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Chapter 8

Prospects for Strong Coupling Between
a Single Quantum Dot and Standing
Wave Whispering Gallery Modes of a
Semiconductor Microdisk Cavity

8.1 Introduction

In the previous three chapters, we have demonstrated AlGaAs microdisk cavities that, in principle,

can be used for strong coupling experiments with semiconductor quantum dots. By this, we mean

that the cavities have sufficiently high Q and small Veff values that the maximum coupling rate

between a single photon and a single QD in the cavity is larger than the decay rate of the cavity

mode and the QD exciton. Of course, in practice, experimentally accessing the strong coupling

regime will require addressing a number of technical issues, as will be reviewed in the subsequent

chapter (chapter 9). In this chapter, we will assume that these experimental challenges can be

overcome, and will focus on what we should expect to see when the experiments are conducted.

Recent demonstrations of vacuum Rabi splitting in systems consisting of a semiconductor mi-

crocavity and a single quantum dot (QD) [70, 71, 72] represent an important milestone in investi-

gations of cavity QED in solid-state materials. The experimental configuration utilized in these ex-

periments is schematically shown in fig. 8.1(a); the microcavity-QD system is incoherently pumped

with an excitation beam at an energy above the bandgap of both the QD and the surrounding cav-

ity material (usually GaAs or some form of its alloy AlGaAs). This pump light is absorbed and

generates carriers in the GaAs system that can eventually (through phonon relaxation) fill the QD;

under weak enough pumping conditions, a single electron-hole pair can fill the QD, forming a bound
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exciton state. The electron-hole pair eventually recombines, leading to spontaneous emission that

is modified by the presence of the microcavity. When the cavity is of small enough volume, the

coupling (g) between the QD exciton and the cavity can be large, and if the cavity decay rate κ and

QD decay rate γ⊥ are smaller than g, the system is said to be strongly coupled [9], in that the QD

exciton and cavity mode are no longer truly separate entities but are instead bound together. In the

experiments described in refs. [70, 71, 72], the evidence of this strong coupling has been presented

in the form of spontaneous emission measurements from the QD-microcavity system, which display

a double-peaked structure, rather than the single peak associated with either the cavity mode or QD

exciton alone. This vacuum Rabi splitting [172, 173] is one signature of the strong coupling regime

in cQED.

Applications of strongly coupled QD-microcavity systems to areas such as nonlinear optics

[174, 175, 176, 177, 178] will also require an ability to effectively couple light into and out of the

microcavity-QD device. That is, rather than measuring the spontaneous emission of the system

alone, it is also important to have access to the cavity’s response (transmission or reflection). This

is true if, for example, one wants to examine the effect of a coupled QD-cavity system on the

propagation of a subsequent beam through the cavity [174, 79], or if one wants to use the phase

of the emerging transmitted signal within some type of logic gate [179]. Indeed, in ‘traditional’

cavity QED experiments, it is the cavity’s transmitted or reflected signal that is typically observed

[77, 17, 18, 78].

As we have described in previous chapters within this thesis, following demonstrations of cou-

pling to silica-based cavities such as microspheres [32, 20] and microtoroids [56], we have shown

that optical fiber tapers [122, 32] are an effective means to couple light into and out of wavelength-

scale, semiconductor microcavities such as photonic crystals and microdisks. In addition, the mi-

crodisk cavities we have demonstrated are very promising for semiconductor cQED experiments,

with cavity Qs in excess of 105 for devices with Veff ∼ 2-6(λ/n)3. These Q values are significantly

larger than those utilized in refs. [70, 71, 72], and as a result, the devices that we consider are

poised to operate well within the strong coupling regime, where coherent interactions between the

QD and photon occur. It is envisioned that initial experiments in this fiber-coupled microcavity-QD

system (fig. 8.1(b)) will examine vacuum-Rabi splitting through measurements of the transmission

spectrum past the cavity; such measurements will be directly analogous to recent measurements of

vacuum Rabi splitting from one-and-the-same atom in a Fabry-Perot cavity [78].

The goal of this chapter is to provide a theoretical basis, accompanied by numerical simulations,
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Figure 8.1: Illustrations of the various experimental configurations utilized in studying coupling
between a semiconductor microcavity (microdisk in this case) and a single QD. g=QD-microcavity
coupling rate, κ=cavity decay rate, and γ⊥=QD decay rate. (a) Incoherent pumping (Epump >Egs)
above the bandgap of the microcavity material. Here, strong coupling between a single QD and the
microcavity mode is observed through measurements of vacuum Rabi splitting in the spontaneous
emission from the QD. (b) Near-resonant driving (Epump ∼ Egs) using a fiber taper to couple light
into and out of the microdisk. Evidence of coupling between the QD and microcavity will be
observed through measurements of the transmitted signal through the fiber taper as a function of
input wavelength. (c) Near-resonant driving of a realistic microdisk-QD system, including both
clockwise and counterclockwise propagating modes of the disk, and potential coupling, at a rate β,
between the two modes due to surface scattering.

for the experiments to be performed with single QDs in fiber-coupled microdisk cavities. Of partic-

ular concern is the proper treatment of the whispering gallery modes (WGMs) in the cavities. More

specifically, for a given polarization (TE or TM), the WGMs have a degeneracy of 2, as modes with

azimuthal number ±m have the same frequency, but circulate around the disk in opposite direc-

tions. The WGMs are typically excited through an external waveguide (such as a fiber taper), and

in a perfect WGM resonator, the forward propagating mode through the waveguide excites only the

clockwise propagating mode in the resonator (see fig. 8.1(b)). As we have described several times

within this thesis, imperfections in the resonator will change this, as they cause backscattering that

can couple the clockwise (cw) and counterclockwise (ccw) propagating modes (fig. 8.1(c)). If the

loss rates in the system (due to material absorption, other scattering and radiation loss, etc.) are low

enough, the backscattering can lead to coherent coupling of the cw and ccw modes, producing a pair

of standing wave modes. Our interest is to then study the interaction of a single quantum dot with

the microdisk WGMs in the presence of this backscattering (which has been present in all of our
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experiments to this point), and determine the spectral response of the system for varying degrees

of quantum-dot-cavity coupling (g), backscattering (β), and modal loss (κ). We examine how the

phase of the backscattering parameter affects the coupling between one or both cavity modes and

the QD, and how the QD itself serves to couple the cavity modes together.

The organization of this chapter is as follows: in section 8.2, we review the simple classical cou-

pled mode theory for modal coupling in microdisk cavities in absence of a QD. The starting point is

the analysis from section 5.2, where we have derived the coupled mode equations for backscattering-

induced coupling between the clockwise and counterclockwise propagating modes in a microdisk.

In section 8.2, we further develop this theory by including input-output coupling from a waveguide

(appendix E). Section 8.3 presents the quantum mechanical analysis of this system in the presence

of a QD. We review the quantum master equation for this system and look at semiclassical approxi-

mations for specific choices of the backscattering parameter. As we have previously noted, standing

wave WGMs have half the effective modal volume of traveling wave modes, and it is therefore

expected that the peak electric field strengths they sustain are
√

2 times larger; this is explicitly

confirmed in the derivation of the quantum master equation and associated Heisenberg equations of

motion. In section 8.4, we present the results of numerical solutions of the quantum master equation

for parameters that are accessible in current experiments. Finally, in section 8.5, we consider low

power switching as one potential experiment beyond the observation of vacuum Rabi splitting in a

fiber-coupled microdisk-QD system.

8.2 Modal coupling of two whispering gallery modes due to surface

scattering

We start by reviewing the simple (classical) coupled mode theory for surface-roughness-induced

coupling of the cw and ccw whispering gallery modes in an empty microcavity [146, 135, 147, 148]

(without a quantum dot). Our analysis begins where we left off in section 5.2, with the coupled

mode equations:

dacw

dt
= −iΔωacw(t)+ i|β|eiξaccw(t), (8.1)

daccw

dt
= −iΔωaccw(t)+ i|β|e−iξacw(t), (8.2)
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These equations represent the time evolution of the two mode amplitudes {acw,accw} of an isolated

system, without loss or coupling to an external waveguide. For the experiments considered in our

work, the waveguide coupler will be an optical fiber taper through which light is traveling in the

forward propagating mode. Light will then be coupled into the clockwise WGM of the microdisk

structure, and this can be included (appendix E) through the addition of the term ks to equation

(8.1), where k is a coupling coefficient, and |s|2 is the normalized input power (the mode amplitudes

acw,ccw are normalized to energy). Loss is introduced to the coupled mode equations by use of the

phenomenological field decay rate κT , taken to be the same for both the cw and ccw modes (though

in general this does not have to be the case). This total field decay rate is broken into a contribution

from intrinsic microdisk absorption and scattering loss (κi) and a contribution due to coupling back

into the waveguide (κe), so that κT = κi + κe. Assuming lossless coupling and time reciprocity, it

can be shown [125] that |k|2 = 2κe. The coupled mode equations then read:

dacw

dt
= −

(
κT + iΔω

)
acw(t)+ i|β|eiξaccw(t)+ is

√
2κe (8.3)

daccw

dt
= −

(
κT + iΔω

)
accw(t)+ i|β|e−iξacw(t), (8.4)

Here, the phase of the coupling coefficient was chosen to reflect the π/2 phase shift that occurs when

light is coupled from the waveguide into the cavity. These two coupled equations can be rewritten

as uncoupled equations in terms of the variables asw,1 and asw,2, which represent the standing wave

mode amplitudes

asw,1 =
1√
2

(
acw + eiξaccw

)
asw,2 =

1√
2

(
acw − eiξaccw

)
.

(8.5)

For an ideal microdisk, acw and accw have an azimuthal spatial dependence of eimφ (where m is the

azimuthal mode number and is a nonzero integer), so that asw,1 and asw,2 will have an azimuthal

spatial dependence that will be a mixture of cos(mφ) and sin(mφ), with the precise dependence

being a function of the phase ξ of the backscattering parameter β.

The transmitted and reflected signals can be determined in either the basis of {acw,accw} or

{asw,1,asw,2}; because our formulation of the problem has an external waveguide input s that is a
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Figure 8.2: Normalized transmitted (solid line) and reflected (dashed line) signal for standing wave
whispering gallery modes, determined through steady state solution of the coupled mode equations
given in equation (8.3). (a) β/κT = 8, κT /κi = 3 (b) β/κT = 1, κT /κi = 3, and (c) β/κT = 1,
κT /κi = 20. Qi = 3×105 in all cases.

source for acw, it is most natural to solve for these quantities in the traveling wave mode basis, and

they are given by |t|2 = |− s− i
√

2κeacw|2 and |r|2 = |√2κeaccw|2 (appendix E). Steady state solu-

tions for the normalized transmitted and reflected signals from the cavity for a number of different

parameters are shown in fig. 8.2. For β > κT (fig. 8.2(a)), we see the formation of a distinct pair of

resonances, located at ω = ω0 ±β. These dips correspond to standing wave resonances that result

from a backscattering rate (β) that exceeds all other losses in the system (κT ), so that coherent cou-

pling between the cw and ccw modes can take place. As we see in fig. 8.2(b)-(c), for β ∼ κT , the

resonances begin to overlap and are no longer distinguishable.

For cavity QED applications, one very important consequence of the distinction between travel-

ing wave and standing wave modes is in the effective volume of the mode (Veff), as the peak electric

field strength (per photon) in the cavity scales as 1/
√

Veff. In particular, we recall the definition of

Veff as:

Veff =
∫

ε|E(r)|2
max[ε|E(r)|2] . (8.6)

Standing wave WGMs have approximately half the volume of the traveling wave WGMs, so that

the coupling rate g between a single quantum dot and a single photon in a standing wave cavity

mode is expected to be
√

2 times that when the quantum dot is coupled to a traveling wave cavity

mode. This of course assumes the single QD is positioned at an antinode of the standing wave

mode; alternately, if it happens to be positioned at a node, the coupling rate g will be zero.
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These arguments again rely upon having a physical system in which the coupling between cw

and ccw modes is sufficiently strong enough compared to all other loss rates to allow for coherent

modal coupling to form standing wave modes. They have also assumed that the QD does not

introduce loss into the system. This is clearly not the case if the QD is strongly coupled to a cavity

mode. In strong coupling, energy oscillates back and forth between the QD and the cavity, so

that QD decay terms can also cause loss. In this case, we might expect that standing wave modes

can be maintained provided that the modal coupling rate β exceeds not only κT , but also the QD

spontaneous emission rate γsp and non-radiative dephasing rate γp. To verify our physical intuition

and understand the system in better detail, we consider a quantum master equation approach [149]

to take into account the QD-field interaction.

8.3 Quantum master equation model

We begin by considering the Hamiltonian for an empty microdisk cavity (resonance frequency ωc)

with field operators âcw and âccw and mode coupling parameter β, written in a frame rotating at the

driving frequency ωl (see appendix G for details):

H0 = Δωcl â
†
cwâcw +Δωcl â

†
ccwâccw −βâ†

cwâccw −β∗â†
ccwâcw + i(Eâ†

cw −E∗âcw), (8.7)

where Δωcl = ωc −ωl . Here, the clockwise (cw) propagating mode is driven by an intracavity field

E = −i
√

2κPin, where κ = ωc/2Q is the cavity field decay rate and Pin is the input power into the

cavity. In this and all equations that follow, Planck’s constant � = 1. From this Hamiltonian, the

classical coupled-mode equations without dissipation can easily be derived through an application

of Ehrenfest’s theorem and assuming that quantum mechanical expectation values correspond to

classical variables (i.e., < âcw >= acw, for example).

Modeling the QD as a two-level system, we add the term H1 to the Hamiltonian (appendix G):

H1 = Δωalσ̂+σ̂− + ig(â†
cwσ̂−− âcwσ̂+)+ ig(â†

ccwσ̂−− âccwσ̂+) (8.8)

where Δωal = ωa −ωl (ωa is the frequency separation between the ground and first excited state

of the QD). The equation of motion for the system’s density matrix ρ can then be found from the
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equation:

dρ
dt

=
1
i
[H0 +H1,ρ]+Lρ (8.9)

where the term Lρ = (L1 +L2 +L3)ρ allows for the inclusion of decay through cavity loss (at a rate

κ), quantum dot spontaneous emission (at a rate γ‖, which we previously called γsp), and phase-

destroying collisional processes (at a rate γp), which are of particular importance for quantum dots,

as unlike atoms, they are embedded in a semiconductor matrix that can serve as a phonon bath.

These loss terms are given by (refs. [149, 180] and appendix G):

L1ρ = κ(2âcwρâ†
cw − â†

cwâcwρ−ρâ†
cwâcw)+κ(2âccwρâ†

ccw − â†
ccwâccwρ−ρâ†

ccwâccw) (8.10)

L2ρ =
γ‖
2

(2σ̂−ρσ̂+− σ̂+σ̂−ρ−ρσ̂+σ̂−) (8.11)

L3ρ =
γp

2
(σ̂zρσ̂z −ρ) (8.12)

From this master equation, we can numerically calculate the steady state density matrix ρss and

relevant operator expectation values such as < â†
cwâcw >ss, which will then allow us to determine

the transmission and reflection spectrum of the coupled QD-cavity system, using formulas that are

analogous to those used in the classical model of section 8.2. These calculations are the subject

of the following section. For now, however, we consider what intuition may be gained by further

analytical study of the master equation. We take operator expectation values (< Â >= Tr(ρ̂Â) and

< ˙̂A >= Tr(ρ̂ ˙̂A)) to arrive at:

d
dt

< âcw >= −iΔωcl < âcw > +iβ < âccw > +g < σ̂− > −κ < âcw > +E

d
dt

< âccw >= −iΔωcl < âccw > +iβ∗ < âcw > +g < σ̂− > −κ < âccw >

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +g(< σ̂zâcw > + < σ̂zâccw >)

d
dt

< σ̂z >= −2g(< σ̂−â†
cw > + < σ̂+âcw >)−2g(< σ̂−â†

ccw > + < σ̂+âccw >)

− γ‖(1+ < σ̂z >)

(8.13)

where we have noted that [σ̂+, σ̂−] = σ̂z, and have taken γ⊥ = γ‖/2+ γp.
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In the semi-classical approximation, we assume that expectation values of products of operators

equal the product of the expectation values (< σ̂zâcw >=< σ̂z >< âcw >, for example). Writing

β = |β|eiξ, these equations then reduce to

d
dt

< âcw >= −iΔωcl < âcw > +i|β|eiξ < âccw > +g < σ̂− > −κ < âcw > +E

d
dt

< âccw >= −iΔωcl < âccw > +i|β|e−iξ < âcw > +g < σ̂− > −κ < âccw >

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +g(< σ̂z >< âcw > + < σ̂z >< âccw >)

d
dt

< σ̂z >= −2g < σ̂− >
(
< â†

cw > + < â†
ccw >

)
−2g < σ̂+ >

(
< âcw > + < âccw >

)
− γ‖(1+ < σ̂z >)

(8.14)

From equation 8.5 of section 8.2, we expect that the first two equations above can be uncoupled

if written in terms of standing wave operators:

âsw,1 =
1√
2

(
âcw + eiξâccw

)
âsw,2 =

1√
2

(
âcw − eiξâccw

)
.

(8.15)

Re-writing the operator evolution equations in terms of these quantities, we arrive at:

d
dt

< âsw,1 >= −i
(

Δωcl −|β|
)

< âsw,1 > +g
1+ eiξ
√

2
< σ̂− > −κ < âsw,1 > +E

d
dt

< âsw,2 >= −i
(

Δωcl + |β|
)

< âsw,2 > +g
1− eiξ
√

2
< σ̂− > −κ < âsw,2 > +E

d
dt

< σ̂− >= −
(

iΔωal + γ⊥
)

< σ̂− > +
g < σ̂z >√

2

(
< âsw,1 > (1+ e−iξ)+ < âsw,2 > (1− e−iξ)

)
d
dt

< σ̂z >= −
√

2g < σ̂− >
(
< â†

sw,1 > (1+ eiξ)+ < â†
sw,2 > (1− eiξ)

)
−
√

2g < σ̂+ >
(
< âsw,1 > (1+ e−iξ)+ < âsw,2 > (1− e−iξ)

)
− γ‖(1+ < σ̂z >)

(8.16)

These equation indicate that, in this basis, we have a modified QD-photon coupling strength

for each standing wave mode, which have shifted in frequency in comparison to the traveling wave

modes and are now centered at ωc ∓ |β|. For the first mode, corresponding to field operator âsw,1,
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the effective coupling strength is gsw,1 = g(1+ eiξ)/
√

2, while for the second mode, corresponding

to field operator âsw,2, the effective coupling strength is gsw,2 = g(1− eiξ)/
√

2. These coupling

strengths are thus dependent on the phase ξ of the backscattering parameter β; they can be as

large as
√

2g and as small as zero. This result is consistent with what we would expect based

upon the physical intuition that the superposition of traveling wave modes will result in a pair of

standing wave modes whose volume Veff is one-half that of the traveling wave modes. The two

modes are phase shifted from each other in the azimuthal direction by π/2, and as a result, if the

QD is positioned in the antinode of one mode (ξ=0, so that gsw,1 =
√

2g), it is within a node of the

other mode (so that gsw,2 = 0), and vice versa for the situation when ξ=π. Note that these results

can also easily be seen by substituting the equations for the standing wave field operators into the

original Hamiltonian H0 +H1 (the two approaches are equivalent).

The semiclassical rate equations can be solved in steady state to yield information about the

cavity response as a function of drive strength and detunings. In the case of a single cavity mode

coupled to a two-level system, this leads to the standard optical bistability state equation (OBSE)

(refs. [181, 182] and appendix G). Such a semiclassical solution might be of increased importance

in the current work because of the potentially large system size that needs to be considered in the

numerical simulations of the quantum master equation, due to the presence of two cavity modes.

This will be particularly true when considering relatively large driving fields, which could be of

interest in nonlinear spectroscopy of the system, for example, as in ref. [183]. For now, we consider

a couple of simple examples, beginning with the case of ξ=0. Defining the following parameters:

ns =
γ⊥γ‖
4g2 ,

C =
g2

2κγ⊥
,

Y =
E
κ

ns
−1/2,

Xsw,1 =< ˆasw,1 > ns
−1/2,

Xsw,2 =< ˆasw,2 > ns
−1/2,

(8.17)

we solve (in steady state) the semiclassical equations of motion in the standing wave basis (equation

8.16) to arrive at the following expression:



217

Xsw,1 =
Y

1+ 4
√

2C
2X2

sw,1+( Δωal
γ⊥ )2+1

+ i
(√

2(Δωcl−β)
κ −

4
√

2C

(
Δωal
γ⊥

)
2X2

sw,1+( Δωal
γ⊥ )2+1

)

Xsw,2 =
Y

1+ i
(

Δωcl+β
κ

)
(8.18)

We are most interested in obtaining an expression for the transmission (or reflection) past the

cavity and into our collection fiber, which will be the quantity measured in experiment. In the

formalism presented in section 8.2, the transmission and reflection are given in terms of the traveling

wave mode operators. These operators can easily be recovered here by adding and subtracting Xsw,1

and Xsw,2, as the standing wave mode operators are related to the traveling wave mode operators

through equation (8.15).

As discussed earlier, the cases of ξ = 0 and ξ=π (which is identical except that the roles of Xsw,1

and Xsw,2 are swapped) essentially involve coupling between a single standing wave WGM and the

QD. For most choices of ξ, however, both WGMs will couple to the QD, but obtaining an equation

analogous to the OBSE for an arbitrary ξ is somewhat algebraically tedious. As a simple example,

we consider ξ = π/2. In this case, it is perhaps easiest to start with the semiclassical equations of

motion in the traveling wave basis (equation 8.14), from which we derive:

Y =
√

2X+
|β|
κ

+
√

2X+(
1+ |β|/κ

1+i
Δωcl

κ

)[(1− |β|
κ

+
4C

2X2
+ +(Δωal

γ⊥ )2 +1

)
+ i

(Δωcl

κ
−

4C
(

Δωal
γ⊥

)
2X2

+ +(Δωal
γ⊥ )2 +1

)]

X− =
|β|
κ X+ +Y/

√
2

1+ iΔωcl
κ

(8.19)

where X+ =
(
< âcw > + < âccw >

)
ns

−1/2 and X− =
(
< âcw > − < âccw >

)
ns

−1/2. From X+ and

X−, < âcw > and < âccw > can easily be found, and the transmitted and reflected signals from the

cavity can be calculated.
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8.4 Solutions to the steady state quantum master equation in the weak

driving regime

The quantum master equation (QME) presented in the previous section is solved numerically using

the Quantum Optics Toolbox [81, 82] for Matlab. In addition to the general framework provided

by the Toolbox, the accompanying manual [81] provides many basic programs that are the basis of

the calculations presented below; the PhD theses of Ben Lev [184] and Kevin Birnbaum [185] were

also very helpful in this regard. We begin by considering steady state solutions, and calculate the

transmitted and reflected signals from the cavity in the weak driving regime. As a starting point,

we eliminate the quantum dot from the problem by taking the coupling rate g = 0. As expected, the

resulting solutions (not displayed here) are identical to those obtained using the classical coupled

mode equations and presented in fig. 8.2. Having confirmed that the QME solution is consistent

with the classical solution in the empty cavity limit, we move on to study interactions with the

quantum dot. To connect these simulations to ongoing experiments, we choose physical parameters

consistent with the devices that we have described in this thesis.

In fig. 8.3(a), we plot the calculated Veff as a function of Davg for traveling wave modes of a

microdisk, as calculated by finite-element method simulations (see chapters 5 and 7 for a review of

these simulations). From these values for Veff we can calculate the maximum QD-photon coupling

strength g = d ·E/�, given by (see refs. [9, 110] and appendix H):

g =
1

2τsp

√
3cλ2

0τsp

2πn3Veff
, (8.20)

where τsp is the spontaneous emission lifetime of the QD exciton, which we take as 1 ns in our

calculations, consistent with what has been seen experimentally [142]. The results are plotted in fig.

8.3(b), and we see that g/2π can be as high as ∼16 GHz. We note that in these calculations of g,

the traveling wave mode volume was used, because it is the value that is entered directly into the

quantum master equations presented in section 8.3. However, as we shall see below, in the presence

of strong backscattering, standing wave modes are formed, and when coupled to a single QD, the

resulting vacuum Rabi splitting is consistent with an effective coupling strength of g
√

2, as expected

due to the decreased volume of the standing wave modes.

As discussed in chapter 7, for such modes, Qrad > 105 for all but the smallest diameter disks
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Figure 8.3: Finite-element method simulation results: (a) Modal volume Veff as a function of mi-
crodisk diameter (taken at the center of the slab), calculated for traveling wave modes. The modes
studied are TEp=1,m WGMs with resonance wavelength within the 1200 nm band. (b) Coherent cou-
pling rate g/2π as a function of microdisk diameter. A QD spontaneous emission lifetime τsp = 1
ns is assumed in the calculation of g.

(Davg < 1.5 µm). We have confirmed this in experiments, with Qs as high as 3.6×105 achieved,

so that cavity decay rates κ/2π on the order of 1 GHz can reasonably be expected. Such devices

exhibited doublet splittings that were on the order of 10-100 pm, corresponding to a backscattering

rate |β|/2π = 1-10 GHz. This rate can thus be very close in magnitude to do the QD-photon cou-

pling rate, and we thus expect the simulation results to be particularly helpful in interpreting future

experimental data.

8.4.1 β > g > (κ,γ⊥)

The first situation we study is one in which the backscattering rate β exceeds the coupling rate g,

which in turn exceeds the cavity and QD decay rates κ and γ⊥. We choose β/2π=9.6 GHz, with

g/2π=6 GHz, κ/2π=1.2 GHz (corresponding to Q=100,000), and τsp=1 ns (γ‖/2π∼ 0.16 GHz). The

unperturbed cavity frequency (i.e., the resonance frequency of the traveling wave modes) is fixed

at ωc = 0, and three different QD-cavity detunings, Δ = ωa −ωc={0,β,−β} are considered. For

each value of Δ, we calculate the steady state transmission and reflection spectra from the cavity in

three different limits: (i) g=0; here, there is no QD-cavity coupling, and the response should be that

of an empty cavity, (ii) g/2π=6 GHz, γp/2π=0 GHz; here, we neglect all non-radiative dephasing,

which becomes a better and better approximation as the temperature of the QD-microcavity sample

is lowered, and (iii) g/2π=6 GHz, γp/2π=2.4 GHz; here, we allow for a significant amount of non-



220

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Detuning (GHz)

ca
vi

ty
 t

ra
n

sm
is

si
o

n
/r

ef
le

ct
io

n

QD detuning = 0

|2β|/2π=19.2 GHz

(a)

-30 -20 -10 0 10 20 30
Detuning (GHz)

QD detuning = β/2π=9.6 GHz(b)

-30 -20 -10 0 10 20 30
Detuning (GHz)

(c)

2g   2/2π=17 GHz

κ/2π~1.2 GHz

τsp~1 ns

γ||/2π~0.16 GHz

QD

QD detuning = -β/2π=-9.6 GHz
R: g/2π=0 GHz, γp/2π=0 GHz

T: g/2π=0 GHz, γp/2π=0 GHz

R: g/2π=6 GHz, γp/2π=0 GHz

T: g/2π=6 GHz, γp/2π=0 GHz

R: g/2π=6 GHz, γp/2π=2.4 GHz

T: g/2π=6 GHz, γp/2π=2.4 GHz

Figure 8.4: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). (a) Δ = ωa −ωc=0, (b) Δ=β, and (c) Δ=−β. ωc is the
resonance frequency of the traveling wave whispering gallery modes. In these plots, g/2π=6 GHz,
β/2π=9.6 GHz, κ/2π=1.2 GHz, and τsp=1 ns.

radiative dephasing, corresponding to a QD exciton linewidth of ∼10 µeV (at an energy of 1 eV),

which is consistent with what has been observed experimentally at temperatures of around 10-20K

[142].

The results are plotted in fig. 8.4. In all of the results, we see that the primary function of γp is

to damp and broaden the resonances, in some cases significantly, but as expected, γp does not cause

the features to shift in position. In fig. 8.4(a), we see that the presence of the QD has caused the

lower frequency mode to shift slightly, while the higher frequency mode has not changed position.

In fig. 8.4(b), the higher frequency mode remains unshifted, and the lower frequency dip has shifted

even less. Finally, in fig. 8.4(c), the higher frequency mode again remains unshifted, while the

lower frequency mode has split into two resonances.

The interpretation of these results is as follows: as a result of the modal coupling due to

backscattering, which has formed standing wave modes through a superposition of the initial trav-

eling wave modes, only the lower frequency mode of the doublet has any spatial overlap with the

QD, and thus, we should only expect the low frequency mode to exhibit any frequency shifts or

splittings. In fig. 8.4(a), the QD, spectrally located at Δ=0, is detuned from both modes (which are

located at ±β), and thus, although the low frequency mode exhibits a frequency shift, we do not

see the symmetric vacuum Rabi splitting that would occur on resonance. As expected, due to the

spatial misalignment, the higher frequency mode remains unshifted. In fig. 8.4(b), the QD is now

on resonance with the higher frequency mode, so that it is detuned from the low frequency mode by

2β. Thus, the shift exhibited by the low frequency mode is smaller than that in fig. 8.4(a). Finally in
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Figure 8.5: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). These plots are calculated using identical parameters as
those used in fig. 8.4, with the exception that the phase of the backscattering parameter β has been
changed from ξ=0 to ξ=π, so that β/2π=-9.6 GHz.

fig. 8.4(c), the QD is on resonance with the low frequency mode, and is also spatially aligned with

it, so that we see the familiar vacuum Rabi splitting of this resonance. We note that the separation

ΩR in this case is 2g
√

2 rather than 2g; this is consistent with the mode volume of the standing wave

modes being one half that of the traveling wave modes, as g ∼ 1/
√

Veff.

The question then arises as to what parameter preferentially selected the low frequency mode

to be spatially aligned with the QD over the high frequency mode. That parameter is the phase of

the backscattering rate β, which we called ξ in the previous section. For the example above, ξ = 0.

We now consider what happens if we take ξ = π, so that β is negative. Our expectation is that this

phase shift should switch which mode is spatially aligned with the QD, so that the higher frequency

mode should now be selected. This prediction is confirmed in fig. 8.5, as we see that the results are

the mirror image of those in fig. 8.4, where now the high frequency mode is spatially aligned with

the QD and exhibits frequency shifts and vacuum Rabi splitting.

Finally, we consider an intermediate backscattering phase ξ = π/2. Here, we expect both modes

to have an equal (but non-optimal) spatial alignment with the QD. For example, for modes with a

cos(mφ) and sin(mφ) azimuthal dependence, this would correspond to having the QD located at a

position where cos(mφ)=sin(mφ) <, e.g., mφ=π/4. The results, displayed in fig. 8.6, show that this

is indeed the case. In fig. 8.6(a), for example, we see a symmetric spectrum, consistent with both

modes being equally spatially coupled to the QD and equally (and oppositely) spectrally detuned

from it. In fig. 8.6(b)-(c), we see that the spectra are no longer symmetric, as the QD is on resonance

with the high frequency mode in fig. 8.6(b), and with the low frequency mode in fig. 8.6(c). In each
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Figure 8.6: Normalized transmitted and reflected signal for a QD coupled to a microdisk cavity,
calculated through numerical solution of the steady state quantum master equation under weak
driving (< 0.03 photons/sec input power). These plots are calculated using identical parameters as
those used in fig. 8.4, with the exception that the phase of the backscattering parameter β has been
changed from ξ=0 to ξ=π/2, so that β/2π=i*9.6 GHz, where i =

√−1.

case, we see Rabi splitting about the mode on resonance with the QD, and only a small shift for

the non-resonant mode. The Rabi splitting between the peaks is no longer at the maximum value of

2g
√

2, but at a value closer to 2g. This makes sense because the maximum value of g is still larger

than it would be for a traveling wave mode by a factor of
√

2, but this gain is negated by having the

QD positioned away from the peak of the field.

The situation described by fig. 8.6(a), where the QD is equally spatially coupled to the two

cavity modes, and spectrally positioned in between them, might be particularly interesting, due to

the presence of a transmission dip at zero laser-QD detuning. It is anticipated that this resonance can

be used as a means to inject photons into the system for applications such as nonlinear switching.

The advantage of this configuration, in comparison to a QD coupled to a single mode, is that the

position of this zero detuning resonance is fixed, regardless of the input power. This is in contrast to

what one observes for a QD coupled to a single cavity mode, where the position of the transmission

dips will shift as a function of driving power, so that the amount of power that can be coupled into

the cavity at a given frequency is limited.

8.4.2 g > β > (κ,γ⊥)

Here, we switch regimes slightly to one in which the QD-cavity coupling rate dominates all other

rates in the system, including the backscattering rate β. In particular, we choose g/2π=12 GHz,

with β/2π=4.8 GHz, κ/2π=1.2 GHz, and τsp=1 ns (γ‖/2π ∼ 0.16 GHz). The qualitative behavior

that we expect to see is identical to that of the previous section, as both g and β represent coherent
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processes, so that their relative values compared to each other are not as important as their values

in comparison to the dissipative rates in the system. This is seen in fig. 8.7(a), where the QD is

spectrally located at −β, so that it is resonant with the low frequency mode of the standing wave

doublet. Predictably, the interaction with the QD causes this resonance to split, with a splitting

ΩR=2g
√

2. The higher frequency mode remains unaffected, as the choice of ξ=0 causes it to be

spatially misaligned from the QD.

8.4.3 κ > g > β > γ⊥

Now, we take the cavity loss rate κ/2π=9.6 GHz to exceed both g/2π=6 GHz and β/2π=1.2 GHz

(in addition, γ‖/2π=0.16 GHz and γp/2π=0 or 0.7 GHz), so that κ > γ⊥. In the absence of a QD,

we know that when κ � β, we expect to see a single transmission dip rather than a doublet. This

is confirmed in simulation by the black dotted line in fig. 8.7(b). With the addition of a QD, taken

to be resonant with the center frequency of the single cavity transmission dip, we expect to see this

single dip split into two, with the dips not being completely resolved due to having κ > g. This is

confirmed in fig. 8.7(b), where the splitting ΩR/2π = 14.8 GHz lies between the expected splitting

for a purely traveling wave cavity mode (ΩR=2g) and the expected splitting for a purely standing

wave cavity mode (ΩR=2g
√

2), and lies closer to the latter due to the degree to which κ exceeds β.
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Figure 8.7: Normalized transmit-

ted and reflected signal for a QD

coupled to a microdisk cavity, cal-

culated through numerical solution

of the steady state quantum master

equation under weak driving. (a)

g > β > (κ,γ⊥), (b) κ > g > β > γ⊥,

(c) γ‖ > g > β > κ, and (d) g > κ >

β > γ⊥.
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8.4.4 γ‖ > g > β > κ

Here, the roles of κ and γ‖ are swapped in comparison to the previous subsection, so that γ‖/2π=9.6

GHz is the dominant dissipative rate, exceeding both g/2π=6 GHz and β/2π=1.2 GHz (the trans-

verse decay rate γ⊥ ∼ 4.8 GHz ∼ g). Unlike our previous example, in absence of a QD, we do expect

to see a pair of standing wave modes form, as β > κ. This is confirmed in fig. 8.7(c) (plot with the

black dashed lines). Now, we introduce a QD that is spectrally aligned with the low frequency

mode at −β. Because QD decay is so large in this case, however, we expect that the standing wave

character of the modes is going to largely be erased when coupled to the QD; standing wave modes

form only when the decay processes in the system are small enough that coherent coupling can take

place between the cw and ccw propagating modes. When a QD is introduced, we expect the energy

to oscillate between the QD and the cavity modes, and that standing wave modes can still form if

the energy decay is not too large, both when the system is primarily ‘QD-like’ and ‘cavity-like.’

Clearly, for γ‖ � β, this is not the case.

To confirm this intuition, we examine the calculated transmission spectrum in fig. 8.7(c). The

low frequency mode does indeed split, but the splitting ΩR/2π = 14.4 GHz is much less than the

expected splitting of 2g
√

2 for standing wave modes, and lies much closer to the 2g splitting for

traveling wave modes. The situation thus mimics that of the previous example. One major difference

is the relatively poor contrast (transmission depth) exhibited by the split resonances; this is due to

the fact that the dominant loss channel in this case, QD decay, is not collected in this measurement,

unlike cavity loss (for which a large fraction is collected).

8.4.5 g > κ > β > γ⊥

8.4.5.1 Steady state analysis

Finally, we consider an intermediate scenario where QD-cavity coupling g/2π = 12 GHz is the

dominant rate in the system, but where cavity decay κ/2π=6 GHz exceeds the backscattering rate

β/2π=1.2 GHz. Again, in absence of a QD, we see a single transmission dip (fig. 8.7(d)), as κ > β.

If a QD is now spectrally aligned to the center of this dip (Δ=0), however, we see three dips appear

within the transmission spectrum of fig. 8.7(d), as opposed to the two dips that appeared in fig.

8.7(b). The central dip is at frequency of 1.2 GHz=β/2π, and corresponds to the frequency of one

of the two standing wave modes that can form through an appropriate combination of the traveling

wave modes. As this mode is spatially misaligned from the QD, we do not expect its frequency to
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have shifted due to interaction with the QD. The other two dips correspond to the splitting of the

low frequency standing wave mode from its original position at −β/2π = −1.2 GHz. The splitting

of ΩR/2π=33.6 GHz is very close to the maximum possible value of 2g
√

2, which is the expected

value for standing wave modes (indeed, if the QD was actually spectrally aligned at −β/2π = −1.2

GHz, ΩR would be even closer to 2g
√

2).

However, the question remains as to why the picture presented is largely consistent with a QD

interacting with a standing wave mode when, in absence of a QD, the system is consistent with a

traveling wave mode. The basic reason is as described above; when interacting with a QD, the sys-

tem oscillates between being ‘QD-like’ and ‘cavity-like’, and in each phase, undergoes decoherence

due to the corresponding decay channel. As a result, the fast cavity decay rate in this example is

somewhat mitigated by the very slow QD decay rate, to the point that coherent coupling between the

clockwise and counterclockwise traveling wave modes can be achieved and standing wave modes

can be formed.

8.4.5.2 Time-dependent analysis

The density matrix calculations presented above are all steady state calculations (dρ
dt = 0). To get a

feeling for the time-dependence of the system, we can use the Quantum Optics Toolbox to numer-

ically integrate the differential equation for the density matrix [81, 82]. One of the first things we

can look at is the evolution of the cavity transmission spectrum as a function of time, to understand

the time required to reach steady state. The results are plotted in fig. 8.8, along with the already

calculated steady state solution. We see that the time-dependent solution approaches the steady state

solution in a time of about 0.1 ns, which is on the order of the Rabi oscillation time τR ∼ 1/g.
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Figure 8.8: Normalized transmitted signal for

a QD coupled to a microdisk cavity, calcu-

lated as a function of time through numeri-

cal integration of the quantum master equa-

tion under weak driving.
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Figure 8.9: Number of intracavity photons in the microdisk clockwise (solid red curves) and coun-
terclockwise (dashed blue curves) propagating WGMs, calculated by numerical integration of the
quantum master equation. A driving field consisting of a Gaussian pulse in time is used (shown as
a black dashed line), with ωl=-β. (a) g/2π=0, κ/2π=1.2 GHz, β/2π=0 GHz, (b) g/2π=0, κ/2π=1.2
GHz, β/2π=6 GHz, (c) g/2π=0, κ/2π=6 GHz, β/2π=1.2 GHz, and (d) g/2π=12 GHz, κ/2π=6
GHz, β/2π=1.2 GHz.

For the purposes of better understanding why the cavity spectrum appears as it does (and in par-

ticular, why the mode splitting is consistent with that expected for a QD interacting with a standing

wave mode instead of a traveling wave mode), we examine the intracavity photon number (< â†â >)

for the clockwise and counterclockwise modes as a function of time. Rather than using a constant

(time-independent) driving field, the cavity is driven by a short pulse (Gaussian in shape, with a

drive power of 0.1 photons/sec), and is centered at a frequency ωl=-β. For an ideal microdisk struc-

ture (no surface roughness) that is not coupled to a QD (g = 0), the forward propagating mode of

the fiber taper will only couple to the clockwise mode of the microdisk. This is confirmed in fig.

8.9(a), as < â†
ccwâccw > remains zero for all times, while < â†

cwâcw > rises as light is coupled into

the clockwise mode, and decays due to cavity radiation after the drive field is switched off. Next,

we consider the empty cavity (g = 0) with β/2π=6 GHz and κ/2π=1.2 GHz, so that β > κ. As

we have described in the previous sections, in this regime, we expect to see coupling between the
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propagating WGMs to form standing wave modes. We thus expect to see non-zero photon numbers

for both clockwise and counterclockwise modes, with the count rates damped due to cavity loss.

This behavior is confirmed in fig. 8.9(b).

We now move on to the situation considered in steady state in section 8.4.5.1, starting without

the QD. As the cavity decay rate κ/2π=6 GHz is significantly larger than the backscattering rate

β/2π=1.2 GHz, we expect that the clockwise mode will suffer significant decay before an appre-

ciable amount of power can be coupled into the counterclockwise mode. This is confirmed in fig.

8.9(c). Now, we introduce a QD with γ‖/2π=0.16 GHz, and spectrally located at zero detuning

(for simplicity, we have taken γp=0 in this calculation). The calculated steady state transmission

spectrum (fig. 8.7(d)) indicated that the QD mediates coupling between the clockwise and counter-

clockwise modes, allowing for standing waves to form, with the low frequency mode (at Δω = −β)

spatially aligned with the QD. This behavior is confirmed in fig. 8.9(d), where we see that the pho-

ton number for the counterclockwise mode increasing much more quickly than it does in fig. 8.9(c),

confirming that energy transfer occurs through some process other than backscattering. Once the

driving field is switched off, the photon count rates in the two modes die down, as a result of both

cavity and QD decay.

The density matrix calculations performed up to this point show the evolution of the system

in an ensemble-averaged sense. To provide us with further physical insight, quantum trajectory

calculations can be considered [149]. In these simulations, the Schrodinger wavefunction for the

system is calculated under the influence of a non-Hermitian Hamiltonian Heff, defined in terms of

collapse operators for the cavity modes and the QD. At random times within this evolution, the

wavefunction is subject to collapses, corresponding to detection events. The quantum trajectory

approach thus models the conditional evolution of a system, and can provide insight into what

will be observed in a measurement (such as the homodyne photocurrent). If the results of many

trajectories are averaged, the results of the density matrix calculations can be reproduced. This

latter point has been examined in quantum trajectory simulations of the systems studied in fig. 8.9,

where 50 trajectories have been averaged, and it has been confirmed that the results match those

of the density matrix calculations well. As only weak driving has been thus far considered, the

computational benefit of using a wavefunction-based approach rather than the density matrix is

minimal. However, for future studies, both the physical insight into the dynamics of these systems

and the reduction in computational cost of the quantum trajectory method may be very important.
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8.4.6 β = 0;g > κ > γ⊥

The basic result that the above examples demonstrate is that the QD can effectively serve as a means

to couple the cavity modes, even in instances where the backscatter parameter is small relative

to other rates in the system. As a final illustration of this, we consider the situation where the

backscatter parameter is zero. In absence of the QD, we then see a single Lorentzian dip in the

transmission spectrum through the fiber taper. When the QD is added, one would might expect to

just see this Lorentzian dip split into two dips separated by 2g. From fig. 8.10, we see that the

mode does split, but that the splitting exceeds 2g (it is actually 2g
√

2). Furthermore, we also see

the presence of a Lorentzian dip at the original cavity frequency, but with the transmission contrast

reduced in amplitude.
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Figure 8.10: Normalized trans-

mitted and reflected signal (steady

state), for the case where the

‘passive’ modal coupling between

clockwise and counterclockwise

WGMs (β) is zero. Coupling to the

atom serves to mediate coupling

between the cavity modes.

The interpretation of these results is that the QD has effectively served to mediate coupling

between the two traveling wave modes, creating a pair of standing wave resonances. The standing

wave mode that is spatially aligned with the QD splits into the resonances at ±g
√

2, while the other

standing wave mode does not overlap with the QD at all, and appears as an unperturbed resonance at

the original cavity frequency. Unlike the standing wave modes formed through surface-roughness-

induced backscattering, this standing wave mode has not shifted in frequency with respect to the

original traveling wave modes because it sees the exact same dielectric function as the traveling

wave modes.1

1Standing wave modes that form through backscattering from structural variations see different dielectric functions,
one which includes more of the air regions and the other that includes more of the dielectric regions, resulting in frequen-
cies that are shifted above and below the original resonance frequency, respectively.
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8.5 Potential for low power switching in the microdisk-QD system

The ultrasmall volumes sustained by these semiconductor microcavities offer the potential to ob-

serve phenomena in nonlinear optics at very small input powers, due to the large per photon electric

field strengths within the devices. The saturation photon number, m0, which represents the average

number of intracavity photons needed to saturate the QD transition, can give us some idea of how

low these powers might be. This quantity is given by [9]:

m0 =
γ⊥γ‖
4g2 (8.21)

where γ⊥ is the transverse relaxation rate given by γ⊥ = γ‖/2 + γp (note that m0 was called ns

previously). Let us first consider the case where γp is small, so that the QD is radiative-limited, and

m0 = γ2
‖/8g2. For g/2π∼ 10 GHz, which is certainly reasonable for the microdisk cavities we study,

and γ‖/2π ∼ 0.16 GHz (τsp ∼ 1 ns), which is typical for self-assembled InAs QDs, m0 ∼ 10−5. This

value indicates the degree to which one photon in the cavity can affect a single QD.

To study this in a bit more detail, we use steady state solutions to the semiclassical optical

bistability state equation (OBSE) and the quantum master equation (QME) to look at the cavity

response as a function of the drive strength. For our purposes here, we will restrict ourselves to

looking at a single (standing wave) cavity mode coupled to the QD; as we saw in the previous

sections, this can occur within our system if the phase of the backscattering parameter is such that

the QD is only spatially aligned with one of the two standing wave cavity modes. This simplification

is also necessary as our calculations here are not done in the weak driving limit, so that a significant

number of Fock space basis elements are needed to describe the cavity mode; this would become

computationally untenable in the case of two cavity modes. The QME and OBSE for a single cavity

mode coupled to a two-level system are discussed in appendix G.

We begin by considering a system with (g,κ,γ‖,γp)/2π = (6,2.4,0.16,0) GHz, and with the

atom, cavity, and driving field all on resonance. The corresponding saturation photon number

(equation (8.21)) and cooperativity parameter (equation (8.17)) are m0 ∼ 9×10−5 and C ∼ 94.

The critical atom number [9], which describes the number of atoms (or QDs in this case) needed to

have an appreciable effect on the intracavity field, is given by N0 = 1/C and is 0.01 in this example.

We first plot, on a linear scale, the normalized steady state intracavity field Xss =< â > m0
−1/2 as
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Figure 8.11: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid line) and
quantum master equation (dots), showing normalized intracavity field amplitude |Xss| as a function
of normalized drive field |Y |. In these simulations, ωa = ωc = ωl , and g/2π=6 GHz, κ/2π=2.4 GHz,
γp=0, and γ‖/2π=0.16 GHz. Correspondingly, m0 ∼ 9×10−5 and C ∼ 94.

a function of the normalized drive field Y = (E/κ)m0
−1/2 in fig. 8.11(a). The semiclassical solu-

tion displays bistability, so that in the intermediate (multi-valued) portion of the curve, the top and

bottom branches are stable solutions, and the middle branch is unstable. However, the quantum

master equation solution looks very different, and the bistability has been washed away.2 Plotted

on a logarithmic scale over a wider range (fig. 8.11(b)), we confirm the absence of bistability in the

quantum master equation solution, but see that it does follow the semiclassical solution in regions

of small Y and large Y .

In an experiment, we will measure the transmission or reflection response of the cavity as a

function of drive power through the taper input. This is plotted in fig. 8.12, where we have displayed

the cavity reflection as a function of the average number of intracavity drive photons and the input

drive power, for a number of different cavity decay rates (we have assumed critical coupling between

the taper and cavity). We again see that the quantum master equation solutions do not match the

prediction of optical bistability that the semiclassical equation solutions make, but do indicate that

switching between near-zero and unity reflection can occur for relatively small input powers, on

the order of tens of nanoWatts. We note that there is a general trade-off between the contrast in

reflection, which increases as the cavity Q increases, and the switching power. Similar behavior can

be observed in the transmitted signal by setting the laser drive frequency ωl = ±g.

In order to achieve radiative-limited operation of the QDs, low temperatures (T�10 K) are

required. It is interesting to consider whether functional devices can be created that operate at room

2This discrepancy has been observed and discussed by several authors in the context of atomic cQED [176, 186].
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Figure 8.12: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid lines) and
quantum master equation (dots), showing cavity reflection as a function of (a) average number of
intracavity drive photons (b) input drive power, for varying cavity decay rates. In these simulations,
ωa = ωc = ωl , and g/2π=6 GHz. We assume γp=0, and γ‖/2π=0.16 GHz. The cavity reflection
spectrum at selected drive strengths, indicated by the gray circles in (a) and labeled i-iv, are shown
in (c).

temperature, where non-radiative dephasing of the QD broadens its linewidth, to values on the order

of ∼5 meV (for a QD exciton line at ∼1 eV). Equation (8.21) predicts m0 ∼0.4 for g/2π ∼10 GHz,

indicating that a single photon can still have an appreciable effect on a single QD. However, the

significant non-radiative dephasing would also suggest that any switching devices will not function

as efficiently as they do at low temperature.

We first plot Xss as a function of Y (fig. 8.13(a)) for a system with g/2π=17 GHz and κ/2π=0.1

GHz. We now see that neither the semiclassical nor the quantum master equation solutions display

bistability, and that the two solutions match much more closely than they did in the previous exam-

ple. Despite the absence of bistability, the shape of the curve is very similar to the quantum master

equation solution in the radiative-limited case, indicated the potential for switching between low

reflection and high reflection values at relatively low powers.

The reflected signal from the cavity as a function of average number of intracavity drive photons

and input drive power for a couple of different combinations of κ and g are plotted in fig. 8.14. These

solutions indicate that low switching powers can still be achieved, but that the reflection contrast

is significantly diminished as a result of the non-radiative dephasing. Relatively large cavity Qs

(> 106) are then needed to achieve ∼20 dB of contrast. As mentioned above, switching in the
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Figure 8.13: Steady state solutions to the semiclassical Maxwell-Bloch equations (solid line) and
quantum master equation (dots), showing normalized intracavity field amplitude |Xss| as a function
of normalized drive field |Y |, for a system with large non-radiative dephasing (linewidth ∼ 5 meV).
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Figure 8.14: Steady state solutions to the quantum master equation, showing cavity reflection as a
function of (a) average number of intracavity drive photons and (b) input drive power (right), for a
system with large non-radiative dephasing (linewidth ∼ 5 meV). In these simulations, ωa = ωc = ωl .

transmitted signal can be achieved by tuning the drive field to ωl = ±g.

The simulations presented above are just a preliminary examination of switching possibilities in

these fiber-coupled microcavity-QD systems. A more detailed bifurcation analysis of the semiclas-

sical model and quantum trajectory analysis to study the time-dependent properties of the system

must be conducted better understand the system and the various types of behavior that can be ac-

cessed for different parameter regimes. The recent analysis of Armen and Mabuchi [178] will be

quite useful in this regard.




