as

Hint = i�g(â†σ̂−− âσ̂+) (G.5)

where g is the atom-field coupling rate, which we consider in further detail in appendix H. In this

equation for Hint, we have neglected the âσ− and â†σ+ terms, which are processes that do not

conserve energy (the former process corresponds to annihilation of a photon while having the atom

transition from the excited to the ground state, for example). This is essentially the rotating wave

approximation. Thus, our final form for the Jaynes-Cummings Hamiltonian, including all three

terms, is:

HJC =
1
2

�ωaσ̂z +�ω f

(
â†â+

1
2

)
+ i�g(â†σ̂−− âσ̂+) (G.6)

The energy eigenvalues of this system can be determined by considering product states of the
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Figure G.1: (a) Schematic for atom-field coupling and (b) block diagonal form for the Hamiltonian
in the Jaynes-Cummings model.

form |g;k > (|g;k >= |g > ⊗|k >), where the atom is in either the excited or ground state, and the

field has k photons. We have:

HJC|g;n >= −1
2

�ωa|g;n > +�ω f

(
n+

1
2

)
|g;n > −i�g

√
n|e;n−1 > (G.7)

HJC|e;n−1 >=
1
2

�ωa|e;n−1 > +�ω f

(
n− 1

2

)
|e;n−1 > +i�g

√
n|g;n > . (G.8)

In matrix form, the Hamiltonian is block diagonal, with 2x2 blocks. The form for the nth block

(fig. G.1(b)) is:

Hn = �

⎛⎝(n+ 1
2)ω f − ωa

2 −ig
√

n

ig
√

n (n− 1
2)ω f + ωa

2

⎞⎠ . (G.9)

The eigenvalues for this matrix are

En,± = �

(
nω f ± Ω

2

)
(G.10)

Ω =
√

(ω f −ωa)2 +4ng2 (G.11)

The corresponding eigenstates, which we write as |n,± >, are mixtures of |g;n > and |e;n−1 >:
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Figure G.2: Energy level spectrum for the
Jaynes-Cummings model (ω f = ωa). The
unperturbed field states are shown as black
dashed horizontal lines and are labeled as
|n = 1 >, for example. The eigenstates of the
Jaynes-Cummings Hamiltonian are labeled as
|n,± >, and are shown as solid horizontal
lines.

|n,− > = −sinθn|g;n > +cosθn|e;n−1 > (G.12)

|n,+ > = cosθn|g;n > +sinθn|e;n−1 > (G.13)

tan(2θn) =
2g
√

n
ω f −ωa

(G.14)

From this, we see that for vary large detunings, or alternately, very small coupling strengths g, the

eigenstates are essentially product states.

On-resonance (ω f = ωa), the eigenvalues and eigenstates are:

En,± = �

(
nω f±g

√
n
)

(G.15)

|n,− > = − 1√
2

(
|g;n > −|e;n−1 >

)
(G.16)

|n,+ > =
1√
2

(
|g;n > +|e;n−1 >

)
. (G.17)

The eigenvalue spectrum for the coupled atom-field system (on-resonance) is shown schematically
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in fig. G.2. We see that the field’s harmonic oscillator spectrum, consisting of energy levels sepa-

rated by �ω f , has been modified, with each energy level splitting into a pair of levels, separated by

a spacing of ΔE = 2g
√

n. The splitting of the first excited state (n=1) is 2g, and is called the vacuum

Rabi splitting.

G.2 The damped, driven Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian of the previous section examines the interaction of a single

mode electromagnetic field (such as the mode of an electromagnetic cavity) with a two-level atom,

and basically models an isolated system. An experiment will typically differ from this in two pri-

mary ways. There will often be some probe field that is used to study the system; the probe might

be a weak classical field that is swept in frequency, for example. In addition, the atom-cavity system

will be unavoidably coupled to the environment, which will cause dissipation. This may come in

the form of cavity loss or spontaneous emission of the atom, for example. In this section, we review

how the Jaynes-Cummings model is expanded to account for these effects.

G.2.1 Driving field

From the previous section, we recall that the Jaynes-Cummings Hamiltonian is written as:

HJC =
1
2

�ωaσ̂z +�ωc

(
â†â+

1
2

)
+ i�g(â†σ̂−− âσ̂+) (G.18)

where here we have relabeled the field to oscillate at frequency ωc, to explicitly indicate that we are

considering it to be the mode of an electromagnetic cavity. The driving field modifies HJC by adding

a term Hdrive, given as:

Hdrive = i�

[
E

⎡⎣σ̂+

â†

⎤⎦e−iωl t −E∗

⎡⎣σ̂−

â

⎤⎦eiωl t

]
(G.19)

where E and ωl are the amplitude and frequency of the driving field. The top row in the equation

(involving σ̂+ and σ̂−) applies to the case of the field driving the atom, and the bottom row (involv-

ing â† and â) is when the field drives the cavity mode. The introduction of this time-dependent term
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into the Hamiltonian can be handled by transforming to a frame that rotates at the same frequency as

the driving field (ωl). That is, we will apply a unitary transformation Û = exp(−iωlt(σ̂z/2+ â†â)).

In general, we know that if some unitary operator Û acts on the state vector, the transformed Hamil-

tonian, Hr, is written in terms of the original Hamiltonian HS as [224]:

Hr = i� ˙̂UÛ† +ÛHSÛ†. (G.20)

We apply this to the Hamiltonian HS = HJC +Hdrive, and make use of the operator expansion theorem

[225]:

exp(xÂ)B̂exp(−xÂ) = B̂+ x[Â, B̂]+
x2

2!
[Â, [Â, B̂]]+ ... (G.21)

This yields the following form for the driven Jaynes-Cummings Hamiltonian (written in a frame

rotating at ωl):

Hr = �Δωalσ̂+σ̂− +�Δωcl â
†â+ i�g(â†σ̂−− âσ̂+)+ i�

[
E

⎡⎣σ̂+

â†

⎤⎦−E∗

⎡⎣σ̂−

â

⎤⎦] (G.22)

where Δωcl = ωc −ωl and Δωal = ωa −ωl . In deriving this equation, we have noted that σ̂+σ̂− =

(I + σ̂z)/2. As described in ref. [226], the addition of the driving term to the Jaynes-Cummings

Hamiltonian can modify the eigenvalue spectrum considerably. In particular, when the cavity is

driven by the external field, the energy levels undergo a driving-field-dependent Stark shift, with

the standard Rabi splittings of ±g
√

n being replaced by the quasienergies ±g
√

n[1− (2E/g)2]3/4

(when the atom, cavity, and driving field all at the same frequency). This can have a direct impact

on experiments, where the atom-cavity system is often probed by a driving field that is swept in fre-

quency [9, 182]. If the probe beam has a small amplitude (where the ratio of E to g is the important

metric), its effects on the atom-cavity system would be expected to be small, and measurements of

features such as vacuum Rabi splitting should yield the 2g splitting in accordance with the Jaynes-

Cummings model.1 However, if the probe beam has a large amplitude, the energy level structure of

1The 2g splitting of the first excited state is maintained down to an arbitrarily weak driving field E; this is one reason
for the terminology ‘vacuum Rabi splitting’.
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the Jaynes-Cummings model will be significantly altered. This can, for example, affect the ability

to access and observe higher excited states of the Jaynes-Cummings system.

G.2.2 Dissipation terms and the quantum master equation approach

Dissipation in the Jaynes-Cummings system can be addressed by considering the interaction of this

system with a reservoir. The treatment we follow below is entirely based on Carmichael’s books

[149, 180]. Our intent here is to briefly outline some of the important steps in this approach.

The Hamiltonian for the system plus reservoir is given as HS +HR +HSR, where HS and HR are

system and reservoir Hamiltonians, and HSR is the Hamiltonian for the interaction of the two [180].

The interest in the reservoir is purely in terms of its effects on the system, so that a density matrix

approach is well suited to study this problem. In particular, rather than considering the full density

matrix of the system plus reservoir χ, a reduced density matrix ρ = TrR[χ] is considered, where the

trace is taken over all of the reservoir states.

As χ is a density matrix, we know that:

dχ
dt

=
1
i�

[H,χ]. (G.23)

A convenient form for the equation of motion of χ can be determined by first transforming to the

interaction picture to separate out the motion due to HS +HR from that due to HSR, and then formally

integrating equation (G.23) to arrive at:

dχ̃
dt

=
1
i�

[H̃SR, χ̃(0)]− 1
�2

∫ t

0
dt ′[H̃SR(t), [H̃SR(t ′), χ̃(t ′)]]. (G.24)

Here, the ∼ is to note that all of the quantities are in the interaction picture. Our interest is in the

reduced density matrix ρ, which is found by tracing over the reservoir states, so that:

dρ̃
dt

= − 1
�2

∫ t

0
dt ′TrR

[
[H̃SR(t), [H̃SR(t ′), χ̃(t ′)]]

]
. (G.25)

The first term from equation (G.24) has been dropped (it can essentially be thought of as a constant

offset in the Hamiltonian). From this point, two important simplifying assumptions are made. The
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first is called the Born Approximation, where we assume that the total density matrix (χ) can be

written as the product of density matrices for the system (ρ) and reservoir R, and furthermore, that

the effect of the system on the reservoir is negligible, so that R does not vary in time (R(t) = R(0)).

This yields:

dρ̃
dt

= − 1
�2

∫ t

0
dt ′TrR

[
[H̃SR(t), [H̃SR(t ′), ρ̃(t ′)R(0)]]

]
. (G.26)

The second major simplifying assumption is the Markov approximation, where we assume a

memoryless system behavior due to the interaction with the reservoir. Carmichael’s books consider

this point in much greater detail [149, 180]. Assuming this point to be valid, its effect on equation

(G.26) is to change the ρ̃(t ′) within the integrand to ρ̃(t).

From this point, specific models for the system, reservoir, and system-reservoir interaction

Hamiltonians are employed. Many times, the reservoir is modeled as a collection of harmonic

oscillators. The system-reservoir interaction Hamiltonian will often be written as HSR = �∑ js jΓ j

where s and Γ are system and reservoir operators, respectively. System operators might be the field

annihilation and creation operators â and â†, or atomic raising and lowering operators σ̂+ and σ̂−,

for example. Reservoir operators might be of the form Γ = ∑ jκ j r̂ j, for example, where the κ j is the

coupling coefficient linking the jth reservoir oscillator (characterized by annihilation and creation

operators r̂ j and r̂†
j ) to the field.

For the systems of interest to us, there are three primary dissipative channels: (i) atomic spon-

taneous emission, at a rate γ‖, into modes other than the cavity mode of interest, (ii) photon leakage

out of the cavity at a rate 2κ (so that the cavity’s field decay rate is κ, as in appendix D), and (iii)

non-radiative damping through phase-destroying processes, at a rate γp. These loss terms are given

by [149, 180]:

L1ρ̃ = κ(2âρ̃â† − â†âρ̃− ρ̃â†â) (G.27)

L2ρ̃ =
γ‖
2

(2σ̂−ρ̃σ̂+− σ̂+σ̂−ρ̃− ρ̃σ̂+σ̂−) (G.28)

L3ρ̃ =
γp

2
(σ̂zρ̃σ̂z − ρ̃). (G.29)

The equation for the reduced density matrix in the interaction picture is then:
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dρ̃
dt

= (L1 +L2 +L3)ρ̃. (G.30)

Finally, we need to transform back to the Schrodinger picture from the interaction picture. We

do this by noting that

ρ̃(t) = e
iHSt

� ρ(t)e−
iHSt

� (G.31)

so that differentiating this equation yields:

˙̃ρ(t) = e
iHSt

� ρ̇(t)e−
iHSt

� +
i
�
[HS, ρ̃] (G.32)

e
−iHSt

� ˙̃ρ(t)e
iHSt

� = ρ̇(t)+
i
�
[HS,ρ] (G.33)

ρ̇ =
1
i�

[HS,ρ]+ e
−iHSt

� ˙̃ρ(t)e
iHSt

� (G.34)

Putting it all together, we get the following master equation for the density matrix, often used

as a starting point in cavity QED studies:

dρ
dt

=
1
i�

[HS,ρ]+κ(2âρâ† − â†âρ−ρâ†â) (G.35)

+
γ‖
2

(2σ̂−ρσ̂+− σ̂+σ̂−ρ−ρσ̂+σ̂−) (G.36)

+
γp

2
(σ̂zρσ̂z −ρ) (G.37)

with

HS = �Δωalσ̂+σ̂− +�Δωcl â
†â+ i�g(â†σ̂−− âσ̂+)+ i�

[
E

⎡⎣σ̂+

â†

⎤⎦−E∗

⎡⎣σ̂−

â

⎤⎦]. (G.38)

From this master equation, the time evolution of operator expectation values can be easily found

by noting that < Â >= Tr(ρ̂Â) and < ˙̂A >= Tr(ρ̂ ˙̂A) for a system operator Â. For example, if the

driving field excites the cavity, these time-evolution equations are (here, we take � = 1):



283

d
dt

< â >= −
(

iΔωcl +κ
)

< â > +g < σ̂− > +E (G.39)

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +g < σ̂zâ > (G.40)

d
dt

< σ̂z >= −2g(< σ̂−â† > + < σ̂+â >)− γ‖(1+ < σ̂z >) (G.41)

To derive these equations, the identities [σ̂+, σ̂−] = σ̂z, σ̂+σ̂− + σ̂−σ̂+ = I, and σ̂2±=0 are useful, as

is utilizing the cyclic property of the trace operator (Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ)). In addition,

we have taken γ⊥ = γ‖/2+ γp.

In the semi-classical limit, expectation values of operator products are replaced by products of

operator expectation values (i.e., < σ̂zâ >=< σ̂z >< â >). These Maxwell-Bloch equations can

then be solved in steady state, for example, to yield the optical bistability state equation (OBSE)

[181, 182]. For reference, the solution is:

X =
Y

1+ 2C
X2+( Δωal

γ⊥ )2+1
+ i

(
Δωcl

κ −
2C

(
Δωal
γ⊥

)
X2+( Δωal

γ⊥ )2+1

) (G.42)

where

ns =
γ⊥γ‖
4g2 ,

C =
g2

2κγ⊥
,

Y =
E
κ

ns
−1/2,

X =< â > ns
−1/2.

(G.43)

ns and C are called the saturation photon number and critical atom number (also known as the

single atom cooperativity), which represent the number of photons (on average) needed to saturate

the atomic transition and the number of atoms needed to dramatically affect the response of the

cavity, respectively [9].
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Appendix H

The Purcell Factor Fp and Atom-Photon
Coupling Rate g

H.1 The Purcell factor

The degree to which a microcavity can influence the spontaneous rate of an emitter within it is

known as the Purcell effect [227]. When the emitter (a radiating dipole) is on resonance with a cavity

mode, this rate can be enhanced; when off-resonance, it can be inhibited [228]. Purcell enhancement

(or inhibition) of spontaneous emission if one of the hallmarks of cavity QED within the weak

coupling regime, where it is still appropriate to treat the emitter and the field as separate entities

and their interaction as a perturbation. In strong coupling, the usual interpretation of spontaneous

emission as an irreversible process no longer holds. The Jaynes-Cummings model reviewed in

appendix G is the starting point for the treatment of emitter-field interactions in the strong coupling

regime.

Placing a radiating dipole within a cavity causes the spontaneous emission rate to change due

to the cavity’s modification of the spectral density of modes (related to its Q) and the amplitude

of the vacuum field interacting with the dipole (related to Veff). We therefore expect the Purcell

enhancement to scale with Q and Veff. A simple derivation of this enhancement has been given by

Gérard and Gayral [109]; we repeat this derivation here. We begin with the statement of Fermi’s

Golden Rule [224]:

1
τsp

=
2π
�2 |Wge|2ρ(Ege) (H.1)

Wge is the dipole matrix element between the initial (ground) and final (excited) states of the two-
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level system, with

Wge =< d̂ · Ê >ge (H.2)

where d is the electric dipole operator, E is the electric field operator, and the subscript ge indicates

that the matrix element connects the ground and excited states of the emitter. ρ(Ege) is the density

of photon modes at the emitter’s transition energy Ege. We recall that Fermi’s Golden Rule is

only applicable under the assumption that the dipole can effectively be thought of as coupling to a

continuum of modes. When the dipole is embedded in a uniform dielectric material, this is clearly

the case. When it is embedded within a cavity, we must satisfy the condition that the dipole’s

emission line be spectrally narrow compared to the cavity resonance.

Let us begin by calculating the spontaneous emission rate when the emitter is in a uniform

dielectric of index n. The density of modes ρ is obtained by the usual procedure of counting the

number of modes within some box of volume V [224]. This yields:

ρ0 =
ω2n3V
3π2c3 (H.3)

where the factor of 1/3 represents the random orientation of the modes within a uniform dielectric

with respect to the dipole (this factor is derived in Yariv’s Quantum Electronics book [223], for

example). The spontaneous emission rate is then given by:

1
τsp,0

=
2π
�2 | < d̂ · Ê >ge |2 ω2n3V

3π2c3 (H.4)

with the electric field operator written as [223]

Ê(r) = iEmax
(
f(r)â− f∗(r)â†) (H.5)

In this equation, â and â† are the field annihilation and creation operators, respectively, and f(r)

is describes the spatial variation of the electric field (it is essentially a normalized version of the
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electric field). Emax is the amplitude of the field, a per photon electric field strength written as:

Emax =

√
�ω

2ε0n2V
(H.6)

If we plug this into equation (H.4), we arrive at:

1
τsp,0

=
ne2|r̂ge|2ω3

3π�ε0c3 (H.7)

where I have taken d̂ = er. Equation (H.7) is the standard expression for the spontaneous emission

rate into a uniform dielectric material of index n.

When the emitter is placed in a cavity with a mode volume Veff, Emax is given by the same

expression as in equation (H.6), but with V (the quantization volume for the uniform dielectric

material) replaced by Veff. We next write |Wge|2 = e2|r̂ge|2E2
maxη2, where η = d ·E/|d|Emax describes

not only the orientation of the dipole with respect to the cavity field, but also the spatial dependence

of the dipole within the cavity field (that is, even if the dipole is aligned with the field, if it is

positioned at some place other than an antinode of the field, η < 1). If the cavity mode has a

linewidth Δωc, corresponding to a quality factor Q = ωc/Δωc, we can write its density of states as:

ρc =
2Q
πωc

Δω2
c

4(ω−ωc)2 +Δω2
c

(H.8)

which is a Lorentzian function that has been normalized so that
∫

ω ρc(ω)dω = 1. If we plug this,

along with our expression for |Wge|2 into equation (H.1), we arrive at:

1
τsp,c

=
2Qe2|r̂ge|2η2

�ε0n2Veff

Δω2
c

4(ω−ωc)2 +Δω2
c

(H.9)

The ratio of equations H.9 and H.7 gives us the Purcell enhancement:

τsp,0

τsp,c
=

3
4π2

( Q
Veff

)(λ
n

)3 Δω2
c

4(ω−ωc)2 +Δω2
c

η2 (H.10)



287

When the emitter is spatially aligned with an antinode of the field, is spectrally aligned with the

field (ω = ωc), and oriented along the field, we arrive at the Purcell factor Fp quoted in chapter 4:

Fp =
τsp,0

τsp,c
=

3
4π2

( Q
Veff

)(λc

n

)3
(H.11)

We again note that the above is valid when the dipole emission linewidth is narrow in comparison

to the cavity mode linewidth. If this is not the case, the Q used in Fp will not be the cavity Q but

instead will be the emitter’s Q = λe/γe, where γe is the emitter linewidth.

H.2 Atom-photon coupling rate

The coupling strength between a single two-level system and an optical field is given by the dipole

matrix element divide by Planck’s constant. That is:

g =
| < d̂ · Ê > |

�
(H.12)

For the purposes of this thesis, the above formula is used to calculate quantities like the optimal

coupling strength between an atom, or quantum dot, and a single photon within a resonant cavity.

For these calculations, it is assumed that the dipole and the field are aligned, so that g = dgeEmax/�,

where the per photon field strength Emax of equation (H.6) is used, along with some value for the

strength of the electric dipole dge as found in literature.

In many cases, dge will not be the piece of information readily available; rather, the spontaneous

emission rate between the two levels τsp will be. Using equation (H.7), we can easily relate the two

quantities, and then arrive at an expression for g. Doing so yields

g =
1

2τsp

√
3cλ2

0τsp

2πn3Veff
, (H.13)

As defined above, g has units of radians/second; dividing by 2π express it units of Hz, which are

often the units for which g is quoted. To be explicit, I have adopted the convention of writing g/2π

when quoting values in units of Hz, to try to eliminate any confusion.
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Within the literature, the decay rates γ‖ and γ⊥ are sometimes used. γ‖ is a radiative decay rate,

equal to 1/τsp. γ⊥ is a transverse decay rate, and is most generally written as γ⊥ = γ‖
2 + γp, where

γp is due to non-radiative decay (for example, phase-destroying collisional processes). For strong

coupling, it is the total emitter decay rate, γ⊥, that must be exceeded by the coherent coupling rate

g. Within single atom systems, the decay is essentially purely radiative, so that γ⊥ = γ‖
2 is taken. For

these systems, g is then often written in terms of γ⊥ rather than τsp. Doing so yields

g = γ⊥

√
3cλ2

0

4πn3Veffγ⊥
, (H.14)

Within the literature, the decay times T1 and T2 are often quoted [223]; by our definitions above,

T2 = 1/γ⊥ and T1 = 1/γ‖.

In semiconductor-based structures such as quantum dots, an oscillator strength is often quoted

[110, 70]. This oscillator strength f is a dimensionless quantity given by

f =
2mω| < r̂ge > |2

�
, (H.15)

It is found through a calculation of the optical susceptibility χ(ω) of an atom (P(ω) = χ(ω)E(ω),

where P(ω) is the field-induced polarization), and subsequent comparison to the expression gen-

erated by the classical damped, driven harmonic oscillator model of the atom. Reference [229]

presents such a derivation. The QD-coupling rate g can then be written in terms of the oscillator

strength as:

g =

√
e2 f

4ε0n2Veff
, (H.16)
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[156] J.U. Nöckel. Optical feedback and the coupling problem in semiconductor microdisk lasers.

Phys. Stat. Sol. (a), 188(3) 921–928, 2001.

[157] N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre. Eroded
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