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Appendix A

Quantum Cascade Photonic Crystal
Surface-Emitting Injection Lasers

A.1 Introduction

In this appendix, I review the results of a collaborative project between our group at Caltech and

the quantum cascade (QC) laser group at Bell Laboratories, aimed at the development of photonic

crystal microcavity lasers within quantum cascade heterostructures. The results I described are the

focus of refs. [34, 35, 36]. Unlike the main part of this thesis, the focus here was not on the

development of high-Q, small-Veff resonators for cavity QED, but to instead utilize other important

properties of planar PC cavities, such as their scalability and potential for surface emission, to create

novel QC lasers, termed QC-PCSELs (quantum cascade, photonic crystal surface-emitting lasers).

In addition, another main distinction in comparison to the PC lasers studied in chapter 3 is that these

QC PC lasers are electrically injected devices. As electrical injection is a desirable characteristic

for many devices, some of the techniques utilized in this work are of potential significance for

applications involving high Q, small Veff PC lasers.

Research in semiconductor heterostructures has led to the development of a number of optoelec-

tronic devices in which the flow of electrons is controlled with great precision [194]. The quantum

cascade laser [195, 196], one product of such progress in electronic bandstructure engineering, op-

erates based upon intraband optical transitions (within conduction band states, or subbands) where

electrons flow through a semiconductor superlattice ”staircase”, emitting a photon at each step. Such

devices are hence unipolar (single carrier), and thus operate in a fundamentally different manner

than standard semiconductor lasers, which rely upon electron-hole recombination for light genera-

tion. QC lasers have established themselves as the leading tunable coherent semiconductor source
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in the mid- and far-infrared (IR) ranges of the electromagnetic spectrum [197, 198, 199].

However, due to the transverse magnetic (TM) polarization of intersubband transitions, QC

lasers are intrinsically only in-plane emitters. The electric field vector is perpendicular to the semi-

conductor layers, and surface emission, desirable for several applications, cannot be easily achieved.

The PC microcavity that we employ acts both as a source of optical feedback and as the means for

diffracting light vertically from the chip to provide surface emission. In addition to enabling surface

emission, our devices are greatly scaled down from standard QC devices, enabling miniaturization

and on-chip integration of QC lasers, with potential applications such as multi-wavelength two-

dimensional laser arrays for spectroscopy envisioned. In addition, QC PC lasers are an interesting

system for research on photonic bandgap structures, as their unipolar nature, operation through elec-

trical injection, and long emission wavelengths (and hence larger device feature sizes) are unique

and advantageous aspects in comparison to previously studied interband PC lasers. In particular, the

demonstration of an electrically-injected PC microcavity laser is an important step in the develop-

ment of PC technology for practical applications.1 In our QC PC lasers, an etched pattern penetrates

through the laser active region, deep into the bottom waveguide cladding. This etch produces the

same 2D PC pattern in the lower refractive index bottom cladding as in the waveguide core, allow-

ing for efficient vertical confinement of the guided mode [201]. This design reduces the diffraction

of radiation into the substrate, while providing a high-index contrast semiconductor-air 2D grating

for strong in-plane feedback. As a result, our devices use only 10 periods of the photonic lattice

(less than eight wavelengths in diameter), hence, their classification as microcavity lasers.

A.2 Basic design and fabrication

The details of the device design and measurement are given elsewhere (ref. [34] and references

therein). For our purposes here, the key background information is an overview of the principles of

the device operation and an understanding of the PC design strategy. fig. A.1(a) shows a schematic

view of a QC-PCSEL device. Electronic current transport through a cascade of active regions and

injectors within the QC heterostructure results in photon emission at λ ∼ 8 µm. Optical feedback

is provided by a PC microcavity consisting of an array of air holes that has been etched through

the active region and bottom cladding of the QC heterostructure. The lattice of air holes provides

distributed Bragg reflection (DBR) in two dimensions parallel to the chip.

1At the time of publication of this work, the QC PC lasers described here were the first electrically injected PC micro-
cavity lasers. Since that time, electrically injected PC lasers at near-IR wavelengths have also been demonstrated[200].
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Figure A.1: (a) Schematic of a QC-
PCSEL device. (b) Scanning elec-
tron microscope (SEM) image of an
array of QC-PCSELs (inset shows
a zoomed in top-view of a device).
(c) Calculated two-dimensional in-
plane TM bandstructure. The flat-
band regions (A,B, and C) are in-
dicated by dark gray bands. (d)
Sub-threshold (dashed) and lasing
(solid) emission spectra from a QC-
PCSEL with lattice geometry tai-
lored for emission centered at the A
flat-band region.

The PC lattice consists of a hexagonal array of air holes, chosen primarily due to its connected

nature (unlike a lattice of rods, for example), necessary for efficient electrical injection. The in-

tersubband transitions in quantum wells are naturally TM-polarized (electric field normal to the

epitaxial layers). Using the plane-wave expansion method [202], we thus calculate the in-plane

bandstructure for TM modes, shown in fig. A.1(c) for a device with hole radius (r) to lattice con-

stant (a) ratio r/a = 0.30, and with an effective index neff = 3.35 taken to account for vertical

waveguiding. Highlighted in this bandstructure are three frequency regions of interest, labeled A,

B, and C, which overlap flat-band regions. These flat-band regions are formed through mixing of

forward and backward propagating plane waves at high-symmetry points of the PC reciprocal lat-

tice. In these flat-band regions, low-loss resonant modes can be localized in finite lattice structures

(such as our cavities) due to the reduction in group velocity over an extended region of wavevector

space. Regions A, B, and C are specifically highlighted because they surround the flat-band regions

in the frequency range close to the second-order Bragg condition. Close to the second-order Bragg

condition, light can radiate into the air for surface emission, as coupling occurs to plane waves with

near-zero in-plane momentum. These are the components which lie above the air-light cone (light

gray region of fig. A.1(c)) and can radiate vertically. Choosing a ∼ 3 µm for a hexagonal lattice

with r/a=0.30 aligns these flat-band regions with the QC material gain spectrum (λ ∼ 8 µm).

Vertical optical confinement is determined by the semiconductor and metal layers comprising

the QC laser structure. A key element of our design is the use of a surface-plasmon waveguide
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Figure A.2: (a) QC epitaxy and surface plasmon waveguide mode. (b) Cross-sectional SEM of an
etched QC PC laser.

for vertical confinement [203]. This waveguide exhibits an electric field intensity maximum at the

top semiconductor-metal interface (fig. A.2(a)). Particularly relevant to this work is the thinner

epitaxial material (2.4 µm compared with 5.2 µm for a standard waveguide) and the absence of

AlInAs cladding layers. Both of these characteristics dramatically ease the etching process, which

must penetrate into the bottom InP cladding to suppress radiation into the substrate [201].

The PC patterns are created by electron beam lithography, mask transfer to a dielectric ox-

ide layer, and transfer into the heterostructure material by inductively-coupled plasma reactive ion

etching. The deep etch through the vertical waveguide core region into the bottom cladding layer

(see appendix C) produces a high index contrast semiconductor-air grating (fig. A.2(b)), reducing

substrate radiation losses and ensuring that only a small number of PC periods (less than 8 optical

wavelengths in diameter) are required to provide strong optical feedback, in contrast to traditional

second order grating based devices which typically employ a shallow etch (weak grating) and re-

quire several hundred periods of the lattice.

After etching of the PC pattern, an insulating silicon nitride layer is deposited surrounding

the PC cavities, and top and back metal contact layers are evaporated, with the etched sidewalls

sufficiently vertical to prevent electrical shorting. In addition, a thin metal layer, used to create the

bound surface plasmon mode in the vertical direction of the waveguide, is evaporated on the surface

of the cavities. An array of fully-processed QC-PCSEL devices is shown in fig. A.1(b).

A.3 Electroluminescence and lasing measurements

As described in ref. [34], low-temperature electroluminescence measurements of microfabricated

devices reveal three sets of emission peaks, corresponding to regions A, B, and C in fig. A.1(c).
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Figure A.3: (a) Emission spectra from devices with different a and r/a. The gray shaded area
corresponds to the FWHM of the QC gain spectrum.(b) Tuning of the laser emission wavelength as
a function of a and r/a for several different devices located on the same semiconductor chip. The
lasers operate predominantly in single mode (see inset) with a side-mode suppression of at least 20
dB.

Laser emission was achieved (operating in pulsed mode with 50 ns pulse width at 5 kHz repetition

rate), and is seen to tune with the hole radius and lattice spacing of the PC cavity in accordance with

simulation predictions (fig. A.3). Figure A.1(d) shows the subthreshold and lasing emission spectra

for a device with lattice geometry chosen to align the gain peak to the A flat-band region. Lasing

always originated from the highest frequency (wavenumber) resonance within the A-peak. The

majority of the devices exhibit single mode laser emission in pulsed mode. By selecting devices

with different values for a or r, multi-wavelength emission from the same semiconductor chip is

achieved (fig. A.3).

As described in ref. [36], a careful analysis of the experimental data (spectral information,

far-field emission measurements and polarized intensity measurements) and numerical simulations

shows a close correspondence between theory and simulation, and provides a unique identification

of the lasing mode. The first step in the process of identification of the laser mode is to determine

its symmetry. Here, we consider the behavior of the laser mode under reflection about the cavity’s x̂

and ŷ axes (see fig. A.1(b) for the definition of these axes with respect to the cavity). The polarized

spatial distribution of the laser’s vertically emitted field intensity is studied by placing a polarizer

in front of a micro-bolometer camera fitted with a lens (fig. A.4(a-b)). The nodal lines (lines of

near-zero intensity in the images) along the x̂ and ŷ axes of fig. A.4(b) for the ŷ-polarized intensity

pattern are consistent exclusively with an electromagnetic field mode which is odd (parity -1) under
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Figure A.4: (a) Polarized emis-
sion pattern (taken in a plane close
to the near field of the PC cav-
ity surface) of a typical lasing de-
vice for an electric field polarization
along the (a) x̂-axis and (b) ŷ-axis of
the cavity. FDTD-generated (c) x̂-
polarized and (d) ŷ-polarized verti-
cal emission pattern at a few wave-
lengths above the PC cavity.

a mirror symmetry about the ŷ-axis and which is even (parity +1) under a mirror symmetry about

the x̂-axis. Such a mode is said to have B1 symmetry, using the nomenclature of chapter 1. A

similar conclusion is reached by studying the x̂-polarized intensity pattern of fig. A.4(a), which has

anti-nodes along both the x̂- and ŷ-axis. Thus, the two polarized intensity patterns of fig. A.4(a-b)

indicate that the laser emission is single mode and of B1 symmetry.

To better understand the vertical emission characteristics of the PC microcavity modes, full

3D-FDTD simulations were performed. The hole depth was taken to be 5 microns and a 200 nm

thick idealized ’perfectly conducting’ metal top contact was used to guide the TM surface wave (at a

wavelength of 8 µm this is a reasonable approximation for a gold metal contact [204, 93]). To reduce

the size and time of the simulation, the cavity was limited to 6 periods of the hexagonal lattice as

opposed to the 10 periods used in the experiment. Mirror boundary conditions were used to project

the modes of the hexagonally symmetric cavity onto a basis compatible with the symmetry of a

rectangle whose principal axes lie along the x̂- and ŷ-axis of the PC microcavity.

The highest frequency resonant mode of the A-peak was found to be of B1 symmetry (we refer

to this mode simply as the B1 mode from here on). This is consistent with the experimentally

measured emission spectrum (fig. A.1(d)) and with the laser near field symmetry (fig. A.4(a-b)).

Figure A.5(a-b) shows the electric field component normal to the semiconductor-metal surface (Ez)

and its in-plane spatial Fourier transform (Ẽz) for the B1 mode. It is interesting to note that this

mode has only a small overlap with the central region of the PC cavity, a characteristic which
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may partially explain its preferential selection as the lasing mode, due to the expected in-plane

spreading resistance in the etched PC region and consequent higher current injection and gain in the

periphery of the PC. Calculations of the vertically emitted radiation field, taken in a plane several

wavelengths above the cavity surface, were performed by eliminating the non-propagating FDTD

near field components and introducing, to simulate the experimental conditions, a 30◦ collection

angle cut-off for the imaging optics. The resulting x̂- and ŷ- polarized intensity patterns of the B1

mode are shown in fig. A.4(c-d), and closely match the polarized micro-bolometer camera images

(fig. A.4(a-b)).

As a final consistency check, far-field emission measurements and calculations were performed.

Figure A.5(c) shows a typical far-field intensity pattern of the B1 lasing mode, measured by scanning

a 300× 300 µm nitrogen-cooled HgCdTe detector in a plane parallel to the semiconductor chip

surface at a distance of approximately 10 cm without any intermediate optics. The theoretical far-

field emission pattern was calculated by transforming the FDTD generated radiation field into the

far-field [205] and is shown in fig. A.5(d). The increased intensity of the two lobes on the ŷ-

axis in fig. A.4(c) of the x̂-polarized intensity and in fig. A.5(d) of the far-field pattern is likely a

result of inadvertent symmetry breaking of the hexagonal symmetry of the PC cavity in the FDTD

simulation.2 In this case, the computed near field under the metal contact is still very symmetric, as

shown in fig. A.5(a). The symmetry breaking in the measured far field (experimentally we observe

2This may result from discretization error in employing the mirror boundary conditions and/or the rectangular bound-
ary of the simulation volume.
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the opposite effect, more intensity in the ŷ-polarization), is possibly a result of the rectangular metal

contact geometry and/or non-uniform current injection.

The FDTD-calculated radiative quality factor (Q) of the B1 mode was found to be roughly a

factor of two higher than the Q value of the neighboring A-peak resonant modes, helping explain

why it is the first mode to lase. The calculated in-plane, top, and substrate radiation rates, as given by

effective cavity quality-factors, were Q‖=600, Qt=10,000, and Qs=7,000, respectively. An estimate

for the Q value associated with internal loss in the metal and semiconductor at 8 microns (αi =

40 cm−1) is Qa=800. Thus, the total vertical extraction efficiency of the PC microcavity laser

is estimated to be ηt = Q−1
t /(Q−1

‖ + Q−1
t + Q−1

s + Q−1
a ) = 3%. The vertical extraction of light

in this case is due to the radiation of small in-plane Fourier components near the Γ-point of the

hexagonal PC reciprocal lattice (fig. A.5(b)), as in second-order Bragg diffraction. The coupling of

radiation from the bottom semiconductor-metal interface to the top metal-air interface (from which

the radiation finally escapes) is mediated through the air holes [204], as well as through the metal

itself (although this last effect has not been included in our simulations).

These PC microcavity lasers combine the electronic bandgap engineering exploited in QC lasers

and the optical dispersion engineering of photonic crystals. The result is a photonic crystal injection

laser that may open new horizons in device design and application in the mid- to far-IR ranges of

the electromagnetic spectrum. In particular, multi-wavelength surface emission makes these devices

interesting from the perspective of spectroscopy applications, as many trace gases and complex

molecules can be probed in this wavelength region [206, 207]. The open cavity architecture of these

holey devices makes them interesting from the perspective of integration with fluids; microfluidic

technology [208, 209] can, in principle, be integrated with these devices to allow for precise delivery

of these fluids to the cavity regions. The introduction of the fluid should affect the L-I characteristic

(light out versus injected current) of the device, for example, through a modification of the laser

threshold current. Electrical readout (a kind of ’detectorless’ spectroscopy) within these systems is

a promising possibility with QC-PCSEL-based devices.

Significant improvements in device performance must be made in order for these applications

to become accessible. In particular, the operating temperature must be increased, and the thresh-

old current needs to be reduced. Current efforts, led by Raviv Perahia at Caltech, are focused on

reducing current spreading in the devices as a means to help achieve these goals.
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Appendix B

Finite-Difference Time-Domain
Simulations

The photonic crystal cavities studied in this thesis are numerically investigated through the finite-

difference time-domain (FDTD) method, reviewed in detail by Taflove [6]. The FDTD algorithm

discretizes Maxwell’s equation, replacing derivatives with finite differences that are second order

accurate. The implementation that is commonly used is based on the Yee algorithm [210], which is

essentially a direct solution to Maxwell’s curl equations, solving for both the electric and magnetic

fields in time and space. The Yee algorithm follows a grid (fig. B.1(a)) in which every electric field

component (E) is surrounded by four circulating magnetic field components (H), and vice versa.

This arrangement means that Faraday’s and Ampere’s laws (which are integral forms of Maxwell’s

equations) are automatically satisfied, as are Gauss’s divergence laws. In terms of boundary condi-

tions, this arrangement naturally assures the continuity of tangential field components across mate-

rial boundaries that follow the cartesian grid.

FDTD is very appropriate for modeling structures such as our PC cavities, where the refractive

index varies significantly on the sub-wavelength scale; other techniques that approximate Maxwell’s

equations with a wave equation usually require a slowly varying refractive index. In addition, be-

cause it does not require matrix inversion techniques, FDTD can be used to do full three-dimensional

modeling of microphotonic structures. Accurate estimates of important properties such as the fre-

quency, quality factor, and modal volume can be obtained.

The code that we use was originally written by Brian D’Urso, an undergraduate in Professor

Axel Scherer’s group at Caltech, and has since been modified by a number of graduate students. Full

three-dimensional simulations of PC cavities are typically performed in the following fashion. To

reduce the simulation time, only one-eighth of the cavity volume is simulated (the upper octant, for
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Figure B.1: Setup for FDTD simulations. (a) Yee space lattice, as formulated in ref. [210]. Figure
adapted from ref. [6] (b) Typical simulation volume for 3D photonic crystal cavities. Mirror bound-
ary conditions are applied along the planes x=0, y=0, and z=0; Mur’s absorbing boundary conditions
are applied along the other three faces of the simulation volume.

example), with mirror conditions chosen for three of the cavity boundaries. Absorbing conditions

are chosen for the other three boundaries, and an air region, typically on the order of two-thirds of

a free-space wavelength, is placed above the cavity to allow the field to adequately decay before it

reaches the boundary. In the in-plane dimensions, the field has already decayed within the photonic

crystal region so that only a small air region (or no air region at all) is needed in those dimensions.

Figure B.1(b) shows a schematic of this. To adequately represent the field within the structure, we

choose a discretization of 20 points per lattice constant (which typically translates to about 80 points

per free space wavelength for the devices we study). With this resolution, the total number of grid

points is typically on the order of 2×106 (200x200x50, for example).

To calculate the cavity mode field patterns in chapter 2, a two-step process is used. We first

calculate the time evolution of an initial field placed within the cavity, and record this time evolution

at some small number of judiciously chosen spatial points (∼5-10). The initial field is a delta

function in time and has a Gaussian spatial profile, and is chosen to have the polarization of interest

(TE or TM). Modes of a specific symmetry can be chosen through proper choice of the mirror

boundary conditions; alternately, if a full structure is simulated, the initial field is spatially located

off-center to allow for excitation of modes of both even and odd spatial symmetry. The field as a

function of time is fourier transformed to give its spectral content. Cavity modes appear as peaks

within this spectrum.
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Figure B.2: FDTD spectra and mode field patterns for TM-polarized donor type defect modes in a
square lattice photonic crystal. (a)-(c) Spectra for modes of (a) B1, (b) B2, and (c) A2 symmetry.
(d)-(f) |E| for the specified modes in (a)-(c)

Figure B.2(a)-(c) shows examples of such spectra, taken from ref. [37]. The system studied

here is a simple square lattice donor-type defect centered about point e in the lattice (see chapters

1 and 2 for the labeling of high symmetry points in the square lattice), where we are focused on

TM-polarized modes due to their applicability for QC lasers. From the group theory analysis of

chapter 1 (extended to cover TM modes), we know that the two X-point donor type defect modes

off the first conduction band are predicted to have B1 and B2 symmetry, and the donor type mode off

the M-point of a higher frequency band is predicted to have A2 symmetry. This knowledge allows

us to specify the mirror boundary conditions; a separate simulation is run for each symmetry type

(three simulations in all here).

The second step of the process is to determine the spatial field profiles for the cavity modes. To

solve for the field profile for a given mode, we take the modal frequency determined through the

spectral calculation described above, and use it as the center frequency for a bandpass filter. The

initial field (chosen to have the appropriate polarization) is then convolved in time with the bandpass

filter [211], whose width is slowly decreased as the initial field evolves and begins to stabilize. The

cavity Q is calculated by determining the stored energy in the cavity (U) and the radiated power to

the boundaries (Pd), with Q = ωU/Pd . Example modal field patterns generated by this technique

are shown in fig. B.2(d)-(f).
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In the design of high-Q cavities presented in chapter 2, we made frequent use of the spatial

Fourier transform of the cavity mode as a diagnostic tool for understanding radiation losses within a

given design. In these calculations, we Fourier transform the complex field pattern E(r). By doing

so, we capture all of the spatial Fourier components, regardless of the time at which the snapshot

of the field is taken. The real, physical electric field can be written in terms of this complex field

pattern as E(r, t) = (E(r)e−iω0t + E∗(r)eiω0t)/2. To generate the complex field pattern, we take

snapshots of the real field at times t and t + T/4, where T/4 is a quarter period (T = 2π/ω0), so

that E(r) = E(r, t)+ iE(r, t + T/4). Typically, the times are chosen so that they coincide with the

magnetic field maximum (at time t, for example) and the electric field maximum (at time t +T/4).
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Appendix C

Fabrication Notes

In this appendix, I have compiled some notes that, for the most part, focus on the etching of mate-

rials using an inductively coupled plasma reactive ion etch (ICP-RIE) tool. The initial part gives a

general overview of some of the considerations taken into account when processing these materials

when the focus is on the creation of microphotonic structures. I then consider fabrication within

specific material systems that are relevant to this thesis, including Si, GaAs/AlGaAs, and the quan-

tum cascade heterostructures considered in appendix A. As fabrication of photonic crystal cavities

within the InP-based multi-quantum-well material was considered in detail in chapter 3, no specific

further consideration of those devices is given here.

C.1 Process flow and general considerations

The process flow for fabricating a device such as a photonic crystal microcavity (fig. C.1) typically

consists of 1) deposition of a hard mask layer (occasionally not required), 2) spin coating of the

sample in electron beam resist and subsequent electron beam lithography, 3) plasma etching (also

known as dry etching) of the mask layer, and 4) plasma etching of the primary material layer (typi-

cally a semiconductor layer in the applications we consider). For some devices, such as the passive

PC resonators and optically pumped lasers described in this thesis, these steps are followed by a wet

etch step to undercut the devices. For more complicated structures, such as electrically-contacted

devices, a number of additional fabrication steps are required.

The creation of low loss optical devices requires an optimization of the steps listed above. For

the plasma etching steps, there are a number of factors to take under consideration. One of the

most important is the mask layer used during the etching; the strength and quality of the mask layer

determines what types of etches can be used. Due to the small feature sizes needed for most of
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Figure C.1: Process flow for fabrication of microphotonic devices such as photonic crystals.

our structures, the starting point will always be an electron beam mask. A relatively soft mask

(such as an electron beam resist mask) that is easily damaged through the dry etching procedures

necessitates the use of a low impact dry etch, while harder masks such as dielectric layers provide

greater etch selectivity and the ability to use a wider variety of etches, but come at the expense

of having to develop a method to fabricate the dielectric mask. For semiconductor etches that are

deeper than a few hundred nanometers, a hard mask is typically a necessity. For most of the devices

we consider in this thesis (with the exception of the QC lasers), the required etch depth is just a

couple hundred nanometers (corresponding to a half-wavelength of light in the material). In such

cases, direct etching into the semiconductor using the electron beam resist is a possibility, although

the benefits (and drawbacks) of this simpler approach must be weighed against the merits of using

a dielectric mask. To use a dielectric mask, one has to develop a suitable etch recipe for transferring

the pattern from the electron beam resist to the dielectric layer, and this can be, in some cases, as

difficult as etching the semiconductor layer directly.

Once a masking material is chosen, the plasma etching processes can be calibrated. Plasma

etching is used because of the anisotropic etch profiles that it can create; PC cavities, for example,

require vertical sidewalls to sustain high Qs. Wet etching, on the other hand, can produce very

smooth etched surfaces, but the etch profiles are often slanted and control of feature sizes can be

difficult (due to undercutting of the mask layer). The system we use for plasma etching is an Oxford

Instruments Plasma Technology (OIPT) ICP-RIE, which has the advantage of allowing for indepen-

dent control of the plasma density (through variation of the ICP power) and the kinetic energy of the

resulting ions (through application of RF power to the wafer table/electrode upon which the sample

sits). This allows for the development of processes that employ a precise combination of chemi-

cal etching and physical etching (ion milling) to create anisotropic, smooth sidewalls. In addition,
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we have control over gas chemistry (Ar, N2, H2, O2, Cl2, SF6, and C4F8 are our available gases),

chamber pressure, and sample temperature (either through control of the temperature of the lower

electrode or the application of He to the backside of the sample). Typically, we begin development

of an etch process by starting with an etch recipe provided by OIPT, or by searching the technical

journals (particularly the Journal of Vacuum Science and Technology B) to see what work has been

done by other groups. This essentially serves to give us a starting point, but the final etch is often

quite different from this initial recipe. One reason for this is that the low loss, micro-optical struc-

tures of interest to us are often quite different than the applications for which many previous etch

recipes have been developed, so that the requirements on the etch can also be significantly differ-

ent. In addition, structures such as PCs contain very small confined spaces whose etch behavior is

markedly altered relative to that of more open structures (both the delivery of source gases and the

removal of etched by-products can be modified within these confined regions). Finally, most etch

recipes in the literature are calibrated using photoresist, a dielectric layer, or a metal layer as an etch

mask. While we will often use a dielectric etch mask immediately before etching of a semiconduc-

tor layer, the initial mask, where the cavity geometry is first defined, and from which the dielectric

mask is created, is usually an electron beam layer.

Before considering the specific processes employed to create the structures studied in this thesis,

let us review some of the process parameters involved in the plasma etching. The gas chemistry

used is determined by the material system being etched; chlorine-based chemistries, for example,

are known to be effective in etching III-V heterostructures, while fluorine-based chemistries are

often used for silicon, silicon dioxide, and silicon nitride. Reference [212], for example, lists many

of the common etch chemistries used to etch semiconductor materials. Once a chemistry is selected,

gas flows must be chosen. Here, the important things to consider are the ratio of the gas flows (for

example, the ratio of Ar to the ratio of Cl2 when etching GaAs) and the total gas flow. The total

gas flow needs to be chosen in such a way that a sufficient amount of gas reaches the sample (so

that the etch is not reactant-limited), but should not be so high that the gas does not have a sufficient

amount of time to react with the material. Typical total gas flows are on the order of 20-30 sccm

(standard cubic centimeters per minute) for the processes we have used. The ratio of the gas flows

will, among other things, affect the etched sidewall angle and smoothness; examples of this will be

shown below.

The chamber pressure is another important process parameter. Typically, the chamber is held at

a baseline pressure of ∼ 10−7 torr when no process is being run; typical process pressures are ∼ 10
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mTorr. The effect of the chamber pressure on the etch behavior can be somewhat difficult to gauge.

In principle, if the etch is one in which chemical etching is the dominant mechanism, an increased

chamber pressure will increase the concentration of the reactive elements and can speed up the etch

(though the etch rate may eventually saturate). If the etch is primarily a physical milling process,

an increased pressure will also initially increase the etch rate, but may eventually cause it to slow,

as the increased pressure may cause collisions between ions that will reduce the kinetic energy with

which they bombard the surface.

The ICP power level sets the density of ionized atoms. In addition, it can have an effect on the

sample temperature; dense plasmas generated by high ICP powers can cause heating of the sample,

which can dramatically influence the etch rate, sidewall profile, and sidewall roughness. This effect

has been exploited in our etching of QC heterostructures, as described below in section C.4. The RF

power level sets a DC Bias, which is basically a potential difference between the plasma coils and

the lower electrode upon which the sample sits. This DC Bias drives the ions into the sample; a large

DC Bias will impart significant kinetic energy into the ions, making physical etching a dominant

process. A large ion milling component will significantly affect the etch mask as well, so that high

DC Bias etches typically require use of a hard dielectric etch mask. In addition, a high DC Bias can

heat the sample.

C.2 Si-based devices

We have been able to create high aspect ratio Si PC structures through direct transfer using an

electron beam resist; this has basically been made possible as a result of the relative ease with which

Si can be etched and the relatively thin (∼ 350 nm) waveguide layer we employ in our devices. The

starting point for our process was an OIPT recipe that called for a relatively low RF power (50 W),

a high ICP power (1200 W), and a C4F8/SF6 etch chemistry. This was a very appealing etch in that

it did not require the special operating conditions that other Si etches do (such as cryo-cooling or

gas chopping).

The first step in the etch calibration was to determine the gas flows to be used. This was done

by fixing a total gas flow and varying the ratio of C4F8 to SF6. The behavior of the etch as a func-

tion of this ratio was very controllable; higher SF6 flows would increase the verticality of the etch

(though flows that are too high would undercut the mask), while C4F8 could be used to smoothen

the sidewalls and counteract the chemical etching by SF6. After a suitable flow ratio was chosen,
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Figure C.2: SEM images of the
Si ICP-RIE etch with varying gas
flow and RF power. (a) RF=50 W,
C4F8=11 sccm, SF6=12 sccm (b)
RF=50W, C4F8=22 sccm, SF6=12
sccm (c) RF=50W, C4F8=11
sccm, SF6=12 sccm (d) RF=20W,
C4F8=11 sccm, SF6=12 sccm.

(b)

1 μm250 nm

(a)

Figure C.3: (a) Angled and (b) top view SEM images of the Si etch used in fabrication of high-Q
PC cavities.

the RF power was varied to limit mask erosion as much as possible. Figure C.2 shows SEM images

of an etched sidewall as function of different process parameters. The initial etch calibration was

done using a photoresist mask consisting of a relatively large circle. After a reasonable etch had

been achieved with this mask, PC patterns in an electron beam resist were used in the final etch

optimization. The primary modification here in comparison to the process used in fig. C.2(d), for

example, is a further reduction in RF power and a bit of an increase in the C4F8 gas flow. Fig-

ure C.3(a) shows an angled SEM image of an etched PC pattern, showing the sidewalls to be both

smooth and vertical. Figure C.3(b) is a top view SEM image of an etched structure, indicating that

the holes are smooth and circular, which is a good indication that the etch that has been employed

does not significantly damage the electron beam mask, thereby allowing faithful transfer of the PC

pattern into the Si layer.
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Figure C.4: Top view and cross sectional SEM images of AlGaAs PC cavities fabricated using an
SiO2 etch mask.

C.3 AlGaAs-based devices

As briefly mentioned in the preface, the GaAs/AlGaAs system dry etches with an ease that, quali-

tatively, is somewhere between Si (easy) and InP (hard). At the time we began our work on etching

AlGaAs structures, we had already developed an etch recipe for InP using an SiO2 mask (chapter

3), and our hope was to simply use this mask. We would then use some form of an Ar/Cl2 chemistry

to plasma etch the AlGaAs layer, and the PC membrane would be undercut with a dilute HF acid

wet etch. In general, fabrication processes can be difficult to reproduce, as the condition of the

etch chamber is continuously changing over time, particularly for chambers (such as ours) in which

multiple materials are etched. As a result, even after a process has nominally been completely de-

veloped, there is often some kind of re-calibration period needed prior to fabrication of a new set of

devices, particularly if it has been a few weeks since the last round of fabrication. When I started

doing SiO2 etches for the purpose of AlGaAs fabrication, it had been about 8 months since our InP-

based PC microcavity laser work, and our ICP-RIE had mostly been used for Si etching during that

time. For reasons that were never completely explainable, we were unable to replicate our previous

success with the SiO2 etch; the etch now seemed to burn the resist somewhat, and produced mis-

shapen holes, even after many attempts at modifying the etch to make it less damaging to the resist.

We were able to develop a subsequent AlGaAs etch that could produce smooth, vertical sidewalls

for a range of hole sizes, but the problems we had with the lack of circularity in the holes seemed to

be significant enough to warrant investigation of other masks. Figure C.4 shows the results of our

AlGaAs processing with an SiO2 etch mask. The AlGaAs etch employed was a simple derivative

of the InP etch described in chapter 3, but now done at room temperature, with modifications to the

Ar/Cl2 gas flows (the Ar/Cl2 ratio was now typically 10/5 sccm) and slight adjustments to the RF

and ICP powers.
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Figure C.5: SEM images of Al-
GaAs photonic crystals using di-
rect pattern transfer from an elec-
tron beam mask. (a) top view, (b)
angled view, and (c)-(d) cross sec-
tional view, showing the different
sidewall angles for different hole
sizes.

Another possibility was to transfer the PC pattern directly from the electron beam resist to the

AlGaAs layer. We spent a few weeks working this out, and developed a reasonably good AlGaAs

etch that was able to do this while maintaining good hole shapes and without overly damaging

the resist. This etch was again a derivative of the InP etch, performed at room temperature, with

significantly lower RF powers (now ∼70 W) and an Ar/Cl2 gas ratio of ∼10/5 sccm. The electron

beam resist seemed to be less adversely affected by the Ar/Cl2 chemistry (in terms of the hole

shape) than the C4F8/O2 chemistry used to etch the SiO2, even though the RF power and DC Bias

levels used were fairly similar. However, maintaining sidewall verticality over the range of hole

sizes used in our graded lattice designs was difficult, and it was clear that the etch did undercut the

electron beam mask, so that producing a desired hole size would take some amount of calibration

(this seemed particularly difficult in that the hole size varies widely in our graded lattice design). As

angled sidewalls can cause a significant increase in loss in planar photonic crystals [114], we decided

that a dielectric etch mask would probably be a necessity. The advantage in using a dielectric mask

is that the range of RF powers that can be used is significantly larger (with the electron beam mask,

we had to limit the RF power to avoid etching the mask away too quickly or beginning to burn

the mask). Nevertheless, the direct transfer approach, summarized by the SEM images in fig. C.5,

remains a potentially viable option, particularly if further optimization can be done to help improve

the sidewall verticality.

In order to etch a dielectric mask without burning the electron beam resist, we wanted to adopt

an etch that would be similar to what we used for Si, where we were able to transfer the PC patterns

into the Si device layer while only using an electron beam mask. This did not seem far-fetched,
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Figure C.6: SEM images of pho-
tonic crystal patterns in a SiNx mask
and subsequent transfer into Al-
GaAs. (a)-(b) Top view and angled
image of the SiNx mask. (c)-(d) Top
view and cross sectional image of
the AlGaAs layer using the SiNx as
an etch mask.

as both Si and SiO2 can be dry etched using a fluorinated chemistry. However, when we tried to

etch the SiO2 with this low RF power etch, it was not very successful; the etch proceeded very

slowly and the sidewalls were not vertical. Another option for the mask was SiNx, which we could

also deposit with our PECVD. The nitride mask was a great choice, primarily because it could be

effectively etched using essentially the same conditions as what we used for Si. The etch rate was

certainly much slower than what it was for Si, but on the positive side, the resist was not burned

or misshapen during the etch, and we had a sufficiently thick resist layer to be able to etch through

the nitride mask (∼ 200 nm thick). Results for the nitride etch are shown in fig. C.6(a)-(b); typical

process conditions were quite similar to the Si etch described above. Once this etch was developed,

we used an AlGaAs etch (fig. C.6(c)-(d)) that was essentially identical to that used when we tried

an SiO2 mask, as the SiNx had nearly the same etch selectivity.

We used the SiNx and AlGaAs etches developed for PC cavities as a basis for etching the mi-

crodisk structures investigated in the second part of this thesis. The main difference in the etches

were the gas chemistries and RF powers used; we typically decreased the chemical nature of the

etches (increased C4F8 for the SiNx, decreased Cl2 for the AlGaAs), and slightly reduced the ap-

plied RF power. With the microdisk cavities, the primary objective is to make the disk sidewall

smooth; this has led to us adopting etches where sidewall verticality has been sacrificed in favor of

smoothness.

The SiNx etch can be a bit unpredictable in practice. In particular, if the C4F8 flow is too low, the

etched sidewalls can be very rough. Figure C.7 shows the results of some poor etches; the sidewall

roughness in the mask is clearly transferred into the AlGaAs layer. As the state of our etching



257

(a) (b)

(c) (d)

e-beam resist

SiNx

SiNx

AlGaAs

Figure C.7: SEM images of pho-
tonic crystal and microdisk patterns
when the SiNx etch does not turn
out properly, most likely because of
too low a flow of C4F8. (a)-(b) SiNx

PC and microdisk mask and (c)-(d)
AlGaAs layer using the SiNx as an
etch mask.

chamber is essentially constantly varying in time, we typically have to re-calibrate the SiNx etch

before each new processing batch. This usually involves a couple of practice etches that are used

to determine the precise C4F8 and SF6 flows and RF power that will etch the material appropriately

given the current state of the etch chamber. In addition, chamber cleaning runs are periodically run,

in principle, to reset the condition of the chamber.

C.4 ICP-RIE etching of quantum cascade heterostructures

The quantum cascade lasers discussed in appendix A required a dry etch optimization to be able to

create relatively deep (∼ 4-5 µm), etched features (∼2 µm diameter holes) with vertical sidewalls

in an InP-based heterostructure. The starting point was a 500 nm thick SiO2 mask (etched at Bell

Laboratories) that had smooth and relatively vertical sidewalls (> 85◦). Our efforts on developing

this etch are reported in ref. [35].

Dry etching of In-containing III-V semiconductor materials is typically accomplished using one

of two gas chemistries [115]. The first, using a CH4/H2 mixture, is performed at room temperature

but is relatively slow (< 60 nm/min) and suffers from heavy polymer deposition during the process.

Cl2-based plasmas have also been used, but the low volatility of InClx products at room temperature

requires some form of heating to be employed. One method for producing smoothly etched, vertical

sidewalls in an InP-based semiconductor system is direct heating of the wafer table (> 150 ◦C).

Such a process was employed to etch the near-IR PC lasers of chapter 3, for example.

The Cl2-based plasma etch that we discuss in this appendix does not make use of direct wafer

table heating, but rather uses the high density plasma produced by the ICP system to provide local
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surface heating of the sample and an increased efficiency in the sputter desorption of the InClx

products [115]. Such an etch has been used by Fujiwara et al., to etch 8 µm diameter, 3.6 µm deep

holes in a photonic bandgap structure [116].

The ICP-RIE etch was studied as a function of ICP power (300-500 W) and RF power (100-

350 W), with the chamber pressure (Pch = 3 mTorr) and Ar:Cl2 gas chemistry (12 sccm:8 sccm)

kept fixed, and no He backside cooling. The final ICP and RF powers chosen were 350 and 250

W, respectively, and produced vertical sidewalls with an acceptable amount of sidewall roughness

(fig. C.8). Lower RF powers produced extremely pitted (and slightly angled) sidewalls throughout

both the core and cladding layers (which we attribute to the decreased volatility of the InClx etch

products, resulting from the lower sample temperature and/or lower desorption rate caused by the

reduced RF power), while higher RF powers created smooth sidewalls in the lower cladding and InP

layers but increased roughness in the core layer (attributed to pitting that occurs in Al-containing

layers that are etched at too hot a temperature). Similar effects on the sidewall roughness were

observed as the ICP power was varied. These results suggest that the sample temperature (generated

by the plasma) is a leading factor affecting sidewall roughness. The percentage of Cl2 in the gas

mixture, which can also play a role, has been varied between 30% and 50%, with a value of 35% (7

sccm) finally chosen as the best compromise between decreased sidewall roughness (seen for lower

Cl2 percentages) and improved sidewall angle (seen for higher Cl2 percentages). For our typical

etch times (t∼4.75 min), etch depths of 5 µm are achieved.

Using the plasma as a mean of increasing the sample temperature indicates that the etch rate (and

therefore etch depth) will be a nonlinear function of time, as some amount of time is required for the

temperature to reach a value hot enough for the InClx compounds to be sufficiently volatile. This has

been observed experimentally, as etch times under 3 min have produced devices with angled holes

and non-volatile InClx etch products. Note that the change in sample temperature as a function of

time for a number of different process parameters has been investigated in detail by Thomas III et

al. [213], and confirms that some minimum etch time (dependent upon the RF and ICP powers) is

required for the sample to reach the requisite temperature (> 150 ◦C).

Our etch creates a nearly 90◦ sidewall angle but suffers from roughness in the core layer. We

believe that this is the result of the elevated sample temperature created by the high density plasma,

which probably causes pitting of Al-containing layers. In the optimal case, control of the sample

temperature (or some other critical process parameter) as a function of time would be employed to

allow for varying etch conditions depending on the layer composition. This will be of particular



259

Figure C.8: SEM images of a typical QC-PCSEL device after the semiconductor etch, but before
the deposition of electrical contacts. (a)-(c) Images of a cleaved device at different magnifications,
showing (a) the verticality and relative smoothness of the etch, (b) the etch depth compared to the
active region thickness of the QC device, and (c) the uniformity of the etch across the whole device.
(d) SEM image of a device from the top surface.

use in standard vertical waveguide designs that have both top and bottom semiconductor cladding

layers (often composed of AlInAs).
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Appendix D

Cavity Q and Related Quantities

There are a number of physical quantities related to a cavity quality factor (Q) that appear in the

literature. I have made an attempt to summarize some of these quantities in this appendix.

The definition of a cavity’s quality factor is essentially Q = ωτph, where ω is the cavity mode

frequency and τph is the photon lifetime within the cavity (τph = 1/Δω, where Δω is the spectral

width of the cavity mode). Q is defined in terms of the energy of the field, so that 1/τph = ω/Q is

an energy decay rate. The field’s decay rate is one-half this amount, so that:

κ =
ω
2Q

. (D.1)

Written like this, κ has units of radians/second. To convert this to Hz, we divide by 2π. I have tried

to adopt the convention of explicitly writing κ/2π when quoting cavity decay rates in units of Hz,

to avoid any confusion.

It is sometimes convenient to consider a cavity decay length Lph, which can be defined through

τph =
Lph

c/n
(D.2)

where c/n is the speed of light within the cavity. More precisely, n is not the material refractive

index but instead is the group index of the mode within the cavity, ng. The Q of the cavity can be

written in terms of Lph as:
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Q =
2πngLph

λ
(D.3)

Typically, a decay length Lph might not be quoted, but rather, an inverse decay length α = L−1
ph

is. This is in particular true for structures such as waveguides, for which a loss per unit length

(sometimes in units of cm−1 for example, and other times in units such as dB/cm) is a common

metric. Equation (D.3) above is then important for being able to compare waveguide loss to a cavity

Q. Perhaps more important, material absorption losses are often quoted in terms of a loss per unit

length, and equation (D.3) then tells us how to compute the equivalent absorption-limited Q.

A cavity’s Q physically represents the number of cycles the optical field undergoes before its

energy decay to a value that is 1/e time its original value. This is nothing more than saying that the

cavities energy decays in time as e−ωt/Q, or equivalently

dU
dt

= −ω
Q

U (D.4)

Where U is the stored energy within the cavity, and Pd = − dU
dt is the dissipated power. This leads

to another common definition of Q,

Q = ω
U
Pd

(D.5)

If we write the cavity frequency ω = 2π
T , where T is period of the field, this equation can be re-

written as

Q = 2π
U

Ul,c
(D.6)

where Ul,c is the energy loss per cycle (period). For traveling wave mode cavities, such as Fabry-

Perots or WGM-based devices, it is common to quote a cavity finesse F , which is given by
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F =
U

Ul,rt
(D.7)

where Ul,rt is the energy loss per round trip length (where the round trip length is 2L for a Fabry-

Perot cavity of length L and 2πR for a WGM cavity of radius R). The finesse is then related to the

Q (modulo 2π) by the ratio of Ul,c to Ul,rt . This ratio is simply the number of optical cycles within

a round trip length Lrt , which is Lrt/(λ/ng). Plugging into equation (D.7), we have:

F =
Q
2π

λ
ngLrt

(D.8)

Finally, our equation for the decay length Lph (equation (D.3)), can be used to simply write the

finesse as:

F =
Lph

Lrt
(D.9)

A cavity finesse of 1 then means that the field decays to its 1/e point after one complete round

trip.
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Appendix E

Resonator-Waveguide Coupled Mode
Theory

In this appendix, I briefly review some of the key equations of the coupling of modes in time

approach of Haus et al. [125] that is often used to study resonator-waveguide coupling. There are

many references that treat this topic; the discussion below has been primarily influenced by refs.

[50, 57, 55]. Other helpful works include refs. [214, 215, 216].

E.1 Traveling wave mode resonator

We first consider coupling between a single mode waveguide and a single mode of a cavity; an

example of this would be coupling between the forward propagating mode of a waveguide and the

clockwise propagating WGM of a microdisk resonator, as shown in fig. E.1. The cavity’s intrinsic

loss rate is γi, and its loss rate into the waveguide is γe. Note that the γ’s are energy decay rates,

γi

γe

s t

acw

Figure E.1: Schematic for single mode coupling between a resonator and waveguide. The cavity’s
intrinsic energy loss rate is γi, and its energy loss rate into the waveguide is γe. The cavity, whose
mode amplitude is called acw, is excited by a waveguide mode s, and the transmitted field past the
cavity is t. Note that acw is normalized to energy, while s and t are normalized to power.
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related to the field decay rates by a factor of 2, as discussed in appendix D. The waveguide input

field is labeled s, and it couples to a cavity mode of amplitude acw. The transmitted field past the

cavity is t, with s and t normalized to power, and acw normalized to energy [125].

The time evolution of the mode amplitude acw is given by:

dacw

dt
= iω0acw − γT

2
acw + kes (E.1)

where γT is the total energy decay rate of the cavity mode (equal to γ0+γe above), and ke is the

waveguide-resonator coupling coefficient.1 The above equation simply states that the mode ampli-

tude acw oscillates in time with a frequency ω0 (first term on the right hand side), decays with a loss

rate γT (second term), and is driven by an input field s with coupling coefficient ke (third term).

The transmitted signal t will have a contribution due to that portion of the input signal s that

does not couple into the cavity, and a contribution from the signal coupled out of the cavity. We

thus expect t = α1s+α2acw, where α1 and α2 are coefficients to be determined. We can determine

α1 and α2 through a power conservation argument, where we equate the power transfer into the

cavity with the change in the cavity’s internal energy plus the dissipated power. That is, we write:

|s|2 −|t|2 =
d|acw|2

dt
+ γ0|acw|2 (E.2)

Plugging in equation (E.1) along with t = α1s + α2acw yields three equations for the variables α1

and α2 (which are complex). We have

1−|α1|2 = 0

|α2|2 = γe

−α1α∗
2 = ke

(E.3)

One simple choice of solution is α1=-1, α2 = k∗e (with |ke|2 = γe), giving the transmitted signal as:

1Coupling coefficients are often denoted by the symbol κ. However, we have already reserved κ for the field decay
rate, so we choose k instead.
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t = −s+ k∗eacw (E.4)

From equations (E.1) and (E.4), we can find the steady state (normalized) transmission through

the waveguide, given by T = | t
s |2. Before doing this, we expand our formalism a bit to let γT =

γe + γ0 + γp, where γp is a loss term representing parasitic coupling between the waveguide and

resonator (for example, coupling-induced scattering into radiation modes). From this, we solve for

T , and arrive at:

T =

∣∣∣∣∣γe − (γ0 + γp)−2iΔω
γe +(γ0 + γp)+2iΔω

∣∣∣∣∣
2

(E.5)

where Δω = ω−ω0, the difference between the drive frequency and the cavity resonance frequency.

As a function of ω, T is a Lorentzian centered at ω = ω0.

On resonance (Δω=0), we can rewrite this equation as

T =
(1−K

1+K

)2
(E.6)

where K is called the coupling parameter [55, 57], and is defined as

K =
γe

γ0 + γp
(E.7)

K is the ratio of coupling into the waveguide with coupling into intrinsic and parasitic loss chan-

nels. K=1 is called critical coupling (corresponding to complete power transfer, where waveguide-

cavity coupling equals intrinsic and parasitic loss), while K < 1 (K > 1) is called the undercoupled

(overcoupled) regime. These important regimes are discussed in many other works [125, 20, 55,

214].

Experimentally, we always measure QT = ω0/γT , although we have control over γe by control-

ling the taper-cavity separation. In practice, we can increase the taper-cavity separation to the point

that γe is quite small, giving us an estimate of the cold-cavity quality factor Qi (assuming that γp
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also becomes quite small as the separation becomes large). Without changing the taper-cavity sep-

aration, we can get an estimate of Qi+p, the Q due to intrinsic decay and parasitic waveguide-cavity

coupling, by knowing K, or equivalently, the transmission depth on resonance (equation (E.6)). In

particular,

Qi+P =
ω0

γ0 + γp
=

ω0

γ0 + γe + γp
· γ0 + γe + γp

γ0 + γp

= QT (1+K)
(E.8)

Another important parameter is called the ideality I, which is the ratio of the coupling into the

waveguide mode of interest with the coupling into all waveguide channels. That is,

I =
γe

γe + γp
(E.9)

I=1 implies that the resonator-waveguide coupling is ideal in the sense that all coupling is into the

desired waveguide channel.

Next, let us consider the case of an emitter within the cavity. A fraction β of the emitter’s

spontaneous emission will be coupled into the cavity mode of interest. The fraction of these photons

that are then coupled into the waveguide mode of interest is given by the parameter η0, with

η0 =
γe

γe + γ0 + γp
(E.10)

This can easily be rewritten in terms of the coupling parameter K as:

η0 =
1

1+1/K
(E.11)

We see that η0 approaches unity as the system is driven into the overcoupled regime; at critical

coupling (K=1), η0 = 50%. In the literature, much attention is paid to β, with a high-β cavity

often seen as a solution to efficiently collecting photons from an emitter, such as a self-assembled

quantum dot within a high-index semiconductor. Although it is somewhat obvious, we note here
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that η0 also plays an important role, with βη0 giving the total fraction of emitted photons that are

actually collected into the channel of interest, which could be the forward propagating fundamental

taper mode in our experiments, or some well-defined free-space collection channel for experiments

with a Fabry-Perot cavity.

The ratio of the total (loaded) quality factor QT to the intrinsic quality factor Qi can be written

in terms of η0 and I as:

QT

Qi
=

γ0

γ0 + γe + γp
=

γ0 + γe + γp

γ0 + γe + γp
− γe + γp

γ0 + γe + γp

= 1− γe

γe + γ0 + γp

γe + γp

γe

= 1− η0

I

(E.12)

Finally, we consider two quantities of importance to many processes that occur within optical

microcavities. The internal cavity energy U can be written as the product of the dropped power

into the cavity, Pd , and the photon lifetime due to intrinsic and parasitic losses, τi+P. Noting that

Pd = (1−T )Pin, where Pin is the input power into the waveguide, and plugging in for T in terms of

the coupling parameter K, we have:

U = (1−T )Pinτi+P

=
4K

(1+K)2 Pin
Qi+P

ω0

=
4K

1+K
Pin

QT

ω0

(E.13)

Equations (E.12) and (E.11) can then be used to relate U to the intrinsic quality factor Qi, ideality

I, and coupling parameter K. This yields:

U =
4K

(1+K)2 (I +K(I−1))
Qi

ω0
Pin (E.14)

This quantity is maximized when K = I/(2− I), for which U = I(Qi/ω0)Pin.

The circulating intensity within the cavity, ℑ, is given as ℑ = (U/Veff)vg, where vg is the group

index of the cavity mode. For critical coupling (K = 1) with unity ideality (I = 1), we can simply
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write this as:

ℑ = vg
U

Veff

=
c
ng

Qi

ω0Veff
Pin

= Pin
λ0

2πng

Qi

Veff

(E.15)

E.2 Standing wave mode resonator

We next briefly consider the case where the resonator supports a standing wave mode rather than

a traveling wave mode. This is true, for example, in the photonic crystal microcavities studied in

the first part of this thesis. The main difference is that the standing wave mode decays equally

into the forward and backward propagating modes of the waveguide. If we continue to consider

γe to be the loss rate into the forward propagating waveguide mode, the total loss rate γT is given

as γT = 2γe + γ0 + γp. The formula for the normalized transmission is then determined through an

analogous set of equations as used above, with:

T =

∣∣∣∣∣γe − (γe + γ0 + γp)−2iΔω
γe +(γe + γ0 + γp)+2iΔω

∣∣∣∣∣
2

(E.16)

On resonance (Δω=0), we can rewrite this equation as:

T =
(1−K

1+K

)2
(E.17)

where the coupling parameter K is now written as

K =
γe

γe + γ0 + γp
(E.18)

We see that the form of T (K) is exactly the same as what is was for coupling to a traveling wave

mode, but the range of values that K can attain is restricted to K ≤ 1.

In coupling to a standing wave mode, there is now a reflected signal coming out of the input



269

port, with the normalized reflection R given as R = | r
s |2. In this equation, r = k∗easw, where asw is

the standing wave mode amplitude. We then arrive at:

R =

∣∣∣∣∣ 2γe

γe +(γe + γ0 + γp)+2iΔω

∣∣∣∣∣
2

(E.19)

so that on resonance, this is rewritten in terms of K as:

R =
4K2

(1+K)2 (E.20)

Finally, we consider the parameter η0. Assuming that photons are only collected from one of

the waveguide modes, it is defined as:

η0 =
γe

2γe + γ0 + γp
(E.21)

and can again be rewritten in terms of the coupling parameter K as:

η0 =
1

1+1/K
(E.22)

provided that K is defined as in equation (E.18). We see that η0 ≤ 50%, which makes sense because

the cavity mode equally decays into the forwards and backwards channels of the waveguide, so that

at most 50% of the cavity photons can be collected out of any one channel. For the experiments we

have conducted thus far (chapters 6 and 7), collection from both channels can be easily achieved,

so that this is not a significant limitation. However, this might not always be the case, particularly if

the cavity-waveguide unit is to be a node within a more complex system.
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Appendix F

Laser Rate Equations

A rate equation approach [152, 217, 218] is often a simple way to study aspects of the steady state

and dynamical behavior of lasers. Although a full quantum mechanical approach can be more rigor-

ous, rate equation techniques are typically relatively simple and easier to solve, while still including

fluctuations (i.e., spontaneous emission into the laser mode), albeit at a relatively basic level. In

contrast, purely semi-classical theories, beginning at the level of the Maxwell-Bloch equations, for

example, neglect fluctuations altogether [219]. In what follows, we present an overview of a simple

rate equation model used in the fits of our 2 µm diameter microdisk-quantum-dot lasers studied in

chapter 7. There are a number of good treatments of rate equation modeling in the literature; I have

personally benefitted from studying the text of Coldren and Corzine [152].

For semiconductor lasers, the rate equations are often a pair of equations that describe the time

evolution of the carrier number (N) and photon number in the cavity mode of interest (Np) within

the structure. Here, we are considering a semiconductor material where light emission occurs as a

result of electron-hole recombination, and where the active material maintains charge neutrality, so

that the electron number Ne is equal to the hole number Nh, and we keep track of a single carrier

number N. The rate of change of N will be given by the difference between carrier generation

processes and carrier recombination processes. Carrier generation (occurring at a rate L) can occur

through current injection or optical pumping, for example. Recombination processes can include

stimulated and spontaneous emission (Rst and Rsp) and non-radiative recombination (Rnr) (carrier

leakage can also be a factor, although we do not consider it here). Calling the volume of the active

region V , we can write this explicitly as:
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dN
dt

= L− (Rnr +Rsp +Rst)V (F.1)

The rate of change of Np will be given by difference in photon generation and photon removal

processes. Photon generation will be due to stimulated and spontaneous emission, while photon

removal will be due to cavity loss. We can write this equation as:

dNp

dt
= (Rst +βRsp)V − Np

τph
(F.2)

where γph = 1/τph is the photon number loss rate from the cavity (=ω/Q). As we have mentioned

in other parts of this thesis, β is called the spontaneous emission coupling factor, and is the fraction

of spontaneous emission emitted into the cavity mode of interest. In this equation, we have not

explicitly made use of the modal confinement factor Γ, which basically takes into account the fact

that the volume of the cavity mode of interest will often be different than the volume of the active

region. This is because our equations are in terms of carrier number and photon number; if we had

instead written them in terms of densities, use of Γ would be necessary, because the photon number

Np is not taken over the active region volume V , but rather a mode volume.

From this point, an essentially phenomenological approach is often used to describe the different

recombination processes; the specifics often depend on the gain medium under consideration. For

our purposes in chapter 7, the gain medium is a single layer of quantum dots. Let us first consider

stimulated recombination Rst . By a stimulated process, we mean that photon generation requires

the presence of seed photons. It is therefore taken to be proportional to the photon number Np;

for example, Rst = vgglNp as in Coldren and Corzine [152], where vg is the group velocity of the

cavity mode and gl is the gain per unit length. Equivalently, it can be written in terms of a gain

per unit time g as Rst = gNp. Next, the spontaneous recombination term Rsp is often taken to

be a bi-particle process (electron-hole recombination), so that Rsp = BN2, where B is called the

bimolecular recombination rate. Non-radiative recombination is usually a combination of processes

with varying power law dependencies on N. One process is surface recombination, which is often

taken as Rsr = AN, where A is some material-dependent coefficient. Another process is Auger

recombination, the transfer of kinetic energy from an electron-hole pair to another electron (or
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hole). It is often taken as RA = CN3, where C is called the Auger recombination coefficient.

The rate equations we use to model the microdisk lasers of chapter 7 are:

dN
dt

= L− [
N1.22

τs
+

N2

τ′sp
]−gNp (F.3)

dNp

dt
= (g− γph)Np +

βN2

τ′sp
(F.4)

Here, we have assumed an N2 dependence for radiative recombination, no Auger recombination,

and have taken the surface recombination term to have a N1.22 dependence (as discussed in chapter

7, this is done to match the measured subthreshold slope of the light-in-light-out curve). In these

equations, the proportionality coefficients in front of the N-dependent terms have been written as

lifetimes, with τs being the surface recombination lifetime and τ′sp being the Purcell-factor-modified

(appendix H) spontaneous emission lifetime of the quantum dots (where the unmodified lifetime is

taken to be 1 ns).

In our microdisk cavities, carrier generation is accomplished through optical pumping, where

the measured quantity is the pump power incident on the sample surface, Pinc. L is related to Pinc

through:

L =
Pincηabsηint

Eph,pump

Am

Apump
(F.5)

where ηabs is the fraction of incident pump power that is absorbed, ηint is the internal efficiency of

carrier generation, Eph,pump is the energy per pump photon, Am is the modal area, and Apump is the

pump beam area. Basically, PincηabsAm/Apump gives the absorbed pump power by the disk, dividing

by Eph,pump converts this to an absorbed photon number rate, and multiplying by ηint converts this

to a carrier generation rate.

The surface recombination lifetime τs is taken as:

τs =
1

2(2πRρA,QD)vs
(F.6)

Here, ρA,QD is the areal quantum dot density, a quantity estimated by the material growers (300
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µm−2 for the QD material we use), so that 2πRρA,QD gives a linear QD density along the perimeter

of the device (the additional factor of 2 in the equation takes into account the degeneracy of the QD

ground state). vs is a surface recombination velocity, which we take as a fit parameter.

The gain per unit time g is taken to have the form:

g = g′(N −Ntr) (F.7)

where g′ is the differential gain and Ntr = ρA,QDAm is the transparency carrier number (the total

number of available states is 2ρA,QDAm due to degeneracy, and the transparency level is half of this).

g′ is taken to be the maximum modal gain if all QD ground states interacting with the cavity mode

are inverted divided by the total number of QD states.

We thus solve the rate equations (equation (F.3)) in steady state to give us the steady state

photon number Np,ss as a function of pump power. To match our experimental data, the collected

laser power (Lout) is related to Np,ss through:

Lout = ηcollEphγphNp,ss (F.8)

where Eph is the emitted photon energy (Eph = �ω) and ηcoll is the collection efficiency. Finally,

we have:

ηcoll = ξ
Eph,pump

Eph
ηint (F.9)

where ξ is the laser’s differential efficiency (which we directly measure, as discussed in chapter 7),

and Eph,pump/Eph is the ratio of the energies of the pump and emission photons. The steady state

solutions to the rate equations, using the relationships outlined above, produce the solid fits to the

experimental data in fig. 7.8.
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Appendix G

The Jaynes-Cummings Model

The interaction of an atom with an electromagnetic field is approached in a number of different

ways, depending on how the atom and field are treated (classically or quantum mechanically).

Semiclassical models treat the field classically and the atom quantum mechanically. The Jaynes-

Cummings model [220, 221, 222] treats both quantum mechanically, but makes several simplifying

assumptions. In particular, the atom is treated as a two-level system, and driving and dissipation

terms are not included. In this appendix, I first briefly review the Jaynes-Cummings model. I then

consider extensions of this model to include driving and damping terms, following the quantum

master equation approach as outlined by Carmichael in his books [149, 180].

G.1 The Jaynes-Cummings Hamiltonian and eigenvalue spectrum

The Jaynes-Cummings Hamiltonian HJC can be written as:

HJC = Hatom +Hfield +Hint, (G.1)

where Hatom, Hfield, and Hint are terms due to the free atom, the free field, and the atom-field inter-

action, respectively. The first two terms can be written as:

Hatom =
1
2

�ωaσ̂z Hfield = �ω f

(
â†â+

1
2

)
(G.2)

where σ̂z is the Pauli spin operator (inversion), ωa and ω f are the atomic transition and electromag-

netic field frequencies, and â (â†) is the electromagnetic field annihilation (creation) operator. The
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1
2�ω f term is often left out of the free-field Hamiltonian, as it is just adds a constant energy shift to

the eigenstates.

The dipole interaction term is Hint = −d̂ · Ê, where d̂ is the dipole operator, and can be written

as d̂ = deg|e >< g|+d∗
eg|g >< e|. Here, |g > and |e > are the ground and excited states of the atom,

and we have assumed that they are states of definite parity, so that the dipole operator only contains

off-diagonal terms. The terms |e >< g| and |g >< e| are just the Pauli matrices σ+ and σ−, so that:

d̂ = degσ̂+ +d∗
egσ̂− (G.3)

Quantizing the electromagnetic field [223], we write the electric field operator as:

Ê(r) = iEmax
(
f(r)â− f∗(r)â†) (G.4)

where f(r) describes the spatial variation of the electric field (it is essentially a normalized version

of the electric field), and Emax is the amplitude of the field (see appendix H). From this equation,

along with the expression for d̂, we write the interaction term Hint as

Hint = i�g(â†σ̂−− âσ̂+) (G.5)

where g is the atom-field coupling rate, which we consider in further detail in appendix H. In this

equation for Hint, we have neglected the âσ− and â†σ+ terms, which are processes that do not

conserve energy (the former process corresponds to annihilation of a photon while having the atom

transition from the excited to the ground state, for example). This is essentially the rotating wave

approximation. Thus, our final form for the Jaynes-Cummings Hamiltonian, including all three

terms, is:

HJC =
1
2

�ωaσ̂z +�ω f

(
â†â+

1
2

)
+ i�g(â†σ̂−− âσ̂+) (G.6)

The energy eigenvalues of this system can be determined by considering product states of the
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Figure G.1: (a) Schematic for atom-field coupling and (b) block diagonal form for the Hamiltonian
in the Jaynes-Cummings model.

form |g;k > (|g;k >= |g > ⊗|k >), where the atom is in either the excited or ground state, and the

field has k photons. We have:

HJC|g;n >= −1
2

�ωa|g;n > +�ω f

(
n+

1
2

)
|g;n > −i�g

√
n|e;n−1 > (G.7)

HJC|e;n−1 >=
1
2

�ωa|e;n−1 > +�ω f

(
n− 1

2

)
|e;n−1 > +i�g

√
n|g;n > . (G.8)

In matrix form, the Hamiltonian is block diagonal, with 2x2 blocks. The form for the nth block

(fig. G.1(b)) is:

Hn = �

⎛⎝(n+ 1
2)ω f − ωa

2 −ig
√

n

ig
√

n (n− 1
2)ω f + ωa

2

⎞⎠ . (G.9)

The eigenvalues for this matrix are

En,± = �

(
nω f ± Ω

2

)
(G.10)

Ω =
√

(ω f −ωa)2 +4ng2 (G.11)

The corresponding eigenstates, which we write as |n,± >, are mixtures of |g;n > and |e;n−1 >:
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hωf
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-     2hg
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-     3hg
Figure G.2: Energy level spectrum for the
Jaynes-Cummings model (ω f = ωa). The
unperturbed field states are shown as black
dashed horizontal lines and are labeled as
|n = 1 >, for example. The eigenstates of the
Jaynes-Cummings Hamiltonian are labeled as
|n,± >, and are shown as solid horizontal
lines.

|n,− > = −sinθn|g;n > +cosθn|e;n−1 > (G.12)

|n,+ > = cosθn|g;n > +sinθn|e;n−1 > (G.13)

tan(2θn) =
2g
√

n
ω f −ωa

(G.14)

From this, we see that for vary large detunings, or alternately, very small coupling strengths g, the

eigenstates are essentially product states.

On-resonance (ω f = ωa), the eigenvalues and eigenstates are:

En,± = �

(
nω f±g

√
n
)

(G.15)

|n,− > = − 1√
2

(
|g;n > −|e;n−1 >

)
(G.16)

|n,+ > =
1√
2

(
|g;n > +|e;n−1 >

)
. (G.17)

The eigenvalue spectrum for the coupled atom-field system (on-resonance) is shown schematically
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in fig. G.2. We see that the field’s harmonic oscillator spectrum, consisting of energy levels sepa-

rated by �ω f , has been modified, with each energy level splitting into a pair of levels, separated by

a spacing of ΔE = 2g
√

n. The splitting of the first excited state (n=1) is 2g, and is called the vacuum

Rabi splitting.

G.2 The damped, driven Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian of the previous section examines the interaction of a single

mode electromagnetic field (such as the mode of an electromagnetic cavity) with a two-level atom,

and basically models an isolated system. An experiment will typically differ from this in two pri-

mary ways. There will often be some probe field that is used to study the system; the probe might

be a weak classical field that is swept in frequency, for example. In addition, the atom-cavity system

will be unavoidably coupled to the environment, which will cause dissipation. This may come in

the form of cavity loss or spontaneous emission of the atom, for example. In this section, we review

how the Jaynes-Cummings model is expanded to account for these effects.

G.2.1 Driving field

From the previous section, we recall that the Jaynes-Cummings Hamiltonian is written as:

HJC =
1
2

�ωaσ̂z +�ωc

(
â†â+

1
2

)
+ i�g(â†σ̂−− âσ̂+) (G.18)

where here we have relabeled the field to oscillate at frequency ωc, to explicitly indicate that we are

considering it to be the mode of an electromagnetic cavity. The driving field modifies HJC by adding

a term Hdrive, given as:

Hdrive = i�

[
E

⎡⎣σ̂+

â†

⎤⎦e−iωl t −E∗

⎡⎣σ̂−

â

⎤⎦eiωl t

]
(G.19)

where E and ωl are the amplitude and frequency of the driving field. The top row in the equation

(involving σ̂+ and σ̂−) applies to the case of the field driving the atom, and the bottom row (involv-

ing â† and â) is when the field drives the cavity mode. The introduction of this time-dependent term
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into the Hamiltonian can be handled by transforming to a frame that rotates at the same frequency as

the driving field (ωl). That is, we will apply a unitary transformation Û = exp(−iωlt(σ̂z/2+ â†â)).

In general, we know that if some unitary operator Û acts on the state vector, the transformed Hamil-

tonian, Hr, is written in terms of the original Hamiltonian HS as [224]:

Hr = i� ˙̂UÛ† +ÛHSÛ†. (G.20)

We apply this to the Hamiltonian HS = HJC +Hdrive, and make use of the operator expansion theorem

[225]:

exp(xÂ)B̂exp(−xÂ) = B̂+ x[Â, B̂]+
x2

2!
[Â, [Â, B̂]]+ ... (G.21)

This yields the following form for the driven Jaynes-Cummings Hamiltonian (written in a frame

rotating at ωl):

Hr = �Δωalσ̂+σ̂− +�Δωcl â
†â+ i�g(â†σ̂−− âσ̂+)+ i�

[
E

⎡⎣σ̂+

â†

⎤⎦−E∗

⎡⎣σ̂−

â

⎤⎦] (G.22)

where Δωcl = ωc −ωl and Δωal = ωa −ωl . In deriving this equation, we have noted that σ̂+σ̂− =

(I + σ̂z)/2. As described in ref. [226], the addition of the driving term to the Jaynes-Cummings

Hamiltonian can modify the eigenvalue spectrum considerably. In particular, when the cavity is

driven by the external field, the energy levels undergo a driving-field-dependent Stark shift, with

the standard Rabi splittings of ±g
√

n being replaced by the quasienergies ±g
√

n[1− (2E/g)2]3/4

(when the atom, cavity, and driving field all at the same frequency). This can have a direct impact

on experiments, where the atom-cavity system is often probed by a driving field that is swept in fre-

quency [9, 182]. If the probe beam has a small amplitude (where the ratio of E to g is the important

metric), its effects on the atom-cavity system would be expected to be small, and measurements of

features such as vacuum Rabi splitting should yield the 2g splitting in accordance with the Jaynes-

Cummings model.1 However, if the probe beam has a large amplitude, the energy level structure of

1The 2g splitting of the first excited state is maintained down to an arbitrarily weak driving field E; this is one reason
for the terminology ‘vacuum Rabi splitting’.
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the Jaynes-Cummings model will be significantly altered. This can, for example, affect the ability

to access and observe higher excited states of the Jaynes-Cummings system.

G.2.2 Dissipation terms and the quantum master equation approach

Dissipation in the Jaynes-Cummings system can be addressed by considering the interaction of this

system with a reservoir. The treatment we follow below is entirely based on Carmichael’s books

[149, 180]. Our intent here is to briefly outline some of the important steps in this approach.

The Hamiltonian for the system plus reservoir is given as HS +HR +HSR, where HS and HR are

system and reservoir Hamiltonians, and HSR is the Hamiltonian for the interaction of the two [180].

The interest in the reservoir is purely in terms of its effects on the system, so that a density matrix

approach is well suited to study this problem. In particular, rather than considering the full density

matrix of the system plus reservoir χ, a reduced density matrix ρ = TrR[χ] is considered, where the

trace is taken over all of the reservoir states.

As χ is a density matrix, we know that:

dχ
dt

=
1
i�

[H,χ]. (G.23)

A convenient form for the equation of motion of χ can be determined by first transforming to the

interaction picture to separate out the motion due to HS +HR from that due to HSR, and then formally

integrating equation (G.23) to arrive at:

dχ̃
dt

=
1
i�

[H̃SR, χ̃(0)]− 1
�2

∫ t

0
dt ′[H̃SR(t), [H̃SR(t ′), χ̃(t ′)]]. (G.24)

Here, the ∼ is to note that all of the quantities are in the interaction picture. Our interest is in the

reduced density matrix ρ, which is found by tracing over the reservoir states, so that:

dρ̃
dt

= − 1
�2

∫ t

0
dt ′TrR

[
[H̃SR(t), [H̃SR(t ′), χ̃(t ′)]]

]
. (G.25)

The first term from equation (G.24) has been dropped (it can essentially be thought of as a constant

offset in the Hamiltonian). From this point, two important simplifying assumptions are made. The
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first is called the Born Approximation, where we assume that the total density matrix (χ) can be

written as the product of density matrices for the system (ρ) and reservoir R, and furthermore, that

the effect of the system on the reservoir is negligible, so that R does not vary in time (R(t) = R(0)).

This yields:

dρ̃
dt

= − 1
�2

∫ t

0
dt ′TrR

[
[H̃SR(t), [H̃SR(t ′), ρ̃(t ′)R(0)]]

]
. (G.26)

The second major simplifying assumption is the Markov approximation, where we assume a

memoryless system behavior due to the interaction with the reservoir. Carmichael’s books consider

this point in much greater detail [149, 180]. Assuming this point to be valid, its effect on equation

(G.26) is to change the ρ̃(t ′) within the integrand to ρ̃(t).

From this point, specific models for the system, reservoir, and system-reservoir interaction

Hamiltonians are employed. Many times, the reservoir is modeled as a collection of harmonic

oscillators. The system-reservoir interaction Hamiltonian will often be written as HSR = �∑ js jΓ j

where s and Γ are system and reservoir operators, respectively. System operators might be the field

annihilation and creation operators â and â†, or atomic raising and lowering operators σ̂+ and σ̂−,

for example. Reservoir operators might be of the form Γ = ∑ jκ j r̂ j, for example, where the κ j is the

coupling coefficient linking the jth reservoir oscillator (characterized by annihilation and creation

operators r̂ j and r̂†
j ) to the field.

For the systems of interest to us, there are three primary dissipative channels: (i) atomic spon-

taneous emission, at a rate γ‖, into modes other than the cavity mode of interest, (ii) photon leakage

out of the cavity at a rate 2κ (so that the cavity’s field decay rate is κ, as in appendix D), and (iii)

non-radiative damping through phase-destroying processes, at a rate γp. These loss terms are given

by [149, 180]:

L1ρ̃ = κ(2âρ̃â† − â†âρ̃− ρ̃â†â) (G.27)

L2ρ̃ =
γ‖
2

(2σ̂−ρ̃σ̂+− σ̂+σ̂−ρ̃− ρ̃σ̂+σ̂−) (G.28)

L3ρ̃ =
γp

2
(σ̂zρ̃σ̂z − ρ̃). (G.29)

The equation for the reduced density matrix in the interaction picture is then:
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dρ̃
dt

= (L1 +L2 +L3)ρ̃. (G.30)

Finally, we need to transform back to the Schrodinger picture from the interaction picture. We

do this by noting that

ρ̃(t) = e
iHSt

� ρ(t)e−
iHSt

� (G.31)

so that differentiating this equation yields:

˙̃ρ(t) = e
iHSt

� ρ̇(t)e−
iHSt

� +
i
�
[HS, ρ̃] (G.32)

e
−iHSt

� ˙̃ρ(t)e
iHSt

� = ρ̇(t)+
i
�
[HS,ρ] (G.33)

ρ̇ =
1
i�

[HS,ρ]+ e
−iHSt

� ˙̃ρ(t)e
iHSt

� (G.34)

Putting it all together, we get the following master equation for the density matrix, often used

as a starting point in cavity QED studies:

dρ
dt

=
1
i�

[HS,ρ]+κ(2âρâ† − â†âρ−ρâ†â) (G.35)

+
γ‖
2

(2σ̂−ρσ̂+− σ̂+σ̂−ρ−ρσ̂+σ̂−) (G.36)

+
γp

2
(σ̂zρσ̂z −ρ) (G.37)

with

HS = �Δωalσ̂+σ̂− +�Δωcl â
†â+ i�g(â†σ̂−− âσ̂+)+ i�

[
E

⎡⎣σ̂+

â†

⎤⎦−E∗

⎡⎣σ̂−

â

⎤⎦]. (G.38)

From this master equation, the time evolution of operator expectation values can be easily found

by noting that < Â >= Tr(ρ̂Â) and < ˙̂A >= Tr(ρ̂ ˙̂A) for a system operator Â. For example, if the

driving field excites the cavity, these time-evolution equations are (here, we take � = 1):
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d
dt

< â >= −
(

iΔωcl +κ
)

< â > +g < σ̂− > +E (G.39)

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +g < σ̂zâ > (G.40)

d
dt

< σ̂z >= −2g(< σ̂−â† > + < σ̂+â >)− γ‖(1+ < σ̂z >) (G.41)

To derive these equations, the identities [σ̂+, σ̂−] = σ̂z, σ̂+σ̂− + σ̂−σ̂+ = I, and σ̂2±=0 are useful, as

is utilizing the cyclic property of the trace operator (Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ)). In addition,

we have taken γ⊥ = γ‖/2+ γp.

In the semi-classical limit, expectation values of operator products are replaced by products of

operator expectation values (i.e., < σ̂zâ >=< σ̂z >< â >). These Maxwell-Bloch equations can

then be solved in steady state, for example, to yield the optical bistability state equation (OBSE)

[181, 182]. For reference, the solution is:

X =
Y

1+ 2C
X2+( Δωal

γ⊥ )2+1
+ i

(
Δωcl

κ −
2C

(
Δωal
γ⊥

)
X2+( Δωal

γ⊥ )2+1

) (G.42)

where

ns =
γ⊥γ‖
4g2 ,

C =
g2

2κγ⊥
,

Y =
E
κ

ns
−1/2,

X =< â > ns
−1/2.

(G.43)

ns and C are called the saturation photon number and critical atom number (also known as the

single atom cooperativity), which represent the number of photons (on average) needed to saturate

the atomic transition and the number of atoms needed to dramatically affect the response of the

cavity, respectively [9].
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Appendix H

The Purcell Factor Fp and Atom-Photon
Coupling Rate g

H.1 The Purcell factor

The degree to which a microcavity can influence the spontaneous rate of an emitter within it is

known as the Purcell effect [227]. When the emitter (a radiating dipole) is on resonance with a cavity

mode, this rate can be enhanced; when off-resonance, it can be inhibited [228]. Purcell enhancement

(or inhibition) of spontaneous emission if one of the hallmarks of cavity QED within the weak

coupling regime, where it is still appropriate to treat the emitter and the field as separate entities

and their interaction as a perturbation. In strong coupling, the usual interpretation of spontaneous

emission as an irreversible process no longer holds. The Jaynes-Cummings model reviewed in

appendix G is the starting point for the treatment of emitter-field interactions in the strong coupling

regime.

Placing a radiating dipole within a cavity causes the spontaneous emission rate to change due

to the cavity’s modification of the spectral density of modes (related to its Q) and the amplitude

of the vacuum field interacting with the dipole (related to Veff). We therefore expect the Purcell

enhancement to scale with Q and Veff. A simple derivation of this enhancement has been given by

Gérard and Gayral [109]; we repeat this derivation here. We begin with the statement of Fermi’s

Golden Rule [224]:

1
τsp

=
2π
�2 |Wge|2ρ(Ege) (H.1)

Wge is the dipole matrix element between the initial (ground) and final (excited) states of the two-
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level system, with

Wge =< d̂ · Ê >ge (H.2)

where d is the electric dipole operator, E is the electric field operator, and the subscript ge indicates

that the matrix element connects the ground and excited states of the emitter. ρ(Ege) is the density

of photon modes at the emitter’s transition energy Ege. We recall that Fermi’s Golden Rule is

only applicable under the assumption that the dipole can effectively be thought of as coupling to a

continuum of modes. When the dipole is embedded in a uniform dielectric material, this is clearly

the case. When it is embedded within a cavity, we must satisfy the condition that the dipole’s

emission line be spectrally narrow compared to the cavity resonance.

Let us begin by calculating the spontaneous emission rate when the emitter is in a uniform

dielectric of index n. The density of modes ρ is obtained by the usual procedure of counting the

number of modes within some box of volume V [224]. This yields:

ρ0 =
ω2n3V
3π2c3 (H.3)

where the factor of 1/3 represents the random orientation of the modes within a uniform dielectric

with respect to the dipole (this factor is derived in Yariv’s Quantum Electronics book [223], for

example). The spontaneous emission rate is then given by:

1
τsp,0

=
2π
�2 | < d̂ · Ê >ge |2 ω2n3V

3π2c3 (H.4)

with the electric field operator written as [223]

Ê(r) = iEmax
(
f(r)â− f∗(r)â†) (H.5)

In this equation, â and â† are the field annihilation and creation operators, respectively, and f(r)

is describes the spatial variation of the electric field (it is essentially a normalized version of the
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electric field). Emax is the amplitude of the field, a per photon electric field strength written as:

Emax =

√
�ω

2ε0n2V
(H.6)

If we plug this into equation (H.4), we arrive at:

1
τsp,0

=
ne2|r̂ge|2ω3

3π�ε0c3 (H.7)

where I have taken d̂ = er. Equation (H.7) is the standard expression for the spontaneous emission

rate into a uniform dielectric material of index n.

When the emitter is placed in a cavity with a mode volume Veff, Emax is given by the same

expression as in equation (H.6), but with V (the quantization volume for the uniform dielectric

material) replaced by Veff. We next write |Wge|2 = e2|r̂ge|2E2
maxη2, where η = d ·E/|d|Emax describes

not only the orientation of the dipole with respect to the cavity field, but also the spatial dependence

of the dipole within the cavity field (that is, even if the dipole is aligned with the field, if it is

positioned at some place other than an antinode of the field, η < 1). If the cavity mode has a

linewidth Δωc, corresponding to a quality factor Q = ωc/Δωc, we can write its density of states as:

ρc =
2Q
πωc

Δω2
c

4(ω−ωc)2 +Δω2
c

(H.8)

which is a Lorentzian function that has been normalized so that
∫

ω ρc(ω)dω = 1. If we plug this,

along with our expression for |Wge|2 into equation (H.1), we arrive at:

1
τsp,c

=
2Qe2|r̂ge|2η2

�ε0n2Veff

Δω2
c

4(ω−ωc)2 +Δω2
c

(H.9)

The ratio of equations H.9 and H.7 gives us the Purcell enhancement:

τsp,0

τsp,c
=

3
4π2

( Q
Veff

)(λ
n

)3 Δω2
c

4(ω−ωc)2 +Δω2
c

η2 (H.10)
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When the emitter is spatially aligned with an antinode of the field, is spectrally aligned with the

field (ω = ωc), and oriented along the field, we arrive at the Purcell factor Fp quoted in chapter 4:

Fp =
τsp,0

τsp,c
=

3
4π2

( Q
Veff

)(λc

n

)3
(H.11)

We again note that the above is valid when the dipole emission linewidth is narrow in comparison

to the cavity mode linewidth. If this is not the case, the Q used in Fp will not be the cavity Q but

instead will be the emitter’s Q = λe/γe, where γe is the emitter linewidth.

H.2 Atom-photon coupling rate

The coupling strength between a single two-level system and an optical field is given by the dipole

matrix element divide by Planck’s constant. That is:

g =
| < d̂ · Ê > |

�
(H.12)

For the purposes of this thesis, the above formula is used to calculate quantities like the optimal

coupling strength between an atom, or quantum dot, and a single photon within a resonant cavity.

For these calculations, it is assumed that the dipole and the field are aligned, so that g = dgeEmax/�,

where the per photon field strength Emax of equation (H.6) is used, along with some value for the

strength of the electric dipole dge as found in literature.

In many cases, dge will not be the piece of information readily available; rather, the spontaneous

emission rate between the two levels τsp will be. Using equation (H.7), we can easily relate the two

quantities, and then arrive at an expression for g. Doing so yields

g =
1

2τsp

√
3cλ2

0τsp

2πn3Veff
, (H.13)

As defined above, g has units of radians/second; dividing by 2π express it units of Hz, which are

often the units for which g is quoted. To be explicit, I have adopted the convention of writing g/2π

when quoting values in units of Hz, to try to eliminate any confusion.
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Within the literature, the decay rates γ‖ and γ⊥ are sometimes used. γ‖ is a radiative decay rate,

equal to 1/τsp. γ⊥ is a transverse decay rate, and is most generally written as γ⊥ = γ‖
2 + γp, where

γp is due to non-radiative decay (for example, phase-destroying collisional processes). For strong

coupling, it is the total emitter decay rate, γ⊥, that must be exceeded by the coherent coupling rate

g. Within single atom systems, the decay is essentially purely radiative, so that γ⊥ = γ‖
2 is taken. For

these systems, g is then often written in terms of γ⊥ rather than τsp. Doing so yields

g = γ⊥

√
3cλ2

0

4πn3Veffγ⊥
, (H.14)

Within the literature, the decay times T1 and T2 are often quoted [223]; by our definitions above,

T2 = 1/γ⊥ and T1 = 1/γ‖.

In semiconductor-based structures such as quantum dots, an oscillator strength is often quoted

[110, 70]. This oscillator strength f is a dimensionless quantity given by

f =
2mω| < r̂ge > |2

�
, (H.15)

It is found through a calculation of the optical susceptibility χ(ω) of an atom (P(ω) = χ(ω)E(ω),

where P(ω) is the field-induced polarization), and subsequent comparison to the expression gen-

erated by the classical damped, driven harmonic oscillator model of the atom. Reference [229]

presents such a derivation. The QD-coupling rate g can then be written in terms of the oscillator

strength as:

g =

√
e2 f

4ε0n2Veff
, (H.16)
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