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Abstract

Optical microcavities can be characterized by two key quantities. an effective mode volume Vg,
which describes the per photon electric field strength within the cavity, and a quality factor Q,
which describes the photon lifetime within the cavity. Cavities with a small Vg and a high Q of-
fer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics
(cavity QED). Chip-based devices are particularly appealing, as planar fabrication technology can
be used to make optical structures on a semiconductor chip that confine light to wavelength-scale
dimensions, thereby creating strong enough electric fields that even a single photon can have an ap-
preciable interaction with matter. When combined with the potential for integration and scal ability
inherent to microphotonic structures created by planar fabrication techniques, these devices have
enormous potential for future generations of experimentsin cavity QED and quantum networks.

Thisthesisislargely focused on the devel opment of ultrasmall Vg, high-Q semiconductor opti-
cal microcavities. In particular, we present work that addresses two major topics of relevance when
trying to observe coherent quantum interactions within these semiconductor-based systems: (1) the
demonstration of low optical losses in a wavelength-scale microcavity, and (2) the development of
an efficient optical channel through which the sub-micron-scale optical field in the microcavity can
be accessed. The two microcavities of specific interest are planar photonic crystal defect resonators
and microdisk resonators.

The first part of this thesis details the development of photonic crystal defect microcavities.
A momentum space analysis is used to design structures in graded square and hexagonal lattice
photonic crystals that not only sustain high Qs and small Vs, but are also relatively robust to im-
perfections. These designs are then implemented in a number of experiments, starting with device
fabrication in an InAsP/InGaAsP multi-quantum-well material to create low-threshold lasers with
Qs of 1.3x 10* and followed by fabrication in a silicon-on-insulator system to create passive res-
onators with Qs as high as 4.0 x 10%. In the latter experiments, an optical fiber taper waveguide

is used to couple light into and out of the cavities, and we demonstrate its utility as an optical



viii
probe that provides spectral and spatial information about the cavity modes. For a cavity mode with
Q ~ 4 x 10*, we demonstrate mode |ocalization data consistent with Vegs ~ 0.9(A/n)3.

In the second part of thisthesis, we describe experimentsin a GaAs/AlGaAs material containing
self-assembled InAs quantum dots. Small diameter microdisk cavities are fabricated with Q ~
3.6 x 10° and Vigr ~ 6(A/N)3, and with Q ~ 1.2 x 10° and Vgt ~ 2(A/n)3. These devices are used
to create room-temperature, continuous-wave, optically pumped lasers with thresholds as low as
1UW of absorbed pump power. Optical fiber tapers are used to efficiently collect emitted light from
the devices, and alaser differentia efficiency as high as 16% is demonstrated. Furthermore, these
microdisk cavities have the requisite combination of high Q and small Vi to enable strong coupling
to a single InAs quantum dot, in that the achievable coupling rate between the quantum dot and
a single photon in the cavity is predicted to exceed the decay rates within the system. Quantum
master equation simulations of the expected behavior of such fiber-coupled devices are presented,

and progress towards such cavity QED experiments is described.
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Preface

The intent of this preface is to present an informal history of my research as a graduate student at
Caltech. Itismy hope that thisintroduction will provide areadable overview of my research, which
will be described in much greater technical detail in the bulk of the thesis. In addition, | hope that
this section will help the reader understand the logic behind our choices in research topics. On a
persona note, the work described in this thesis has consumed an enormous amount of my time and
energy, and | would like to take this opportunity to document some aspects of our research that are
not included in journal papers. Thisincludes tasks such as infrastructure building, which take place
in any graduate career, but are particularly prevaent when you work for a newly minted faculty
member. Finally, | will use this preface as a means to discuss how our work fitsin with the work of
others, and will attempt to provide the reader with some sense of the progress that has been made
subsequent to our contributions in a given area.
Starting graduate school

Although | officially started graduate school in September, 2001, my introduction to optical
microcavities and photonic crystals began a couple of months earlier, in discussions with Dr. Oskar
Painter, who had not yet joined the faculty at Caltech, but whom | already knew through our work at
XPonent Photonics (a start-up company in nearby Monrovia, CA). Oskar gave me the opportunity
to work with him on a couple of papers hewaswriting. Thefirst wasareview article on how one can
tailor the properties of photonic crystal microcavities [1], while the second was a short letter on the
polarization properties of a pair of modes within a single defect, hexagonal 1attice photonic crystal
microcavity [2]. Along with a careful reading of his thesis [3] and Joannopoulos's and Sakoda's
books on phaotonic crystals [4, 5], working on these papers gave me a thorough introduction to
photonic crystal (PC) microcavities. During this time, Oskar and | had several discussions as to
what type of research he would pursue upon starting at Caltech (asa Visiting Associate in thefall of
2001, and as an Assistant Professor in January, 2002). | committed to joining his group, confident

that | would have the opportunity to engage in the electromagnetic design, fabrication, and optical



characterization of microphotonic devices.

The two projects that Oskar and | discussed in greatest detail were the development of high
quality factor (Q) photonic crystal microcavities, and efficient evanescent coupling between optical
fiber tapers and photonic crystal waveguides (PCWGs). We agreed that | would pursue the former
topic, while my officemate Paul Barclay, who joined Oskar’s group a few weeks after | did, would
focus on the latter. From my experiences at X Ponent Photonics, | was already very familiar with the
finite-difference time-domain (FDTD) method for electromagnetic simulations [6], which is well
suited for studying the loss properties of wavelength-scale devices. As aresult, there were very few
barriers to plunging into research during my first year of graduate school.

Designing photonic crystal microcavities

One of the most interesting and useful aspects of photonic crystal microcavities is their ability
to confine light to an extremely small mode volume (Vegi), approaching a cubic half-wavelength
in the material [7, 8]. These ultrasmall volumes correspond to extremely large per photon electric
field strengths, which tranglate to strong light-matter interactions. Thisis at the heart of a number
of potential applications in quantum optics, nonlinear optics, laser physics, and sensing/detection.
The advantages of an ultrasmall volume are most potent when combined with a high cavity quality
factor (Q), which correspondsto along photon lifetime within the cavity. One specific application of
interest to usis strong coupling in cavity quantum electrodynamics (cavity QED, or cQED), which
examines the coherent interaction of a quantized electromagnetic field with a two-level system,
such as an atom or a semiconductor quantum dot (which, at a first level of approximation, is a
two-level system). Strong coupling places very strict requirements on the cavity used: the atom-
photon coupling rate g, which scales as 1/+/Vest, must exceed the atom decay ratey, and the cavity
decay rate k, which scales as 1/Q. The strong coupling regime (fig. 1) is one in which coherent
interactions between a single atom and a single photon can take place, and is at the core of many
applications of cavity QED in quantum information processing and computing.

Within the optical domain, cavity QED experiments have typicaly taken place in a system
consisting of a single atom coupled to a mode of a high-finesse Fabry-Perot cavity [9]. Over the
past several years, there has been areal push to extend this work to semiconductor-based systems,
where the Fabry-Perot cavity would be replaced by some semiconductor microcavity, and the atom
would be replaced by a semiconductor quantum dot [10]. There are a number of motivating factors
behind this drive, as semiconductor-based systems offer significant experimental simplification in

comparison to the atom-Fabry-Perot systems. In particular, the semiconductor microcavities are



g =-d-E = quantum dot-
photon coupling rate
E = electric field strength
~ 1/Veff1/2
K = cavity field decay rate
~1/Q
Y= quantum dot decay rate

Figure 1. Schematic of quantum-dot-photon coupling in a photonic crystal cavity.

monoalithic elements that should not require active stabilization, and a semiconductor quantum dot
can be naturally integrated in a microcavity during the initial growth of the material comprising
the device. Furthermore, the quantum dot is physically trapped within the device, eliminating the
infrastructure required to trap atoms. Finally, these devices are potentialy scalable and easy to
integrate, as aresult of the planar processing techniques by which they are created.

As | mentioned above, one of the key properties of semiconductor microcavities is the very
small volumes to which they confine light. These small volumes lead to avery strong coupling rate
to even a single quantum dot, so that g/2r ~ 10 GHz for Vit ~ (A/n)3. For comparison, typical
coupling rates in an atom-Fabry-Perot system are on the order of 10-100 MHz. Nevertheless,
even for coupling strengths of several GHz, a cavity Q ~ 10 is needed to be within the strong
coupling regime. As of a couple of years ago, these Qs were not accessible to ultrasmall volume
semiconductor microcavities.

Indeed, when | first started this work, the performance of photonic crystal (PC) microcavities,
in terms of Q, was significantly worse than it is today. The highest predicted Qs from simulations
were on the order of 10* [7, 11], and the highest experimentally demonstrated Qs were an order
of magnitude less at 2,800 [12]. Nevertheless, PC microcavities still seemed to be a preferred
architecture, as the experimentally demonstrated Qs in semiconductor microdisk cavities (~ 12,000
in ref. [13] and ~ 20,000 in ref. [14]) were not sufficiently high to compensate for their increased
modal volumes (over 10 times larger than those of the PC microcavities). Micropost cavities [15,
16] had experimentally demonstrated Qs that were even lower than those of the PC cavities, for
slightly larger mode volumes. Table 1 presents, to the best of my knowledge, the state of the art
for microcavities in early 2002 (in this table, | have only considered experimentally demonstrated
results). The cavities are generaly classified into two types; large mode volume, ultra-high Q

structures such as Fabry-Perot cavities and microspheres, and wavelength-scale, relatively low-Q
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Table 1. Q and Veff for several experimentally demonstrated microcavity structures, as of 2002

Fabry-Perot Microsphere Micropost Microdisk Photonic Crystal
1 1.
| 23
Geometry Material Q Vet (A/N)3) Reference
Fabry-Perot Air (w/dielectric mirrors) 10° 10° [17, 18]
microsphere SO, 10° 10* [19, 20]
micropost GaAs/AlGaAs 2x 108 5 [15]
microdisk GaAs/AlGaAs 1.2x10% 6 [13]
photonic crystal INP/InGaAsP 500 0.3 [8]
GaAg/AlGaAs 2.8x10° 0.4 [12]

structures such as semiconductor microdisks, microposts, and photonic crystals. As our interests
were focused on cavity QED with semiconductor quantum dots, we were most interested in the
development of semiconductor microcavities. The PC cavities appeared to be the most promising
candidate, as their ultrasmall volumes implied that the requisite Qs for achieving strong coupling
would be less than what would be necessary in a micropost or microdisk.

In approaching the design of PC microcavities, Oskar and | set the following goal: atheoretical
Q > 5x10* for Vgt ~ (A/n)3. These numbers were chosen because they would be sufficient, in the
ideal case, to allow for strong coupling experiments in cQED. More important than these numbers,
wewanted to understand and el ucidate the causesfor radiation lossin these devices, and to develop a
fairly general framework that could be used to design high-Q PC cavities. Of particular interest to us
was the development of designs that would be robust to perturbations such as those that one might
encounter in the fabrication of the cavities. This seemed to us to be a crucia point, as relatively
small discrepancies between a fabricated device and the intended structure would, in many designs,
cause the maximum achievable Q to degrade by almost an order of magnitude, such asin ref. [12].

As | describe in chapter 2, the natural way to study losses in these devices is in momentum
space. In particular, by considering the Fourier components of the cavity mode, one can understand
the sources of loss; small momentum components lead to vertical radiation losses, while in-plane

losses occur when the cavity mode contains components in regions of momentum space for which
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the photonic latticeis no longer reflective. Taking the spatial Fourier transform of a generated cavity
mode serves as adiagnostic for understanding the source of lossin agiven design. In addition to our
paper on this topic [21], which was published in July, 2002, Vuckovit and co-workers published a
paper during the same month that also noted the relationship between vertical radiation loss and the
presence of small momentum components within the spatial Fourier transform of the cavity mode
[22].

Rather than just having a diagnostic tool for understanding the performance of a given design,
we were also interested in the development of the designs. Knowing which parts of momentum
space are to be avoided isthefirst step toward this. Asasecond step, we chose to consider modes of
a specific odd symmetry, as this leads to zero DC Fourier components and an automatic reduction
in vertical radiation loss. We combined this with a methodology for tailoring the defect regionsin
these cavities in such a way so as to avoid problematic regions in Fourier space, and used FDTD
simulations to quantitatively calculate the properties of the designs we generated. We were able to
meet our goals, and develop designsin both sguare and hexagonal lattice photonic crystals with Qs
as high as 10° and Vet ~ (A/n)3 [21, 23]. These designs used a grading of the hole radius in the
cavity, both to help achieve high-Qs and to make the cavity robust to perturbations to the design.
We did not attempt to optimize our results, as Qs of 10° were sufficient for the initial experiments of
interest to us, and more importantly, at the time, the experimentally demonstrated Qs for PC cavities
were significantly lower than what had been predicted theoretically, so it was unclear whether further
design optimization would be beneficial.

In addition to using FDTD, we were able to develop a number of semianalytic tools to aid in
the cavity design (chapter 1). One of the most useful tools was a simple symmetry-based analy-
sis that used the basic tools of point group theory to classify the symmetries of PC defect cavity
modes and determine their dominant Fourier components[1, 3]. The results of thisanalysis meshed
perfectly with the cavity design principles described above, and we relied upon it heavily in our
high-Q designs [21, 23]. In particular, this analysis identified the modes within defect cavities in
square and hexagonal lattice photonic crystals that satisfied our symmetry criterion for reducing
vertical radiation loss. Oskar and | wrote a separate article that fully details the devel opment of this
symmetry-based analysis[24], which was published in July, 2003. In the same month, we published
another article [25], which details the development of a Wannier-like equation that yields the en-
velope for resonant modes within PC defect cavities. These two methods are very complementary.

The group theory analysis identifies and classifies the symmetries of defect modes within PC cavi-



6

ties, but has nothing to say about the localization of the modes. The Wannier analysis, on the other
hand, describes the localizing effect of the PC lattice on the defect modes. When combined with the
symmetry analysis, this Wannier method qualitatively matches the results of the FDTD simulations.

After these initial publications [21, 23, 24, 25], we did not return to the topic of PC microcav-
ity design, but several research groups across the world continued to work on this topic, and have
succeeded in developing designs with predicted Q factorsin excess of 10° [26, 27, 28, 29, 30]. Mo-
mentum space design principles remain the basisfor most of these works, abeit in combination with
new geometries such as modified photonic crystal waveguides[28, 30], and the use of inverse design
and optimization methods [31, 29] to help reduce the dependence on the trial-and-error approach
that dominated early cavity design work. From my perspective, the Wannier and symmetry-based
methods remain attractive starting points for any cavity design (whether or not the focusis on high-
Q structures), as they provide a wealth of information with very little computational expense, and
can be used to build physical insight on how to appropriately tailor the cavity geometry for the ap-
plication of interest. Ultimately, FDTD or some other numerical simulation method will be used to
calculate the cavity propertiesin detail, and it is likely that some further amount of tweaking of the
cavity design will be required. During this step, the af orementioned optimization and inverse design
methods will be of great use.
Building the cleanroom and characterization lab

While developing the PC cavity design techniques, | also spent a great deal of time helping
Oskar plan the setup of our labs. Oskar, Paul, and | were able to attend meetings with the project
manager in charge of building our labs, and we carefully designed a cleanroom facility and a char-
acterization lab that would be able to support the experiments that we had planned for the first few
years of the research group. The centerpiece of the cleanroom would be an Oxford Instruments
Plasma Technology (OIPT) inductively coupled plasma reactive ion etch (ICP-RIE) tool clustered
to a plasma-enhanced chemical vapor deposition (PECVD) tool. This tool, along with a Hitachi
cold cathode, field emission scanning electron microscope (SEM), would allow us to do al of the
fabrication steps necessary for creation of optical devices such as the photonic crystal waveguides
and cavities that Paul and | were studying. The ICP-RIE/PECVD and SEM would be located in a
Class 1000 portion of the cleanroom, and would be adjacent to service chaises that would house
the support equipment for the machines (such as vacuum pumps, chillers, gaslines, and bottles). In
addition, the cleanroom would contain a Class 100 section that would house fume hoods, a spinner,

and amask aligner for doing optical lithography. Our characterization lab would initially contain se-
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tups that would allow for the fabrication of tapered optical fibers, optical probing of microfabricated
devices in the telecommunications band (A ~1.5 pm) using these tapers, and microphotolumines-
cence measurements of light-emitting devices. Within the period of September 2001—June 2002,
we ordered the bulk of al of the equipment to be housed in the cleanroom and characterization labs,
and helped install basic equipment such as the optical tables. By June 2002, | had finished the bulk
of our work on the design of high-Q PC microcavities as well as coursework for the year, so that |
could focus exclusively on lab work. That summer, we installed the SEM and ICP-RIE, the latter
of which required a considerable amount of setup time. Oskar, Paul, Tom Johnson (another gradu-
ate student of Oskar’'s who had just joined the group), and | did al of the stainless steel and PVC
plumbing required to service the machines and their accompanying vacuum pumps. By August, we
were ready to begin using the tools that we had spent the last couple of months installing.

In August 2002, Oskar and | flew to Murray Hill, New Jersey, to meet with members of the
guantum cascade laser group at Bell Laboratories, headed by Dr. Federico Capasso. Our primary
collaborator at Bell Laboratories was Dr. Raffagle Colombelli, and he and Dr. Mariano Troccoli
met with us and discussed a project that they and Oskar had initiated earlier, which was the in-
corporation of photonic crystal microcavities within a quantum cascade heterostructure to create
electrically injected microcavity laser arrays operating at mid-infrared wavelengths. Initialy, our
role was primarily to provide photonic crystal design expertise. However, after visiting Raffaele and
Mariano, we |earned that they were having great difficulty etching the quantum cascade heterostruc-
tures using their plasma etching system. Oskar and | agreed to attempt this part of the fabrication at
Caltech, while Bell Labs would remain responsible for material growth, al other device fabrication
steps, and subsequent device characterization.

Developing fabrication processes

After returning from Bell Labs, | began work in the cleanroom in earnest. Having had some
experience in the development of plasma etching processes, | took the lead on developing the | CP-
RIE etch recipes, while Paul was in charge of getting the electron beam lithography to work. For
Paul, this meant starting with a code that had originally been written by a Caltech undergraduate,
Oliver Dial, to control the scan coils and stage of a Hitachi SEM. Paul needed to update the code
for our SEM (a different model than that originaly used), data acquisition card, and operating
system. For me, the ICP-RIE etching would involve building upon my previous experience in
plasma processing to develop recipes for etching silicon and InP-based materials. We had decided

on silicon-on-insulator (SOI) as a platform for near-infrared (near-IR) PCs, due to its low optical
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losses in this wavelength range and the ready availability of high quality wafers from commercial
vendors such as SOITEC. InP-based materials were of potential interest for future experiments with
PC microcavity lasers in quantum-well-based materials, including the quantum cascade photonic
crystal laser project we had agreed to work on with Bell Laboratories.

The development of fabrication processesfor creating micro-optical devicesisreally at the heart
of the work that | have done in graduate school. Very smply put, the physical phenomena that we
have been interested in require superior device performance. For example, as described above, to
reach the strong coupling regime in cQED, wavelength-scale PC microcavities with Qs in excess
of 10* are required. Thus, all fabrication-induced losses (such as roughness-induced scattering and
etch-induced absorption) had to be minimized as much as possible.

The process flow for fabricating a device such as a photonic crystal microcavity typically con-
sists of 1) deposition of a hard mask layer, 2) coating of the sample in electron beam resist and
subsequent electron beam lithography, 3) plasma etching (also known as dry etching) of the mask
layer, and 4) plasma etching of the primary material layer (typically asemiconductor layer in the ap-
plications we consider). For some devices, such as the passive PC resonators and optically pumped
lasers described in this thesis, these steps are followed by a wet etch step to undercut the devices.
For more complicated structures, such as electrically contacted devices, a number of additional
fabrication steps are required. In appendix C, | provide a qualitative overview of some of the con-
siderations that must be taken into account when developing dry etch processes for microphotonic
structures.

Thefirst material system that we had significant success with was the quantum cascade material,
a heterostructure containing dozens of InP-based layers. The requirements on this etch were rela-
tively strict; we needed to etch 4 — 5 um deep holes (with aradius of ~ 1 um) that were as vertica
as possible. In this case, we had the fortune of starting with avery good etch mask, consisting of a
500 nm thick SIO, PC mask that had been fabricated by our colleagues at Bell Labs. The process
we developed for etching the semiconductor layers, which will be described briefly in appendixes
A and C, was able to meet our regquirements, and gave us the first indication that we would be able
to fabricate world-class structures with our system.

At the sametime, we also worked towards fabricating near-IR PCsin silicon and InP. Our group
was exclusively responsible for the fabrication of these devices, so that we needed to develop the
electron beam lithography and all subsequent etches. By September 2002, Paul had succeeded in
adapting the control software to allow us to do the lithography with our SEM, and we began by
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using polymethylmethacrylate (PMMA) as our electron beam resist. We were able to do reasonably
good lithography with this resist, but its performance under dry etching was very poor. There was
no question that we would need to use a dielectric mask before transferring the PC pattern into the
semiconductor layer (either Si or InP), but the performance of the PMMA under dry etching was so
bad that it seemed unlikely that we would be able to suitably etch our dielectric mask (SiO,) with
it. For about four months, we struggled with the fabrication, and attempted to use a two-level mask
consisting of a Au metal layer on top of SiO,, with the hope that the PMMA would be more robust
to the etch that would transfer the PC pattern to Au, at which point the Au would serve as a strong
etch mask for the SiO», layer. Although we made some progress, hone of our results were up to our
expectations, and we did not attempt to optically characterize any of the devices created using these
processes.

In January 2003, we switched electron beam resiststo ZEP-520A, manufactured by Zeon Chem-
icals. Oskar had heard of this resist while at a conference, and in looking at its specifications, we
realized that it was developed to be significantly more dry etch resistant than PMMA. Paul and |
were quickly able to recalibrate our lithography for this new resist, and the resulting PC patterns
looked very good. For the time being, we decided to exclusively focus on Si fabrication, and fur-
thermore, we scrapped the origina process we were working on (an Ar/Cl, etch) and started from
scratch, using a SFg/C4Fg chemistry. As briefly described in chapter 4 and in more detail in ap-
pendix C, this chemistry etches silicon beautifully, particularly for our purposes, where deep etches
were not required (in such instances, a cryogenic temperature etch or the Bosch process etch are
typicaly used). We were quickly able to develop an etch that produced smooth, vertical sidewalls.
Equally important, thiswas alow power etch, so that the ZEP electron beam mask suffered minimal
etch damage. As a result, we tried using this electron beam resist as the only etch mask for the
silicon layer, foregoing the dielectric mask that we had previously attempted to use. This worked
extremely well, so that creation of testable PC devices was imminent. Paul and | calibrated the
€lectron beam lithography to create patterns that matched our designs (for waveguides and cavities,
respectively), and the fina processing step, undercutting of the sample, was relatively smply ac-
complished through a hydrofluoric acid wet etch to remove the underlying SiO, layer of the SOI
material. By the end of February 2003, we were ready to test our devices.

Our plan was to use optical fiber taper waveguides as a method for coupling light into and
out of these PC devices, and to study the characteristics of this coupling to understand the device

properties. Such coupling had previously been demonstrated to silica devices such as microsphere
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cavities [32, 20], and these works served as an inspiration for our research. However, our devices
were significantly different from what had been used in previous demonstrations; we were working
with high-index semiconductor microphotonic elements in which the modal fields, particularly in
the PC microcavities, were significantly more spatially localized. Overcoming the refractive index
mismatch between the fiber taper and the PCWG was at the heart of Paul’s work, as they had been
designed [33] to have a phase velocity (and hence effective refractive index) equal to that of light
propagating through the optical fiber. Asaresult, it was clear that phase matched coupling should be
achievable. When combined with the significant field overlap between the taper and PCWG modes,
this would enable efficient power transfer to take place over the length of the waveguide. For the
PC cavities, we did not employ any specific technique to overcome the refractive index mismatch.
Instead, we were essentially hoping that the field overlap between the fiber taper mode and the
cavity mode would be strong enough to enable some amount of coupling between the two devices;
efficient power transfer was not our initial goal. Rather, we simply hoped to have enough coupling
to be able to use the taper as a means to learn about the modes of these PC cavities.
Quantum cascade photonic crystal microcavity lasers

As | touched on above, while working on the high-Q PC cavity project, | aso had the opportu-
nity to collaborate with Bell Labs on a project involving the integration of PC cavities with quantum
cascade heterostructures. As this project lies somewhat outside the focus of the rest of this thesis,
| have chosen to include a summary of the technical details within appendix A. Nevertheless, this
work presented an exciting opportunity for us, both in terms of collaborating with a very accom-
plished group of scientists at Bell Labs and also in terms of the technical potential of the project.

The basic goal of the project was to create quantum cascade, photonic crystal surface-emitting
lasers, or QC-PCSELs. These devices were of interest to us for a number of reasons. For quantum
cascade lasers, they offered the potential for direct surface emission, a non-trivial property due to
the transverse magnetic (TM) polarization of the intersubband transitionsin QC lasers, but a highly
desirable one for applications such as trace gas sensing (one of the most important applications of
QC lasers). In addition, PC cavities offered the promise of device miniaturization and integration,
allowing for the realization of multi-wavelength laser arrays on asingle chip, again of great potential
for sensing applications. For PC microcavities, success would represent the first demonstration of
an electricaly injected PC microcavity laser, and an important milestone for PC devices.

The PC microcavity design we initially decided to employ was a very simple geometry within

the hexagonal lattice, as our initial goal was simply to demonstrate lasing from a QC-PCSEL, with-
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out particular regard for how high the Q of the cavity was (of course, the Q needed to be high
enough for gain to overcome loss in the cavity). By the time | started working on the project in
earnest in August 2002, the main obstacle was not in design but in fabrication of the devices, and
in particular, the dry etch of the quantum cascade heterostructure. As mentioned above, by the end
of 2002, we had developed a suitable dry etch, and Raffaele and Mariano had worked out all of the
other processing steps. Toward the end of 2002 and in early 2003, they began measurements on
fabricated devices, and lasing action was observed. After carefully examining the data, it became
clear that the cavity modes that we observed in el ectroluminescence measurements were not due to
defect modes, but were rather due to band-edge states (Ilow group velocity modes) in the photonic
lattice. From the perspective of what we had set out to demonstrate, this distinction was relatively
unimportant as the band-edge modes were still confined within the microcavity structure and had
reasonable far-field distributions. However, for future applications, the increased localization and
higher Qs of the defect modes are of considerable interest.

To verify our understanding of these devices, theinitial electroluminescence data, which showed
the tuning of the cavity resonances as a function of the cavity geometry (lattice constant and hole
size) as well as lasing for certain modes that were well aligned with the QC material gain, was
supplemented by additional measurements of the laser mode's polarization and far-field distribu-
tion. These experimental measurements were complemented by FDTD simulations and simple
symmetry-based arguments, and by May 2003, we had a good understanding of how the devices
were functioning. Our principal results were presented in ref. [34], and subsequent publications
presented detailed discussions of device fabrication [35] and lasing mode identification [36].

Around the time of completion of this first round of work, there was a redistribution of the
Bell Labs group to different universities (Raffagle went to Université Paris-Sud as aresearch faculty
member, Mariano became apostdoc in Federico Capasso’s newly formed research group at Harvard,
and Claire Gmachl became afaculty member at Princeton). On our end at Caltech, | continued to
work on the cavity design some [37], but otherwise stopped working on the project to focus all of
my efforts on the near-1R high-Q microcavities. Raviv Perahia has taken over the project at Caltech,
and has been working on devel oping the capability to do alarger chunk of the fabrication at Caltech
(including the electron beam lithography and dielectric mask etching), and on new etch recipes to
handle different QC heterostructures. Initia efforts will be focused on achieving room temperature
operation of the devices (the first devices operated at ~10 K), through improvement of a number of

device characteristics, including the QC material quality, the cavity design and fabrication, and the



12

efficiency of current injection.
First attempts at taper coupling and near-I R photonic crystal microcavity lasers

While | worked with Paul and Oskar on developing the fabrication processes to implement our
photonic crystal cavity and waveguide designs, Matt Borselli took the lead on building a station to
fabricate optical fiber tapers and a second station for probing microphotonic structures with them.
The former essentially consists of a pair of motorized stages that pull on the fiber (in opposite
directions) while it is being heated by the flame from a hydrogen torch. The characterization setup
consists of a maotorized xy stage upon which the sample sits, and a motorized z stage upon which
the optical fiber taper is attached. A scanning tunable laser is used as the input to the fiber taper,
and the transmission past the microphotonic element is detected by a simple InGaAs photodetector.
By February 2003, these two setups were ready to be used in conjunction with our newly fabricated
silicon devices.

My initial attempts at probing our PC cavities with fiber tapers were unsuccessful and somewhat
discouraging; we were not able to see any spectral characteristics of our cavity modes within the
taper’s transmission spectrum. After spending about a week testing a number of different devices,
we became concerned that the technique was simply ill suited for our application; the coupling
between the waveguide mode of the fiber taper and our ultrasmall volume PC cavity mode was just
too small for appreciable power transfer to take place. While | contemplated this possibility, Paul
took over the testing setup and was almost immediately successful in seeing coupling between his
PCWGs and the fiber tapers. His initial results in this area were sent out for publication in late
March, 2003 [38], and demonstrated some of the basic principles of this technique. Over the next
few months, Paul continued to study taper coupling to PCWGs, and was ableto not only demonstrate
highly efficient power transfer to the PCWG mode of interest [39], but also the utility of fiber tapers
as aprobe for the spatial and dispersive properties of PCWGs [40].

Soon after our initia failure at taper coupling to PC cavities, | decided that it was worthwhile
to pursue another route to an experimental demonstration of our high-Q designs. One method
that had been commonly used for studying the Qs of semiconductor microcavities was the use of
an active material to create a light-emitting structure whose emission properties could be studied
[41, 13, 8, 14, 12, 42]. | was aware that this method had some limitations, such as the need to
pump the structure to material transparency in order to achieve a true estimate of the bare cavity
Q, but it was nevertheless an already established technique that would, at the least, give us a strong

indication as to whether we were able to create PC cavities with a Q > 10*. Furthermore, active
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devices such as microcavity lasers were an area of research that we had planned on investigating at
some point, and we had in fact already ordered and set up many of the components necessary to do
microphotoluminescence measurements. Of course, one drawback was that active devices would
require the development of new etch processes. More importantly, as of January 2003, we did not
have access to any material from which such devices could be fabricated.

Luckily, in February 2003, Claire Gmachl put us in touch with Dr. Jianxin Chen, a Bell Labs
scientist with expertise in the growth of InP-based quantum well structures. Jianxin had in fact
aready grown 1.3 um InAsP/InGaAsP multi-quantum-well laser material that was very close in
design to what was of interest to us. We agreed to collaborate on this project, and by mid-April,
Jianxin had provided us with laser material from which we could make our PC microcavity devices.

Starting in March, | began focusing on InP-based PC microcavity lasers in earnest (chapter
3). The fabrication promised to be challenging, as InP is typically considered to be a much more
difficult material to dry etch than Si. Although there are other possible chemistries that can be used,
we were committed to an Ar/Cl, etch due to its relative cleanliness, which is an absolute necessity
for us as we use a single ICP-RIE to etch a number of different material systems with a number of
different gas chemistries. While clean, one problem with the Ar/Cl, chemistry isthat the InCly etch
byproducts are not volatile at room temperature, so that the material will not etch cleanly unless
steps are taken to increase the volatility. The most common way to do this is through heating; in
our QC work, this heating was accomplished by the plasmaitself. Although the material that we
etched in the QC project was very similar to the material we wanted to etch for these near-IR PC
microcavity lasers, it quickly became clear that we could not use the same etch. The QC etchisvery
nonlinear in time, resulting from the finite amount of time (at least a couple of minutes) required
for the etch to heat the sample to some sufficiently high temperature. For the QC lasers, this was
not a problem, as we had a 500 nm thick SiO, etch mask that could withstand the etch for severa
minutes. Such a thick etch mask was possible due to the mid-IR operating wavelength (A ~8 pm)
of these devices, which allows the use of a chemically amplified photoresist (which is relatively
dry etch resistant) as an electron beam resist. For the near-IR (A ~1.3 um) PC microcavity lasers,
we had to use an electron beam resist with much better resolution (such as ZEP 520A), due to the
much smaller feature sizes. These resists are much less dry etch resistant, limiting the thickness of
dielectric mask that could be used.

Fortunately, we had another option to heat the sample and increase the InCly volatility, which

was to directly increase the temperature of the ICP-RIE lower electrode using a resistive heating
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element that the tool came equipped with. We quickly added the necessary plumbing to allow us
to run the ICP-RIE in this heated wafer table mode, which would let us achieve temperatures in
excess of 250 °C. Initial testsindicated that temperatures greater than ~ 150°C would be sufficient
for achieving the volatility necessary to etch the InP cleanly.

Of course, such elevated temperatures precluded any possibility of directly etching into the InP
using only the electron beam resist as a mask, as we did with silicon. We decided to use SO, as
an etch mask, and for the next several weeks, | spent a considerable amount of time and energy in
trying to develop etch recipes for both the SIO, mask and for the InP-based heterostructure layers.
| was eventually able to develop a reasonable SiO, etch, athough it was somewhat fickle in its
performance, and has remained so to this day. One difficulty in etching so many different materials
in one chamber isthat it is hard to be certain that you are starting your etch from some well-known
initial condition. As a result, it is very important for us to develop relatively robust processes.
Nevertheless, the SIO, etch seemed to be at least adequate, and the subsequent InP etch did not
take long to optimize once we committed to using elevated temperatures. By early May 2003, all
of the steps, including the subsequent wet etching steps to release the PC membranes (which are
somewhat more complicated for these structures than the SOI ones), had been worked out to make
the lasers. Chapter 3 discusses the development of these fabrication procedures in detail.

Oskar and | tested the initial rounds of devices together, and we were immediately rewarded
with lasing action in photol uminescence measurements of the first devices we tested. Over the next
couple of weeks, we tested many devices, and were ableto measure cavity Qs of 1.3x10* at material
transparency. This principal result was very exciting, and represented about a5 timesincrease in Q
over what had been demonstrated for aPC microcavity to date[12]. In addition, we were encouraged
to see that our measured Qs were essentialy limited by the resolution of the spectrometer, and
furthermore, were very reproducible from device to device. These results, along with studies of
the lasing mode polarization, light-in-light-out characteristic, and approximate mode localization,
were submitted for publication in late May, and were published in September [43]. In addition, we
wrote a detailed article describing the fabrication of these devices [44], which, along with our new
cavity designs, was clearly instrumental in their superior performance. This point was particularly
apparent to us as Oskar’s own graduate research involved fabrication of PC microcavity lasersin
InP-based multi-quantum-wells, and the discrepancy between our new fabrication processes and the
fabrication processes he had used (which employed a chemically-assisted ion beam etch) was quite

pronounced.
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We initially had many plans for continuing work on these InP multi-quantum-well lasers, in-
cluding studying laser performance as a function of the number of quantum wells in the device,
developing surface passivation methods to reduce non-radiative recombination, and starting a pro-
gram to investigate some interesting phenomenain microcavity physics (such as enhanced radiative
rates due to the Purcell effect or measurements of the spontaneous emission coupling factor). These
plans were never followed up on, however. Initialy, we were more interested in giving the taper
coupling approach another try, and in the long term, quantum-dot-based materials seemed to be a
more suitable choice for some of the microcavity physics experiments. As aresult, we stopped ef-
forts of InP-based near-IR PC lasers after thisinitial round of success. Nevertheless, the Qs that we
demonstrated remain the highest values that have been demonstrated for an InP-based PC micro-
cavity (to the best of my knowledge), and quantum-well-based lasers do have potential for various
applications, such as fluid-based sensing [45, 46, 47] where the additional quantum confinement
provided by quantum dotsis not needed. Furthermore, the fabrication processes devel oped can cer-
tainly be used in combination with structures incorporating |nP-based quantum dots in an InP-based
matrix [48].

Fiber taper probing of silicon photonic crystal microcavities

After completing work on the high-Q PC microcavity lasers in June 2003, we returned the idea
of using the fiber tapers to investigate the cavities. We felt that there were many good techni-
cal reasons for doing so. In particular, Q measurements involving emission from a light-emitting
material are complicated by the need to pump the material to transparency; in practice, the pump
level at which this condition is achieved can be hard to experimentally identify. In addition, these
emission-based measurements are limited by the resolution of the spectrometer used; for us, this
was ~ 0.1nm, but even for instruments with alonger path length, achieving resolutions better than
0.01 nm can be difficult. Other resolving instruments, such as Fabry-Perot optical filters could pos-
sibly be used, but would rely upon collecting a significant amount of emitted power from the PC
cavities, anon-trivial feat. A strictly passive measurement, which we proposed, would instead probe
the cavity transmission (or reflection) through the fiber taper as a function of the wavelength of the
input probe light. The wavelength resolution in such a measurement would then be limited by the
probe laser’s linewidth, which could be lessthan 10 MHz (< 0.1 pm). Passive measurements of PC
microcavities had certainly been done in the past [49], in experiments where an in-plane waveguide

had been fabricated to couple light into and out of the cavity. However, such experiments had their
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own difficulties; coupling light into aPCWG isitself non-trivial, and furthermore, somewhat inflex-
iblein that a waveguide must be fabricated for each cavity on the chip, and the waveguide position,
and therefore the waveguide-cavity coupling, is fixed and cannot be adjusted. On the other hand,
an optical fiber taper waveguide can be fabricated with very little loss (< 10%), and a single device
could be used to probe all of the PC cavities on achip, in arapid and flexible manner. In that sense,
we envisioned the taper acting as an optical probe for chip-based resonant microphotonic elements.

Furthermore, Paul’s experiences in coupling between tapers and PCWGs convinced us that our
initial failuresin coupling to cavities were not fundamental, but were rather due to simple technical
difficulties that could easily be remedied. In particular, he discovered some problems with how our
detectors were set up, which would have prevented us from measuring modest changes in the trans-
mitted signal. Asthe taper-PC cavity coupling was not expected to be particularly strong (unlike the
taper-PCWG coupling), thiswas a vitally important discovery. At the time of our previous attempt
at taper-PC cavity coupling, we also had not properly calibrated our SEM, so that our measurements
of the dimensions of our cavity (such as the hole radius and lattice spacing) were overestimated by
around 10%. As the scanning range of the laser source used in the taper probing measurements was
around 5% of the center wavelength (A=1595 nm), it was certainly important to know the cavity
geometry to areasonably high degree of accuracy.

Thus, when we began our second attempt at taper coupling to the PC cavities (chapter 4), we
were much better prepared. We were immediately able to see some amount of coupling between
a taper and the first set of new SOI PC cavities that we fabricated, and were able to confirm that
the modes were localized defect states. In particular, we were able to demonstrate coupling to the
high-Q mode of interest from our design work (chapter 2), and by July 2003, we had used the
taper probing technique to measure cold-cavity Qs as high as 25,000. This measurement technique
worked extremely well; we could easily probe all of the devices on a chip with a single taper,
and the cold-cavity Q could be accurately determined by measuring the linewidth of the cavity
resonance (within the taper’ s transmission spectrum) when the taper was positioned several hundred
nanometers away from the cavity (to reduce taper loading effects).

In addition to using the taper to determine the resonant wavelength and Q of the cavity modes,
we also began to consider its use as atool to study the spatial properties of the modes. In particular,
by varying the taper’s position with respect to the cavity, the position-dependent coupling could
be ascertained. This coupling was clearly a function of the overlap between the taper and cavity

fields, and would thus, at some level, describe the spatial localization of the cavity mode. We
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fabricated new devices that could be probed along both axes of the cavity, and took measurements
of this position-dependent coupling as the taper was moved along each of these axes. This data
was then compared to the results of a simple coupled mode theory [50] that took into account the
analytically determined taper field and FDTD-calculated cavity field, and the experimental data and
numerical results matched very well. In early September 2003, we submitted a paper detailing the
taper-based measurementsof aSi PC microcavity with an experimentally measured Q ~ 40, 000 and
spatial localization consistent with Ve ~ 0.9(A/n)2 to the journal Nature. Although the Qs that we
measured were only afactor of 3 timeslarger than what we had demonstrated in the multi-quantum-
well laser cavities, we felt that the taper probing technique, which confirmed the simultaneous
demonstration of high-Q and ultrasmall Vg in our PC microcavities, added a significant amount
of content to the work. The demonstrated Q and Ve values were particularly exciting from the
perspective of cQED, where they would satisfy the strong coupling requirements for both neutral
alkali atoms and self-assembled semiconductor quantum dots, with the potential for coupling rates
on the order of tens of GHz, which would exceed both the cavity and atom (quantum dot) decay
rates.

About three weeks later, we learned that Nature had just decided to accept another paper, by
Susumu Noda's group at Kyoto University, Japan, detailing the experimental demonstration of high
Qsin PC microcavities, and therefore would not consider publication of our work. The Kyato group
work [51], which was published at the end of October 2003, showed measurements of Qs as high
as 45,000 in an SOI PC microcavity, using the in-plane waveguide coupling approach. Our rejected
manuscript was submitted to Physical Review in September 2003, and was eventually published as
aRapid Communication in Physical Review B in August 2004 [52]

On the surface, the Kyoto work and our work seem to be very similar, but | have always felt
that within the context of PCs and optical microcavities, there are several important differences. As
| have aready mentioned, our work was partly focused on the application of fiber taper probing
to wavelength-scale semiconductor microcavities, and in demonstrating that the fiber taper could
serve as a useful tool for studying both the spectral and spatial properties of the cavity modes (in
particular, measuring both Q and V). In addition, although both designs employed Fourier space
methods to reduce vertical radiation loss from the cavities, there were some important differences.
Upon glancing upon the geometry of the cavities, the most glaring difference would seem to be
in the complexity of the design; the Kyoto group design simply consists of three missing holes

and two shifted holes within a hexagonal lattice PC. In contrast, our design incorporated a graded
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square lattice in which the hole radius continuously changed as a function of position within the
lattice. Whilewe did use thisto achieve our highest Qs, it was not completely essential for obtaining
reasonably high Qs. We were previoudly able to show, in our simulation work, that Qs of ~40,000
could be achieved in simple square lattice cavities in which the defect consisted of the reduction
in size of two air holes in the lattice. In addition to increasing this maximum achievable Q to
~ 10°, part of the reason for incorporating the grade in hole radius was to make the design robust
to fabrication imperfections, so that Qs in excess of 10* could be achieved even when the cavity
significantly deviated from the prescribed geometry. On the other hand, the Kyoto group design (as
well as other designsinvolving the fine tuning of a small number of holesin the PC lattice) required
very precise control of the cavity geometry to achieve high Qs; small variations in the geometry
could easily reduce the Q by afactor of 10.

We spent the next couple of months exploring this idea more quantitatively, fabricating and
testing different devices and comparing the resultsto simulations. We amassed the datafrom several
devices, and were able to conclude that our design was indeed robust to fabrication imperfections,
from both an experimental and atheoretical standpoint. In particular, we were able to show that the
cavity Q could remain above 20,000 even in the presence of variations in the cavity geometry that
caused the resonant frequency to vary by ~ 10% of its nominal value. These geometrical variations
included perturbations that broke the desired symmetry of the structure, as well as variationsin the
hole radius that were significantly different from the intended grade in hole radius. As described
in chapter 4, there are relatively simple physical explanations for this robustness, which | believe
can be incorporated as principles in future designs of high-Q PC microcavities. We published some
of these ideas and numerical and experimental data on the robustness of our cavities in an article
in Optics Express in April 2004 [53]. Although robustness has not necessarily gained widespread
recognition as an important element of PC cavity designs, | think that eventually it will, particularly
as optimization and inverse design techniques [31, 29] become more commonly used, as robustness
can possibly be entered as a condition within such algorithms. Certainly, from the perspective of
an experimentalist, | can attest to the practical utility of having every device on the chip support a
high-Q mode, rather than an isolated number of devices that precisely match the nominal design.

At this point, although we had been able to show the versatility of the fiber taper as a probe for
the spectral and spatial properties of PC microcavities, asdescribed in detail in areview article[54],
one important thing that we had not yet demonstrated was highly efficient coupling to the cavities.

Our results thus far had been limited to maximum coupling depths of around 10%-20%. On the one
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hand, such levels of coupling were fairly high because the taper is such alow-loss device; coupling
losses to an in-plane waveguide using standard end-fire coupling approaches can easily bein excess
of 3 dB per coupling junction (for a total of 6 dB, or 75 %). On the other hand, phase matched
coupling, such as that which had been achieved for silica microsphere and microtoroid cavities
[20, 55, 56], and by Paul for PCWGs [38, 39, 40], could achieve coupling efficiencies approaching
100 %. There was thus significant room for improvement.

The strategy we adopted, in work led by Paul, was to first couple light from the taper to the
PCWG, which we had shown could be very efficient, and then couple light from the PCWG to the
PC cavity. This had been our plan from the outset, as the PCWGs had been specifically designed
to mode match to our PC cavities [33]. In addition to potentially allowing for very high coupling
efficiencies, this technigue had the advantage of more optimally loading the cavity than direct taper
probing does, so that the loaded Qs can typicaly be much higher. Paul’s results [57] showed a
loaded Q of 3.8x10% for ~ 44% coupling efficiency to a cavity with an unloaded Q of 4.7x10% In
comparison, for direct taper coupling, the loaded Q was ~ 2.0x 10 for a coupling depth of about
10 % to a cavity with an unloaded Q of 4.0x 10%. Having achieved these impressive results by May
2004, Paul then worked on an initial demonstration of what could be done with these fiber-coupled
PC cavities by studying the nonlinear response of these devices. He was able to show evidence
of optical bistability at very low input powers of a couple hundred microWatts, corresponding to
femtoJoule internal cavity energies. These results were published in February 2005 [57], and were
soon followed by several additional studies of nonlinear opticsin silicon PC microcavities (see ref.
[58] and its follow-up articles, for example).

Since theinitial publications on high-Q PC cavities from our group [43, 52, 53] and the Kyoto
group [51], there has continued to be impressive progress in the experimental demonstration of
higher and higher Q PC cavities. The Kyoto group was ableto finetunetheir initial design to achieve
Qs of ~ 10° [59], and more recently, have employed an entirely different design to achieve Q ~
6.0x10°. This very interesting and impressive result relies upon the slight modification (through
adjustment of the lattice constant) of a PCWG mode to form a cavity that has very little vertical
radiation loss, and still has Vit ~1-2(A./n)3 [28]. Even more recently, the group of Masaya Notomi
at NTT Laboratories has used a similar design (this time adjusting the size and position of some
of the PCWG holes) to achieve Q ~ 9.0x10° [30]. One key to these designs is that the PCWG
modes, in principle, have no vertical radiation loss, so that they serve as a good starting point from

which the cavity design can be built. Another key isthat strong localization in these PC |attices can



20

be achieved through very weak perturbations to the lattice, which allows for the creation of defect
modes that do not contain lossy Fourier components (such as those within the cladding light cone).
In some ways, these results mirror, and of course amplify, what we have been able to see in our
graded lattice PC designs, particularly in regards to the idea that a seemingly weak modification
to the PC lattice can still confine light to an ultrasmall volume, which was perhaps not appreciated
in the earliest PC cavity work. This can be seen in the evolution of PC cavity designs, starting
from Oskar’s original work [7, 8] employing a single missing air hole in a hexagona PC lattice,
to some of our designs that graded the lattice hole radius, to these latest designs that utilize small
modifications to a PCWG.

Switching to AlGaAs. Even more fabrication

As soon as we achieved our first results on passive probing of high-Q Si PC microcavities in
June 2003, we began to consider their potential use in cavity QED experiments. There were two
specific experiments of interest to us, involving trapped neutral atoms and self-assembled quantum
dots, respectively. Of course, our group does not have expertise in either atomic physics or material
growth, so both projects would require a collaboration with other groups. At Caltech, we are fortu-
nate to have two research groups in the physics department, those of Professors Hideo Mabuchi and
H. Jeff Kimble, that are world leadersin atomic physics and its application to cQED. Hideo’'s group,
in particular, had aready began to consider the potential for incorporating PC cavities with mag-
netostatic atom chips to create integrated devices in a scalable architecture [60]. Hideo's student,
Benjamin Lev, had aready developed the ahility to trap and guide neutral Cs atoms on microfab-
ricated atom chips [61]. However, despite some initial design work [31], their group had not yet
experimentally demonstrated high-Qsin their PC microcavities, and perhaps more importantly, had
not been able to effectively address the issue of coupling light into and out of the devices.

In early July 2003, Paul, Oskar, and | met with Ben and Hideo to discuss the potentia for a
collaboration, and we agreed that it was something of interest to all parties. Initially, there was not
that much that we could do on our end, as Paul and | still had much work to do in establishing the
efficacy of the taper probing for PC microcavities. Nevertheless, it was useful for us to meet with
Ben on a periodic basis, to learn about his atom trapping setup, and to understand what some of
the biggest obstacles in this experiment would be. The basic proposal and some simple simulations
for the experiment that we planned to do, optical detection of single atom transits through a PC
microcavity, were put together in article that we coauthored with Ben and was published in July

2004 [62].
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It wasimmediately apparent that the oneissue that was most pressing on our end was the demon-
stration of a high-Q, ultrasmall Vg at the near-visible wavelengths at which atomic cavity QED
experiments are conducted. The Si microcavities we had developed would not be option, as Si is
opaque at wavelengths below 1 um. InP-based structures were a possibility, but we instead decided
to go with GaAs-based devices, as that would be the most likely host material for any future exper-
iments with semiconductor quantum dots (QDs). For the atomic physics experiments, pure GaAs
was not a possibility, asit too was opaque at the Cs transition wavel ength of interest (the D2 transi-
tionat A ~ 852.3 nm). Instead, we would use an AlGaAs structure (with an Al percentage of ~ 30%)
which in principle, would be transparent at 852 nm. Asthe refractive index of the AlGaAs structure
would be very closeto that of Si, the PC cavity design would not change, with the exception of the
proper scaling for operating at shorter wavelengths. The fabrication, however, would be completely
different. Although optimization of device fabrication in yet another material system was not avery
attractive project for me, it was certainly a necessity for us to be able to move forward with cavity
QED experiments. Indeed, we placed more importance on this than on any efforts to improve on
the performance of our Si PC microcavities.

After taking my candidacy examination in February 2004, | began calibration of etch processes
for AlGaAs-based microcavities. By this point, we had begun a collaboration with Professors An-
dreas Stintz and Sanjay Krishna at the Center for High Technology Materials at the University of
New Mexico. Andreas and Sanjay are experts at material growth and in particular, have a good
deal of experience in growing self-assembled QDs for applications such as lasers and hyperspec-
tral detectors. They had agreed to provide us with both pure Alg3Gag7As waveguides for the Cs
cavity QED experiments and QD-containing waveguides for the creation of microcavity lasers and
eventual studies of single photon, single QD interactions.

In avery qualitative sense, AlGaAs tends to etch somewhat less easily than Si but more easily
than InP. As aresult, it was not clear as to whether we would have to use a dielectric mask in our
processing, or if we could transfer the PC pattern directly from the electron beam resist as we had
doneinthe Si devices. Other groups had used the direct transfer approach, but the air holes used in
their devices were significantly larger than what ours would be, so that achieving avertical etch for
our devices would be somewhat more difficult. Furthermore, the demonstrated Qs for AlGaAs PC
microcavities had been relatively modest [12, 63] (afew thousand at best), and in order to improve
upon this, we wanted to optimize the fabrication processes as much as possible, even if this meant

resorting to the added steps required to use a dielectric etch mask.
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As| discussin appendix C, we eventually settled on a process that made use of a SINy dielectric
etch mask for the subsequent dry etch of the AlGaAs layer. The key here is that the SiN, can
be etched using a recipe similar to that we used for etching Si. This low power etch minimally
damages the electron beam resist, allowing for the initial cavity pattern to be faithfully reproduced
in the dielectric layer. By August 2004, we were in a position to start testing devices.

Over the previous several months, Matt had begun research on Si microdisk cavities. Thiswas
anatural follow-up to our Si PC cavity work in many ways. The etch processes needed to fabricate
the devices would be identical to what we had aready developed, and the devices could be tested
using the fiber taper waveguides. At that point the highest demonstrated Qs for small mode volume
devices were on the order of 10* [13, 14].

Matt’s results, which were published in October 2004 [64], were truly impressive; he was able
to measure Qs as high as ~ 5x 10° for amode volume of ~ 6(A/n)3. These results, in terms of the
metrics Q/Vert and Q/+/Vesr, which are relevant to processes such as enhanced spontaneous emis-
sion and strong atom-photon coupling, were actually better than what we (or any other group) had
achieved in PC cavities. For applications requiring the introduction of another material to couple to
the optical field, such as cavity QED with neutral atoms or colloidal quantum dots, the microdisk
geometry was not optimal, asits peak electric field lies buried within the semiconductor layer. How-
ever, for experiments involving embedded materials, such as semiconductor quantum dots (which
was to be my primary focus), they are completely suitable. Furthermore, one particularly attractive
aspect of Matt’s results was that coupling depths of ~ 50% could be achieved while still maintaining
aloaded Q > 10°. Thus, not only could the fiber taper be used to probe the Q and spatial localization
of the microdisk modes, it could serve as an efficient coupler as well. Although Paul had already
established the method for efficiently coupling to our high-Q PC microcavities by this point, the
simplicity of being able to directly couple to the microdisk while still maintaining a high-Q was
certainly appealing.

In my estimation, the microdisks seemed to be a good starting point for future experiments. For
much of the work we intended to do, including microcavity-quantum-dot lasers and chip-based cav-
ity QED involving single quantum dot, single photon interactions, the cavity geometry is by itself
not necessarily important; all of the important device properties are encapsul ated by the cavity’'s Q,
Veit (More precisely, the peak electric field strength at the location of the emitter), and g, aparame-
ter that defines the collection efficiency of photons from the cavity. Matt’s results had clearly shown

that the microdisks were very competitive in these regards. In addition, from a purely practical
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standpoint, high quality microdisks are in many ways much easier to fabricate than PC cavities (in
terms of the requirements on sidewall angle, as one example). Thus, when starting new experiments,
it seemed like an appropriate strategy was to first use microdisk cavities as away to observe the ba-
sic physical phenomena of interest. Ultimately, PC cavities have a number of interesting properties
that are somewhat unique to them (for example, very high spontaneous emission coupling factors),
and they are certainly interesting from the perspective of future experiments involving integration
of multiple devices on a chip, where the truly planar geometry of the PCsis a significant advantage.
We thus planned to begin experiments by using microdisk cavities, and would switch to PC cavities
when many of the experimental details had been worked out, or when we wereinterested in studying
phenomena that would be specific to them.

Quantum dot microdisk lasers

Fabrication of the AlIGaAs microdisk cavities was accomplished through largely the same fab-
rication steps as what we had developed for the PC cavities. The primary differences were sight
adjustments in the etch chemistries for the SiNk and AlGaAs dry etches, to make the disk sidewalls
as smooth as possible, even at the expense of sidewall verticality. The reason for this is that for
most microdisk geometries, sidewall angle is not nearly as important an influence on Q asiit isfor
PC cavities, but sidewall roughness is. Another important element of the microdisk fabrication is
aresist reflow process that Tom had developed for the Si microdisk cavities. This process largely
eliminates radia variations in the mask, thereby improving the circularity of the disk and reduc-
ing surface scattering losses. Matt and Tom had recently used this technique to demonstrate Qs as
high as 5x 10° in a 60 pm radius disk, and they also made devices that exhibited Q ~ 1.25x 106 for
Vest ~ 14(A/n) [65].

The first devices | tested were microdisks fabricated in a passive Alg 3Gag.7As waveguide (no
guantum dots), for potential use in the neutral Cs atom cavity QED experiments. At the desired
operation wavelength of A ~ 852 nm, the devices did not perform as well as hoped, and we did not
observe Qs greater than ~ 2x10*. On the other hand, the devices performed much better at longer
wavelengths, with Q ~ 1.5x10° exhibited in the 1500 nm band. Over the next several months, this
behavior was observed repeatedly, both by me and by Paul, who took over our group’s portion of the
neutral atom cavity QED project upon completion of hiswork on nonlinear opticsin Si PC cavities
[57]. Our working hypothesisisthat deep impurity states (caused by O, incorporation, for example)
inthe AlGaAs are causing absorption at wavel engths above the semiconductor bandgap (around 700

nm for Alg.3Gag 7AS) but below 1 um. There is some support for this theory in literature, through
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measurements of waveguide loss [66]. We are currently working with Kevin Hennessy in the group
of Professor Evelyn Hu at UC Santa Barbarato study this phenomenon abit more closely, with Chris
Michael taking the lead on this project from our end. If true, this will have a significant impact on
QD-microcavity devices, as much of the current work is being done at wavelengths below 1 pum.

Our measurements within the 1500 nm band were quite promising as far as our QD-based de-
vices were concerned, asthey were grown by Andreas and Sanjay to operate in the 1.2-1.3 um band.
The most immediate application for these devices would be room-temperature lasers. We began this
investigation, described in chapter 5, by fabricating disks in an epitaxy containing three stacked lay-
ersof quantum dots. Such an epitaxy (often times containing even more layers of dots) is often used
in QD laser research as aresult of the increased amount of gain relative to a single layer of QDs.
We were quickly able to demonstrate optically pumped lasing from such devices, and the thresholds
were quitelow, closeto the predicted transparency level for the material. These low thresholds were
consistent with the cavities sustaining very high Qs. Indeed for a cavity Q > 3x10%, the modal gain
from asingle layer of dots was predicted to be sufficient to achieve lasing. Thiswould be a signifi-
cant demonstration, as at that point, no other microcavity-based device had been able to demonstrate
room temperature lasing from a single layer of QDs (due to the relatively high Qs required).

We were soon able to demonstrate optically pumped lasing from asingle layer of QDs, at room
temperature, for both pulsed and continuous wave pumping. The threshold pump values were again
quite close to the predicted transparency levels, indicating that the cavity Qs were most likely much
larger than the minimum value (Q ~ 3x10%) needed for lasing. As this value is already higher
than what could be resolved with our spectrometer (which has a resolution limit of around 0.1
nm), this would typically be all that could be quantitatively said about the cavity Q using standard
measurement techniques. Thereisthe possibility of fitting the lasing datawith arate equation model
with the Q as a free parameter, but such fits depend upon a number of different parameters, such as
the QD radiative lifetime, internal efficiency, and collection efficiency, which will not necessarily
be precisely known, and the estimated Qs will have arelatively large uncertainty.

Using the fiber taper probing technique in conjunction with knowledge about the microdisk
mode structure allowed us to learn a great deal more, however. In particular, we used the taper to
probe the cavity modes within the 1.4 um wavelength band, which was far enough red detuned from
the emission wavel ength that we did not expect to see any effectsrelated to the absorption by the QD
gain material, thus giving us an accurate estimate of the cold-cavity Qs of the modes. This would

give us the desired information about the quality of our fabrication, and would let us know whether
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our cavities were good enough for future experiments, such as those in cQED. It would aso give
us additional information about the lasing modes we had studied through photoluminescence. Of
course, a mode that we study in the 1.4 um band is not the same mode that is lasing. However, by
carefully studying the cavity’s spectrum and comparing it to simulation results, we can study amode
within the 1.4 ym band that has the same polarization and vertical and radial order as the lasing
mode, and only differs in its azimutha mode number (i.e., the number of lobes in the azimuthal
direction). Aslong asthe radiation lossthat occurs when the mode tunnels around the disk perimeter
is not the dominant loss mechanism, modes whose azimuthal orders are only dlight different will
behave very similarly; in fact, modes at the longer wavelength will have lower radiation-limited Qs.
Aslosses due to mechanisms such as surface scattering, surface absorption, and bulk absorption are
not expected to be drastically different between the 1.2 um and 1.4 ym bands, the Q measured in
the 1.4 um band can give a good estimate of the Q expected for the lasing modein the 1.2 um band.

Using this taper coupling technique, we were able to demonstrate Qs as high as 3.6x 10°. These
Qs were over a factor of 10 higher than anything that had been demonstrated in an AlIGaAs mi-
crocavity. The high-Q resonances we saw were actually doublets, corresponding to standing wave
modes that form when the traditional clockwise and counterclockwise modes of the disk are coupled
and split by surface scattering. Such doublet modes were also seen by Matt in hisinvestigation of Si
disks[64], and are indicative of acavity lossrate that is|ow enough that coherent coupling between
the propagating modes of the disk can occur. For our disk geometries (255 nm thick and 4.5 pm
in diameter), Vesr ~ 6(A/Nn)3. For optimal coupling to a single quantum dot, this corresponded to
a QD-cavity coupling rate g/2r ~ 11 GHz, which would greatly exceed (by over a factor of 10)
the demonstrated cavity decay rate k/2n ~ 0.4 GHz and typical QD decay rates of y, /2n ~1 GHz.
These results indicated the potential for strong coupling in this system.

In addition to the Vg and cold-cavity Q of these cavities, we were also able to demonstrate rel-
atively efficient coupling to them, with power transfers very similar to what Matt had demonstrated
in the Si microdisks. We measured coupling depths as great as 60 % for aloaded Q ~ 10°. Thiswas
akey result; it indicated that we could still achieve strong coupling (with g/x ~10) while aso ob-
taining efficient coupling into and out of a coupled QD-microdisk system. For future experiments,
this will be of great importance. Experiments in guantum optics will involve very low light levels,
and efficient light collection is necessary from a detection standpoint, particularly at wavelengths
greater than 1 um, where InGaAs detectors, which suffer from significantly poorer performance

characteristics than the Si detectors used at shorter wavelengths, are used. From the standpoint of
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future work in quantum information processing, applications in linear optics quantum computing
[67, 68] require a near-unity collection efficiency of single photon pulses. Although not currently
at that level, our results were a significant step towards these goals, and the path to more efficient
coupling through tailoring of the disk geometry was apparent. Indeed, Matt and Tom have since
demonstrated critical coupling in the Si microdisks.

This first set of results on optical loss and lasing characteristics in AlIGaAs microdisk cavities
with embedded quantum dots was submitted for publication in December 2004, and was published
in April 2005 [69]. At this point, we began to seriously consider the possibility of doing cavity
QED experimentsin these resonators. By this point, vacuum Rabi splitting due to the interaction of
a single QD with a microcavity had just been demonstrated by three groups [70, 71, 72], through
measurements of the spontaneous emission from the devices. Although our devices had the potential
for exhibiting Rabi splitting with a greater ratio of g/x, it was clear to us that the most important
contribution that we could make was to develop cavity QED experiments using the fiber taper asan
input-output channel, asit appeared to be the key to opening up a number of future experiments and
device applications. Thiswould require usto set up anumber of different pieces of equipment inthe
lab, such as a spectrometer with avery sensitive detector for studying the emission from single QDs,
a laser source for doing near-resonant pumping and spectroscopy of the coupled QD-microcavity
system, and the integration of the fiber-coupled devices in aliquid He cryostat. The last point was
particulary important and challenging, as it had not yet been demonstrated and was essentially at
the heart of our proposed experiments.

While waiting for some of the experimental equipment to arrive, we decided to further investi-
gate the performance of our microdisk-QD lasers at room temperature (chapter 6). In particular, we
were interested in explicitly demonstrating the utility of the fiber taper for future measurements of
QD-containing microdisks. To this point, we had used the taper as means to probe the microdisk
Qs, but there obviously was significant potential for using the taper as means to collect the emis-
sion from optically pumped devices, and furthermore, as away to pump the devices as well (to this
point, our pumping and collection was done through standard free-space optics). To most explicitly
compare the efficiency of fiber taper collection with free-space collection, we revamped our pho-
toluminescence measurement setup to allow for the microdisks to simultaneously be probed with
optical fiber tapers while still allowing for standard free-space pumping and collection. This a-
lowed us to continue to pump the devices with a free-space beam while comparing the amount of

collected power through the free-space optics with that collected through the fiber taper. The differ-
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ence was quite dramatic; whereas before we were only able to collect hundreds of picoWatts from
our lasers, we were now abl e to collect as much as a couple hundred nanoWatts from the devices. To
most precisely quantify our results, we compared the differential efficiency & of the laser with and
without the fiber taper collection, and saw that the taper collection improved & by almost two orders
of magnitude. By collecting a significant fraction of the laser emission, we put ourselves in the
position to more quantitatively study some aspects of the laser’s behavior, particularly subthreshold,
where the poor collection typically obtained through free-space optics makes careful investigations
of device behavior difficult.

Not only is the collected power significantly greater when using the fiber tapers, but the num-
ber and variety of modes that are observed is strikingly different. This is not too surprising; for
microdisks, free-space collection essentially relies upon imperfections in the disk to scatter light
vertically into our collection optics. Thisis arelatively inefficient process, and becomes increas-
ingly more inefficient as device fabrication improves and higher and higher Q devices are realized.
The fiber taper, on the other hand, directly evanescently couples light out of the disk WGMs, and
can be a very efficient process. Although loading due to the taper does degrade the cavity Q, the
key point is that this loading is efficient in that the added loss is primarily due to coupling into an
observable channel (the fiber taper); the lost photons are collected into the fiber and are freeto in-
teract with some other part of the system, such as another cavity or photon counting detectors. This
is not the same as loss due to absorption, for example, where the lost photons are not detectable
and are of no benefit. This point is somewhat obvious in that it istrue for al cavities; in asimple
Fabry-Perot cavity, for example, onetypically degradesthe reflectivity of one of the mirrorsto allow
for light to be coupled out of the cavity. Despite the simplicity of this concept, it is nevertheless
often misunderstood in the literature.

In the early part of 2005, we gained access to two new laser sources, which alowed us to do
two additional measurements. The first laser source was a 980 nm external cavity laser that had
been built by some members of our lab; we were able to use this as a source for optically pumping
our microdisks directly through the fiber taper. We were thus able to make purely fiber-coupled
devicesthat nolonger relied upon any free-space optics. From atechnological standpoint, the device
simply consists of a fiber input, to be hooked up to an optical pump source, and a fiber output,
through which the emitted laser light would propagate. Such purely fiber-coupled devices had
been previously demonstrated by the Vahala group at Caltech in the context of erbium-doped glass

microsphere and microtoroid cavities [ 73, 74]; our work extended thisto the regime of wavelength-
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scale, semiconductor-based devices, for which interesting gain materials such as quantum well and
guantum dot layers can be incorporated. The second laser source we acquired was a 1250 nm
scanning tunable laser. The primary purpose of this laser was for future experiments employing
near-resonant pumping of QDs at cryogenic temperatures (Andreas and Sanjay had recently grown
new samples for us that emit at ~ 1.32 um at room temperature and ~1.25 ym at 4 K). For the
time being, we were able to use it in conjunction with our current devices (which emitted at ~1.2
M) to measure the cavity Q at a wavelength that was much closer to the peak of the QD emission
spectrum. Because the wavelength dependence of surface state and material absorption in AlGaAs
is not particularly well known, and in addition, we had aready seen strong differencesin the cavity
Qs between the 850-1000 nm band and the 1400 nm band, it was important for usto be sure that the
Qs would still be high at wavelengths relevant to future cavity QED experiments. We were indeed
able to measure Q > 2x10° at ~1250 nm, with the discrepancy in Q between the 1400 nm band
and the 1250 nm band likely being due to absorption from the tail end of the inhomogeneous QD
spectrum.

We wrote arelatively detailed paper on the various results concerning photol uminescence mea-
surements using optical fiber tapers and submitted it for publication in June 2005; it was published
afew monthslater in November [75]. We subsequently continued our study of these QD-microdisk
devices by considering how device performance (cavity Q, Ve, and lasing threshold) scales in go-
ing to smaller sized disks. In particular, we were interested in seeing how these microdisks could
compare to devices such as photonic crystal microcavities, both in theory and in practice. On
the theoretical end, we employed a finite element eigenfrequency solver method to calculate the
radiation-limited quality factor Q;ag and mode volume Vg of thefirst order radial modes of D=1.5-
3 um diameter microdisks in the 1200-1400 nm band. These simulations had been devel oped using
the FEMLAB software by Matt, who had in turn received some assistance from Sean Spillane (a
graduate student in Professor Vahala's group who had previously used FEMLAB to study micro-
toroid resonators). From the simulations, we were able to see that standing wave modes in the
microdisks could have Qrag > 10° for Ve ~ 2(A/n)3, corresponding to adisk diameter of ~1.5 pum.
Furthermore, Q, a4 sharply increases asthe diameter increases, so that Qg > 108 can be achieved for
Vet ~ 3.5(A/n)3. Such values are quite comparable to the highest values predicted for 2D photonic
crystal microcavities [28, 30]. From these simulation results, we could then calculate the predicted
coupling and decay rates for interactions with asingle QD. One significant difference between QD-

based cavity QED and atomic-based cavity QED is in the emitter decay rates; atypica QD might
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have a radiative decay rate ys/2n ~0.2 GHz, but due to non-radiative dephasing, the total decay
rate v, /2m will often be closer to 1 GHz (a neutral Cs atom, on the other hand, has a transverse
decay ratey, /2n ~ 2.6 MHz). An equivalent cavity decay rate would correspond to Q ~ 10°; this
indicates that there is some optimum diameter at which the ratio of the QD-microcavity coupling
rate g to the maximum decay rate in the system (either y, or the cavity decay rate x) is maximum.
From our simulations, this diameter is ~1.5-2 ym.

We then fabricated 2 pm diameter microdisks and studied their Qs and lasing properties using
the taper coupling techniques we had already established. These devices were fabricated in the
latest material that Andreas and Sanjay had grown, which had been optimized for room temperature
emission at ~1.32 um and low temperature (4K) emission at ~1.25 um. By taper testing the devices
inthe 1.4 um band, we were able to demonstrate Qs ashigh as 1.2 x 10° for Vg ~ 2.2(A/n)3. Weaso
observed room-temperature, continuous-wave lasers with threshold pump powers as low as 1 pW
of absorbed power, and used the fiber taper to create devices with differential collection efficiencies
as high as 16 %. From a pure device performance standpoint, these devices were outstanding; the
demonstrated lasing thresholds were orders of magnitude smaller than what had been demonstrated
by other groups for microcavity-QD lasers. Thisisaresult of the ultrasmall volume of these cavities
and the correspondingly small number of QDs that need to be inverted (all the more so because we
are only using a single layer of QDs); the ability to achieve lasing from such a small amount of
gain is made possible by having a high cavity Q. Our study of these small diameter microdisks
with embedded quantum dots was submitted for publication in November 2005, and published in
February 2006 [76].

Towards cavity QED experiments

The most recent devices we had fabricated showed significant promise for cavity QED experi-
ments, and over the past few months, we have begun to equip our lab to do such work. Thisincludes
setting up a continuous flow liquid He cryostat, which would alow us to reduce our sample tem-
peratures to ~4 K, a necessity in order to reduce non-radiative dephasing in the QDs, as well as a
0.5 m spectrometer system with aliquid-nitrogen-cooled InGaAs detector. Even with such a detec-
tor, single QD detection at wavelengths above 1 um is very difficult, due to the already-mentioned
poorer performance of InGaAs detectors relative to Si detectors.

With this equipment in place, we are in principle in the position to observe vacuum Rabi split-
ting in the spontaneous emission from a single QD in a semiconductor cavity, as has been recently

demonstrated by three groups at the end of 2004 [70, 71, 72]. Thisis not to say that such a demon-
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stration will be trivial; we certainly have to work hard to optimize our photoluminescence setup to
be sure that we can observe single QD emission, but the techniques for doing so have been estab-
lished by many research groups, although fewer have done so at the longer wavelengths at which
our devices operate. We are most interested in performing a dlightly different experiment, however,
where Rabi splitting will be observed in the transmission (or reflection) past the cavity. This will
be a unique experiment as a result of our capability to efficiently couple light into and out of the
cavity, which can allow us measure the cavity response as opposed to spontaneous emission. In
this sense, it will make our semiconductor-based system quite analogous to the neutral atom cavity
QED experiments, where Rabi splitting is typically observed in the cavity’s transmission spectrum
[77, 78]. Most important, however, isthe potential of this fiber-coupled system for observations be-
yond vacuum Rabi splitting, such as photon blockade [79] or few photon nonlinear optics. Chapter
8 presents a further discussion of some of these topics.

As our goal was to make the fiber taper an integral part of our cavity QED experiments, it was
necessary to figure out how to best integrate it within our liquid He cryostat. In some ways, our
problem paralleled the problem that Paul and Ben were facing in trying to integrate fiber-coupled
microcavities into a UHV chamber for neutral atom cavity QED. They had decided that the appro-
priate way to tackle this latter problem was to try to robustly mount the taper to our microcavity
chip with a UV-curable epoxy. Thiswould result in afiber-pigtailed device that, ideally, would be
portable and easy to integrate in existing setups. Paul spent many weeks tackling this challenging,
yet tedious task. There was little room for error, as a taper movement on the order of a micron
would eliminate coupling to the cavity. A number of different methods and strategies were tried but
were at best partially successful. Towards the end of the summer of 2005, however, he devel oped
a technique that affixed the taper to on-chip support structures using microdroplets of UV-curable
epoxy. This technique worked amazingly well, to the point that it was easier to break the support
structures free from the rest of the chip than it was to remove the taper was from the support struc-
tures. Paul submitted these results, along with some impressive measurements of Q ~ 4x 106 for
a SiNy microdisk with Vit ~ 15(A/n)3, for publication in April 2006 [80]. These SiNy microdisks
aretransparent at A ~ 852 nm, making them suitable for the Cs atom cavity QED experiments.

In the summer of 2005, Christopher Michael began working full-time in our group, and began
working with me on the QD-microcavity project. In particular, hetook thelead on trying to adapt the
mounting techniques that Paul had developed for our low temperature setup. Of course, the primary

concern here was the behavior of the UV epoxy at low temperatures. Chris was quickly able to
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reproduce Paul’s mounting results for our AlGaAs microdisks at room temperature, and we had no
significant difficulties in physically integrating the taper-coupled device into our cryostat. During
the cooldown, however, the taper came free at around 200 K. Chris and | made multiple additional
attempts at cooling down mounted samples over the next few weeks, and tried a number of heat-
curable epoxies that in principle had good low temperature performance. None of these attempts
succeeded, however. One important point is that the microdroplets of epoxy that we were using
were significantly less than what any of these epoxies had been tested at during manufacturing. By
mid-November 2005, we began to re-assess the situation.

Because Paul and Ben weretackling asimilar problem, it seemed to make sensetotry to leverage
their recent success. In doing so, we overlooked the important point that Paul and Ben were doing
taper mounting, rather than active positioning with mechanical stages, in part out of necessity, as
they needed to make a device that was of low enough profile to avoid impeding any of the cooling
and trapping laser beams within their vacuum chamber. This was not an al an issue for our QD
work. Although the experiments using taper-mounted deviceswould potentially berelatively simple
and elegant (and inexpensive), it is certainly not necessary, particularly in early experiments where
the primary focus is on the physica phenomena we hope to see. We thus began to explore the
possibility of incorporating a positioning setup within the cryostat. By the end of December 2005,
| had worked out a design that would significantly modify our cryostat and let us integrate piezo-
actuated stages into the chamber. The cryostat manufactures (Janis research) began construction of
the modified partsin early 2006, and we ordered a set of piezo-actuated stages that were specifically
engineered for operation at low temperatures and high vacuums.

While waiting for the new equipment to arrive, | began to more quantitatively investigate some
of the phenomena we might expect to see in our experiments. This gave me the opportunity to learn
some of the quantum master equation and quantum trgjectory formalisms common to quantum
optics research. Using the Quantum Optics Toolbox for Matlab developed by Sze Tan [81, 82], we
began to simulate a coupled QD-microdisk system using the Q and Ve values we would expect
for our devices. One question of particular interest to us was how, if at all, the QD-microcavity
interaction would differ in our devices, which had Qs that were high enough that surface scattering
would couple the propagating modes of the disk and create standing wave modes. One immediate
consequence of having standing wave modes s that their mode volumes are approximately half that
of the traveling wave modes; the peak electric field strength for a standing wave mode is therefore

V/2 times larger than that for a traveling wave mode. Of course, another consequence is that the
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Table 2: Experimentally demonstrated optical microcavities as of early 2006. The scanning electron
microscope (SEM) images are for devices fabricated in the Painter research group (Si pdisk image
courtesy of M. Borselli and SiNy pdisk image courtesy of PE. Barclay).

InPPC i Si pdisk AlGaAs udisk SiNy pdisk
Geometry Material Q Vert (A/N)3) Reference
photonic crystal | InP/InGaAsP 1.3x10% 1.2 [43]
Si 9.0x10° 1.7 [30]
S 6.0x10° 12 [28]
GaAgAlGaAs 2.0x10% 1.0 [71]
microdisk S 1.3x 106 14 [64]
5.0% 10° 188 [65]
GaAS/AlGaAs 3.6x10° 6 [69]
1.2x10° 2.2 [76]
SiNy 3.6x10° 15 [80]
microtoroid SO, 1.0x 108 500 [56]
4.0x108 160 [83]
micropost GaAs/AlGaAs 1.3x10% 16 [84]
2.8x10* 79 [84]
AlGaAS/AlO 4.8x10* 51 [85]

new standing wave field would have nodes for which the QD-cavity interaction would be zero. We
wanted to understand a bit more quantitatively how the system’s spectral response would behave
within different parameter regimes, where the quantities of interest are the QD-photon coupling rate
g, the cavity decay rate k, the QD decay rate vy, , and the amplitude and phase of the backscattering
parameter 3. Finaly, the per photon electric field strengths within these cavities are so large that
nonlinear optics at the single photon level becomes a possibility. Our initial consideration of these
topics are the focus of chapter 8.

Intable 2, | have updated table 1 to report overall progressin the field that has occurred during
the time of my graduate research. This table, which contains experimentally demonstrated values
for Q and Ve for a number of different microcavity geometries in different materials, is a good

indication of the large amount of effort that has been placed on developing microphotonic struc-
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tures with low optical losses (other types of devices, such as PC waveguides, have also exhibited
markedly reduced |osses over the last few years, athough | have not included these structures within
thetable).! In addition to the semiconductor microcavitiesthat | have focused onin thisthesis, there
has been significant progress in the development of chip-based dielectric cavities, such asthe SO,
microtoroid cavities first demonstrated by Deniz Armani in Professor Kerry Vahala's group at Cal-
tech [56], which exhibit Qsin excess of 100 million, and the SiNy cavities demonstrated by Paul in
our group [80], which have Qs of afew million and mode volumes that are significantly reduced in
comparison to the microtoroid geometries. As these structures are fabricated in materials that are
transparent throughout the visible and near-IR spectrum (unlike high-index semiconductors such as
Si, GaAs, and InP), they have potential for integration with anumber of systems, including colloidal
guantum dots, impurity statesin crystallinefilms, and alkali atoms, which al have optical transitions
at lessthan 1 um. In general, the results of table 2 indicate that the field has significantly and rapidly
matured, through a combination of progress in fabrication technology, our understanding of how to
design these devices, and in the devel opment of tools with which these devices can be probed. For
guantum optics applications, this means that we are finally in the position to take advantage of the
intense electric fields that are supported by these ultrasmall volume microcavities, in order to study
coherent light-matter interactions in solid-state systems.

The organization of thisthesisisasfollows. Part | detailsthe design and experimental realization
of ultrasmall volume, high quality factor photonic crystal microcavities. Measurements of InP-based
multi-quantum-well lasers and passive Si resonators are presented. Part 11 is focused on microdisk
resonatorsin the AlGaAs system. These microdisks contain anintegral layer of InAs quantum dots,
and measurements of the loss properties and lasing characteristics of these devices are presented.
Simulations of the predicted behavior of these structures in the strong coupling regime of cavity
QED are aso considered. Finally, the appendixes contain relevant background material for the

topics discussed within the body of the thesis.

1n addition to the cavities described in this table, there have been significant effortsin developing new cavity geome-
tries. These include defect cavitiesin full three-dimensional photonic crystals [86] and other types of cavities employing
the distributed Bragg reflection confinement mechanism, including circular Bragg resonators [87, 88] and Bragg " onion”
resonators [89].
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The first part of this thesis details work on planar photonic crystal microcavities. Chapter 1 dis-
cusses two semi-analytic tools for studying modes within these structures, while chapter 2 reviews
a methodology for design of high quality factor cavities, and presents cavity designs within differ-
ent photonic crystal lattices. Finally, chapters 3 and 4 describe the experimental implementation
of these designs within an InP-based multi-quantum-well material and within silicon, respectively.
The former chapter presents photol uminescence measurements of the InP-based devices, while the
latter chapter utilizes an optical fiber taper waveguide to passively probe the properties of the silicon

resonators.
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Chapter 1

Semianalytic Methods for Studying
L ocalized Modes Within
Two-Dimensional Photonic Crystals

The design of photonic crystal (PC) based optical elements has often relied on numerical ssimula-
tions using methods such as finite-difference time-domain (FDTD) [6, 7]. While FDTD provides
awealth of detailed information about the system under consideration, it has the drawback of be-
ing rather computationally intensive and time consuming. In this chapter, | detail two approximate
analytic methods that are of great use in studying planar PC cavities (fig. 1.1). Thefirst is a group-
theory-based analysis [24] that provides information about the symmetries and dominant Fourier
components of defect modes within hexagonal and square lattice PC cavities. The second method
[25] is a Wannier-like equation analysis that describes how the photonic lattice provides localiza-
tion for the cavity modes. Taken together, these two techniques can provide approximate modal
field patterns that reproduce many of the detailed features of the cavity modes generated by FDTD
simulations. They thus serve as a starting point from which amore detailed analysis or optimization

of the cavity design can proceed.

1.1 Symmetry-based analysis

1.1.1 Introduction

The work described in this section is largely based on ref. [24], and is presented here in a dightly
different form, where | have omitted some results that are not utilized in the rest of this thesisin
favor of more detailed derivations of some basic results. The principal thrust of the analysis is

contained in sections 1.1.2 and 1.1.3, which outline the application of group theory in producing
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Figure 1.1: lllustration of atwo-dimensional photonic crystal cavity in a slab waveguide structure.

an approximate description of the resonant modes of the defect cavities in hexagona and square
host photonic lattices. Section 1.1.4 then presents the results of FDTD simulations, confirming the
results of the approximate group theory analysis while providing detailed properties of the defect
mode resonances beyond the scope of the simple symmetry analysis.

The spatial symmetrieswithin Maxwell’s equations are determined by the translation and rotary-
reflection symmetries of the dielectric function, €(r) [90]. The theory of space groups [91] can
then be used to predict and categorize the resonant modes of defects within PC structures. A two-
step process is implemented here. First, modes of the unperturbed slab waveguide are used as
a symmetry basis to generate approximate field patterns for the PC modes at the high symmetry
points of the first Brillouin zone (IBZ) boundary. The curvature of the photonic bands at these
points are such that peaks and valleys are created in the energy-momentum dispersion surface. It is
these peaks and valleys that are the seeds from which localized states are formed. The second step
in our approach then utilizes the PC band-edge states created from the unperturbed slab waveguide
mode symmetry basis to generate approximate forms for the localized defect modes lying within
the bandgap.

The host PC structures that we consider consist of a symmetric planar geometry with a two-
dimensionally patterned core layer surrounded by spatially uniform cladding layers. A structure
which has been the basis of many previously fabricated devices is depicted in cross section in fig.
1.1. The semiconductor core dielectric material has an approximate refractive index of 3.4, and the

cladding in these membrane-type structures is air with a refractive index of 1. For the structures
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studied in this and following sections, the ratio of the core thickness, d, to lattice constant, a, is
chosen so as to maintain the single-mode nature of the vertical waveguide for wavelengths within
the first-order guided-mode bandgap of the PC lattice. The modes of a symmetric slab waveguide,
patterned or unpatterned, separate into modes of even or odd parity with respect to amirror planein
the middle of the dielectric slab. Of interest here are the fundamental guided modes. Limiting our
analysis to the fundamental guided modes of the PC dlab effectively reduces the spatial dimension
of the problem from three to two.

Within the mirror plane of the waveguide in these symmetric quasi-2D systems, the fundamental
even and odd modes can be represented by scalar fields H, and E,, respectively. As has been
described elsewhere [4], for connected 2D lattices such as those investigated here, the extent of
the photonic bandgap for modes with electric field polarization in the plane of the 2D patterning
(TE) islarger than for modes with normal electric field polarization (TM). For this reason, we will
focus our attention on the fundamental even modes of the 2D PC waveguides which are TE-like
(although the fundamental even and odd modes of the patterned slab are not purely TE or TM, they
are significantly TE-like or TM-like in nature). An extension to TM-like modes has been presented
in ref. [37], asit finds specific application in the study of quantum cascade photonic crystal lasers,
dueto the TM polarization of the intersubband transitions within quantum cascade heterostructures.
In the analysis below, we consider two of the most common 2D geometries for the host PC |attice,
the square | attice and the hexagonal or trigonal lattice. We begin with an analysis of the hexagonal
lattice.

1.1.2 Hexagonal lattice photonic crystals

The point group symmetry of a 2D hexagonal PC is Dgp, with a single horizontal mirror plane (cp)
lying in the waveguide center. Narrowing our scope to TE-like modes of a symmetric dab, the
point group symmetry of the hexagonal PC system can be effectively reduced to Cg,=Dgn/0on. A
plot of the approximate in-plane bandstructure for the fundamental TE-like guided modes of a half-
wavelength thick hexagonally patterned slab waveguide is given in fig. 1.2(a).! This bandstructure
was cal culated through the plane wave expansion technique, as reviewed in ref. [5].

Within the mirror plane of the slab, the magnetic field pattern for the (fundamental) TE-like

eigenmodes of the unpatterned slab waveguide can be written asHy (r ) = 2e-ikim) wherek |

1in this calculation a 2D hexagonal PC with host dielectric constant given by the effective index of the fundamental
TE mode of the half-wavelength thick slab is analyzed [7].
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Figure 1.2: (a) Fundamental TE-like guided mode bandstructure (r /a = 0.36, Nga = Neft = 2.65).
The bandgap extends over a normalized frequency of 0.29-0.41. The air (cladding) light line is
shown as a solid black line. (b)-(c) Illustration of the real and reciprocal spaces of the two-
dimensiona hexagonal PC. The high-symmetry points of the hexagonal lattice, referenced to the
center of an air hole, area = (0,0), b = (a/2,0), and c = (0,a/+/3). (b) Real space. |a1| = |a| = a.
(c) Reciprocal space. |G1| = |G| = 4r/+/3a, |kx| = 2n/+/3a, |k;| = 4r/3a.

and r | arein-plane wavenumber and spatial coordinates, respectively (in order to simplify notation
we drop the L label in the equations that follow). Upon patterning the slab waveguide, coupling
occurs between waveguide modes with similar unperturbed frequencies and identical propagation
constants modulo a reciprocal lattice vector G. This follows from the approximate conservation of
frequency and the exact conservation of crystal momentum. Of particular interest for the resonant
cavity designs and devices described below are those modes which comprise the frequency bands
defining thefirst order bandgap. The Bloch modes at the band-edges defining the first order bandgap
are predominantly formed from modes of the unpatterned waveguide with in-plane wavevector lying
at the boundary of the IBZ; other unpatterned waveguide modes with additional in-plane momentum
equal to someinteger multiple of areciprocal lattice vector contribute much less, owing to their large
(unperturbed) frequency difference. For the symmetry analysis described here we will be satisfied
with considering the contribution from only the degenerate lowest frequency unpatterned waveguide
modes at the first zone boundary.

The high symmetry points within and on the boundary of the IBZ of the hexagonal lattice are
(see fig. 1.2(c)): the six X points ({£(0, )kx, £(v/3/2,1/2)kx, +(/3/2,—1/2)kx}), the six J
points ({£(1/2,v/3/2)ks, +(1/2,—/3/2)k;, £(1,0)k;}), and the T point=(0,0). The first-order
bandgap of the hexagonal lattice (see fig. 1.2(a)) is defined from above by the X point and below
by the J point. In analogy to the electronic bands in semiconductor crystals, the high frequency



Table 1.1: Point group character tables for the hexagonal lattice.

Cov |[E Co 2C3 2Cs 304 3oy

A1 1 11 1 1

Ay 1 1 1 1 -1 -1

B/ |1 -1 1 -1 1 -1

B, |1 -1 1 -1 -1 1

E, |2 -2 -1 1 O

E, |2 2 -1 -1 0 O

d1 3 -3 0 0 1 -1

a2 0 2 0 -2 0

213 3 0 0 -1 -1

Cn |E G ox(own) Gy((5d2)

AL |1 1 1 1

A |1 1 -1 -1

B |1 -1 —1 1

B, |1 -1 1 -1

sd | 3 -3 -1 1

gd |3 1 -1 1

a2 0 0 -2

2|3 3 -1 -1

a3 3 -1 -1

Cavos | E 2C3 304 Cas, | E 2C3 3oy

AL 1 A |1 1 1

A, 11 1 -1 A1 1

E 2 -1 0 E |2 -1 0
13 0 -1
sal 2 -1 0
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band defining the first-order bandgap is called the conduction band, and the low frequency band
is the valence band [4]. In the approximate analysis of the defect states to follow we will need to
include all the degenerate satellite peaks (conduction band) and valleys (valence band). The group
of the wavevector, which defines the point group symmetry of a plane wave modulo G within the
dielectric lattice, isCyy, C3y, and Cg, for the X, J, and T points of the hexagonal lattice, respectively.
Character tables [92] for these groups are given in table 1.1.

1121 X-point

For the frequency bands defining the first-order bandgap, the unpatterned waveguide modes which
aremost strongly coupled together to form the Bloch modes at the X-point aregiven by H = 2% "
wherei = 1,2, ...,6. The unperturbed frequencies of these modes are degenerate and can be written
as oX =~ clkx|/nef, Where ne is an effective index taking into account the vertical waveguiding
perpendicular to the slab.

The star of k (xk) at the X-point, formed from the independent satellite X-points within the
IBZ, consists of wavevectors {kx,,Kx,,Kx, }, with all other X-points being equivalent to one of
these vectors modulo a reciprocal lattice vector. A symmetry basis for the modes of the patterned
slab waveguide at the X;-satellite point can be found by applying the symmetry operations of the
group of the wave vector (Gok, = Ca) to the seed vector Hiy, - In this case, the basis is simply
(Hiyg - Hokex, )

Using these basis vectors, we calculate the 2 x 2 matrices that represent the different point group
operations of C,,, noting that the magnetic field transforms like a pseudovector [93] (unlike the

electric field). Thisyields the following:

S

1
&
|
&
I
£
1

(1.1)

The character values for these operations are xe=2, xc,=0, Xs,=—2, and x,=0. These character
values are consistent with a reducible representation that decomposes as A, @ B;. The projection

operators [92] onto these IRREP spaces are calculated as:
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4 01 10 0 -1 -1 0 11
(1.2

1 10 01 -1 0 0 -1 11 -1

P, = 11 +(-1) +(-1) +(1) =3
01 10 0 -1 -1 0 -1 1
(1.3)
Applying these projection operators to the seed vector Hy, yields:
Hﬁ; = 2cos(kx, - r%),

(1.9

Héi - 2Sil’](kxl : ra)v

where A; and B; label the IRREP spaces of C,, (see table 1.1), and the index a is used to denote
the location of the origin within the hexagonal lattice (marked in fig. 1.2(b)). As the magnetic
field of Hﬁ; overlaps strongly with the air holes of the hexagonal PC (its electric field lying largely
in the dielectric) it represents the lower frequency “valence” band mode, while Héi represents the
“conduction” band mode. This is a result of the tendency for modes with electric field concen-
trated within regions of high dielectric constant to be lower frequency than those with electric field
concentrated in low dielectric regions [4].

In order to fully define the modes at the X-point all modes of the xk must be included. In the
case of the X-point this corresponds to successive rotations by n/6 (Cg rotation). The result is the

following set of degenerate valence band modes,

Vx, cos(kx, - r?)

VBI = [ v, | =2| costkx, -r?) | » (1.5)

Vg cos(kx, - r?)
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and degenerate conduction band modes,

Cx, sin(kx, -r?)
CBY =[x, | =2| sin(ky, -r?) | - (16)
Cxs sin(ky, - r?)

fig. 1.3 shows the magnetic field amplitude for each of the valence and conduction band modes at

al the satellite X-points of the hexagonal lattice.
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Figure 1.3: Magnetic field (amplitude) patterns of the valence band modes (top) and conduction
band modes (bottom) of the hexagonal lattice at the three different X-points generated by the sym-
metry basesVB} and CB}.

1.1.2.2 J-point

A similar procedure may be performed in order to determine approximate forms for the TE-like
valence and conduction band modes of the hexagonal |attice at the J-point of the IBZ. Approximate
forms for the valence band edge and conduction band edge modes at the J-point are (with point a

taken asthe origin):
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vy, e—lka'ra+e—|kJ4'ra+ef|k‘]6'ra
cly, g Tk T? 4 @ik T _ pgrikg®
H a i ra
CBJ Cle ~ eilk‘]l.r —e Ik‘]3 r (1 8)
2 —ikgy,-rd —ikg,rd —ikg.rd
cl,, e Rt e MUt — 267 %
C2J2 e—ik32~ra _ e—ik_14'l'a

Figure 1.4 shows the magnetic field amplitude for each of the valence and conduction band modes
at the J-point of the hexagonal lattice. Although not obvious from first inspection of equations
(1.7) and (1.8), the plotsin these two tables show that the modes of the symmetry basis VB have a
magnetic field amplitude predominantly overlapping the air holeswhile the magnetic field amplitude
of the modes of CB overlap the dielectric regions, a property that allows us to classify the modes
as valence and conduction band, respectively. Thisresult is also quite encouraging, given the fact
that our symmetry basis is quite primitive and yet can reproduce this property of the valence and
conduction band modes so critical to the formation of afrequency bandgap.

The approximate valence and conduction band edge modes derived above all have their origin
at the center of an air hole of the lattice. The hexagonal |attice has two other high-symmetry points
around which one may center a defect, points b and ¢ shown in fig. 1.2(b). Unlike point a, pointsb
and c are of lower symmetry than the point group of the hexagonal lattice. A defect centered about
point b will be limited to a point group of symmetry C,,, and those about point ¢ to point group
Cavs,. The point group symmetry operations for each of these types of defects are centered about
different points within the lattice. So as to be clear about the position of the origin to be used for
point symmetry operations, we label the Bloch mode symmetry bases with an index corresponding
to the location of the origin around which it is expanded. For example, VB is the X-point valence
band basis of equation (1.5) written in a shifted coordinate system with point b at the origin. In the
equations to follow, r2, r®, and r¢ are coordinate systems with origin located at point a, b, and ¢ of

the hexagonal lattice, respectively.
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Figure 1.4: Magnetic field (amplitude) pat-
terns of the valence band (top) and conduc-
tion band (middle and bottom) modes of the
hexagonal lattice at the J-point, generated by
the symmetry bases VB3 and CB.
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1.1.2.3 Conduction band donor modes

In an attempt to form localized resonances, the diglectric constant in a small region of a periodic
photonic crystal lattice may be altered from its unperturbed value, breaking the regular periodicity
of the lattice and mixing the Bloch modes. If the perturbation corresponds to alocal increasein the
dielectric constant (fig. 1.5(a)), the localized modes are formed predominantly from the conduction
band, specifically the modes at the band edge. Thisisaresult of the tendency for mode frequencies
to decrease with increasing diel ectric constant [4], pulling the conduction band edge modes into the
bandgap of the photonic crystal near the defect. Thistype of localized mode istermed a donor mode
in analogy to the electronic defect statesin crystalline materials [94].

For the hexagonal PC lattice the minimum in the conduction band occurs at the X-point (see
fig. 1.2(a)). Therefore, the appropriate symmetry basis to use for describing localized donor modes
are the degenerate conduction band edge modes of CBX, CBY, and CB for defect regions centered
around pointsa, b, and c.

Let us consider the formation of conduction band donor modes within defects that maintain the

full Ce, symmetry of the lattice. Using the symmetry basis CBX, we calculate the matrix represen-
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° O O . Q Q K O O Figure 1_.5:_Examp|e defect ca\_/ity
00000 @ O Fiitictwyruse

O Q O Q O Q ggg C‘;m;y (c) Y-split acceptor-

tation of the point group operators:.

100 1.0 0 0 -1 0 0 0 1
Ecex=|0 1 0|Ccex=]|0 -1 0 |Gemx=|0 0 -1|Csx=|-1 0 o0
001 0o 0 -1 10 0 0 -1 0

(L9)

00 -1 0 10 0 -1 0 10 0
Cocex=10 0 |Coasx=| 0 0 1|Cucex=|-1 0 0|O%wex=|0 0 -1
01 0 100 0 0 1 0 -1 0

(1.10)

001 100 0o 0 -1 01 0

OdscBXx = |0 1 0|Oweex=| 0 0 1|Owmecex=] 0 -1 0 |Owecex=1]1 0 O
100 0 10 1.0 0 00 -1

(1.12)

The character valuesfor these operationsare ye=3, yc,=-3, Xc;=0, Xcs=0, Xs,=1, adxs,=-1. These
character values are consistent with a reducible representation that decomposes as 91 = E; ¢ B,
aslisted in table 1.1. For the B] representation, the calculation of the projection operator is done
using the same method as was used to calculate the projectors for the conduction band modes at
the X-point. For the E; representation, there is an additional step because it is a two-dimensional

representation. Recalling that E; can be spanned by the coordinate pair (x,y), we write out two-



51

dimensional matrices for E;:

1) [ N 3
Ee = Ec, = Ec, = Ec;i = (1.12)

01) o 1) g 2 7

1 3 1 -8 -1 3 1 0

2 2 2 2 2 2
= -3 1 = V3 o1 R V- ” 0 -1

2 2 2 2 2 2

7 ¥ 10 ;¥ ;o
Eoqs Eou = Eo. = Eos =

-3 1 0 1 AR -3 1

2 2 2 2 2 2

(1.14)

The diagonal elements of these matrices are then used in the cal culation of the two projectorswithin

this subspace. Overall, we arrive at the following projection operatorsfor the conduction band donor

modes:
1 -1 1 4 2 -2 000
X X X
Pl =3|-1 1 —1| P =8|2 1 -1| PEE =3[0 1 1| @15
1 -1 1 -2 -1 1 011

Note that the coefficientsin front of these projection matrices are eventually dropped as the approx-
imate solutions that we give are not absolutely normalized, although the relative amplitudes of the
different Fourier components are certainly kept (and are captured by the projection matrices them-
selves, without the prefactors). Using these projection operators on CBX, aset of basis functions for

the localized conduction band donor modes centered about point a of the hexagonal lattice isfound:
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Hg’/lfjl = 2<si N(kx, - r?) —sin(kx, - r?) 4+ sin(kx, - ra)>

H2' = 2<2s,in(kxl 18) 4sin(kx, - r%) —sin(kx, - fa)) (1.16)

Hgf; — 2<sin(kx2 1%) 4 sin(ky, - ra)),

Similar techniques are used to find the character values of representation %91 of the CB%< basis
under Cyy and representation S*91 of the CBY basis under Cay,, and they are given in table 1.1.
From the character tables we find that these representations decompose as 9 = A ¢ A> & B; and
S = E@ AY. We then use the appropriate projection operators to find basis functions for the

localized conduction band donor modes centered about point b:

HAt = 2<cos(kx2 -r®) — cos(ky, - rb)>
Halt = 2<cos(k><2 -12) + cos(kx, - rb)> (1.17)
Hg’ldl = 2<Sin(kxl ) rb)> )

and point c:

Hi' = 2(sin(kxl-r°— 5) —sn(ker+3%)
+gn(ky€.rc_g))

S CUC PG =

_§ qe_ T
sin (kx3 r 3) >
HES — 2<sin<kx2 o g) +sin(kx3 oo g))
Figure 1.6 shows plots of the amplitude of the 2Z-component of the magnetic field for each of the
localized donor modes centered about point a, as generated by the symmetry analysis. In these plots
(and in all plots generated from the symmetry analysisto follow), the localization of each mode has

been taken into account by multiplying a two-dimensional Gaussian envelope function with each
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Figure 1.6; Magnetic field amplitude of the symmetry analysis conduction band donor modes cen-
tered about point a of the hexagonal lattice.

dominant Fourier component, where the two axes of the Gaussian envelope are taken as parallel and
perpendicular to the direction of the Fourier component. This set of envelope function transforms
astheidentity under symmetry operations of the group of the wavevector, and as such does not alter
the transformation properties of each k component. Consequently, the IRREP classification of the
defect modes given above is maintained. This particular choice of envelope function, apart from
symmetry, is rather arbitrary, only chosen to capture the localized nature of the defect modes and
highlight the dominant Fourier components. In section 1.2, a Wannier-like equation for the envelope
of localized photon states is studied and shown to have ground state solutions invariant under those
elements of the group of the wavevector that are also symmetries of the defect perturbation. The
ground state envelope solutions then leave the IRREP classification of the above analysis for the
defect modes unchanged.

Returning to equation (1.16) describing the localized donor modes about point a of the hexago-
nal lattice, we note that the (d1, B} ) donor mode transforms like ahexapole, whereas the degenerate
(d1,E;) modestransform asan (x,y)-dipole pair. By introducing defect regions with lower symme-
try than the host photonic lattice one is able to remove degeneraciesin the localized mode spectrum.
The effects of this symmetry lowering can be simply determined using group theory by virtue of the
compatibility relations between the IRREPs of the full and reduced symmetry groups.



Cov — Cov

adl a,dl1
e e, (1.19)
H2Y — H3™ (x-dipole)

Hg;{; — HZ® (y-dipole).

In the case of cavities with C,, symmetry, group theory predicts the splitting of the degenerate
dipole-like modes into x and y dipole-like modes with differing frequencies. This has been studied

in numerical simulations and experimental measurements of such devices|[2].

1.1.2.4 Valence band acceptor modes

If the dielectric constant had been reduced in asmall region within the photonic lattice, by enlarging
an air hole for instance (fig. 1.5(b)), then instead of pulling the conduction band modes down into
the photonic crystal bandgap the valence band modes are pushed up into the bandgap. In this case
modes localized to the defect region are formed predominantly from mixtures of Bloch modes from
the valence band edge. Thistype of defect mode istermed an acceptor mode, again in ana ogy to the
electronic statesin acrystal [94]. For the hexagonal |attice the maximum of the valence band occurs
at the J-point (seefig. 1.2(a)). The obvious symmetry basis to use to describe the acceptor modesis
the set of degenerate valence band modes at the J-point, VB3 in the case of defects centered around
point a, and VB} and VB for defects about points b and c, respectively.

The characters of the representation S of VB under the Cq, point symmetry group, the
representation %2 of VB} under Cyy,, and the representation S*& of VB under Cay, are given
in table 1.1. %3 decomposes into irreducible blocks A} @ By, S8 = Ay @By, and S = E .
Using the projection operators, the basis functions VB3 are coupled together to form the following

acceptor modes about point a:

HaA’,z,al = 2<cos(k31 -1®) +cos(ky, - r?) + cos(ky, - ra)>
(1.20)

He)" = 2<9n(k31 1%) +sin(ky, %) +sinky, ra>>.

Similarly, projecting the basis functionsVBfJ onto the IRREPs of C,, and the basis functions VB
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Figure 1.7: Magnetic field amplitude of the symmetry analysis valence band acceptor modes cen-
tered about point a of the hexagonal lattice.

onto the IRREPs of Cs, 5,, We get for the acceptor modes about point b:

(1.21)
He™ = 2<Sin(k31 -r®) 4-sin(ky, - r?) —sin(ky, - rb)>,
and the acceptor modes about point c:
c,al 5 c ZTC c 275
Hgp =2 cos(le I+ 3) +cos<k33 T — ?>
+COS<kJ5 : r°>)
(1.22)

H‘é’f‘zl = 2<sin<k31 e 2;) +Sin<k33 ré— 2—“)

Figure 1.7 shows plots of the z-component of the magnetic field for each of the localized acceptor
modes centered about point a of the hexagonal lattice generated by the symmetry analysis.

2.8l transform as A, and B, IRREPS, re-

In modified cavities with Coy symmetry, H3™ and HE;

spectively:
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Cev — Cov

Hae — Has, (1.23)

aal a,al
HB,Z, — HBz .

For defect regionsthat strongly perturb the photonic latticeit is possible that alarger number of
localized defect modes will form than can be described by the limited symmetry basis used above.
Thisis the case for the Y-split cavity described in ref. [24] and illustrated in fig. 1.5(c), where the
defect region is composed of two enlarged holes and has arelatively deep potential well for acceptor
modes. As aresult, in the FDTD simulations of the Y-split cavity, an additional shallow acceptor
type mode (Y-A2p), not covered by the VB] symmetry basis, is present.

In order to more fully capture the possible defect modes in a deep potential well, the symmetry
basis can be expanded in a number of ways [24]. The method we adopt here is based upon the
observation that, for defect regions which provide a deep potential well, it is possible that defect
modes will form which are composed of unperturbed photonic crystal modes located not just at
the edge of the bandgap, but also at other nearby (in frequency) high-symmetry k-points within
the IBZ. In order to represent these additional localized resonant modes the unperturbed photonic
crystal modes at the additional high-symmetry k-points must be included in the symmetry basis.
For the hexagonal lattice the valence band at the X-point is close in frequency to the bandgap edge
at the J-point (seefig. 1.2(a)). The symmetry basis for the X-point valence band edge is the triply
degenerate VB basis set. The representation of VBX under Cqy, labeled $*32, has the character
values shown in table 1.1 and decomposes into irreducible spaces E, and A;. The acceptor type
modes formed from the X-point valence band modes in a symmetric defect cavity centered about

point aiin the lattice are:

Hi’,z?z = 2<cos(kx1 -1?) +cos(kx, - r?) + cos(kx, - ra)> ,
Hgﬁ = 2<2cos(k><1 -1%) — cos(kx, - r®) — cos(Kxs - ra)> : (1.24)
HE’:}% = 2<cos(kx2 -12) — cos(Kx, - ra)> .

The Y-split cavity does not have Cg, symmetry, but rather C,, symmetry. This reduction of
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Figure 1.8: Magnetic field amplitude of the symmetry analysis acceptor modes formed from the
valence band modes at the X-point of the hexagonal lattice.

symmetry causes the E; IRREP space to split into A; & A, and the A; space to transfer over into an
Ay IRREP space:

Cev — Cov
a,a2 a,azl
HAg — HA2 ,

a,a2 a,a2,2
HE2,1 - HA2 )

(1.25)

a,a2 a,a2
HE2,2 — HAl .

Figure 1.8 shows the magnetic field patterns of the acceptor modes predicted by the symmetry
analysis to form out of the valence band at the X-point. The shallow acceptor mode (Y-A2p) found
in FDTD simulations of the Y-split cavity [24] transforms as the A, IRREP under Cy, symmetry
operations. The dominant Fourier component within the FDTD generated field pattern of Y-A2g is

kx,, from which we can conclude that this mode is given by Hi’zaz’z as opposed to Hf_{fz’l.

1.1.3 Squarelattice photonic crystals

Aswith the hexagonal | attice we concern oursel ves here with only the fundamental even modes (TE-
like) of the slab waveguide. The point group symmetry of the square lattice photonic crystal canthen
be reduced to Cay=Dan/ch. A plot of the approximate in-plane bandstructure for the fundamental
TE-like guided modes of a half-wavelength thick slab waveguide with a square array patterning of

air holesisgiveninfig. 1.9(a).
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Figure 1.9: (a8) Fundamental TE-like guided mode bandstructure (r /a = 0.35, Nga = Netf = 2.65)
for asgquarelattice of air holes. The bandgap is seen to be much smaller for the squarelattice than in
the case of the hexagonal lattice. The air (cladding) light line is shown as a solid black line. (b)-(c)
Illustration of the real and reciprocal spaces of the two-dimensional PC with a square array of air
holes. The high-symmetry points of the square lattice, referenced to the center of an air hole, are
d=(0,0),e=(0,a/2), and f = (a/2,a/2). (b) Real space. |a1| = |az| = a. (c) Reciproca space.
‘Gl| = |G2’ = 27t/a, “(x| :n/a, kM‘ = \/in/a.

The high symmetry points on the boundary or within the IBZ are (see fig. 1.9(c)): the four X
points ({#(1,0)kx, =(0,1)kx}), the four M points ((v/2/2,+v/2/2)ky), and the T" point=(0, 0).
The first-order band edges of the square lattice (see fig. 1.9(a)) are defined from above by the X
point (conduction band edge) and below by the M point (valence band edge). The group of the wave
vector at the X, M, and " pointsis Cyy, Cay, and Cyy, respectively. Character tables[92] for the two

groups are given in table 1.2.

1.1.3.1 X-point

A symmetry basis for the modes of the square lattice PC at the X-point can be found by applying
the symmetry operations of the group of the wave vector (Gok, = Cyy) to the seed vector H kg - IN
this case, the basisis simply (Hx, ,H_k,, ). Projecting this symmetry basis onto the IRREP spaces
of Cyy yields:

HX = 2cos(Kx, - I)
R ' (1.26)
Ha: = 2sin(kx, 1),

where A, and By label the IRREP spaces of Cy, 6, (see table 1.2). With the origin at the center of an
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Table 1.2: Point group character tables for the square lattice.
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Figure 1.10: Magnetic field (amplitude)
patterns of the valence band (top) and
conduction band (bottom) modes of the
square lattice at the X-points of the IBZ,
generated by the symmetry basis VB}
and CB}.

<

air hole of the lattice (point d of fig. 1.9), H ﬁ; corresponds to the “valence” band mode and H’Bfi to
the “conduction” band mode.
In order to fully define the modes at the X-point all modes of the xk must be included. The

result is the following set of degenerate valence band modes,

v cos(kx, - rd
VBi=| | =2 (kg 15) , (1.27)
Vi, cos(ky, - 9)
and degenerate conduction band modes,
C sin(ky, - rd
cpx— | O] Zaf SNk (1.29)
Cx, sin(ky, - r%)

The magnetic field amplitude patterns of the approximate valence and conduction band modes of

the square lattice at the X-points of the IBZ are given in fig. 1.10.
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1.1.3.2 M-point

A similar procedure may be performed in order to determine approximate forms for the TE-like
valence and conduction band modes at the M-point of the IBZ. The symmetry basis, S, in this case
includes all the M-points of the IBZ, S = (H,, ,Hky,,H Ky, ,H ky,). As determined from its
character under Cyy (table 1.2), SM = E & AJ & BY. The doubly degenerate IRREP E must represent
a higher energy level band as the conduction and valence band edges are non-degenerate at the
M-point as shown in fig. 1.9(a). Using only the A] and B] IRREPs, an approximate form for the
valence band edge and conduction band edge modes at the M-point are calculated by projecting
the symmetry basis onto these IRREP spaces. With the origin centered at point d, the valence and

conduction band edge modes are:

VBY = (VM) = 2<cos(k,v|l-rd)+cos(kM2-rd)> (1.29)

CBy' = <C1M> = 2(cos(k,\/.l.rd) —cos(kM2~rd)>- (1.30)

Approximate modes for the degenerate higher frequency conduction bands represented by the

IRREP E are, in one particular basis,

c2 sin(ky, - r9) —sin(kp, - r¢
capz - [ G| _ | Stk msinte 1)) (1.31)

c3um sin(ku, -r9) +sin(ky, - r?)

These higher frequency bands will be unimportant in our present analysis where we focus on the
band edge modes defining the first order bandgap. The magnetic field amplitude patterns of the
valence and conduction band modes at the M-point of the IBZ of the square lattice are given in fig.
111

In the square lattice there are three different high-symmetry points around which one may center
adefect. These pointsarelabeled d, e, and f infig. 1.9. Pointsd and f maintain the C4y, point group
of the square lattice, and point e has a lowered symmetry given by the point group Cyg,. Aswas

done for the hexagonal lattice, Bloch mode symmetry bases written with their origin at pointsd, €,
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Figure 1.11: Magnetic field (amplitude) patterns of the valence and conduction band modes of the
square lattice at the M-points of the IBZ generated by the symmetry analysis (VBY and CBY).

or f will be indexed as such. Coordinates centered about points d, e, and f of the lattice are also

labeled asr9, re, and r f, respectively.

1.1.3.3 Conduction band donor modes

For the square PC lattice the minimum in the conduction band occurs at the X-point (fig. 1.9(a)).
The representations describing how the CBX, CBY, and CBY symmetry bases transform under the
appropriate point group are given by S*91, 5241 and Sf.91) respectively. From their charactersin
table 1.2 we find that S¥4! = E, 91 = A2 B2, and S9! = A} @ B}. Projecting the symmetry

bases onto the different IRREPs gives the following conduction band donor modes:

(1.32)
Hadt — Z(Sin(kxz rdy ),
centered about point d,
Higl = 2(cos(kxl : re))
(1.33)

HeB’glzi(sin(kxz-re)),

centered about point e, and
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H/iédl 2<cos(kx1 1"y +cos(ky, -r)

f.dl
H B;Z,

9

) (1.34)
)

2<cos(kx1 1"y —cos(ky, -r")

centered about point f.

For the points d and f, defects may be formed with lower symmetry than the Ca, Symmetry
of the square lattice. We may use the compatibility relations between the IRREPs of the full and
reduced symmetry groups to determine the new mode structure. For a defect of Cy, symmetry with

mirror planes along the X and y directions of fig. 1.9(a) (Cyy6,) We have the following reduction:

Cay — Coyg,

HES — HE™ (x-dipole)

HEG — HE™ (y-dipole) (1.35)
pidl szdl,l

A12/
pidl | yfdi2

B A
If instead, the defect at points d and f contain the mirror planes o4, the symmetry is Cyy s, and the

compatibility relations give a mode decomposition:

Cay — C2\40d
HET +HES' — HE™ (X-dipole)
HET —HEG — Hg;zdl (y-dipole) (1.36)
f,d1 f,d1
HA,Z, — HA/2
f,d1 f,d1
HB/Z/ — HA/l .
Magnetic field patterns of the different localized donor-type defect modes formed about point d, e,
and f of the square lattice are given in fig. 1.12, where we have chosen to decompose the fields

according to Cpyg, -
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Figure 1.12: Magnetic field amplitude of the localized donor modes centered about pointsd, e, and
f of the square lattice.
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1.1.3.4 Valence band acceptor modes

For the sguare lattice the maximum of the valence band occurs at the M-point (fig. 1.9(a)). For the
square lattice the valence band edge modes at the M-point consist of a single non-degenerate mode.
This can be traced back to the fact that the M-point in the square lattice is highly symmetric, and the
group of the wave vector mixes al four of the M-points on the IBZ boundary. The symmetries and
fundamental momentum components of the possible acceptor modes formed from the M-point band
edge modes (the approximate defect modes) are then trivialy given by the single M-point valence
band edge mode.

For the high-symmetry pointsd and f of the squarelattice, assuming that the defect is symmetric

enough so as to maintain the C4, sSymmetry of the square | attice, the single acceptor mode is

H/‘f\;z,al = 2<cos(k,\/.1 -19) + cos(Kp, - rd)>, (1.37)
about point d, and
Hé’,l,al = 2<cos(kM1 1"y —cos(kw, - rf)> , (1.38)

about point f. The character of the representation S of the M-point valence band edge mode under
symmetry transformations Cpy, about point e is given in table 1.2. From its character, §* = By,

the approximate acceptor mode of a defect centered about point eis

Hg = Z(Sin(le r®) —sin(ky, - re)>. (1.39)

For defects of reduced symmetry about points d and f we have the following compatibility

relations;

Cao — C2v,0'\, C4v - C2v,<5d

d,al d,al d,al d,al
Har — HR™ and HE™ — HY (1.40)
Hf7a1 Hf,al Hf,al Hf7a1

B AL By A
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Figure 1.13: Magnetic field amplitude of the acceptor-type modes formed the val ence band M-point
modes of the sgquare lattice.

Figure 1.13 shows the magnetic field patterns of the acceptor-type modes formed from the M-point
of the IBZ of the square lattice for defects centered about pointsd, e, and f. Again, asfor the donor

modes, the modes are shown for the Cy,,, symmetry basis.

1.1.4 Comparison with FDTD simulations

In order to establish the effectiveness of the above symmetry analysis of the modes of relatively
localized defects within photonic crystals, we provide results of numerical calculations using the
FDTD method. The FDTD simulation results provide information about the resonant fregquency,
radiation pattern, and modal loss of PC defect cavity resonant modes. The cavity studied in this
section has been of particular relevance to the initial work on PC microcavity lasers performed by
Painter et a. [3, 8].

The FDTD calculations (additional details provided in appendix B) were performed on a mesh
with 20 points per lattice spacing. Excitation of the cavity modes was performed by an initial field
(Hz) with alocalized Gaussian profile, located in a position of low symmetry so as not to exclude
any possible resonant modes. The even modes of the patterned slab waveguide were selected out by
using an even mirror symmetry (6, = +1) in the middle of the slab waveguide. In order to choose
a consistent mode basis (only important for degenerate modes), as well as to reduce computation
time, apair of vertical mirror planes (ox, oy) were used to filter out cavity modes according to their
projection on the IRREPs of C,,. Each cavity mode is thus labeled by the Cy, IRREP by which it
transforms and an index corresponding to its energy (frequency) level.

The simplest cavity geometry that can be readily implemented consists of a single missing hole
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Figure 1.14: (a) Scavity (b) FDTD spectrum of a S-type defect cavity with a= 515 nm, r /a= 0.36
nominally, nga, = 3.4, and d /a = 0.4009.

(schematically shown in fig. 1.14(a)). We will refer to this cavity as a symmetric or S cavity as it
retains the full point group symmetry of the hexagonal lattice (Cg,). A FDTD-simulated spectrum
of adefect cavity with a central missing hole and a linear grade in r /a (from the center outwards)
of 0.38-0.34 is plotted in fig. 1.14(b) as a dashed line.? The spectrum is plotted versus normal-
ized frequency, o, = a/Ao, Where a is the lattice spacing and A, is the free-space wavelength. A
normalized slab thickness, d/a, of 0.41 was used in the simulated structures to be consistent with
the fabricated devices. To reduce computation time, the number of mirror periods (p) surrounding
the central missing hole was limited to five in the simulations, save for the more extended modes
for which cavities with eight periods were also simulated in order to more accurately estimate the
modal losses present in the fabricated devices (seetable 1.3).

Infig. 1.14, there appear to be two distinct resonance peaks within the guided mode bandgap
of the TE-like modes. Performing a mode filter [7] using the Cy, mirror planes, we find that each
resonance peak contains two different modes, yielding a total of four different localized modes
whose magnetic field patterns within the mirror symmetry plane of the dlab are shown in table 1.3.
The two resonant modes (accidentally degenerate) associated with the peak near the valence band
edge correspond to shallow acceptor (SA) modes which transform as the A; and B, IRREPs of
;}12/ and Hgé of the symmetry
analysisin section 1.1.2. The addition of these SA modes is aresult of the linear grading in hole

Cev,> and have the same dominant in-plane Fourier components as H

2As aresult of non-ideslities in the fabrication process [95], the air holes near the center of the cavity are larger than
those at the perimeter in the fabricated devices. A linear grading of the hole radius of 10% is quite common.

3Careful inspection of the FDTD generated magnetic field plot for these two modes shows that the mode patterns
appear to have lower symmetry than that quoted in the text. Thisis a consegquence of the way in which the modes were
simulated, using vertical mirror planes to reduce the computation domain by afactor of four. Due to discretization of the
computation grid, the mirror symmetry distorts the structure dightly, resulting in an asymmetry in the field pattern.
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Table 1.3; Characteristics and magnetic field amplitude patterns of the resonant modes in a sym-
metric cavity with r /alinearly graded from 0.38 t0 0.34 (d/a = 0.409, ngap = 3.4, p=15).

A2 (-1,-1) B1(—1,+1) B2 (+1,—1)

SAZy SBlo

SB2;

L abel Grp. ®n
S-A20 (H) SA (= —) 0.320
SBlo (HE, DD dipole (x) 0.361
S-B2o (Hg)) SA (+,-) 0.322
SB2; (HE, DD dipole (y) 0.360

radius, which forms a potential well for acceptor type modes. Of particular interest are the strongly
localized pair of degenerate deep donor (DD) dipole-like modes near the center of the bandgap.
From the plots of the electric field intensity of the x and y dipole modes shown in fig. 1.15(a)-(b),
we see that the fundamental k-components of the x and y dipole-like modes correspond nicely with
the approximate field patterns predicted by the symmetry analysis (fig. 1.15(c)-(d)). Even the subtle
difference in the in-plane radiation pattern of the x and y dipole modes as calculated humerically
using FDTD is contained within the symmetry analysis as can be seen by the lack of athird standing
wave component in the y-dipole (H ‘é},z) mode.

A list of properties of the two SA and two DD localized defect modesis givenin table 1.3. The
numerically calculated losses of each cavity mode are represented by effective in-plane and out-of -
plane quality factors [7], Q and Q_, respectively. A detailed analysis of quality factors within PC

cavities will be discussed in detail in the following chapter.
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Figure 1.15: In-plane radiation losses (el ectric field amplitude saturated) of the x and y dipole mode
(degenerate case) are shown in (&) and (b), respectively, as calculated by FDTD simulations. The
electric field amplitude of the corresponding defect modes generated by the symmetry analysis are
shown in (c) and (d) for comparison. In (€) and (f) the FDTD-generated vector plot of the electric
field of the (x,y)-dipole modesin the middle of the slab waveguide are shown.
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1.2 Wannier-like approach for describing localized modesin photonic

crystals

1.2.1 Introduction

The work described in this sectionis largely based on ref. [25]. In analogy to the study of localized
impurity states of electrons in periodic crystals [96, 97, 98, 99], we develop a Wannier-like wave
eguation to describe the envelope of resonant modes of localized perturbations within periodic di-
electric structures. This has been done previoudly, in a more restrictive setting by Johnson et al.
[100], and more recently in a general way by Charbonneau-Lefort et a. [101] and Istrate et al.
[102] in the study of photonic crystal heterostructures. In these works, a wave equation for local-
ized modes of non-uniform photonic crystals using an envel ope approximation has been devel oped;
however, in each case the envelope equation was formulated as a generalized Hermitian eigenvalue
equation in terms of the electric field, and more importantly, only localized modes formed from
non-degenerate satellite extremawere considered. In the analysis presented here we (i) consider the
magnetic field and (ii) incorporate the mixing amongst the degenerate peaks or valleys of the orbit
of k in the bandstructure, resulting in a set of coupled Wannier-like equations describing a multi-
envelope system. This alows us to more easily apply the envelope formalism to resonant cavity
modes of PC slab waveguides, which in atwo- or three-dimensional crystal mix Bloch modes near
the degenerate satellite extrema of the orbit of k. We also focus on the magnetic field as it can be
approximately treated as a scalar for TE-like polarization modes of PC slabs®. From the shape and
symmetry of the envelope of alocalized resonant mode, and its relation to the underlying photonic
bandstructure, one may better design features of planar 2D PC resonant cavities, such as in-plane
and vertical emission, resonator-waveguide coupling, and the quality factor of resonant modes. In
addition, the Wannier-like eguation for localized defect modes more clearly and rigorously relates
the curvature of the bandstructure to the formation of donor and acceptor modes for different types
of local perturbations of a dielectric lattice.

This section is organized as follows. In section 1.2.2 we derive a set of coupled Wannier-like
equationsfor the envelope functions of localized TE-like statesin planar 2D PC structures, where as
predicted by the Wannier theorem, the underlying bandstructure of the periodic dielectric structure

givesriseto an effective mass tensor. We al so derive an approximate form for the effective potential

41t should be noted that the envelopeis always ascalar field, regardless of the vector nature of the electric or magnetic
field.
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in the Wannier envelope equation in terms of the local perturbation to the dielectric lattice. In
section 1.2.3 we use the approximate symmetry basisfor the TE-like Bloch modes at the valence and
conduction band edge of the first-order bandgap in a 2D photonic crystal consisting of a hexagonal
array of air holes derived in the previous section to obtain approximate relations for the effective
mass tensor of the Wannier equation In conjunction with the symmetry analysis, which determines
the mixing amongst the degenerate satellite extrema, we find an approximate form for the localized
donor and acceptor modes of a hexagonal lattice with a parabolically graded filling fraction. For
comparison, FDTD calculations of the acceptor and donor modes of such a defect cavity are also

presented.

1.2.2 Wannier theorem for photonsin periodic dielectric structures

In studying the localized electronic states associated with impurities within a crystalline material, it
is often helpful to transform Schrodinger’s equation into Fourier space, simplify the set of coupled
equations through the limited Fourier decomposition of the perturbing potential, and then transform
back to real-space coordinates, where a wave equation for the envelope of the localized states is
generated. The Wannier theorem [103] captures the essence of this procedure in using the under-
lying energy-(crystal)momentum dispersion generated by the periodic Coulombic potential of the
crystal in a spatialy coarse-grained theory of electron dynamics. One application of the Wannier
theorem is in the calculation of bound electronic states of crystal impurities [96, 99, 97, 98, 104].

The basic form of the Wannier equation for the envelope of impurity statesis

<(E —En(h71p)) +AV(r)>r(r) =0, (1.42)

where En(h1p) is the energy-(crystal)momentum dispersion relation of the nth energy band with
wavevector k replaced by the canonical momentum operator p = —ihAV, AV(r) is the impurity
potential, and I'(r ) is the envelope function describing the localized electronic state.

We would like to find asimilar Wannier-like equation for the envel ope of localized photon states
in periodic dielectric lattices. Of particular interest are the localized resonant modes of planar 2D
PCsformed in optically thin dielectric slabs (seefig. 1.1). Thefundamenta TE-like even modesand
TM-like odd modes of asymmetric 2D patterned dielectric slab waveguide can be approximated by
scalar fields. In what follows we shall focus on the TE-like modes (as discussed in ref. [25], a
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similar theory may also be derived for the TM-like modes of the PC dab).

We begin with Maxwell’s equations in a (lossless) dielectric medium free of currents and free

charge,

V xE = —iowH,
V x H = +ion%egE,
(1.42)
V. (n%eE) =0,
V- wH =0,

where E and H are the harmonic complex electric and magnetic fields, respectively, with time
dependence et (the physical fields are found by taking the real part of the complex fields). The
velocity of light in vacuum is represented by ¢, and we have assumed that the materia is non-
magnetic (L= Ho). We aso assume here that the dielectric function does not depend on spatia or
temporal frequency, £(m,k,r) = g,n?(r). From the above Maxwell relations, a wave equation for

both the electric and magnetic fields can be generated:

n(r) (v XV x E) - (%)ZE, (143)
V x <n(r)V X H) = (%)ZH, (1.44)

wheren(r) = 1/n?(r).

Aswe have discussed in the previous section, we separate modesinto TE and TM polarizations,
keeping in mind that this separation isonly truly valid for purely 2D structures (for slab waveguides,
the modes are only approximately TE and TM in nature). For TE modes the magnetic field is
described by a scalar field, H = ZHy (where the subscript d stands for “defect mode”). Aswe have
assumed that the refractive index does not vary (or the variation can be approximately neglected) in
the Z-direction, d,n(r) = 0. The Hermitian eigenval ue equation which results from equation (1.44)
and V-H = 0is(inthe 2D case we only consider variations with respect to the in-plane coordinates,
V=V)),
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L EHg = AgHg, (1.45)

with the TE eigenoperator given by,

LE=—(Vn)-V—mV2 (1.46)

The form of TE eigenoperator is easily obtained from equation (1.44) by using standard vector
calculus identities as found in ref. [93], for example. The eigenvalue, Ay, is related to the square
of the frequency of the mode, Ag = (wg/C)2. N = Mo + An, wheren, is given by the inverse of the
square of the refractive index of the unperturbed photonic crystal, 1/n2,(r), and An represents the
localized perturbation to 1/n2,(r). The eigenoperator Ly (we drop the TE superscript from here
on) can be separated into an unperturbed photonic crystal part, I:H7o =—-V(Mo)-V—1,V?, and a
perturbation part due to the defect, L/, = —V(An) -V — AnV2.

The (2D approximate) modes of the perfect crystal are eigenmodes of Ly 0

L oHik = A1 kHik, (1.47)

where | labels the band index and k |abels the in-plane crystal momentum. As the H, x are Bloch

waves they can be written as

Hix = %h.,k(r)ék'f, (1.48)

with L2 equal to the area of the 2D photonic crystal and the set of periodic functions, hk(r), a
crystal momentum k, satisfying their own set of orthogonality relations (normalized over the lattice

unit cell v),

1
(e lPigv = 2 / Arh hy e =By (1.49)
\"
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Informing adefect state by perturbing thelatticein alocalized region of space, the Bloch modes
in proximity to the degenerate satellite extrema of aband edge, the {k;;i = 1,2,...,M} points of the
xk (from here on, the xk refersimplicitly to the orbit of this band edge), are most strongly coupled
together [98]:

Ha(r) =2ci;ﬁ<k—ki>%hl,kék*, (150)

TheT; areaset of Fourier space envelope functions, which in the spirit of the effective mass theory

have amplitudes localized around k = k;j. Note that throughout this analysis the band of interest at

the band edge is considered to be non-degenerate and we neglect inter-band mixing [98].
Assuming that the h; x do not vary significantly (using a similar argument asin ref. [97]) over

the range of each Fourier space envel ope function,

Ha(r) =~ Zci %thieiki'r (Zf. (Ak)eiAk'r> , (1.51)
i Ak

where Ak = k — kj. Writing the envelope functionsin real space,

Ti(r) = Y Ti(Ak)e*kT, (1.52)
Ak

allows us to rewrite equation (1.51) as,

Ha(r) ~ ;Ci%hl,kieiki'rri(r)a (1.53)

It is in this way that the real space envelope of localized defect modes can be interpreted in the
Fourier domain [97] as a result of the intra-band mixing of the unperturbed Bloch modes of the
crystal.

Returning to equation (1.45), we now proceed to find an eigenvalue equation for the envelope
functions. Multiplying both sides of equation (1.45) by Hy -, where k' is chosen in a neighborhood
of ki, and integrating over the in-plane spatia coordinates gives,
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e Y Tk —kj) (Hrw|(Ag— Ak — Li)Hix) = 0. (1.54)
i k

We rewrite r as R; +r, where R; gives the center of the i™ unit cell and r is now confined to the
interior of the unit cell. Using the orthonormality of the Bloch waves and the normalization of their

periodic parts described in equation (1.49),

1N NR _—
(Hir k| (Ad— A1 k)H k) = (Ad —Al,k)F Y dkKIR /dzr s oy e )
i=1 v (1.55)

= (Ad— Ar k)01 18k k-

Note that areciprocal lattice vector was not included in & x asboth k” and k (through the localized
nature of the 1~“i) are assumed to lie within a neighborhood of one of the wavevectors comprising the

*xk, which by definition are not linked by areciprocal lattice vector. Equation (1.54) then becomes

Gi(Ag— AT (k' — ki)

R ~ (1.56)
— 2.6 > (Hrw|LiHix)Tj(k —kj) = 0.
i K
Fourier expanding the defect perturbation in reciprocal space,
=Y Ang e, (1.57)
k//
we can write the mode-mixing term <H|,_,k,y|1,q H k) in equation (1.56) as:
(k+K"—K')-R Aﬂk” 2, (kK —K')T s "
<H|rk/|LHH|k z Ze' d rel h ik"- (V+ik)
k" i=1
+V2+2ik-V—|k|z>h|7k> (1.58)

= ZZ(E]W Kiri (K’ k, G) + AN (iK”) - Ly (K k, G)) Ok’ k4G ks
G k//
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where the G are reciprocal lattice vectors, and we have defined scalar and vector coupling matrix

elements as
Kii (KK, G) /dzre'Grh,/k,(VerZik-V—|k|2)h|7k
(1.59)
= —(hyw|€CT (V24 2ik -V — k| |hy kv,
and
Ly (K k,G) /dzre'Grhl,k,(VHk)th
(1.60)

= —<h|/7k/ |e'G" (V + ik)|h|’k>v.

Substituting equation (1.58) into equation (1.56) while keeping only termsthat mix stateswithin
the Ith band results in the following Fourier space representation of the magnetic field master equa-

tion:

Ci(Ad— Ak F, k —ki) zzcjz‘((ZT/]kuKU(k/,k/—k//—i—G,G)
« (L61)
+5ﬁk~<ik">-L|,|<k',k'—k"+e,e>)fj(<k/—k~+e>—k,->> =0.

For defect perturbations which are localized in k-space as well as in real-space, the strongest
mixing terms will be those with k” nearest the origin. As such, a further simplification can be
made by including only those reciprocal lattice vectors G which minimize the magnitude of k” in
coupling the different neighborhoods of the xk (satellite extrema). Thelocal mixing of states within
the neighborhood of each k; will thus be dominated by the Fourier components of Eﬁ about the
origin with G = 0. Similarly, the mixing between neighborhoods of k; and kj, wherei # |, will be
dominated by a single G which minimizes the magnitude of the vector G — (kj —k;). Writing this
reciprocal lattice vector as G;; and only including the dominant coupling terms in equation (1.61)

collapses the sum over G and yields,
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Ci ((Ad — A|7k/)f‘i(k/ — ki) — Z(E]k”KU (ki,ki,O) —i—AT‘]ku(ik”) . L|’| (ki,ki,0)>
k//

Li((K k")~ ')) ECJz<(&ﬁk”Kl,l(ki>k]’Gj,i)+&ﬁk”(ik”)'Ll,l(kivk]vGJJ)) (162)
i#] Kk’

T (K = (K" =Gjj) - kj)) =0,

where we have neglected the variation of K ; and L, | within the local neighborhoods of the k; € k.
Implicit in the derivation of equation (1.62) isthat the T; arelocalized around the k; in reciprocal
space. In order to make this explicit (which will be necessary when transforming back to real-space

coordinates) we expand A, i in the vicinity of each ki,

A = (A o+ Al (AK)) +O(AK), (1.63)

where A , is the top(bottom) of the band edge, Ak = k' —k;, and A ; only contains terms up to
second-order in elements of Ak [98]. In the case of those k; located at an extrema of a given
(non-degenerate) band the resulting dispersion relation may be written in the form, A’ i(Ak) = Ak -
MI - Ak, where the matrix M, , is an effective mass tensor defined by the curvature of the band.

Substituting equation (1.63) into equation (1.62) gives,

Ci <(AAd — I/,i (Ak))lzi (Ak) — Z(E]k” K|"| (ki,ki,O) +&1v”|ku(ik”) . LI,I (ki7ki70>>
o

T (Ak — k”> ZCJz<<gﬁkuKl,l(kiakiaGLi)+Kﬁk”(ikﬂ)'LI’I(ki’kj’Gj’i)) (169
iZ] Kk

f‘j((Ak—f-Gj?i — Ak i) —k//)) =0,

where AAg = Aq— A o isthe eigenval ue referenced to the top(bottom) of the band edge, and Ak j =
kj —ki.

Equation (1.64) is the Fourier space representation of an approximate master equation for the
localized magnetic field envel ope functions of defect states. Transforming back to real space results

in aset of coupled Wannier-like equations,
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6 (880 A7, (1729)) — An1, (1) i) = Sy (& O 390 am () )y =0, (168)
i#]

Anj(r) = M(r)Ki(ki,kj, Gji) +V(an(r)) - Li(ki.kj, Gji), (1.66)

where p = —ikV asin quantum mechanics, and An’j?i (r) isan effective perturbation potential.
Assuming that the amplitude of the relatively large Fourier components of An(r) associated
with mixing of states between neighborhoods of different satellite points of the xk are much smaller
than the amplitude of the small Fourier components which mix states within a given neighborhood
of a point of the xk, we can treat the inter-k; mixing as a perturbation to the envelope functions
formed from the local k-space mixing [104]. This alows us to write an independent Wannier-like

equation for each of the I'j(r) envelope functions,

((AAd — Al”i(fflf))) — Ani’J(r)) Ti(r) =0. (1.67)

Of most importance for the types of resonant cavities studied here are the ground state solutions
to equation (1.67). This is due to the relatively localized nature of the defect regions. For de-
localized defect regions extending over many lattice periods a more extensive set of envelope func-
tions, including higher order functions with added nodes and antinodes must be included. Choice
of such aset of envelope functions will depend on the geometry of the boundary of the defect [105].
For the present work then, we take I'j (r) equal to the ground state envelope, I o(r ).

Asthe ground state of a system isin general invariant under the symmetries of the Hamiltonian
of that system [106, 104], the ground state envelope function should transform as the identity of
the point group of the Wannier-like equation given in equation (1.67). The spatial symmetries of
equation (1.67) are those of AI’J(h‘lf)) and Anj;(r). As discussed in ref. [24], it then follows
that the point symmetries of the Wannier-like equation for the ground state envel ope functions are
givenby G’ NGy, where G’ isthe point group of the defect perturbation (independent of the crystal
lattice) and G’i is the point group isomorphic to the group of the wavevector (of the underlying

Bravais lattice) at the point k; in the IBZ. With this knowledge the coefficients ¢; of the defect state



79

in equation (1.53) can then be determined using symmetry arguments.

1.2.3 Envelope function calculation

We will consider two examples of how the Wannier-like equation of the previous section can be
used to calculate an approximate envelope function for a localized photon state in a hexagonal
lattice photonic crystal. The first example is alocalized donor-type mode formed at the band edge
occurring at the X-point of the reciprocal lattice where the bandstructure (fig. 1.2(a)) has a local
minimum and isgiven by asimple parabol oid in aneighborhood of the X-point. The second example
isthat of alocalized acceptor-type mode formed from the J-point where the bandstructure has alocal

maximum.

1.2.3.1 Donor modes at the X-point

We begin by recalling equations 1.5 and 1.6 of section 1.1.2.1, which give an approximate repre-

sentation for the band edge modes at the X-point of the hexagonal lattice. In particular, we found

Vx, cos(kx, - r#)
VB = Vx, =7 COS(kXZ . ra) y (168)
Vg cos(kx, - r#)

as an approximate form for the X-point valence band modes, and

Cx, sin(kx, -r?)
CBa = CXZ = 2 s'n(kxz . ra) . (169)
Cxs sin(ky, - r?)

as an approximate form for the X-point conduction band modes. Separating the plane wave and

periodic parts of the above Bloch modes allows us to write,
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Vx = z(:I__+_efi2k><i~ra)eikxi,ra7
? (1.70)
ox = (1 ety
i2
with normalized periodic functions given by
hvk, = (1/\/5)(1_'_e7i2kxi,ra)7
- (1.71)

hc,kxi = (1/i\/§)(1 —e %% _ra)'
We now use the above set of modes to calculate the local dispersion of the conduction band
at the X-point. The Hermitian operator acting on the space of periodic functions at point k in the
reciprocal lattice, for the quasi-2D case studied here, is

Lhk = —VYV(Mo) - (ik+ V) +no(|k|2 = 2ik -V — V?), (1.72)

with associated eigenvalue equation given by,

Lrxhik = Arkhi. (1.73)

Asin“k-p” theory for Bloch electronsin crystalline materials, we expand I:H7k about point ko,

Crik = Cro + L aks (1.74)

with

LLi ax = NolAK[? + AK - (—iV(no) + 2noKo — 2iNo V). (1.75)

Treating I:,Qh Ak @S aperturbation to I:H,ko, and expanding hy i in terms of the h|,k0,5 gives to second

5Asdiscussedinref. [107], theh k, arenot completein the space of | attice periodic functions dueto the divergencel ess
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order in elements of Ak,

Al kko = Al ko +AK - (N o [ (=1V (M) + 2NoKo — 2iMoV) [N ko v + [AK (1 kg Mo M ko )v
|AK - (hy i, | (—1V(Mo) 4 2n0Ko — 2o V) [hr kv |2 (1.76)
= (At ko —Ar k) ‘

If ko corresponds to an extremal point within the bandstructure, then the linear Ak terms in
equation (1.76) are identically zero. One can check that for the X-point conduction and valence
band modes of equation (1.70), this is indeed the case. Substituting the periodic functions of the
conduction and valence band modes of equation (1.71) into equation (1.76) gives the local X-point

bandstructure of the conduction band as:

Ac,k~k><i = Ac,kxi + ‘Ak|2<hc,kxi |T]o’hc:,kxi v

1K (o (¥ (o) + 200k, — 200 s o (L.77)
AAx ’

where AAx = (Ac7k>< - Av,kx )

Fourier expanding 1o,

Mo = Y Moc€®", (1.78)
G

allows the bandstructure to be evaluated in terms of the Fourier coefficients of the dielectric PC.
Since n, is a lattice periodic real function, G are reciprocal lattice vectors and Mo = (Mo—c)*.
With the origin located at point a of the lattice (seefig. 1.2(a)), the hexagonal PC has Cg, Symmetry.
As aresult the Fourier coefficients of the hexagonal lattice are al real (inversion symmetry of the
lattice), and ﬁo,zkxi = ﬁo,ZKXJ, for all kx,kx, € xk. Also, as point a lies within the center of an
ar hole, the fundamental Fourier coefficients of the lattice, ﬁo,kaiv must be positive. Substituting

equation (1.78) into equation (1.77) gives,

nature of the magnetic field. In order to form a complete basis one must include zero frequency unphysical solutions.
As we neglect the contribution of remote bands in our analysis, which the zero frequency solutions certainly are, no
significant additional error is to be expected.
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4)(Ak - kx,)[2(Mo,0)? (1.79)

Ac,k~kxi = Acky +]AK ’2 (ﬁo.,o - 1io,ka) + AAx ’

where the index i has been dropped from ky, in those quantities that have the same value for each
element of the xk.
The bandgap at the X-point, AAx, may also be approximately determined in terms of the Fourier

coefficientsno . The magnetic field eigenoperator I:H can be written as,

Ch = —T00V? — Y, oc€C (V2 +iMocG - V)). (1.80)
G#£0

Treating Ane = ZGﬂ,ﬁo?GéG" as a perturbation to the average dielectric o, and considering
only the coupling between the forward and backward normalized plane wave states at the X-point,

(Ikx),| —kx)), resultsin the following two band magnetic field eigenoperator:

MoolKx|?  —To2ky [Kx|?

| )
IXx
Il

(1.81)
~MNozky [Kx|2  Moolkx|?

Theeigenvaluesof LY areno olkx|2= (To.2ky ) |Kx |2, Which givesfor the bandgap, AAx = 2(To 2k, ) [Kx 2.
Choosing a coordinate basis X; with X; orthogonal to kx, and y; parallel to kx,, allows usto write

for the local bandstructure of the conduction band in the vicinity of the X;-point,

2 2
NG A
Mexx  Mexy

AC,kaxi - AC7kx + (182)

with effective “masses’® defined as,

6We use the term “mass” here in analogy to solid-state physics where the curvature of the bandstructure is related to
theinverse of an effective electron mass. m* as defined hereis unitless.
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! = T~10,0<1— %>

mié,x,xi No,0 (183)
*l =Moo (1— n—B’ZkX + ~2n0"0 )
Me X i Noo Mok

For a PC formed from dielectric materials with real refractive indices greater than that of vacuum,
0 <mo(r) < 1. Consequently, Noo > 0 and Moo > 2noc for al G. The effective masses for the
conduction band at the X-point are thus both positive.

Evaluating the scalar and vector coupling matrix elements using the X;-point conduction band
modes of equation (1.71) gives: K (kx,kx,0) = |kx|? and L (kx,kx,0) = 0. Substituting these
coupling matrix elementsinto equation (1.66), the effective Wannier potential is,

A (r) = [kx|*An(r). (1.84)

Lastly, upon substituting the local bandstructure of equation (1.82) and the effective Wannier po-
tential of equation (1.84) into equation (1.67), we have for the Wannier equation of the conduction
band envelope at the ith X-point:

2

(Ag—A )—( —Vx +_—V>2/i+|k ‘ZAT](I’)> Teky (r)=0 (1.85)
d c,kx n’f‘;xyxi m;)(’yi X ckx . .

We now see from the Wannier-like equation for the conduction band edge at the X-point that asare-
sult of the positive effective mass coefficients, localized resonant modes will form for perturbations
to the hexagonal lattice in which An(r) is locally reduced, that is for which the refractive index is
locally increased.

Here we consider a defect which results in an approximate harmonic perturbation potential. By
appropriately varying the holeradii of aphotonic crystal consisting of a hexagonal array of air holes
in ahost dielectric material, the inverse of thefilling fraction of the hexagonal crystal can be graded
in aroughly parabolic fashion. The filling fraction of the lattice, f, asafunction of air hole radius

is,



fo1— %(;)2 (1.86)

where r is the hole radius and a is the nearest neighbor distance between holes of the hexagonal
lattice. For a host dielectric material of refractive index ng, the average dielectric constant of the
patterned crystal ise = f(no)2. The slowly varying envelope of 1, (T,,), neglecting rapid variations
on the scale of the lattice spacing, is proportional to 1/f, f, = (no)~2/f. For an approximate

harmonic potential then, the filling fraction of the lattice should vary as,

11 k(%ﬁ (1.87)

with p representing the radial distance from the center of the defect, f,, the filling fraction given by
the air hole radius at the center of the defect, and k the lattice grading coefficient. Thefilling fraction
as used hereisalocal approximation, based upon the local hole radius, of the truefilling fraction of
acrystal lattice. The resulting slowly varying envelope of the effective Wannier potential is,

2

7 P2 ( kx|

/.. — L LAl

Ai(p) =k(2) ( . (1.89)
The ground state solution to equation (1.85) with the harmonic effective potential of equation

(1.88) isthe 2D Gaussian,

Teioy (1) = 00— (/i +y2/7) . (1.89)
with decay constants,
1 1., 1
P = é( rnC,X7Xi)27
1 1 .- N (2.90)
_ * 2
2 5 (KMExy)?,

where k = k(|kx|/ane)2.
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Figure 1.16: (a) Graded hexagonal lattice donor-type cavity, (b) graded hexagonal lattice acceptor-
type cavity (parameters are given in table 1.4).

Table 1.4: Hexagona PC parameters for the donor- and acceptor-type defect cavities.

cavity o (L), fo kK ka2 (L), oz

a No,0

donor 265 025 077 001 0019 04 0.2%4

acc. 265 035 056 -0.006 0015 020 0.23

From equation (1.86), in order to obtain the parabolic grade in filling fraction, the normalized
hole radius of the defect cavity must vary with p as,

r2 +3 1
(5) :2_n<1_f01+f0k(p/a_)2>' (1.91)

With grading parameters given in table 1.4, the donor-type defect cavity we consider here is plotted

infig. 1.16(a). The calculated parameters of the approximate envel ope function for the donor modes
of this defect cavity are givenintable 1.5.

The point group symmetry of the donor-type defect cavity of fig. 1.16(a) centered about point

Table 1.5: Donor mode (X-point) ground state Wannier envel ope parameters.

> > K Y
Mexx  Mexy, a a

a

1.7 072 23 41
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Figure 1.17: Magnetic field (2-component) plot of the donor modes of the graded hexagonal donor-
type cavity: (a) symmetry analysis HZ%} (x-dipole) mode, (b) symmetry analysis H2 (y-dipole)
mode, (¢) FDTD simulated x-dipole mode, and (d) FDTD simulated y-dipole mode. Comparison
of: (e) Wannier and (g) FDTD envelope functions for Ha d1 1 (x-dipole) donor mode. (f) and (h) show
line scans of the FDTD filtered envelope (solid line) al ong the X- and y-directions, respectively. The
Gaussian fit to the FDTD envelope along these principal directions are also plotted (dashed line).

a of the hexagonal lattice is that of the underlying hexagonal lattice, Cg,. A set of basis functions
for the localized conduction band donor modes was given in Equation 1.16, and has been rewritten

here to include the conduction band envelope functions Tk

dl
Haé” ’CX1>FC7kx1 - ‘CX2>FC,kx2 + ’CX3>FC,kx37

d
HELT = 216 Teky, + 1656 ek, —1066) Tekog (1.92)
Ha,dl

E1,2 — ’CX2>FC-,|<X2 + ‘CX3>FC,|<X3’

Infig. 1.17(a)-(b) the magnetic field intensity is plotted for the dipole-like modes of the E; IRREP
with envelope functions given by the I'c . of equation (1.89). The calculated decay parameters for
the Gaussian Leky are tabulated in table 1.5. Note that the coefficients of the expansion for each
donor mode (c;) are determined solely by the transformation properties of the basis CB%; the enve-
lope functions transform effectively as the identity and do not modify the expansion coefficients.
For comparison, 2D FDTD simul ations were performed on the donor-type cavity of fig. 1.16(a).
Plotsof the FDTD calculated magnetic field patterns (and their Fourier transforms) of the two modes
most deep within the first order bandgap are given in fig. 1.17(c)-(d). The modes transform as the
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Table 1.6: FDTD calculated mode envelope parameters.

(%) 1@

HE'l 177 302

mode

SIS

HA™ 465 452

H3™ 520 448

B} and B} IRREPs of the C,, point group (the FDTD simulation was performed with mirror plane
symmetries to reduce the size of the computation, thus projecting the modes onto the Cy, IRREPS),
equivalent to thek and  basisof theCs, IRREP E; (the basis chosen for modes HE"} and HE). The
FDTD generated field patterns show good correspondence with the field patterns of the approximate
symmetry analysis (fig. 1.17(a)-(b)).

A more quantitative estimate of the envelope of the FDTD-generated localized modes can be
obtained by considering the form of the approximate symmetry analysis modes of equation (1.92).
Multiplying a donor mode which contains a dominant Fourier component at kx, by cos(kx; - r#)
will produce a term proportional to I'c, , thus shifting the envelope to the origin in Fourier space.
Applying alow-pass spatia filter to the product of the mode and the cosine function will then leave
only the envelope corresponding to T'ck,. . Infig. 1.17(f)-(h) we plot the result of such a procedure
applied to the FDTD calculated HEld} (x-dipole) mode (fig. 1.17(e) shows a plot of the envelope
calculated using the Wannier-like equation). The FDTD generated envelope is oriented paralel to
kx,, and as can be seen from fig. 1.17(f),(h) is Gaussian in nature. The fit decay parameters along
X and y; directions are given in table 1.6, and although smaller than estimated (table 1.5), they are
in nearly the precise ratio predicted by the Wannier equation

1.2.3.2 Acceptor modesat the J-point

As mentioned above, the valence band edge of the fundamental bandgap for TE-like modes occurs
at the J-point of the reciprocal lattice for the hexagonal PC. From section 1.1.2.2, the approximate
form for the band edge states at the J-point is:

jky, re iky,rd ikgr2
Vy, [T T s
VBS = =z _ , , (1.93)
(Wz) (e"‘Jz‘ra+é"J4'fa+e"‘Je'fa



for valence band modes, and

cl J
CR2 — c2 h
C:I.‘]2

c2 J
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ek 1 | grikar®  peikag 1
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for conduction band modes. The normalized periodic functions of the above Bloch modes are,

Py, =

Pk, =

hCl7 k i =

hCl7 k X =

hCZ,kJ2 = E

(1+e—I2kxl +e—i2kx2~l’a)’
\/§

(1+e—I2kx2 +e—i2kx3~l’a)’
V3
1 i ra i ra
_(1+e i2kx, -1 —2e i2kx, 1 )’

V6

. (1471200 _ pgmiZhxg ™)

V6

1 -
heok,, = 5 (1—e 20T,

(1.95)

(1.96)

(1.97)

The loca bandstructure for the valence band at the J;-point, upon evaluating equation (1.76)

using the approximate J;-point valence and conduction band modes above, is
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Av,k~kJ1 = A\/,kj + |Ak|2 (ﬁo,o + 2ﬁ072k><)

(Z(ﬁo,o)z + 3 (Mo,2kx )2+ 2(M0,0) (Mo, 2kx ))
— | |Ak -ky,|?
2 AA;

4
51K k2

(2(T~10,0)2 + 3 (Moaky )2+ Z(ﬁo,o)(ﬁo,ka))
AAj )

kl? (2(0.0)2 + § (o) + 2(Tl00) (o2 )

= Ak, + |AK|? (ﬁo,o + 2No2ky — AL

(1.98)

where Ak = k — kj,. To second order in the elements of Ak, the local bandstructure around the
Ji-point of the valence band is centro-symmetric. As aresult, the local bandstructure in the neigh-
borhood of each of the J points of the xk is also given by equation (1.98). In order to determine
the sign of the curvature of the valence band, the bandgap at the J-point, AA;, is evaluated using a
similar procedure asfor the bandgap at the X-point. The three band eigenoperator, in the normalized

plane wave basis of (|ky,), |Ka), |Kx)), is:

~ 1~ 1~
MNo,0 —5Mo,%kx  —35Mo,2kx
~J 2 1= ~ 1~
Lt = [Kal” | —3Mo.21x No,0 —5MNo2ky | - (1.99)
1= 1= =
—5MNo,2kx  —5Mo,2kx No,0

The eigenvalues of L} consist of the single eigenvalue Ayk, = |K3|2(To.0 — Mo.2ky ), and the double
eigenvalue Ack, = |K3|2(Mo.0+Mo.2kx/2). Thebandgap at the J-point isthen, AA; = (3/2)To 2x, |KJ |-
Substituting this value of AA; into the equation (1.98) we have for the local bandstructure at each
of the J-points,

Ak|?
Avk~k; = Avk; + |”\7’ . (1.100)
J

where the effective mass of the valence band is,
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my, 3

No,0 (ﬁo,O) (ﬁo,ka ) (1.101)

= n A((To.0)2 — 2(Mo9x )2
: 1T]o,o (1+ Moz | ((Mo0) (Mo,2kx ) )) .

As expected for the valence band, the effective massis negative at the J-point.

The scalar and vector coupling matrix elements, evaluated using the J;-point valence band mode
of equation (1.95), are: Kyy(ky,ky,0) = |kj | and Lvv(K3,,K3,,0) = 0. The resulting effective
Wannier potential at the J-point is given by,

AN i(r) = [kg[An(r). (1102)

With the local bandstructure of equation (1.100) and the effective potentia of equation (1.102), the

Wannier equation of the valence band envelope at the J-point is:

<(Ad — Avk;) — <_*V2 + k3 |2Aﬂ(f)) > Ty, (1) =0. (1.103)
m,,

Due to the negative effective mass coefficient, localized resonant modes will form for local per-
turbations to the hexagonal lattice in which the refractive index is locally decreased. The acceptor-
type defect is taken to consist of a grade in the radius of the air holes of the hexagonal crystal as
defined in equation (1.91), with grading coefficient k = —0.006. The values of the parameters of
the acceptor-type cavity are given in table 1.4 and a plot of the acceptor-type cavity is shown in fig.
1.16(b).

Aswasthe case for the donor-type cavity, this grade in the hole radius results in an approximate
parabolic potential well. Therefore, we take as our approximate ground state envel ope function the

Gaussian,

Tyk,(r) = exp[—(p/K)z}, (1.104)

with p = |r | | thein-plane radius, and k a single parameter decay constant given by,
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Table 1.7: Acceptor mode (J-point) ground state Wannier envelope parameters

m; f=%=%
068 444
1 1= . \1
= = 5 (KIms))?, (1.105)

wherek = K| (|k3|/ang)?. The value of k/a as calculated for the acceptor-type defect of fig. 1.16(b)
isgivenintable 1.7.
From equation (1.20), we have aform for acceptor modes formed at the J-point of the hexagonal

lattice. Rewriting these equations to include the Wannier envel ope functions, we arrive at:

1
HZ’; = |VJ1>FV,kJ + ‘VJZ>FV;kJ

o< 2(cos(ky, - ) +cos(Ky, - 1) + cos(ky, - 1)) Tk,

1.106
aal ( )
HB,Z, = |V3) Tk, — [Va) Tuk,

oc 2(Sin(k31 -r)+sin(ky,-r) +Sin(kJ3 . r))rv,kj,

where the I'yk, are equivalent for each element of the xk due to the isotropic effective mass of the
J-point valence band. A plot of the magnetic field (2-component) for the symmetry basis modes

Hy; and HE™ are given in fig. 1.18(a)-(b).

2D FDTD simulations of the acceptor-type cavity of fig. 1.16(b) and table 1.4 were also per-
formed. The two deepest modes within the first order bandgap are found to be of A] and B} sym-
metry, the same symmetry as the modes predicted by the approximate analysis. Plots of the FDTD
calculated magnetic field patterns of these modes are given in fig. 1.18(c)-(d), again showing a
strong resemblance to the approximately generated field patterns. Figure 1.18(e)-(h) shows a series

a,al

of plots of the envelope (I'yk, ) of the acceptor mode H A The size and shape (isotropic) of the

FDTD calculated mode envelope corresponds very nicely with the approximate Wannier envelope

as can be seen by the Gaussian fitsin fig. 1.18(f)-(h) and the values of the fit decay constants given

a,al

intable 1.6. A similar envelope was extracted for mode HBZ , with its fit decay constants given in
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Figure 1.18: Magnetic field (Z-component) plots of the acceptor modes of the graded hexagonal
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table 1.6 aswell.
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Chapter 2

Momentum Space Design of High-Q
Photonic Crystal Microcavities

2.1 Introduction

As | have discussed in the preface, there has been a considerable amount of interest in extending
cavity QED experiments to the semiconductor regime. In these experiments, coherent interactions
between a single quantum dot (QD) and a single photon within the semiconductor microcavity can
take placeif the system isin the so-called strong coupling regime [9], where the QD-cavity coupling
strength g exceeds the QD dephasing rate v, and the cavity decay rate x. As of just a few years
ago (i.e, at the start of our work in the area), no semiconductor microcavity had been demonstrated
that had the requisite combination of a high quality factor (Q) and small mode volume (Vesf) to
achieve strong coupling (x ~ 1/Q, g ~ 1/Vef1f/ 2). Photonic crystal (PC) microcavities seemed to be
a particularly appealing route to semiconductor-based strong coupling; the ultrasmall volumes to
which they confined light (smaller than the modal confinement that had been achieved in micropost
or microdisk cavities, for example) implied that the Q values needed to achieve strong coupling
would be more modest than in other geometries. The focus of this chapter is on the design of PC
microcavities with sufficiently high Qs for these applications. It is based largely on references [21]
and [ 23], which were published in July 2002 and March 2003.

While the PC microcavities studied in ref. [8] had very small mode volumes and |oss properties
sufficient to sustain lasing, the measured Q values were still less than 1000. In particular, the
radiation losses were predominantly out of plane, while the in-plane losses were in comparison
small [7]. Although refinements in design [11] and fabrication [12] had since increased the total
measured Q to as high as 2, 800, applications in cavity QED require Q values on the order of 10* to



%
achieve strong coupling (assuming Vet ~ (A/n)3).

The limitations on Q stem from a number of possible factors, including intrinsic material ab-
sorption, etch-induced surface roughness and surface-state absorption, and other fabrication irregu-
larities that prevent ideal replication of a given design. These issues aside, the fundamental design
of these cavities had left room for improvement, and as such, the focus of this chapter primarily lies
here. Our main objective isto consider simple design rules that can be used to significantly reduce
the vertical losses from these structures, while maintaining or even improving upon the in-plane
losses. In section 2.2, we describe a simple picture which illustrates that the vertical radiation loss
of amode is characterized by the presence of momentum components within the light cone of the
cladding of the host slab waveguide (WG). We then consider (section 2.3) the use of symmetry to
eliminate in-plane momentum components (k | ) at k, = 0 (DC), thereby reducing the vertical loss
in the structure. Drawing heavily from chapter 1, we summarize the different defect modes available
in hexagona and square lattice PCs, and proceed to choose target symmetries for modes in these
|attices based upon the constraints they impose on the dominant field components of the modes.
In section 2.4, we propose simple defect geometries that support such modes and present the re-
sults of three-dimensional (3D) finite-difference time-domain (FDTD) calculations of their relevant
properties. In section 2.5, we consider further improvementsin the designs based on a Fourier space
tailoring of the defect geometries that reduces coupling of the mode’s dominant Fourier components
to components that radiate. The results of FDTD simulations of these improved designsin a square
|attice are presented, and show that a modal Q-factor approaching 10° can be achieved by a careful
consideration of the mode and defect geometry in Fourier space. Similar considerations are given
in sections 2.6 and 2.7, where we consider the design of high-Q defect modes within standard and
compressed hexagonal lattice photonic crystals. Comparable resultsin terms of Q (~ 10°) and Vi

(~ (A/n)3) are achieved in these | attices.

2.2 Momentum space consideration of vertical radiation loss

The optical cavities studied here are comprised of defects situated in 2D PC dlab WGs (fig. 2.1). As
aresult, thein-plane confinement of the cavity modesis governed by the distributed Bragg reflection
(DBR) of the surrounding photonic lattice. Leakage of light in the plane of the PC slab WG from
the cavity is thus determined by the number of periods of the host |attice surrounding the defect and

the width and angular extent of the in-plane guided mode bandgap. Vertical confinement, on the
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radiation
mode

cone in (kyky,)-space

Figure 2.1: 2D hexagonal PC slab waveguide structure and cladding light cone.

other hand, is due to standard waveguiding by total internal reflection. Vertical radiation loss occurs
when the magnitude of the in-plane momentum component, k, , isinappropriate to support guiding.
More concretely, we note that the energy-momentum dispersion relationship for a homogenous
dielectric cladding (refractive index n) of the PC slab WG is (nw/c)? = k% + k2, where o is the
angular frequency, k; is the momentum normal to the slab, and c is the speed of light. For an air
clad PC WG as studied here, k2 = (w/c)? defines a cone in (K, ky, ) space, commonly referred
to asthe “light cone” (fig. 2.1). Modes that radiate vertically will have small in-plane momentum
components that lie within the light cone of the cladding, thereby creating an oscillatory (radiating)
fieldintheair instead of an evanescently decaying field. Equivalently, from aray optics perspective,
modes with in-plane momenta lying within the cladding light cone do not meet the total internal
reflection condition at the semiconductor-air interface. This simple rule serves as our fundamental
guidelinein designing cavities that limit vertical radiation loss. In particular, we seek out structures
that support resonant modes whose in-plane momentum components are primarily situated outside
of the cladding light cone.

Before discussing methods to improve the vertical loss properties of PC defect cavities, it is
instructive to consider the characteristics of the previously studied [7] dipole-like defect modesin a
hexagonal lattice PC. Consider the x-dipole donor mode produced by a symmetric defect consisting
of theremoval of asingleair hole from ahexagonal lattice of air holesina2D slab WG, asdiscussed
in the previous chapter. Following the symmetry analysis presented in chapter 1, we see that this
mode is composed of dominant Fourier components directed along +{kx,,Kx,,Kkx;}, where the
kx directions are shown in the hexagonal PC reciprocal space lattice of fig. 2.2(a). The 2D spatia
Fourier Transform (FT) of the x-dipole field component Ey at the middle of the PC slab WG isgiven
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(a) Hexagonal Lattice. (b) Square Lattice.

Figure 2.2: Real and reciprocal space lattices of (a) a 2D hexagonal lattice, and (b) a 2D square
|lattice. For the hexagonal lattice: |a;| = |az| = @, |G1| = |G2| = 4n/V/3a, |kx| = 2n/+/3a, k| =
4t /3a. For the square lattice: |a;| = |a| = &, |G1| = |G2| = 2n/a, |kx| = nt/a, |km| = v2r/a.

in fig. 2.3(a). It shows the E-field to be primarily composed of momentum components located
about the X points, with +ky, as the strongest components. Note that the field has a significant
amplitude for momentum components lying within the light cone, the boundary of which is shown
in fig. 2.3(a) as a dashed white circle. These low momentum components radiate and are the cause

of the mode's relatively low effective vertical Q-factor (Q, ~ 1000).

2.3 Summary of the symmetry analysis of defect modes in hexagonal

and square lattices

There are a number of ways to limit the presence of small in-plane momentum components in the
localized resonant modes of PC dlab WG defect cavities. For example, the geometry of the defect
and the surrounding holes can be tailored to reduce the magnitude of these components, as was
done in ref. [11], where the authors report a predicted Q of 30,000. One particularly appealing
way to limit the presence of small in-plane momentum components is to use symmetry to enforce
specific boundary conditions on the Fourier space representation of the mode. A defect will support
one or more resonant modes with symmetries that are compatible with the nature of the defect
and the surrounding PC. Of particular interest are modes whose symmetry is odd about mirror
planes normal to the dominant Fourier components of the mode. In the context of our symmetry

analysis, thefields of the approximate TE-like modes havein-plane electric field polarization normal
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light
cone

[FT(EX)|

ke (a=1) T k=)

(a) 2D FT of Ex. (b) 1D FT of Ex along ky direction.

Figure 2.3: Spatial FT of x-dipole donor mode in a hexagonal lattice (r/a = 0.30) with a central
missing air hole. (a) in 2D, (b) along the ky direction with ky = 0.

to the direction of their dominant Fourier components. In Fourier space, our choice of symmetry is
equivalent to eliminating these in-plane electric field polarizationsat k; = 0 (DC). Thiselimination
of DC momentum components is the first step in reducing vertical radiation loss, and serves as our
fundamental criterion for choosing the desired symmetry for our defect modes.! In addition, as we
shall discuss later within thisthesis (chapter 4), this use of a symmetry as a primary mechanism for
reducing vertical radiation loss is also important from the standpoint of making cavities whose Qs
are relatively robust to perturbations in their geometries.

The defect modes of a PC cavity are generally classified into donor- and acceptor-type modes
[94], based upon whether the defect creates modes from the conduction band edge (donor modes)
or valence band edge (acceptor modes). For the hexagonal lattice, whose real and reciprocal space
depictions are given in fig. 2.2(a), the valence band edge is at the J-point and the conduction
band edge is at the X-point (fig. 2.4(a)), while the square lattice of fig. 2.2(b) has its valence
band edge at the M-point and conduction band edge at the X-point (fig. 2.4(b)). The dominant
Fourier components and symmetry of a defect mode are determined by the type of mode (donor
or acceptor) under consideration, the symmetry of the surrounding PC lattice, and the point group
symmetry of the defect. The use of such an analysis to produce approximate forms for the modes
in hexagonal and square lattice PC defect cavities was the focus of section 1.1, and as a result,

here, we primarily incorporate the results of that chapter and describe their implications towards the

1This can be viewed in the far-field as elimination of lower-order multi-pole radiation components, as has been con-
sidered by Johnson and co-workers [108]
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Figure 2.4. Fundamental TE-like (even) guided mode bandstructure for hexagona and square lat-
tices, calculated using a 2D plane-wave expansion method with an effective index for the vertical
guiding: (a) hexagonal latticewithr /a= 0.36, Nnga, = Nest = 2.65, (b) squarelatticewithr /a= 0.40,
Ngab = Neff = 2.65.

design of high-Q defect resonators. The course of study is the following: we use the results of this
group-theory-based analysis to determine the symmetry and dominant Fourier components for the
available donor and acceptor type modes formed at different high symmetry pointswithin hexagonal
and sguare lattice PCs. Candidate modes for high-Q resonators are then chosen from these sets of
available modes based upon the criteria placed on the mode's momentum components as described
above. Within the mirror plane of the slab WG (coordinatesr | ) the TE modes are described by the
field components Ey, Ey, and H,. Since the magnetic field is exactly scalar within this mirror plane,
the criterion reduces to looking for modes in which the magnetic field pattern is spatialy even in
the directions of its dominant Fourier components. Thisis equivalent to having the in-plane electric

field components spatially odd in these directions.

2.3.1 Hexagonal lattice

For a hexagonal lattice, the high symmetry points about which a defect may be formed are points a
(Cev symmetry), b (Coy symmetry), and ¢ (Cays, Symmetry) shownin fig. 2.2(a). Here, we consider
donor and acceptor modes formed only at points a and b, as from the analysis presented in the
previous chapter, those centered at point ¢ do not contribute modes with the requisite symmetry
and dominant Fourier components. We also examine reduced symmetry modes formed at point

a, where the reduction of symmetry from Cg, to Cy, is accomplished by choosing a defect that
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Table 2.1: Symmetry classification and dominant Fourier components for the H-field of conduction
band donor modesin a hexagonal lattice.

Defect Center Cgy Modes ~ Fourier Comp.  (64,6v)2 Coy Modes  (oy,0y)?

(0,0) Hy'' ko ke kel  (+-)  HE™ (=)
(0,0) HEYD E{kx. ko kx)  (0,0) H3™ (=)
(0,0) HEG  #lkeke} (000 HE™  (+-)
(a/2,0) N/AP +{Kxy, Kx } N/A Ha (+,+)
(a/2,0) N/A +{Kxy, Kxo } N/A Ha (=, =)
(a/2,0) N/A +{kx, } N/A Ha™ (—+)

@ Character values.
b Not applicable. Modes centered at point b are of Cy, symmetry.

breaks the symmetry of the lattice and is compatible with Cy,. Based upon the analysis of chapter
1, we create table 2.1 for donor modes and table 2.2 for acceptor modes. These tables provide the
labeling scheme for the Cg, and C,, modes, the dominant Fourier components of the modes, and
their transformation properties about the available mirror planes (the mirror plane properties are
represented by their character values[92]).

Donor modes of Cg, symmetry, formed at point a in the lattice, have their dominant Fourier
components in the £{kx,,kx,,Kkx, } directions, and we thus require that 64 = —1, where the o
are the mirror planes labeled in fig. 2.2(a). However, o4 # —1 for the modes listed in table 2.1.
Reducing the symmetry of the mode to Cy, (through a modified defect at point a or re-centering to
point b) resultsin modes with dominant Fourier components that are not orthogonal to the available
mirror planes, or asin the case of the H gfl mode, have incorrect spatial symmetry.

Out of the Cg, acceptor modes in table 2.2, the Hf_‘\’,z‘,'"l mode satisfies the symmetry criteria. The
H',i’z""l mode produced at position b does not quite satisfy our criteria, as two of the three pairs
of dominant Fourier components (£{ky,,kj,}) are not orthogonal to the mirror planes; however,
distortions of the lattice that preferentially select for the +kj, Fourier components over £k and

+k, can be made so that the symmetry condition is satisfied. Such lattice distortions are addressed

aal

insection 2.7. Asareference, the approximate form for theH Ay

(1.20), islisted below:

mode, given previously in equation
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Table 2.2: Symmetry classification and dominant Fourier components for the H-field of valence
band acceptor modes in a hexagonal |attice.

Defect Center Cgy Modes  Fourier Comp.  (64,06y) Cy Modes (o, 0y)

(0,0) Hat tfkookaks)  (--)  HRY (o)
(0,0) He'  tlkookaks)  (—4)  HE® (+-)
(a/2,0) N/A +{ky,, ks, kb N/A H,*gfl (—,—)
(a/2,0) N/A +{ky,, ks, kb N/A Ha (+,-)
Hf\fl = 2(COS(kJ1 -19) +cos(ky, - rg) 4 cos(Ky - fi)) , (2.1)

whererd denotes in-plane coordinates referenced to point a.

2.3.2 Sguarelattice

The square lattice of air holes in a dielectric slab, whose real and reciprocal space representations
are shown in fig. 2.2(b), and whose TE-mode bandstructure is depicted in fig. 2.4(b), also provides
aphotonic lattice from which low-loss defect modes can be formed. Defectsin a square | attice may
be centered at the C4, symmetry pointsd and f, or the C,, symmetry point e. Again, following the

analysis of chapter 1, we produce tables 2.3 and 2.4 for the square lattice defect modes.

f.d1 g f,d1
A/2/ ) H B/2/ H
meet the symmetry condition we have placed on the modes. By suitable modification of the defect

Based on their properties under mirror reflection, the H and ngl donor modes all
geometry, the symmetry of modes formed at pointsd and f can be reduced to Cyy s, or Cpy,6,, Where
the subscript 6, denotes symmetry with respect to the (cx,6y) mirror planes and the subscript 64
refers to the (ox,6y) mirror planes (fig. 2.2(b)). The modes at f continue to satisfy the symmetry
criteriaunder Cyy,, but no longer do so under Cy6,, as the o4 mirror planes are not orthogonal to
the modes' dominant Fourier components.

The acceptor states formed from the valence band edge at the M-point are analyzed in asimilar
fashion, and in this case, the modes at pointsd and f are candidates. The reduced symmetry Cy s,

modes at points d and f are ruled out, while the Cy 5, modes at these two high symmetry points
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Table 2.3: Symmetry classification and dominant Fourier components for the H-field of conduction
band donor modes in a square | attice.

Defect center  C4,  Fourier Comp.  (04,06v) Cous, (0x,0y) Cougy (Ox,Oy)

(0,00 HET kel (0.0 Hg"  (—4+) Hg" (=)
(0,00 Hg' kel (000 HE"  (+-) HE"  (+.-)
(/2.8/2)  HE" ke kel (—-) Hat (o) HET (=)
(/23/2)  Hg"  Ekgke) (-1 HE (-0) HGY ()
(0,a/2)  N/A®  {kx} NA  HSSY (- —) NA  NA
(0,a/2) N/A +{kx, } NA  HE' (+,-) NA NA

a Not applicable. Modes centered at point e are of C,, symmetry.

Table 2.4: Symmetry classification and dominant Fourier components for the H-field of valence
band acceptor modes in a square lattice.

Defect Center  C4,  Fourier Comp.  (64,06v) Cos, (0x,0y) Caxosy (Ox,Oy)

(0,00 Hy'  Hkupkw} () Ha' (—-) HRM (- )
(8/2,3/2)  Hg  tkupkw)  (+-) HZ™ (14) H®M (- )

0,a/2 N/A  +{kw,,Km NA  HEE (- +) N/A N/A
1 2 B1

remain on the list. As a reference, the approximate forms for the candidate donor and acceptor

modes are given in table 2.5 below.
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Table 2.5: Candidate donor and acceptor modes in a square lattice.

Donor Modes Acceptor Modes
HL;Q,dl — 2(cos(kx, -1 ) +cos(ky, -1 )) HO'A;z,al = 2(cos(km, - r9) +cos(kwm, - 1))
fdl _ 5 f f fal _ 5 f f
Hg, ™ =2(cos(kx, 1) —cos(kx, 1)) HB,l,a = 2(cos(kw, - ) —cos(km, )

HoS = 2(cos(kx, -1¢))

2.4 Initial FDTD simulation results

The symmetry analysis presented in the previous section determined the modes satisfying our sym-
metry criteria, chosen to reduce vertical radiation losses from the PC dlab WG. For a hexagonal
|attice, we singled out the acceptor mode of equation (2.1), while for the square lattice, a number of
options were available, as summarized in table 2.5. We begin the 3D FDTD analysis of high-Q PC
resonant cavities by choosing particular defectsin the hexagonal and square latticesthat will support
one of these modes. Resultsfrom the FDTD analysiswill provide ameasure of the benefits obtained
in using modes of such symmetries, and will also give an indication of what further improvements
are needed. Thiswill lead naturally to the Fourier space tailoring of the lattice discussed in sections
25and 2.6.

The FDTD calculations presented in this section (see appendix B for more details) were per-
formed on a mesh with 20 points per lattice spacing (greater than 70 points per free space wave-
length or 20 points per wavelength in the dielectric). Cavity modes were excited by an initia field
(H,) with alocalized Gaussian profile, and even modes of the slab WG were preferentially selected
by using an even mirror symmetry condition (o, = 1) in the middle of the dlab. In order to main-
tain a single vertical mode of the PC slab waveguide (within the frequency band of interest), we
choose anormalized slab thicknessd /a = 0.75 in this section. Where appropriate, the mirror planes
(ox,0y) were used to filter out cavity modes according to their projection onto the irreducible rep-
resentations (IRREPS) of Cy,. Mur’s absorbing boundary conditions were used to terminate the
FDTD simulation domain in all other directions. Q values are calculated by determining the power
absorbed in the boundaries (Paps) and the stored energy in the mode (U), and taking Q = woU /Paps,

where wy is the angular frequency of the mode. By distinguishing between power flow to vertical
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and in-plane boundaries, effective Q values Q, and Q) are calculated, with the total quality factor
being determined by 1/Q = 1/Q; +1/Q_ [7]. It should be noted that a number of other methods
were also used to estimate the Q values, including the moda energy decay rate and the radiated
power calculated from the near field momentum components lying within the cladding light cone,
all resulting in consistent values. The effective volume [109, 110] of the cavity modes, Vi in the
tables below, is calculated using the peak in the electric field energy density and is given in units of

cubic wavelengths in the material .2 The explicit form of Vi is:

 Je(n)[E()
= mexEEN] (22)

24.1 Hexagonal lattice

The Hi’,z‘,"‘l mode, our candidate mode for study, isformed by enlarging holesin amanner consistent
with the Cg, symmetry of the lattice, so that an acceptor mode is formed. We choose the defect
geometry shown in table 2.6, where the central hole (about point a) is enlarged from radiusr to r’.
The defect is surrounded by a total of 8 periods of the hexagonal lattice in the X-direction and 12

periods in the y-direction. The magnetic field amplitude and Fourier-transformed momentum space

electric field components Ex and E, of mode Hf\’,z?l are given in table 2.6 for two different pairs of
values (r,r’). The dominant Fourier components are seen to be +{kj, ,k,,ks }, as predicted by the
symmetry analysis. Examining Ey and Ey, it is also clear that, although the power within the light
cone has been reduced in comparison to the x-dipole donor mode, it is still significant. Thisfact is
evidenced in Q, which, at 4,900 for r /a=0.35and r’/a= 0.45, islarger than that obtained for the
x-dipole mode. By reducing the frequency, and consequently the radius of the light cone, the PC
cavity withr/a=0.30 and r’/a = 0.45 has an improved vertical Q of 8,800 (although its in-plane

Q has degraded due to areduction in the in-plane bandgap for smaller lattice hole radii).

2In our original papers [21, 23], we quoted modal volumes in terms of cubic wavelengths in air (A3); this unit has
meaning in terms of describing the physical volume of the field. However, to compare differing cavity geometries across
different material systems, the unit of cubic wavelengths in the material ((A/n)%) is more appropriate, and | have thus
chosen this unit for all of the Vg values quoted in this chapter and the rest of the thesis. In addition, certain phenomena,
such as the enhanced radiative rate of an emitter within a cavity (the Purcell effect) are most straightforwardly calculated
when the volume is quoted in units of (A/n)3. In other works within the field, mode volumes will sometimes be quoted
interms of cubic half-wavelength in the material ((A/2n)3), to provide a comparison against atheoretical cavity that can
confine an optical mode to a half-wavelength in the materia in all three dimensions (i.e., the optical analog of the particle
in a 3D infinite square well from quantum mechanics).
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Table 2.6: Characteristics of the Hi’,;l resonant mode in a hexagonal lattice (images are for a PC
cavity withr /a=0.35, r'/a= 0.45, d/a= 0.75, and ngg, = 3.4).

Geometry |Ey| |Ey|
;b;oo 10
OO |& -
O - S
E’O gc 19
SO, %
a D0 kx (@=1)
r/a r'/a Quot | Ver((A/n)3)
0.35 0.45 4,300 0.54
0.30 0.45 3,300 0.84

24.2 Squarelattice

We choose the Higl mode as our candidate for study. This mode, centered in the dielectric at point

ein thelattice, is appealing in that it has Fourier components primarily situated at +kyx,, while the
other modes of correct symmetry have alarger number of Fourier components. This simplifies the
design considerations of section 2.5. To create the mode, we consider the structure depicted in table
2.7. Defining point e as the origin, (0,0), we see that the structure consists of a standard square
lattice of air holes in which the two holes centered at (0, +-a/2) are decreased in size so as to create
a donor mode of A, symmetry. In the FDTD simulations, the structure consists of 12 rows and 8
columns of air holes surrounding the defect holes.

Starting with r /a = 0.30, r’/a=0.28, and d/a = 0.75, we produce a mode with normalized
frequency mn = a/Ao = 0.264. The magnetic field amplitude and 2D spatial FTs (Ex and Ey) of the
mode are given in table 2.7. Asthe amplitude of Ey issmall in comparison to that of E,, the mode
is predominantly made up of components centered at +ky,, as predicted. The effective vertical Q
of this mode is approximately 54, 000, ly exceeding the values abtained in ref. [8] for a mode
of even symmetry. The small Q; (17,400) is aresult of the weak defect perturbation and extended
nature of the cavity mode (Vesr = 2.11(A/n)3). Improving the localization of the mode by lowering
r'/a of the defect to 0.25 improves Q) to a value of 60,000 and lowers Ve by afactor of almost
two. Surprisingly, Q, hasalso increased from 54,000 to 69, 000 despite the stronger localization of

the mode and its expected broadening in Fourier space. This rather counterintuitive result indicates
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Table 2.7: Characteristics of the Higl resonant mode in a sguare lattice (images are for a PC cavity
withr/a=0.30,r'/a=0.28, d/a=0.75, and ngz, = 3.4).

Geometry H| Ex| Ey|

O® O
O® O
00O
O G:©

r/a r'/a Qtot Veff(O\./n)S)
0.30 0.28 0.265 17,400 54,000 13,000 211
0.30 0.25 0.262 60,100 69,200 32,000 1.08

that a more detailed study of the effects of the defect geometry on cavity lossis required. Thisis

the focus of the following section.

2.5 Momentum space design of the defect geometry in a square lattice

The results for the simple square lattice cavities studied in the previous section are quite encourag-
ing, and we will thus begin by examining cavity design within these square | attice structures before
returning to the hexagonal lattice in alater section. The results given thus far indicate that improv-
ing the loss properties of the defect mode resonators requires isolation of the mode’'s momentum
components to regions outside the light cone to maintain ahigh Q , and to those regions for which
the in-plane bandgap is substantial for a high Q. To determine how to tailor the defect geometries
to accomplish these goal's, we consider asimple model to illustrate the couplings induced in Fourier
space between the dominant momentum components of a given defect mode and those modeswhich
radiate. We employ a two-step process where in the first step, the approximate form of the defect
modeistaken based on symmetry arguments, as outlined in section 2.3, with the allowance for finite
k-space bandwidths in the dominant Fourier components due to the localization of the defect mode.
We then consider couplings of this approximate symmetry mode to other modes of the PC slab WG
through the dielectric perturbation An(r), wherem = 1/¢ is the inverse of the dielectric profile of

the lattice. The most important mode couplings from the perspective of increasing the Q are those
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between the dominant Fourier components and “leaky cavity modes.” The leaky cavity modes con-
sist of vertical radiation modes and guided modes of the PC slab WG which are not reflected by the
PC and thus leak in-plane. An induces the change SHY(r) in the defect mode, and this change is
written as a superposition over the set of nearly (frequency) degenerate guided and radiation modes
of the PC dab WG. The coupling amplitude between the symmetry mode composed of the dominant
Fourier components, HY(r), and aleaky cavity mode, HI™(r), of the unperturbed PC slab is given

by the following matrix element:

[ (Hl,cm(r)>*<v>< (An(erHS(r))) N/?;Tk; (ﬁl%m)*ﬂﬁl*(lkﬂzﬁz‘fo)}

+ | (scim) = (ki) | + | (ydm) <kyﬁ20>]) 23)

where * denotes convolution. In converting from the real space integral to momentum space, we
have neglected the variation of n(r) and An(r) in the 2-direction, so that H3(r) ~ H,%(r ;) (TE-
like mode). From this equation, it is clear that the Fourier Transform of the dielectric perturbation,
An (k 1), isthe key quantity that couples Fourier components between the basis modes of the system.
By tailoring this quantity appropriately, we can thuslimit couplings that lead to in-plane and vertical
leakage.

The formula given above is meant to be a qualitative guide to help build physical intuition; it
is not a rigorous formula that can be expected to be quantitatively accurate. Such a formula can
be conceived, however, by considering the Wannier analysis provided in the previous chapter. In
particular, in equation (1.58), we showed that the mixing of the Bloch modes of the PC due to the
presence of the defect perturbation, L/, = —V(An) -V — (An)V?, isgiven by:

<H|’7k/ | |:|/_| H|7k> = ZZ(Zﬁk” K|/7| (k/, k, G) —I—A\ﬁk//(ik//) . I—|’,| (k,’ k) G)> 8k’fk”JrG,k) (24)

G k//
where An, isthek”th Fourier coefficient of An(r), | and k label the band index and crystal momen-
tum of the H; x Bloch wave, the G are reciprocal lattice vectors, and K/ (k’, k,G) and L/ (k’,k, G)
are scalar and vector coupling matrix elements, respectively, which depend upon the Bloch waves.
As expected, this formulaindicates the importance of the Fourier transform of the dielectric pertur-

bation, ANn(k 1), in determining the coupling of different Bloch modes of the unperturbed crystal.
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Figure 2.5: Illustration showing the mode coupling for the Higl mode in k-space through the Xﬁ

perturbation.

Our candidate mode within the square lattice, Hﬁgl, has dominant in-plane Fourier components

at £kx,. We must therefore modify the defect so that E] does not couple the +kx, momentum
components to those regionsin k-space which are“leaky.” In order to reduce radiation normal to the
PC dab through coupling to the light cone, the amplitude of Xﬁ in the neighborhood of ky = +r/a
should be minimized. In addition, for the square lattice designs investigated here the bandgap
between the conduction band edge at the X-point and the valence band edge at the M-paint is at best
very narrow, consequently, we look to reduce coupling between neighborhoods surrounding the X-
and M-points. Thisimpliesthat it will also be necessary to reduce the amplitude of &vq intheregion
about ky = +m/a.

The crux of the argument described above is depicted in fig. 2.5, where lossy couplings are
illustrated for the upper region of k-space (the negative k, region will behave identically in this
case). Here we have assumed that the defect mode frequency lies below the conduction band edge
at the X-point but slightly within the valence band near the M-point, resulting in an annular region
of k-space about the M-point which is strongly coupled to. With reference to this simple schematic,
the Fourier components of An that lead to radiation |osses from the defect cavity are approximately:

A~n<|kx| < (kic+Ax), [ky £ [kx || S (k|c+Ay)> = coupling to light cone, 5

AN (\kxi k| < A, [ky| < Ay> — coupling to leaky M-point.

where k¢ isthe radius of the light cone, and Ax and Ay are the widths of the dominant Fourier peaks
in the ke- and Ey—di rections, respectively.

Before attempting any design modifications, we first consider the simple defect geometry stud-
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[FT(A(1/e))|
[FT(A(1/e))]

(a) 2D. (b) Along ky axis. (c) Along ky axis.

Figure 2.6: ANn(k 1) for dielectric structure of table 2.7.

ied in section 2.4, where the holes|ocated at (0, +a/2) were reduced from the standard hole radiusr
to aradiusr’. The perturbation An is given by the difference inm with and without the defect holes,
and thus simply consists of a pair of annuli, each of width (r —r’), centered at (0,4+a/2). The 2D
spatial FT of this function can be obtained analytically [5], and is separable into the form

ANn(kQ = F(kL;r,r’)cos<ky2a>, (2.6)

whereF (ky;r,r’) isafunction of the magnitude of the in-plane momentum, withr andr’ as parame-
ters. Thisfunction, aong with one-dimensional (1D) slices along the ky and ky axes, isshown in fig.
2.6 (the figure shown is actually the direct FT of the structure used in FDTD calculations, to take
into account any staircasing effects in the rendering of the holes; however, the difference between
it and the analytic function are insignificant.). We notice, asis clear from examining equation (2.6),
that 51 =0 at ky = +m/a. Our choice of defect was thus a fortuitous one, as the zero amplitude
of ANn a the X points eliminated coupling between the dominant Fourier components of the Higl
mode and DC. Of course, alocalized defect mode has a finite bandwidth in Fourier space about its
dominant momentum components, and the light cone encompassing the radiation modesiis of finite
radius as well. Asaresult it is desirable to minimize the Fourier components of the dielectric per-
turbation over an extended region about ky = +r/a. Note that Xﬁ for the hexagonal lattice design of
the previous section does not have zero amplitude at any of thek j, and thusthe Q, values are much

smaller than those of the square lattice. To increase Q. in the hexagona lattice, future designs must

therefore tailor the lattice in away so that this amplitude is significantly reduced.
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It is also necessary to modify the dielectric to improve Q. The most straightforward way
to immediately do so is to increase the r/a of the host PC, as that will provide a bandgap for
an increased range of momentum values. This also tends to decrease Q, , as the increased r/a
will produce a mode of higher frequency, resulting in a cladding light cone of increased radius
encompassing a larger range of momentum values. Fortunately, this does not necessarily have to
hold for a general defect geometry. In particular, the hole radius can be kept relatively small in the
region where the mode is primarily located, but can be graded outside this region to increase the
in-plane reflectivity. The choice of grading can be determined by considering the need to limit the
in-plane momentum components of the mode to regions in which the bandgap is substantial (note
that for the simple two-hole design considered in section 2.4, ANn is quite large in this region of
momentum space about ky = +m/a). The benefit of this approach is that it does not necessarily

result in increased vertical radiation loss, thus allowing for both alarge Q and Q. .
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Figure 2.7: Properties of the graded square lattice.

Consider the graded lattice shown in fig. 2.7(a). The standard defect holes at (0,+a/2) have
r/a = 0.23, while their immediate neighbors have r/a = 0.253. The hole radii are then increased
parabolically outwards for 5 periods in the X-direction and 7 periods in the y-direction, after which
they are held constant. The nature of this grading is shown in fig. 2.7(a), where the r /a profiles
are given for slices along y = a/2 and x = 0. Along these axes the maximum value r /a attains is
0.31, but along the diagonal directionsr /a growsto be as large as 0.35. The dielectric perturbation,

which now consists of a series of annuli of decreasing width from the center to the edges, hasa FT
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Table 2.8: Field characteristics of the graded square lattice shown in fig. 2.7(a).

H| |Ey| |Ey| |Ex| dong k, axis
JO000000D00000T , g
0000000000000 i |
)000000BTO0DO ‘3\ \3‘
10000 JOBHO 0000 _t | |
5000 0 00@D 0 00O =| lfight | i
10000 0000 g) cone ™S | |
10000 YO 000! e i Ii
1000 Q. o000t = [ H
10000 0000 H [
1000 00V@HD 0000 [i) I
10000 CELFER0 0000 )i\ : A
)OO0 0 0OB o000 U R —T
)0000000000000( k (3=1)
10000000000000( y
d/a ®n Q| Q. Qut | Ver((A/n)°)
0.75 0.245 470,000 110,000 89,000 123
0.85 0.239 422,000 128,000 98,000 1.28
0.95 0.235 296,000 139,000 95,000 1.33
1.05 0.231 280,000 145,000 96,000 1.38

givenin fig. 2.7(b). Examining both the 2D image and the 1D line scans of the FT, we see that
our grading has greatly diminished the amplitude of &vq in the regions surrounding ky = +n/a and
ke = £m/a.

The FDTD simulations of the defect mode of this structure largely confirm the ideas described
thus far. Q. hasincreased to over 110,000, while Q; has improved even further to approximately
470,000, giving an overall Qi = 89,000. The predicted mode volume Vgt ~ 1.2(A/ n)3, so that the
combination of Q and Ve achievable in this cavity is very promising from the standpoint of cavity
QED experiments. Thiswill be described in further detail in later chapters within thisthesis.

The magnetic field amplitude and FT of the in-plane electric field components in table 2.8
provide further indication of the success of this design in suppressing radiation loss. In particular,
consider the line scan of Ey along the ky axis. It shows that the grading has met with success,
as power has largely been eliminated within the light cone. This point is particularly striking when
contrasted with the corresponding image showninfig. 2.3(b) for the low Q x-dipole mode wetook as
our baseline. Note that Zﬁ(kx = 0,ky = *m/a) isidentically zero regardless of the grade, due to the
position of the defect holes with respect to the center of the defect, whereas An (k = +1/a, k, = 0)
is not automatically zero. It may be advantageous to identically zero Xﬁ(kx =+n/a k, = 0) asthis

will allow for the formation of a more localized mode that is till of high Q. Such a mode would

f,d1 f,d1
A B
Before concluding, there are a couple of points concerning the chosen lattice that are worth

be centered at the f-point of the square lattice, and would either betheH ,,~ or H;, ™ mode.
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mentioning. The first is that the initial jump in r/a between the defects at (0,4+a/2) and their
neighborsis an important element of this design. Acting as a potential well, the jump helps confine
the modein real space, alowingr /ato increase quickly to avalue for which thein-plane reflectivity
is high without significantly increasing the modal frequency. The size of the jump is also important;
if incorrectly sized the resulting dielectric perturbation contains larger Fourier amplitudes which
couple the mode to the M-point for which the PC is no longer reflective and to the light cone in
which light radiates vertically. An optimum defect design is found when a compromise is struck
between the minimization of the Fourier components of 51 which couple the dominant momentum
components of the defect mode to regions of k-space which radiate, and the degree to which the
dominant momentum components of the mode broaden due to in-plane confinement by the defect.

It should again be emphasized that the increased Q, for these graded lattice designs is not
solely the result of real-space delocalization of the mode, which has been an approach considered
by other authors [108, 111]. It isinstead largely due to the aforementioned reduction of amplitude
for those Fourier components of the dielectric perturbation that couple the dominant momentum
components of the defect mode to those which radiate. Of course, real-space localization plays a
role in determining the spread in k-space of the dominant Fourier components of the mode, and if
this spread exceeds the size of the region about +kyx, that &vq has been flattened, vertical radiation
will result. Anincrease in the slab thickness also effects the performance of the structure. It causes
adecrease in the frequency of the mode, thusincreasing Q, . It also dlightly reduces the size of the
in-plane bandgap, decreasing Q. Thisisin fact seen in the results of FDTD simulations compiled
intable 2.8.

Finally, we note that the criteria for choosing the geometries presented in this paper were en-
tirely based on Q considerations, and optimization of the lattice grading to further increase Q can
still be made. Changes may also be made to improve other aspects of the design. In particular,
reducing the mode volume may be of importance to applications in quantum optics, while reducing
the complexity of the design (in terms of the number and size of holes comprising the defect) may
be of interest from afabrication standpoint. Alternately, aswe shall discussin chapter 4, this graded
lattice geometry is distinguished by supporting amode whose Q isrelatively insensitive to perturba-
tions in the cavity geometry; one could envision making such robustness a prerequisite along with
high-Q and small-V; in future designs of photonic crystal cavities. The approach to such designs
can be aided through the Fourier space consideration of the dielectric perturbation as has been de-

scribed in this section. Doing so will elucidate the potential lossy couplings that occur when the
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defect mode isformed, and will help determine whether a given structureis able to sustain ahigh-Q

mode.

a,al

2.6 Tailoring of the defect geometry for theHA,Z, mode in the hexago-

nal lattice

When comparing defect modes of a square lattice with those of a hexagonal lattice in the context
of forming high-Q microcavities, there are a number of salient points that merit consideration. The
first is that the square lattice designs adopted above provided a natural “geometric” advantage in
that ANn(kL) (even in the simplest case of two reduced size air holes) was automatically zero at
the dominant Fourier components (ky = 0,ky = +m/a), thereby reducing coupling between those
components and small momentum components that radiate. Furthermore, these dominant Fourier
components were in directions orthogonal to the available mirror planes of the system, maximizing
the symmetry-based reduction of small momentum components as discussed in section 2.2. In the
hexagonal lattice, it is difficult to obtain a similar set of circumstances. The only mode consistent
with the symmetry criteriaisthe Hi/zf"l mode, but defects that create such a mode have Kﬁ(k 1) that
is non-zero at the mode's dominant Fourier components (+{kyj, ,k3,,k3, }). Conversely, amode such
as Hi’zdl, formed by adefect such astwo reduced size holes at (0, +-ay/3/2), could have An(k | ) = 0
at its dominant Fourier components (£+{kx,,kx, }), but these Fourier components are oriented along
directions that are not orthogonal to the available mirror planes of the system.

Despite these potentia obstacles, it is certainly possible to design high-Q defect cavities in
a hexagonal lattice. One advantage of the hexagonal lattice is that it exhibits a relatively large
and complete in-plane bandgap for TE-like modes due to its nearly circular first Brillouin zone
(IBZ) boundary. This essentially guarantees the ability to achieve high in-plane Q provided that
the mode is suitably positioned within the bandgap, and that a sufficient number of periods of the
photonic lattice are used (it is still important not to entirely neglect in-plane considerationsin cavity
designs as the mode volume can be affected significantly). To address vertical radiation losses, the
defect geometry can be tailored to reduce couplings to the light cone, even though ANn(k 1) does
not necessarily have the automatic zeros it had in the case of the square lattice. Examining such

tailoringsis the focus of this section.

aal

Our first goal isto reduce couplings between the dominant Fourier components of the H Al mode

and the light cone. As was demonstrated above for the square lattice, this can be accomplished
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Table 2.9: FDTD simulation results for graded hexagonal lattice geometries (images are for thefirst
PC cavity listed below; d/a=0.75 in all designs).

Lattice [H|

QOO0 0OO0O0O00
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A0000Q00000D e ¥ B AD 6t
1060000000000«
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(r/a)e | (r/a)m | (r/a)e ®n Qut | Vert((A/n)*)
0.36 0.325 0.225 0.250 400,000 | 180,000 | 123,000 241
0.40 0.380 0.30 0.271 1,540,000 | 76,000 | 72,000 1.67
0.36 0.355 0.225 0.252 800,000 | 107,000 | 94,000 1.18

through a grade in the hole radii as afunction of distance from the center of the cavity. In this case,
we reduce the hole radius as we move outwards from the central defect. An example of a graded
lattice defect design is given in table 2.9, where only the central region of the cavity is shown to
help the reader visualize the hole radii grading (the actual cavity used in FDTD simulations has 10
periods of the hexagona lattice in each direction). The design consists of two levels of confinement.
Thefirst level of confinement has a centrally enlarged air hole ((r/a). = 0.35) followed by arela-
tively large decrease in hole radius ((r /a)nn = 0.325) for the nearest neighbor holes. The hole radii
are then parabolically decreased in moving radially outwards (down to (r/a)e = 0.225 at the edge
of the crystal), forming the second level of confinement. The effect thishas on Xﬁ (k) isevidentin
fig. 2.8(a)-(b), where we plot this function for the single enlarged hole design of the previous sec-
tion and for the graded lattice design just described. It is clear that &vq(kL) has been dramatically
reduced at +{ky, kj,.k3;}, limiting the coupling between the dominant Fourier components and the
light cone. The magnetic field amplitude and the Fourier transform of the mode’s in-plane electric
field components are shown in table 2.9. The resulting Q values and mode volume, aslisted in table
29, areQ; = 1.8x 10°, Q = 4x 10°, and Vet = 2.41(1/n)3. As previously mentioned, Q; could
be made larger by simply increasing the number of periods in the photonic lattice; however, this
will not have an appreciabl e effect on the mode volume, which is somewhat large in this case.

Having achieved a design with ahigh Q_, we would like to modify it so as to reduce the mode
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ky (a=1)

Figure 2.8: (a) An(k ) for single enlarged hole design in hexagonal lattice (1 /a = 0.30, r'/a=
0.45). (b) An(k ) for graded hexagonal lattice design shown in table 2.9.

volume, which, at Vet = 2.41(A./n)3, is roughly twice that which we had for square lattice designs.
We employ two different modifications to do so; an increase in the average hole radius and a faster
grade in the hole radii (the grading occurs over a smaller number of periods than in the first exam-
ple), both of which should improve in-plane confinement. The results of these modifications are
given in the second row of table 2.9; as expected, the in-plane Q has increased considerably, to a
value of Q = 1.54 x 10°, and the mode volume has decreased to Vit = 1.67(A/n)3, but at the ex-
pense of adecreased vertical Q, now at Q, = 76,000. The decreased Q, istheresult of anumber of
factors. Theimproved in-plane |ocalization widens the mode in Fourier space, broadening the dom-
inant Fourier components to the extent that they extend into the cladding light cone. The modified
grade also changes the magnitude of An(k | ) at {ky, K3,k 3 increasing the amount of coupling
between the mode's dominant Fourier components and the light cone. In addition, the increase in
modal frequency correspondingly increases the radius of the cladding light cone.

As a final example, we consider adjusting the first level of confinement to reduce the mode
volume. Starting with our original graded cavity design (the first design of table 2.9), the size of
the holes adjacent to the central defect are increased to avalue of (r /a)n, = 0.355. The results are
for the most part intermediate to the first two examples, with Q| = 8 x 10° and Q, = 1.07 x 10°.
Oneimportant exception isthat Vs = 1.17(A/n)2 is actually much smaller than both of the original

designs. Upon further consideration, this result is not too surprising; the smaller mode volume and
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the relatively large Q, are a result of the stronger yet more extended central perturbation to the

photonic lattice.

2.7 Defect modesin a compressed hexagonal lattice

Although we have thus far focused on two regular photonic lattices, there are certainly a number of
other lattices and structures that are of potential interest. In this section, we consider the use of a
compressed hexagona lattice. The lattice compression introduces additional degeneracies amongst
the satellite extrema of the bandstructure, thus providing an additional level of design flexibility that
in this case, allows us to efficiently localize defect modes both vertically and in the plane of the
dielectric slab.

The defect modes of the previous section were centered about an air hole; for other applications,
such aslasers, it may be of interest to have designs centered about a dielectric region, where strong
overlap of the optical field with the semiconductor is desirable. Such a mode would be centered
about the b-point in fig. 2.2(a). From the standpoint of designing a high-Q mode, the donor and
acceptor modes formed at this point do not meet our symmetry criteria, as the dominant Fourier
components of the modes (as listed in tables 2.1 and 2.2) are not orthogonal to the available mirror
planes (ox and oy for the Cyy symmetry found at the b-point). This is areflection of the fact that
the ky, are not mutually orthogonally (nor are the k3). Thus, our motivation behind distorting
the photonic lattice is to modify the dominant Fourier components of the defect modes, with the
potential of creating a mode, centered about the dielectric, whose properties are in accordance with

our momentum space design rules.

2.7.1 Preliminary analysis

We would like to create a mode whose dominant Fourier components are orthogonal to 6y and
oy. Such a mode would have dominant Fourier components +kyx, and/or +k3,. Let us begin by
considering acceptor modes. By compressing the lattice in the y-direction, so that the spacing
between two adjacent rows of holesislessthan its usual value (changing it from a\/3/2 to yay/3/2,
where v is the compression factor), we intuitively expect the position of the band edges in that
direction of Fourier space (corresponding to +ky,) to increase in frequency, perhaps to the point
where the valence band edge at X; is nearly degenerate with the valence band edge at the J-points.

Of course, this qualitative justification leaves many questions unanswered (such as the position of
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Figure 2.9: (a) Real and reciprocal space lattices of a compressed 2D hexagonal lattice. Refer to
table 2.10 for more identification of key geometrical quantities; (b) fundamental TE-like (even)
guided mode bandstructure for a compressed hexagonal lattice, calculated using a 2D plane-wave
expansion method with an effective index for the vertical guiding; r /a = 0.35, Ngap = Nett = 2.65,
v=0.7.

the band edges at the other high symmetry pointsin the lattice). To properly answer these questions,
we formulate a symmetry analysis of defect modes in compressed hexagonal lattices, using the
methods of chapter 1.

Consider the real and reciprocal space representations of the compressed hexagonal lattice as
illustrated in fig. 2.9(a). Compression has reduced the point group symmetry of the lattice to Cyy,
and the irreducible Brillouin zone (IrBZ) is no longer a 30° — 60° — 90° triangle, but is now a
quadrilateral, traced between I — X; — J; — X — J» — I'. The modifications in various geometrical
guantities associated with the real and reciprocal space compressed lattice are given in table 2.10.
Note that, in particular, the group of the wavevector Gy at the X and J points has been reduced
in symmetry, and that |kx,| # |kx,| (the kj are still equal in magnitude). Furthermore, |kx,| now
approaches |Kk;|. Indeed, for a compression factor y = 1/+/3, the vectors coincide and the resulting
|lattice is in fact square. For compression factors between 0.8 and 1/+/3, the vectors are still quite
close in magnitude, and we qualitatively expect that the lowest frequency band (the valence band)
will be very nearly degenerate at the X; and J points. It isin thisway that the compressed hexagonal
lattices considered in this section are intermediate to the hexagonal and sguare lattices. In using
the compressed hexagonal lattice we hope to take advantage of the large in-plane bandgap of the
hexagonal lattice and the favorable symmetry of the square lattice.
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Table 2.10: Key geometrical quantities associated with the standard and compressed hexagonal

| attices.

Crystal Parameter(s)

Hexagonal Lattice

Compressed Hexagonal Lattice

Gaa
Gp?

{a1, a2}
{G1,G2}

+X1
+Xo
+X3
=N}
+J
£+

c
GO,kxi

GO,le
GO,kJ2
(30.](33

Cev
Cov

{(2,23),(a,0)}

4 2 2
(02,2, 2

(0+2%)

(:I:’E :I:a%)
T
(i7’$a¢§)
(43,425
(£2.0)
2n
(:t a7:Fa\/—)
Cyoy
Cay
Cay

Cay

C2v
C2v

{(3,2%),(a,0)}
{(0,5%), <22, 2}
(0+%)

n I )

C2v
Clv = {e, Gy}
C1={e}
Clv = {e, Gy}

a Point Group for defect at point a of lattice.
b Point Group for defect at point b of lattice.

¢ Group of the wavevector.

Using the 2D plane wave expansion method with an effective index to account for vertical

waveguiding, we arrive at the bandstructure shown in fig. 2.9(b). The compression ratio (y) has

been set at avalue of 0.7 for this calculation. We see that the valence band is nearly degenerate at

points X1, J1, and Jp, and thus, we expect an acceptor mode to be formed by mixing the valence band

modes formed at all of these pointsin Fourier space. Following the symmetry analysis techniques

described in chapter 1, we determine approximate forms for valence band modes at these points.

Grouping all of them together, we arrive at the following expressions for modes formed about the

high symmetry point a shown in fig. 2.9(a):
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Note that the valence band modes formed about the high symmetry point b (found by taking
r® =r2 —p) differ fromthese only by constant phase factors and hence the modes above can be used
for investigations about b aswell. Both the a and b points have C,, symmetry, and the representation
of the VB, basis under Cyy, labeled S48, is given by S = 3A, ¢ 2B,, where A, and B, label
irreducible representations (IRREPS) of C,,. In our previous analysis, we were able to take such a
representation and use projection operators on the basis functions to get approximate forms for the
localized modes. In this case, we have no such luxury, as there is no way to distinguish between
the modes of the different A, (or By) subspaces without some additional physical knowledge of the
system. The best we can do is to form one projection operator for a composite A, subspace and
another for a composite B, subspace. Doing so yields the following matrices, where the rows and

columns are ordered in accordance with that which was chosen for the V B; modes above:

20000 0 0 0 0 O
01100 01 -1 0 O
Pn,=|01 1 00|, P,=|0-11 0 0] (2.8)
00011 0 0 0 1 -1
00011 0 0 0 -1 1

By the form of these projection matrices, it is clear that the A, modes can potentially be formed
from any of the degenerate band edge points { +kx, , £k, , +Ks,, £k, }, while the B, modes do not
include £k, . It isour hope to design defects that produce A, modes which only contain +kx, and
+k,, to satisfy our symmetry criteria from section 2.2. To see if this can be the case, in the next
section we consider FDTD simulations of defect cavitiesin this lattice.

Before moving on to discuss FDTD simulations, for the sake of completeness, let us briefly

consider donor modes in this lattice. Such modes will be formed from the conduction band edge
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located at point Xy in fig. 2.9(b). Using a symmetry analysis similar to that described above, we

determine the conduction band modes for the a and b high symmetry points:
sin(ky, - r2 cos(Kx, - r®
CB.=2[" (loxe 11) . CBy=2 (xe11) , (2.9)
sin(kx, - 12) cos(kx, - 1?)

The representation of the CB, basis under Cy, (the defect symmetry), labeled $91, is given

b _ ra
wherer =rg —b.

by S*91 = B; @ B,, while the representation of the CBy, basis under Cy,, labeled 91 is given by
AL = A; ¢ Ay. Projecting the CB, and CBy, bases onto the irreducible representations above, we
get

adl
Hg,~ =2( sin(kx, -r9) —sin(kx, -1

)
)

H3™ = (sm Kx, - T2) +sin(ky, -1
(2.10)
= 2<cos Kx, ) —cos(Kx, - r ))

HE\fl = 2<cos(kx2 ) + cos(ky, - r®
as approximate forms for the donor modes at points a and b.

272 FDTD resaults

As discussed in the previous sections, we are interested in forming an A, symmetry mode in the
compressed hexagonal lattice, centered about the b-point, whose dominant Fourier components
are situated at {+kx,,+ky,}, to be consistent with the symmetry criterion we have prescribed.
The group theory analysis just presented has indicated that the modes of the correct symmetry
are acceptor-type modes, and have {+kx,, £kj,+kj,, k3, } as their potential dominant Fourier
components. We thus begin our FDTD design in the compressed hexagonal |attice by analyzing the
dominant Fourier components produced by a simple defect geometry.

Consider the defect geometry depicted in fig. 2.10(a), consisting of four enlarged holes sur-
rounding the b-point in a compressed hexagonal lattice with compression factor y = 0.7. FDTD

simulations of such a design (choosing, for example, r/a= 0.30 and r’ /a = 0.35), give the mag-
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Figure 2.10: Moda characteristics of a simple defect mode in a compressed hexagonal lattice
(d/a=0.75).

netic field amplitude and Fourier transformed dominant electric field components shown in fig.
2.10(b)-(d). We see that our defect geometry has produced a mode with dominant Fourier compo-
nents centered at {+ky,, =k, }, as desired. Having produced a mode consistent with our symmetry
criterion, our next step isto tailor the defect geometry so as to produce a high-Q mode.

The procedure followed is the same as what has been done in the square and hexagonal lattices,
namely, we modify the lattice (and therefore E](k 1)) to reduce couplings between the mode's
dominant Fourier components (in this case, {£kx,,+ky,}) and the light cone. We do so by start-
ing with a defect consisting of the four enlarged holes surrounding the b-point (we chooser’/a =
(r/a)c = 0.30), and then parabolically decreasing the hole radius as we move away from the de-
fect center (down to avalue of (r/a)e = 0.225 at the edge of the crystal). The resulting lattice is
shown in table 2.11 (only the central region has been shown; in total there are 10 periods of air
holesin X and 8 periodsin y surrounding the defect center), along with the magnetic field amplitude
and Fourier transformed electric field components for the defect mode. FDTD calculations predict
Q. =15x10° Q| =7.5x 10°, Qi = 1.3 x 10°, and Vg = 1.7(A/n)* for this design.

The maodifications to the lattice have largely accomplished our objectives, as we have simulta-
neously achieved high vertical and in-plane Qs, while keeping the modal volume reasonably small
(although this value is still larger than our previous designs). Improvements can still be made;
for example, simulation results indicate that there are still momentum components present within
the light cone of Ey; hence a further tailoring of the lattice in the X-direction (Ey has its dominant
Fourier components along +k3,) should help increase Q  , though potentialy at the expense of a

larger mode volume.
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Table 2.11: FDTD simulation results for graded compressed hexagonal |attice geometries.

Lattice [H| |Ex| |Ey|
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(r/a)e | (r/a)e On Qy QL Qut | Veit((A/n)*)
0.30 0.225 0.323 755,000 152,000 127,000 1.72
2.8 Summary

The design of high-Q defect modes in a 2D PC slab WG has been developed through use of mo-
mentum space methods. Starting with the fundamental criterion that the reduction of vertical ra-
diation losses requires an elimination of momentum components within the light cone of the slab
waveguide, we proceed to present methods by which this is accomplished. The first is through a
judicious choice of the mode’'s symmetry so that it is odd about mirror planes orthogona to the
mode's dominant Fourier components. To determine the precise nature of the symmetry for such
modesin square and hexagonal lattices, we refer to the symmetry analysis of chapter 1, from which
we produce a set of candidate modes that satisfy this momentum space criterion. Although sym-
metry alone can reduce vertica radiation loss, further modifications of the defect geometry based
upon Fourier space considerations can be used to increase Q even further. Tailoring the lattice to
avoid momentum space couplings which lead to in-plane and vertical radiation losses, we present
graded square lattice structures for which Q, exceeds 10° while maintaining Q in the 3-5 x 10°
range, demonstrating the possibility of producing high-Q modes in a planar PC slab WG by using
these techniques. Similarly, we have used these techniques to produce cavity geometries within the
regular and compressed hexagonal lattices that have total Qs in excess of 10°. The ability to create
high-Q cavity geometries in three different lattices is an indication of the generality of this Fourier
space-based approach.

As | have mentioned in the preface, after our contributions to the area of high-Q cavity design

[21, 23], a number of groups have continued this work and have succeeded in developing designs
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with predicted Q factors in excess of 10° [26, 27, 28, 29, 30]. Momentum space design principles
remain the basis for most of these works, and in particular, the analysis of the spatial Fourier trans-
form of the cavity mode field patterns has more or less become a standard approach in PC cavity
design. The physical intuition behind the adoption of different cavity geometries is often thought of
in different ways. The picture that we have followed is one that involves an examination of modal
couplingsin Fourier space, where the diel ectric perturbation that formsthe defect (or more precisely,
its Fourier transform) is the key quantity that should be tailored to avoid the creation of modes that
contain leaky Fourier components, where such problematic regions of Fourier space are well known
to be the cladding light cone (for vertical radiation loss) and the range of angles and momenta for
which the photonic lattice is not highly reflective (for in-plane losses). As a dlightly different take
on this, one can consider what the field profile of such a‘*good’” mode (i.e., one that does not contain
small momentum components) looks like in real space, and then consider how to tailor the a given
defect geometry to achieve this. Thisis essentially the approach taken in ref. [51]. More recently,
some authors[28, 30] have used a PC waveguide mode as the starting point for creating PC cavities;
that is, the cavity is formed through some localized modification to the geometry of a PC waveg-
uide. This has been done by both changing the lattice constant within some region of the waveguide
[28] and by shifting the position of some small number of holes within the structure [30]. Although
there a number of different ways in which one can view these designs, a simple way to think about
thisis that a PC waveguide mode has the advantage of having a well-defined in-plane momentum
along the waveguide (its propagation constant) which lies outside of the cladding light cone. It thus
makes intuitive sense that there is a benefit to starting the cavity design with such a mode that, in
principle, isfree of radiation losses. As a side comment, this class of design is actually not that far
astray from the graded square lattice cavity design presented in this chapter. The PCWG designed
in ref. [33] is based upon our sguare lattice cavity design, where the grade in hole radius along
the X-axis is essentially kept, but the structure is not graded along the y-axis (it has transational
periodicity in this dimension). One could imagine creating a cavity that consists of a short section
of this PCWG sandwiched between a pair of appropriately designed DBR mirrors that could, for
example, be PCWGs with a different lattice constant or grade in hole radius. Such a design would,
in principle, be very similar to those of refs. [28, 30]. Thisis actually relatively close to what has
aready been done, where the end mirrors can be thought of as the uniform PC lattice surrounding
the graded section. The key to additional improvements would be to further tailor the geometry to

better avoid radiation losses. At somelevel, this becomes somewhat difficult to do within the square
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|attice because of the small in-plane bandgap, which meansthat in-plane losses can not be neglected
(they often can be within the hexagonal lattice). In addition, it should be noted that the cavity design
procedure adopted in this chapter is in part based on the utilization of modes of odd spatial sym-
metry in order to reduce vertical radiation losses, and as further described in chapter 4, to create a
cavity design that isrelatively robust to fabrication-induced imperfections. These restrictions could
potentially be relaxed in future designs, in favor of other mechanisms for accomplishing the same
goals. In particular, as the ability to precisely reproduce designs in fabricated structures improves,
the necessity for arobust cavity design is reduced.

The momentum space analysis described in this chapter essentially tells us which portions of
Fourier space to avoid to create high-Q structures; one might then expect that this could be used as
the input to some type of automated computational technique that would generate the field patterns,
and the associated dielectric functions, for modes that satisfy the criteria. Additional constraints on
the mode volume and the robustness of the cavity geometry to imperfections, for example, could be
added to such an analysis. Initial attemptsto incorporate at least some amount of thisinverse design
approach, along with optimization methods for determining the highest possible Q and associated
dielectric function within some region of parameter space, have been reported inrefs. [31, 29]. Such
approaches have a lot of merit in that they can eliminate the trial-and-error approach that is often
used to design high-Q structures. This is particularly important in the design of these PC cavities,
as FDTD simulations are often computationally intensive (a 3D simulation of the cavity field and
the determination of its quality factor often takes one day of computing time on our Pentium 111 ma-
chines). However, one has to be mindful of the large parameter space over which such optimization
techniques must, in principle, operate. At the most complex level, one can imagine that the only
constraint on the physical structure is that the dielectric function at every grid point in the simula-
tion can only be one of two values (that of the semiconductor material or that of air). Obviously,
the simulation can be further constrained to only allow those dielectric functions that are physically
realizable (some minimum feature size can be specified). Nevertheless, the number of potential
configuration over which an optimization, for example, must be run is still quite considerable. The
physical insight gained by techniques such as the group theory and Wannier analysis of chapter 1,
as well as the momentum space design of this chapter, is thus very important from the standpoint
of further constraining these problems by, for example, specifying the lattice to be considered, the
high symmetry point about which a defect is to be formed, or the type of mode (donor or acceptor)
to be considered. The specification of the lattice may be dictated by the desire to create modes of a
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certain polarization, dominant emission direction, or location of the peak electric field, for example.
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Chapter 3

High-Q Photonic Crystal Microcavities
In INAsSP/InGaAsP Multi-Quantum-Wdll
Membranes

3.1 Introduction

With the high-Q photonic crystal microcavity designs of chapter 2 in hand, the next step is the ex-
perimental demonstration of these devices. There have typically been two experimental techniques
that have been used to characterize PC microcavities. The first involves fabrication of the devices
within an active (light-emitting) material, where the properties of the cavity modes are studied by
optical pumping and examination of the characteristics of the resulting emission. This method has
been used in a number of studies, including refs. [8, 12, 42]. Alternately, other authors [49] have
chosen to fabricate the cavities within a passive (non-light-emitting) material, and have probed them
by using accompanying microfabricated waveguides to couple light into and out of the cavities. In
chapter 4, we will discuss the relative merits of these two approaches. For now, we will focus on our
efforts on the first technique, where we have fabricated cavities in a InP-based multi-quantum-well
(MQW) membrane and studied their emission characteristics. The results presented in this chapter
are largely based on refs. [43] and [44]. The former paper details the primary results of our mea-
surements, including the demonstration of Q ~ 1.3x10* in a PC microcavity, which represented
an improvement by almost a factor of 5 over what had been demonstrated to that point (Q ~2,800
inref. [12]).! The second paper is a detailed description of the fabrication processes developed to
create these InP-based structures, and in particular, highlights the advances in plasma etching that

1Q ~4,000 had also been demonstrated in a PC cavity, albeit alarger mode volume design where the defect consisted
of several missing air holes[112].
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have made the creation of high quality semiconductor microphotonic structures possible.

In chapter 2, high-Q PC cavities were designed by considering the Fourier space properties and
symmetry of cavity modes. An important feature of these designs is their robustness, in that per-
turbations to the size and shape of individual holes do not deteriorate the Q significantly. Vertical
radiation losses, which are characterized by the presence of power at in-plane momentum compo-
nents (k| ) that lie within the light cone of the slab waveguide cladding, are reduced by choosing
modes of a specific symmetry. In particular, the modes selected are those that are odd about mirror
planes normal to the direction of the mode’'s dominant Fourier components. For the square lattice
cavities studied in chapter 2, one such mode is a donor-type mode (labeled A, due to its symmetry)
centered in the dielectric between two rows of air holes (point e in fig. 3.1). Further improvements
to both the in-plane and vertical loss are achieved by grading the lattice as shown in fig. 3.1(a). Fig-
ure 3.1(b)-(c) shows the magnetic field amplitude and Fourier transformed dominant electric field
component for the resulting A, mode as cal culated by finite-difference time-domain (FDTD) simu-
lations. FDTD calculations predict Q ~ 10° for this mode, with a modal volume Vg ~ 1.2(A/n)3.
Calculations show that the grade used in fig. 3.1(a) can be varied fairly significantly without de-
grading the Q to a value less than ~ 2x10%.
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Table 3.1: Epitaxy for 1.3 um PC microcavity lasers. 1.12Q stands for quaternary GalnAsP layers,
lattice matched to InP, with photoluminescence peak at 1.12 pm (Gag 151 no.g5A S0.32P0.68)- The quan-
tum well layers are InAsp 48P0 52 and the barrier layers are Gag 241np.76AS0.32Po.68. Total membrane
thickness after undercutting the sacrificial InP layer is 252 nm.

Layer Materials Strain (rel. to InP)  Thickness Doping (cm~2)
Separate confinement 1.12Q unstrained 810 ,& undoped
Half-barrier GalnAsP 0.65% tens. 60 ,& undoped
Act_ive } 5wells 1.5% comp. 60 ,&O undoped
region 4 barriers 0.65% tens. 120 A undoped
Half-barrier GanAsP  0.65% tens. 60 A undoped
Separate confinement 1.12Q unstrained 810 ,& undoped
Sacrificial buffer layer  InP unstrained 15000A  undoped
Etch stop InGaAs unstrained 200 ,& undoped
Substrate InP unstrained N/A N/A

3.2 Fabrication of PC cavitiesin | nP-based multi-quantum-well mem-

branes

To measure the properties of the donor-type A, mode, graded square lattice PC cavities were fabri-
cated in an active material that was grown by Dr. Jianxin Chen at Bell Laboratories through solid-
source molecular beam epitaxy, asdescribed el sewhere[113]. It consists of five InNASP compressively-
strained quantum wells separated by InGaAsP barriers, as shown in table 3.1. The peak emission
wavelength isat A=1284 nm, and the epitaxy is designed so that, upon undercut of the 1.5um sacrifi-
cid InP layer, a 252 nm thick free-standing membrane will be formed (the thicknessis chosen to be
consistent with the emission wavelength of the quantum wells and the FDTD-cal culated frequency
of the cavity mode). The creation of the 2D PC membrane is accomplished through electron beam
lithography, pattern transfer to a SiO, mask using an inductively coupled plasma reactive ion etch
(ICP/RIE), and a high-temperature (205 °C) Ar-Cl, ICP/RIE etch through the active material into a
sacrificial InP layer. The sampleis undercut by removing the InP layer with aHCI:H,0 (4:1) solu-
tion. These fabrication steps are described in detail in the following sections. In addition, appendix

C reviews some general considerations in the fabrication of microphotonic structures.
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3.2.1 Mask creation

A 200 nm thick SiO, mask layer is deposited on the epitaxial wafer by an Oxford Instruments
Plasma Technology (OIPT) Plasmalab 100 plasma-enhanced chemical vapor deposition (PECVD)
tool. The PC patterns are created through electron beam (e-beam) lithography of an ~ 350 nm thick
layer of resist, typically Zeon Chemical’s ZEP-520A. Each cavity consisted of a total of 32 rows
and 25 columns of air holes, with a lattice spacing of a = 305, 315, 325, or 335 nm (normalized
frequency of a/A ~ 0.25 a A ~ 1.3 ym), for total cavity dimensions on the order of 8x11um. The
designed grade produces holes with radii between r = 70-110 nm.

To etch the SiO, mask layer, an OIPT Plasmalab 100 ICP/RIE tool with a C4Fg gas chemistry
was used. The requirements of the process were that the etched sidewalls be as smooth and vertical
in slope as possible. Due to the relatively poor dry etch resistance of the e-beam resist, a third
requirement was to create a sufficiently low power etch to avoid excessive damage to the resist, so
that the desired shape and size of the holes remained intact. Along with this, the low etch selectivity
of theresist (~1:1) placed an upper limit on the thickness of the oxide layer used.

The etch profile and sidewall roughness were examined as a function of ICP power (400-600
W), RF power (50-100 W), and C4Fg: O, gas chemistry (between 20:0 sccm and 15:5 sccm), keeping
a fixed chamber pressure (P;,=6 mTorr), lower electrode temperature (~ 20°C), and He backside
cooling (20 Torr, ~ 20 sccm). To maintain the integrity of the ICP/RIE chamber, O, plasma cleans
were periodically run between etches. For the process conditions examined, we did not observe
significant changes in the sidewall roughness. For a given set of RF and |CP powers, we saw an
increase in the sidewall verticality with increased C4Fg content, without any polymerization, so that

apure C4Fg gas chemistry wasfinally chosen. The RF and | CP powers were then adjusted to reduce
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damage to the resist as much as possible without causing degradation of the sidewall profile. For
the fina process conditions chosen (RF = 80 W, ICP = 600 W, 20 sccm Cy4Fg), an etch time of
~ 2 minutes etched through the oxide layer completely and produced a sidewall angle of ~ 85° as
estimated through cross sectional SEM images. A scanning electron microscope (SEM) image of
the etched SIO, mask layer is shown in fig. 3.2, where an O, plasma has been used to remove the

remnants of the resist.

3.2.2 InAsP/InGaAsP membrane etch and under cut

Thenext step isan ICP/RIE etch through the InAsP/InGaA sP membrane layer into the InP sacrificial
layer. From the standpoint of cavity Q, it isof critical importance that the etched sidewalls be both
smooth and vertical, as sidewall roughness will produce scattering loss and an angled sidewall will
break the vertical symmetry of the slab and causes radiative coupling to modes of the opposite
symmetry (TM-like modes, for which there is no in-plane bandgap) [114]. As we shall discuss,
the regquirements on the ICP/RIE etch are also influenced by the ensuing undercut wet etch, as the
necessity to undercut al of the holesin the lattice places alower limit on the etch depth into the InP
layer.

Dry etching of In-containing 111-V semiconductors is typically accomplished using one of two
gas chemistries[115]. Thefirst, a CH4/H> chemistry, is done at room temperature and can produce
smooth etched morphologies, but with the drawbacks of a relatively slow etch rate (< 60 nm/min)
and heavy polymer deposition during the process. Cl,-based plasmas have also been used, but the
low volatility of InCly products at room temperature necessitate some form of heating during the
etch. This has been done in the past using a high-density 1CP-produced Cl, plasma by Fujiwara et
a. [116], where the production of smooth etched surfaces is most likely due to a combination of
the plasma providing local surface heating of the sample and an increased efficiency in the sputter
desorption of the InCly products [115]. Alternately, a number of studies have successfully used a
heated wafer table (= 150°C) with an Ar-Cl, chemistry to achieve avolatility of the InCly products
sufficient to etch InP-related compounds with vertical sidewalls and smooth surface morphologies.
In arecent study [117], Rommel and his collaborators optimize this etch (using H, to control the
sidewall profile) in an ICP/RIE system to produce sub-micron width racetrack resonators with a
Q of 8,000. We adopt an etch similar to the process used in that work. An important difference
between this work and much of the published work on InP etching is the geometry we are etching,

as the small features (~ 150 nm diameter holes) likely inhibit both the flow of ionized source gases



Figure 3.3: SEM cross sectional images of the InP etch for increasing wafer table temperature
(&) T=150 °C, tgch=120 s, etch depth = 650 nm, and (b) T=180 °C, tg,=165 s, etch depth = 1
pm. For these etches, RF=100 W, ICP=300 W, Py, = 2 mTorr, Ar:Cl»,=12:3 sccm. The top 252
nm, highlighted in each SEM image, corresponds to the active waveguiding layer thickness (final
membrane thickness) in the actua InAsP/INnGaAsP laser material used in the device fabrication.

to the etching surfaces as well as the removal of etched by-products. Thiswill affect both the etch
rates we observe (often a factor of two or more lower than the etch rates in open areas) and the
resulting surface morphol ogy.

We examined etched samples (initially etching pure InP rather than the InAsP/InGaAsP QW
material) primarily asafunction of gas composition (Ar:Cl, ratio between 9:6 sccm and 13:2 sccm),
stage temperature (20-225 °C), RF power (100-200 W), and ICP power (250-400 W). It quickly
became apparent that elevated temperatures were indeed necessary, as the InP did not etch cleanly
at room temperature. A preliminary etch with a stage temperature of 150 °C and an Ar:Cl; ratio
of 12:3 sccm is shown in fig. 3.3(a). By further increasing the stage temperature (fig. 3.3(b)),
the profile of the holes becomes more vertical and the total etch rate increases. We chose a stage
temperature of 205 °C as temperatures above this value provided no added benefit to the sidewall
smoothness and profile of the etched holes. With a stage temperature of 205°C, the Ar:Cl, gas
ratio was varied around 12:3 sccm. It was found that higher concentrations of Cl, produce a slight
amount of sidewall roughness, while lower concentrations produce a more pronounced overcut etch
profile. With a stage temperature of 205°C and an Ar:Cl, gas ratio of 12:3 sccm, the ICP and
RF powers were then varied about values of 300 W and 100 W, respectively. Larger RF powers
caused deterioration of the oxide mask, producing some sidewall erosion, while smaller RF powers
reduced the etch anisotropy. We noticed little variation in etch quality as a function of 1CP power
over the range of |CP powers explored. The final InGaAsP material etch conditions that we settled
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Figure 3.4: (a) Illustration of the shape of the etched surfaces resulting from the crystallographic
nature of the InP wet etch (h = etch depth below waveguiding layer into InP sacrificia layer, r =
hole radius, a = lattice spacing, (a— 2r) = gap between holes). (b) SEM image of a partialy
undercut membrane (where the membrane layer was etched with a CAIBE system) showing the
{111}y, crystal plane facets. Both figures adapted from previous work [3].

on were: T=205 °C, Ar:Cl,=12:3 sccm, P.y=2 mTorr, RF=100 W, and ICP=300 W. With these
process conditions and an etch time of 120 seconds, an etch depth of 1.5 um was achieved, with a
selectivity of ~ 20:1 to the oxide mask.

To remove the sacrificial InP layer and undercut the membrane, an HCI:H,0 (4:1) solution was
used. HCI etches the InP layer at a much faster rate than it does the active waveguide layer (com-
posed of lower Phosphorous (P) percentage alloys of InAsP and InGaAsP compounds), providing
the necessary degree of etch selectivity [118]. The resolution and selectivity of the etch are im-
proved by cooling the solution in an ice-water bath to ~ 4°C, thereby reducing the material etch
rates, and in particular, the total amount of waveguide material that is necessarily etched. The typ-
ical time to fully undercut the membrane was ~ 12 minutes (depending on the lattice spacing and
hole size of the PC pattern). To protect the top sample surface, the remnants of the oxide mask layer
were removed only after the undercut etch was performed.

The HCI:H»O solution etches InP with a strong crystallographic dependence [119]. The result-
ing etch shape is determined by the differences in etch rate of different crystallographic planes as
well as boundary conditions imposed by masking layers (which limit the available etch angles).
The etch shape will ultimately converge to one determined by the slowest set of etch planes, which
are the Indium (In) rich {111} planes ({111},,) for the InGaAsP material system. For a (100) InP
wafer, the {111}, planes are at an angle of ~ 55° from the surface normal as shown in fig. 3.4(a).
For concave mask openings, this resultsin an etch cross section which is an overcut V-shape in the

(011) plane and an undercut overhanging shape in the (011) plane. Thisis shown schematically



Figure 3.5: SEM micrographs of fully fabricated devices: (a) previous work using CAIBE for the
membrane etch [3], and (b) the current work, using ICP/RIE for the membrane etch.

in fig. 3.4(a), and can also be seen clearly in the partially undercut holes of fig. 3.4(b). Asin
fig. 3.4(b), once the etch has proceeded to the {111}, planes, unless there is an overlap between
the {111}, planes of adjacent holes, the etch will grind to a halt and the waveguiding layer will
not completely undercut (longer etch times and/or higher temperatures may be employed to further
undercut the structure, however, selectivity to the active waveguiding layer will have been lost). As
aresult, the ICP/RIE dry etch depth into the underlying sacrificia InP layer setsalower limit on the
radius (r) and lattice spacing (a) of holes that can be undercut. More precisely, using the nomencla-
ture of fig. 3.4(a), the adjacent {111}, planesin the (011) plane overlap for h>(a/2—r)tan(55°),
so that h increases as r decreases for a given a. This was a limitation of previous work done using
an Ar:Cl, chemicaly assisted ion-beam etch (CAIBE) [3], where total etch depths were typicaly
~ 340 nm, corresponding to h ~ 130 nm. For the fabricated lattice spacings in that work, a = 500
nm, this produces a minimum possible undercut hole radius of r /a = 0.32. The ability to undercut
smaller holes (preferably as small asr/a = 0.20) is of critical importance to the cavity Q, as holes
that are too large in size will significantly raise the frequency of a given mode and hence the size
of the cladding light cone, thereby increasing the amount of power radiating vertically [21]. Our
etch depth of ~ 1.5 pm (h ~ 1.25 pm) is not only deep enough to ensure that the {111}, crystal
planes overlap for even the smallest desired holes (r /a = 0.23), but also aids the undercut process
by reducing the total amount of material that needs to be removed.

Figure 3.5 compares the results of previous fabrication methods [3] with the current work. Both
images show smooth membrane sidewalls, but the sidewall profile is considerably more sloped in

the former work (thisis also evident in fig. 3.4(b)). The higher degree of verticality and the ability
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Figure 3.6: (a) SEM image of a
graded lattice PC microcavity in
the InAsP multi-quantum-well ma-
terial. Lattice constant a ~ 305 nm,
membrane thickness d = 252 nm.
Optical image of cavity pumped
with a (b) diffuse beam and (c) fo-
cused beam (dashed rectangle rep-
resents the physical extents of the
undercut PC).

to undercut the smallest desired holes (r/a = 0.23) are the primary advantages of the present work.
Although optimization of all of the masking steps was necessary to achieve this result, the ICP/RIE
membrane etch is the critically important step that creates these advantages.

3.3 Photoluminescence measurements

Using the fabrication techniques described in the previous section, we created arrays of PC cavities
within the InP-based MQW epitaxy. Devices are optically pumped (10 ns pulse width, 300 ns
period) at room temperature with a semiconductor laser at 830 nm through a 20X objective lens,
also used to collect emitted photoluminescence (PL) into an optical spectrum analyzer (OSA). A
schematic of the setup that was used is shown in fig. 3.7. We initially pump the cavities with a
broad pump beam (seefig. 3.6(b), area ~ 21um?) for two reasons: (i) the broad pump beam covers
asignificant portion of the cavity area, so that after diffusion of carriers, the majority of the cavity
should be pumped and therefore non-absorbing, and (ii) use of abroad pump beam limitsthe effects
of thermal broadening, which, as discussed below, are significant for focused pump beams.

A typical L-L (light-in versus light-out) curve using the broad pump beam condition is shown
in fig. 3.8(a) for adevice with a = 335 nm, where the power in the laser line is taken over a10 nm
bandwidth about the laser wavelength of A = 1298.5 nm. In addition, the off-resonance background
emission at A = 1310 nm was measured over asimilar 10 nm bandwidth. For low pump powers (<
300 pW), the off-resonance emission and resonant wavel ength emission linearly increase with pump
power and are essentially identical in level, i.e., no resonance feature is observed. Above 300 pw,
we begin to see a resonance peak in the spectrum and a characteristic super-linear transition from

below threshold to above threshold follows. To estimate the position of threshold we extrapolate
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back the L-L curve from above threshold (fig. 3.8(b)), giving an approximate threshold pump level
of 360 pW. A plot of the off-resonance emission (fig. 3.8(c)) shows a (weak) slope change around
365 UW giving asimilar estimate for the threshold value. The kink in the off-resonance background
emission L-L curve can be attributed to the clamping of the carrier density (gain) in the region
of the cavity mode and consequent saturation of the off-resonance (non-lasing modes’) emission.
The background emission continues to increase after crossing threshold (rather than completely
saturating) as aresult of the pumping of areas which are outside of the cavity mode volume and thus
not affected by the gain clamping (non-equilibrium carrier distributions[120] may also play arole).

In order to estimate the cold cavity Q value of the PC microcavity mode we measured the
linewidth of the resonance in the PL around threshold. The full-width half-maximum (FWHM)
linewidth narrows from 0.138 nm (at the lowest pump level we could accurately measure the
linewidth, 320 yW) down to 0.097 nm at threshold. A simple steady state rate equation model
[121] of the cavity photon and excited state populations estimates the threshold pump level (with
this beam size) to be ~ 350 uW for Q ~ 10% in this quantum well active material, close to the ex-
perimentally measured value. In this model the transparency carrier density occurs within 10% of
the threshold carrier density for cavity modes with Q > 10*. A PL spectrum (fig. 3.8(a), inset) for
this device with the broad pump conditions, measured soon after detection of aresonance featurein
the spectrum and below the estimated threshold level by about 10%, shows a resonance linewidth
A = 0.100 nm, corresponding to a best estimate of the cold cavity Q ~ 1.3x10*. Above threshold
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Figure 3.8: (a) L-L curve and subthreshold spectrum (inset) of a graded square lattice PC micro-
cavity pumped with a spatialy broad pump beam (10 ns pulse, 300 ns period), and zoomed-in
plots of (b) laser threshold and (c) background emission for the same diffuse pump beam. (d) L-L
curve and subthreshold spectrum (inset) taken with a focused pump beam spot, showing increased
thermal broadening in comparison to the diffuse pump beam spectrum, and zoomed-in plots of (€)
laser threshold and (f) background emission. The “guide’ lines displayed in (b), (c), (€), and () are
least-squares fits of the data taken over several points above and below the lasing transition region.

we do not see further linewidth narrowing due to the resolution limit of our scanning monochro-
mator (0.08 nm); thermal broadening of the emission line during the pump pulse and incomplete
saturation of the carrier density [120] may aso play arole.

By using a more tightly focused beam (see fig. 3.6(c), area ~ 8 um?), the lasing threshold is
considerably reduced. In fig. 3.8(d)-(f), we plot the L-L curve for the laser line and off-resonance
background emission using such a pump beam. The plots are qualitatively similar to those for the
diffuse pump beam; we begin to see a resonance feature when the pump power exceeds 95 UW.
Estimates for the threshold pump power from the laser line curve and off-resonance background
emission are 120 pW and 125 W, respectively. Through further optimization of the pump beam,
lasers with thresholds as low as ~ 100 pW have been observed. From the subthreshold spectrum
shown intheinset of fig. 3.8(d) it isreadily apparent that the lineshape has thermally broadened (the
measured linewidth isnow 0.220 nm), as evidenced by its asymmetric shape on the short wavelength
side. To reduce the effects of this thermal broadening, the duty cycle can be decreased to 1% (1 ps
period and 10 ns pulse width), resulting in a less asymmetric resonance and subthreshold linewidth
of approximately 0.13 nm. Conversely, we have also increased the duty cycle to 25% (1 ps period
and 250 ns pulse width) and still observe lasing; heating in the membrane precludes lasing at even
higher duty cycles.

To determine whether the laser mode described aboveisindeed thelocalized A, mode of fig. 3.1,
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Figure 3.9: (a) Emitted laser power as a function of pump position along the X and y axes of the
cavity. FDTD-generated Gaussian fits to the envelope of the electric field energy density of the
cavity mode are shown for comparison (note that the effective mode volume is calculated from the
peak electric field energy density). Ly and Ly correspond to the physical extent of the PC in the X-
and y-direction, respectively. (b) Emitted laser power as a function of polarizer angle with respect
to the X axis of the cavity.

we have measured polarized intensity in the far-field as well as the sensitivity of the emitted laser
power to pump position. The measurements show the mode to be predominantly polarized along the
X-axis (fig. 3.9(b)) of the cavity, consistent with FDTD results, and eliminating the possibility that
the mode is of the other potential symmetry supported by the cavity (B, as discussed in chapters 1
and 2). Furthermore, the lasing mode discussed above is the longest wavelength mode observed in
the devices tested (higher frequency resonances are observed in some detuned devices), suggesting
that it is the fundamental mode shown in fig. 3.1(b), and not a higher order version of it. In fig.
3.9(a) we show measurements of the emitted laser power as a function of the pump beam position
(taken to be the center of the beam) relative to the center of the cavity (uncertainty in the pump
position is ~ 0.25 pm). The measurements indicate the mode is highly localized within the center

of the cavity, consistent with simulations.

3.4 Summary

In summary, this chapter reports on the observation of linewidths of AA = 0.10 nm, corresponding
to a cavity Q of 1.3x10%, in subthreshold measurements of graded square lattice photonic crystal
microcavity lasers fabricated in an InAsP/InGaAsP multi-quantum-well membrane. In addition,

lasing is seen at threshold peak external pump powers as low as 100 pW. Measurements of the
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emitted power as a function of pump position show the mode to be strongly localized and give
an estimate of the modal localization that is consistent with FDTD results. This realization of a
high Q, small mode volume microcavity is an important step in demonstrating the potential of PC
microcavities for use in optoel ectronics and quantum optics.

The Q values that we demonstrated in these PC microcavity lasers were at the time, the highest
that had been seenin a PC microcavity, but were quickly exceeded by devices demonstrated by both
the group of S. Nodaat Kyoto University [51], and by our own group at Caltech, in devices| created
in silicon membranes [52], which will be described in detail in the following chapter. To the best
of my knowledge, within the InP material system, there has not yet been a demonstration of a PC
microcavity with a Q higher than the devices described in this chapter.

More importantly, the measurements we performed on these devices give us some indication of
the limitations of these spectrometer-based studies using cavities fabricated in an active material.
The most obvious limitation is the resolution of the spectrometer; for the optical spectrum analyzer
we used, this was 0.1 nm, but even for instruments with a longer path length, resolutions better
than 0.01 nm are difficult to achieve. Of course, other resolving instruments, such as filters based
on Fabry-Perot cavities (which can be commercially obtained in both free-space and fiber-based
geometries), can be used to achieve much better resolution. That being said, it isstill clear that there
are other advantages to adopting a measurement technique that did not require an active medium.
This would open up PC cavities fabricated in materials such as silicon (which had been shown to
haverelatively low material loss at telecommunications wavel engths) for investigation, and it would
allow for a simple measurement of Q that would not be subject to the influence of material gain.
Most importantly, developing atechniqueto efficiently get light into and out of the PC microcavities
would make these devices much more functional and integrable within more sophisticated exper-
iments or systems. In the next chapter, | describe our work with a fiber-based probe that enables

such advances.
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Chapter 4

Optical-Fiber-Based Measurement of an
Ultrasmall Volume, High-Q Silicon
Photonic Crystal Microcavity

4.1 Introduction

This chapter details the measurements of photonic crystal microcavities within silicon membranes.
The cavity design isthe graded square lattice geometry described in chapter 2 and examined exper-
imentally within InP-based multi-quantum-well membranes in the previous chapter. From a device
performance perspective, the primary result of importance in this chapter is the demonstration of a
quality factor Q ~ 40,000 in a wavelength-scale PC cavity. Of equal importance, however, is the
development of an optical-fiber-based probing technique that is utilized to study the spectral and
spatial properties of resonant modes within these PC cavities. This technique, which essentially
involves evanescent coupling between an optical fiber taper waveguide and the PC cavity, alows
for quantitative measurements of two of the most important properties of a cavity mode, its Q and
spatial localization (related to V). From an experimentalist’s perspective, other benefits of this
fiber-based probing method are that it is relatively easy to implement and can be used to rapidly
characterize all of the devices on a chip.

The magjority of this chapter (sections 4.2-4.7) is largely based on three articles; (i) ref. [52],
which describes our initial use of the fiber taper to demonstrate a high Q (~ 40,000) and spatial
localization consistent with an ultrasmall Vg (~ 0.9(A/n)3) in a PC cavity, (ii) ref. [53], which uses
the fiber-based probe to study the robustness of the cavity Q in our graded | attice design with respect
to perturbationsin the lattice, and (iii) ref. [54], which isareview article that we have written on the

use of the fiber taper as a probe for PC microcavities (and wavel ength-scale semiconductor cavities
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in genera).

In section 4.8, | briefly review some of the work that | was not the primary investigator on,
but which | had the opportunity to be a part of and is directly related to the work described in this
and subsequent chapters. The first topic [57] describes the work of my colleague Paul Barclay in
coupling light into our PC microcavities through use of an intermediate PC waveguide that is phase
matched to the fiber taper. This technique is critical in achieving coupling to the cavities that is
far more efficient than what is achieved through direct coupling from the fiber taper. The second
topic | examine isthe work of Matt Borselli [64], who used fiber tapers to investigate Si microdisk
cavities. Matt was able to demonstrate Q/V ratios that were slightly higher than what we saw in the
PC cavities, and more importantly, was able to show that the fiber taper can directly couplelight into
these devices in arelatively efficient manner. His work on these structures led to my subsequent
adoption of them in experiments involving AlGaAs microcavities with embedded quantum dots

(chapters 5-7).

4.2 Fabrication

We decided to fabricate our PC cavities within the silicon-on-insulator (SOI) materia system, due
to its relatively low material loss in the 1.5 ym range and how readily available it is commercially.
The material, obtained from the company SOITEC, consists of a 340 nm thick silicon (Si) layer on
top of a2 um silicon dioxide layer. Asour goa wasto test our devices through evanescent coupling
with fiber tapers, we decided to fabricate our cavities on mesas that are isolated from the rest of
the chip (the specific reasons for this, and recent devel opments that have obviated it, are discussed
later within the chapter). The following processing steps were performed (additional details are
given in appendix C): (1) electron beam lithography of the PC pattern and accompanying cutouts
for removal of additional material from the mesa, (2) SFg/C4Fs-based inductively-coupled plasma
reactive ion etching (ICP-RIE) through the silicon membrane layer, (3) removal of the electron
beam resist, (4) photolithography to define a mesa stripe that intersects the electron beam defined
cutouts, (5) removal of material surrounding the mesa (dry etching of the top silicon, underlying
oxide, and substrate silicon layers), (6) removal of the photoresist, and (7) wet etch (hydrofluoric
acid) of the underlying oxide layer to form a free-standing membrane. Figure 4.1 shows scanning
electron microscope (SEM) images of fully processed devices; in addition to being isolated to the
mesa stripe, additional cutout material (defined in step (1) above) surrounding each cavity has been
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removed to ensure that the taper interacts only with the cavity. Figure 4.2 shows close-up SEM
images of a fabricated PC cavity. From these images, we can observe the quality of the dry etch
processes that have been devel oped; the etched air holes are both smooth and vertical, each of which

is necessary to achieve devices that exhibit high Qs.

(@]

cutout region

e

—

 isolation mesa

Figure 4.1: (a)-(b) Scanning electron microscope (SEM) images of photonic crystal microcavity
arrays fabricated in silicon-on-insulator. The undercut PC microcavities are fabricated in a linear
array that isisolated from the rest of the chip by several microns. The devicesin (@) have additional
material removed along the y axis of the cavity, to allow for the fiber optic taper to be aligned along
that axis. The devices in (b) have additional material (‘cutout region’) removed along both the X
and y axes, to allow probing along either axis. (¢) Close-up low-angle image of a single PC cavity
within the array of devicesin (b).

Within the linear array of devices, we fabricate two or three different lattice constants (with
a=380-430 nm, so that a/A ~ 0.25 for A=1600 nm, to be consistent with simulation results for the
grade square lattice cavity design), and for a given a, the average hole radius (r/a) is varied. The
combination of varying a and r /a allows us to easily tune the cavity resonances through the range

of the scanning tunable laser (A=1565-1625 nm) that we use in our measurements.

4.3 Measurement setup

The fiber tapers we use consist of a standard single mode optical fiber (9 um core diameter, 125 pm
cladding diameter) that has been simultaneously heated and stretched down to a minimum diameter
(d) on the order of the wavelength of light (), so that for A ~1.6 um as used in our experiments,
d ~1-2 um. To form the tapers used here, the heating mechanism is a hydrogen-based torch [122],
but other techniques such as use of a CO; laser have aso been studied by other groups [123]. In

a taper with a suitably adiabatic transition region, the insertion loss through the taper can be quite
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Figure 4.2: SEM micrographs of a
fully fabricated PC microcavity. (a)
Cross-sectional view. (b) Top view
of the portion of the cavity con-
tained within the dashed linesin (a).

HHTE

L

i1t |

| OOt Total cavity dimensionsare ~ 13um
0200000000000 0000 .
0000000000000000 x 16pum. (c) Zoomed in angled
:::::::_o__g_g‘oooo:: view of the dashed lineregionin (b)
9000000 ; :
.......E...:...... sho_wmg thesmoothne;sand vgrtl-
0000000 000000000 cality of the etched air hole side-
900000OCGOOIOGOOOOOO walls, necessary to limit scattering
000000000 OOCOOO® - .
i................ loss and radiative coupling to TM-
0000000000000 . e 3 like modes.

low; the tapers we typically fabricate have an insertion loss of ~ 10 %. The taper is mounted onto
an acrylic block in a u-shaped configuration (fig. 4.3(b)), and the block is then fastened to a DC
motor-controlled z-axis stage with 50 nm step size resolution. Mounting the taper in this fashion
naturally keeps it under tension and prevents the taper position from excessively fluctuating due
to environmental factors (such as fluctuating air currents in the laboratory). The microcavity chip
isin turn mounted on a DC motor-controlled X — y-axis stage with 50 nm step size resolution; in
this way, the fiber taper can be precisely aligned to a microcavity. The taper-cavity interaction re-
gion is imaged with a microscope onto a CCD camera. The vertical separation between the taper
and cavity can easily be calibrated by stepping the taper down in 50 nm increments until it just
touches the cavity (this can be seen optically through the microscope), establishing the motor read-
out corresponding to a zero gap. Determining the separation in this manner is made possible by the
mechanical robustness of the taper, which allows it to withstand contact to the semiconductor chip
without breaking.

The mounted taper is fusion spliced into the measurement setup (fig. 4.3(a)) so that a fiber-
coupled scanning tunable laser with polarization-controlling paddle wheelsis connected to its input
and an InGaAs photodetector measures its output. The laser and photodetector output are attached
to a computer via GPIB interfaces, so that the wavelength-dependent transmission of the taper can
be recorded. In addition, the motorized stages on which the taper and PC chip are mounted are
also GPIB controlled, so that the taper transmission spectrum can be monitored as a function of the
taper’s position with respect to the cavity. When the taper islaterally aligned over the central region
of the cavity and positioned vertically within the cavity’s near field (typically < 1 um), the cavity



142
modes appear as resonances within this transmission spectrum. As we shall discuss in section 4.4,
measurements of the linewidth and depth of these resonances as a function of the taper’s position

with respect to the cavity can give us quantitative estimates of the cavity’s Q and V.

@) SVideo Figure 4.3: (a) Experimental mea-
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camera cal microcavities with fiber tapers.
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(b)).

In principle, the curvature of the looped taper shown in fig. 4.3(b) could be made large enough
so that only a small region of the fiber interacts with the PC chip, and the taper could then be used
to probe a full two-dimensional (2D) array of cavities on a chip; since the work described in this
thesis was completed, Chris Michael, a student in our group, has developed a technique and fiber
mounting strategy to do this. For the fiber tapers we have used in the experiments described here,
however, the region of the fiber that interacts with the chip istypically around 10 mm in length, and
isroughly equal to the length of the tapered region of the fiber as defined when the taper is formed.
Oneresult of thisrelatively long 10 mm interaction length isthat testing of a2D array isnot feasible,
and linear (1D) arrays of devices are tested. In addition, because coupling to the cavity requiresthe
taper to be positioned within amicron of the center region of cavity, control of the tip and tilt of the
sample with respect to the taper is necessary; thisisaccomplished through use of agoniometer stage
mounted to the motor-controlled X — ¥ sample stage. Finally, to prevent the taper from interacting
with extraneous portions of the chip, the cavities are isolated to amesa stripe that is several microns
above the rest of the sample surface (fig. 4.1). By appropriately angling the goniometer stage with
respect to the taper, it can be ensured that when the taper is brought into contact with the chip, it
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only touches the cavity region.

4.4 Measurement results

The coupling between the tapered fiber waveguide and the PC microcavity can be understood using,
for example, the coupling of modes in time approach as in Manolatou et al. [50]. The degree
to which the taper mode couples to the cavity mode is a function of the parameter x, which is
approximately given by the field overlap between the two modes over their interaction length. More

explicitly, for the taper aligned along the y-axis of the cavity, it is given by:

S
K= e—'Bvdy<//(n2—n§)Ej; . Erdxdz+
0
Ac

//(n2 —n?)E;- Etdxdz> :
A

where o is the resonant cavity mode frequency, €o is the permittivity of free space, B is the prop-

(4.1)

agation constant of the taper mode, n is the refractive index of the background air, nc () is the
refractive index profile of the cavity (taper), E¢ (E;) isthe electric field vector of the cavity (taper),
L isthe interaction length of the coupling, and the integrals over A; and A; are two-dimensional in-
tegrals over the x-z cross section within the cavity and taper, respectively, for agiveny value within
the interaction length. From this formula, we see that « is dependent upon: (i) the magnitude of the
overlap between E and E;, (ii) the relative phase between E. and E;, and (iii) the degree to which

E. and E; share acommon direction of polarization.

441 Polarization

Considering the latter point, for the taper aligned along the y-axis of the cavity, asin fig. 4.4(a), the
pol arization-controlling paddle wheels are used to select alinearly polarized state of the taper whose
dominant field component is aligned along the X-axis of the cavity. Thus, modes that couple most
strongly will have their X field component overlap strongly with the X component of the taper field.
By aligning the taper along a different axis of the cavity, polarization selectivity can be realized.
For the devicesin Figs. 4.1(a) and 4.4(a), thisis not possible, as aligning the taper along the X-axis

will couple the taper to multiple cavities. However, by fabricating the cavities at a 45° angle with



Figure 4.4: (a)-(c) Optical micro-
graph image of afiber taper aligned

(d) 100 along (a) the y-axis of one of the
"“"‘"""'\.*,f*""\ ™ "'"‘t'a'p'er""along Ca'v'ity y_a'x'is B cavities from fig. 4.1(8); (b)-(c)
5 (E, - polarized) the y and X axes, respectively, of
é 0.95 one of the cavities from fig. 4.1(b).
a (d) Normalized taper transmission
g when the taper is ~ 350 nm above a
g 1 00p—. PN, PSS st TR PC cavity of the type shown in fig.
= taper(gl?r;% ;i\i;'%?-ax's 4.1(b); (top) Taper aigned aong
g Y the cavity’s y-axis (bottom) Taper
Z 0.95; 1 aligned along the cavity’s X-axis.

1565 1570 1575 1580 1585 1590
wavelength (nm)

respect to the isolation mesa stripe, asin fig. 4.1(b), the taper can be aligned aong either of the
orthogonal cavity axes without coupling to multiple devices. In fig. 4.4(b)-(c), we show the optical
fiber taper aligned parallél to the y and X axes of one of the cavities from fig. 4.1(b). When the
taper is lateraly aligned with the center of the cavity and brought vertically closeto it, we observe
the cavity’s resonances. As shown in fig. 4.4(d), the coupling is polarization selective, so that those
resonances with dominant cavity field component E, couple most strongly when the taper isaligned
along the y-axis of the cavity (fig. 4.4(b)), while those with dominant cavity component E, couple
most strongly when the taper is aligned along the cavity’s X-axis (fig. 4.4(c)). Thus, the shorter
wavelength resonance in fig. 4.4(d) is more strongly polarized along the y-axis, while the longer
wavelength resonance is more strongly polarized along the X-axis. This data is consistent with
simulation and group theoretical results that predict that these square lattice microcavities support
modes of types A, and B, symmetry, which are predominantly polarized along the X and y axes of the
cavity, respectively [21]. The coupling depths of a few percent are typical values, and were found
to be adequate to achieve a sufficient signal-to-noise ratio for al of the measurements presented in

the upcoming sections.
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Figure 4.5; Summary of the design of
the graded sguare lattice photonic crys-
tal microcavity. (a) Schematic of the
undercut, two-dimensiona PC micro-
cavity geometry. (b) Magnetic field am-
plitude (|B]) in the center of the PC
membrane for the AY mode. The dashed
curves show the grade in hole radius
(r/a) aong the central X and y axes
of the cavity (marked by dashed lines
through the dielectric lattice), and the
solid curves are slices of the field com-
ponent B, along these directions.

4.4.2 High-Q measurements

For future microcavity-enhanced experiments within our graded square lattice PC geometry, the
fundamental TE-like mode of A, symmetry, which we label asthe AS mode, is of particular interest,
on account of its predicted ultrasmall Vs and high Q factor. Let us briefly review some of the
key features of this mode: the PC cavity geometry employed is shown in fig. 4.5(a-b), and was
designed using group theoretical, Fourier space, and finite-difference time-domain (FDTD) analyses
as described in detail in chapter 2. The cavity consists of alocalized defect in a square lattice of
air holes that are etched into an optically thin membrane of refractive index n=3.4. This geometry
provides in-plane modal localization via distributed Bragg reflection due to the lattice and vertical
confinement by total internal reflection at the membrane-air interface. The resulting TE-like AJ
defect mode shown infig. 4.5(b) is predicted to have Q ~ 10° and Vgt ~ 1.23 (A¢/n)3. Theimportant
aspects of the cavity design are: (1) the dominant electric field component, Ey, is odd about the X-
axis, thereby reducing vertical radiation loss from the patterned slab, (2) a grade in the hole radius
is used to both further confine the mode in-plane and reduce in-plane radiative losses, and (3) the
design isrelatively insensitive to perturbations to the cavity, as verified through simulations where
the steepness of the grade and the average hole radius (r) have been varied significantly without
degrading the Q below ~ 20, 000.

To experimentally locate a device for which this mode appears within the scan range of the
laser we use (1565-1625 nm), we rely on the fact that it is the fundamental (and hence lowest
frequency) mode within the region of o — k space under consideration. In particular, for a given

lattice constant a, we begin testing by examining the device with the largest r/a. Typicdly, the
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Figure 4.6: Fiber taper transmission measurements of the PC microcavities. (a) Taper transmission
spectrum for acavity with a=409 nm, where the data has been normalized to a background spectrum
when the taper is far above the cavity. The highlighted long wavelength mode is the A(Z’ resonant
mode. (b) Measured linewidth (dots) versus taper-cavity gap (A2) for the AD mode (a/Ac ~ 0.263) in
asample with a=425 nm. The taper is vertically positioned by a stepper motor with 50 nm encoder
resolution. The solid curve is afit to the experimental data. (inset) Normalized taper transmission
versus wavel ength when the taper is 650 nm above the cavity surface.

resonances of this device are at frequencies that are above that covered by the laser scan range, and
hence, no resonances are observed in the taper’s transmission spectrum. We then move on and test
the next device in the array, which has a sightly smaller r/a and is thus predicted to have lower
frequency resonances than the previous device. This process is continued until we find a device
for which a resonance is seen in the transmission spectrum. The first resonance which appears in
the transmission spectrum (measuring from lowest frequency to highest frequency) is the Ag mode;
this identification procedure relies on having only small changesin r /a between successive devices
in the array, so that the cavity resonances can be smoothly tuned from frequencies above the laser
scan range to frequencies within the scan range. However, this identification of the Ag mode can be
confirmed, both by comparing the measured resonance frequency with that predicted from FDTD
simulations using the SEM-measured hole sizes, and as discussed later, by comparing the spatial
localization of the cavity mode with that predicted from simulations. In addition, as described in
the previous section, the polarization of the input light into the taper can be used to rule out modes
that are not of the correct polarization.

Having identified adevice for which the Ag mode appears within the scan range of the laser (fig.

4.6(a)), we next examine its Q factor. In the inset of fig. 4.6(b), we show a wavelength scan of the



147

taper transmission showing the resonance dip of the Ag mode for a device within the array shown
in fig. 4.1(b), where the vertical taper-cavity separation Az=650 nm. An initial estimate of the Q
of this resonance (centered at wavelength Ao) is given by measuring its linewidth vy, with Q = A¢/7.
For this device, Ao ~ 1618.75 nm and y ~ 0.047 nm (where these values are determined by fitting
the datato a Lorentzian curve), giving an estimate of Q ~ 34,400. This Q is alower bound for the
cold-cavity Q, dueto the taper’sloading effects on the cavity, which cause its linewidth to broaden.
Loading by the taper results in out-coupling to the forward propagating fundamental taper mode
which, upon interference with the power directly transmitted past the cavity, results in the observed
resonant feature in the taper transmission. Parasitic taper loading effects could include coupling to
radiation modes, higher-order taper modes, and the backward propagating fundamental taper mode.
To estimate the taper loading effects on the Ag cavity mode, we examiney as afunction of Az. The
resulting data (fig. 4.6(b)) showsthat as Az increases, the loading effects are reduced, until aregime
is reached where the taper does not significantly affect the cavity mode and the measured linewidth
asymptotically approaches the cold-cavity linewidth. Assuming that the loading is monoexponen-
tially related to Az, we fit the measured linewidth to the function y = yo + pe~**?, where yo, B, and
o are all fitting parameters. The resulting fit value of yp is 0.041 nm, essentialy identical to the
directly measured linewidth when Az > 800 nm, and corresponds to a cold-cavity Q ~ 39,500.1 To
compare this result directly with numerical calculations, we repeat our previous FDTD calculations
from chapter 2 but include an offset inr of r/a = 0.05 to account for the increased size of the fab-
ricated holes (as measured by SEM) relative to the design of fig. 4.5. Doing so yields a predicted
Q ~ 56,000 and a/A ~ 0.266, fairly close to the measured values, and Vegs = 0.88(A¢/n)3, smaller

than the original design due to the better in-plane confinement provided by the larger hole radii.

4.4.3 Spatial localization measurements

As mentioned earlier, the extremely small volumes to which light is confined within PC micro-
cavities is one of their distinguishing advantages over other optical microcavities, and is of critical
importance in many applications, as the per photon electric field strength within the cavity is pro-
portional to 1/+/Ves. The ability to experimentally confirm such tight spatial localization using the

same probe that maps the spectral properties (such as the Q) of the cavity modes is an important

INote that some parasitic taper loading effects may not diminish as a function of Az as rapidly as does the coupling
between the fundamental taper mode and cavity mode of interest. This could prevent the measured linewidth y from
reaching an asymptotic value as a function of Az. In such cases, the best estimate of g is the linewidth for as large a Az
as can be reliably measured.
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Figure 4.7: Mode localization data for the cavity whose Q was measured in fig. 4.6. The measured
normalized taper transmission depth (black dots) is plotted as afunction of taper displacement along
the (a) X-axisand (b) y-axis of the cavity. Thedashed linein (a)-(b) isaGaussian fit to the datawhile
the solid lineisanumerically calculated coupling curve based upon the FDTD-generated cavity field
and analytically determined fundamental fiber taper mode (taper diameter d ~ 1.7 um)

demonstration of the versatility of the optical fiber taper. Here, the same near field probe is used to
both excite the PC cavity modes and to map their spatial profile. Other works employing evanescent
coupling from eroded monomode fibers to excite silica microsphere whispering gallery modes have
used a secondary fiber tip to collect and map the mode profiles [124].

The spatial localization of the cavity mode is easily probed by examining the strength of cou-
pling between it and the taper as the taper is laterally scanned above the surface of the cavity. The
strength of coupling is reflected in the depth of the resonant dip in the taper transmission.? In the
insets of fig. 4.7(a)-(b), we show the fiber taper aligned along the y and X-axis of the photonic crys-
tal microcavity whose Q was measured to be ~ 40,000. The position of the taper is varied along
the X and y axes of the cavity (at afixed vertical taper-PC gap Az = 200 nm), respectively, alow-
ing for measurements of the depth of coupling along these two orthogonal cavity directions. The
depth of the resonant transmission dip for the A(z’ cavity mode versus taper displacement is shown
in Figs. 4.7(a) and 4.7(b), respectively. These measurements show the mode to be well localized
to a micron-scale central region of the cavity, giving experimental confirmation that the Ag mode

of this cavity is both high-Q and small V. As might be expected, they do not reveal the highly

2The maximum transmission depth achieved for the mode of interest was ~ 10%, though coupling to other modes
reached depths as large as ~ 30%. Coupling in al cases was limited to the under-coupled regime [125, 20].
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oscillatory cavity near field, but instead an envelope of the field, due to the relatively broad taper
field profile. To compare this experimental data with FDTD calculations, we consider a simple
picture of waveguide-cavity coupling [50], where the coupling coefficient (k) is approximated, to
save computation time, by taking the field overlap of the phase matched Fourier components of the
FDTD-generated cavity field with the analytically-determined taper field (the modes of acylindrical
dielectric waveguide are derived in ref. [126], for example). The calculated resonant transmission
depth as a function of taper displacement is shown in Figs. 4.7(a)-(b) as a solid line and agrees
closely with the measured data, providing further confirmation that the mode studied is indeed the
Ag mode of interest. Assuming that the cavity modeislocalized to the slab in the 2-direction (agood
assumption based upon measurements that show the depth of coupling between the taper and cavity
mode decreases exponentially as the taper-cavity separation is increased), the close correspondence
between the measured and calculated in-plane localization indicates that Vet ~ 0.9(A¢/n)3 for this
high-Q mode, where this Vg value was calculated through FDTD simulations which take into ac-
count the SEM-measured hole radii for this device.

Similar measurements of the higher-frequency resonant modes of the PC microcavity indicate
that they are more delocalized in-plane in comparison to the Ag mode, and sometimes contain mul-
tiple lobes within their coupling curves, as one might expect for higher-order modes of the cavity.
As an example of this, we show in fig. 4.8(a)-(b) the depth of coupling to a higher order mode
as a function of the taper’s position along the X and y axes of the cavity, respectively. The node
that appears within the coupling curve in fig. 4.8(a) results from the cavity and taper modes being
precisely out of phase so that the integral determining «k in equation 4.1 is zero, and is a result of
the measurement being sensitive to the fields within the cavity and taper rather than their intensities.
These results indicate that the mode is likely fundamental along the y-axis (itswidth is close to that
measured in fig. 4.7(b)), while it is a higher order mode aong the X-axis. Simulations confirm that
such modes are supported by the graded lattice geometry employed in this work.

With the exception of such cases where there is phase cancelation in «, the resolution of the
fiber taper probe is limited by the transverse profile of the taper mode. This is the reason why the
measured coupling curves give an envel ope of the cavity field rather than displaying its oscillatory
nature; in the measurements of fig. 4.7, for example, the calculated full width at half maximum
(FWHM) of the dominant taper field component at the center of the PC dab is ~ Ag, while the
cavity mode oscillates on the scale of a lattice constant a (fig. 4.5(b)), and a/Ap ~ 0.25. The
taper used in these measurements had adiameter d ~ 1.7 um (d/(Ao/n) ~ 1.52, wheren ~ 1.45is



150

5 : ‘ 7 ‘ ® data
£ ¢ dqaa ! o
) N A ~ 7 Gaussian fit ,'. *
] P ! (4 ]
< ryr e
& ’..q ! \ P. |
@ SR o
I b Q p .
: S Y
I ’ !
g P A
o[ 1 ' | ". b‘
Q| . ep ‘f 1 \
= o, ll o ‘
= , ', 1 4 [ 4
= ! Ve '
— [ ] ! ! \ ’ \
@) 7 I ! ‘
Zr I} " ' y % |
g ' 'S . .
o . Som - — — — L cuomsssestes . eNlevessees — — —
4 3 2 a1 0 1 2 3 44 3 2 1 0 1 2 3 4
AX (um) Ay (um)

Figure 4.8: Mode localization data for a higher order mode of the graded square lattice PC cavity.
The measured normalized taper transmission depth (black dots) is plotted as a function of taper
displacement along the (a) X-axis and (b) y-axis of the cavity. The dashed linein (a) is a Hermite-
Gaussian fit to the data and the dashed linein (b) is a Gaussian fit to the data.

the refractive index of the silica taper), and intuitively, it might be expected that better resolution
could be achieved by further reducing its diameter. However, for therelatively small taper diameters
(~ o) with which we operate, we note that the waveguiding properties of the taper begin to degrade
below some minimum diameter so that, even if a smaller taper is used, it does not necessarily
confine the mode any more tightly than alarger taper would.® To better illustrate this, in fig. 4.9, we
plot the calculated normalized FWHM of the dominant taper field component at the center of the
PC dlab for varying normalized taper diameter (d/(Ao/n)) and taper-PC slab separation (Az/LAo).
As expected, the smallest FWHM~ 1.23(o/n) occurs when Az/Ap=0, that is, when the taper is
touching the slab.* We also see that reducing d/(Ao/n) below some minimum value begins to
broaden the FWHM. Thus, for the spatial localization measurements, using smaller tapers will not
appreciably improve the resolution of the measurement. Possibilities for future improvement might
consist of partially aperturing the taper field (perhaps through a metallic coating on the taper), or
forming the waveguide probe from a higher index material. As it stands with the current silica

taper used, the width of the taper mode will limit the degree to which cavity modes of differing

3Thissimple point isvery important when trying to compare the modal confinement properties of sub-micron diameter
silicawaveguides, now commonly called nanowire waveguides, with those of high-index contrast waveguides like PCs.

4In practice, a non-zero Az, on the order of ~ 250 nm for Ag=1.6 pm, is preferable for doing spatial localization
measurements. This is due both to the relatively large amount of insertion loss that occurs when the taper touches the
cavity, and also to alow the taper to be freely moved above the cavity.
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spatial localizations can be distinguished (differences in cavity localization will be blended out in
the measured coupling curves, dueto the effect of the convolution with the taper field). Neverthel ess,
we have been able to distinguish modes with localizations corresponding to differences in Ve of

~ 0.3(A/n)in our work to this point.

45 Applicationsto quantum optics

To illustrate the potential applications of such a small Vs and high-Q microcavity, we briefly con-
sider two examples from quantum optics. The Purcell factor (Fp), a measure of the microcavity-
enhanced spontaneous emission rate of an embedded active material, is given under suitable (maxi-

mal) conditions as (see appendix H and ref. [109]):

e () w2

For the AJ mode (Q ~ 40,000, Vest ~ 0.9(Ac/n)3), the predicted Fp is ~ 3,500, an extremely large
value for a semiconductor-based microcavity (previous work on semiconductor microdisks [13]
have predicted Fp ~ 190, for example).

Another application is in cQED, where strongly coupled atom-photon systems have been pro-
posed as candidates to produce the quantum states required for quantum computing applications
[60]. For such applications, the regime of strong coupling (see Appendices G-H and ref. [9]), where
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the atom-photon coupling coefficient (g) exceeds the cavity and atomic decay rates (x and vy, , re-
spectively), must be reached. Although strong coupling has been achieved in systems consisting of
an alkali atom and an actively stabilized Fabry-Perot cavity [9], in future applications, where higher
levels of integration are sought, chip-based cavities are of interest [60]. Using the measured Q and
estimated Ve for the AY mode studied here, the relevant parameters for a commonly-used Cesium

(Cs) atomic transition (Ag = 852 nm, y, /2 = 2.6 MHz) [9], and the formul as (see appendix H)

9= 3cA3
" Ay | Vest (4.3)
@
=29

we calculate g/2r ~ 16 GHz and k/2r ~ 4.4 GHz, indicating that the coupled Cs-PC cavity system
could achieve strong coupling.® In addition, the calculated critical atom number (No = 2y, /g?)
and saturation photon number (mp = 2 /2g?) are No ~ 8.8x10~° and mg ~ 1.3x10~8, a regime
where a single atom would have a profound effect on the cavity field, and vice versa. More detailed
calculations using the optical bistability state equation and quantum master equation have been per-
formed [62], and confirm that it should be possible to detect single strongly coupled atoms in this
system. Such experiments are being explored by Paul Barclay and Ben Lev in a collaborative effort
between the Mabuchi and Painter groups at Caltech. In addition, calculations of the coupling and
decay parameters for an InAs semiconductor quantum dot [127] indicate that the current PC micro-
cavity would aso be capable of reaching strong coupling in such a solid-state system. Calculations
based on the quantum master equation are the focus of chapter 8, and so | will refrain from adding

anything more on this here.

4.6 Fabrication-tolerant high-Q cavities

In this section, we investigate the robustness of the Q of the AS mode in our PC cavity design to
imperfections in the lattice. The basic motivation for this work has been the observation that many
fabricated PC cavities exhibited Q factors that were significantly smaller than the values expected

from simulations. In some cases, this may have been due to issues such as surface state or bulk

5As Vg is defined relative to peak electric field energy density, rather than electric field strength, a factor  must be
included in g for dielectric cavities where the two values are not equal. n ~ 0.42 for our cavity.
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material absorption, or due to problems with the etch used, resulting in angled sidewalls or rough
etched surfaces. The robustness | study in this chapter does not cover such instances. Here, | focus
purely on the response of the Q to variationsin the size of the holes within the PC lattice. Although
covering only one subset of the imperfections that can occur during fabrication, it is an important
subset, as it is directly related to processes such as electron beam lithography, where incorrectly
sized holes can result from variations in the beam current during the writing step, and plasma dry
etching, where etches can undercut the mask and lead to larger holes than what were intended.

A range of designs have been employed in studies of high-Q PC microcavities[11, 21, 26, 51],
and in many cases, the experimental achievement of high-Q is predicated on the ability to fabricate
the design with a small margin for error. For example, in ref. [12], the discrepancy between the
fabricated device and the intended design led to a theoretical degradation of Q from 3.0 x 10* to
4.4 % 103, close to the measured Q of 2.8 x 103, Extraordinary control over fabricated geometries
has been demonstrated in recent work [51], where a shift of ~ 60 nm in the positions of holes
surrounding the cavity defect region reduced Qs as high as 4.5 x 10* by over an order of magnitude.
Here, we discuss a study of our PC microcavity design (chapter 2), which exhibits a degree of
robustness, both theoretically and experimentally, to deviations from the nominal design sufficient
for Qs above 10* to be maintained. This robustnessin Q to changesin the PC cavity geometry is of
practical importance for future experiments, to provide insensitivity to fabrication imperfections, as
well asto maintain the flexibility in cavity design required to form resonant modes with a prescribed
field pattern and polarization.

Radiative losses in planar waveguide PC defect microcavities can be separated into in-plane
and out-of-plane components, quantified by the quality factors Q and Q. , respectively, with the
total radiative Q givenby Q1 = Q[l + Qil. Qy is determined by the size and angular extent (in-
plane) of the photonic bandgap, while Q, is determined by the presence of in-plane momentum
components (k) within the waveguide cladding light cone, which are not confined by total internal
reflection at the core-cladding interface. In chapter 2 and ref. [21], PC microcavities were designed
using two mechanisms to avoid radiative loss: (i) use of a mode that is odd about mirror planes
normal to its dominant Fourier components, in order to eliminate the DC (k = 0) part of the in-
plane spatia frequency spectrum and hence reduce vertical radiation loss, and (ii) use of a grade
in the hole radius to further confine the mode and reduce in-plane radiative losses. The resulting
PC microcavity design within the square lattice creates a TE-like donor-type defect mode (labeled

Ag), as shown in fig. 4.5. FDTD simulations of this resonant mode predict a Q-factor of 10° and
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an effective modal volume of Vet ~ 1.2(A/n)3. We now show how use of mechanisms (i) and (ii)
above create alevel of robustnessin the cavity design.

Use of an odd symmetry mode to suppress vertical radiation lossis, at abasic level, independent
of changes in the size of the holes defining the defect cavity. This feature has been confirmed in
the ssimulations of simple defect cavity designs in square lattice photonic crystals in chapter 2,
where Q, did not degrade below 10%, despite significant changes (as much as 40%) in the size of
the (two) central defect holes. Perturbations that cause the cavity to be asymmetric create a mode
which, though not strictly odd, will be a perturbation to an odd mode, and hence will still largely
suppress DC Fourier components and exhibit high Q. However, for the sguare lattice photonic
crystal structures considered here, perturbations to the central defect hole geometry can result in a
degradation in Q, duein part to the lack of a complete in-plane bandgap within the square lattice.
This lack of a complete bandgap requires the defect geometry to be tailored so as to eliminate the
presence of Fourier componentsin directions where the lattice is no longer reflective.

This tailoring was achieved in chapter 2 by a grade in the hole radius moving from the center
of the cavity outwards. The grade, shown in fig. 4.5, servesto help eliminate couplings to in-plane
radiation modes along the diagonal axes of the square lattice (the M-point of the reciprocal lattice)
where the PC is no longer highly reflective, while simultaneously providing a means to keep the
in-plane reflectivity high along the y axis (the direction of the mode’s dominant Fourier compo-
nents). The use of alarge number of holes to define the defect region ensures that no single hole
is responsible for creating the potential well that confines the resonant mode, making the design
less susceptible to fluctuations in the size of individual holes. Instead, the continuous change in the
position of the conduction band edge resulting from the grade in hole radius creates an approxi-
mately harmonic potential well [25]. This smooth change in the position of the band edge creates
a robust way to mode match between the central portion of the cavity (where the mode sits) and
its exterior. In other work [51], softening of this transition is achieved by adjusting the position
of two holes surrounding the central cavity region (which consists of three removed air holesin a
hexagonal lattice). This method can achieve high-Q, but as mode-matching is achieved by tailoring
only two holes it is more sensitive to perturbations than the adiabatic transition created by a grade
in the holeradius. Finally, we note that even though a relatively large number of holes are modified
to create the graded lattice, Vit is till wavelength-scale, and remains between 0.8-1.4(A/n)3 in all
of the devices considered in this work. In addition, the methods used here to achieve robustnessin

Q are general and can be applied to cavitiesin other PC lattices [23].
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Figure 4.10: Grade in the normalized hole radius (r/a) aong the central X and y axes of square

lattice PC cavities. Cavity r/a profiles for (a,b) FDTD cavity designs and (c,d) microfabricated S
cavities.

To highlight these ideas, 3D FDTD simulations of cavities with varying grades and average
normalized hole radius (r /a) were performed. Figure 4.10(a)-(b) shows the grade in r /a aong the
central X and y axes for severa designs (PC-A through PC-E), and table 4.1 lists the calculated
resonant frequency, vertical, in-plane, and total Q factors. In al of these simulations, Q, remains
close to 10°, with PC-E showing more significant degradation largely as a result of the increased
modal frequency (creating a larger-sized cladding light cone). In addition, an inappropriate choice
of grade along the X-axis can lead to increased in-plane losses via coupling to M-point modes.
Nevertheless, the lossin any of the simulated devices did not cause Q to be reduced below 2 x 10%.

To test the sensitivity of the design to perturbations experimentally, cavities were fabricated in a
d=340 nm thick silicon membrane through a combination of electron beam lithography, inductively-
coupled plasma reactive ion etching, and wet etching. Figure 4.10(c)-(d) shows the values of r /a
along the central X and y axes for anumber of fabricated devices (PC-1 through PC-7), as measured
with a SEM. Cavities are passively tested using the optical fiber taper probing method described in
the previous sections.

Figure 4.11(a)-(b) shows measurements for devices PC-5 and PC-6, which have significantly

different r /a profiles (fig. 4.10(c)-(d)). Theinset of fig. 4.11(c) shows the normalized taper trans-
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Table 4.1. Theoretical (PC-A through PC-E) and experimental (PC-1 through PC-7) normalized
frequency (a/A,) and quality factor (Q) values for the Ag mode of cavities with r /a profiles shown
infig. 4.10.

Cavity d/a  a/ko QL Qy Q

PC-A 0750 0245 1.1x10° 4.7x10° 9.0x10%
PC-B 0750 0245 1.1x10° 26x10° 7.5x10%
PC-C 0750 0247 10x10° 3.7x10° 8.0x10*
PC-D 0750 0.253 86x10* 3.0x10° 6.7x10%
PC-E 0750 0.266 6.2x10* 65x10° 5.6x 10

PC-1 0.879 0.241 - - 1.6 x 10*
PC-2 0.850 0.255 - - 1.8 x 10*
PC-3 0.850 0.251 - - 1.7 x 10*
PC-4 0842 0.251 - - 2.4 x 10
PC-5 0.842 0.249 - - 2.5x 10*
PC-6 0.800 0.263 - - 4.0 10%
PC-7 0.800 0.270 - - 1.3x 10*

mission as a function of wavelength when the taper is 350 nm above cavity PC-5. By measuring
the dependence of cavity mode linewidth (y) on the vertical taper-PC gap (Az) (fig. 4.11(a)), an
estimate of the true cold-cavity linewidth (yo) is given by the asymptotic value of y reached when
the taper is far from the cavity. For PC-5, yo ~ 0.065 nm, corresponding to Q ~ 2.5 x 10*. Figure
4.11(b) shows the linewidth measurement for PC-6. For this device, yo ~ 0.041 nm, corresponding
toaQ ~ 4.0 x 10*%.

Linewidth measurements for each of the cavities PC-1 through PC-7 are compiled in table 4.1.
The robustness of the Q to non-idealitiesin fabrication is clearly evident. Though all of the devices
exhibit a general grade in r/a, the steepness of the grade and the average hole radius (r/a) vary
considerably without reducing Q below 1.3 x 10*. These high-Q values are exhibited despite the
fact that many cavities are not symmetric (the odd boundary condition is thus only approximately
maintained), and the frequency of the cavity resonance varies over a 10% range, between a/A, =
0.243-0.270.

The measured Q valuesin table 4.1 are still lower than predicted from simulations. Thisdiscrep-
ancy is likely due in part to slightly angled etched sidewalls that have been shown in calculations
to lead to radiative coupling to TM-like modes [114]. This non-ideality helps explain why PC-1,
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Figure 4.11: (a) Measured data (blue dots) and exponential fit (red curve) for linewidth vs. taper-PC
gap of the Ag mode in PC-5. (Inset) Taper transmission for this device when the taper-PC gap is 350
nm. (b) Same as (c) for PC-6 (here, the taper transmission in the inset is shown when Az=650 nm).
The transmission curves are normalized relative to transmission in the absence of the PC cavity.

which is closest in r /a value to the desired design (PC-A), does not exhibit the highest Q experi-
mentally. In particular, we have observed that the sidewall angle is poorer for smaller sized holes.
On the other end of the spectrum, cavities with the largest hole sizes such as PC-7, which may have
more vertical sidewalls, also begin to exhibit higher vertical radiation loss as a result of a larger
modal frequency and cladding light cone. In addition, surface roughness is a potential source of
loss, for PC-6, which exhibited the highest Q value, a chemical resist stripping process was used
(rather than a plasma descum) and may have produced a cleaner, smoother surface. More recently,
work on Si microdisk cavities [128] has indicated that absorption due to surface layers may be a
limitation. Proper termination of etched surfacesis an important consideration for achieving higher

Qs inthese devices.

4.7 Fiber tapersasan optical probefor photonic crystal microcavities

The versatility of the optical fiber taper measurement technique has led us to think of it as a probe
for studying the properties of microphotonic structures. In this section, we further elaborate on
thisidea, by comparing this method to some of the existing ways in which PC microcavities (and
wavel ength-scal e semiconductor microcavitiesin general) are tested.

In general, measurements of PC microcavities are not necessarily straightforward, in large part

due to their micron-scale Vg values, which limit the ability to effectively couple to them from free-
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space or through prism-based technigues, as can be done for larger microresonators such as Fabry-
Perot cavities[9] and microspheres[129]. Thisdifficulty has extended to other types of wavelength-
scale cavities, such as small-diameter microdisks[13, 14]. Typically, there have been two techniques
to probe Q factors in wavelength-scale cavities. In the first, the microcavities are fabricated in an
active emitter material (such as a quantum well or quantum dot epitaxy), the cavities are optically
pumped, and the emitted resonance linewidth is studied subthreshold, near materia transparency
[13, 43, 12]. This technique is limited both by difficulties in accurately establishing the pump
power at which transparency occurs and by the necessity that the cavity contain embedded emitters.
In particular, the latter requirement limits the variety of material systems in which the cavity can
be fabricated (silicon, for example, would not be an easy option) and is not suitable for passive
resonators in devices such asfilters. For such devices, a second technique, consisting of fabricating
an on-chip in-plane waveguide to couple to the cavity, is often used [130, 49]. In this approach,
the problem of coupling light into the cavity is shifted to that of coupling light into the on-chip
waveguide, a technically less challenging problem that can be done through a number of end-fire
based approaches. A limitation of this technique is that it lacks a certain amount of flexibility due
to the necessity of fabricating an in-plane waveguide for each cavity on the chip. In addition, both
this approach and the emission-based approach described above do not provide a means to probe
the Vg of the cavity. To address this, severa researchers have begun to investigate photonic crystal
microresonators using near field scanning optical microscopy (NSOM), taking advantage of the
sub-wavel ength resol ution that can be achieved in such measurements to map the localization of the
cavity modes [131, 132].

The technique we have described in this chapter employs an external waveguide to couple to
the cavity, where the external waveguide is atapered optical fiber. Tapered optical fibers have been
successfully used in the past to excite the resonances of larger sized microcavities, such as silica
microspheres [32, 20] and microtoroids [56], and more recently, to excite the modes of a silicon-
based PC waveguide [38, 40]. In these implementations, phase matching between the mode of the
taper and the traveling wave mode of the resonator or the propagating mode of the waveguide was
critical in achieving highly efficient coupling [55, 39]; in the former case, phase matching occurred
primarily due to the silica-silica interface (same material index) between the taper and the micro-
sphere, whilein the latter, the dispersion of the PC waveguide was engineered to compensate for the
disparate material indices (n=3.4 for silicon and n = 1.45 for silica) and achieve a PC waveguide

effective index that matched that of the taper.
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To study wavelength-scale cavities, we no longer rely on achieving phase matching, but rather
just use the taper as a convenient means to produce a micron-scale evanescent field for sourcing
and out-coupling the micron-scale cavity field. The taper effectively servesto bridges the disparate
length scales from conventional fiber and free-space optics to chip-based microoptics, and does so
entirely off the chip, so that on-chip structures do not require any additional complexity. Although
the coupling we observe might not be as efficient as phase matched coupling, the power transfer is
more than adeguate enough to probe many of the important properties of the cavity. By using an
external waveguide as the coupling element, this method is inherently non-invasive, can be used to
rapidly characterize multiple devices on a chip, and the ability to vary the position of the taper with
respect to the cavity (not an option for microfabricated on-chip waveguides) allows for quantitative
investigation of not only the Q factor but also V. Furthermore, the resonant coupling from the ex-
ternal waveguide is polarization selective, providing additional information about the cavity modes
that is not easily obtainable through technigues such as NSOM. Knowledge of a mode’s spectral
position, polarization, Q, and Vgt will in many cases be enough to unambiguously determine the
identity of the mode in comparison to simulation or theoretical results. Thus, in some respects, the
versatility of the fiber-based approach that we have described in this chapter makes the technique
an optical analog to electrical probes used to study microelectronic devices.

Another important aspect of this technique is the speed with which measurements can be made.
In particular, the critical alignment step required in this work is making sure that the taper is not
angled with respect to the surface of the chip, to ensure that coupling only occurs between the taper
and the cavity, and not some extraneous part of the chip. Once this is done, and once the taper is
aligned along the desired axis of the cavity, all of the devices within an array can be rapidly tested,
and the spectral positions of resonances in successive devices can be determined within tens of sec-
ondsor faster. Asan illustration of this, amovie showing the testing of two adjacent PC cavities has
been made and is freely available on the internet (http://copilot.caltech.edu/research/PC_cav.avi).
This ability to easily probe an array of devices on a chip greatly speeds up the testing process and
shortens the turnaround time between device fabrication and measurement. Furthermore the sim-
plicity of the measurement technique is another attractive feature; a single fiber taper serves as both
the excitation and collection probe, and the taper is physically robust enough (will not break) so
that no active servo control of the taper position is required to prevent it from touching the sample
surface (in contrast to the more delicate probes used in NSOM techniques [132]).

Finally, we note that the optical fiber taper probe can be used to examine the spectral and spatial
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properties of a number of wavelength-scale microcavities, and is not limited to just PC microcav-
ities. The suitability of the fiber taper as a probe for a given microcavity will in large part be
determined by the overlap between the cavity and taper fields; simply put, if that overlap is suffi-
ciently large, an appreciable amount of power can be transferred from the taper to the cavity even
without phase matching (in general, phase matching will not be achieved, because of the index
mismatch between the silicafiber taper and the high refractive index semiconductors typically used
in wavelength-scale cavities). For the Ag PC microcavity mode studied in this work, the depth of
coupling is typically limited to ~ 10%-20%, and at maximum levels of coupling, the cavity Q is
degraded due to the taper loading effects seenin fig. 4.6. However, due to the low-loss nature of the
optical fiber tapers (insertion losses are routinely as low as 10%), this is still a significant amount
of coupling into the cavity, and from the measurement standpoint, coupling levels of a few percent
are easily adequate to discern cavity resonances in the taper’s transmission, and to then probe the Q
and Vg of the cavity. For applications requiring highly efficient power transfer from the fiber into
the cavity, other approaches using an intermediate photonic crystal waveguide coupler have been
developed [57], and will be briefly described in the following section.

As an example of the application of this probing technique to other types of wavelength-scale
microcavities, fiber tapers have recently been used to probe the spectral and spatial properties of
whispering gallery modes in d < 10 pm diameter silicon microdisks [64] and AlGaAs microdisks
with embedded quantum dots [69] (the latter of which will be described in detail in the second
part of this thesis). Because the radiation losses in high-index-contrast microdisks are quite low
(Qrad > 108), measurements of Q in fabricated devicesisasimple and elegant way to determine etch-
induced and bulk material losseswithin agiven materials system [65, 128], allowing oneto optimize
an etching process for the creation of low-loss structures. Because the fiber taper measurement is
a passive measurement (light-emitting material is not required), this probing technique provides
optical access to materials systems, such as silicon, which otherwise could only be accessed via
end-fire coupling to microfabricated on-chip waveguides. We briefly review some of the results on

Si microdisksin the following section.
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4.8 Efficient optical fiber coupling to photonic crystal microcavities

and microdisks

4.8.1 PC microcavities

To this point, we have demonstrated a PC microcavity that has a sufficiently high Q and small Vg to
enable strong coupling experiments in cQED, and we have shown that the Q is relatively robust to
fabrication imperfections. To do these measurements, we have used fiber tapers as a way to couple
light into and out of these devices. The above sections have detailed how the fiber taper can serve
as avery versatile probe for studying the spectral and spatial properties of PC cavity modes.

Onething that was not shown in the measurements above is that the fiber taper isan efficient way
to get light into and out of the PC cavities, and indeed, to this point, it has not been. In particular,
depths of coupling between the taper and cavity have been limited to values around 10%, and at
these highest levels of coupling, the Qs are significantly degraded (by about afactor of 2). It should
be emphasized that whenever light is coupled out of a cavity, its Q is going to be degraded relative
to its cold-cavity value. The important point is that the loss that is induced by coupling should be
effectively funneled into some collection channe (this loss can euphemistically be called 'good’
loss). For the direct fiber taper probing measurements, this clearly is not the case; the Q is degraded
by almost afactor of 2, indicating that significant loss has been induced by the interaction with the
taper, but only a small fraction of this loss has been collected, as evidenced by the small depths of
coupling. The additional (uncollected) loss, which we call "bad’ loss, might be due to scattering or
coupling into undesirabl e taper modes. For cavity QED applications, the goal isto obtain arequisite
signal level without degrading the Q so far that the cavity isno longer in the strong coupling regime.
The ability to do this is somewhat compromised by the amount of "bad’ loss present in the direct
probing method; nevertheless, its simplicity makesit a candidate for use in future experiments.

The ability to efficiently source and extract light from the cavity is of particular importance
for the low light intensities within the cavity in cavity QED experiments, where maximizing the
amount of out-coupled signa from the interaction is necessary. In a standard Fabry-Perot cavity,
the solution is perhaps obvious; one of the etalon mirrorsis made to have slightly lower reflectivity.
This causes a degradation of the cavity Q, but thisadditional lossis‘good’ in the sensethat it can be
collected to comprise the measurement signal. Similarly, in amicropillar cavity, the top DBR mirror

can betailored to allow light to leak vertically into the air, where it can be efficiently collected into
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Figure 4.12: Fiber-coupled PC microcavity using an intermediate PC waveguide. (i) the taper adia-
batically converts light injected into its input to a micron-scale field,(ii) light is contradirectionally
coupled to a phase matched PCWG with high (> 95%) efficiency, (iii) light tunnels from the end of
the PCWG into a mode-matched PC cavity, (iv) coupling from the cavity back to the fiber follows
the reverse process, so that the output from the cavity is detected in the reflected signal at the fiber
input. Refer to the paper of Barclay et a., for details[57].

an optical fiber [133]. However, in PC microcavities, the solution is not necessarily straightforward;
their wavel ength-scale modal patterns are typically not suited for direct mode matching to the much
larger standard free-space and fiber optics. One solution is to integrate the cavity with an on-chip
photonic crystal waveguide (PCWG), and then use various end-fire-based approaches to couple into
and out of the PCWG. Despite significant improvement in techniques for such end-fire coupling,
losses of > 1 dB per coupling junction can still be expected in such systems [134].

To minimize the amount of 'bad’ loss when coupling to the cavities while still taking advan-
tage of the desirable properties of fiber tapers, my colleague Paul Barclay developed a technique
that makes use of an intermediate photonic crystal waveguide (PCWG) [57]. In this approach (fig.
4.12(a)), light is first efficiently (> 95%) transferred to the PC chip by phase matched evanescent
coupling between an optical fiber taper and a PCWG [39]. This coupling is so efficient because
the PCWG has been designed to phase match to the mode of the optical fiber taper (not the casein
direct coupling between the fiber and cavity), and has a significant enough spatial overlap with it
for near-complete power transfer over tens of microns. The PCWG is terminated by the PC cavity;
the two devices have been designed to be mode matched so that coupling between them isaso very
efficient. Thus, light propagates through the PCWG, and when it reaches the PC cavity termination,
some amount of the light that is resonant with the cavity mode tunnels into it (the amount of tun-

neling can be adjusted by tailoring the PCWG-PC cavity junction). Thislight can then interact with
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material in the cavity (an atom or quantum dot, for example), and then tunnel back into the PCWG,
where it will be transferred back into the reflected signal of the optical fiber for measurement.
Experimental measurements of fabricated Si devices have yielded an unoptimized fiber-to-cavity
coupling efficiency of 44% for acavity with aloaded (unloaded) Q of 38,000 (47,000). Importantly,
the limitations on the demonstrated coupling efficiency were not fundamental, but due to techni-
cal reasons, such as non-ideal taper-PCWG coupling and an imperfectly tailored PCWG-PC cavity

transition region.

4.8.2 Microdisk cavities

Complementing the work described in the previous sections of this chapter, my colleague Matt
Borsdlli has investigated silicon microdisk cavities, of the geometry shown in fig. 4.13. Microdisk
cavities support whispering gallery modes (WGMs) in which light circulates around the periphery
of the structure and is confined by total internal reflection at both the curved interface and the top and
bottom surfaces. In comparison to microsphere cavities [19, 20, 135], microdisks are an optically
thin dielectric slab in one dimension, which serves the dua purpose of dramatically reducing the
number of modes within the structure, as well as the volume of those modes.

These microdisk cavitieswere of particular interest because they could support modes with very
high radiation-limited quality factors (Qrag ~ 10%) for al but the smallest diameter structures (this
was verified by finite-element-method simulations [136, 128, 137]). Thisis aresult of the large
refractive index contrast between the S (n ~3.4) layer and the surrounding air (n=1). This large
index contrast also suggests that modes with a much tighter spatia confinement (i.e., a smaller
Veif) than what is available in glass microcavities [19, 20, 56] can be supported. In addition to
their potential Q and Vgt values, these cavities can be fabricated using the exact same fabrication
processes devel oped above (section 4.2), and can be probed using optical fiber tapers.

Reference [64] describes the first set of results obtained from these devices. Cold-cavity Qs
as high as ~ 5x10° for Ve ~ 6(A/n)3 were demonstrated, as were loaded Qs of ~ 1.5x10° for
a taper-cavity coupling depth of ~ 50%. Since these initia results, Matt and another colleague,
Tom Johnson, have gone on to show that they could reach Qs as high as 5.0x10°, albeit in larger
volume devices [65], and have achieved critical coupling and overcoupling to these devices [128].
These high Qs have been achieved through additional improvements to the fabrication procedure
described earlier, including the use of aresist reflow processto ensure very circular disk geometries

[65], and a sequence of cleaning steps at the end of the disk fabrication aimed at the removal of
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Figure 4.13: Scanning electron micro-
scope image of asilicon microdisk cav-
ity. Refer to the paper of Borselli et al.,
for further details [64].

highly absorbing surface layers from the devices[128].

From the perspective of the cavity QED experiments that have been a focus of this thesis,
these S microdisk cavities are extremely appealing, particularly in conjunction with integrated self-
assembled quantum dots (QDs), where the field of the microdisk can optimally spatialy overlap
with the QD. Although PC cavities can ultimately result in similar or even better performance in
terms of metrics such as Q/Vet [52, 51, 28, 30], and can be effectively coupled to through the use
of photonic crystal waveguides integrated with optical fiber tapers[57], these microdisk cavities are
quite competitive on both the Q/Ves and coupling fronts. More importantly, the simplicity of direct
fiber coupling (rather than use of an intermediate element asis necessary for the PC cavities) and the
relative ease of fabrication of these devices make them promising candidates for initial experiments.

Thisisdescribed in further detail in the upcoming chapters.
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Part ||

Fiber-Coupled Microdisk Cavitieswith
Embedded Quantum Dots
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The second part of this thesis studies the properties of AlGaAs microdisk cavities containing an
integral layer of self-assembled InAs quantum dots. Chapter 5 presents initial measurements of
high quality factors within 4.5 um diameter disks, as well as photoluminescence measurements of
the devices. Chapter 6 examines the use of the fiber taper within photoluminescence measurements
of the cavities, to create fiber-coupled microdisk lasers with high differentia efficiencies. Chapter
7 extends the work of the previous chapters to consider small diameter (D ~ 2 pm) disks with high
quality factors, small mode volumes, and very low threshold powers. For cavity QED experiments,
the most important results from these chapters are that the demonstrated microdisk cavities have
the requisite combination of Q and Vg for strong coupling to a single QD, and the fiber coupling
technigue provides an important tool that can enable future generations of experiments. Chapter
8 considers a first set of such experiments in detail, and in particular, presents quantum master

equation simulations of the expected behavior of these devices.
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Chapter 5

Optical Lossand Lasing Char acteristics
of AlGaAsMicrodisk Cavitieswith
Embedded Quantum Dots

5.1 Introduction

For future experimentsin cavity QED with self-assembled quantum dots, the GaAs/AlGaAs system
isthe most appropriate choice of material, due to the relative maturity of the growth of INAs/InGaAs
guantum dots [138, 139, 140] within this system. As the refractive index of GaAs and its aloysis
relatively close to that of Si (Ngaas ~ 3.5 and Najas ~ 2.9 at A ~ 1.25 um), the PC cavity design of
chapter 2 remains applicable. Similarly, the high refractive index difference between GaAgAlGaAs
and air suggests that the radiation-limited Qs for microdisk cavities would be quite high for all but
the smallest diameter disks. At the start of the work described in this chapter, what remained to
be seen was whether the fabrication processes and material losses within this new system would be
adequate to achieve a sufficiently high Q and small Vi for strong coupling experiments.

Recently, multiple research groups have demonstrated vacuum Rabi splitting in asemiconductor
system consisting of asingle quantum dot (QD) exciton embedded in an optical microcavity [70, 71,
72]. These experiments have in many ways confirmed the potential of semiconductor microcavities
for chip-based cavity quantum electrodynamics (cCQED) experiments. For future experiments, such
as those involving quantum state transfer in quantum networks [141], it will be important to further
improve upon the parameters of such QD-microcavity systems over what was demonstrated in the
above references. One clear improvement required is to move the system further within the regime
of strong coupling. In particular, the ratio of g (the QD-photon coupling rate) to the larger of k
(the cavity decay rate) and vy, (the QD decay rate) approximately represents the number of Rabi
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oscillations that can take place before the effects of dissipation destroy coherent energy exchange
[9]. In each of refs. [70, 71, 72], loss in the system was found to be dominated by the optical
cavity, with g < k. As the low-temperature homogeneous linewidth in self-assembled InAs QDs
istypically afew peV [142], corresponding to a QD dipole decay rate of v, /2r ~ 1 GHz, it will
be advantageous to develop cavities with quality factors such that x/2rn < 1 GHz, with further
improvementsin Q serving mainly to improve the optical collection efficiency of emitted light. For
the A ~ 0.9-1.2 um emission wavelength for INAs QDs[70, 71], this corresponds to an optical mode
quality factor of Q ~ 1x10° (x/2n = w/4nQ). Achieving such low loss cavitiesis also important in
light of the difficulty in fabricating a structure where the QD is optimally positioned for maximum
coupling to the cavity mode.

In this chapter, we review resultsfirst presented in ref. [69], which details the creation of D=4.5
um diameter AlGaAs microdisks that exhibit Q factors as high as 3.6x10° at A ~ 1.4 um, avalue
which, to our knowledge, exceeds the highest Q factors measured for AlGaAs microcavities to date
[13, 14, 70, 71]. These AlGaAs microdisks contain embedded quantum dots-in-a-well (DWELL)
[143, 144] that have a ground state emission at A ~ 1.2 um, so that passive, fiber-taper-based mea-
surements are performed at A ~ 1.4 pm, where the QDs are relatively non-absorbing. The charac-
teristics of these devices are aso investigated through photol uminescence measurements, and low

threshold, room temperature QD lasers are demonstrated.

5.2 Overview of microdisk cavity modes

521 Analytic approximation

In a perfectly circular microdisk structure, the cavity modes circulate around the periphery of the
device in traveling wave whispering gallery modes (WGMs). These WGMs are classified in terms
of their polarization (TE or TM), radial order (p), and azimuthal number (m).2 Unlike microspheres,
where the WGM s can be solved for analytically, microdisk modes do not have an analytic solution.
An approximate analytic solution can be easily found, however, and yields physical insight into the
properties of these modes. Such an approach has been considered by many authors; here, | follow
the derivation of Borselli et d., inref. [65].

We begin with Maxwell’s equations in a charge-free, current-free medium:

1As the microdisks studied here are optically thin, only the first order TE and TM modes are considered.
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V xE = —iowH,
V x H = +imnggE,
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where we have assumed that the fields oscillate in time as exp(iwt). For a piecewise homogeneous

medium, these equations can be used to derive the familiar wave equations:
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Astheform of equation (5.2) isthe samefor both E and H, from here on out we write everything
in terms of a single vector field F, which can stand for either of the two. In cylindrical coordinates

(p,0,2), we can re-write this as:
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We now invoke the major approximation used, which is to separate the modes into TE and TM
polarizations, which contain the field components {E,, Ey,H,} and {H,,H,, E;}, respectively. For
actual structures, this separation is only approximate (it truly only holds within the center of the
dab WG). It provides the significant simplification of making equation (5.3) a scalar wave equation
in F,, where F, is H; (E;) for TE (TM) modes. We then use separation of variables [145] with
F,=¥(p)Q(d)Z(2) to break up equation (5.3) into three equations, given as:

2%Q

Fra +mPQ =0
0?7  ? _
=+ ?(nz -n?)Z=0 (5.4)

ai{' 1 0¥ (erTZ_ﬁ

aw Tpap T )0



170

where n is the effective index. The first equation can immediately be solved, giving the azimuthal
dependence Q(¢) = exp(imo), where m is the azimuthal mode number (eigenvalue). The second
equation is nothing more than the standard equation for the mode of a slab waveguide, as discussed
in detail withinref. [126], for example. Thethird equationis used to solvefor the radial dependence
of the cavity mode. The solutionsto this equation are Bessel functionswithinthedisk (p < R, where
Risthedisk radius), and Hankel functionsoutside of it (p > R). Asdiscussed inref. [65], the Hankel
function solution can be approximated by a decaying exponential, so that the radial solution ¥(p)

has the form:

Jm(2np), p<R
wip)= ™) (55)

In(gNR)exp(—a(p —R)), p=R.

The decay constant o. is given as o = 2(n? — ng?)Y/2 (np=L1 for an air-clad disk). Finally, the
azimuthal mode number mis determined (for agiven frequency o, disk radius R, and effective index

n) by the boundary conditions on the fields at p = R. Thisyields the transcendental equation:

o_ O_ m ®_
wheren = n?/ng for a TE mode and | = 1 for aTM mode.
For very rough estimates, a back of the envelope calculation of m can be useful. One that

is typicaly used is to require that m wavelengths fit in the circumference of the disk. Written
explicitly, thisis stated as:

mh = 2nR (5.7)

Ng
where An, is the resonant wavelength of mode m, and ng is the group index of the waveguide mode,
which can be determined from the slope of the waveguide dispersion curve (through solving the
slab waveguide portion of equation (5.4) for ® as a function of B=nw/c). The free spectral range

(FSR), which gives the separation between adjacent modes, is then:
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c

AV=Vmed = Vm = 5 e
¢]

(5.8)

Thisis nothing more than the standard equation for the FSR of a Fabry-Perot cavity with the round-

trip length of the cavity equal to the circumference of the microdisk.

5.2.2 Finite-dlement method simulations

To quantitatively study the properties of the microdisk cavities, we use finite-element eigenfre-
guency simulations based on the Comsol FEMLAB commercial software. The specific implemen-
tation | have used is based on the work of Matt Borselli [128, 137], who in turn received assistance
from Sean Spillane [136]. By assuming azimuthal symmetry of the disk structures, only a two-
dimensional cross section of the disk is simulated, abeit using a full-vectorial model. That is,
the explicit azimuthal symmetry package offered within the software is not appropriate, because it
forces the calculated modes to be azimuthally symmetric (i.e., m=0). Instead, we essentially solve
the wave eguation (5.3) assuming an azimutha dependence of exp(imd). We seek solutions close to
some nominal wavelength Anom, and specify an mvalue as found by solution of the transcendental
equation (5.6). The FEMLAB solver then determines the precise frequency Ao a which the mode
of azimuthal number m occurs. It aso provides the spatial mode profile, which is used to calculate

the cavity mode effective volume according to the already-mentioned formula:

r)[E(r)|2d3r

' T &9
where (r) is the dielectric constant, |E(r)| is the electric field strength, and V is a quantization
volume encompassing the resonator and with a boundary in the radiation zone of the cavity mode
under study. The resonance wavelength Ay and radiation limited quality factor Qo are determined
from the complex eigenvalue (wavenumber) of the resonant cavity mode, k, obtained by the finite-
element solver, with Ao = 21t/Re(k) and Qrgg = Re(k) /(2Tm(K)). For the microdisks studied in this
chapter and in chapter 6, Qg is quite large (> 10*), and the finite element simulations are only
sparingly used. In chapter 7, however, we consider small enough diameter structures that Qrag iS @

significant contributor to the overall Q of the devices. We will therefore consider these simulations
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in greater detail within that chapter.

5.2.3 Standing wave whispering gallery modes

For the devices studied in thisthesis, the high-Q modes are not traveling waves but are instead stand-
ing waves. Thisis aresult of coherent coupling between the forwards and backwards propagating
disk modes (i.e., modes of azimuthal number +m) as aresult of surface roughness. The key behind
this coherent coupling is that the modal 1oss (due to factors such as absorption, scattering, radiation,
etc.) islow enough that the backscattering rate caused by the surface roughness is significant in
comparison toit.

This modal coupling has been observed experimentally and explained by many other authors,
including those of refs. [146, 147, 148, 135, 64]. Here, we present asimple anaysis of thiscoupling.
This analysisis essentially an abridged version of that which appears in arecent paper by Borselli
et a. [65].

Maxwell’s wave equation for the electric field vector in the microdisk structureis

2
V2E — 1o (eo n &) %TE -0, (5.10)

where g is the permeability of free space, €° is the dielectric function for the ideal microdisk
and de is the dielectric perturbation that is the source of mode coupling between the cw and ccw
modes. Assuming a harmonic time dependence, the modes of the ideal structure are written as
E9(r,t) = E9(r)exp(iojt), and are solutions of equation 5.10 with e = 0. Solutions to equation

(5.10) with &e # 0 (i.e., modes of the perturbed structure) are assumed to be written as

E(r,t) = ey a(t)E(r). (5.11)
j

Plugging into equation (5.10), keeping only terms up to first order, and utilizing mode orthogonality,

we arrive at the coupled mode equations
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Reference [65] presents a functional form for B in situations involving a small amount of surface
roughness. We now explicitly assume that only two modes (the cw and ccw modes of a given
polarization (TE or TM), azimuthal mode number m, and radia mode number p) are involved,
and that the amplitude of the backscattering rates are equal, so that |Bew,cew| = |Beewew| = [B]- The
coupled mode equations then read as

dacw

ot —iAmagw(t) +i‘B’ei§aCCW<t) (5.14)
dzc—tcw = —iAwacow(t) +i[Ble”"“acw(t), (5.15)

where we have taken B = |B|€5. These equations represent the time evolution of the two mode
amplitudes (acw,accw) Of an isolated system, without loss or coupling to an external waveguide. The
inclusion of such terms will be considered later in thisthesis, in chapter 8.

These two coupled equations can be uncoupled by introducing the variables agy1 and agy2,

which represent the standing wave mode amplitudes:

g1 = %2 (acw + é’ﬁaccw) (5.16)
o2 = % (acw —~ é'@accw) . (5.17)

Aswe saw earlier within this chapter, for an ideal microdisk, aqy and ac have an azimuthal spatial
dependence of €™ (where mis the azimuthal mode number and is a nonzero integer), so that Asw 1
and agy2 Will have an azimuthal spatial dependence that will be a mixture of cos(md) and sin(mg),
with the precise dependence being a function of the phase £ of the backscattering parameter 3.
Rewriting the coupled mode equations in terms of the standing wave mode amplitudes, we arrive

at:
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From these equations, we see that the standing wave modes resonate at frequencies +|| detuned
from the original resonance frequency.

For cavity QED applications, one very important consequence of the distinction between trav-
eling wave and standing wave modes is in the effective volume of the mode V. Standing wave
WGMs have approximately half the volume of the traveling wave WGMss, so that the coupling rate
g between a single quantum dot and a single photon in a standing wave cavity mode is expected
to be /2 times that when the quantum dot is coupled to a traveling wave cavity mode. This of
course assumes the single QD is positioned at an antinode of the standing wave mode; alternately,
if it happens to be positioned at a node, the coupling rate g will be zero. Chapter 8 considers the
coupling of a QD to standing wave modes in a microdisk in much greater detail, invoking quantum

master equation simulations [149] to aid in the analysis.

5.3 Fabrication

The specific devices we consider are AlGaAs/GaAs microdisk cavities with embedded quantum
dots (QDs). The epitaxy used was grown by Professors Andreas Stintz and Sanjay Krishna at the
Center for High Technology Materials (CHTM) at the University of New Mexico, and is shown in
table 5.1. It consists of asingle layer of InAs quantum dots embedded in an InGaAs quantum well
[144], which isin turn sandwiched between layers of AlGaAs and GaAs to create a 255 nm thick
waveguide. This DWELL (short for dot-in-a-well) material has a room temperature ground state
emission peak at around 1190 nm (fig. 5.1(b)), and isgrown ontop of a 1.5 um Alg 70Gag 3pAs layer
that eventually serves as a support pedestal for the microdisk.

The cavities are created through: (i) deposition of a 200 nm SiNx mask layer, (ii) electron beam
lithography and subsequent reflow of the e-beam resist to produce smooth and circular patterns,
(iif) SFe/C4Fs inductively coupled plasma reactive ion etching (ICP-RIE) of the deposited SiNy
mask layer (fig. 5.2(a)), (iv) Ar-Cl, ICP-RIE etching of the Alg3Gag7As layer and removal of the
remaining SiNy layer, (v) photolithography and isolation of the microdisk onto a mesa stripe that
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Figure 5.1: (a) Schematic of the DWELL epitaxy from which microdisk cavities are formed. (b)
Photoluminescence from an unprocessed region of the IDWELL material.

Table 5.1: Epitaxy for 1-DWELL microcavity lasers.

Layer Materials Thickness

Surface cap layer GaAs 100 ,&
Top waveguide layer Alg 30Gag.70AS 400 ,&
Top waveguide layer GaAs 740 ,&
Quantum well layer Inog.15Gag.gsAS 60 ,&

Quantum dot layer InAs 2.4 monolayer
Barrier layer Ing 15Gag.gsAS 10 ,&
Bottom waveguide layer GaAs 740 ,&

Bottom waveguide layer Al 30Gag.70AS 500 ,&
Sacrificial buffer layer  Alg70Gaos0As 15000 A
Substrate GaAs N/A

is several microns above the rest of the chip (fig. 5.2(d)), and (vi) HF acid wet chemical etching
of the underlying Alg.7Gag 3As layer to form the supporting pedestal (fig. 5.2(b)-(c)). The e-beam
lithography and SiNy etch steps are particularly important, as any roughness in the mask layer is
transferred into the AlGaAs region. A resist reflow process originally developed for use with Si
microdisks [65] is employed to create an initial mask pattern that is as circular as possible, and
the subsequent SiNy etch has been calibrated to produce as smooth a sidewall surface as possible
(fig. 5.2(a)), without particular concern for its verticality. The subsequent Ar-Cl, etch is highly
selective so that the angled mask does not result in erosion of the AlGaAs sidewalls. The fabricated
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Figure 5.2: Scanning electron microscope (SEM) images of DWEL L-containing microdisk cavities
after the (a) SiNy etch, and (b)-(c) AlGaAs etch and undercut. (d) Fully processed device, showing
the isolation mesa that is incorporated in order to aid in the taper testing. An optical fiber taper
aligned to the side of amicrodisk isalso visible in thisimage.

microdisks studied in this chapter are D ~4.5 pm in diameter.? Additional fabrication details are
given in appendix C.

54 Cavity Q measurementsin the 1400 nm band

Initial passive measurements to measure the cold-cavity Q factor of the microdisk resonant modes
were performed using the optical-fiber-based evanescent coupling technique. As was the case for
measurements of the PC cavities in chapter 4, the optical fiber taper is formed by heating and
adiabatically stretching a standard single mode fiber until it reaches a minimum diameter of ~ 1
pm. A fiber-coupled scanning tunable laser (< 5 MHz linewidth) operating in the 1400 nm band is
spliced to the taper’s input, and when the taper is brought within a few hundred nanometer (nm) of
the cavity, their evanescent fields interact, and power transfer can result. A schematic illustrating
the coupling geometry for this system isshown in fig. 5.3(a). The devices are tested in the 1400 nm
band because it is significantly red detuned from the QD spectrum (fig. 5.1), so that absorption due
to the DWELL layer will be negligible at these wavelengths.

The Q of a cavity mode is determined by examining the linewidth of the resulting resonance
in the taper's wavelength dependent transmission spectrum. In fig. 5.3(b), we show a doublet
resonance of amicrodisk (D=4.5 ym, 1-DWELL structure) in the 1400 nm wavelength band when

2The AlGaAs sidewalls do show a pronounced angle; this angle does reduce the maximum achievable (radiation-
limited) Q of the cavity modes, but for TE-like modes, this reduction does not prevent the devices from exhibiting
radiation-limited Qs in excess of 108 (for D ~ 4.5 um), even in the presence of the slant. As surface roughness is
expected to be a more serious source of |oss, the tradeoff between smoothness and verticality is acceptable.
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Figure 5.3: (a) Schematic geometry for probing the microdisk cavities through side-coupling viaan
optical fiber taper. (b) Normalized taper transmission (T = Py /Pp) of a4.5 um diameter microdisk
for ataper-disk lateral separation (Ax) of ~ 800 nm. (¢) Normalized taper transmission for the same
device with Ax ~ 200 nm. The overlying solid green curves are Lorentzian fits to the data.

the taper is ~ 1 um to the side of the disk; the separation is kept large in order to reduce taper
loading effects [52, 64]. The double resonance peaks correspond to standing wave modes formed
from mixtures of the degenerate clockwise and counterclockwise whispering gallery modes that
couple and split due to the disk-edge surface roughness [64, 148, 146], as discussed earlier within
the chapter. The linewidth (AL) of the shorter wavelength resonance corresponds to Q ~ 3.6x 10°.
Similarly, in fig. 5.3(c), we show the spectral response of the doublet when the taper is positioned
much closer (~ 200 nm) to the edge of the disk, so that the amount of coupling has increased. The
combination of increased coupling as well as parasitic |oading due to the presence of the taper has
increased the total loss rate of the resonant mode, yielding a loaded Q ~ 1.0x10°. The depth of
coupling, however, has also considerably increased from 10% to 60%, corresponding to a photon
collection efficiency ng (the ratio of “good” coupling to all other cavity losses including parasitic
and intrinsic modal 1oss) of approximately 20% (see appendix E for the exact definition of ng). It
is believed that the high Q values achieved in these measurements are due to a combination of the
resist reflow process that reduces radial variations and subsequent Rayleigh scattering in the disk,
and the optimized dry etching processes that create very smooth disk-edge sidewalls.

The demonstrated Q is high enough that, if used in cQED, the cavity will have a decay rate
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x/2n ~ 0.35 GHz (at A ~ 1.2 ym), lower than the aforementioned typical low temperature QD
dipole decay rate of v, /2n ~ 1 GHz. After adjusting for the reduced wavelength of the QD reso-
nance, the current devices (D=4.5 um) have a Ve ~ 6()/n)3 for the standing wave resonant modes
studied here.3 For amaximally coupled InAs QD (spontaneous emission lifetimet ~ 1 ns, oscillator
strength f ~ 18 [110Q]), this mode volume corresponds to g/2n ~ 11 GHz (refer to Appendices D
and H for the formulas used to calculate k¥ and g). Thus, even for the disk sizes considered here,
an appropriately positioned QD would place the system deep within the strong coupling regime. Of
additional importanceisthe fiber-based coupling technique used here. This method allows for the Q
to be accurately determined in away that does not rely upon the (weak) background emission from
the QDs [70, 71, 72]; all that is required is a probe laser that can be dightly detuned from the QD
absorption lines. Furthermore, the taper also acts as a coupler that transfers light from an optical
fiber into the wavel ength-scale mode volume of the cavity, whereit can interact with the QDs, and as
a subsequent output coupler. Such integration could markedly improve the collection efficiency in
cavity QED experiments, particularly important for microdisk and photonic crystal cavities, which
typicaly do not have a radiation pattern that can be effectively collected by free-space optics or
a cleaved fiber [71]. Subsequent chapters further discuss the advantages of using the fiber taper

coupler in such experiments.

5.5 Initial measurements of lasing behavior

In addition to the fiber-based passive measurements of the microdisks at A ~ 1.4 um, we performed
some initial room temperature photoluminescence measurements to study the QD emission in the
1.2 um wavelength band. The cavities (D=5 pm in this case) were optically pumped at room tem-
perature using a pulsed 830 nm semiconductor laser, and the emitted laser light was collected by a
microscope objective and spectrally resolved in an optical spectrum analyzer (OSA). The setup that
was used was essentially identical to that used in chapter 3. Initial measurements were performed
on cavities containing 3 DWELLSs due to their higher modal gain, roughly three times that of a
single DWELL layer [144]. Emission is observed for a small number (~2-5) of modesin a given
microdisk (fig. 5.4(a)). Figure 5.4(b) shows atypical light-in-light-out (L-L) curve for a3-DWELL
device pumped with a 300 ns period and 10 ns pulse width; the device exhibits lasing action with

an estimated threshold value of ~22 pW.

30ur estimate of « assumes that Q ~ 3.6x 10° is achievable at A ~ 1200 nm. In chapter 6, we present measurements
that show that such Qs are indeed achievable at the shorter wavelengths.
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Figure 5.4: (a) Photoluminescence spectrum of a 3-DWELL microdisk device (OSA resolution
bandwidth (RBW)= 1 nm). (b)-(d) L-L curves for: (b) pulsed 3-DWELL microdisk laser (inset
shows the subthreshold spectrum of a cavity mode), (c) pulsed 1-DWELL microdisk laser (inset
showsL-L curve near threshold), and (d) 1-DWELL microdisk laser under CW pumping conditions.
The dashed lines are least-square linear fits to the above-threshold data.

The saturated ground state modal gain for single DWELL structures has been estimated to be
~ 3.6-5.4 cm~1 [144, 150]. Noting that modal gain approximately equals modal loss at threshold,
thisindicates that a minimum cavity Q ~ 3-5 x 10* isrequired for thissingle layer of QDsto provide
enough gain compensation to achieve lasing. The fiber-based linewidth measurements described
earlier indicate that such Q factors should be achievable, and indeed, lasing from the QD ground
states is observed in these single dot layer devices (fig. 5.4(c)). The laser threshold pump power
for the 1-DWELL devices was measured to be as small as 16.4 UW, significantly lower than the 750
MW threshold values recently reported for similarly sized microdisk QD lasers [151]. Furthermore,
as shown in fig. 5.4(d), continuous wave (CW), room temperature lasing was also obtained, abeit
with a somewhat higher laser threshold.

The laser threshold values we report here are the peak pump powers incident on the sample
surface; the absorbed power is estimated to be roughly 16% of this value, determined by calculating
the expected reflectivities at the disk interfaces and assuming an absorption coefficient of 10* cm~—1
in the GaAs and quantum well layers[152]. The threshold absorbed pump power for the 1-DWEL L
lasersisthus ~ 2.6 uW. From this, the equivalent threshold current density, useful for comparing the
performance of the microdisk lasersto previously demonstrated broad-area stripe lasers, can be esti-
mated. Given the pump spot size (~ 16 um?), and assuming an internal quantum efficiency ~ 1, we
arrive at an equivalent threshold current density of 11 A/cm? for the 1-DWELL devices. In compar-
ison, the estimated transparency current density in previous work on broad-area 1-DWELL lasers
was 10.1 A/cm? [144]. The proximity of the demonstrated laser threshold to this transparency value
indicates that non-intrinsic optical losses within the microdisk cavity have largely been eliminated.

In conclusion, AlGaAs microdisks as small as4.5 um in diameter and supporting standing wave
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resonant modes with Q factors as high as 3.6x10° in the 1400 nm wavelength band have been
demonstrated. These cavities contain integral INAs quantum dots, and initial room temperature
photoluminescence measurements have yielded laser threshold values as low as 16.4 pW, nearing
the transparency level of the material. In the following chapters, we will extend thiswork along two
primary fronts: (i) use of the fiber taper within the photoluminescence measurements as a means
to effectively collect (and source) light from the cavities, thereby creating fiber-coupled lasers, and
(i) consideration of smaller diameter disks, where the additiona size reduction is important from
the standpoint of increasing the peak electric field strength within the devices, to push cavity QED

experiments further within the regime of strong coupling.
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Chapter 6

Photoluminescence M easur ements of
Quantum-Dot-Containing Microdisks
Using Optical Fiber Tapers

The ability to efficiently couple light into and out of semiconductor microcavities is an impor-
tant aspect of many microphotonic technologies [153], and plays a vital role in chip-based im-
plementations of cavity quantum electrodynamics (CQED) for quantum networking and cryptogra-
phy [60, 9, 154]. While some geometries, such as micropillar cavities, exhibit highly directiona
emission that can be effectively collected [16, 109], coupling to wavelength-scale semiconductor
microcavities is in general non-trivial [120, 155, 156, 154], due to a number of factors. These
include the size disparity between the modes of the microcavity and those of standard free-space
and fiber optics, the refractive index difference between semiconductors and glass or air, and the
potentially complicated cavity mode profiles sustained by these devices. In thisthesis, we have pre-
sented evanescent coupling through optical fiber tapers as a way to couple efficiently to semicon-
ductor microcavities. Aswe have already discussed, such fiber tapers have been used as near-ideal
coupling channels for glass-to-glass coupling with silica-based microcavities such as microspheres
[32, 157, 20, 55] and microtoroids [56]. In addition, as described in chapters 4 and 5, our recent
experiments have indicated that they can also serve as efficient couplers to high-refractive index
semiconductor-based devices, such as photonic crystal waveguides [39], photonic crystal cavities
[52, 57] and microdisks [64, 69]. While the work described in the previous chapter primarily uti-
lized fiber tapers for passive measurements such as the characterization of cavity quality factors, in
this chapter, which is largely based on ref. [75], we focus on using the fiber taper as an efficient
coupler for injecting pump light into and extracting the light emitted by semiconductor quantum

dots into microdisk whispering gallery modes. The immediate device application that we study
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here is room-temperature, fiber-coupled microdisk-quantum-dot |asers, but the results described are
directly applicable to future studies of cavity QED phenomenain semiconductor-based systems.

In section 6.1, we qualitatively describe the issues addressed in this chapter, as well as the
experimental setup we use. In section 6.2, we briefly review passive measurements in the 1200
nm wavel ength band to determine the optical losses of the optical resonant cavities under study. In
section 6.3, we present experimental results demonstrating the improvements that result when free-
space collection is replaced by fiber-based collection in photoluminescence measurements, while
in section 6.4, we present initial results on microdisk lasers that employ both fiber pumping and
fiber collection. Finally, in section 6.5, we consider some of the applications of this work to future

experiments.

6.1 Preliminary discussion and experimental methods

The free-space collection from a whispering gallery mode (WGM) of a microdisk is a function of
anumber of factors, including the position and numerical aperture (NA) of the collection lens, and
the radiation pattern and quality factor (Q) of the resonant mode. Optical osses from the microdisk
include not only the (ideal) radiation dueto radia tunneling of light from the disk periphery, but also
scattering losses due to surface roughness imperfections at the disk edge and material absorption.
For high-refractive index (n ~ 3.5) 111-V semiconductor microdisks, surface roughness scattering
is typically the dominant form of radiation from the microcavity. The intrinsic radiation loss of
semiconductor microdisks is almost negligible in al cases, save the smallest of microdisks; the
radiation Q of the lowest radial order WGM of the D ~ 4.5 ym microdisks studied here is greater
than 10'* at the QD emission wavelength of 1200 nm, and is greater than 10° for D ~ 2.0 pm
(FEMLAB calculations are shown in chapter 7). As such, any light that is collected through free-
space methods is the result of scattering of the WGM off imperfections in the microdisk [155],
a relatively inefficient and non-directional process. Bulk material absorption and absorption due
to surface states may also play a role, particularly when considering devices in which the Q due
to surface scattering can be in excess of 10°. This results in a situation where the more perfect
the microdisk is made (through reduction in surface roughness), and the further the Q factor is
improved, the more difficult it becomes to collect light from the resonant modes. Although there
may be some potential in modifying the disk geometry [155, 154] to improve this situation (for
example, by etching a shallow second-order grating in the microdisk surface), the ability to do this
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while maintaining high Q factors could be of potential difficulty. The most successful method to date
for increasing collection efficiency from semiconductor microdisk resonators seemsto be placement
of the collection optics in the plane of the disk [13, 14], resulting in more effective capture of the
predominantly low-angle scattered light.

The fiber taper offers an attractive alternative because it provides a means to directly couple
light out of the WGMs, without relying upon the wesk intrinsic radiation of the microdisk or the
non-directionality of surface roughness scattering. This evanescent near field coupling, which is
a function of the integrated modal overlap of the microdisk and taper modes over the interaction
region [50, 137], has been demonstrated to be appreciable in previous works with small diameter
semiconductor microdisks [64, 69] where phase matching between the glass fiber taper waveguide
and the semiconductor microdisk isnot aslimiting. While the fiber taper does load the cavity mode,
and thus degrade its Q, the key point isthat the added lossis primarily good lossin the sense that it
can be efficiently collected into the taper mode of interest [55, 57]. Thisallowsfor theloaded Q to be
maintained at a high value while simultaneously obtaining high collection efficiency [64, 69]. The
situation is analogous to the case of a Fabry-Perot cavity where one mirror is intentionally made
to have a dightly lower reflectivity for output coupling, which limits the Q of the cavity, but not
beyond some acceptable level. While in that case, the cavity Q isfixed by the mirror reflectivities,
here we have some flexibility over the Q and the amount of loading by adjusting the cavity-taper
separation.

To compare free-space and fiber-taper-based collection, we use the experimental setup depicted
infig. 6.1, which consists of afiber taper probing station that has been incorporated into a standard
photoluminescence (PL) measurement setup. Passive measurements of the resonator modes are
performed by connecting the input of the fiber taper to a 1200 nm band scanning tunable laser,
with the polarization of the laser output at the taper-microdisk interaction region controlled using a
paddle wheel polarization controller. The entire taper probing setup (motorized stages, microcavity
chip, and fiber taper waveguide) is mounted onto a larger manually actuated X-Y-Z stage that is
positioned underneath an ultra-long working distance objective lens (NA = 0.4). This microscope
objective is part of a PL setup that provides normal incidence pumping and free-space collection
from the samples. The pump laser in the majority of the measurementsisa830 nm laser diodethat is
operated in quasi-continuous-wave operation (280 ns pulse width, 300 ns period). The pump beam
is shaped into a Gaussian-like profile by sending the laser beam through a section of single mode

optical fiber, and isthen focused onto the sample with a spot size that is dightly larger than the size
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Figure 6.1: (a) Experimental setup for studying the QD-microdisk devices, where the pump laser
and photoluminescence beams are shown as light gray and black arrows, respectively. The inset
shows afiber taper aligned to a microdisk that is being optically pumped from the top. Acronyms
used in the diagram: polarization controller (PC), numerical aperture (NA), non-polarizing beam-
splitter (NPBS), photodetector (PD), long-pass pump rejection filter (LPF), single mode fiber
(SMF), multi-mode fiber (MMF), optical spectrum analyzer (OSA). (b) Schematic of the fiber taper
probing geometry. (c) Schematic of the taper-to-microdisk interaction region, showing the resonant
fiber taper coupling to WGMs of the microdisk.

of the microdisk (area ~ 18 um?). The free-space pump laser power is monitored by using a 830
nm wavelength 50/50 non-polarizing beamsplitter (NPBS) with a calibrated photodetector (PD) on
one of the ports. The QD free-space photol uminescence in the 1200 nm band is collected at normal
incidence from the sample surface using the same objective lens for pump focusing, is transmitted
through the 830 nm NPBS and a long-pass pump rejection filter (LPF), and isfinally collected into
amulti-mode fiber (MMF) using an objective lens with NA = 0.14. The luminescence collected by
thisMMF iswavelength resolved by a Hewlett Packard 70452B optical spectrum analyzer. For fiber
taper measurements, the fiber taper is strung across the sample and positioned in the near field of the
microdisk from above, alowing simultaneous (normal incidence) free-space and fiber taper optical

pumping and photoluminescence collection. The output of the fiber taper can either be connected to
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an InGaAs photodetector (PD) for wavelength scans using the tunable laser source, or to the OSA
for analysis of the photoluminescence from the microdisk. Alignment of the pump beam and the
fiber taper to the microdisk is performed by imaging through the pump and collection objective lens,
as shown in the inset (a mirror flips in-and-out of the free-space photoluminescence beam path to
direct the image to a 12X zoom imaging system). All of the measurements presented here were
performed with the sample maintained in a room temperature environment, with no active cooling
or temperature control.

Thisintegrated setup allows for a number of different measurements to be made. Passive mea-
surements of the microdisk resonant modes are performed by sending atunable laser into the taper’s
input and monitoring the wavel ength-dependent transmission at the taper’s output. Photolumines-
cence measurements can be done in any of four potential configurations (i) free space pumping, free
space collection: here, the fiber taper plays no role, and the vertically emitted power from the disks
is collected into amultimode optical fiber that isthen fed into the optical spectrum analyzer (OSA);
(ii) free space pumping, fiber taper collection: here, the output of the fiber taper is connected to the
OSA; (iii) fiber taper pumping, free space collection: here, the input of the fiber taper is connected
to a fiber-coupled pump laser; (iv) fiber taper pumping, fiber taper collection: here, the free-space

optics used in the standard PL measurements play no role.

6.2 Measurement of cavity Q in the 1200 nm wavelength band

The devices studied in thiswork have been previously characterized in the 1400 nm band, and Qs as
high as 3.6x10° have been measured (chapter 5). Those measurements were done at wavelengths
significantly red detuned from the QD emission band, where QD absorption and material absorption
in the GaAg/AlGaAs waveguide layers are expected to be quite small. To confirm that the cavity
Qs are till high near the ground state QD emission wavelength (peaked near 1190 nm as shown in
fig. 6.2(a)), we perform passive fiber-taper-based measurements [52, 64, 69] in the 1200 nm band.*
The high-Q resonances within the transmission spectrum (fig. 6.2(b)), under closer inspection, are
seen to be doublets (inset to fig. 6.2(b)), as was the case for the measurements in the 1400 nm band
shown in chapter 7.

FEMLAB solutions of the WGM resonances of the microdisks studied in this chapter show

1The WGMs in the 1400 nm wavelength band are expected to have very similar radiation and scattering losses as
those in the 1200 nm band for the microdisk geometries studied here. Differencesin Q at these two wavelengths are thus
expected to be indicative of wavelength-dependent material absorption losses.
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that the free spectral range (FSR) is ~ 40 nm for TE-polarized modes of low radial mode number
(q=1,2,3,4) in the 1200 nm wavelength band. Higher radial order WGMs (q > 5) are expected
to show up only very weakly in the fiber taper transmission owing to their relatively small radiation
limited Q factors (< 10%) and significantly larger overlap with the support pedestal. From the broad
spectral wavel ength scan shownin fig. 6.2(b), apair of deeply coupled resonant modes separated by
afull FSR are observed (A ~ 1222 and 1263 nm), as well as several other deeply coupled resonant
modes. Due to the extended nature of the higher order radial modes and their better phase matching
to alow-index glass waveguide such as the fiber taper, the coupling to the lowest order g = 1 WGM
istypically lower than that of the g = 2 mode for similar sized microdisks [137]. We believe that
these doublet modes at A ~ 1222 nm and A ~ 1263 nm are first order (q = 1) radia modes, while
the mode at A ~ 1242 nm is probably aq = 2 radial mode. The broader and more weakly coupled
intermediate modes are most likely higher order radial modes, q = 3,4 (higher order slab modes
in the vertical direction of microdisk are also a possibility, though less likely due to their reduced
radiation Q). Examining the linewidth of the doublet resonances when the taper is relatively far
away from the microdisk gives an estimate for the cold-cavity, unloaded Q of the modes. Qs ashigh
as 2.2x10° at ~1260 nm and as high as 1.9x10° at ~1220 nm are measured in these microdisks
(insetsof fig. 6.2(b)), thelatter of whichisonly 30 nm red detuned from the peak of the QD emission
spectrum (fig. 6.2(a)). These Q factors are quite high for a wavelength-scale AlGaAs microcavity
[13, 14, 71, 84, 158], and correspond to a cavity decay rate of x/2n ~ 0.6 GHz for resonant modes
with an effective mode volume of only Vigs ~ 7(A/n)3. Nevertheless, some degradation in the quality
factors from those previously measured in the 1400 nm band is observed. These are believed to be
at least in part due to absorption in the QD layers, as evidenced by the emission in the PL spectrum
at these wavelengths (fig. 6.2(a)).

Additional measurements in the 980 and 850 nm wavelength bands on similar microdisk res-
onators formed in AlGaAs (without a QD layer) haveindicated atrend of optical loss which signif-
icantly increases below a wavelength of 1 um. Thistrend in optical lossis similar to that reported
inref. [66], where material absorption that extended 350 meV within the bandgap was attributed to
incorporation of oxygen impuritiesinto the AlGaAs lattice. We are currently investigating this more
carefully, in aproject headed by Chris Michael in collaboration with the group of Evelyn Hu at UC
Santa Barbara. This wavel ength-dependent |oss was one of the main reasons we wanted to test the
devices in the 1200 nm band as well as the 1400 nm band; fortunately, as we have seen above, the

achievable Qs at 1200 nm are still quite high.
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6.3 Improved collection efficiency with fiber tapers

We now turn to the heart of the current work, which is a study of the gainsin efficiency that can be
achieved by using optical fiber tapers asa collection tool in PL measurements. Thisisinitially done
by comparing the amount of power obtained in free-space and fiber taper collection configurations,
while maintaining identical free-space pumping conditions (in terms of pump-beam intensity and
pump beam position). The free-space collection for a microdisk that has been pumped at normal
incidence with ~ 580 W/cm? at 830 nm is shown in fig. 6.3(a). This pump intensity is near the laser
threshold for this device (see below), and we see that the peak height at A ~ 1193.5 nmis ~ 30 pW.
For comparison to the fiber taper collection described below, an estimate of the optical lossesin the
free-space collection setup were made (after removal of the pump rejection filter). By measuring the
collected pump laser power reflected off of the mirror-quality surface of the AlGaAs epitaxy, and
assuming a 30% reflection coefficient from the AlGaAs surface, 43% of the reflected pump beam
was collected into the OSA. Additional limitations in the normal incidence free-space collection

stem from the finite numerical aperture of the collecting lens (NA=0.4) which covers only 4% of
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Next, we consider the use of the optical fiber taper as a collection optic in the PL measurements.
To obtain an estimate of the amount of coupling between the taper and the microdisk, the free-space
pump beam is blocked, and passive measurements at wavelengths that are slightly red detuned from
the QD emission are performed as described above in section 6.2. Since the FSR for the low radial
number WGMs of the microdisks studied here is ~ 41 nm in the 1200 nm wavelength band, the
modes coupled to and studied passively are typically a single FSR red detuned from the lasing
mode. For most experiments, the taper is placed in direct contact with the top edge or side of the
microdisk, which increases the amount of coupling from that shown in fig. 6.2(b) to transmission
depths between 30% and 60%. For thisinitial measurement, aresonance depth of ~38% is obtained
for a cavity mode at A ~ 1238.1nm, which gives us a qualitative estimate for the coupling to WGMs
overlapping the peak of the gain spectrum.? This coupling depth corresponds to a taper collection
efficiency ng ~ 11%, where 1ng is defined (ref. [57] and appendix E) as the fraction of the optical
power from the cavity resonant mode that is coupled into the fundamental fiber taper mode in
the forward propagating transmission direction. Other loss channels from the microdisk include
intrinsic loss of the cavity in absence of the taper, parasitic coupling into higher-order, non-collected

modes of the fiber taper, and for the standing wave modes studied here, coupling into the backwards

2The coupling between the taper and microdisk can be different for different cavity modes, so this technique is used
primarily as a qualitative guide.
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propagating fundamental taper mode. For the moderate coupling depths measured here, the taper
coupling efficiency into the forward and backward propagation directions is approximately equal,
thus yielding an overall taper coupling efficiency of ng ~ 22% for this WGM.

Oncethislevel of coupling has been achieved, the tunable laser output is blocked, the free-space
pump beam is unblocked, and the output of the fiber taper is disconnected from the photodetector
and connected to the OSA to measure the emitted power from the microdisk. fig. 6.3(c) shows the
resulting spectrum collected by the fiber taper in the forward propagating transmission direction.
We see that at the wavelength A ~ 1193.5 nm, the peak height is ~ 725 pW, which is nearly afactor
of 25 times improvement over the peak height observed in normal incidence free-space collection.
In addition, a significant amount of power is present within modes that were not detectable in the
free-space case (the noise floor of the OSA was approximately 1 pW), due to the poor efficiency of
collection in this configuration.

This straightforward comparison of the collected powers for a single pump power is not neces-
sarily the most appropriate comparison, however. The reason for thisis that the fiber taper |oads the
cavity, thus decreasing the Q of the resonant modes and increasing the threshold pump power, so
that for a given pump power the laser is not equally above threshold in the two measurements. An-
other, more appropriate comparison is the differential collection efficiency above threshold, which
we label €. Thisis determined by measuring a light-in-light-out (L-L) curve for the microdisk and
taking the slope of this curve above threshold. In these curves, the light out is taken to be the total
power within the laser line, while the light in is taken to be the estimated absorbed pump power.
The absorbed pump power is determined by multiplying the pump beam intensity by the area of
the microdisk to get an incident pump power (the beam overlaps the entirety of the disk), and then
multiplying this value by the absorption of the microdisk at 830 nm. We estimate this absorption
to be ~ 10%, assuming an absorption coefficient of 10* cm~* in the GaAs, quantum well, and QD
layers [152], and areflection coefficient of 30% at the GaAs-air interfaces at the top and bottom of
the disk. The resulting L-L curves are shown in fig. 6.3(b),(d) for both free-space and fiber-taper
collection. We see that the threshold pump power has indeed increased in the case of fiber-taper
collection, but that the differential efficiency has also significantly improved and is more than 70
times that of the free-space value.

To study the tradeoffs between & and threshold more closely, in fig. 6.4(a) several L-L curves
are plotted, each for a different taper position with respect to the microdisk (note that the microdisk
studied here is not the same as the one studied above, but the qualitative behavior isidentical). The
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Figure 6.4: (a) L-L curves for free-space pumping and fiber taper collection at different taper posi-
tions. For each curve, we note the threshold pump power (Py,), the fiber taper collection efficiency
(o) for amode that is red detuned from the peak QD emission, and the above threshold differentia
efficiency (§). (b) Scatter plot of the differential efficiency for fiber taper (filled circles) and free-
space collection (open circles) for a number of different microdisk lasers. For these measurements
the fiber taper collected power included that from the forward propagating transmission channel
only.

different taper positions correspond to avarying level of coupling between the microdisk and taper,
which we again qualitatively estimate through measurements of the coupling to a microdisk WGM
that is red detuned from the QD emission in the 1200 nm band. From fig. 6.4(a), we see that in
general, both the threshold power and & increase with increasing no. As might be expected, in the
course of these measurements it was possible in some cases to load the microdisk strongly enough
to degrade the initial laser mode’s Q to the point that it no longer lases, and a different mode (with
ahigher loaded Q) beginsto lase.

A number of different microdisk devices have been studied, and the results described above are
fairly consistent from device to device, with & routinely 1-2 orders of magnitude larger when fiber
taper collectionisemployed. A scatter plot for some of thisdatais shownin fig. 6.4(b). Despite the
significant improvement obtained using the fiber taper, we see that the largest & measured isroughly
10 nW/uW, which means that only 1% of the pump photons are converted to a collected signal
photon, and we should thus consider why & is far below unity. We first note that when considering
collection into both directions of the fiber taper, & is actually 2% for the standing wave WGMs of
the microdisks studied here. A measure of the fiber taper collection efficiency of the microdisk
WGM laser light, ng, from the passive wavelength scans described above indicate that the external
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Figure 6.5: (@) L-L curves for non-lasing modes of the disk studied in fig. 6.3. (b) Total power
in the non-lasing modes (shown by open circles), showing saturation for pump values close to the
threshold value for the lasing mode (shown by asterisks). Note that the y-axis scale for the lasing
mode is 15 times larger than that for the non-lasing modes.

fiber taper collection efficiency should be as high as ~ 22% (corresponding to 11% for the forward
transmission direction only). The total loss through the fiber taper and all of the fusion-splices and
connections in the fiber path was measured to be ~ 1.6dB, so that, if symmetric loss in the taper
about the microdisk coupling region is assumed, ~ 17% of the WGM laser photons collected by the
taper are lost before they reach the OSA. Taken together, these two factors put an estimate of the
upper bound on the fiber-coupled external laser efficiency of 18% for collection into both directions
of the fiber.

The roughly order of magnitude difference between the measured (2%) and expected (18%)
differential laser efficiency may be aresult of several factorsinvolving the complex dynamicswithin
the DWELL active region. Previous measurements of DWELL injection lasers in stripe geometries
[144] indicate that the internal quantum efficiency of the quantum dots isniQD ~ 0.5 (thisisroughly
the percentage of carriers captured by the QDsin the DWELL structure that contribute to stimulated
emission above threshold). This factor can certainly change from growth to growth, and given that
the laser threshold values are roughly 2-2.5 times higher than that measured in previous work on
identically fabricated devices from a different wafer growth [69], we might qualitatively expect & to
be reduced by afactor of ~ 4—5 dueton2®.

Both the spectral and spatia distribution of carriers within the microdisk may also lead to reduc-
tions in the laser differential efficiency through incomplete clamping of the spontaneous emission

into the non-lasing modes of the microdisk above threshold. To examine such effects in our struc-
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tures, we measure L-L curves (fig. 6.5(a)) for a number of the most prominent non-lasing WGMs of
themicrodisk studied infig. 6.3. We seethat the emission into these modesislargely clamped above
the threshold for the lasing mode (estimated to be 10.7uW of absorbed pump power). The aggregate
effect is clearly seen in fig. 6.5(b), where the power into the non-lasing WGMs has been summed
and plotted along with the L-L curve for the lasing mode. Such clamping has been reported by other
authors for similarly sized microdisks [159], while smaller microcavity devices with alarger laser
mode spontaneous emission rate, have exhibited a gradual rollover and/or incomplete clamping of
spontaneous emission [120, 159, 160, 43]. Measurement of the background spontaneous emission
into non-WGM, radiation modes of the microdisk was performed using free-space collection (the
fiber taper is much more sensitive to WGM emission than to emission from the center of the mi-
crodisk into radiation modes), and did show incomplete clamping of the spontaneous emission.
This sort of spatial hole burning has been predicted in numerical modeling of microdisk cavities
[161]. If thisisthe case, the effective pump areais limited to a region about the WGM. Assuming
that the WGM radia width is approximately (A/nett), where ngs is the effective refractive index in
the plane of the microdisk,? this corresponds to a 7um? area in the devices under test here. Since
the total disk areais ~ 16um?, then only 7/16 of the pump photons would be effectively pumping
the WGM. Including this factor brings the expected value of & within the range of experimentally
measured values.

Aside from reducing taper loss (loss < 0.5dB can be easily achieved in our lab), ng isthe main
parameter that can be improved upon to increase &. This can be done by adjusting the geometry of
the disk (using thinner disks, for example) to bring the index of the WGMs of the semiconductor
microdisks closer to that of the silica fiber taper, so that more efficient coupling can be obtained.
A study of such modifications in Si microdisk structures has been undertaken, and the regimes of
critical coupling and overcoupling have been achieved [137]. In addition, if spatial hole burning is
significant, another factor that could potentially be improved is the method of pumping. In particu-
lar, the pumping beam could be shaped to preferentially pump the perimeter of the microdisk (i.e.,
an annular-shaped beam could be used). Alternately, as discussed below, afiber taper could be used
to pump the microdisk.

SFinite-element simulations have shown this to be an accurate estimate.
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6.4 Fiber-pumped microdisk lasers

In addition to improving the collection efficiency, optical fiber tapers have the potential for improv-
ing the pump efficiency of these QD-containing microdisks; such an effect hasin fact been demon-
strated in previous work on doped glass microcavities[162, 73, 74]. In particular, if the pump laser
isresonant withaWGM of the microdisk, light can be absorbed with high efficiency, and in the case
of critical coupling, complete power transfer can be achieved. This should be contrasted with the
case of free-space pumping, where only a small percent (10% for the devices we have considered
here) of the incident pump light is absorbed by the device, and some of thisabsorptionisin aregion
(the center of the microdisk) that does not contribute to useful gain for the resonant WGMs [161].
For an initial demonstration, we use a tunable laser operating in the 980 nm band as a pump
source. The 830 nm pump laser is not used because the absorption within the microdisk at this
wavelength is too large to alow uniform pumping of the microdisk perimeter, as the pump light
is absorbed before a single round trip around the cavity can be made. At 980 nm, the material
absorption is still relatively high (the quantum well layer will be highly absorbing), so that the
Qoso of WGM modes near the pump wavelength are not expected to exceed a few hundred. The
pump laser is connected to the fiber taper input, and the fiber taper output is connected to the OSA.
The taper is contacted to the side of the microdisk, and the pump wavelength and polarization
are manually adjusted until the collected power in the OSA is maximized (this is necessary in
order to resonantly couple to a mode within the pump wavelength band). A typical L-L curve
and subthreshold spectrum are shown in fig. 6.6. We see that a significant amount of power is
collected into the fiber taper, and that in particular, the subthreshold spectrum shows a humber of
well-resolved modes with a good signal-to-noise ratio. The estimated absorbed pump power in the
microdisk displayed in fig. 6.6(a) corresponds to 66% of the input power in the fiber taper, and
is found by taking the difference in the 980 nm band taper transmission between when the taper
is displaced tens of microns above the microdisk (no coupling) and when it is in contact with the
microdisk (strongly coupled). We note that the pump threshold value in this pumping geometry is
only about afactor of two less than the incident pump power in the 830 nm free-space pumping, and
issignificantly larger than what might be expected (ideally, the pump power here should be less than
the absorbed pump power in the 830 nm pumping). Thisismost likely aresult of the relatively crude
method we have employed to estimate the power absorbed in the microdisk; a much more accurate

method for determining the coupled pump power uses the wavel ength-dependent transmission of the
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Figure 6.6: (a) L-L curvefor aQD-microdisk device where the fiber taper is used for both pumping
(at A = 967.6 nm) and collection. The absorbed power was estimated to be 66% of the input power
in the fiber taper. (b) Sub-threshold spectrum for this device taken at an estimated absorbed power
of 37 pW (highlighted point in (a)).

fiber taper to map out the resonance line due to the WGM at the pump wavelength. Here, the strong
absorption of the microdisk in the 980 nm band makes it difficult to separate resonantly coupled
power from scattering losses at the taper-microdisk junction. In order to more carefully study the
efficiency of this fiber-pumping and fiber-collecting configuration, experiments in which an excited

state of the quantum dots is resonantly pumped through the fiber taper are currently underway.

6.5 Discussion and future applications

As mentioned in the introduction, efficient optical access to wavelength-scale microcavities is of
great importance to quantum optics and information processing applications currently being inves-
tigated within cavity QED systems. In amost any application involving the coherent transfer or
manipulation of quantum information, lossis a significant detriment. As described in ref. [68], cur-
rent implementations of linear optics quantum computing require a near-unity collection efficiency
of emitted photons from a single photon source. The same is true for applications involving quan-
tum repeaters in a quantum network [141]. A solution that is often proposed is to embed the single
photon emitter within amicrocavity with a high spontaneous emission coupling factor 3, so that the
majority of emitted photons are coupled into the microcavity mode. However, it isimportant to note
that even for a B = 1 microcavity, it is still necessary to have a method to effectively collect al of

the photons that are radiated by that one cavity mode [163]. Also, from a very practical perspec-
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tive, efficient collection of emitted light from a microcavity is of premium importance for optical
telecommunication wavelengths > 1um, where the dark count rates from single photon counters are
often 2-3 orders of magnitude larger than the Si single photon counters used at shorter wavelengths
[164].

An efficient coupling channel can also enable a number of different types of experiments. Hav-
ing accessto this coupling channel makes the cavity transmission (and reflection) an experimentally
accessible parameter whose behavior can be monitored to detect signatures of specific types of sys-
tem behavior. In recent experimental measurements of coupling between a single quantum dot and
aresonant mode of a semiconductor microcavity [71, 158, 70, 16, 109], spontaneous emission from
the coupled system is the only parameter measured. Alternatively, using fiber tapers, vacuum Rabi
splitting can be detected by simply measuring the transmission through the cavity as a function of
the input wavelength to the cavity; such an experiment is directly analogous to the experiments
done with cooled alkali atoms coupled to a Fabry-Perot cavity [77, 78]. Non-linear effects, such as
optical bistability and photon blockade, and coherent control of the quantum system are also more
easily observed through the optical transmission or reflection channel of a microcavity. Perhaps
most importantly, by knowing the precise level of coupling between the fiber taper and the micro-
cavity, the number of photonsinjected into the cavity can be precisely calibrated. Thisis obviously
of paramount importance in experiments that involve few or single cavity photons. Finally, we note
that although many of the advantages we have described are also applicable to in-plane waveguides
that are microfabricated next to the cavities, the fiber taper provides a level of flexibility that, for

example, allows for rapid device characterization, as described in detail in ref. [54].
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Chapter 7

Cavity Q, Mode Volume, and Lasing
Threshold in Small Diameter Microdisks
with Embedded Quantum Dots

In this chapter, we continue our study of taper-coupled microdisk-QD structures by considering
device performance as the disks are scaled down in size. In section 7.1, we use finite element
simulations to examine the behavior of Q and Ve as a function of disk diameter. We relate these
parameters to those used in cQED, and from this, determine that disks of 1.5-2 um in diameter are
optimal for use in future experiments with InAs QDs. In sections 7.2 and 7.3, we present experi-
mental measurements of fabricated devices. Through passive characterization (section 7.2), cavity
Qs ashigh as 1.2x 10° are demonstrated for devices with a predicted Vigs ~ 2.2(A/n)3. In addition,
photol uminescence measurements (section 7.3) show that the devices operate as lasers with room
temperature (RT), continuous-wave thresholds of ~1 uW of absorbed pump power. Finally, the op-
tical fiber taper is used to increase the efficiency of out-coupling by nearly two orders of magnitude,
so that an overall fiber-coupled laser differential efficiency of & ~ 16% is achieved. We conclude
by presenting some estimates of the number of QDs contributing to lasing and the spontaneous

emission coupling factor () of the devices. The majority of this chapter is based on ref. [76].

7.1 Simulations

As described in chapter 5, finite-element eigenfrequency simulations [136, 128] using the Comsol
FEMLAB software are used to study the radiation-limited quality factor (Q;aq) and mode volume
(Vesr) of the microdisk cavities. Here, we consider how these parameters scale as a function of the
disk size.
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Figure 7.1: (a) Scanning electron microscope (SEM) image of a fabricated microdisk device. The
disk thickness t=255 nm and sidewall angle 6 = 26° from vertical are taken as fixed in the finite-
element simulations presented in the work. The measured average diameter for this device (i.e., the
diameter at the center of the dab) is ~ 2.12 um. (b) Finite-element-calculated |E|? distribution for
the TEp—1m-11 WGM of amicrodisk with a diameter of ~ 2.12 um at the center of the slab. For
thismode, A ~ 1265.41 nm, Qg ~ 107, and Vgt ~ 2.8(A/n)3.

Figure 7.1(a) shows a scanning electron microscope (SEM) image of a fabricated microdisk.
The devices are formed using the same fabrication techniques discussed in chapter 5, where the em-
phasis of sidewall smoothness over verticality during fabrication leads to an etched sidewall angle
that is approximately 26° from vertical. These parameters are included in the simulations as shown
fig. 7.1(b). Here, we will focus on resonant modes in the 1200 nm wavelength band, correspond-
ing to the low temperature (T=4 K) ground state exciton transition of the QDs, relevant for future
cavity QED experiments. We confine our attention to the more localized transverse electric (TE)
polarized modes of the microdisk, and only consider the first order radial modes. In what follows
we use the notation TEp , to label whispering gallery modes (WGMs) with electric field polariza-
tion dominantly in the plane of the microdisk, radial order p, and azimuthal mode number m. The
refractive index of the microdisk waveguide is taken as n = 3.36 in the simulations, corresponding
to the average of the refractive indices of the GaAsand AlGaAs layersat A = 1200 nm. In addition,
the modes that we study are standing wave modes that are superpositions of the standard clockwise
(CW) and counterclockwise (CCW) traveling wave modes typically studied in microdisks. As pre-
viously mentioned, the effective mode volume for a standing wave mode, as defined in Equation
5.9, isroughly half that of atraveling wave mode.

Figures 7.1(b) and 7.2 show the results of the finite element smulations. We see that Vg for

these standing wave modes can be as small as 2(A/n)3 while maintaining Qo > 10°. Indeed, for
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Figure 7.2: Finite-element method simulation results. (a) Modal volume Ve (left) and radiation-
limited cavity quality factor Qo (right) as afunction of microdisk diameter (taken at the center of
the slab), calculated for standing wave modes of disks of the shape shown in fig. 7.1. The modes
studied are TEp—1 m WGMs with resonance wavelength within the 1200 nm band. (b) Coherent

coupling rate g/2n (left) and cavity decay rate x/2n (right) as afunction of microdisk diameter. A
QD spontaneous emission lifetime ts, = 1 nsis assumed in the calculation of g.

microdisk average diameters D > 2 pum,? radiation losses are not expected to be the dominant loss
mechanism as Q4 quickly exceeds 107, and other sources of field decay such as material absorption
or surface scattering are likely to dominate. To translate these results into the standard parameters
studied in cavity QED, we calcul ate the cavity decay rate k/2n = w/(4nQ) (assuming Q = Q) and
the coherent coupling rate g between the cavity mode and a single QD exciton. In this calculation,
a spontaneous emission lifetime ts, = 1 nsis assumed for the QD exciton, and g =d-E/h isthe

vacuum coherent coupling rate (see appendix H) between cavity mode and QD exciton, given by
[9, 110]:

1The average diameter is taken at the center of the slab, or equivalently, isthe average of the top and bottom diameters.
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where c is the speed of light and n is the refractive index at the location of the QD. This formula
assumes that the QD is optimally positioned within the cavity field, so that the calculated g is the
maximum possible coupling rate. The resulting values for g and x are displayed in fig. 7.2(b),
and show that g/2r can exceed x/2r by over an order of magnitude for arange of disk diameters.
In addition, for all but the smallest-sized microdisks, k/2n < 1 GHz. A decay rate of 1 GHz is
chosen as a benchmark value as it corresponds to a linewidth of a few peV at these wavelengths,
on par with the narrowest self-assembled InAs QD exciton linewidths that have been measured at
cryogenic temperatures [142]. Indeed, because dissipation in a strongly coupled QD-photon system
can either be due to cavity decay or quantum dot dephasing, in fig. 7.3 we examine theratio of g to
the maximum decay rate in the system assuming a fixed QD dephasing rate y, /2n=1 GHz.2 This
ratio is roughly representative of the number of coherent exchanges of energy (Rabi oscillations)
that can take place between QD and photon. We see that it peaks at a value of about 18 for a disk
diameter D ~ 1.5 pm. For diameters smaller than this, loss is dominated by cavity decay due to
radiation (so that g/max(y. ,x) = g/x), whilefor larger diameters, the dominant loss mechanismis

due to dephasing of the QD (g/max(y.,x) = g/Y.).

2Note that v, isin general greater than half the total radiative decay rate ¢ /2 =1/21g) for QD excitons, due to
near-€lastic scattering or dephasing events with, for example, acoustic phonons of the lattice.
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Figure 7.4: Finite-element-calculated |E|2 distribution for the TEp—1 m—11 WGM in (&) microdisk
with a vertical sidewall and (b) microdisk with a slanted sidewall equivalent to what has been seen
in experimentally fabricated devices.

For other types of atomic-like media besides the self-assembled InAs QDs considered here one
need not assume a limit of v, /2 = 1 GHz, and we note that due to the exponential dependence
of Qrag and approximately linear dependence of Vs on microdisk diameter, Qaq/Vess rapidly rises
above 107 for microdisks of diameter D = 2.5 pm. These values of Qs and Vs are comparable
to those found in recent high-Q photonic crystal microcavity designs [21, 26, 28, 30, 27]. In fact a
similar scaling for high-Q planar photonic crystal microcavities, in which one may trade off alinear
increase in Vg for an exponential increase in Q, has recently been described by Englund et a., in
ref. [29]. For our purposes here, however, we take the ratio g/max(y, ,x) withy, /2n =1 GHz as
our metric, and as such focus on 1.5-2 um diameter microdisks.

Finally, we consider what effect the sidewall angle in our structures has on Q5. To do this,
we compare Qo for the slanted structure with that for a disk with avertical sidewall and diameter
equal to the average diameter of the slanted disk. Figure 7.4 compares the electric field intensity
for the TE; 11 modes in each of these structures. We find the following: for the TE; 11 modes, the
vertical disk has Ag ~ 1262 nm, Qrag ~ 1.4x 107, and Vs ~ 2.75(k/n)3, while the slanted disk has
Ao ~ 1265 nm, Qrag ~ 9.8x10°, and Vigr ~ 2.80(A/n)3. For the TE; ¢ modes, the vertical disk has
Ao ~ 1435 nm, Qrag ~ 4.8x10°, and Vet ~ 2.14(1/n)3, while the slanted disk has Ao ~ 1438 nm,
Qrad ~ 3.7x10°, and Vegr ~ 2.20(A/n)3. Although Qo is indeed smaller for the slanted disks, the
reduction is likely modest in comparison to the losses that would be suffered if a more vertical
dry etch was employed, due to the accompanying increase in surface roughness in such an etch

(appendix C).
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Table 7.1: Finite-element calculated TE,—1 m modes of aD = 2 um microdisk.

Mode label Ao Qrad Veft application
TE1o 1438nm  3.7x10° 2.2 (A/n)® passive RT testing
TE110  1346nm 1.9x10° 25 (A/n)

TE;;n  1265nm  9.8x10° 2.8(

8 RT lasers
A/n)3 low-T cQED

7.2 Passive measurement of cavity Q

Similar to the devices studied in previous chapters, the samples used here were grown (by our
collaborators at the University of New Mexico) through molecular beam epitaxy, and consist of a
single layer of InAs QDs embedded in an Ing 15Gag g5A S quantum well, which isin turn sandwiched
between layers of Alg30Gag70ASs and GaAsto form a 255 nm thick waveguide layer. This dot-in-a
well (DWELL) structure is grown on top of a 1.5 pm thick Alg70Gag.30ASs buffer layer that is later
undercut to form the disk pedestal. Growth parameters were adjusted [165] to put the material’s RT
ground state emission peak at A = 1317 nm (fig. 7.5(a)). The basic reason for choosing a material
with ared-shifted emission relative to what was used in previous investigations isto ensure that the
low temperature (~10 K) emission of the QDs lies within the scan range of our 1200 nm tunable
laser. Thisis essentia for future cavity QED experiments employing near-resonant pumping of the
QDs. Fabrication of the microdisk cavities follows the same process as was described in chapter 5.
We begin our measurements by using the fiber taper to passively probe the Q of the microdisks.
Based on the simulations presented in section 7.1, we have focused on 2 pm diameter microdisks.
Due to the small diameter of these microdisks, the finite-element-cal culated free-spectral range of
resonant modes is relatively large, with resonances occurring at 1265, 1346, and 1438 nm for the
TEp—1 WGMs with azimuthal mode numbers m = 11, 10, and 9, respectively. The simulations
presented in section 7.1 were all done for the TE; 11 mode in the A = 1200 nm band due to the ap-
plicability of that wavelength region for future low temperature cavity QED experiments. However,
for the current room-temperature measurements, the absorption due to the QD layer at those wave-
lengths is significant, so we probe the devices within the A = 1400 nm band (~100 nm red detuned
from the peak ground state manifold QD emission). At these longer wavelengths the radiation-
limited Qg foOr a given disk diameter will be smaller than its value in the shorter A = 1200 nm
band. Table 7.1 summarizes the properties of the TEp—; WGMs within the 1200-1400 wavelength
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band for aD = 2 pm microdisk with shape as shown in fig. 7.1.

Figure 7.5(b) shows awavelength scan of the transmitted signal when afiber taper is positioned
a few hundred nanometers away from the disk edge. The doublet resonance appearing at A ~
1440 nm in the spectrum is once again the signature of the standing wave modes described earlier.
The measured linewidths correspond to Q factors of 1.2x10°, and in general, Qs of 0.9-1.3x10°
have been measured for these 2 um diameter microdisks. The Qs of these modes are approaching
the radiation-limited value of 3.7x10°, and are some of the highest measured values for near-IR
wavelength-scale microcavities in AlGaAs [71, 13, 69, 84]. The corresponding cavity decay rates
are x/2m ~ 0.8 — 1.3 GHz, over an order of magnitude smaller than the predicted coupling rate g
for an optimally placed QD. In addition, these Qs, if replicated within the QD emission band at
A = 1300 nm are high enough to ensure that room-temperature lasing should be achievable from
the single layer of QDs in these devices [165]. From calculations of the intrinsic radiation loss,
the shorter 1300 nm wavelength modes should in fact have a significantly increased Qo of 2x 10°,
although surface scattering may also slightly increase due to its approximate cubic dependence on

wavelength [65].

7.3 Measurements of lasing behavior

The emission properties of the QD-containing microdisks aretested at room temperature by continuous-

wave optical pumping through ahigh-NA objective lensat normal incidence and, initially, collecting
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the normal incidence emitted light through the samelens. A light-in versuslight-out (L-L) curvefor
one of the D ~ 2 um microdisks with a resonant emission peak at A ~ 1345 nmisshowninfig. 7.6,
and displays alasing threshold kink at approximately 1.0 uW of absorbed pump power. The laser
mode wavelength corresponds well with the TEp_1 m—10 mode from finite-element simulations (see
table 7.1). The absorbed pump power is estimated to be 11% of the incident pump power on the
microdisk, and was determined assuming an absorption coefficient of 10* cm~ for the GaAs layers
and quantum well layer. Thisthreshold level is approximately two orders of magnitude smaller than
those in recent demonstrations of RT, continuous-wave microdisk QD lasers [166, 167], athough
the active regions in those devices contain five stacked layers of QDs while the devices presented
here contain only asingle layer of QDs.

Thelow lasing threshold of the device presented infig. 7.6 was consistently measured for the set
of devices on this sample (approximately 20 devices). Infig. 7.7(a) we show another L-L curve, this
time for a device that has a TEp_1 m—10 WGM emission peak at A = 1330 nm and has a threshold
absorbed pump power of 1.1 pW. As described in the previous chapter and in ref. [75], the same
fiber taper used to measure the cavity Q can efficiently out-couple light from the lasing mode. We
do this by maintaining the free-space pumping used above while contacting a fiber taper to the side
of the microdisk as shown in theinset of fig. 7.7(b). From the corresponding L-L curve (fig. 7.7(b))
we see that the laser threshold under fiber taper loading has increased from 1.1 uW to 1.6 uW, but
in addition the differential laser efficiency & is now 4% compared to 0.1% when employing free-

space collection (fig. 7.7(a)-(b)). Furthermore, because the microdisk modes are standing waves
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Figure 7.7: (a) (left) L-L curve for another microdisk device operated with free-space collection,
with P ~ 1.1 pW and & ~ 0.1%. (right) Spectrum from the device near laser threshold, showing
emission at A ~ 1330 nm. (b) (left) L-L curve for the same device using an optical fiber taper to
collect the emission. Py, has increased to 1.6 pW while & increased to 4% for collection in the
forward fiber taper channel. (inset) Optical microscope image of the taper output coupler aligned to
the microdisk. (right) Spectrum of the fiber taper collected light below threshold.

they radiate into both the forwards and backwards channels of the fiber. With collection from both
the forward and backward channels the differential efficiency was measured to be twice that of
the single forward channel. Collecting from both channels and adjusting for al fiber losses in the
system (roughly 50% due to fiber splices and taper loss), the total differential laser efficiency with
fiber taper collection is 16%. Due to the difference in photon energy of the pump and microdisk
lasers, this laser differential efficiency corresponds to a conversion efficiency of 28% from pump
photons to fiber-collected microdisk laser photons. 28% is thus a lower bound on the fiber-taper
collection efficiency and/or quantum efficiency of the QD active region.

In addition to the improved laser differential efficiency of the TEp—1m—10 laser mode when
using the fiber taper to out-couple the laser light, we al so see in the below-threshol d spectrum of fig.
7.7(b) that two additional resonances appear at A = 1310 nm and A = 1306 nm. The long wavelength

mode isidentified as TM p—1 m—g and the short wavelength mode as TEp_» m—7 from finite-element
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Figure 7.8: L-L curve experimenta data (red circles) and rate-equation modél fit (blue line) to data
for the fiber taper coupled laser of fig. 7.7(b) : () log-log plot and (b) linear plot (inset shows deep
subthreshold data and fit). B’ ~ 3% is the spontaneous emission factor estimated directly from the
slope change in the data, and thusincludes alarge non-radiative component, while 3 ~ 15.5% isthe
value used in the rate-equation mode! fit.

simulations. These modes are not discernible in the free-space collected spectrum due to their low
radiation-limited Q factors (800 and 5000 for the TE, 7 and TM 1 g, respectively), but show up in the
taper coupled spectrum due to their alignment with the QD ground state exciton emission peak and
the heightened sensitivity of the taper coupling method. The single-mode |lasing and limited number
of WGM resonances (6 when including the degeneracy of the WGMS) in the emission spectrum in
these D = 2 um microdisks is a result of the large 80-100 nm free-spectral-range of modes in the
1300-1500 wavelength band. As aresult, one would expect the spontaneous emission factor () of
these microdisk lasers to be relatively high.

A log-log plot of the fiber taper coupled laser emission of fig. 7.7(b) is shown in fig. 7.8(a)
along with arate-equation model fit to the data. Of particular note is the well defined subthreshold
linear slope of the log-log plot. In this case the sensitivity of the fiber taper collection allows for the
subthreshold slope to be accurately estimated at m=1.67, corresponding to a near quadratic depen-
dence of spontaneous emission intensity on pump power (fig. 7.8(b), inset) and indicating that there
islikely significant non-radiative recombination. Assuming that radiative recombination occursasa
biparticle process, the larger than unity power law dependence of subthreshold emission on pump

power isindicative of single-particle non-radiative recombination processes such as surface recom-

3As has been discussed recently in ref. [168] this may not be an accurate model for QD state filling, but for our simple
analysis hereit will suffice.
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bination [121]. Given the close proximity of the WGM laser mode to the periphery of the microdisk
and the above-band pumping, the presence of significant surface recombination is not surprising.
Unfortunately, due to this large non-radiative component one can only provide a weak lower bound
B’ for the B-factor directly from the L-L curve. From fig. 7.8 we estimate B > B’ ~ 3%.

A rate-equation model (see appendix F) incorporating bi-particle spontaneous emission propor-
tional to N? and surface recombination with a N2? carrier dependence (the ratio of the power law
dependenceis set equal to the measured subthreshold slope of m=1.67) isfit to the data and shown
asasolid curvein fig. 7.8. In this model the measured fiber taper collection efficiency was used,
along with the previously measured and estimated QD density, maximum gain, and quantum effi-
ciency from stripe lasers [165]. An estimate for the actual radiative B-factor of 15.5% was used,
corresponding closely with the partitioning of spontaneous emission amongst the 6 localized and
high-Q WGM resonances within the QD ground state manifold emission band.*. The reference
spontaneous emission lifetime of the ground state QD exciton in bulk was taken astg, = 1 ns. The
data was fit by varying only the effective surface recombination velocity. As seenin fig. 7.8, the
fit is quite good over the entire subthreshold and threshold regions of the laser data. The inferred
surface recombination velocity from thefit isvg ~ 75 cm/s, extremely slow for the AlGaAs material
system [152] but perhaps indicative of the fast capture rate of carriers and subsequent localization
into QDs [170, 171]. Due to the large perimeter-to-area ratio in these small D = 2 pm microdisks,
even with this low velocity the model predicts that laser threshold pump power is dominated by
surface recombination with an effective lifetime ts ~ 300 ps. Such a surface recombination lifetime
has & so been estimated by Ide and Babaet al., in their recent work on QD-microdisk lasers [151].

The number of QDs contributing to lasing in these small microdisks can also be estimated. From
the finite-element simulations the area of the standing wave WGM lasing mode in the plane of the
QD layer is approximately 1 um?, and the predicted QD density for this sample is 300 um~2, so
that ~ 300 QDs are spatially aligned with the cavity mode. Assuming a RT homogeneous linewidth
on the order of afew meV [142], compared to a measured inhomogeneous Gaussian broadening of
35 meV, and considering the location of the lasing mode in the tail of the Gaussian distribution, we
estimate < 10% of these dots are spectrally aligned with the cavity mode. By this estimate, on the

order of 25 QDs contribute to lasing.

4This estimate was based upon considering Purcell enhancement at RT for QDs spatially and spectrally aligned with
the WGMs (Fp ~ 6), and suppression of spontaneous emission for QDs spatialy and spectrally misaligned from the
WGMs (Fp ~ 0.4) This estimate is consistent with FDTD calculations of similar sized microdisks [169].
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Chapter 8

Progspects for Strong Coupling Between
a Single Quantum Dot and Standing
Wave Whispering Gallery Modes of a
Semiconductor Microdisk Cavity

8.1 Introduction

In the previous three chapters, we have demonstrated AlGaAs microdisk cavities that, in principle,
can be used for strong coupling experiments with semiconductor quantum dots. By this, we mean
that the cavities have sufficiently high Q and small Vg values that the maximum coupling rate
between a single photon and a single QD in the cavity is larger than the decay rate of the cavity
mode and the QD exciton. Of course, in practice, experimentally accessing the strong coupling
regime will require addressing a number of technical issues, as will be reviewed in the subsequent
chapter (chapter 9). In this chapter, we will assume that these experimental challenges can be
overcome, and will focus on what we should expect to see when the experiments are conducted.
Recent demonstrations of vacuum Rabi splitting in systems consisting of a semiconductor mi-
crocavity and a single quantum dot (QD) [70, 71, 72] represent an important milestone in investi-
gations of cavity QED in solid-state materials. The experimental configuration utilized in these ex-
perimentsis schematically shown in fig. 8.1(a); the microcavity-QD system isincoherently pumped
with an excitation beam at an energy above the bandgap of both the QD and the surrounding cav-
ity material (usually GaAs or some form of its alloy AlGaAs). This pump light is absorbed and
generates carriers in the GaAs system that can eventually (through phonon relaxation) fill the QD;

under weak enough pumping conditions, asingle electron-hole pair can fill the QD, forming abound
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exciton state. The electron-hole pair eventually recombines, leading to spontaneous emission that
is modified by the presence of the microcavity. When the cavity is of small enough volume, the
coupling (g) between the QD exciton and the cavity can be large, and if the cavity decay rate k and
QD decay rate vy, are smaller than g, the system is said to be strongly coupled [9], in that the QD
exciton and cavity mode are no longer truly separate entities but are instead bound together. In the
experiments described in refs. [70, 71, 72], the evidence of this strong coupling has been presented
in the form of spontaneous emission measurements from the QD-microcavity system, which display
a double-peaked structure, rather than the single peak associated with either the cavity mode or QD
exciton alone. Thisvacuum Rabi splitting [172, 173] is one signature of the strong coupling regime
in cQED.

Applications of strongly coupled QD-microcavity systems to areas such as nonlinear optics
[174, 175, 176, 177, 178] will aso require an ability to effectively couple light into and out of the
microcavity-QD device. That is, rather than measuring the spontaneous emission of the system
aone, it is also important to have access to the cavity’s response (transmission or reflection). This
is true if, for example, one wants to examine the effect of a coupled QD-cavity system on the
propagation of a subsequent beam through the cavity [174, 79], or if one wants to use the phase
of the emerging transmitted signal within some type of logic gate [179]. Indeed, in ‘traditiona’
cavity QED experiments, it is the cavity’s transmitted or reflected signal that is typically observed
[77,17, 18, 78].

As we have described in previous chapters within this thesis, following demonstrations of cou-
pling to silica-based cavities such as microspheres [32, 20] and microtoroids [56], we have shown
that optical fiber tapers[122, 32] are an effective means to couple light into and out of wavelength-
scale, semiconductor microcavities such as photonic crystals and microdisks. In addition, the mi-
crodisk cavities we have demonstrated are very promising for semiconductor cQED experiments,
with cavity Qsin excess of 10° for devices with Vgt ~ 2-6(1/n)3. These Q values are significantly
larger than those utilized in refs. [70, 71, 72], and as a result, the devices that we consider are
poised to operate well within the strong coupling regime, where coherent interactions between the
QD and photon occur. It isenvisioned that initial experimentsin this fiber-coupled microcavity-QD
system (fig. 8.1(b)) will examine vacuum-Rabi splitting through measurements of the transmission
spectrum past the cavity; such measurements will be directly analogous to recent measurements of
vacuum Rabi splitting from one-and-the-same atom in a Fabry-Perot cavity [78].

Thegoal of thischapter isto provide atheoretical basis, accompanied by numerical simulations,
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Figure 8.1: Illustrations of the various experimental configurations utilized in studying coupling
between a semiconductor microcavity (microdisk in this case) and asingle QD. g=QD-microcavity
coupling rate, k=cavity decay rate, and y, =QD decay rate. (a) Incoherent pumping (Epump >Egs)
above the bandgap of the microcavity material. Here, strong coupling between a single QD and the
microcavity mode is observed through measurements of vacuum Rabi splitting in the spontaneous
emission from the QD. (b) Near-resonant driving (Epump ~ Egs) using a fiber taper to couple light
into and out of the microdisk. Evidence of coupling between the QD and microcavity will be
observed through measurements of the transmitted signal through the fiber taper as a function of
input wavelength. (c) Near-resonant driving of a realistic microdisk-QD system, including both
clockwise and counterclockwise propagating modes of the disk, and potential coupling, at arate 3,
between the two modes due to surface scattering.

for the experiments to be performed with single QDs in fiber-coupled microdisk cavities. Of partic-
ular concern isthe proper treatment of the whispering gallery modes (WGMSs) in the cavities. More
specifically, for agiven polarization (TE or TM), the WGMs have a degeneracy of 2, as modes with
azimuthal number +m have the same frequency, but circulate around the disk in opposite direc-
tions. The WGMs are typicaly excited through an external waveguide (such as a fiber taper), and
in aperfect WGM resonator, the forward propagating mode through the waveguide excites only the
clockwise propagating mode in the resonator (see fig. 8.1(b)). Aswe have described several times
within this thesis, imperfections in the resonator will change this, as they cause backscattering that
can couple the clockwise (cw) and counterclockwise (ccw) propagating modes (fig. 8.1(c)). If the
loss ratesin the system (due to material absorption, other scattering and radiation loss, etc.) arelow
enough, the backscattering can lead to coherent coupling of the cw and ccw modes, producing a pair
of standing wave modes. Our interest is to then study the interaction of a single quantum dot with

the microdisk WGMs in the presence of this backscattering (which has been present in al of our
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experiments to this point), and determine the spectral response of the system for varying degrees
of quantum-dot-cavity coupling (g), backscattering (), and modal loss (k). We examine how the
phase of the backscattering parameter affects the coupling between one or both cavity modes and
the QD, and how the QD itself servesto couple the cavity modes together.

The organi zation of this chapter isasfollows: in section 8.2, wereview the ssimple classical cou-
pled mode theory for modal coupling in microdisk cavities in absence of a QD. The starting point is
the analysisfrom section 5.2, where we have derived the coupled mode equations for backscattering-
induced coupling between the clockwise and counterclockwise propagating modes in a microdisk.
In section 8.2, we further develop this theory by including input-output coupling from a waveguide
(appendix E). Section 8.3 presents the quantum mechanical analysis of this system in the presence
of aQD. We review the quantum master equation for this system and look at semiclassical approxi-
mations for specific choices of the backscattering parameter. Aswe have previously noted, standing
wave WGMs have half the effective modal volume of traveling wave modes, and it is therefore
expected that the peak electric field strengths they sustain are /2 times larger; this is explicitly
confirmed in the derivation of the quantum master equation and associated Hei senberg equations of
motion. In section 8.4, we present the results of numerical solutions of the quantum master equation
for parameters that are accessible in current experiments. Finaly, in section 8.5, we consider low
power switching as one potential experiment beyond the observation of vacuum Rabi splitting in a

fiber-coupled microdisk-QD system.

8.2 Modal coupling of two whispering gallery modes due to surface

scattering

We start by reviewing the simple (classical) coupled mode theory for surface-roughness-induced
coupling of the cw and ccw whispering gallery modes in an empty microcavity [146, 135, 147, 148]
(without a guantum dot). Our analysis begins where we left off in section 5.2, with the coupled

mode equations:

dgj—“fN — —iAwa(t) +1[Ble5acu(t), (81)
9an _ _iAwag(t) +i[Ble Sacut). (82)

dt
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These equations represent the time evolution of the two mode amplitudes {acw,accw} of an isolated
system, without loss or coupling to an external waveguide. For the experiments considered in our
work, the waveguide coupler will be an optical fiber taper through which light is traveling in the
forward propagating mode. Light will then be coupled into the clockwise WGM of the microdisk
structure, and this can be included (appendix E) through the addition of the term ks to equation
(8.1), wherek is a coupling coefficient, and |s|? is the normalized input power (the mode amplitudes
acwcow @€ normalized to energy). Loss is introduced to the coupled mode equations by use of the
phenomenological field decay rate kr, taken to be the same for both the cw and ccw maodes (though
in general this does not have to be the case). Thistota field decay rateis broken into a contribution
from intrinsic microdisk absorption and scattering loss (;) and a contribution due to coupling back
into the waveguide (kg), SO that k1 = Kj + Ke. Assuming lossless coupling and time reciprocity, it

can be shown [125] that |k|? = 2ke. The coupled mode equations then read:

da—atm = (KT + iAw) aow(t) +i|Bl€%acon(t) +isy/2Ke (8.3)
OI?:lc—tcw T (KT + iA‘”) Bcon(t) + (Bl “acw(t), (8.4)

Here, the phase of the coupling coefficient was chosen to reflect the /2 phase shift that occurs when
light is coupled from the waveguide into the cavity. These two coupled equations can be rewritten
as uncoupled equations in terms of the variables agy 1 and agy,2, which represent the standing wave

mode amplitudes

_ 1 Jt
B 2 (out | ) (85)
Agw,2 = 72 (acw— e'éaccw)

For an ideal microdisk, agy and acqy have an azimuthal spatial dependence of €™ (where mis the
azimuthal mode number and is a nonzero integer), so that agy; and agy2 will have an azimuthal
spatial dependence that will be a mixture of cos(m¢) and sin(mg), with the precise dependence
being afunction of the phase & of the backscattering parameter .

The transmitted and reflected signals can be determined in either the basis of {acw,accw} or

{asw1,8sn2}; because our formulation of the problem has an external waveguide input s that is a
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Figure 8.2: Normalized transmitted (solid line) and reflected (dashed line) signal for standing wave
whispering gallery modes, determined through steady state solution of the coupled mode equations
given in equation (8.3). (a) B/xr =8, xr/xi =3 (b) B/xr =1, x7v/x; = 3, and (¢) B/xr =1,
KT/Ki = 20. Qi =3x10° in al cases.

source for aqy, it ismost natural to solve for these quantities in the traveling wave mode basis, and
they are given by |t|? = | — s—i/2Keaow|? and |r|? = |v/2Keacow|? (appendix E). Steady state solu-
tions for the normalized transmitted and reflected signals from the cavity for a number of different
parameters are shown in fig. 8.2. For B > x7 (fig. 8.2(a)), we see the formation of adistinct pair of
resonances, located at ® = wo + 3. These dips correspond to standing wave resonances that result
from a backscattering rate (3) that exceeds all other losses in the system («r), so that coherent cou-
pling between the cw and ccw modes can take place. Aswe seein fig. 8.2(b)-(c), for B ~ 7, the
resonances begin to overlap and are no longer distinguishable.

For cavity QED applications, one very important consequence of the distinction between travel-
ing wave and standing wave modesisin the effective volume of the mode (Vs), asthe peak electric
field strength (per photon) in the cavity scales as 1/1/Vg. In particular, we recall the definition of

Vett 8S:

JelE(N)
Veif = —————-. (8.6)
max(e|E(r)|?]
Standing wave WGMs have approximately half the volume of the traveling wave WGMSs, so that
the coupling rate g between a single quantum dot and a single photon in a standing wave cavity
mode is expected to be v/2 times that when the quantum dot is coupled to a traveling wave cavity
mode. This of course assumes the single QD is positioned at an antinode of the standing wave

mode; aternately, if it happens to be positioned at a node, the coupling rate g will be zero.
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These arguments again rely upon having a physical system in which the coupling between cw
and ccw modes is sufficiently strong enough compared to all other loss rates to alow for coherent
modal coupling to form standing wave modes. They have also assumed that the QD does not
introduce loss into the system. Thisis clearly not the case if the QD is strongly coupled to a cavity
mode. In strong coupling, energy oscillates back and forth between the QD and the cavity, so
that QD decay terms can also cause loss. In this case, we might expect that standing wave modes
can be maintained provided that the modal coupling rate 3 exceeds not only «kr, but aso the QD
spontaneous emission rate ys, and non-radiative dephasing rate y,. To verify our physical intuition
and understand the system in better detail, we consider a quantum master equation approach [149]

to take into account the QD-field interaction.

8.3 Quantum master equation model

We begin by considering the Hamiltonian for an empty microdisk cavity (resonance frequency )
with field operators &,y and 4. and mode coupling parameter B, written in aframe rotating at the

driving frequency ; (see appendix G for details):

Ho = Awq 8l Acw + A0 Loy Accw — Badyloow — B*8lodon + 1 (EAL, — E'8en),  (87)

where Awg = o; — ®;. Here, the clockwise (cw) propagating mode is driven by an intracavity field
E = —iv/2xPn, where x = /2Q is the cavity field decay rate and Py, is the input power into the
cavity. In this and all equations that follow, Planck’s constant 7 = 1. From this Hamiltonian, the
classica coupled-mode equations without dissipation can easily be derived through an application
of Ehrenfest’s theorem and assuming that quantum mechanical expectation values correspond to
classical variables (i.e., < 8w >= aqw, for example).

Modeling the QD as atwo-level system, we add the term H; to the Hamiltonian (appendix G):

Hi=Awa6, 6 +ig(8l6 - —awmb ) +ig(aluG —acond ) (8.8)

where Awg = wa — o (03 IS the frequency separation between the ground and first excited state

of the QD). The equation of motion for the system’s density matrix p can then be found from the
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equation:;

d 1

P = Z[Ho+Hup)+Lp (89)
where theterm Lp = (L1 + L2+ L3)p alowsfor the inclusion of decay through cavity loss (at arate
K), quantum dot spontaneous emission (at a rate |, which we previously called ys), and phase-
destroying collisional processes (at arate yp,), which are of particular importance for quantum dots,
as unlike atoms, they are embedded in a semiconductor matrix that can serve as a phonon bath.

These lossterms are given by (refs. [149, 180] and appendix G):

L1p = K(28aupady, — Aly8owp — PAl,Acw) + K(28conpalyy — Al sudeond — PALouBcew)  (8.10)

Lop = (26 p&: — 6.6 p—p6.5) (811)

Lap = 12(6:082p) (8.12)

From this master equation, we can numerically calculate the steady state density matrix pss and
relevant operator expectation values such as < &%, 8qy >ss, Which will then allow us to determine
the transmission and reflection spectrum of the coupled QD-cavity system, using formulas that are
analogous to those used in the classical model of section 8.2. These calculations are the subject
of the following section. For now, however, we consider what intuition may be gained by further
analytical study of the master equation. We take operator expectation values (< A>= Tr(ﬁA) and
<A>= Tr(ﬁ,&)) to arrive at:

d . , A . A - A
a<acw>:—lA(l)c| <a0N>+|[3<aCQN>+g<G_>—K<agN>+E

d . . R : A N ~

a<accw>:—|Amc|<accw>+|B*<aCW>+g<<L>—1<<acgN>
d . . . oA A A
G <6 >= —(lAOJaj +YL> <6 > +0(< 680y > + < 680w >) (8.13)

d . A " A n A ~ A
g <8:>=-2(< G_Al, >+ < 6,80y >) —29(< 6_8ly, > + < 68w >)

—’YH(1+ < 6y >)

where we have noted that [6,,6_] = G2, and have takeny, = /2+vp.
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In the semi-classical approximation, we assume that expectation values of products of operators

equal the product of the expectation values (< 6,8qy >=< 6, >< e >, for example). Writing

B = |B|€®, these equations then reduce to

d . . A ol E A - A
a<acw>:—|A(oc|<aQN>+|\B]e'§<aCCW>+g<0_>—1<<acw>+E

d . . T - A
&<accw>:—|A(od<accw>+||B\e'E»<acw>+g<c,>—1<<ac(,w>

d

G < 6. >= —(iAma, +yL) <6 >+0(< 6, >< 8w > + < 67 >< 8oy >) (8.14)

%<62>:—29<6_>(<éIW>+<éIQN>>—Zg<6+><<écw>+<écm>>

—'YH(1+ < 62 >)

From equation 8.5 of section 8.2, we expect that the first two equations above can be uncoupled

if written in terms of standing wave operators.

1 .

o1 = 7= ((Bow+ €%8con)
) ”f o (8.15)
Bz =7 (acw - éé&‘ccw) :

Re-writing the operator evolution equations in terms of these quantities, we arrive at:

d . . R 1+65 .
a<as,\,,1>:—|(AwC|—]B|)<asM1>+gﬁ < 6. >—-Kk<ag1>+E

d . : . 1-€5 .
a<ag,v_,2>_—|(Acoc|+![3\)<ag,\,32>+g\/é <6_>-—K<&g2>—+E

d . 7 R g<6;> R it R i
G <%->= (IACO31+YJ_)<G_>+7\/§ (<am1>(1+e )+ <8aw2>(1—¢€ ))
d . ) A : A :
a<62>:—\@g<67><<a;M1>(1+e'é)+<a;MZ>(l—é§))

—V29<6, > (< Byt > (1+€7)+ < agyo > (1— e*”;)) —y(1+ < &, >)
(8.16)
These equation indicate that, in this basis, we have a modified QD-photon coupling strength

for each standing wave mode, which have shifted in frequency in comparison to the traveling wave

modes and are now centered at m¢ F |B|. For the first mode, corresponding to field operator g1,
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the effective coupling strength is gsy1 = 9(1+ &%) /v/2, while for the second mode, corresponding
to field operator 4gy2, the effective coupling strength is gsy2 = g(1 — €%)/v/2. These coupling
strengths are thus dependent on the phase & of the backscattering parameter 3; they can be as
large as v/2g and as small as zero. This result is consistent with what we would expect based
upon the physical intuition that the superposition of traveling wave modes will result in a pair of
standing wave modes whose volume Vg is one-half that of the traveling wave modes. The two
modes are phase shifted from each other in the azimuthal direction by ©t/2, and as a result, if the
QD is positioned in the antinode of one mode (£=0, S0 that ggy1 = v/29), it is within a node of the
other mode (so that gsy2 = 0), and vice versa for the situation when &=n. Note that these results
can also easily be seen by substituting the equations for the standing wave field operators into the
original Hamiltonian Hp + H1 (the two approaches are equivalent).

The semiclassica rate equations can be solved in steady state to yield information about the
cavity response as a function of drive strength and detunings. In the case of a single cavity mode
coupled to a two-level system, this leads to the standard optical bistability state equation (OBSE)
(refs. [181, 182] and appendix G). Such a semiclassical solution might be of increased importance
in the current work because of the potentially large system size that needs to be considered in the
numerical simulations of the quantum master equation, due to the presence of two cavity modes.
This will be particularly true when considering relatively large driving fields, which could be of
interest in nonlinear spectroscopy of the system, for example, asin ref. [183]. For now, we consider

acouple of simple examples, beginning with the case of £=0. Defining the following parameters:

_
492
ZKYL ’

Y — Ens—l/z7 (8.17)
K

S

~ _1/2
Xew1 =< agy1 > Ns 2,

~ —1/2

we solve (in steady state) the semiclassical equations of motion in the standing wave basis (equation

8.16) to arrive at the following expression:
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Y
XSN71 =
Aw.
4\@c +i(xf2(Awd—B) 4\“(7&) )
2X2, 1 +(FA)2+1 B 22,1524 (8.18)
Y

Xayyg = ——

SW,2 14 (Acoc|+[3>

We are most interested in obtaining an expression for the transmission (or reflection) past the
cavity and into our collection fiber, which will be the quantity measured in experiment. In the
formalism presented in section 8.2, the transmission and reflection are given in terms of the traveling
wave mode operators. These operators can easily be recovered here by adding and subtracting Xsy,1
and Xsy2, 8s the standing wave mode operators are related to the traveling wave mode operators
through equation (8.15).

Asdiscussed earlier, the cases of £ = 0 and &=r (which isidentical except that the roles of Xgy 1
and Xsy2 are swapped) essentially involve coupling between a single standing wave WGM and the
QD. For most choices of &, however, both WGMs will couple to the QD, but obtaining an equation
analogous to the OBSE for an arbitrary £ is somewhat algebraically tedious. As a simple example,
we consider £ = mt/2. Inthis case, it is perhaps easiest to start with the semiclassical equations of

motion in the traveling wave basis (equation 8.14), from which we derive:

Bl, V2 [ ac N
Y= \fx+ (1+1B_|£§>{<1_?+2x2 + (5 )+1)+|( ?zl 2X£+((AYZ’BJ))+1)}
+i=d
Blx, +Y/v2
e

(8.19)

where X, = (< dow > + < Bcow >)ns*1/2 and X_ = << dow > — < Bcow >)ns*1/2. From X, and
X, < &qy > and < 4w > can easily be found, and the transmitted and reflected signals from the

cavity can be calculated.
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8.4 Solutionstothesteady state quantum master equation in theweak

driving regime

The quantum master equation (QME) presented in the previous section is solved numerically using
the Quantum Optics Toolbox [81, 82] for Matlab. In addition to the general framework provided
by the Toolbox, the accompanying manual [81] provides many basic programs that are the basis of
the cal culations presented bel ow; the PhD theses of Ben Lev [184] and Kevin Birnbaum [185] were
also very helpful in this regard. We begin by considering steady state solutions, and calculate the
transmitted and reflected signals from the cavity in the weak driving regime. As a starting point,
we eliminate the quantum dot from the problem by taking the coupling rate g = 0. As expected, the
resulting solutions (not displayed here) are identical to those obtained using the classical coupled
mode equations and presented in fig. 8.2. Having confirmed that the QME solution is consistent
with the classical solution in the empty cavity limit, we move on to study interactions with the
guantum dot. To connect these simulations to ongoing experiments, we choose physical parameters
consistent with the devices that we have described in thisthesis.

Infig. 8.3(a), we plot the calculated Vg as a function of Dayg for traveling wave modes of a
microdisk, as calculated by finite-element method simulations (see chapters 5 and 7 for areview of
these simulations). From these values for Vs we can calcul ate the maximum QD-photon coupling

strength g =d - E/h, given by (seerefs. [9, 110] and appendix H):

1 [ 3cA3te
B 2’Csp 2TEn3Veff ’

g (8.20)

where 14, is the spontaneous emission lifetime of the QD exciton, which we take as 1 ns in our
calculations, consistent with what has been seen experimentally [142]. Theresults are plotted in fig.
8.3(b), and we see that g/2r can be as high as ~16 GHz. We note that in these calculations of g,
the traveling wave mode volume was used, because it is the value that is entered directly into the
guantum master eguations presented in section 8.3. However, as we shall see below, in the presence
of strong backscattering, standing wave modes are formed, and when coupled to a single QD, the
resulting vacuum Rabi splitting is consistent with an effective coupling strength of gv/2, as expected
due to the decreased volume of the standing wave modes.

As discussed in chapter 7, for such modes, Q,aq > 10° for all but the smallest diameter disks
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Figure 8.3: Finite-element method simulation results: (a) Modal volume Vg as a function of mi-
crodisk diameter (taken at the center of the slab), calculated for traveling wave modes. The modes
studied are TEp—1 m WGMswith resonance wavel ength within the 1200 nm band. (b) Coherent cou-
pling rate g/2r as a function of microdisk diameter. A QD spontaneous emission lifetime tg =1
nsis assumed in the calculation of g.

(Davg < 1.5 um). We have confirmed this in experiments, with Qs as high as 3.6 10° achieved,
so that cavity decay rates x/2n on the order of 1 GHz can reasonably be expected. Such devices
exhibited doublet splittings that were on the order of 10-100 pm, corresponding to a backscattering
rate |B|/2n = 1-10 GHz. This rate can thus be very close in magnitude to do the QD-photon cou-
pling rate, and we thus expect the simulation results to be particularly helpful in interpreting future

experimental data.

841 B>g>(x,7.)

The first situation we study is one in which the backscattering rate B exceeds the coupling rate g,
which in turn exceeds the cavity and QD decay rates x and v, . We choose 3/21=9.6 GHz, with
g/2n=6 GHz, x/2n=1.2 GHz (corresponding to Q=100,000), and t,=1 ns(y, /2r ~ 0.16 GHz). The
unperturbed cavity frequency (i.e., the resonance frequency of the traveling wave modes) is fixed
at o = 0, and three different QD-cavity detunings, A = w; — w:={0,, —p} are considered. For
each value of A, we calculate the steady state transmission and reflection spectra from the cavity in
three different limits: (i) g=0; here, there is no QD-cavity coupling, and the response should be that
of an empty cavity, (ii) g/2rn=6 GHz, y,/2n=0 GHz; here, we neglect all non-radiative dephasing,
which becomes a better and better approximation as the temperature of the QD-microcavity sample

islowered, and (iii) g/2n=6 GHz, y,/2n=2.4 GHz; here, we allow for a significant amount of non-



220

@) 1.0 QDfigguning =0 (b) QD detuning = /21=9.6 GHz © QD dg’gur]ipg =-B/2n=-9.6 GHz
NN 7 Nt SN N R A - - - -R:g/2n=0 GHz, 1 /2n=0 GHz
< 09 A ’: ob b4 , 3 ( ----T:g/2n=0 GHz, Y _/2n=0 GHz
508 v ul ! R:g/21=6 GHz, v,/21=0 GHz
% 07 1 0o | - ---T:g9/2n=6 GHz, y_/2n=0 GHz
S 06 s oo | ——R: g/2n=6 GHz, v /21=2.4 GHz
v Y i K T \f T: 9/21=6 GHz, Y,/2n=2.4 GHz
205 T " il [T i
£ i ! o [ K/2m~1.2 GHz
204 " v "
<] — e ‘rsp~1 ns
.03 2B|/2n=19.2 GH 29V2/2n=17 GHz
z I2py2m : 9 1/21~0.16 GHz
>
© 0.2
v
0.1
30 20 10 0 10 20 30 30 20 -0 0 0 20 30-30 20 -0 0 10 20 30
Detuning (GHz) Detuning (GHz) Detuning (GHz)

Figure 8.4: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). (8) A = w3 — ©:=0, (b) A=, and (c) A=—f. wc isthe
resonance frequency of the traveling wave whispering gallery modes. In these plots, g/2n=6 GHz,
B/2m=9.6 GHz, x/2n=1.2 GHz, and T,=1 ns.

radiative dephasing, corresponding to a QD exciton linewidth of ~10 peV (at an energy of 1 eV),
which is consistent with what has been observed experimentally at temperatures of around 10-20K
[142].

The results are plotted in fig. 8.4. In all of the results, we see that the primary function of vy, is
to damp and broaden the resonances, in some cases significantly, but as expected, y, does not cause
the features to shift in position. In fig. 8.4(a), we see that the presence of the QD has caused the
lower frequency mode to shift slightly, while the higher frequency mode has not changed position.
Infig. 8.4(b), the higher frequency mode remains unshifted, and the lower frequency dip has shifted
even less. Findly, in fig. 8.4(c), the higher frequency mode again remains unshifted, while the
lower frequency mode has split into two resonances.

The interpretation of these results is as follows. as a result of the modal coupling due to
backscattering, which has formed standing wave modes through a superposition of the initial trav-
eling wave modes, only the lower frequency mode of the doublet has any spatial overlap with the
QD, and thus, we should only expect the low frequency mode to exhibit any frequency shifts or
splittings. In fig. 8.4(a), the QD, spectrally located at A=0, is detuned from both modes (which are
located at +P3), and thus, athough the low frequency mode exhibits a frequency shift, we do not
see the symmetric vacuum Rabi splitting that would occur on resonance. As expected, due to the
spatial misalignment, the higher frequency mode remains unshifted. In fig. 8.4(b), the QD is now
on resonance with the higher frequency mode, so that it is detuned from the low frequency mode by

2B. Thus, the shift exhibited by the low frequency mode is smaller than that in fig. 8.4(a). Finally in
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Figure 8.5: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). These plots are calculated using identical parameters as
those used in fig. 8.4, with the exception that the phase of the backscattering parameter 3 has been
changed from =0 to &=, so that /2n=-9.6 GHz.

fig. 8.4(c), the QD is on resonance with the low frequency mode, and is also spatially aligned with
it, so that we see the familiar vacuum Rabi splitting of this resonance. We note that the separation
Qrinthiscaseis2gy/2 rather than 2g; thisis consistent with the mode volume of the standing wave
modes being one half that of the traveling wave modes, as g ~ 1/ v/Ve.

The question then arises as to what parameter preferentially selected the low frequency mode
to be spatially aligned with the QD over the high frequency mode. That parameter is the phase of
the backscattering rate 3, which we called & in the previous section. For the example above, £ = 0.
We now consider what happens if we take & = 7, so that 3 is negative. Our expectation is that this
phase shift should switch which mode is spatially aligned with the QD, so that the higher frequency
mode should now be selected. This prediction is confirmed in fig. 8.5, aswe see that the results are
the mirror image of those in fig. 8.4, where now the high frequency mode is spatially aligned with
the QD and exhibits frequency shifts and vacuum Rabi splitting.

Finally, we consider an intermediate backscattering phase & = /2. Here, we expect both modes
to have an equal (but non-optimal) spatial alignment with the QD. For example, for modes with a
cos(md) and sin(m¢) azimuthal dependence, this would correspond to having the QD located at a
position where cos(md)=sin(mo) <, e.g., mb=mn/4. Theresults, displayed in fig. 8.6, show that this
isindeed the case. Infig. 8.6(a), for example, we see a symmetric spectrum, consistent with both
modes being equally spatially coupled to the QD and equally (and oppositely) spectrally detuned
fromit. Infig. 8.6(b)-(c), we see that the spectraare no longer symmetric, asthe QD is on resonance

with the high frequency mode in fig. 8.6(b), and with the low frequency modein fig. 8.6(c). In each
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Figure 8.6: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). These plots are calculated using identical parameters as
those used in fig. 8.4, with the exception that the phase of the backscattering parameter 3 has been
changed from £=0to &=rt/2, so that B/2r=i*9.6 GHz, wherei = /—1.

case, we see Rabi splitting about the mode on resonance with the QD, and only a small shift for
the non-resonant mode. The Rabi splitting between the peaksis no longer at the maximum value of
20v/2, but at a value closer to 2g. This makes sense because the maximum value of g is still larger
than it would be for atraveling wave mode by afactor of v/2, but this gain is negated by having the
QD positioned away from the peak of the field.

The situation described by fig. 8.6(a), where the QD is equally spatially coupled to the two
cavity modes, and spectrally positioned in between them, might be particularly interesting, due to
the presence of atransmission dip at zero laser-QD detuning. It isanticipated that this resonance can
be used as a means to inject photons into the system for applications such as nonlinear switching.
The advantage of this configuration, in comparison to a QD coupled to a single mode, is that the
position of this zero detuning resonance isfixed, regardless of the input power. Thisisin contrast to
what one observesfor aQD coupled to asingle cavity mode, where the position of the transmission
dips will shift as a function of driving power, so that the amount of power that can be coupled into

the cavity at agiven frequency is limited.

842 g>B>(x7.)

Here, we switch regimes slightly to one in which the QD-cavity coupling rate dominates all other
rates in the system, including the backscattering rate 3. In particular, we choose g/2n=12 GHz,
with B/2n=4.8 GHz, k/2n=1.2 GHz, and 15,=1 ns (y /2 ~ 0.16 GHz). The qualitative behavior

that we expect to seeisidentical to that of the previous section, as both g and 3 represent coherent
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processes, so that their relative values compared to each other are not as important as their values
in comparison to the dissipative rates in the system. Thisis seenin fig. 8.7(a), where the QD is
spectrally located at —f3, so that it is resonant with the low frequency mode of the standing wave
doublet. Predictably, the interaction with the QD causes this resonance to split, with a splitting
Qr=2gv/2. The higher frequency mode remains unaffected, as the choice of £=0 causes it to be
gpatially misaligned from the QD.

843 x>g>PB>v.

Now, we take the cavity loss rate k/2n=9.6 GHz to exceed both g/2n=6 GHz and /2rn=1.2 GHz
(in addition, yH/2n=0.16 GHz and yp/2r=0 or 0.7 GHz), so that k¥ > v, . In the absence of a QD,
we know that when k > 3, we expect to see a single transmission dip rather than a doublet. This
is confirmed in simulation by the black dotted linein fig. 8.7(b). With the addition of a QD, taken
to be resonant with the center frequency of the single cavity transmission dip, we expect to see this
single dip split into two, with the dips not being completely resolved due to having k¥ > g. Thisis
confirmed in fig. 8.7(b), where the splitting Qr/2rn = 14.8 GHz lies between the expected splitting
for a purely traveling wave cavity mode (Q2r=2g) and the expected splitting for a purely standing

wave cavity mode (Qr=2g+v/2), and lies closer to the latter due to the degree to which x exceeds B.
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8.4.4 Y >g>B>xK

Here, the roles of k and | are swapped in comparison to the previous subsection, so that vy, /2n=9.6
GHz is the dominant dissipative rate, exceeding both g/2n=6 GHz and 3/2rn=1.2 GHz (the trans-
verse decay ratey, ~ 4.8 GHz ~ g). Unlike our previous example, in absence of aQD, we do expect
to see a pair of standing wave modes form, as 3 > k. Thisis confirmed in fig. 8.7(c) (plot with the
black dashed lines). Now, we introduce a QD that is spectrally aligned with the low frequency
mode at —f3. Because QD decay is so large in this case, however, we expect that the standing wave
character of the modesis going to largely be erased when coupled to the QD; standing wave modes
form only when the decay processesin the system are small enough that coherent coupling can take
place between the cw and ccw propagating modes. When a QD is introduced, we expect the energy
to oscillate between the QD and the cavity modes, and that standing wave modes can still form if
the energy decay is not too large, both when the system is primarily ‘QD-like' and ‘ cavity-like.!
Clearly, for y, > B, thisis not the case.

To confirm this intuition, we examine the calculated transmission spectrum in fig. 8.7(c). The
low frequency mode does indeed split, but the splitting Qr/2n = 14.4 GHz is much less than the
expected splitting of 2gv/2 for standing wave modes, and lies much closer to the 2g splitting for
traveling wave modes. The situation thus mimicsthat of the previous example. One major difference
is the relatively poor contrast (transmission depth) exhibited by the split resonances; this is due to
the fact that the dominant loss channel in this case, QD decay, is not collected in this measurement,

unlike cavity loss (for which alarge fraction is collected).

845 g>x>B>v.
8.4.5.1 Steady stateanalysis

Finally, we consider an intermediate scenario where QD-cavity coupling g/2rn = 12 GHz is the
dominant rate in the system, but where cavity decay «/2n=6 GHz exceeds the backscattering rate
B/2n=1.2 GHz. Again, in absence of aQD, we see asingle transmission dip (fig. 8.7(d)), ask > B.
If aQD isnow spectrally aligned to the center of this dip (A=0), however, we see three dips appear
within the transmission spectrum of fig. 8.7(d), as opposed to the two dips that appeared in fig.
8.7(b). The central dip is at frequency of 1.2 GHz=f/2r, and corresponds to the frequency of one
of the two standing wave modes that can form through an appropriate combination of the traveling

wave modes. Asthis mode is spatially misaligned from the QD, we do not expect its frequency to



225
have shifted due to interaction with the QD. The other two dips correspond to the splitting of the
low frequency standing wave mode from its original position at —/2n = —1.2 GHz. The splitting
of Qr/21=33.6 GHz is very close to the maximum possible value of 2g+/2, which is the expected
value for standing wave modes (indeed, if the QD was actually spectrally aligned at —3/2n = —1.2
GHz, Qr would be even closer to 2gv/2).

However, the question remains as to why the picture presented is largely consistent with a QD
interacting with a standing wave mode when, in absence of a QD, the system is consistent with a
traveling wave mode. The basic reason is as described above; when interacting with aQD, the sys-
tem oscillates between being ‘ QD-like' and ‘ cavity-like', and in each phase, undergoes decoherence
due to the corresponding decay channel. As aresult, the fast cavity decay rate in this example is
somewhat mitigated by the very slow QD decay rate, to the point that coherent coupling between the
clockwise and counterclockwise traveling wave modes can be achieved and standing wave modes

can be formed.

8.4.5.2 Time-dependent analysis

The density matrix calculations presented above are all steady state calculations (‘j'j—‘t’ =0). Togeta
feeling for the time-dependence of the system, we can use the Quantum Optics Toolbox to numer-
icaly integrate the differential equation for the density matrix [81, 82]. One of the first things we
can look at isthe evolution of the cavity transmission spectrum as a function of time, to understand
the time required to reach steady state. The results are plotted in fig. 8.8, along with the already
calculated steady state solution. We see that the time-dependent sol ution approaches the steady state

solution in atime of about 0.1 ns, which is on the order of the Rabi oscillation time tr ~ 1/g.
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Figure 8.9: Number of intracavity photons in the microdisk clockwise (solid red curves) and coun-
terclockwise (dashed blue curves) propagating WGMs, calculated by numerical integration of the
guantum master equation. A driving field consisting of a Gaussian pulse in timeis used (shown as
ablack dashed line), with o =-B. (a) 9/2n=0, x/2rn=1.2 GHz, $/2rn=0 GHz, (b) g/2n=0, x/2rn=1.2
GHz, B/2n=6 GHz, (c) g/2rn=0, k/2n=6 GHz, B/2n=1.2 GHz, and (d) g/2n=12 GHz, x/2r=6
GHz, B/2rn=1.2 GHz.

For the purposes of better understanding why the cavity spectrum appears asit does (and in par-
ticular, why the mode splitting is consistent with that expected for a QD interacting with a standing
wave modeinstead of atraveling wave mode), we examine the intracavity photon number (< 478 >)
for the clockwise and counterclockwise modes as a function of time. Rather than using a constant
(time-independent) driving field, the cavity is driven by a short pulse (Gaussian in shape, with a
drive power of 0.1 photons/sec), and is centered at a frequency w,=-3. For an ideal microdisk struc-
ture (no surface roughness) that is not coupled to a QD (g = 0), the forward propagating mode of
the fiber taper will only couple to the clockwise mode of the microdisk. Thisis confirmed in fig.
8.9(a), as < al,,Acew > remains zero for all times, while < &%, .y > rises as light is coupled into
the clockwise mode, and decays due to cavity radiation after the drive field is switched off. Next,
we consider the empty cavity (g = 0) with 3/2n=6 GHz and k/2n=1.2 GHz, so that B > k. As

we have described in the previous sections, in this regime, we expect to see coupling between the
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propagating WGMs to form standing wave modes. We thus expect to see non-zero photon numbers
for both clockwise and counterclockwise modes, with the count rates damped due to cavity loss.
Thisbehavior is confirmed in fig. 8.9(b).

We now move on to the situation considered in steady state in section 8.4.5.1, starting without
the QD. As the cavity decay rate x/2n=6 GHz is significantly larger than the backscattering rate
B/2n=1.2 GHz, we expect that the clockwise mode will suffer significant decay before an appre-
ciable amount of power can be coupled into the counterclockwise mode. Thisis confirmed in fig.
8.9(c). Now, we introduce a QD with y;/2r=0.16 GHz, and spectrally located at zero detuning
(for simplicity, we have taken v,=0 in this calculation). The calculated steady state transmission
spectrum (fig. 8.7(d)) indicated that the QD mediates coupling between the clockwise and counter-
clockwise modes, allowing for standing waves to form, with the low frequency mode (at Aw = —P)
gpatialy aligned with the QD. This behavior is confirmed in fig. 8.9(d), where we see that the pho-
ton number for the counterclockwise mode increasing much more quickly than it doesinfig. 8.9(c),
confirming that energy transfer occurs through some process other than backscattering. Once the
driving field is switched off, the photon count rates in the two modes die down, as a result of both
cavity and QD decay.

The density matrix calculations performed up to this point show the evolution of the system
in an ensemble-averaged sense. To provide us with further physical insight, quantum trajectory
calculations can be considered [149]. In these simulations, the Schrodinger wavefunction for the
system is calculated under the influence of a non-Hermitian Hamiltonian Hg, defined in terms of
collapse operators for the cavity modes and the QD. At random times within this evolution, the
wavefunction is subject to collapses, corresponding to detection events. The quantum trajectory
approach thus models the conditional evolution of a system, and can provide insight into what
will be observed in a measurement (such as the homodyne photocurrent). If the results of many
trgjectories are averaged, the results of the density matrix calculations can be reproduced. This
latter point has been examined in quantum trgjectory simulations of the systems studied in fig. 8.9,
where 50 trajectories have been averaged, and it has been confirmed that the results match those
of the density matrix calculations well. As only weak driving has been thus far considered, the
computational benefit of using a wavefunction-based approach rather than the density matrix is
minimal. However, for future studies, both the physical insight into the dynamics of these systems

and the reduction in computational cost of the quantum trajectory method may be very important.
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The basic result that the above examples demonstrate is that the QD can effectively serve asameans
to couple the cavity modes, even in instances where the backscatter parameter is small relative
to other rates in the system. As a fina illustration of this, we consider the situation where the
backscatter parameter is zero. In absence of the QD, we then see a single Lorentzian dip in the
transmission spectrum through the fiber taper. When the QD is added, one would might expect to
just see this Lorentzian dip split into two dips separated by 2g. From fig. 8.10, we see that the
mode does split, but that the splitting exceeds 2g (it is actually 2gv/2). Furthermore, we also see
the presence of a Lorentzian dip at the original cavity frequency, but with the transmission contrast
reduced in amplitude.
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The interpretation of these results is that the QD has effectively served to mediate coupling
between the two traveling wave modes, creating a pair of standing wave resonances. The standing
wave mode that is spatially aligned with the QD splitsinto the resonances at +g+/2, while the other
standing wave mode does not overlap with the QD at all, and appears as an unperturbed resonance at
the original cavity frequency. Unlike the standing wave modes formed through surface-roughness-
induced backscattering, this standing wave mode has not shifted in frequency with respect to the
original traveling wave modes because it sees the exact same dielectric function as the traveling

wave modes.t

1standing wave modes that form through backscattering from structural variations see different dielectric functions,
one which includes more of the air regions and the other that includes more of the dielectric regions, resulting in frequen-
ciesthat are shifted above and below the original resonance frequency, respectively.
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8.5 Potential for low power switching in the microdisk-QD system

The ultrasmall volumes sustained by these semiconductor microcavities offer the potential to ob-
serve phenomenain nonlinear optics at very small input powers, due to the large per photon electric
field strengths within the devices. The saturation photon number, mg, which represents the average
number of intracavity photons needed to saturate the QD transition, can give us some idea of how

low these powers might be. This quantity is given by [9]:

AN

a3 (8.21)

where vy, is the transverse relaxation rate given by y, = vy)/2+yp (note that mp was called ng
previously). Let usfirst consider the case where v, is small, so that the QD is radiative-limited, and
my = yﬁ /8g?. For g/2m ~ 10 GHz, which is certainly reasonable for the microdisk cavities we study,
and ) /2m ~ 0.16 GHz (te ~ 1 ns), which istypical for self-assembled InAs QDs, mp ~ 107°. This
value indicates the degree to which one photon in the cavity can affect asingle QD.

To study this in a bit more detail, we use steady state solutions to the semiclassical optical
bistability state equation (OBSE) and the quantum master equation (QME) to look at the cavity
response as a function of the drive strength. For our purposes here, we will restrict ourselves to
looking at a single (standing wave) cavity mode coupled to the QD; as we saw in the previous
sections, this can occur within our system if the phase of the backscattering parameter is such that
the QD isonly spatially aligned with one of the two standing wave cavity modes. Thissimplification
isalso necessary as our calculations here are not done in the weak driving limit, so that a significant
number of Fock space basis elements are needed to describe the cavity mode; this would become
computationally untenable in the case of two cavity modes. The QME and OBSE for asingle cavity
mode coupled to atwo-level system are discussed in appendix G.

We begin by considering a system with (g, x,y,Yp)/2n = (6,2.4,0.16,0) GHz, and with the
atom, cavity, and driving field all on resonance. The corresponding saturation photon number
(equation (8.21)) and cooperativity parameter (equation (8.17)) are mp ~ 9x 107° and C ~ 94.
The critical atom number [9], which describes the number of atoms (or QDs in this case) needed to
have an appreciable effect on the intracavity field, is given by Np = 1/C and is 0.01 in this example.
We first plot, on a linear scale, the normalized steady state intracavity field X =< & > mg~ /2 as
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Figure 8.11: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid line) and
quantum master equation (dots), showing normalized intracavity field amplitude | Xs| as afunction
of normalized drivefield |Y|. Inthese simulations, wa = ¢ = oy, and g/2n=6 GHz, k/2n=2.4 GHz,
¥p=0, and y; /2n=0.16 GHz. Correspondingly, mp ~ 9x 107> and C ~ 94.

a function of the normalized drive field Y = (E/x)my~Y/2 in fig. 8.11(a). The semiclassical solu-
tion displays bistability, so that in the intermediate (multi-valued) portion of the curve, the top and
bottom branches are stable solutions, and the middlie branch is unstable. However, the quantum
master equation solution looks very different, and the bistability has been washed away.? Plotted
on alogarithmic scale over awider range (fig. 8.11(b)), we confirm the absence of bistability in the
guantum master equation solution, but see that it does follow the semiclassical solution in regions
of smal Y and largeY.

In an experiment, we will measure the transmission or reflection response of the cavity as a
function of drive power through the taper input. Thisisplotted infig. 8.12, where we have displayed
the cavity reflection as a function of the average number of intracavity drive photons and the input
drive power, for anumber of different cavity decay rates (we have assumed critical coupling between
the taper and cavity). We again see that the quantum master equation solutions do not match the
prediction of optical bistability that the semiclassical equation solutions make, but do indicate that
switching between near-zero and unity reflection can occur for relatively small input powers, on
the order of tens of nanoWatts. We note that there is a general trade-off between the contrast in
reflection, which increases as the cavity Q increases, and the switching power. Similar behavior can
be observed in the transmitted signal by setting the laser drive frequency o, = +g.

In order to achieve radiative-limited operation of the QDs, low temperatures (T<10 K) are

required. It isinteresting to consider whether functional devices can be created that operate at room

2This discrepancy has been observed and discussed by several authorsin the context of atomic cQED [176, 186].
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Figure 8.12: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid lines) and
guantum master equation (dots), showing cavity reflection as a function of (a) average number of
intracavity drive photons (b) input drive power, for varying cavity decay rates. In these simulations,
®a = O = 0, and g/2n=6 GHz. We assume v,=0, and v /2n=0.16 GHz. The cavity reflection
spectrum at selected drive strengths, indicated by the gray circlesin (a) and labeled i-iv, are shown
in (c).

temperature, where non-radiative dephasing of the QD broadensits linewidth, to values on the order
of ~5meV (for aQD exciton lineat ~1 eV). Equation (8.21) predicts mp ~0.4 for g/2n ~10 GHz,
indicating that a single photon can still have an appreciable effect on a single QD. However, the
significant non-radiative dephasing would also suggest that any switching devices will not function
as efficiently asthey do at low temperature.

We first plot Xss asafunction of Y (fig. 8.13(a)) for a system with g/2n=17 GHz and k/2r=0.1
GHz. We now see that neither the semiclassical nor the quantum master equation solutions display
bistability, and that the two solutions match much more closely than they did in the previous exam-
ple. Despite the absence of bistability, the shape of the curve is very similar to the quantum master
equation solution in the radiative-limited case, indicated the potential for switching between low
reflection and high reflection values at relatively low powers.

Thereflected signal from the cavity as afunction of average number of intracavity drive photons
and input drive power for acouple of different combinationsof k and g areplotted infig. 8.14. These
solutions indicate that low switching powers can still be achieved, but that the reflection contrast
is significantly diminished as a result of the non-radiative dephasing. Relatively large cavity Qs
(> 10°) are then needed to achieve ~20 dB of contrast. As mentioned above, switching in the
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Figure 8.13: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid line) and
quantum master equation (dots), showing normalized intracavity field amplitude | Xs| as a function

of normalized drivefield |Y

, for asystem with large non-radiative dephasing (linewidth ~ 5 meV).
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Figure 8.14: Steady state solutions to the quantum master equation, showing cavity reflection as a
function of (a) average number of intracavity drive photons and (b) input drive power (right), for a
system with large non-radiative dephasing (linewidth ~ 5 meV). In these simulations, m; = o¢ = ;.

transmitted signal can be achieved by tuning the drive field to w; = +g.

The simulations presented above are just a preliminary examination of switching possibilitiesin

these fiber-coupled microcavity-QD systems. A more detailed bifurcation analysis of the semiclas-

sical model and quantum trajectory analysis to study the time-dependent properties of the system

must be conducted better understand the system and the various types of behavior that can be ac-

cessed for different parameter regimes. The recent analysis of Armen and Mabuchi [178] will be

quite useful in thisregard.
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Chapter 9

Conclusions and Future Outlook

In this concluding chapter, we briefly summarize some of the remaining challenges to accessing the
strong coupling regime in our experiments. Addressing these challenges is an on-going effort, and
is essentially the primary focus of my current research.

Semiconductor microcavity-QD vacuum Rabi splitting has been demonstrated in the experi-
ments of three groupsin late 2004 [70, 71, 72]. The procedure in these experimentsis asfollows: 1)
the sample is cooled within aliquid He cryostat, in order to reduce non-radiative dephasing in the
QDs, 2) the sample isincoherently pumped at energies above the bandgap of the dominant material
in the microcavity (e.g., 870 nm for GaAs), in order to efficiently generate carriers that can fill the
QDs, and 3) spontaneous emission from the device is collected through free-space optics and dis-
persed by a spectrometer onto alinear array of detectors (typically a CCD for measurements below
1 pm, or an InGaAs detector array for wavelengths above 1 um). The primary technical hurdlesin
such experiments are creating a sufficiently high-Q cavity to be within the strong coupling regime,
and achieving spectral and spatia aignment of a single QD with the cavity mode. In addition, ef-
ficient collection of emitted light can be difficult, and is particularly necessary for work at longer
wavelengths (> 1 pm), where the InGaAs detector dark count rates are significantly greater than
those of Si detectors used at shorter wavelengths [164].

We are interested in being able to observe vacuum Rabi splitting within the spontaneous emis-
sion spectrum of incoherently pumped devices, but beyond this, our goal is to use the fiber taper
to provide efficient near-resonant pumping. Initial experiments will examine the spectral response
of a coupled microcavity-QD system as a function of the frequency of aweak probe beam, provid-
ing a dightly different measurement of vacuum Rabi splitting than has been accomplished in refs.
[70, 71, 72]. Such fiber-taper-based measurements have been discussed in detail in the context of

microdisk cavities in chapter 8. Beyond vacuum Rabi splitting, further experiments will explore
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phenomena like switching or other nonlinear optical effectsin a strongly coupled microcavity-QD
system. In such measurements, the fiber taper (or some other form of efficient input-output cou-
pling) is basically a necessity.

Incorporating the fiber taper within aliquid He cryostat is thus a critically important step, and
one that is specific to the experiments we wish to conduct. As mentioned in the preface to this
thesis, our initial hope was to create fiber-pigtailed devices using the taper mounting technique
developed by Paul Barclay for use in ultra-high-vacuum chambers and atomic physics experiments
[80]. Our attempts at using such structures were unsuccessful, due to the mechanical failure of
the epoxy joints (used to affix the taper onto the microcavity chip) at low temperatures. On the
positive side, the fiber taper itself showed no degradation (in terms of its transmission properties, for
example) at low temperatures. Current efforts are focused on utilizing low-temperature-compatible
micropositioners to actively position the taper with respect to the cavity in the same way we do so
at room temperature.

The other principal technical challenges that we face are common to the field as awhole, rather
than our specific experiments. As mentioned above, foremost amongst these is achieving spectral
and spatia alignment of asingle QD with the cavity mode. Let usfirst consider spectral alignment.
Unlike atomic systems, for which the transition wavelength of interest is known (e.g., 852.3 nm for
the Cs D2 transition) and as a result, so is the desired cavity mode resonance wavelength, there is
typicaly anon-uniform size distribution of QDswithin asample. For example, the inhomogeneous
linewidth of the QD exciton ground state transition in our samples is ~50 nm. Devices are then
fabricated to have cavity mode resonances lying within this inhomogeneous QD spectrum, and
precise spectral alignment is achieved through some tuning mechanism of the cavity mode and/or
the QD exciton line. This is sometimes accomplished through temperature tuning [187], where
the differing tuning rates of the QD exciton line and the cavity mode can be exploited to tune the
two into resonance. There are significant limitations here, however; in ref. [187], for example, the
InAs quantum dot shifts by ~1 nm when the sample temperature is changed between ~4 K and
40 K, while the cavity mode shifts by less than one-quarter of this. The tuning range is limited
by the maximum sample temperature at which QD non-radiative dephasing is acceptable; even at
20 K, non-radiative dephasing can be significant [142]. If the QD exciton and cavity mode are
more widely separated than what can be compensated for through temperature tuning, the cavity
geometry can be dlightly modified, through etching away athin layer of materia to blue-shift the

resonances, for example [188, 48]. One drawback of this method is that it has to be done outside
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of the cryostat, and therefore lacks the flexibility and of an in situ tuning mechanism. Red shifting
of the cavity modes can be accomplished through deposition of athin dielectric layer by a process
such as PECVD (again, not an in situ process), or through condensation (of an introduced gas such
as Xenon, for example) on the sample surface within the cryostat [189, 190].

Spatial alignment of the QD with the cavity mode istypically achieved by playing the percent-
ages, rather than any sort of active positioning technique. For example, the material we use in our
experiments typically has a QD areal density of around 100-300 pm—2. For a microcavity mode
with an area of 1 um? (e.g., a standing wave mode in a 2 pm diameter microdisk), this means that
100-300 QDs are expected to be spatially located within the cavity mode. By choosing cavity modes
that are located within the long wavelength tail end of the QD spectrum, a small number of these
QDs (idedly one) will be within temperature tuning range of the cavity mode. Of course, just be-
cause a single QD is on-resonance with the cavity mode and is spatially located within it does not
mean the coupling is optimal. Optimal coupling is achieved if the electric dipole vector is aligned
parallel to the cavity field, and if the QD islocated at afield maximum. For cavity geometries like
photonic crystals and microdisks, the field is highly oscillatory in-plane, so that relatively small
displacements (~200 nm) of the QD with respect to the position of the field maximum can cause
the observed coupling strength g to be significantly smaller than the maximum achievable coupling
strength go. As our experiments (and the vast mgjority of the experiments within the field) stand,
we have no way to account for this other than to create a number of devices and hope to have some
number of those devices exhibit sufficiently good QD positioning for strong coupling to be obtained.
A more deterministic approach for achieving QD-cavity alignment isreally contingent upon contin-
ued progress in the growth of QDs. There has recently been some exciting progress in this area by
the group at the University of Californiaat Santa Barbara[158]. In thiswork, very dilute samples of
QDs (QD density ~0.01 um~—2) are grown, so that at most one QD will be located within the cavity
mode. Furthermore, above each QD, a stack of five red-shifted QDs was grown all the way up to
the sample surface, so that the in-plane position of the QDs within the sample could be ascertained
by imaging the material (with an SEM, for example). Alignment features are then fabricated on
the sample surface, and PC cavities are aligned to these features in such a way so that the asingle
QD is appropriately positioned within each of the cavities. For future demonstrations, it will be of
great use if the QD positions can not only be identified, but specified, within a regular 2D matrix,
for example. Thiswill ultimately be necessary for applications involving the integration of multiple

QD-cavity systems, such as in quantum networks [141]. This topic is of interest to a number of
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other important applications (such as lasers), and as such, ordered quantum dot growth is an active
area of research. Techniques under consideration include growth on patterned substrates [191, 192],
where recent work [193] has shown great promise, with the QDs in a hexagonal array (spacing of 5
um) displaying an inhomogeneous spectral width of 7.6 meV and a homogeneous spectral width of
140 peV.



237

Appendix A

Quantum Cascade Photonic Crystal
Surface-Emitting Injection Lasers

A.1 Introduction

In this appendix, | review the results of a collaborative project between our group at Caltech and
the quantum cascade (QC) laser group at Bell Laboratories, aimed at the development of photonic
crystal microcavity lasers within quantum cascade heterostructures. The results | described are the
focus of refs. [34, 35, 36]. Unlike the main part of this thesis, the focus here was not on the
development of high-Q, small-Vg; resonators for cavity QED, but to instead utilize other important
properties of planar PC cavities, such astheir scalability and potential for surface emission, to create
novel QC lasers, termed QC-PCSEL s (quantum cascade, photonic crystal surface-emitting lasers).
In addition, another main distinction in comparison to the PC lasers studied in chapter 3 isthat these
QC PC lasers are electrically injected devices. As electrical injection is a desirable characteristic
for many devices, some of the techniques utilized in this work are of potential significance for
applicationsinvolving high Q, small Vg PC lasers.

Research in semiconductor heterostructures has led to the devel opment of anumber of optoelec-
tronic devices in which the flow of electronsis controlled with great precision [194]. The quantum
cascade laser [195, 196], one product of such progress in electronic bandstructure engineering, op-
erates based upon intraband optical transitions (within conduction band states, or subbands) where
electronsflow through asemiconductor superlattice” staircase”, emitting aphoton at each step. Such
devices are hence unipolar (single carrier), and thus operate in a fundamentally different manner
than standard semiconductor lasers, which rely upon electron-hole recombination for light genera-

tion. QC lasers have established themselves as the leading tunable coherent semiconductor source
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in the mid- and far-infrared (IR) ranges of the electromagnetic spectrum [197, 198, 199].

However, due to the transverse magnetic (TM) polarization of intersubband transitions, QC
lasers are intrinsically only in-plane emitters. The electric field vector is perpendicular to the semi-
conductor layers, and surface emission, desirablefor several applications, cannot be easily achieved.
The PC microcavity that we employ acts both as a source of optical feedback and as the means for
diffracting light vertically from the chip to provide surface emission. In addition to enabling surface
emission, our devices are greatly scaled down from standard QC devices, enabling miniaturization
and on-chip integration of QC lasers, with potential applications such as multi-wavelength two-
dimensional laser arrays for spectroscopy envisioned. In addition, QC PC lasers are an interesting
system for research on photonic bandgap structures, astheir unipolar nature, operation through elec-
trical injection, and long emission wavelengths (and hence larger device feature sizes) are unique
and advantageous aspectsin comparison to previously studied interband PC lasers. In particular, the
demonstration of an electrically-injected PC microcavity laser is an important step in the develop-
ment of PC technology for practical applications.t In our QC PC lasers, an etched pattern penetrates
through the laser active region, deep into the bottom waveguide cladding. This etch produces the
same 2D PC pattern in the lower refractive index bottom cladding as in the waveguide core, allow-
ing for efficient vertical confinement of the guided mode [201]. This design reduces the diffraction
of radiation into the substrate, while providing a high-index contrast semiconductor-air 2D grating
for strong in-plane feedback. As aresult, our devices use only 10 periods of the photonic lattice

(less than eight wavelengths in diameter), hence, their classification as microcavity lasers.

A.2 Basicdesign and fabrication

The details of the device design and measurement are given elsewhere (ref. [34] and references
therein). For our purposes here, the key background information is an overview of the principles of
the device operation and an understanding of the PC design strategy. fig. A.1(a) shows a schematic
view of a QC-PCSEL device. Electronic current transport through a cascade of active regions and
injectors within the QC heterostructure results in photon emission at A ~ 8 um. Optica feedback
is provided by a PC microcavity consisting of an array of air holes that has been etched through
the active region and bottom cladding of the QC heterostructure. The lattice of air holes provides

distributed Bragg reflection (DBR) in two dimensions parallel to the chip.

1At thetime of publication of thiswork, the QC PC lasers described here were the first electrically injected PC micro-
cavity lasers. Since that time, electrically injected PC lasers at near-1R wavel engths have also been demonstrated[200] .
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The PC lattice consists of a hexagonal array of air holes, chosen primarily due to its connected
nature (unlike a lattice of rods, for example), necessary for efficient electrical injection. The in-
tersubband transitions in quantum wells are naturally TM-polarized (electric field normal to the
epitaxial layers). Using the plane-wave expansion method [202], we thus calculate the in-plane
bandstructure for TM modes, shown in fig. A.1(c) for a device with hole radius (r) to lattice con-
stant (a) ratio r/a = 0.30, and with an effective index ngs = 3.35 taken to account for vertical
waveguiding. Highlighted in this bandstructure are three frequency regions of interest, labeled A,
B, and C, which overlap flat-band regions. These flat-band regions are formed through mixing of
forward and backward propagating plane waves at high-symmetry points of the PC reciprocal lat-
tice. In these flat-band regions, low-loss resonant modes can be localized in finite lattice structures
(such as our cavities) due to the reduction in group velocity over an extended region of wavevector
space. Regions A, B, and C are specifically highlighted because they surround the flat-band regions
in the frequency range close to the second-order Bragg condition. Close to the second-order Bragg
condition, light can radiate into the air for surface emission, as coupling occurs to plane waves with
near-zero in-plane momentum. These are the components which lie above the air-light cone (light
gray region of fig. A.1(c)) and can radiate vertically. Choosing a ~ 3 um for a hexagonal lattice
with r /a=0.30 aligns these flat-band regions with the QC material gain spectrum (A ~ 8 um).

Vertical optical confinement is determined by the semiconductor and metal layers comprising

the QC laser structure. A key element of our design is the use of a surface-plasmon waveguide
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Figure A.2: (a) QC epitaxy and surface plasmon waveguide mode. (b) Cross-sectional SEM of an
etched QC PC laser.

for vertical confinement [203]. This waveguide exhibits an electric field intensity maximum at the
top semiconductor-metal interface (fig. A.2(a)). Particularly relevant to this work is the thinner
epitaxial materia (2.4 pum compared with 5.2 um for a standard waveguide) and the absence of
AllnAs cladding layers. Both of these characteristics dramatically ease the etching process, which
must penetrate into the bottom InP cladding to suppress radiation into the substrate [201].

The PC patterns are created by electron beam lithography, mask transfer to a dielectric ox-
ide layer, and transfer into the heterostructure material by inductively-coupled plasma reactive ion
etching. The deep etch through the vertical waveguide core region into the bottom cladding layer
(see appendix C) produces a high index contrast semiconductor-air grating (fig. A.2(b)), reducing
substrate radiation losses and ensuring that only a small number of PC periods (less than 8 optical
wavelengths in diameter) are required to provide strong optical feedback, in contrast to traditional
second order grating based devices which typically employ a shallow etch (weak grating) and re-
quire several hundred periods of the lattice.

After etching of the PC pattern, an insulating silicon nitride layer is deposited surrounding
the PC cavities, and top and back metal contact layers are evaporated, with the etched sidewalls
sufficiently vertical to prevent electrical shorting. In addition, athin metal layer, used to create the
bound surface plasmon mode in the vertical direction of the waveguide, is evaporated on the surface

of the cavities. An array of fully-processed QC-PCSEL devicesisshownin fig. A.1(b).

A.3 Electroluminescence and lasing measurements

As described in ref. [34], low-temperature electroluminescence measurements of microfabricated

devices revead three sets of emission peaks, corresponding to regions A, B, and C in fig. A.1(c).
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Figure A.3: (a) Emission spectra from devices with different a and r/a. The gray shaded area
corresponds to the FWHM of the QC gain spectrum.(b) Tuning of the laser emission wavelength as
afunction of a and r /a for severa different devices located on the same semiconductor chip. The
|asers operate predominantly in single mode (see inset) with a side-mode suppression of at least 20
dB.

Laser emission was achieved (operating in pulsed mode with 50 ns pulse width at 5 kHz repetition
rate), and is seen to tune with the hole radius and lattice spacing of the PC cavity in accordance with
simulation predictions (fig. A.3). Figure A.1(d) shows the subthreshold and lasing emission spectra
for a device with lattice geometry chosen to align the gain peak to the A flat-band region. Lasing
aways originated from the highest frequency (wavenumber) resonance within the A-peak. The
majority of the devices exhibit single mode laser emission in pulsed mode. By selecting devices
with different values for a or r, multi-wavelength emission from the same semiconductor chip is
achieved (fig. A.3).

As described in ref. [36], a careful analysis of the experimental data (spectral information,
far-field emission measurements and polarized intensity measurements) and numerical simulations
shows a close correspondence between theory and simulation, and provides a unigue identification
of the lasing mode. The first step in the process of identification of the laser mode is to determine
its symmetry. Here, we consider the behavior of the laser mode under reflection about the cavity’s X
and y axes (see fig. A.1(b) for the definition of these axes with respect to the cavity). The polarized
spatial distribution of the laser’s vertically emitted field intensity is studied by placing a polarizer
in front of a micro-bolometer camera fitted with alens (fig. A.4(a-b)). The nodal lines (lines of
near-zero intensity in the images) along the X and y axes of fig. A.4(b) for the y-polarized intensity

pattern are consistent exclusively with an electromagnetic field mode which is odd (parity -1) under
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Figure A.4: (a) Polarized emis
sion pattern (taken in a plane close
to the near field of the PC cav-
ity surface) of a typical lasing de-
vicefor an electric field polarization
aong the (a) X-axisand (b) y-axis of
the cavity. FDTD-generated (c) X-
polarized and (d) y-polarized verti-
cal emission pattern at a few wave-
lengths above the PC cavity.

amirror symmetry about the y-axis and which is even (parity +1) under a mirror symmetry about
the X-axis. Such a mode is said to have B; symmetry, using the nomenclature of chapter 1. A
similar conclusion is reached by studying the X-polarized intensity pattern of fig. A.4(a), which has
anti-nodes along both the X- and y-axis. Thus, the two polarized intensity patterns of fig. A.4(a-b)
indicate that the laser emission is single mode and of B; symmetry.

To better understand the vertical emission characteristics of the PC microcavity modes, full
3D-FDTD simulations were performed. The hole depth was taken to be 5 microns and a 200 nm
thick idealized ' perfectly conducting’ metal top contact was used to guide the TM surface wave (at a
wavelength of 8 um thisis areasonable approximation for agold metal contact [204, 93]). To reduce
the size and time of the simulation, the cavity was limited to 6 periods of the hexagonal lattice as
opposed to the 10 periods used in the experiment. Mirror boundary conditions were used to project
the modes of the hexagonally symmetric cavity onto a basis compatible with the symmetry of a
rectangle whose principal axes lie along the X- and y-axis of the PC microcavity.

The highest frequency resonant mode of the A-peak was found to be of B; symmetry (we refer
to this mode simply as the B; mode from here on). This is consistent with the experimentally
measured emission spectrum (fig. A.1(d)) and with the laser near field symmetry (fig. A.4(ab)).
Figure A.5(a-b) shows the electric field component normal to the semiconductor-metal surface (E,)
and its in-plane spatial Fourier transform (E,) for the B, mode. It is interesting to note that this

mode has only a small overlap with the central region of the PC cavity, a characteristic which
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Figure A.5: FDTD-generated plot
of (a) E, and (b) E; for the B; mode
in the plane of the PC cavity just be-
neath the metal contact in the semi-
conductor active region. (c) Far-
field emission pattern of the PC mi-
crocavity laser. The experimenta
data is shown as blue/red dots, and
an interpolation of the line scans
(shown as a light yellow grid) is
used to generate an approximate 2D
intensity image. (d) FDTD smula-
tion of the far-field intensity pattern
for the high-frequency mode within
the A-peak set of resonances.
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may partially explain its preferential selection as the lasing mode, due to the expected in-plane
spreading resistance in the etched PC region and consequent higher current injection and gain in the
periphery of the PC. Calculations of the vertically emitted radiation field, taken in a plane several
wavel engths above the cavity surface, were performed by eliminating the non-propagating FDTD
near field components and introducing, to simulate the experimental conditions, a 30° collection
angle cut-off for the imaging optics. The resulting X- and y- polarized intensity patterns of the By
mode are shown in fig. A.4(c-d), and closely match the polarized micro-bolometer camera images
(fig. A.4(ah)).

Asafinal consistency check, far-field emission measurements and cal cul ations were performed.
Figure A.5(c) showsatypical far-field intensity pattern of the B lasing mode, measured by scanning
a 300 x 300 um nitrogen-cooled HgCdTe detector in a plane paralel to the semiconductor chip
surface at a distance of approximately 10 cm without any intermediate optics. The theoretical far-
field emission pattern was calculated by transforming the FDTD generated radiation field into the
far-field [205] and is shown in fig. A.5(d). The increased intensity of the two lobes on the y-
axisin fig. A.4(c) of the X-polarized intensity and in fig. A.5(d) of the far-field pattern is likely a
result of inadvertent symmetry breaking of the hexagonal symmetry of the PC cavity in the FDTD
simulation.? In this case, the computed near field under the metal contact is still very symmetric, as

shown in fig. A.5(a). The symmetry breaking in the measured far field (experimentally we observe

2This may result from discretization error in employing the mirror boundary conditions and/or the rectangular bound-
ary of the simulation volume.
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the opposite effect, more intensity in the y-polarization), is possibly aresult of the rectangular metal
contact geometry and/or non-uniform current injection.

The FDTD-calculated radiative quality factor (Q) of the B; mode was found to be roughly a
factor of two higher than the Q value of the neighboring A-peak resonant modes, helping explain
why itisthefirst modeto lase. The calculated in-plane, top, and substrate radiation rates, as given by
effective cavity quality-factors, were Q =600, Q;=10,000, and Qs=7,000, respectively. An estimate
for the Q value associated with internal loss in the metal and semiconductor at 8 microns (o =
40 cm™1) is Q,=800. Thus, the total vertical extraction efficiency of the PC microcavity laser
is estimated to be 1y = Qt_l/(Q[1 + Q1+ Q.1+ Qpt) = 3%. The vertical extraction of light
in this case is due to the radiation of small in-plane Fourier components near the I'-point of the
hexagonal PC reciprocal lattice (fig. A.5(b)), asin second-order Bragg diffraction. The coupling of
radiation from the bottom semiconductor-metal interface to the top metal-air interface (from which
the radiation finally escapes) is mediated through the air holes [204], as well as through the metal
itself (although this last effect has not been included in our simulations).

These PC microcavity lasers combine the el ectronic bandgap engineering exploited in QC lasers
and the optical dispersion engineering of photonic crystals. The result isaphotonic crystal injection
laser that may open new horizons in device design and application in the mid- to far-IR ranges of
the electromagnetic spectrum. In particular, multi-wavel ength surface emission makes these devices
interesting from the perspective of spectroscopy applications, as many trace gases and complex
molecules can be probed in this wavelength region [206, 207]. The open cavity architecture of these
holey devices makes them interesting from the perspective of integration with fluids; microfluidic
technology [208, 209] can, in principle, beintegrated with these devicesto allow for precise delivery
of these fluids to the cavity regions. The introduction of the fluid should affect the L-1 characteristic
(light out versus injected current) of the device, for example, through a modification of the laser
threshold current. Electrical readout (akind of 'detectorless’ spectroscopy) within these systemsis
apromising possibility with QC-PCSEL -based devices.

Significant improvements in device performance must be made in order for these applications
to become accessible. In particular, the operating temperature must be increased, and the thresh-
old current needs to be reduced. Current efforts, led by Raviv Perahia at Caltech, are focused on

reducing current spreading in the devices as a means to help achieve these goals.
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Appendix B

Finite-Difference Time-Domain
Simulations

The photonic crystal cavities studied in this thesis are numerically investigated through the finite-
difference time-domain (FDTD) method, reviewed in detail by Taflove [6]. The FDTD agorithm
discretizes Maxwell’s equation, replacing derivatives with finite differences that are second order
accurate. The implementation that is commonly used is based on the Yee agorithm [210], which is
essentially adirect solution to Maxwell’s curl equations, solving for both the electric and magnetic
fieldsin time and space. The Yee agorithm follows a grid (fig. B.1(a)) in which every electric field
component (E) is surrounded by four circulating magnetic field components (H), and vice versa.
This arrangement means that Faraday’s and Ampere's laws (which are integral forms of Maxwell’s
equations) are automatically satisfied, as are Gauss's divergence laws. In terms of boundary condi-
tions, this arrangement naturally assures the continuity of tangential field components across mate-
rial boundaries that follow the cartesian grid.

FDTD is very appropriate for modeling structures such as our PC cavities, where the refractive
index varies significantly on the sub-wavel ength scale; other techniques that approximate Maxwell’s
equations with a wave equation usualy require a slowly varying refractive index. In addition, be-
causeit does not require matrix inversion techniques, FDTD can be used to do full three-dimensional
modeling of microphotonic structures. Accurate estimates of important properties such as the fre-
guency, quality factor, and modal volume can be obtained.

The code that we use was originally written by Brian D’ Urso, an undergraduate in Professor
Axel Scherer’sgroup at Caltech, and has since been modified by anumber of graduate students. Full
three-dimensional simulations of PC cavities are typically performed in the following fashion. To

reduce the ssimulation time, only one-eighth of the cavity volumeis simulated (the upper octant, for
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Figure B.1: Setup for FDTD simulations. (a) Yee space lattice, as formulated in ref. [210]. Figure
adapted from ref. [6] (b) Typical simulation volume for 3D photonic crystal cavities. Mirror bound-
ary conditions are applied along the planes x=0, y=0, and z=0; Mur’s absorbing boundary conditions
are applied along the other three faces of the simulation volume.

example), with mirror conditions chosen for three of the cavity boundaries. Absorbing conditions
are chosen for the other three boundaries, and an air region, typically on the order of two-thirds of
a free-space wavelength, is placed above the cavity to alow the field to adequately decay before it
reaches the boundary. In the in-plane dimensions, the field has already decayed within the photonic
crystal region so that only asmall air region (or no air region at all) is needed in those dimensions.
Figure B.1(b) shows a schematic of this. To adequately represent the field within the structure, we
choose a discretization of 20 points per lattice constant (which typically translates to about 80 points
per free space wavelength for the devices we study). With this resolution, the total number of grid
pointsis typically on the order of 2x 108 (200x200x50, for example).

To calculate the cavity mode field patterns in chapter 2, a two-step process is used. We first
calculate thetime evolution of aninitial field placed within the cavity, and record thistime evolution
at some small number of judiciously chosen spatia points (~5-10). The initia field is a delta
function in time and has a Gaussian spatial profile, and is chosen to have the polarization of interest
(TE or TM). Modes of a specific symmetry can be chosen through proper choice of the mirror
boundary conditions; alternately, if afull structure is simulated, the initial field is spatially located
off-center to alow for excitation of modes of both even and odd spatial symmetry. The field as a
function of time is fourier transformed to give its spectral content. Cavity modes appear as peaks

within this spectrum.
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Figure B.2: FDTD spectra and mode field patterns for TM-polarized donor type defect modesin a
square lattice photonic crystal. (a)-(c) Spectra for modes of (a) B1, (b) By, and (c) Ay symmetry.
(d)-(f) |E| for the specified modesin (&)-(c)

Figure B.2(a)-(c) shows examples of such spectra, taken from ref. [37]. The system studied
here is a simple square lattice donor-type defect centered about point e in the lattice (see chapters
1 and 2 for the labeling of high symmetry points in the square lattice), where we are focused on
TM-polarized modes due to their applicability for QC lasers. From the group theory analysis of
chapter 1 (extended to cover TM modes), we know that the two X-point donor type defect modes
off the first conduction band are predicted to have B; and B, symmetry, and the donor type mode off
the M-point of a higher frequency band is predicted to have A, symmetry. This knowledge allows
us to specify the mirror boundary conditions; a separate simulation is run for each symmetry type
(three simulationsin al here).

The second step of the processisto determine the spatial field profiles for the cavity modes. To
solve for the field profile for a given mode, we take the modal frequency determined through the
spectral calculation described above, and use it as the center frequency for a bandpass filter. The
initial field (chosen to have the appropriate polarization) isthen convolved in time with the bandpass
filter [211], whose width is slowly decreased astheinitial field evolves and beginsto stabilize. The
cavity Q is calculated by determining the stored energy in the cavity (U) and the radiated power to
the boundaries (Py), with Q = wU /Py. Example modal field patterns generated by this technique
are shown in fig. B.2(d)-(f).
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In the design of high-Q cavities presented in chapter 2, we made frequent use of the spatia
Fourier transform of the cavity mode as adiagnostic tool for understanding radiation losseswithin a
given design. In these calculations, we Fourier transform the complex field pattern E(r). By doing
so, we capture al of the spatial Fourier components, regardless of the time at which the snapshot
of the field is taken. The real, physical electric field can be written in terms of this complex field
pattern as E(r,t) = (E(r)e”'®! + E*(r)é®!) /2. To generate the complex field pattern, we take
snapshots of the real field at timest and t + T /4, where T /4 is a quarter period (T = 2n/wp), SO
that E(r) = E(r,t) +iE(r,t + T /4). Typically, the times are chosen so that they coincide with the

magnetic field maximum (at timet, for example) and the electric field maximum (at timet + T /4).
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Appendix C

Fabrication Notes

In this appendix, | have compiled some notes that, for the most part, focus on the etching of mate-
rials using an inductively coupled plasma reactive ion etch (ICP-RIE) tool. The initial part gives a
general overview of some of the considerations taken into account when processing these materials
when the focus is on the creation of microphotonic structures. | then consider fabrication within
specific material systemsthat are relevant to thisthesis, including Si, GaAs/AlGaAs, and the quan-
tum cascade heterostructures considered in appendix A. As fabrication of photonic crystal cavities
within the InP-based multi-quantum-well material was considered in detail in chapter 3, no specific

further consideration of those devicesis given here.

C.1 Processflow and general considerations

The process flow for fabricating a device such as a photonic crystal microcavity (fig. C.1) typically
consists of 1) deposition of a hard mask layer (occasionally not required), 2) spin coating of the
sample in electron beam resist and subsequent electron beam lithography, 3) plasma etching (also
known as dry etching) of the mask layer, and 4) plasma etching of the primary material layer (typi-
cally a semiconductor layer in the applications we consider). For some devices, such as the passive
PC resonators and optically pumped lasers described in thisthesis, these steps are followed by awet
etch step to undercut the devices. For more complicated structures, such as electrically-contacted
devices, anumber of additional fabrication steps are required.

The creation of low loss optical devices requires an optimization of the steps listed above. For
the plasma etching steps, there are a number of factors to take under consideration. One of the
most important is the mask layer used during the etching; the strength and quality of the mask layer
determines what types of etches can be used. Due to the small feature sizes needed for most of
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Figure C.1: Process flow for fabrication of microphotonic devices such as photonic crystals.

our structures, the starting point will aways be an electron beam mask. A relatively soft mask
(such as an electron beam resist mask) that is easily damaged through the dry etching procedures
necessitates the use of alow impact dry etch, while harder masks such as dielectric layers provide
greater etch selectivity and the ability to use a wider variety of etches, but come at the expense
of having to develop a method to fabricate the dielectric mask. For semiconductor etches that are
deeper than afew hundred nanometers, a hard mask istypically anecessity. For most of the devices
we consider in this thesis (with the exception of the QC lasers), the required etch depth is just a
couple hundred nanometers (corresponding to a half-wavelength of light in the material). In such
cases, direct etching into the semiconductor using the electron beam resist is a possibility, although
the benefits (and drawbacks) of this simpler approach must be weighed against the merits of using
adielectric mask. To use adielectric mask, one hasto develop a suitable etch recipe for transferring
the pattern from the electron beam resist to the dielectric layer, and this can be, in some cases, as
difficult as etching the semiconductor layer directly.

Once a masking material is chosen, the plasma etching processes can be calibrated. Plasma
etching is used because of the anisotropic etch profiles that it can create; PC cavities, for example,
require vertical sidewalls to sustain high Qs. Wet etching, on the other hand, can produce very
smooth etched surfaces, but the etch profiles are often slanted and control of feature sizes can be
difficult (due to undercutting of the mask layer). The system we use for plasma etching is an Oxford
Instruments Plasma Technology (OIPT) ICP-RIE, which has the advantage of allowing for indepen-
dent control of the plasmadensity (through variation of the |CP power) and the kinetic energy of the
resulting ions (through application of RF power to the wafer table/electrode upon which the sample
sits). This allows for the development of processes that employ a precise combination of chemi-

cal etching and physical etching (ion milling) to create anisotropic, smooth sidewalls. In addition,
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we have control over gas chemistry (Ar, N2, H», Oz, Cl», SFg, and C4Fg are our available gases),
chamber pressure, and sample temperature (either through control of the temperature of the lower
electrode or the application of He to the backside of the sample). Typically, we begin development
of an etch process by starting with an etch recipe provided by OIPT, or by searching the technical
journals (particularly the Journal of Vacuum Science and Technology B) to see what work has been
done by other groups. This essentially serves to give us a starting point, but the final etch is often
quite different from this initial recipe. One reason for thisis that the low loss, micro-optical struc-
tures of interest to us are often quite different than the applications for which many previous etch
recipes have been developed, so that the requirements on the etch can also be significantly differ-
ent. In addition, structures such as PCs contain very small confined spaces whose etch behavior is
markedly altered relative to that of more open structures (both the delivery of source gases and the
removal of etched by-products can be modified within these confined regions). Finally, most etch
recipesin the literature are calibrated using photoresist, adielectric layer, or ametal layer asan etch
mask. While we will often use a dielectric etch mask immediately before etching of a semiconduc-
tor layer, the initial mask, where the cavity geometry is first defined, and from which the dielectric
mask is created, is usually an electron beam layer.

Before considering the specific processes employed to create the structures studied in thisthesis,
let us review some of the process parameters involved in the plasma etching. The gas chemistry
used is determined by the material system being etched; chlorine-based chemistries, for example,
are known to be effective in etching I11-V heterostructures, while fluorine-based chemistries are
often used for silicon, silicon dioxide, and silicon nitride. Reference [212], for example, lists many
of the common etch chemistries used to etch semiconductor materials. Once achemistry is selected,
gas flows must be chosen. Here, the important things to consider are the ratio of the gas flows (for
example, the ratio of Ar to the ratio of Cl, when etching GaAs) and the total gas flow. The total
gas flow needs to be chosen in such a way that a sufficient amount of gas reaches the sample (so
that the etch is not reactant-limited), but should not be so high that the gas does not have a sufficient
amount of time to react with the material. Typical total gas flows are on the order of 20-30 sccm
(standard cubic centimeters per minute) for the processes we have used. The ratio of the gas flows
will, among other things, affect the etched sidewall angle and smoothness; examples of thiswill be
shown below.

The chamber pressure is another important process parameter. Typicaly, the chamber is held at

abaseline pressure of ~ 10~/ torr when no process is being run; typical process pressures are ~ 10
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mTorr. The effect of the chamber pressure on the etch behavior can be somewhat difficult to gauge.
In principle, if the etch is one in which chemical etching is the dominant mechanism, an increased
chamber pressure will increase the concentration of the reactive elements and can speed up the etch
(though the etch rate may eventually saturate). If the etch is primarily a physical milling process,
an increased pressure will aso initially increase the etch rate, but may eventually cause it to slow,
astheincreased pressure may cause collisions between ions that will reduce the kinetic energy with
which they bombard the surface.

The ICP power level sets the density of ionized atoms. In addition, it can have an effect on the
sample temperature; dense plasmas generated by high ICP powers can cause heating of the sample,
which can dramatically influence the etch rate, sidewall profile, and sidewall roughness. This effect
has been exploited in our etching of QC heterostructures, as described below in section C.4. The RF
power level sets a DC Bias, which is basically a potential difference between the plasma coils and
the lower el ectrode upon which the sample sits. ThisDC Biasdrivestheionsinto the sample; alarge
DC Bias will impart significant kinetic energy into the ions, making physical etching a dominant
process. A large ion milling component will significantly affect the etch mask as well, so that high
DC Bias etches typically require use of ahard diglectric etch mask. In addition, a high DC Bias can
heat the sample.

C.2 Si-based devices

We have been able to create high aspect ratio Si PC structures through direct transfer using an
€lectron beam resist; this has basically been made possible as aresult of the relative ease with which
Si can be etched and the relatively thin (~ 350 nm) waveguide layer we employ in our devices. The
starting point for our process was an OIPT recipe that called for arelatively low RF power (50 W),
ahigh ICP power (1200 W), and a C4Fg/SFs etch chemistry. This was avery appealing etch in that
it did not require the special operating conditions that other Si etches do (such as cryo-cooling or
gas chopping).

The first step in the etch calibration was to determine the gas flows to be used. This was done
by fixing atotal gas flow and varying the ratio of C4Fg to SFs. The behavior of the etch as a func-
tion of this ratio was very controllable; higher SFg flows would increase the verticality of the etch
(though flows that are too high would undercut the mask), while C4Fg could be used to smoothen

the sidewalls and counteract the chemical etching by SFg. After a suitable flow ratio was chosen,
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Figure C.2. SEM images of the
S ICP-RIE etch with varying gas
flow and RF power. (a) RF=50 W,
C4Fg=11 sccm, SFg=12 scem (b)
RF=50W, C4F8=22 SCCm, SF6=12
sccm () RF=50W, C4Fg=11
scem, SFe=12 sccm (d) RF=20W,
C4Fg=11 sccm, SFg=12 sccm.

Figure C.3: (a) Angled and (b) top view SEM images of the Si etch used in fabrication of high-Q
PC cavities.

the RF power was varied to limit mask erosion as much as possible. Figure C.2 shows SEM images
of an etched sidewall as function of different process parameters. The initial etch calibration was
done using a photoresist mask consisting of a relatively large circle. After a reasonable etch had
been achieved with this mask, PC patterns in an electron beam resist were used in the fina etch
optimization. The primary modification here in comparison to the process used in fig. C.2(d), for
example, is a further reduction in RF power and a bit of an increase in the C4Fg gas flow. Fig-
ure C.3(a) shows an angled SEM image of an etched PC pattern, showing the sidewalls to be both
smooth and vertical. Figure C.3(b) isatop view SEM image of an etched structure, indicating that
the holes are smooth and circular, which is a good indication that the etch that has been employed
does not significantly damage the electron beam mask, thereby allowing faithful transfer of the PC
pattern into the Si layer.



Figure C.4: Top view and cross sectional SEM images of AlGaAs PC cavities fabricated using an
SO, etch mask.

C.3 AlGaAs-based devices

As briefly mentioned in the preface, the GaAs/AlGaAs system dry etches with an ease that, quali-
tatively, is somewhere between Si (easy) and InP (hard). At the time we began our work on etching
AlGaAs structures, we had already developed an etch recipe for InP using an SiO, mask (chapter
3), and our hope was to simply use this mask. We would then use some form of an Ar/Cl, chemistry
to plasma etch the AlGaAs layer, and the PC membrane would be undercut with a dilute HF acid
wet etch. In general, fabrication processes can be difficult to reproduce, as the condition of the
etch chamber is continuously changing over time, particularly for chambers (such as ours) in which
multiple materials are etched. As aresult, even after a process has nominally been completely de-
veloped, thereis often some kind of re-calibration period needed prior to fabrication of a new set of
devices, particularly if it has been a few weeks since the last round of fabrication. When | started
doing SiO;, etchesfor the purpose of AlGaAs fabrication, it had been about 8 months since our InP-
based PC microcavity laser work, and our | CP-RIE had mostly been used for Si etching during that
time. For reasons that were never completely explainable, we were unable to replicate our previous
success with the SO, etch; the etch now seemed to burn the resist somewhat, and produced mis-
shapen holes, even after many attempts at modifying the etch to make it less damaging to the resist.
We were able to develop a subsequent AlGaAs etch that could produce smooth, vertical sidewalls
for arange of hole sizes, but the problems we had with the lack of circularity in the holes seemed to
be significant enough to warrant investigation of other masks. Figure C.4 shows the results of our
AlGaAs processing with an SiO, etch mask. The AlGaAs etch employed was a simple derivative
of the InP etch described in chapter 3, but now done at room temperature, with modifications to the
Ar/Cl, gas flows (the Ar/Cl, ratio was now typically 10/5 sccm) and slight adjustments to the RF

and |CP powers.
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Another possibility was to transfer the PC pattern directly from the electron beam resist to the
AlGaAs layer. We spent a few weeks working this out, and devel oped a reasonably good AlGaAs
etch that was able to do this while maintaining good hole shapes and without overly damaging
the resist. This etch was again a derivative of the InP etch, performed at room temperature, with
significantly lower RF powers (now ~70 W) and an Ar/Cl, gas ratio of ~10/5 sccm. The electron
beam resist seemed to be less adversely affected by the Ar/Cl, chemistry (in terms of the hole
shape) than the C4Fg/O, chemistry used to etch the SiO,, even though the RF power and DC Bias
levels used were fairly similar. However, maintaining sidewall verticality over the range of hole
sizes used in our graded lattice designs was difficult, and it was clear that the etch did undercut the
electron beam mask, so that producing a desired hole size would take some amount of calibration
(this seemed particularly difficult in that the hole size varieswidely in our graded lattice design). As
angled sidewalls can cause asignificant increasein lossin planar photonic crystals[114], we decided
that a dielectric etch mask would probably be a necessity. The advantage in using a dielectric mask
isthat the range of RF powers that can be used is significantly larger (with the electron beam mask,
we had to limit the RF power to avoid etching the mask away too quickly or beginning to burn
the mask). Nevertheless, the direct transfer approach, summarized by the SEM imagesin fig. C.5,
remains a potentially viable option, particularly if further optimization can be done to help improve
the sidewall verticality.

In order to etch adielectric mask without burning the electron beam resist, we wanted to adopt
an etch that would be similar to what we used for Si, where we were able to transfer the PC patterns

into the Si device layer while only using an electron beam mask. This did not seem far-fetched,



Figure C.6: SEM images of pho-
tonic crystal patternsin aSiNy mask
and subsequent transfer into Al-
GaAs. (a)-(b) Top view and angled
image of the SiNy mask. (¢)-(d) Top
view and cross sectional image of
the AlGaAs layer using the SiNy as
an etch mask.

as both Si and SiO, can be dry etched using a fluorinated chemistry. However, when we tried to
etch the SIO, with this low RF power etch, it was not very successful; the etch proceeded very
slowly and the sidewalls were not vertical. Another option for the mask was SiNy, which we could
also deposit with our PECVD. The nitride mask was a great choice, primarily because it could be
effectively etched using essentially the same conditions as what we used for Si. The etch rate was
certainly much slower than what it was for Si, but on the positive side, the resist was not burned
or misshapen during the etch, and we had a sufficiently thick resist layer to be able to etch through
the nitride mask (~ 200 nm thick). Results for the nitride etch are shown in fig. C.6(a)-(b); typical
process conditions were quite similar to the Si etch described above. Once this etch was devel oped,
we used an AlGaAs etch (fig. C.6(c)-(d)) that was essentially identical to that used when we tried
an SiO, mask, asthe SiNy had nearly the same etch selectivity.

We used the SiN, and AlGaAs etches developed for PC cavities as a basis for etching the mi-
crodisk structures investigated in the second part of this thesis. The main difference in the etches
were the gas chemistries and RF powers used; we typically decreased the chemical nature of the
etches (increased C4Fg for the SiNy, decreased Cl, for the AlGaAs), and dlightly reduced the ap-
plied RF power. With the microdisk cavities, the primary objective is to make the disk sidewall
smooth; this has led to us adopting etches where sidewall verticality has been sacrificed in favor of
smoothness.

The SiNy etch can be abit unpredictablein practice. In particular, if the C4Fg flow istoo low, the
etched sidewalls can be very rough. Figure C.7 shows the results of some poor etches; the sidewall

roughness in the mask is clearly transferred into the AlGaAs layer. As the state of our etching
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chamber is essentially constantly varying in time, we typically have to re-calibrate the SiNy etch
before each new processing batch. This usually involves a couple of practice etches that are used
to determine the precise C4Fg and SFg flows and RF power that will etch the material appropriately
given the current state of the etch chamber. In addition, chamber cleaning runs are periodically run,

in principle, to reset the condition of the chamber.

C.4 ICP-RIE etching of quantum cascade heterostructures

The quantum cascade lasers discussed in appendix A required a dry etch optimization to be able to
create relatively deep (~ 4-5 um), etched features (~2 pm diameter holes) with vertical sidewalls
in an InP-based heterostructure. The starting point was a 500 nm thick SiIO, mask (etched at Bell
Laboratories) that had smooth and relatively vertical sidewalls (> 85°). Our efforts on developing
this etch are reported in ref. [35].

Dry etching of In-containing I11-V semiconductor materialsis typically accomplished using one
of two gas chemistries [115]. The first, using a CH4/H, mixture, is performed at room temperature
but isrelatively slow (< 60 nm/min) and suffers from heavy polymer deposition during the process.
Cl,-based plasmas have al so been used, but the low volatility of InCly products at room temperature
requires some form of heating to be employed. One method for producing smoothly etched, vertical
sidewalls in an InP-based semiconductor system is direct heating of the wafer table (> 150°C).
Such a process was employed to etch the near-IR PC lasers of chapter 3, for example.

The Cl,-based plasma etch that we discuss in this appendix does not make use of direct wafer
table heating, but rather uses the high density plasma produced by the ICP system to provide local
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surface heating of the sample and an increased efficiency in the sputter desorption of the InCly
products [115]. Such an etch has been used by Fujiwara et al., to etch 8 um diameter, 3.6 um deep
holesin a photonic bandgap structure [116].

The ICP-RIE etch was studied as a function of 1CP power (300-500 W) and RF power (100-
350 W), with the chamber pressure (P, = 3 mTorr) and Ar:Cl, gas chemistry (12 sccm:8 scecm)
kept fixed, and no He backside cooling. The final ICP and RF powers chosen were 350 and 250
W, respectively, and produced vertical sidewalls with an acceptable amount of sidewall roughness
(fig. C.8). Lower RF powers produced extremely pitted (and slightly angled) sidewalls throughout
both the core and cladding layers (which we attribute to the decreased volatility of the InCly etch
products, resulting from the lower sample temperature and/or lower desorption rate caused by the
reduced RF power), while higher RF powers created smooth sidewallsin the lower cladding and InP
layers but increased roughness in the core layer (attributed to pitting that occurs in Al-containing
layers that are etched at too hot a temperature). Similar effects on the sidewall roughness were
observed asthe | CP power was varied. These results suggest that the sample temperature (generated
by the plasma) is a leading factor affecting sidewall roughness. The percentage of Cl; in the gas
mixture, which can also play arole, has been varied between 30% and 50%, with a value of 35% (7
scem) finally chosen as the best compromi se between decreased sidewall roughness (seen for lower
Cl, percentages) and improved sidewall angle (seen for higher Cl, percentages). For our typical
etch times (t~4.75 min), etch depths of 5 pm are achieved.

Using the plasmaas amean of increasing the sampl e temperatureindicatesthat the etch rate (and
therefore etch depth) will be anonlinear function of time, as some amount of timeisrequired for the
temperature to reach avalue hot enough for the InCl, compounds to be sufficiently volatile. Thishas
been observed experimentally, as etch times under 3 min have produced devices with angled holes
and non-volatile InCly etch products. Note that the change in sample temperature as a function of
time for a number of different process parameters has been investigated in detail by Thomas I11 et
a. [213], and confirms that some minimum etch time (dependent upon the RF and ICP powers) is
required for the sample to reach the requisite temperature (> 150°C).

Our etch creates a nearly 90° sidewall angle but suffers from roughness in the core layer. We
believe that thisisthe result of the elevated sample temperature created by the high density plasma,
which probably causes pitting of Al-containing layers. In the optimal case, control of the sample
temperature (or some other critical process parameter) as a function of time would be employed to

alow for varying etch conditions depending on the layer composition. This will be of particular



Figure C.8: SEM images of a typical QC-PCSEL device after the semiconductor etch, but before
the deposition of electrical contacts. (a)-(c) Images of a cleaved device at different magnifications,
showing (a) the verticality and relative smoothness of the etch, (b) the etch depth compared to the
active region thickness of the QC device, and (c¢) the uniformity of the etch across the whole device.
(d) SEM image of a device from the top surface.

use in standard vertical waveguide designs that have both top and bottom semiconductor cladding

layers (often composed of AllnAs).
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Appendix D

Cavity Q and Related Quantities

There are a number of physical quantities related to a cavity quality factor (Q) that appear in the
literature. | have made an attempt to summarize some of these quantitiesin this appendix.

The definition of a cavity’s quality factor is essentially Q = wtpn, Where o is the cavity mode
frequency and tp, is the photon lifetime within the cavity (tph = 1/Aw, where Aw is the spectral
width of the cavity mode). Q is defined in terms of the energy of the field, so that 1/t;h = 0/Q is
an energy decay rate. The field's decay rate is one-half this amount, so that:

K= —. (D.1)

Written like this, k has units of radians/second. To convert thisto Hz, we divide by 2r. | have tried
to adopt the convention of explicitly writing k/2r when quoting cavity decay rates in units of Hz,
to avoid any confusion.

It is sometimes convenient to consider a cavity decay length L pn, which can be defined through

Tph = (D.2)

o/n

where c/n is the speed of light within the cavity. More precisely, n is not the material refractive
index but instead is the group index of the mode within the cavity, ng. The Q of the cavity can be

written in terms of Ly, as:
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Q= g 03
Typically, a decay length L, might not be quoted, but rather, an inverse decay length o = L;hl
is. Thisisin particular true for structures such as waveguides, for which a loss per unit length
(sometimes in units of cm™? for example, and other times in units such as dB/cm) is a common
metric. Equation (D.3) above isthen important for being able to compare waveguide lossto a cavity
Q. Perhaps more important, material absorption losses are often quoted in terms of a loss per unit
length, and equation (D.3) then tells us how to compute the equivalent absorption-limited Q.
A cavity's Q physically represents the number of cycles the optical field undergoes before its
energy decay to avauethat is1/etimeitsoriginal value. Thisis nothing more than saying that the

cavities energy decaysin timease /<, or equivalently

du 0

— = —— D.4

gt QU (D.4)
Where U is the stored energy within the cavity, and Py = —%—Lt’ is the dissipated power. This leads

to another common definition of Q,

Q:m% (D5)

If we write the cavity frequency o = ZT—" where T is period of the field, this equation can be re-

written as

U
Q=2ny - (D.6)

where U, ¢ is the energy loss per cycle (period). For traveling wave mode cavities, such as Fabry-

Perots or WGM-based devices, it is common to quote a cavity finesse F , which is given by
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U

F=
UI,rt

(D.7)

where U, 1t is the energy loss per round trip length (where the round trip length is 2L for a Fabry-
Perot cavity of length L and 2R for a WGM cavity of radius R). The finesse is then related to the
Q (modulo 2r) by the ratio of U ¢ to U y¢. Thisratio is simply the number of optical cycles within
around trip length Ly, which is Lyt /(A/ng). Plugging into equation (D.7), we have:

F_Q %

(D.8)

Finally, our equation for the decay length Ly, (equation (D.3)), can be used to simply write the

finesse as:

Lph
F — P D.9
Lrt (-9

A cavity finesse of 1 then means that the field decays to its 1/e point after one complete round
trip.
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Appendix E

Resonator-Waveguide Coupled Mode
Theory

In this appendix, | briefly review some of the key equations of the coupling of modes in time
approach of Haus et a. [125] that is often used to study resonator-waveguide coupling. There are
many references that treat this topic; the discussion below has been primarily influenced by refs.

[50, 57, 55]. Other helpful works include refs. [214, 215, 216].

E.1 Traveling wave mode resonator

We first consider coupling between a single mode waveguide and a single mode of a cavity; an
example of this would be coupling between the forward propagating mode of a waveguide and the
clockwise propagating WGM of amicrodisk resonator, as shown in fig. E.1. The cavity’sintrinsic

lossrate is v;, and its loss rate into the waveguide is y.. Note that the y's are energy decay rates,

S | — — Et
J_ﬂ“{i

Figure E.1: Schematic for single mode coupling between a resonator and waveguide. The cavity’s
intrinsic energy loss rate is y;, and its energy loss rate into the waveguide is ye. The cavity, whose
mode amplitude is called aqy, is excited by a waveguide mode s, and the transmitted field past the
cavity ist. Note that ag, is normalized to energy, while sand t are normalized to power.



264
related to the field decay rates by a factor of 2, as discussed in appendix D. The waveguide input
field is labeled s, and it couples to a cavity mode of amplitude a.,. The transmitted field past the
cavity ist, with sand t normalized to power, and acy normalized to energy [125].

The time evolution of the mode amplitude a.,, is given by:

dacw .
a—af[m:lmoam—y%acwrkes (E.1)

where y7 is the total energy decay rate of the cavity mode (equal to yo+Yye above), and ke is the
waveguide-resonator coupling coefficient.! The above equation simply states that the mode ampli-
tude a. oscillates in time with afrequency o (first term on the right hand side), decays with aloss
rate yr (second term), and is driven by an input field s with coupling coefficient ke (third term).
The transmitted signa t will have a contribution due to that portion of the input signal s that
does not couple into the cavity, and a contribution from the signal coupled out of the cavity. We
thus expect t = a1 S+ oagw, Where oz and o are coefficients to be determined. We can determine
o1 and o through a power conservation argument, where we equate the power transfer into the

cavity with the change in the cavity’sinternal energy plus the dissipated power. That is, we write:

dlacw|?
dt

|82~ t]? = +Yolaow|® (E.2)

Plugging in equation (E.1) along with t = a1S+ axacw Yields three equations for the variables oy

and oz (which are complex). We have

1—|oyf>=0
|02 = Ye (E3)
—0110; = Ke

One simple choice of solution is oy=-1, o = k% (With |ke|? = Ye), giving the transmitted signal as:

LCoupling coefficients are often denoted by the symbol «. However, we have already reserved x for the field decay
rate, so we choose k instead.
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t = —s+keaow (E4)

From equations (E.1) and (E.4), we can find the steady state (normalized) transmission through
the waveguide, given by T = |L|2. Before doing this, we expand our formalism a bit to let yr =
Ye + Yo + Yp, Where vy, is a loss term representing parasitic coupling between the waveguide and
resonator (for example, coupling-induced scattering into radiation modes). From this, we solve for

T, and arrive at:

) 2
Ye— (Yo+7Yp) — 21A0

Ye+ (Yo+7vp) +2iA®

(E.5)

where Am = 0 — wg, the difference between the drive frequency and the cavity resonance frequency.
Asafunction of o, T isaLorentzian centered at w = p.

On resonance (Am=0), we can rewrite this equation as

1-K
(1+K

)2 (E.6)

where K is called the coupling parameter [55, 57], and is defined as

K=t
Yo+Yp

(E.7)

K istheratio of coupling into the waveguide with coupling into intrinsic and parasitic |oss chan-
nels. K=1iscaled critical coupling (corresponding to complete power transfer, where waveguide-
cavity coupling equals intrinsic and parasitic loss), while K < 1 (K > 1) is called the undercoupled
(overcoupled) regime. These important regimes are discussed in many other works [125, 20, 55,
214).

Experimentally, we always measure Qr = wo/vr, athough we have control over v by control-
ling the taper-cavity separation. In practice, we can increase the taper-cavity separation to the point

that e is quite small, giving us an estimate of the cold-cavity quality factor Q; (assuming that v,
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also becomes quite small as the separation becomes large). Without changing the taper-cavity sep-
aration, we can get an estimate of Q;, p, the Q dueto intrinsic decay and parasitic waveguide-cavity
coupling, by knowing K, or equivaently, the transmission depth on resonance (equation (E.6)). In

particular,

Qup — W o Yot+YetVp

o= _ :

T %+ WHrett Yo+ (E8)
=Qr(1+K)

Another important parameter is called the idedlity |, which is the ratio of the coupling into the

waveguide mode of interest with the coupling into all waveguide channels. That is,

=T
Ye+ Yo

(E.9)

I=1 implies that the resonator-waveguide coupling isideal in the sense that al coupling isinto the
desired waveguide channel.

Next, let us consider the case of an emitter within the cavity. A fraction B of the emitter's
spontaneous emission will be coupled into the cavity mode of interest. The fraction of these photons

that are then coupled into the waveguide mode of interest is given by the parameter 1o, with

Ye
=—* E.10
10 e+ (E10)
This can easily be rewritten in terms of the coupling parameter K as:
1
= E.11
=Tk (E1D

We see that g approaches unity as the system is driven into the overcoupled regime; at critica
coupling (K=1), ng = 50%. In the literature, much attention is paid to 3, with a high-B cavity
often seen as a solution to efficiently collecting photons from an emitter, such as a self-assembled

guantum dot within a high-index semiconductor. Although it is somewhat obvious, we note here
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that no aso plays an important role, with fng giving the total fraction of emitted photons that are
actually collected into the channdl of interest, which could be the forward propagating fundamental
taper mode in our experiments, or some well-defined free-space collection channel for experiments
with a Fabry-Perot cavity.
The ratio of the total (loaded) quality factor Qr to the intrinsic quality factor Q; can be written

interms of ng and | as:

Qr_ Yo _YotYt¥o Yet¥
Q YotYetY YotYet¥p YotYetVp
_q_ Y Yelp (E.12)
YetYo+Yp Ye
—1_MNo

Finally, we consider two quantities of importance to many processes that occur within optical
microcavities. The internal cavity energy U can be written as the product of the dropped power
into the cavity, Py, and the photon lifetime due to intrinsic and parasitic losses, Tj,p. Noting that
Py = (1-T)R,, where Py, is the input power into the waveguide, and plugging in for T in terms of

the coupling parameter K, we have:

U= (1-T)Pntisp

_ X P Qitp
(1+K)2"" @y

_ K
1+K Moy

(E.13)

Equations (E.12) and (E.11) can then be used to relate U to the intrinsic quality factor Q;, ideality
I, and coupling parameter K. Thisyields:

(1j-KK)2(I +K(l —l))(,?—(i)F’In (E.14)

U=

This quantity ismaximized when K =1/(2—1), for whichU = 1(Q;/wo)Pin.
The circulating intensity within the cavity, 3, isgiven as3 = (U /Vet)vg, Where vy is the group

index of the cavity mode. For critical coupling (K = 1) with unity idedlity (I = 1), we can simply
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write this as;

LU

Vet

c Q
= — R

Ng oVt in (E.15)
o do O

n 27'mg Vst

3

E.2 Standing wave mode resonator

We next briefly consider the case where the resonator supports a standing wave mode rather than
atraveling wave mode. Thisistrue, for example, in the photonic crystal microcavities studied in
the first part of this thesis. The main difference is that the standing wave mode decays equally
into the forward and backward propagating modes of the waveguide. If we continue to consider
Ye to be the loss rate into the forward propagating waveguide mode, the total loss rate yr is given
asyr = 2Ye+ Yo+ Yp. Theformulafor the normalized transmission is then determined through an

analogous set of equations as used above, with:

] 2
1 |Ye= (Ye Y0 +7p) — 2iA0

. E.16
Ye+ (Ye + Yo+ vp) + 2iAw (£19)

On resonance (An=0), we can rewrite this equation as:

1-K.2
= (=—— E.17
v €
where the coupling parameter K is now written as
Ke_ Te (E.18)
Ye+Yo+Yp

We see that the form of T(K) is exactly the same as what is was for coupling to a traveling wave
mode, but the range of values that K can attain isrestricted to K < 1.

In coupling to a standing wave mode, there is now a reflected signal coming out of the input
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port, with the normalized reflection R given asR = \§|2. In this equation, r = kiasy, where agy is

the standing wave mode amplitude. We then arrive at:

R— Ae (E19)
Ye+ (Ye+Yo+7p) + 2A®
s0 that on resonance, thisis rewritten in terms of K as:;
4K 2
R= 1K) (E.20)

Finally, we consider the parameter np. Assuming that photons are only collected from one of

the waveguide modes, it is defined as:

Ye
Y E21
0 e Y0+ 7 (E-21)

and can again be rewritten in terms of the coupling parameter K as:

1
C1+1/K

o (E.22)

provided that K isdefined asin equation (E.18). We see that ng < 50%, which makes sense because
the cavity mode equally decays into the forwards and backwards channels of the waveguide, so that
at most 50% of the cavity photons can be collected out of any one channel. For the experiments we
have conducted thus far (chapters 6 and 7), collection from both channels can be easily achieved,
so that thisis not asignificant limitation. However, this might not always be the case, particularly if

the cavity-waveguide unit isto be a node within amore complex system.
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Appendix F

L aser Rate Equations

A rate equation approach [152, 217, 218] is often a simple way to study aspects of the steady state
and dynamical behavior of lasers. Although afull quantum mechanical approach can be more rigor-
ous, rate equation techniques are typically relatively simple and easier to solve, while still including
fluctuations (i.e., spontaneous emission into the laser mode), abeit at a relatively basic level. In
contrast, purely semi-classical theories, beginning at the level of the Maxwell-Bloch eguations, for
example, neglect fluctuations altogether [219]. In what follows, we present an overview of asimple
rate equation model used in the fits of our 2 um diameter microdisk-quantum-dot lasers studied in
chapter 7. There are anumber of good treatments of rate equation modeling in the literature; | have
personally benefitted from studying the text of Coldren and Corzine [152].

For semiconductor lasers, the rate equations are often a pair of equations that describe the time
evolution of the carrier number (N) and photon number in the cavity mode of interest (Np) within
the structure. Here, we are considering a semiconductor material where light emission occurs as a
result of electron-hole recombination, and where the active material maintains charge neutrality, so
that the electron number N, is equal to the hole number N, and we keep track of a single carrier
number N. The rate of change of N will be given by the difference between carrier generation
processes and carrier recombination processes. Carrier generation (occurring at arate L) can occur
through current injection or optical pumping, for example. Recombination processes can include
stimulated and spontaneous emission (R¢ and Rsp) and non-radiative recombination (Ryr) (carrier
leakage can a so be afactor, although we do not consider it here). Calling the volume of the active

regionV, we can write this explicitly as:
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dN

a = L—(Rnr+Rsp+ Rst)v (F-l)
The rate of change of Ny will be given by difference in photon generation and photon removal

processes. Photon generation will be due to stimulated and spontaneous emission, while photon

removal will be due to cavity loss. We can write this equation as:

dNp Np
— =(R Ryp)V — — F.2
at (Re +BRsp) Ton (F2)

where yoh = 1/Tpn is the photon number loss rate from the cavity (=w/Q). As we have mentioned
in other parts of thisthesis, B3 is called the spontaneous emission coupling factor, and is the fraction
of spontaneous emission emitted into the cavity mode of interest. In this equation, we have not
explicitly made use of the modal confinement factor I", which basically takes into account the fact
that the volume of the cavity mode of interest will often be different than the volume of the active
region. Thisis because our equations are in terms of carrier number and photon number; if we had
instead written them in terms of densities, use of I" would be necessary, because the photon number
N, is not taken over the active region volume V, but rather a mode volume.

From this point, an essentially phenomenological approach is often used to describe the different
recombination processes; the specifics often depend on the gain medium under consideration. For
our purposes in chapter 7, the gain medium is a single layer of quantum dots. Let usfirst consider
stimulated recombination Rg. By a stimulated process, we mean that photon generation requires
the presence of seed photons. It is therefore taken to be proportional to the photon number Np;
for example, Ry = vg0iNp as in Coldren and Corzine [152], where vy is the group velocity of the
cavity mode and g; is the gain per unit length. Equivalently, it can be written in terms of a gain
per unit time g as Ry = gNp. Next, the spontaneous recombination term Rgp, is often taken to
be a bi-particle process (€electron-hole recombination), so that Rs, = BN, where B is called the
bimolecular recombination rate. Non-radiative recombination is usually acombination of processes
with varying power law dependencies on N. One process is surface recombination, which is often
taken as Ry = AN, where A is some material-dependent coefficient. Another process is Auger

recombination, the transfer of kinetic energy from an electron-hole pair to another electron (or
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hole). It is often taken as Ry = CN3, where C is called the Auger recombination coefficient.

The rate equations we use to model the microdisk lasers of chapter 7 are:

122 2
dN_ | NN

i [ = + %] —9Np (F3)
dN BN?2
5 = (@ Yo)Np+ N (F4)

Here, we have assumed an N2 dependence for radiative recombination, no Auger recombination,
and have taken the surface recombination term to have a N1-2? dependence (as discussed in chapter
7, this is done to match the measured subthreshold slope of the light-in-light-out curve). In these
equations, the proportionality coefficients in front of the N-dependent terms have been written as
lifetimes, with 15 being the surface recombination lifetime and r’sp being the Purcell-factor-modified
(appendix H) spontaneous emission lifetime of the quantum dots (where the unmodified lifetime is
taken to be 1 ns).

In our microdisk cavities, carrier generation is accomplished through optical pumping, where
the measured quantity is the pump power incident on the sample surface, Pc. L isrelated to P

through:

PhcNavsNint Am

L —
Eph,pump  Apump

(F5)

where naps IS the fraction of incident pump power that is absorbed, . isthe internal efficiency of
carrier generation, Eph pump 1S the energy per pump photon, Ay, is the modal area, and Apump iS the
pump beam area. Basically, PncNabsAm/Apump gives the absorbed pump power by the disk, dividing
by Eph,pump Converts this to an absorbed photon number rate, and multiplying by i converts this
to acarrier generation rate.

The surface recombination lifetime 15 is taken as:

1

Ts= —Z(ZERPA,QD)VS (F.6)

Here, pagp is the areal quantum dot density, a quantity estimated by the material growers (300
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um~2 for the QD material we use), so that 2nRpa qp gives alinear QD density along the perimeter
of the device (the additional factor of 2 in the equation takes into account the degeneracy of the QD
ground state). vs is a surface recombination velocity, which we take as a fit parameter.

The gain per unit time g is taken to have the form:

9=0(N—Ny) (F.7)

where ¢ is the differential gain and Niy = paopAm is the transparency carrier number (the total
number of available statesis 2p opAm due to degeneracy, and the transparency level is half of this).
g istaken to be the maximum modal gain if all QD ground states interacting with the cavity mode
are inverted divided by the total number of QD states.

We thus solve the rate equations (equation (F.3)) in steady state to give us the steady state
photon number N, s as a function of pump power. To match our experimental data, the collected

laser power (Loyt) isrelated to Ny s through:

Lout = Ncoll EphYphNp,ss (F.8)

where Eph is the emitted photon energy (Eph = hm) and neo is the collection efficiency. Finally,

we have:

E
Neolt = §=T20 i (F9)
ph

where § isthe laser’s differential efficiency (which we directly measure, as discussed in chapter 7),
and Eph pump/Epn is the ratio of the energies of the pump and emission photons. The steady state
solutions to the rate equations, using the relationships outlined above, produce the solid fits to the

experimental datainfig. 7.8.
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Appendix G

The Jaynes-Cummings M odel

The interaction of an atom with an electromagnetic field is approached in a number of different
ways, depending on how the atom and field are treated (classically or quantum mechanically).
Semiclassical models treat the field classically and the atom quantum mechanically. The Jaynes-
Cummings model [220, 221, 222] treats both quantum mechanically, but makes several smplifying
assumptions. In particular, the atom is treated as a two-level system, and driving and dissipation
terms are not included. In this appendix, | first briefly review the Jaynes-Cummings model. | then
consider extensions of this model to include driving and damping terms, following the quantum

master equation approach as outlined by Carmichael in his books [149, 180].

G.1 TheJaynes-Cummings Hamiltonian and eigenvalue spectrum

The Jaynes-Cummings Hamiltonian Hyc can be written as:

Hic = Haom + Hriegd + Hint, (G.1)

where Haom, Hriad, and Hine are terms due to the free atom, the free field, and the atom-field inter-

action, respectively. Thefirst two terms can be written as:

1 . 4. 1
Hatom = éﬁwan Hiigd = hos ( fa+ E) (G.2)

where 6, isthe Pauli spin operator (inversion), m, and ¢ are the atomic transition and el ectromag-

netic field frequencies, and 4 (&") is the electromagnetic field annihilation (creation) operator. The
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%hﬂ)f term is often left out of the free-field Hamiltonian, asit is just adds a constant energy shift to
the eigenstates.
The dipole interaction term is Hie = —d - E, where d is the dipole operator, and can be written
asd = degle>< g| +dglg >< €. Here, |g> and |e > arethe ground and excited states of the atom,
and we have assumed that they are states of definite parity, so that the dipole operator only contains

off-diagonal terms. Theterms |e >< g| and |g >< €| are just the Pauli matricesc,. and 6_, so that:

d = degS +dg6- (G.3)

Quantizing the electromagnetic field [223], we write the electric field operator as:

E(r) = iEme(f(r)a—f*(r)a") (G.4)

where f(r) describes the spatial variation of the electric field (it is essentially a normalized version
of the dectric field), and Enax is the amplitude of the field (see appendix H). From this equation,

along with the expression for d, we write the interaction term Hint as

Hin = ihg(a'6_ —46.,) (G.5)

where g is the atom-field coupling rate, which we consider in further detail in appendix H. In this
equation for Hiy, we have neglected the &c_ and &'c., terms, which are processes that do not
conserve energy (the former process corresponds to annihilation of a photon while having the atom
transition from the excited to the ground state, for example). Thisis essentially the rotating wave
approximation. Thus, our fina form for the Jaynes-Cummings Hamiltonian, including all three

terms, is:

1 A a1 o ata an
Hyc = ShwaS;+ hoot (aTa+ E) +ing(8'6_ —a6.) (G.6)

The energy eigenvalues of this system can be determined by considering product states of the
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Figure G.1: (a) Schematic for atom-field coupling and (b) block diagonal form for the Hamiltonian
in the Jaynes-Cummings model.

form|g;k > (|g;k >= |g > ®|k >), where the atom is in either the excited or ground state, and the

field has k photons. We have:

1 1 .
Hiclg;n >= —éhma|g; n> +hos <n+ E) |g;n > —ihgy/njesn—1 > (G.7)

1 1 .
Hiclen—1>= Ehwa\e; n—1> +hws (n— §> leen—1> +ihgy/n|g;n> . (G.8)

In matrix form, the Hamiltonian is block diagonal, with 2x2 blocks. The form for the nth block

(fig. G.1(b)) is:

n=

" (n+3)or — % —igy/n . G9)
igy/n (n—3)or + %

The eigenvalues for this matrix are

Ens = h(nmf + %) (G.10)

Q- \/ (©f — ©a)2 + 4ng2 (G.11)

The corresponding eigenstates, which we write as |n, + >, are mixtures of [g;n > and |en—1 >:
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A
[3,4> E
E T+f3hg
N LU
In=3> A Figure G.2: Energy level spectrum for the
AL Jaynes-Cummings model (of = w,). The
E';; : unperturbed field states are shown as black
' T+ J3ha dashed horizontal lines and are labeled as
neas VL0 In= 1>, for example. The eigenstates of the
A l J3hg Jaynes-Cummings Hamiltonian are labeled as
2> : In,£ >, and are shown as solid horizontal
| ; lines.
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In,— > = —sinBy|g;n > +-cosbBple;n—1 > (G12)
In,+ > = cosBp|g;n > +sinByle;n—1 > (G.13)
2
tan(20,) — 29" (G.14)
0f — Wy

From this, we see that for vary large detunings, or aternately, very small coupling strengths g, the
eigenstates are essentially product states.

On-resonance (o = y), the eigenvalues and eigenstates are:

Ens :h(nwfj:g\/ﬁ> (G.15)
1
]n,—>:—ﬁ(g,n>—e,n—1>) (G.16)
]n,+>:i(]g;n>+|e;n—1>>. (G.17)
V2

The eigenvalue spectrum for the coupled atom-field system (on-resonance) is shown schematically
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infig. G.2. We see that the field's harmonic oscillator spectrum, consisting of energy levels sepa-
rated by Awm¢, has been modified, with each energy level splitting into a pair of levels, separated by
aspacing of AE = 2g./n. The splitting of thefirst excited state (n=1) is 2g, and is called the vacuum
Rabi splitting.

G.2 Thedamped, driven Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian of the previous section examines the interaction of a single
mode electromagnetic field (such as the mode of an electromagnetic cavity) with atwo-level atom,
and basically models an isolated system. An experiment will typically differ from this in two pri-
mary ways. There will often be some probe field that is used to study the system; the probe might
beaweak classical field that is swept in frequency, for example. In addition, the atom-cavity system
will be unavoidably coupled to the environment, which will cause dissipation. This may come in
the form of cavity loss or spontaneous emission of the atom, for example. In this section, we review

how the Jaynes-Cummings model is expanded to account for these effects.

G.21 Drivingfield

From the previous section, we recall that the Jaynes-Cummings Hamiltonian is written as:

1 . 1N
Hyc = Sheoab; + hmc(aTa+ é) +ihg(a'6- —46.) (G.18)

where here we have relabeled the field to oscillate at frequency we, to explicitly indicate that we are
considering it to be the mode of an electromagnetic cavity. The driving field modifies Hyc by adding

aterm Hgive, given as.

HdnvezihlE O | it _ g+ | é’“’"] (G.19)
ar a

where E and w; are the amplitude and frequency of the driving field. The top row in the equation
(involving 6, and 6_) appliesto the case of the field driving the atom, and the bottom row (involv-

ing &' and &) iswhen thefield drives the cavity mode. The introduction of this time-dependent term
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into the Hamiltonian can be handled by transforming to aframethat rotates at the same frequency as
the driving field (o). That is, we will apply a unitary transformation U = exp(—imt(6,/2+4'4)).
In general, we know that if some unitary operator U acts on the state vector, the transformed Hamil-

tonian, Hy, iswritten in terms of the original Hamiltonian Hs as [224]:
He = iH0UT + UHgU". (G.20)
We apply thisto the Hamiltonian Hs = Hjc + Hgrive, and make use of the operator expansion theorem

[225]:

exp(xA)Bexp(—xA) = B+ x[A, B + ’Z(—j[A, (A B +... (G.21)

This yields the following form for the driven Jaynes-Cummings Hamiltonian (written in a frame

G, 6_ ]
E —E* (G.22)

where Awg = ¢ —  and Awy = wa — . In deriving this equation, we have noted that 6, 6_ =

rotating at o):

Hy = iA0y 64 6_ +hAwga'a+ihg(a'6_ — a6, ) +ih

(I +62)/2. Asdescribed in ref. [226], the addition of the driving term to the Jaynes-Cummings
Hamiltonian can modify the eigenvalue spectrum considerably. In particular, when the cavity is
driven by the external field, the energy levels undergo a driving-field-dependent Stark shift, with
the standard Rabi splittings of +g,/n being replaced by the quasienergies +g,/n[1 — (2E/g)?%/*
(when the atom, cavity, and driving field all at the same frequency). This can have a direct impact
on experiments, where the atom-cavity system is often probed by adriving field that is swept in fre-
guency [9, 182]. If the probe beam has a small amplitude (where the ratio of E to g isthe important
metric), its effects on the atom-cavity system would be expected to be small, and measurements of
features such as vacuum Rabi splitting should yield the 2g splitting in accordance with the Jaynes-

Cummings model.! However, if the probe beam has alarge amplitude, the energy level structure of

1The 2g splitting of the first excited state is maintained down to an arbitrarily weak driving field E; thisis one reason
for the terminology ‘ vacuum Rabi splitting’.
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the Jaynes-Cummings model will be significantly altered. This can, for example, affect the ability

to access and observe higher excited states of the Jaynes-Cummings system.

G.2.2 Dissipation termsand the quantum master equation approach

Dissipation in the Jaynes-Cummings system can be addressed by considering the interaction of this
system with a reservoir. The treatment we follow below is entirely based on Carmichael’s books
[149, 180]. Our intent here is to briefly outline some of the important stepsin this approach.

The Hamiltonian for the system plus reservair is given as Hs + Hgr + Hsr, where Hs and Hi are
system and reservoir Hamiltonians, and Hsg is the Hamiltonian for the interaction of the two [180].
The interest in the reservoir is purely in terms of its effects on the system, so that a density matrix
approach is well suited to study this problem. In particular, rather than considering the full density
matrix of the system plus reservoir ), areduced density matrix p = Trg[x] is considered, where the
trace istaken over all of the reservoir states.

Asy isadensity matrix, we know that:

dy 1
2 — Z[H.yl 2

A convenient form for the equation of motion of i can be determined by first transforming to the
interaction picture to separate out the motion dueto Hs+ Hg from that dueto Hsg, and then formally

integrating equation (G.23) to arrive at:

%L g 0] & /otdt/[ﬁsw), [Fisa(t). Z(0)]. (G.24)

Here, the ~ isto note that all of the quantities are in the interaction picture. Our interest isin the

reduced density matrix p, which isfound by tracing over the reservoir states, so that:

% = —% /0 dt'Tre [[Hsa(t), [HSR(t’),;z(t')]]] : (G.25)

The first term from equation (G.24) has been dropped (it can essentially be thought of as a constant

offset in the Hamiltonian). From this point, two important simplifying assumptions are made. The



281
first is called the Born Approximation, where we assume that the total density matrix () can be
written as the product of density matrices for the system (p) and reservoir R, and furthermore, that
the effect of the system on the reservoir is negligible, so that R does not vary intime (R(t) = R(0)).
Thisyields:

& = 72, TR Fsn(t). i) 5(0)RO)]] (G.26)

The second major simplifying assumption is the Markov approximation, where we assume a
memoryless system behavior due to the interaction with the reservoir. Carmichael’s books consider
this point in much greater detail [149, 180]. Assuming this point to be valid, its effect on equation
(G.26) isto change the p(t’) within the integrand to p(t).

From this point, specific models for the system, reservoir, and system-reservoir interaction
Hamiltonians are employed. Many times, the reservoir is modeled as a collection of harmonic
oscillators. The system-reservoir interaction Hamiltonian will often be written as Hsg = £3.;S;Tj
where sand I" are system and reservoir operators, respectively. System operators might be the field
annihilation and creation operators & and &', or atomic raising and lowering operators 6., and G_,
for example. Reservoir operators might be of theform I' = ¥ x;f;, for example, where the k;j isthe
coupling coefficient linking the jth reservoir oscillator (characterized by annihilation and creation
operatorsfj and f ;r) to thefield.

For the systems of interest to us, there are three primary dissipative channels: (i) atomic spon-
taneous emission, at aratey|, into modes other than the cavity mode of interest, (ii) photon |eakage
out of the cavity at a rate 2x (so that the cavity’s field decay rate is k, as in appendix D), and (iii)
non-radiative damping through phase-destroying processes, at arate y,. These loss terms are given

by [149, 180]:

L1p = x(28pa’ —a'ap — pa'a) (G.27)
Lop = (26 P&, — 5.5 p—p5:5) (G.28)
Lap = 2(6:56:— ). (6:29

The equation for the reduced density matrix in the interaction picture is then:
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o = (Lt Lzt L. (G.30)

Finally, we need to transform back to the Schrodinger picture from the interaction picture. We

do this by noting that

iHgt iHgt

pt)=e" p(t)e (G31)
so that differentiating this equation yields:
X iHgt | _iHgt i ~
p(t)=erplt)e ™ +-[Hs.p] (G.32)
bty Mt [
e pt)e™ =p(t)+ - [Hs.p] (G.33)
. 1 —iHgt - i
p=[Hs.pl +e ™ p(t)e ™ (G.34)

ih
Putting it all together, we get the following master equation for the density matrix, often used
asastarting point in cavity QED studies:

‘c’j_*t’ _ %[HS, ol + k(28pa" — a'ap — pa'a) (G.35)
+ g(za_ 05, —8.6 p—p&.6.) (G.36)
+ 16,05, p) (G.37)

with

Hs = hA®a 6.6 + hAoga'a+ihg(a'6_ — a6, ) +ih

G, o_ ]
E —E* . (G.38)

From this master equation, the time evolution of operator expectation values can be easily found
by noting that < A >=Tr(pA) and < A >= Tr(pA) for a system operator A. For example, if the

driving field excites the cavity, these time-evolution equations are (here, we take i = 1):
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d . A -

a<é>:—<|Amc|+K) <a>+g<o_->+E (G.39)
d . : - A A

o <0_>= —(IAO)a| —H@) <0_->+g<0oa> (G.40)
d . A A A A A

§ <8:>=—29(< 64" >+ <8.8>) 7y (1+ <8, >) (G.41)

To derive these equations, the identities [6,,6 ] = 6,, 6.6 +6_6, = |, and 62.=0 are useful, as
isutilizing the cyclic property of the trace operator (Tr(ABC) = Tr(CAB) = Tr(BCA)). In addition,
we have takeny, =) /2+vp.

In the semi-classical limit, expectation values of operator products are replaced by products of
operator expectation values (i.e., < 6,4 >=< 6; >< & >). These Maxwell-Bloch eguations can
then be solved in steady state, for example, to yield the optical bistability state equation (OBSE)

[181, 182]. For reference, the solution is:

Y (G.42)
X = G.42
2C i Aag ZC(A;J_EI>
1+ X2+ (5241 + (T B x2+(%)2+1)
where
YL
nS - 492” bl
P
T 2y (G.43)
Y = Ens—l/z
K )
X=<a>ns Y2

ns and C are called the saturation photon number and critical atom number (also known as the
single atom cooperativity), which represent the number of photons (on average) needed to saturate
the atomic transition and the number of atoms needed to dramatically affect the response of the

cavity, respectively [9].
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Appendix H

The Purcell Factor F, and Atom-Photon
Coupling Rateg

H.1 ThePurcdl factor

The degree to which a microcavity can influence the spontaneous rate of an emitter within it is
known asthe Purcell effect [227]. When the emitter (aradiating dipole) ison resonance with acavity
mode, this rate can be enhanced; when off-resonance, it can beinhibited [228]. Purcell enhancement
(or inhibition) of spontaneous emission if one of the hallmarks of cavity QED within the weak
coupling regime, where it is still appropriate to treat the emitter and the field as separate entities
and their interaction as a perturbation. In strong coupling, the usual interpretation of spontaneous
emission as an irreversible process no longer holds. The Jaynes-Cummings model reviewed in
appendix G isthe starting point for the treatment of emitter-field interactions in the strong coupling
regime.

Placing a radiating dipole within a cavity causes the spontaneous emission rate to change due
to the cavity’s modification of the spectral density of modes (related to its Q) and the amplitude
of the vacuum field interacting with the dipole (related to V). We therefore expect the Purcell
enhancement to scale with Q and V. A simple derivation of this enhancement has been given by
Gérard and Gayral [109]; we repeat this derivation here. We begin with the statement of Fermi’s
Golden Rule [224]:

1 2n
- = ﬁ|Wge|zp(Ege) (H.1)

Wge is the dipole matrix element between the initial (ground) and final (excited) states of the two-
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level system, with

Wge =< aé >ge (HZ)

where d isthe electric dipole operator, E isthe electric field operator, and the subscript ge indicates
that the matrix element connects the ground and excited states of the emitter. p(Ege) is the density
of photon modes at the emitter’s transition energy Ege. We recall that Fermi’s Golden Rule is
only applicable under the assumption that the dipole can effectively be thought of as coupling to a
continuum of modes. When the dipole is embedded in a uniform dielectric material, thisis clearly
the case. When it is embedded within a cavity, we must satisfy the condition that the dipole’s
emission line be spectrally narrow compared to the cavity resonance.

Let us begin by calculating the spontaneous emission rate when the emitter is in a uniform
dielectric of index n. The density of modes p is obtained by the usual procedure of counting the

number of modes within some box of volumeV [224]. Thisyields:

®?ndV

Po= 323 (H.3)

where the factor of 1/3 represents the random orientation of the modes within a uniform dielectric
with respect to the dipole (this factor is derived in Yariv's Quantum Electronics book [223], for

example). The spontaneous emission rate is then given by:

1 - w’ndV
== -E 2 H.4
with the electric field operator written as [223]
E(r) = iEme(f(r)a—f*(r)a" (H.5)

In this equation, & and & are the field annihilation and creation operators, respectively, and f(r)

is describes the spatial variation of the electric field (it is essentialy a normalized version of the
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eectric field). Enax isthe amplitude of the field, a per photon electric field strength written as:

ho
Emax = m (H.6)
If we plug thisinto equation (H.4), we arrive at:
& 12,3
1 nélfgel’o (H7)

TSD,O N STEFLSO(}’%

where | have taken d = er. Equation (H.7) is the standard expression for the spontaneous emission
rate into a uniform dielectric material of index n.

When the emitter is placed in a cavity with a mode volume Vg, Emax IS given by the same
expression as in equation (H.6), but with V (the quantization volume for the uniform dielectric
material) replaced by Vesr. We next write [Wye|? = €2(f ge| °E25,M?, Wheren = d - E /| d|Emax describes
not only the orientation of the dipole with respect to the cavity field, but also the spatial dependence
of the dipole within the cavity field (that is, even if the dipole is aligned with the field, if it is
positioned at some place other than an antinode of the field, n < 1). If the cavity mode has a

linewidth A, corresponding to aquality factor Q = w¢/Awc, we can write its density of states as:

. 2Q A®?2
o 40— 0¢)2 + Aw?

Pc (H.8)

which is a Lorentzian function that has been normalized so that [, pc(®)dw = 1. If we plug this,

along with our expression for |Wge|2 into equation (H.1), we arrive at:

1 2Q€?|fgel®n? A (H.9)
Tope  heonVer 40— 0c)2 + Aw2 '
The ratio of equations H.9 and H.7 gives us the Purcell enhancement:
Tsp 0 3 Q 7\, 3 AU)(Z: 2
SPE Y (=) (2 H.10
T5p7c 47T2 (Veff ) ( n) 4((,0 - Ox)c)z + A(Dgn ( )
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When the emitter is spatially aligned with an antinode of the field, is spectrally aligned with the
field (0 = o), and oriented along the field, we arrive at the Purcell factor F quoted in chapter 4:

Tsp,0 3, QA3
F,— P00 _ 9 (& e H.11
P Tsp7c 47[2 Veff) ( n ) ( )
We again note that the above is valid when the dipole emission linewidth is narrow in comparison
to the cavity mode linewidth. If thisis not the case, the Q used in F will not be the cavity Q but

instead will be the emitter's Q = Ae/Ye, Where e is the emitter linewidth.

H.2 Atom-photon coupling rate

The coupling strength between a single two-level system and an optical field is given by the dipole

matrix element divide by Planck’s constant. That is:

|<d-E>|

- (H.12)

g

For the purposes of this thesis, the above formula is used to calculate quantities like the optimal
coupling strength between an atom, or quantum dot, and a single photon within a resonant cavity.
For these calculations, it is assumed that the dipole and the field are aligned, so that g = dgeEmax/ 7,
where the per photon field strength Enax of equation (H.6) is used, along with some value for the
strength of the electric dipole dge as found in literature.

In many cases, dge Will not be the piece of information readily available; rather, the spontaneous
emission rate between the two levels tg, will be. Using equation (H.7), we can easily relate the two

guantities, and then arrive at an expression for g. Doing so yields

_ 1 |3 (H.13)
9= 2t \/ 20V
Tsp TUN° Vst

As defined above, g has units of radians/second; dividing by 2t express it units of Hz, which are
often the units for which g is quoted. To be explicit, | have adopted the convention of writing g/2n

when quoting valuesin units of Hz, to try to eliminate any confusion.
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Within the literature, the decay ratesy; and y, are sometimes used. vy, is aradiative decay rate,
equal to 1/1g. v, iSatransverse decay rate, and is most generally written asy, = % +Yp, Where
Yp IS due to non-radiative decay (for example, phase-destroying collisional processes). For strong
coupling, it is the total emitter decay rate, v, , that must be exceeded by the coherent coupling rate
g. Within single atom systems, the decay is essentialy purely radiative, sothat v, = % istaken. For

these systems, g is then often written in terms of y, rather than ts,. Doing so yields

| 3chA3
= =70 H.14
g="7 A Negry, | ( )

Within the literature, the decay times T, and T, are often quoted [223]; by our definitions above,
T = 1/YL and Ty = 1/’YH
In semiconductor-based structures such as quantum dots, an oscillator strength is often quoted

[110, 70]. Thisoscillator strength f is a dimensionless quantity given by

f= 2mo| < Foe> |* (H.15)
7 )

It is found through a calculation of the optical susceptibility x () of an atom (P(®) = x(®)E(w),

where P(m) is the field-induced polarization), and subsequent comparison to the expression gen-

erated by the classical damped, driven harmonic oscillator model of the atom. Reference [229]

presents such a derivation. The QD-coupling rate g can then be written in terms of the oscillator

strength as:

[ e2f
Y H.16
9 480ﬂ2Veff ’ ( )
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