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Chapter 3

Equilibrium Participation in Public
Goods Allocations

The previous chapter addressed certain concerns in mechanism design related to the

assumption of equilibrium behavior and the robustness of predictions in repeated

interaction scenarios. The current chapter takes a different tack, focusing instead on

the enforceability of the outcomes selected by a particular mechanism. The key issues

related to enforceability are the credible options of the social planner and the available

options of the players. In economies with private goods, Hurwicz [48] assumes that the

mechanism designer must allow the agents a ‘no-trade’ option, which leads naturally

to the individual rationality constraint that agents must prefer the chosen allocation

to their initial endowment. With public goods, exercising a no-trade option may

allow an agent to consume some level of the public good produced by those who

participate. Thus, Green & Laffont [41, p. 121] argue that individual rationality

is instead founded on the ethical belief that each agent has a natural right to her

endowment and the welfare its consumption would generate.

The current chapter reconsiders the mechanism design problem with public goods
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when the mechanism designer must allow a no-trade option. The resulting constraint

– called equilibrium participation – requires the mechanism to select an outcome such

that every agent prefers to contribute their requested transfer payment rather than

withhold it. If an agent withholds her transfer payment, then the level of the public

good is reduced to that which can be feasibly produced with the remaining transfers.

In order to induce all agents to choose participation over non-participation, a

mechanism can satisfy equilibrium participation by making those agents with the

strongest free-riding incentive responsible for the largest share of the production in-

puts. This is demonstrated in example 3.5 of Section 3.2.4. However, if several

agents have strong free-riding incentives, they cannot all be made responsible for the

lion’s share of production. This problem is exacerbated in larger economies. This is

the intuition behind the two main results of this chapter: (1) there are many finite

economies in which only the endowment satisfies equilibrium participation, and (2)

as any classical public goods economy is replicated, the set of outcomes satisfying

equilibrium participation converges to the endowment.

The negative results of this chapter imply that coercion is absolutely necessary for

mechanisms to successfully implement desirable outcomes. If an agent opts out of the

mechanism outcome, some punishment system must be in place so that the dissenting

agent cannot free ride on the production of others. This can be obtained explicitly

through fines and sanctions, or implicitly by threatening to produce nothing if any

agent defects. If explicit coercion is unavailable and implicit threats incredible, then

mechanism design cannot avoid the standard free-rider problem.
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The next section reviews the relevant literature. The notation and key definition

of the chapter are provided in Section 3.2. General properties of the set of allocations

satisfying equilibrium participation are explored in Section 3.3, followed by an analysis

of the constraint in classical, quasi-concave economies with convex technology in

Section 3.4. The main result on convergence to the endowment in large economies

is proven in Section 3.5. Concluding comments and open questions are discussed in

Section 3.6.

3.1 Relation to Previous Literature

Several authors have tried with limited success to define a notion of the core that

is appropriate in a public goods economy. Such definitions must make assumptions

about the behavior of non-dissenting coalitions when some coalition blocks an al-

location. In the original definition by Foley [36], only the dissenting coalition may

produce the public good; non-dissenters withdraw their contributions to production.

This maximizes the threat to dissenters and many allocations remain in the core.1

[82] assumes that non-dissenting agents select levels of production that are ‘rational’

for themselves (under various meanings) and finds that the subsequent definition of

the core may be empty.

Champsaur, Roberts & Rosenthal [15] define the ϕ-core as the allocations that

remain unblocked when blocking coalitions are given the power to tax the remaining

agents an amount up to ϕ, which depends on the proposed blocking allocation. If ϕ

1[74] shows that Foley’s core does not converge to the set of Lindahl equilibria in large economies.
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were a function of the original allocation, then this notion of blocking (for single-agent

coalitions) could encompass the definition of equilibrium participation. Though the

results for both definitions are similarly negative, they are logically independent.

Saijo [89] analyzes the mechanism design problem when the utility of autarkic

production is used as a welfare lower bound instead of the utility of the endowment.

His notion of autarkic individual rationality requires each agent’s final utility level

to be weakly greater than that which the agent could achieve in isolation with his

endowment and access to the production technology. Whereas Ledyard & Roberts

[62] demonstrate that the standard notion of individual rationality is incompatible

with incentive compatibility among the class of Pareto optimal mechanisms, Saijo [89]

shows that autarkic individual rationality is incompatible with incentive compatibility

for all mechanisms, optimal or not.

Other authors have proposed various models of the outside options of agents in a

mechanism design setting. The most general of these is Jackson & Palfrey [53], where

an unspecified function maps from any given outcome to another (possibly identical)

outcome. The necessary and sufficient conditions of Maskin [67] are then extended

in a simple way to accommodate this ‘reversion function.’ This approach unifies

several existing attempts to model renegotiation and participation in the outcomes

of mechanisms in private goods settings, such as Ma, Moore & Turnbull [64], Maskin

& Moore [68], and Jackson & Palfrey [52]. It also encompasses pubic goods models

with an exogenous status quo outcome or mechanism, as in Perez-Nievas [81].

The issue of enforceability has been addressed in the literature on Bayesian mech-
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anism design (where agents have a non-degenerate common knowledge prior belief

over the set of possible preference profiles) through the means of an external ‘budget

breaker’ who receives a large transfer from the agents when undesirable performance

is observed. This concept was introduced by Holmstrom [47] as a way for managers

to incentivize teams of agents. Eswaran & Kotwal [31] argue that such schemes cre-

ate a strong incentive for the budget breaker to bribe a single agent to deviate. For

example, consider a situation where a central planner uses Walker’s [100] mechanism

to determine the level of some public good. Assume that if some agent submits a

transfer smaller than that required by the mechanism outcome, then the planner can

credibly commit to giving all received transfers to some disinterested third party,

rather than putting those funds into production or refunding them to the agents. If

this third party receives some benefit from these transfers, then she has an incentive

to bribe one agent in the economy to withhold his transfer. If agents in the economy

expect that this budget breaker will offer such a bribe, then the mechanism outcome

cannot be supported as an equilibrium because the agents will rationally expect that

some agent will be bribed. In the current chapter, it is assumed that the use of such

budget breakers is not admissable, either because no dissinterested agent can be found

or because the incentive to bribe is sufficiently large so as to make this an ineffective

enforcement device.2

Finally, it is worth noting that concepts such as dominant strategy incentive com-

patibility and ex-post equilibrium do not encompass the definition of equilibrium

2Alternatively, it could be assumed that the planner has a strong preference for efficiency, so that
the use of a budget breaker is simply not credible off the equilibrium path.
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participation. Although these concepts do require that the mechanism outcome be

preferred by each individual to all other outcomes in the range of the mechanism,

there is no guarantee that the allocation obtaining after an agent opts out is in the

mechanism’s range. Indeed, most ‘standard’ public goods mechanisms (such as the

Groves-Ledyard, Walker, and cVCG mechanisms presented in Section 2.4) do not

include the opt-out points in their range. Therefore, the fact that an allocation is se-

lected as part of an equilibrium decision does not preclude the possibility that agents

will later prefer to free-ride on the contributions of others.

3.2 Notation & Definitions

This chapter uses the following notational conventions:3

R The real line: (−∞,∞)

R+ The non-negative real line: [0,∞)

R
n, R

n
+ The n-fold Cartesian products of R and R+, respectively

3.2.1 Environments

Consider the following environment with one private good and one public good:

3If x and x′ are in R
n, then x ≥ x′ ⇔ xi ≥ x′

i for all i, x > x′ ⇔ x ≥ x′ and xi > x′
i for some i,

and x � x′ ⇔ xi > x′
i for all i.
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I ≥ 2 The number of individuals

I = {1, . . . , I} The set of individuals, indexed by i

x ∈ R
I
+ An allocation of the private good; x = (x1, . . . , xI)

y ∈ R+ A level of the public good

z = (x; y) ∈ R
I+1
+ An allocation

Z ⊂R
I+1
+ The set of all possible allocations

ω ∈ Z The initial endowment: ωi > 0 for i ∈ I, ωI+1 = 0

t = ω − x The transfers paid by the agents. T =
∑

i ti, T−i =
∑

j �=i tj

�i The complete, transitive preference relation of i on Z × Z

�i The strict preference relation of i

ui : Z →R Utility representation of �i

Y ⊆R
2 The set of production possibilities: Y∩R

2
+ = {(0, 0)}

ϕ ∈ Y & ϕ′ ≤ ϕ ⇒ ϕ′ ∈ Y (comprehensive), Y closed

F : R+ → R+ The production function: F (T ) = sup {y : (−T, y) ∈ Y}

c : F (R+) → R+ The cost function: c (y) = inf {T ≥ 0 : (−T, y) ∈ Y}

e =
({�i}i∈I ,Y , ω

)
An economy with I agents

EI The set of all economies with I agents

Given an economy e, let Z (e) ⊆ Z be the set of feasible allocations of the form

z = ω + (−t; y), where

y ≥ 0
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and t ∈ R
I satisfies

t � ω,

T ≥ 0,

and

(−T ; y) ∈ Y .

A feasible allocation (x; y) is balanced if y = F (T ).

The following assumptions are used at various points in the chapter:

A1 (Monotonicity) If (x′
i, y

′) ≥ (xi, y), then (x′; y′) �i (x; y).

A2 (Convexity) If z′ �i z, then αz′ + (1 − α) z �i z for all α ∈ (0, 1).

A3 (Continuity) For every z ∈ Z (e), {z′ ∈ Z (e) : z′ �i z} and {z′ ∈ Z (e) : z′ �i z}

are closed.

A4 (Increasing marginal cost) Y is convex.

A5 (Differentiable utility) Preferences �i can be represented by a differentiable utility

function ui.

A6 (Differentiable cost) The function F is differentiable.

Denote the set of ‘classical’ economies satisfying A1 through A4 by EC
I . Let ED

I

denote the set of differentiable economies satisfying A1 through A6. Note that under

A4 and A6, c′ (y) = 1/F ′ (T ).
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3.2.2 Mechanisms

The following defines a mechanism and its possible outcomes:

Si The set of strategies of i: S =
∏

I Si

τ : S →R
I Transfer function

η : S →R+ Outcome function

Γ = (S, η, τ) A mechanism

µΓ (e) Equilibrium correspondence mapping Γ and e into subsets of S

Oµ
Γ (e) = {(x; y) ∈ Z : [∃s ∈ µΓ (e)] x = ω − τ (s) & y = η (s)}

Ōµ
Γ (e) = {(x; y) ∈ Oµ

Γ (e) : y = F (
∑

i (ωi − xi))}
The sets Oµ

Γ (e) and Ōµ
Γ (e) represent the set of outcomes and balanced outcomes,

respectively, of an economy e.

Definition 3.1 Γ is decisive under µ if, for all e ∈ EI , Oµ
Γ (e) �= ∅.

Definition 3.2 Γ is feasible under µ if it is decisive under µ and, for all e ∈ EI ,

Oµ
Γ (e) ⊆ Z (e).

Definition 3.3 Γ is balanced under µ if it is feasible under µ and, for all e ∈ EI ,

Oµ
Γ (e) = Ōµ

Γ (e).

The set of Pareto optimal allocations for e is given by

PO (e) = {z ∈ Z (e) : [ � ∃z′ ∈ Z (e)] z′ � z} .

Definition 3.4 Γ is efficient under µ if it is decisive under µ and, for all e ∈ EI ,

Oµ
Γ (e) ⊆ PO (e).
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If preferences are strictly monotonic, efficient mechanisms must be balanced.

3.2.3 Implementation

In general, if G is a social choice correspondence (SCC) mapping each economy e to a

subset of the feasible allocations Z (e), then Γ implements G under µ if Oµ
Γ (e) ⊆ G (e)

for every e and Γ fully implements G under µ if Oµ
Γ (e) = G (e) for every e. For

example, if IRi (e) = {(x; y) ∈ Z (e) : (x; y) �i (ω; 0)}, then IR (e) =
⋂

I IRi (e)

is the SCC that selects all points in the economy that are weakly preferred to the

endowment by all individuals. If Γ implements IR (e) under µ, then all agents are

made weakly better off by participating in Γ and playing a strategy in µΓ (e).

Hurwicz [48] and Ledyard & Roberts [62] have shown that no mechanism imple-

ments PO (e)∩ IR (e) in dominant strategies for private or public goods economies,

respectively. Hurwicz [49] shows that if a mechanism implements PO (e)∩IR (e) in

Nash equilibrium, then Oµ
Γ (e) is the set of Walrasian (or Lindahl) allocations.

3.2.4 The Participation Decision

Consider a situation in which agents in economy e participate in a mechanism Γ that

is balanced and efficient under µ and receive the outcome (ω − τ ; η) ∈ Oµ
Γ (e). If

each agent i has the freedom to either contribute τi or exercise a ‘no-trade’ option

by withholding τi, then the mechanism outcome induces an I-player, two-strategy

game. Assume that the final public goods level is the maximum feasible, given the

contributions received. If all agents prefer to contribute τi over exercising their no-
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trade option, then full participation is a Nash equilibrium of the induced participation

game and the allocation (ω − τ ; η) will be fully realized.

Clearly, there may exist a conflict between the goal of the social planner and the

opt-out incentives of the agents. This is clearly seen by the following example:

Example 3.5 Let I = {1, 2}. Define

u1 (x1, y) = x1 + 21y − 2y2

and

u2 (x2, y) = x2 + 77y − 9y2.

Fix ωi = 50 for each i and let F (T ) = T/10.

In this example, PO (e) = {(x; y) : y = 4 & t1 + t2 = 40}. At the optima, the

marginal rate of substitution is 5 for both agents, so the consumers’ Lindahl prices

are equal. Suppose an efficient mechanism under µ selects the Lindahl solution τ =

(20, 20) and η = 4. The induced participation game is given in panel (a) of Figure

3.1. Clearly, agent 1 has an incentive to withhold her requested transfer, resulting in

a suboptimal outcome of y = 2 in equilibrium.

Now consider another efficient mechanism under µ that selects η = 4 and τ =

(30, 10). In the induced participation game, shown in panel (b) of Figure 3.1, it is an

equilibrium for both agents to participate. Agent 1 no longer has an incentive to opt

out because her contribution is responsible for a larger share of the production.

Although this redistribution of production ‘responsibility’ is an effective trick to
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t1 \ t2 20 0
20 82, 194 64, 168
0 84, 148 50, 50

t1 \ t2 10 0
30 72, 204 65, 200
0 69, 108 50, 50

(a) (b)

Figure 3.1: The induced participation game for Example 3.5 from (a) the equal-price
Lindahl allocation, and (b) an unequal-price optimal allocation.

offset free-riding incentives, feasibility constraints limit how many agents can have

their tax burden sufficiently increased. Furthermore, some agents may prefer to al-

ways defect, regardless how much of the burden they must bear. These difficulties

are key to the negative results of the chapter.

Consider the more general case of two players and a constant marginal cost. If an

allocation z is proposed such that ti > 0 for each i and F (T ) > 0, then the allocation

that obtains when agent 1 opts out is given by

z(−1) =
(
(ω1, x2) ; y(−1)

)
,

where

y(−1) = F (t2) .

The opt-out point z(−2) is similarly defined. Panel (a) of Figure 3.2 provides a graph-

ical example of these points in the Kolm triangle diagram (Kolm [58]; see Thomson

[95] for a detailed exposition.) For the proposal z to satisfy equilibrium participation,

both agents must prefer z to their ‘opt-out’ points z(−i), as in the figure.

In the case where t1 < 0 while t2 > 0, then y(−2) = 0 since negative quantities
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O
1

O
2

ω

Z

Z(−1)

Z(−2)

u
1

u
2

O
1

O
2

ω = Z(−2)

ZZ(−1)

(a) (b)

Figure 3.2: (a) The point z �i z(−i) for each i ∈ 1, 2, so it satisfies equilibrium
participation. (b) The points z(−i) when t1 is negative.

of the public good are not admissible. However, y(−1) = y since agent 1 is not asked

to contribute any private good. In this case, it is assumed that the negative transfer

rejected by agent 1 is either redistributed among the other agents or destroyed, rather

than affecting the level of the public good.4 Under A1, agent 1 will always prefer

participation when t1 < 0 and agent 2 will prefer participation only if (x; y) ∈ IR2 (e).

The case of a negative transfer is demonstrated graphically in panel (b) of Figure 3.2.

Generalizing the concepts of the two-player example provides the key definition

of this chapter.

Definition 3.6 For any I = 1, 2, . . . and any economy e ∈ EI , a feasible allocation

(x; y) ∈ Z (e) such that x = ω− t satisfies equilibrium participation for agent i (EPi)

if and only if

(x; y) �i

(
x(−i); y(−i)

)
,

4Whether the transfer is redistributed or destroyed will not affect the i’s participation decision
since �i depends only on xi and y.
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where

x
(−i)
i = ωi,

y(−i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F (T−i) if ti ≥ 0, T−i ≥ 0, and y ≥ F (T−i)

0 if T−i < 0

y otherwise

, (3.1)

and

(
x(−i); y(−i)

) ∈ Z (e) .

The allocation (x; y) ∈ Z (e) satisfies equilibrium participation (EP) if and only

if it satisfies EPi for all i ∈ I.

There are four possible cases in this definition. When ti ≥ 0, T−i ≥ 0, and

y ≥ F (T−i), removing agent i’s transfer necessarily reduces production, but not to

zero. If T−i < 0, then ti > 0 and removing i’s transfer results in y(−i) = 0. If ti < 0

or y < F (T−i), then y can be produced in the absence of i’s transfer, so y(−i) = y.

For any economy e ∈ EI , let

EP i (e) = {z ∈ Z (e) : z satisfies EPi} ,

and define

EP (e) =
⋂
i∈I

EP i (e) .

Referring back to the example of Figure 3.2, z ∈ EP (e) in panel (a), but in panel
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O
1

O
2

ω

u
1

Figure 3.3: The set of balanced allocations satisfying equilibrium participation for
agent 1.

(b), z �∈ EP1 (e), so z �∈ EP (e).

3.3 Properties of EP (e)

The shaded region of Figure 3.3 demonstrates a typical equilibrium participation set

for agent 1 in a two-agent classical economy. Note that EP (e) is closed and has a

continuous boundary, but need not be convex. Clearly, EP (e) is non-empty for every

e ∈ EI and every I since (ω; 0) ∈ EP (e).

As an alternative to equilibrium participation, consider an environment in which

agents can freely choose ti ∈ [0, ωi], resulting in y = F (T ). The set of Nash equilib-
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rium allocations is given by

NE (e) =

⎧⎪⎪⎨
⎪⎪⎩

(x∗; y∗) ∈ Z (e) : x∗ ≤ ω and

[∀i ∈ I] [∀t′i ≥ 0] (x∗
i , y

∗) �i

(
ωi − t′i, F

(
T ∗
−i + t′i

))
⎫⎪⎪⎬
⎪⎪⎭ .

The notion of equilibrium participation is now shown to be more stringent than the

standard notion of individual rationality, but less restrictive than the Nash equilib-

rium requirement.

Proposition 3.7 Under monotone increasing preferences (A3), all allocations satis-

fying equilibrium participation also satisfy individual rationality (EP (e) ⊆ IR (e).)

Proof. Consider a point (x; y) such that (xi, y) �i

(
ωi, y

(−i)
)

for all i ∈ I. Note

that y(−i) ≥ 0 for each i, so A3 implies that
(
ωi, y

(−i)
) �i (ωi, 0). By transitivity,

(xi, y) �i (ωi, 0) for every i, proving the result.

Proposition 3.8 All Nash equilibria of the voluntary contributions game satisfy equi-

librium participation (NE (e) ⊆ EP (e).)

Proof. From any Nash equilibrium point, the ‘opt-out’ allocation for agent i in

the participation game is simply
(
ωi, F

(
T ∗
−i

))
. Since the definition requires that

(x∗
i , y

∗) �i

(
ωi, F

(
T ∗
−i

))
for all i by considering t′i = 0, the point (x∗; y∗) must satisfy

equilibrium participation.

In mechanism design with public goods, the most common goal is to implement

PO (e). There exist several mechanisms whose Nash equilibria are guaranteed to

be Pareto optimal when utility is transferable. However, if the outcomes of these
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mechanism fail to satisfy equilibrium participation, then their desirable properties

are of little use in environments where agents cannot be coerced to submit their

transfers. The following class of examples shows the potential difficulty of finding

points in PO (e) ∩ EP (e).

Example 3.9 Let I ≥ 2. Define ui (xi, y) = vi (y) + xi, where each vi (y) is contin-

uous and differentiable. Assume F (T ) = T/κ, and let v′
i (y) < κ for all i ∈ I and

y ≥ 0. Assume that there is a unique yo > 0 such that
∑

i v
′
i (y) > κ for y < yo and

∑
i v

′
i (y) < κ for y > yo. Finally, assume that

∑
j �=i ωj < κyo for each i ∈ I.5

In this example, no agent is willing to unilaterally fund any amount of the public

good at any level and therefore refuses to contribute in any participation game. To

see this, pick any allocation (x; y) �= (ω; 0), so t �= 0. If all agents participate in this

allocation, then each agent i receives

ui (xi, y) = vi (y) + ωi − ti.

If i withholds her transfer, she receives

ui

(
x

(−i)
i , y(−i)

)
= vi

(
y(−i)

)
+ ωi.

There must be some agent i with ti > 0. If y = 0 or T−i ≤ 0, then y(−i) = 0 and EPi is

5One such example is κ = 1 and

vi (y) =
{

3
2I y if y ≤ 1
1
2I y + 1

I if y ≥ 1

for each i. Here, yo = 1. The point of non-differentiability in vi is of no consequence.
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not satisfied. If y > 0 and T−i > 0, but y ≤ F (T−i) then y(−i) = y and EPi again fails.

Therefore, consider the case where y > 0, T−i > 0, and y > F (T−i), so y(−i) = F (T−i).

By withholding, agent i saves ti = κ
(
y − y(−i)

)
in transfer payments. Her loss in value

due to the reduction in public goods production is vi (y) − vi

(
y(−i)

)
=

∫ y

y(−i) v′
i (s) ds,

which is less than κ
(
y − y(−i)

)
since v′

i (y) < κ for all y. Therefore, she will prefer to

withhold her transfer regardless of ti and the allocation will not satisfy equilibrium

participation for agent i. In this economy, no allocation can satisfy EPi for every

i, so EP (e) is simply the endowment. This class of examples proves the following

proposition:

Proposition 3.10 For every I ≥ 2, there exists economies e in EC
I such that no

allocation except the endowment satisfies equilibrium participation (EP (e) = {ω}).

The following shows that the notion of voluntary participation implicit in the

definition of EP may preclude any optimal allocation from obtaining.

Proposition 3.11 For every I ≥ 2, there exists economies e in EC
I in which no allo-

cation z ∈ Z (e) can be selected such that the equilibrium of the resulting participation

game is Pareto optimal.

The proof of this result is simple. Any Pareto optimal allocation in the above

class of examples must choose yo > 0, from which any agent will defect. Furthermore,

optimal allocations cannot obtain after an agent defects; if any one agent is consuming

xi = ωi, then
∑

j �=i ωj < κyo guarantees that yo cannot be feasibly produced by the

remaining agents.
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Note that example 3.9 does not represent a knife-edge case. A wide range of

economies fits its assumptions and a number of similar examples can be constructed.

The key factor is marginal utilities must be smaller than marginal costs at all levels

of y.

Since Proposition 3.11 indicates that EP is inconsistent with Pareto optimality, it

is natural to ask whether there can exist any non-trivial mechanisms that satisfy this

constraint.6 In other words, is there a mechanism and a µ that implements EP (e)

in µ? The results of Gibbard [40], Satterthwaite [91], K. Roberts [85] and Zhou [102]

indicate that dominant strategy implementation of EP (e) is futile, even in classical

economies. More positive results may be obtained when µ is weakened to the Nash

equilibrium concept; it is simple to show that EP (e) satisfies Maskin’s definition of

monotonicity (see Maskin [67], giving the following result7):

Proposition 3.12 The set of allocations satisfying equilibrium participation (EP (e))

can be non-trivially implemented in Nash equilibrium when I ≥ 3.

The proof of this proposition for full implementation relies on Maskin’s mechanism

which is not a particularly ‘natural’ game form. Proposition 3.8 shows that EP (e)

can be implemented by the voluntary contribution mechanism since NE (e) ⊆ EP (e).

However, this mechanism does not fully implement EP (e). Note that in economies

like those of Example 3.5, EP (e) = {ω}, making implementation of EP (e) trivial.

6A non-trivial mechanism is defined as one that selects something other than the initial endow-
ment in at least one environment.

7The other sufficient condition, ‘no-veto power,’ is trivially satisfied in economic environments
such as this one.
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3.4 Quasi-Concave Economies

3.4.1 Necessary and Sufficient Conditions

The additional structure gained by adding assumptions A1 through A6 allows for the

derivation of separate necessary and sufficient conditions for an allocation to satisfy

equilibrium participation. Although these conditions are not tight, they require only

‘local’ information about the gradients of utilities and derivative of the production

function.

Proposition 3.13 For any economy in ED
I , if equilibrium participation is satisfied

at a point (x; y) = (ω + t; y), then

∂ui (ωi; F (T−i)) /∂y

∂ui (ωi; F (T−i)) /∂xi

≥ c′
(
y(−i)

)
(3.2)

for all i ∈ I such that ti, T−i ≥ 0 and y ≥ F (T−i).

A similar condition is now shown to be sufficient for a point to satisfy equilibrium

participation. Whereas the necessary condition compares the marginal rate of sub-

stitution to marginal costs at the drop-out point, the sufficient condition compares

these quantities at the proposed allocation:

Proposition 3.14 For any economy in ED
I , if a point (x; y) = (ω + t; y) satisfies

∂ui (x; y) /∂y

∂ui (x; y) /∂xi

≥ c′ (y) (3.3)



89

for all i such that ti,T−i ≥ 0 and y ≥ F (T−i) and

uj (x; y) ≥ uj (ω; 0) (3.4)

for all j such that T−j < 0, then equilibrium participation is satisfied at (x; y).

Unlike the necessary condition, equation (3.4) implies that information about

the utilities of some agents at both the suggested allocation and the endowment is

needed. This may be undesirable from the standpoint of mechanism design since

additional information is necessary to determine that the condition is met.8 The

following condition shows how equation (3.4) could be replaced by a stronger version

of equation (3.3) to give a single condition sufficient for all agents that uses only

information about preferences and costs at the selected allocation.

Proposition 3.15 For any economy in ED
I , if a point (x; y) = (ω + t; y) satisfies

∂ui (x; y) /∂y

∂ui (x; y) /∂xi

≥ ti
F (T )

(3.5)

for all i, then equilibrium participation is satisfied at (x; y).

Figure 3.4 demonstrates the interpretation of these conditions. The quantity

(∂ui/∂y) / (∂ui/∂xi) is the slope of the gradient of ui, while c′ is the slope of the

normal to the production possibilities frontier. In the figure, F is reflected around

the y-axis and horizontally shifted so that its graph represents the production pos-

8Of course, there could exist mechanisms whose outcomes satisfy Equilibrium Participation with-
out satisfying this sufficient condition.
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Figure 3.4: An example with quasi-concave utilities and convex production sets. z is
Pareto optimal, z∗ is i’s most-preferred feasible allocation, and z(−i) is i’s drop-out
point. z(−i) satisfies the sufficient condition for EP. z∗ and z′ satisfy the sufficient
condition.

sibilities set for agent i, given the endowments. If agent i withholds ti, then the

allocation z(−i) results. In this case, i will prefer the Pareto optimal point z to z(−i).

The necessary condition for equilibrium participation is satisfied in the figure since

the gradient of utility has a steeper slope than the normal to F at z(−i). The sufficient

condition is satisfied at z′ since the gradient of utility is steeper than the normal to F

at z′, but this condition fails at the optimal point, z. In fact, the sufficient condition

is satisfied for any point along F between z(−i) and z∗, but nowhere left of z∗. This is
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intuitive; z′ is closer to z∗ (i’s most preferred point) than z(−i), so i will not opt out

of z′.

The Samuelson [90] condition for an interior optimum requires z to be to the left

of z∗, where the sufficient condition fails. Thus, equilibrium participation requires

that z(−i) be sufficiently to the right of z∗, causing ti to be large. As in the opening

example, large transfers are needed to incentivize participation, but feasibility may

constrain how large the transfer can be or how many agents can have these inflated

transfers. Clearly, this constraint will be more restrictive in larger economies, as will

be demonstrated in Section 3.5.

3.4.2 Quasi-Linear Preferences

The transferable utility environment is especially important in mechanism design as

the absence of wealth effects is useful in guaranteeing the ability to satisfy incentive

compatibility constraints through transfer payments. It also allows a more precise

quantification of the minimal transfer needed to satisfy equilibrium participation.

Assume agents have utility functions ui (xi, y) = vi (y)+xi, where v′
i > 0 and v′′ ≤

0, and let the production function be strictly increasing and concave, so c (y) is strictly

increasing and convex. Let y∗
i be the unique solution to c′ (y) = v′

i (y). Equilibrium

participation at a public good level of ŷ requires that

ti ≤
∫ ŷ

y(−i)

v′
i (y) dy.
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It must be that if ti is non-negative, then

∫ ŷ

y(−i)

c′ (y) dy ≤ ti,

with equality if the allocation is non-wasteful. In order for ŷ to satisfy equilibrium

participation for agent i when ŷ > y∗
i , it must be the case that

∫ y∗
i

y(−i)

(v′
i (y) − c′ (y)) dy ≥

∫ ŷ

y∗
i

(c′ (y) − v′
i (y)) dy, (3.6)

both of which are non-negative quantities.

For an optimal allocation yo, equation (3.6) provides an exact requirement on how

‘far’ y(−i) must be from y∗
i to guarantee equilibrium participation. This is demon-

strated in Figure 3.5, in which y(−i) is the largest value satisfying (3.6) for the optimal

point yo. The necessary and sufficient conditions from equations (3.2) and (3.3) are

also intuitive in this figure; if y(−i) > y∗
i , then the necessary condition fails because

marginal costs are everywhere larger than the marginal benefit between y(−i) and yo,

and the sufficient condition is satisfied for any y ∈ [y(−i), y∗
i ) since marginal costs are

less than the marginal benefit at every public good level between y and y(−i).

3.5 Equilibrium Participation in Large Economies

The analysis of finite economies indicates that the large transfers needed to guar-

antee equilibrium participation for optimal allocations conflict with the feasibility

constraints, particularly for larger economies. There is a fundamental difficulty in
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Figure 3.5: The Pareto optimal point yo exactly satisfies equilibrium participation; if
y(−i) were any larger, EP would fail.

the notion of a replica public goods economy. If each replicated agent is given the

same endowment, then the total available production input grows without bound.

Unless preferences bound the level of production, agents in large economies can find

themselves consuming an infinite ratio of public to private goods.

Muench [74], Milleron [73], and Conley [25] discuss the difficulty of replicating

public goods economies and offer various possible methods.9 Milleron [73] provides an

intriguing notion of replication; by splitting a fixed endowment among the replicates

and adjusting preferences so that agents’ concerns for the private good are relative to

the size of their endowment, the fundamental difficulties of replication are mitigated.

In essence, as the economy is replicated and agents are given a smaller share of the

endowment, their preferences adjust proportionally to become more sensitive to the

9These authors are examining the convergence of the core of the economy to the Lindahl equi-
librium. See Foley [36] for the appropriate definitions.
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private goods holding. Thus, a very small shift in the absolute holdings of the private

good is more significant to an agent with a small endowment in a big economy than

to an agent with a big endowment in a small economy.

Formally, consider a base economy e ∈ EI with I unique agents such that e =

({�i}i∈I ,Y , ω
)
. A replica economy eR is defined by replicating R times each i ∈ I.

Each replicate of consumer type i, denoted by the pair (i, r) for r = 1, . . . , R, is

endowed with ωi/R units of the private good and a preference relation �i,r such that

(xi,r, y) �i,r

(
x′

i,r, y
′), if and only if (Rxi, y) �i (Rx′

i, y
′) because of the scaling of

endowments. This assumption on preferences of replicates mimics the approach of

Milleron [73] and guarantees that private good consumption trade-offs are significant,

even as the magnitude of those trade-offs becomes arbitrarily small. Finally, the

production technology of eR is assumed to be identical to that of e.

This intuition that equilibrium participation becomes oppressively restrictive as

an economy is replicated is confirmed by the following theorem:

Theorem 3.16 For any economy satisfying A1, A3, and A4 (continuous, monotone

preferences and increasing, continuous production technology,) the set of allocations

satisfying equilibrium participation converges to the initial endowment as the economy

is infinitely replicated.

The proof of this theorem, available in the chapter appendix (Section 3.7,) demon-

strates how the shrinking endowment restricts the amount any agent can be asked to

pay in the limit. This, in turn, limits the agent’s effect on production. Since agents in

large economies care about small changes in their private goods consumption, but not
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in the level of the public good, agents eventually prefer to opt-out as their individual

effect on production vanishes.

This result is sensitive to the definitions of a replica economy. Consider instead a

more standard notion of replication in which ωi,r = ωi for each type i and replicate

r, and assume (xi,r, y) �i,r

(
x′

i,r, y
′) if and only if (xi, y) �i (x′

i, y
′). To see that the

theorem no longer holds, construct a simple base economy e ∈ EI with an agent i

for whom (0, F (ωi)) �i (ωi, 0). Here, the allocation (x, y) where xi = 0, xj = ωj

for all j �= i, and y = F (ωi) satisfies equilibrium participation. This economy can

be replicated arbitrarily often, but the sequence of allocations
(
xR, yR

)
such that

xR
i,1 = 0, xR

j,r = ωj for all (j, r) �= (i, 1), yR = F (ωi) satisfies equilibrium participation

for every R , but does not converge to the endowment.10

Note that this result holds in economies where the set of Pareto optimal allocations

remains far from the endowment as the economy grows, so that notion of approximate

efficiency is of no benefit. For large economies, it is necessary that the committee or

government has the power of coercion in order to overcome the free-rider problem.

3.6 Conclusion

If a mechanism is to implement a desired social choice correspondence with public

goods when agents have available a no-trade alternative, it must select an allocation

impervious to agents withdrawing their transfers. The incompatibility between equi-

10If the limit economy is represented by a measure space of consumers, however, this example fails
because the contributions of a single individual are of measure zero and will not affect production
of the public good.
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librium participation and Pareto optimality is established through simple quasilinear

examples, indicating that optimality is unobtainable under the standard assumptions

used in mechanism design. In many economies, only the initial endowment is insuscep-

tible to agents withdrawing. Even in those economies for which non-trivial allocations

satisfy equilibrium participation, the set of equilibrium participation allocations even-

tually shrinks to the endowment as the economy is replicated.

The above analysis leaves open important questions about participation in public

goods allocations. Perhaps it is possible to characterize those economies for which

optimality is not inconsistent with equilibrium participation. If this class of such

economies is reasonable to assume as the set of possible economies, then the negative

results may be avoided with small numbers of agents. Similarly, there may exist

a wide range of economies for which Pareto optimality may be well approximated

under equilibrium participation. If such ‘approximately desirable’ outcomes could be

identified, perhaps there exists a more natural mechanism that can implement these

outcomes in Nash equilibrium. Given that the equilibrium participation constraint

can be thought of as a restriction on the size of transfers, it is conceivable that a total

transfer maximizing solution to this system of restrictions may be identified and used

to maximize the total size of the public good in a given economy.

Finally, empirical observation demonstrates that non-trivial quantities of public

goods are regularly provided in large economies. Governments and other voluntarily

established methods of coercion exist as enforcement devices to guarantee that wel-

fare improving allocations are attained. The next chapter provides a repeated-game
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justification for endogenous enforcement, even when interactions are anonymous and

individual reputations cannot be tracked. Such a process is a naturally occurring

phenomenon within the larger private ownership/competitive mechanism framework,

rather than a formally defined allocation mechanism. A larger model of how allocation

mechanisms evolve in time has yet to be developed.

3.7 Appendix

Proof of Proposition 3.13. Pick any agent i such that ti, T−i ≥ 0 and y ≥ F (T−i).

Equilibrium participation implies that

ui (ωi − ti, F (T−i + ti)) ≥ ui (ωi, F (T−i)) .

By quasi-concavity of ui,

∇ui (ωi, F (T−i)) · (−ti, F (T−i + ti) − F (T−i)) ≥ 0,

or

F (T−i + ti) − F (T−i)

ti
≥ ∂ui (ωi; F (T−i)) /∂xi

∂ui (ωi; F (T−i)) /∂y
.

Thus, by concavity of F ,

∂ui (ωi; F (T−i)) /∂xi

∂ui (ωi; F (T−i)) /∂y
≤ F ′ (T−i) .
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Inverting this inequality gives the necessary condition.

Proof of Proposition 3.14. By monotonicity, equilibrium participation is triv-

ially satisfied for all j such that tj < 0 or y < F (T−j). Equation (3.4) guarantees

equilibrium participation when T−j < 0.

Now consider some i ∈ I such that ti, T−i ≥ 0 and y ≥ F (T−i), but for whom

equilibrium participation fails. For this agent,

ui (ωi, F (T−i)) > ui (ωi − ti, F (T−i + ti)) , (3.7)

so that

∇ui (x; y) · (ti, F (T−i) − F (T−i + ti)) > 0.

This is equivalent to

∂ui (x; y) /∂xi

∂ui (x; y) /∂y
>

F (T−i + ti) − F (T−i)

ti
, (3.8)

so applying the concavity of F at T−i + ti and inverting the resulting relationship

gives

∂ui (x; y) /∂y

∂ui (x; y) /∂xi

<
1

F ′ (T−i + ti)
.

Equation (3.3) implies that (3.7) cannot hold, so by the contrapositive of this argu-

ment, (x; y) must satisfy EPi.

Proof of Proposition 3.15. For agents with T−i < 0, y(−i) = 0, but F (T−i) < 0.

By replacing F (T−i) with zero in the proof of Proposition 3.14, the argument is
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identical through equation (3.8). At this point, the subsequent relationship with

F ′ (T ) cannot be derived from F (T ) /ti when T−i < 0, so inverting (3.8) gives the

alternative sufficient condition

∂ui (x; y) /∂y

∂ui (x; y) /∂xi

≥ 1

F (T ) /ti
(3.9)

for all i such that T−i < 0. Since this is a stronger condition than (3.3), it is also

sufficient for every agent.

Proof of Theorem 3.16. By way of contradiction, assume that there exists some

economy e and some sequence
{(

xR; ŷR
)}∞

R=1
in EP (

eR
)

for each R such that
∣∣ŷR

∣∣
fails to converge to zero.

For each (i, r), let tRi,r = ωR
i,r − xR

i,r. For any
(
xR; ŷR

) ∈ EP (
eR

)
, if ŷR <

F
(∑

i,r tRi,r

)
, then by monotonicity,

(
xR; yR

) ∈ EP (
eR

)
, where yR = F

(∑
i,r tRi,r

)
.

In other words, if a wasteful allocation (x; ŷ) satisfies equilibrium participation,

so does the transfer-equivalent non-wasteful allocation (x; y). Thus, the sequence

{(
xR; yR

)}∞
R=1

satisfies equilibrium participation for each R and
{∣∣yR

∣∣}∞
R=1

also fails

to converge to zero. This implies that there exists a subsequence
{(

xR(k); yR(k)
)}∞

k=1

such that
∣∣yR(k)

∣∣ > ε for some ε > 0 all k ∈ N= {1, 2, . . .}. Letting c (y) represent the

minimal cost of producing y (which is the inverse of F ,) non-convergence guarantees

that c
(
yR(k)

) ≥ c (ε) > 0 for each k since c is an increasing function and Y∩R
2
+ = {0}.

For any k, if R (k) > maxi∈I (ωi/c (ε)), then no one agent (i, r) can unilaterally
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fund yR(k) using t
R(k)
i,r since

t
R(k)
i,r ≤ max

i∈I
ωi/R (k)

< c (ε)

≤ c
(
yR(k)

)
.

Letting

k∗ = max

{
k ∈ N : R (k) ≤ max

i∈I
(ωi/c (ε))

}
,

there exists at least one sequence of agents {(ik, rk)}∞k=1 such that

t
R(k)
ik,rk

≥ c
(
yR(k)

)
/ (R (k) I)

for all k, and T−(ik,rk) > 0 for all k > k∗. In other words, there exists a sequence of

agents such that at each k, the identified agent is paying a transfer which is more than

the average transfer of c
(
yR(k)

)
/ (R (k) I) > 0, and the sum of the others’ transfers

is eventually positive as individual (ik, rk)’s budget constraint becomes restrictive.

For example, {(ik, rk)}∞k=1 might identify the agent (i, r) in each k for whom t
R(k)
i,k

is maximal among all agents (this particular sequence may not have a well-defined

limit, but any selection of agents paying an above average proportion of the cost is

sufficient.)

Since each
(
xR(k); yR(k)

)
satisfies equilibrium participation for all (i, r), it must be
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the case that (
ωi,r − t

R(k)
ik,rk

, yR(k)
)
�ik,rk

(
ωi,r,

(
yR(k)

)−(ik,rk)
)

,

or equivalently,

(
ωi − R (k) t

R(k)
ik,rk

, yR(k)
)
�ik

(
ωi,

(
yR(k)

)−(ik,rk)
)

.

Note that for k > k∗,

(
yR(k)

)−(ik,rk)
= F

(∑
j,s

t
R(k)
j,s − t

R(k)
ik,rk

)
.

By continuity of the production function,
(
yR(k)

)−(ik,rk)
becomes arbitrarily close to

yR(k) as k grows. However, since t
R(k)
ik,rk

> c (ε) / (R (k) I), then R (k) t
R(k)
ik,rk

is bounded

below by c (ε) /I > 0 at all k. By monotonicity of preferences, it must be the case

that

(
ωi − c (ε)

I
, yR(k)

)
�i

(
ωi − R (k) t

R(k)
ik,rk

, yR(k)
)
�i

(
ωi,

(
yR(k)

)−(ik,rk)
)

.

By continuity of preferences, convergence of
(
yR(k)

)−(ik,rk)
to yR(k) implies that for

large enough k, (
ωi − c (ε)

I
, yR(k)

)
�ik

(
ωi, y

R(k)
)
.

However, this violates monotonicity. Since there cannot be an infinite subsequence

of allocations with
∣∣yR(k)

∣∣ > ε for any ε > 0, it must be the case that yR → 0 as
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R → ∞. Feasibility then requires that
∥∥xR − ωR

∥∥
∞ → 0, completing the proof.


