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Chapter 2

Learning Dynamics for Mechanism
Design

As mentioned in Chapter 1, many mechanisms have been identified whose equilib-

ria generate efficient allocations in economies with pure public goods.1 In general,

mechanisms that require stronger equilibrium concepts are more restricted in their

ability to select desirable outcomes. Theoretical results are unclear about how these

trade-offs should be resolved in practice. For example, consider an environment where

agents have little to no information about each others’ preferences and the level of

a certain public good is to be re-evaluated at regular intervals. If a social planner

were asked to choose a particular mechanism in this setting, which would she prefer?

Are dominant strategy equilibria necessary in this environment? Will mechanisms

with stable Nash equilibria converge quickly to an efficient outcome, even though

preferences are private information?

In the current chapter, five public goods mechanisms with various equilibrium

1Chapter 2 is reprinted with minor modifications from a Journal of Economic Theory forthcom-
ing article by Paul J. Healy entitled ‘Learning dynamics for mechanism design: An experimental
comparison of public goods mechanisms’, Copyright 2005, with permission from Elsevier.



9

properties are experimentally tested in a repeated game setting.2 Specifically, the

Voluntary Contribution, Proportional Tax, Groves-Ledyard, Walker, and Vickrey-

Clarke-Groves mechanisms are all compared in an identical laboratory environment.3

The goal of this research is to compare behavior across mechanisms and identify a

simple learning dynamic that approximates actual behavior and correctly predicts

when actions will converge to the efficient equilibria. Armed with this information,

the social planner will then be able to select a mechanism whose desirable equilibrium

properties should be realized in practice.

Previous experimental studies have concluded that learning dynamics play an im-

portant role in the repeated play of a mechanism. Two general observations suggest

that behavior may be consistent with a learning model based on some form of best

response play. First, convergence is observed only in game forms known to be super-

modular, where best response play predicts convergence. Second, tests of dominant

strategy mechanisms suggest that agents tend to play weakly dominated strategies

that are best responses to previously observed strategy choices.4 Motivated by these

observations, the current chapter develops a simple model of best response play and

finds that its predictions well approximate observed subject behavior.

The key six results of this chapter are as follows:

1. Subject behavior is well approximated by a model in which agents best respond

2This is, to the author’s knowledge, the largest set of public goods mechanisms to be tested
side-by-side to date.

3The cVCG mechanism refers to the Vickrey-Clarke-Groves mechanism in cases where the level
of the public good is selected from a continuum. In contrast, the Pivot mechanism refers to the
VCG mechanism when the public project choice is binary. The details of all five mechanisms appear
in Section 2.4.

4An overview of previous results is provided in Section 2.1, as well as in a survey by Chen [19].
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to the average strategy choice over the last few periods. This model is shown

to be significantly more accurate than the stage game equilibrium prediction.

2. Half of all decisions in the cVCG mechanism are at the demand-revealing domi-

nant strategy point, while the remainder cluster around weakly dominated best

response strategies that are payoff-equivalent to the dominant strategy predic-

tion.

3. Behavior converges close to equilibrium in the Groves-Ledyard and Voluntary

Contribution mechanisms.

4. Behavior does not systematically converge in the Proportional Tax and Walker

mechanisms.

5. Because of the stability results, the cVCG mechanism is found to be the most

efficient. The instability in the Walker mechanism often leads to payoffs below

that of the initial endowment.

6. Finally, most strategy profiles observed to be stable or asymptotically stable

are approximately equilibrium strategy profiles.

Note that the model presented in result 1 successfully predicts results 2 through

6. This indicates that the model is a reasonable and tractable tool for predicting

subject behavior and convergence properties of public goods mechanisms.

A brief overview of the previous experimental literature is given in the next sec-

tion. The learning model and its testable implications are then introduced in Section
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2.2. Details of the experimental design are outlined in Section 2.3 and a complete de-

scription of each mechanism in use is given in Section 2.4. Results and data analysis

appear in Section 2.5, and Section 2.6 offers concluding remarks.

2.1 Previous Experiments

This section briefly summarizes previous experimental results on public goods mech-

anisms. One theme spanning these results is that behavior is, at least qualitatively,

consistent with a model of best response play. This observation partially motivates

the construction of the particular class of best response models in the following sec-

tion.

The earliest studies of public goods provision have focused on the Voluntary Con-

tribution mechanism. A wide variety of specifications and treatment variables have

been examined, and this line of research continues to generate interesting results

about preferences and behavior. A comprehensive summary of this literature is pro-

vided by Ledyard [61], who concludes that “in the initial stages of finitely repeated

trials, subjects generally provide contributions halfway between the Pareto-efficient

level and the free riding level,” and that “contributions decline with repetition.” For

example, in an early paper by Isaac, McCue & Plott [51], payoffs drop from 50% of

the maximum in the first period to 9% by the fifth period. Strategies quickly converge

toward the free-riding dominant strategy through repetition.

In the decades since the theoretical development of public goods mechanisms de-

signed to solve the ‘free-rider’ problem, experimental tests have focused primarily on
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Nash mechanisms. Several studies, mostly due to Yan Chen, explore properties of the

Groves-Ledyard mechanism. For example, Chen & Plott [21] study the effect of the

punishment parameter and find that strategies converge rapidly to equilibrium for

large parameter values – an observation consistent with known convergence results

for best response dynamics in supermodular games. The authors conclude that a best

response model that uses information from all previous periods is more accurate than

one in which agents best respond to only the previous period.5 Chen & Tang [22]

compare the Groves-Ledyard mechanism to the Walker mechanism and find that the

Groves-Ledyard mechanism is significantly more efficient, apparently due to dynam-

ically unstable behavior in the Walker mechanism. This instability is both observed

in subject behavior and predicted by best response dynamic models.

The first well-controlled laboratory test of the dominant strategy Pivot mechanism

(the VCG mechanism with a binary public choice) is run by Attiyeh, Franciosi & Isaac

[4]. Subjects are given positive or negative values for a proposed project and must

submit a message indicating their demand. Although revealing one’s demand is a

(weak) dominant strategy, only ten percent of observations are consistent with this

prediction, with thirteen of twenty subjects never revealing their true value.

Kawagoe & Mori [55] extend the Attiyeh et al. result by comparing the above

treatment to one in which subjects are given a payoff table. The effect of having

players choose from the table is significant, as demand revelation increases to 47%.

Since the equilibrium is a weak dominant strategy in the sense that all agents have

5This model, due to Carlson [13] and Auster [5], is a best response model (defined in Section 2.2)
in which predictions equal the simple average (not the empirical frequency) of all previous periods.
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other strategies that are best responses to the equilibrium, the authors argue that

subjects have difficulty discovering the undominated property of truth-telling because

non-revelation strategies may also be best responses.

Most recently, Cason et al. [14] compare the Pivot and cVCG mechanisms with

two players and show that deviations from truthful revelation, when they occur, tend

to result in weakly dominated Nash equilibria. Specifically, assume the first subject

in the Pivot mechanism announces her value truthfully. If the good is produced when

the second player announces truthfully, it is also produced when he overstates his

value. Thus, there exists a wide range of false announcements that can be equilibrium

strategies for player two, even though they are weakly dominated by truth-telling. In

the cVCG mechanism with only one preference parameter, on the other hand, agents

have a strict dominant strategy to reveal truthfully. In the experiment, only half of

the observed subject pairs play the dominant strategy equilibrium in the Pivot mech-

anism, while 81 percent reveal truthfully in the cVCG mechanism. Behaviorally, this

explanation is consistent with an evolutive model where agents select payoff maxi-

mizing strategies rather than an eductive model where agents solve for the equilibria

of the game.

The results of these previous studies indicate that dynamically stable Nash equilib-

ria and strict dominant strategies are good predictors of behavior, but unstable equi-

libria generate unstable behavior and weakly dominated best responses may draw

players away from dominant strategy equilibria. These observations are consistent

with a history-dependent best response model. The goal of the current chapter is to
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refine this conjecture and identify a tractable model that, if not a perfect description

of behavior, can at least predict the convergence properties of a mechanism in the

repeated environment.

2.2 Setup and Environment

The general environment in use is as follows:

A set of agents is given by I = {1, . . . , n}. Each has preferences for consumption

of a private good x = (x1, . . . , xn) and a single public good y that can be represented

by the differentiable function ui (y, xi; θi), where θi ∈ Θi indicates the ‘type’ of agent

i ∈ I. Specifically, θi is a vector of utility parameters held by agent i. Each Θi

is assumed to be convex and Θ = ×n
i=1Θi. Unless stated otherwise, preferences are

assumed throughout to be quasilinear, so that ui (xi, y; θi) = vi (y; θi) + xi where

vi (y; θ) is strictly concave in y.

A public goods allocation is an (n + 1)-tuple of the form (y, x1, . . . , xn). No public

good exists initially, although a linear technology can be used to build y ≥ 0 units of

the public good at a cost of κy units of the private good. Given an initial endowment

of the private good ωi, consumption of the private good is given by xi = ωi − τi

for each i, where τi represents a transfer payment paid by agent i. Therefore, the

public goods allocation is equivalently expressed as (y, τ1, . . . τn). A vector of transfer

payments is feasible if
∑

i τi ≥ κy and budget balanced if the constraint is met with

equality.6

6Individual budget constraints are not imposed in the following analysis, so that τi may be larger
than ωi.
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A mechanism is represented as a game form, indexed by g, in which agents choose

a message mg,i from a strategy space Mg,i that is assumed here to be convex. The

vector of all messages is denoted mg ∈ Mg = ×n
i=1Mg,i. When there is no confusion,

the g subscript will be dropped. For a given agent i and a vector of messages

m−i = (m1, . . . , mi−1,mi+1, . . . , mn), a best response message for agent i is that which

maximizes i’s utility under the assumption that the other agents send messages m−i.

The set of best responses to m−i in mechanism g is denoted Bg,i (m−i; θi). Define

Bg (m, θ) = ×n
i=1Bg,i (m−i; θi) to be the set of message profiles that are best responses

to the profile m. Any fixed point of the best response profile mapping is a Nash

equilibrium strategy profile of the game. Formally, any equilibrium strategy profile,

denoted m∗ (θ) = (m∗
1 (θ) , . . . , m∗

n (θ)), satisfies

m∗ (θ) ∈ B (m∗ (θ) , θ)

Note that this solution concept requires each player’s equilibrium strategy to be a

function of the other players’ types if m∗
i varies with θj for j �= i. If the equilibrium

message does not depend on the types of other agents, the Nash equilibrium is in

dominant strategies. The set of Nash equilibria for a given type profile and game is

given by Eg (θ).

The vector of received messages m in mechanism g maps to a unique outcome of

the form (yg (m) , τg (m)), where yg : Mg → R+ determines the level of the public

good chosen and τg : Mg → Rn determines the vector of transfer payments of the
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private good to be paid by each agent.7 The strategy space (inputs) and outcome

function (outputs) completely characterize the mechanism. All mechanisms consid-

ered here are feasible and some are budget balanced.

The objective of the mechanism designer is to implement a social choice corre-

spondence F : Θ � R+×Rn with certain desirable properties. Let
(
yF (θ) , τF (θ)

) ∈

F (θ) represent a particular public goods allocation satisfying the properties for pref-

erence parameters θ. In the public goods environment, the appropriate social choice

correspondence for a utilitarian planner is the mapping P (θ) that picks the set of

Pareto optimal allocations
(
yP (θ) , τP (θ)

)
satisfying

yP (θ) ∈ arg max
y∈R+

[
n∑

i=1

vi (y; θi) − c (y)

]

and such that τP (θ) is budget balanced. A mechanism g implements F if, for every

θ ∈ Θ, the outcome function selects allocations in F (θ) at every equilibrium message

m∗ (θ). If g implements P (θ), then it is said to be efficient. If yg (m∗ (θ)) = yP (θ)

for some
(
yP (θ) , τP (θ)

) ∈ P (θ) and τg (m∗ (θ)) is feasible but not budget balanced,

then the mechanism is only outcome efficient. The surplus transfer payments in this

case are assumed to be wasted and yield no value to any agent in the economy.

2.2.1 A Best Response Model of Behavior

A history-based best response learning model assumes that each agent i forms predic-

tions about the strategies others will use in period t based on the observed strategies

7Set-valued mechanisms may be defined, but implementation in this context is assumed to require
the selection of a unique outcome.
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of the other players in periods 1 through t − 1, denoted m1
−i through mt−1

−i . Agent

i’s prediction about the strategy to be played by agent j in period t is represented

by the function ψi
j

(
m1

j , . . . , m
t−1
j

) ∈ Mj, which maps each possible history of agent

j into a unique pure strategy for every j �= i.8 Agent i is then assumed to select a

best response to his predictions. Letting ψ : Mt−1 → M represent the vector of

predictions generated from the history of play up to period t, the strategy profile

occurring in period t will be an element of B (ψ (m1, . . . ,mt−1) , θ). If ψi
j is undefined

for some j �= i, then let the best response model predict any strategy that is a best

response to some mj. In short, best response learning models assume that players

are utility maximizers, but that their predictions are myopic and may be inaccurate.

When M is a convex set in Rn, a k-period average best response dynamic assumes

that

ψi
j

({
ms

j

}t−1

s=1

)
= m̄t,k

j =
1

k

t−1∑
s=t−k

ms
j (2.1)

for all i, j ∈ I when t > k, and ψi
j = ∅ when t ≤ k. Let m̄t,k =

(
m̄t,k

j

)n

j=1
. In this

model, agents best respond to the prediction that the average message of the previous

k periods will be played in the current period. Note that ψi
j ∈ Mj by the convexity

of Mj.

Behaviorally, the k-period average model implies that agents best respond to an

estimate of the current trend in the messages of other agents. Here, the estimate

of trend is given by a simple moving average filter. Other filters may be used to

8Most dynamic models (such as fictitious play) are based on mixed strategy predictions over a
finite strategy space. The best response models suggested here generate pure strategy predictions
over a continuous strategy space.
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determine the current trend in m−i, such as exponential smoothing or time-weighted

moving averages. Although these various trend models will produce slightly different

results, the implication of such models is that agents form unique, pure-strategy

predictions about the decisions of others using previous observations that are not

highly sensitive to period-by-period fluctuations in the history of play.

One simple fact immediate from the definition of the k-period dynamic is that

strictly dominated strategies will not be observed. This provides the first testable

proposition.

Proposition 2.1 In the k-period best response dynamic, no strictly dominated strat-

egy is observed in any period t > k.

Given that this dynamic is suggested as a model capable of predicting convergence

in public goods mechanisms, it is of interest to study the limiting behavior of this

process. The following propositions and corollaries establish the relationship between

the k-period average best response model and Nash equilibrium. Note that several of

these theoretical results will be verified empirically in Section 2.5.

Proposition 2.2 If a strategy is observed in k+1 consecutive periods of the k-period

average best response dynamic, then it is a Nash equilibrium.

Proposition 2.2 immediately implies the following important corollary:

Corollary 2.3 All rest points of the k-period best response dynamic are Nash equi-

libria.
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The following proposition shows that convergence implies that the limit point is

a Nash equilibrium.

Proposition 2.4 Given some θ ∈ Θ, let {mt}∞t=1 be a sequence of strategy profiles

consistent with the k-period average best response dynamic that converges to a profile

q ∈ M. If the best response correspondence B (·, θ) is upper hemi-continuous at q

and non-empty on M, then q is a Nash equilibrium strategy profile at θ.

This follows from the fact that
{
m̄t,k

}∞
t=1

must converge to q, so
{B (

m̄t,k, θ
)}∞

t=1

converges to a set containing q.

Corollary 2.5 Given some θ ∈ Θ, let {mt}∞t=1 be consistent with the k-period av-

erage best response dynamic that converges to a profile q ∈ M. If yg, τg, and each

ui (·; θi) are continuous and single-valued, then q is a Nash equilibrium strategy profile

at θ.

This corollary is a simple application of the Theorem of the Maximum, which

guarantees that the best response correspondence is upper hemi-continuous and non-

empty under the given conditions. The notion of asymptotic stability requires that

the dynamic path from all initial points in some neighborhood of q converge to q.

By Proposition 2.4, this is clearly sufficient for q to be a Nash equilibrium.

Corollary 2.6 If, for some θ ∈ Θ, q ∈ M is asymptotically stable according to the

k-period average best response dynamic and B is upper hemi-continuous and non-

empty, then q is a Nash equilibrium strategy profile at θ.
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One might conjecture that the dynamic is more stable (in a global sense) under

larger values of k. However, simple games can be constructed in which cycles can

occur under a particular value of k, but globally stable obtains for the k−1 and k +1

dynamics.9 It is natural to then ask what properties of a game are sufficient for global

stability to obtain for all values of k. In the class of supermodular games (Topkis

[96],) the monotonicity of the best response correspondence guarantees global stability

of the 1-period best response dynamic. The following proposition demonstrates that

this result extends to the k-period dynamic.

Proposition 2.7 In a supermodular game, if, for some θ ∈ Θ, {mt}∞1 is consis-

tent with a k-period average best response dynamic, then lim inf mt ≥ E (θ) and

lim supmt ≤ E (θ), where E (θ) and E (θ) are the smallest and largest pure strat-

egy Nash equilibrium profiles at θ.

Corollary 2.8 If a supermodular game has a unique pure strategy Nash equilibrium,

then the k-period average best response dynamic is globally asymptotically stable.

The proof of Proposition 2.7 appears in the chapter appendix (Section 2.7.)10

This result is of particular significance because it is consistent with the claim of Chen

[18] and Chen & Gazzale [20] that supermodularity is sufficient for convergence in a

variety of environments tested in the laboratory.

9Simply pick a 2-player game with Mi = [0, 1] and where the best response function for each
player equals 0 on some very small neighborhood around (k − 1) /k and equals 1 everywhere else.
Start the dynamic with each player playing 0 for the first k periods. Cycles then emerge that jump
in and out of the unique equilibrium ad infinitum. See also Bear [7].

10As an alternative method of proof, it can be established that any sequence {mt}∞1 consistent
with the k-period dynamic must satisfy the adaptive dynamics conditions of Milgrom & Roberts
[71]. Proposition 2.7 then follows from Theorem 8 of that paper.
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There are also two sets of ‘dominant diagonal’ conditions under which the 1-period

dynamic is known to be globally stable. In both cases, this stability result can be

shown to extend to all k-period dynamic models. The first is due to Gabay & Moulin

[38], and is summarized in the following proposition:11

Proposition 2.9 Assume that M = [0, +∞)n, and for some θ ∈ Θ, each ui is twice

continuously differentiable and, for every m ∈ M, ui satisfies

Pseudo-concavity: ∂ui

∂mi
(m, θi) · (mi − m′

i) ≥ 0 ⇒ ui (m, θi) ≥ ui ((m
′
i,m−i) , θi),

Coercivity: limmi→+∞
∣∣∣ ∂ui

∂mi
(m, θi)

∣∣∣ = +∞, and

Strict Diagonal Dominance:
∣∣∣∂2ui

∂m2
i
(m, θi)

∣∣∣ >
∑

j �=i

∣∣∣ ∂2ui

∂mi∂mj
(m, θi)

∣∣∣.
There exists a unique Nash equilibrium m∗ (θ) of the mechanism and every sequence

{mt}∞1 consistent with a k-period best response dynamic converges to m∗ (θ).

The second, more direct condition for stability of the 1-period model requires

that the best response correspondence be a single-valued, linear function of the form

B (m, θ) = A (θ) m + h (θ), where h (θ) ∈ Rn and A (θ) = [aij (θ)]ni,j=1 is a real ma-

trix for which there exists a strictly positive n-vector d such that di >
∑n

j=1 dj |aij (θ)|

for i = 1, . . . , n. When A (θ) is non-negative, this positive dominant diagonal condi-

tion is both necessary and sufficient for global stability (see Murata [75, Chapter 3] for

details.) Using the distributed lag methods of Bear [6] and [7], this same condition is

easily shown to be necessary and sufficient for global convergence of any best response

11See the chapter appendix for a proof. A similar result was previously established by Rosen [86]
using the diagonal strict concavity condition on utilities.
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dynamic whose predictions are weighted averages of past observations, including the

k-period dynamics.

Note that the global stability properties of the k-period dynamic are similar to

properties of other well-known learning models. Consider, for example, the fictitious

play dynamic, which is best suited for games with small, finite strategy spaces. As

with the k-period model, fictitious play has stable Nash equilibrium points (Brown

[11]) and is globally stable in supermodular games (Milgrom & Roberts [72, Theorem

8],) but is also capable of off-equilibrium limit cycles (Shapley [93].)

2.3 Experimental Design

The five public goods mechanisms under consideration were tested in a laboratory

environment using human subjects. All experiments were run at the California Insti-

tute of Technology during the 2002-03 academic year using undergraduates recruited

via E-mail. Most subjects had participated in economics experiments, though none

had experience with the particular game forms in the current study. Four sessions

were run with each mechanism for a total of twenty sessions.12 Each session consisted

of five subjects interacting through computer terminals. Subjects only participated

in one session in which they played a single mechanism fifty times against the same

four cohorts. Each iteration of the mechanism is referred to as a period. Multiple

sessions were run simultaneously so that more than five subjects would be in the lab

12Four additional sessions with the cVCG mechanism were run, but had to be discarded due to a
software failure. These data are very similar to the reported sessions and feature a slightly higher
frequency of demand revelation.
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at the same time. Each subject knew she was grouped with four others, but could not

discern which individuals were in her group.13 Instructions were given to the subjects

at the beginning of the experiment and read aloud by the experimenter. Participants

were then given time to ask any clarifying questions.14

Before the experiment, subjects were given their preference parameters and initial

endowments privately on a slip of paper. An incomplete information environment

was used because the interest of this study is to identify mechanisms whose efficiency

properties are robust to the assumptions of complete information. If the learning

process of agents converges rapidly to a mechanism’s efficient equilibrium, then a

social planner need not worry about the informational assumptions of the equilibrium

concept.

After receiving their private information, subjects logged into the game from their

computer terminal using an Internet browser program. The software interface includes

two useful tools for the subjects to use at any time. First, a history window is available

that displays the results of all past periods. Subjects can see all previous outcomes,

including the message they sent, taxes paid, public good levels, and profits. The entire

vector of messages submitted by the other agents in previous periods is not shown;

only the relevant variables used in calculating the tax, value and payoff functions are

provided. Subjects can open this window at any time and are also shown the same

information at the conclusion of each period. The second tool, called the ‘What-If

13In one cVCG session, only one group of subjects was in the laboratory at the same time. The
subjects were well separated to prevent communication or other out-of-experiment effects.

14Instructions and data are available at http://kakutani.caltech.edu/pj. Subjects were not de-
ceived in any way during this experiment.
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Scenario Analyzer,’ allows subjects to enter hypothetical messages into a calculator-

like program to view what levels of y (m), τi (m) and profit would result. Each subject

is shown only her own hypothetical tax, value, and profits so that subjects cannot

deduce the preference parameters of other subjects. Instead of a practice period,

subjects were given five minutes to experiment with the “What-If Scenario Analyzer”

and ask questions.

The benefit of the ‘What-If Scenario Analyzer’ is that it enables subjects to per-

form searches over the strategy space before selecting their strategies. In this sense,

it is similar to giving subjects a complete payoff table, although the current tool pro-

vides more feedback than payoffs alone. The interest of this study is to understand

the learning dynamics involved as subjects resolve the uncertainty about the strate-

gies of others. With inexperienced subjects, this process may be confounded with

subjects figuring out how strategies map to outcomes. By experimenting with the

‘What-If’ tool before the experiment, the subjects become well informed about the

game they are playing, but may be unsure what strategies others will be using. This

reduces the potential confound in the observed dynamics.

Once the experiment begins, subjects enter their message (twice for confirmation)

into the computer each period. The feedback at the end of the period is identical to

the history information described above. Total earnings are kept at the bottom of

the screen at all times, along with the current period number and the total number

of periods in the game. Subjects’ earnings were tallied in ‘francs’ and converted to

dollars at the end of the experiment. Conversion rates from francs to actual dollar
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Player: 1 2 3 4 5
ai 1 8 2 6 4
bi 34 116 40 68 44
ωi 200 140 260 250 290

Table 2.1: Preference parameters θi = (ai, bi) and ωi used in all sessions.

earnings varied by mechanism between 650 to 800 francs per dollar so that typical

subjects would earn forty to fifty cents for each of their fifty decisions, plus a $5

show-up fee. Sessions typically lasted from 90 minutes to two hours.

Each subject in a session was assigned a unique player type, differing only by their

utility parameters and endowments. The same five player types were used in every

session. Quasilinear preferences were induced with concave quadratic values for the

public good given by vi (y; θi) = −aiy
2 + biy and an initial endowment of the private

good, ωi. The vector θi = (ai, bi) and the endowment ωi are positive for all i ∈ I.

The quasilinear, quadratic structure of the preferences is common knowledge across all

subjects, although the vectors of individual coefficients θi = (ai, bi) and endowment

ωi are private information. The chosen player type profile θ = (θ1, . . . , θ5) and

endowments are identical across all periods, sessions and mechanisms. These values

are given in Table 2.1.

The marginal cost of the public good is chosen to be constant at κ = 100 in

every session. As will be shown in the next section, these parameter values have

been chosen to provide distinct predictions between various mechanisms. Given the

quasilinear preferences, the Pareto optimal level of the public good is uniquely solved

by yP (θ) = 4.8095. From an experimental design standpoint, a non-focal value
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Mechanism Outcome Functions Strategy Space
Voluntary y (m) =

∑
i mi Mi = [0, 6]

Contribution τi (m) = κmi

Proportional y (m) =
∑

i mi Mi = [0, 6]
Tax τi (m) = κy (m) /n

Groves- y (m) =
∑

i mi Mi = [−4, 6]

Ledyard τi (m) = κy(m)
n

+ γ
2

(
n−1

n
(mi − µi)

2 − σ2
i

)
µi = 1

n−1

∑
j �=i mj σ2

i = 1
n−2

∑
j �=i (mj − µi)

2

Walker y (m) =
∑

i mi Mi = [−10, 15]
τi (m) =

(
κ
n

+ m(i−1)mod n − m(i+1)mod n

)
y (m)

cVCG y(θ̂) = arg maxy≥0

(∑
i vi(y; θ̂i) − κy

)
Mi = Θi

τi(θ̂) = κy(θ̂)
n

− ∑
j �=i

(
vj(y(θ̂); θ̂j) − κy(θ̂)

n

)
= R2

+ maxz≥0

∑
j �=i

(
vj(z; θ̂j) − κz

n

)
Table 2.2: The five mechanisms tested.

for the Pareto optimum is preferred so that public good levels observed at or near

Pareto optimal levels cannot alternatively be explained by subjects choosing integer

strategies, for example.

2.4 The Mechanisms

The following section describes each of the five mechanisms in detail. The outcome

functions and strategy spaces are presented in Table 2.2. A reader familiar with the

details of public goods mechanisms may skip the discussion of the Voluntary Con-

tribution, Proportional Tax, Groves-Ledyard, and Walker mechanisms, although the

cVCG mechanism in use here has interesting properties that are critical in under-

standing the results presented below.
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2.4.1 Voluntary Contribution Mechanism

In this simple mechanism, each player i announces mi, the number of units of the

public good to be added to the total. The sum of the contributions represents the

realized level of the public good, and the tax paid by agent i is the cost of her

contribution to the public good. In this mechanism, each agent has a ‘Robinson

Crusoe’ ideal point, denoted ỹi, representing the amount of public good she would

contribute in the absence of contributions by others. The best response function for

each agent is then given by

Bi (m−i; θi) = ỹi −
∑
j �=i

mj. (2.2)

In the quadratic environment, ỹi = (bi − κ) /2ai. Using the parameters of the

experiment, the vector of Robinson Crusoe ideal points is

ỹ =

(
−33, 1, −15, −2

2

3
, −7

)
.

Since player 2 is the only agent for which ỹi > 0, he is the only player who does not

have a dominant strategy of contributing zero. The unique Nash equilibrium of this

game is therefore m∗ (θ) = (0, 1, 0, 0, 0), which results in a suboptimally low level of

the public good. Under the k-period dynamic, this equilibrium must obtain by period

2k + 1. Note the if the message space were unbounded, then no equilibrium would

exist and the k-period model would diverge.
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2.4.2 Proportional Tax Mechanism

The Proportional Tax mechanism is an alternative to the Voluntary Contribution

mechanism in which each agent must pay an equal share of the total cost. Under this

scheme, agents’ Robinson Crusoe ideal points are given by ỹi = (bi − κ/n) /2ai, which

is necessarily larger than under the Voluntary Contribution mechanism. Specifically,

ỹ = (7, 6, 5, 4, 3) .

This mechanism has the same message space and best response function as the Vol-

untary Contribution mechanism (eq. 2.2), but no agents have a dominant strategy

in this mechanism since ỹ 	 0. The unique pure strategy Nash equilibrium is the

corner strategy profile m∗ (θ) = (6, 0, 0, 0, 0), which results in a suboptimally large

level of the public good.15 Note that although no agent has a dominant strategy,

players 3, 4, and 5 are only willing to contribute when the total contributions of all

others is well below their ideal points.

The Proportional Tax mechanism is also of interest because it provides the foun-

dation of both the Groves-Ledyard and the Walker mechanisms. One can show that if

the Proportional Tax mechanism had an interior Nash equilibrium, it would select an

optimal level of the public good. The problem is that, generically, interior equilibria

do not exist. The Groves-Ledyard and Walker mechanisms are essentially variants

of the Proportional Tax mechanism with an additional ‘penalty’ term in the transfer

15If M =R, then no equilibrium would exist. If the upper bound of the message space were chosen
to be greater than 7, then the equilibrium would be (7, 0, 0, 0, 0).
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function chosen to guarantee the existence of an interior equilibrium point.

2.4.3 Groves-Ledyard Mechanism

The mechanism of Groves & Ledyard [43] was the first constructed whose Nash equi-

libria yield fully efficient outcomes. The mechanism requires all agents pay an equal

share of the cost plus a penalty term based on deviations from the average of the

others’ contributions and on the variance of those contributions. Each agent’s unique

best response message in the quadratic, quasilinear environment is given by

Bi (m−i; θi) =
bi − κ/n

2ai + γ n−1
n

+

(
γ/n − 2ai

2ai + γ n−1
n

) ∑
j �=i

mj.

In the experimental environment, this mechanism has a unique pure strategy of

m∗ (θ) = (1.0057, 1.1524, 0.9695, 0.8648, 0.8171) ,

which results in y (m∗ (θ)) = 4.8095 = yP (θ).16 The message space Mi = [−4, 6],

which is identical to that used by Chen & Plott [21] and Chen & Tang [22], is suffi-

ciently wide so that the equilibrium is not near a corner of the strategy space.

One nice property of the Groves-Ledyard mechanism is that it can possess the

global stability properties of Propositions 2.7 and 2.9. In the quadratic environment,

the equilibrium is supermodular if γ > 2n maxi (ai) and satisfies the positive domi-

nant diagonal condition if γ > [(n − 2) / (n − 1)] n maxi (ai). Using the experiment

16Note that the equilibrium strategy profile has less variance for larger values of γ. Here, γ is
chosen to be large for stability reasons.
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parameters, these conditions are γ > 80 and γ > 30, respectively. Since γ = 100 is

used in the experiment, both sufficient conditions for stability are satisfied. Therefore,

all k-period best response dynamics are globally stable in this setting.

2.4.4 Walker Mechanism

One important theoretical drawback of the Groves-Ledyard mechanism is that it

may select some efficient allocations that do not Pareto dominate the initial endow-

ment. Partially in response to this issue, Walker [100] developed a ‘paired difference’

mechanism that implements Lindahl allocations in Nash equilibrium. Since Lindahl

allocations are guaranteed to Pareto dominate the initial endowment and tax each

agent based on their marginal willingness to pay, Walker’s mechanism appears to

provide the most desirable solution to the free-rider problem.

In the quadratic environment, the unique best response function is given by

Bi (m−i; θi) =
bi −

(
κ/n + m(i−i)mod n − m(i+1)mod n

)
2ai

−
∑
j �=i

mj.

Solving for the equilibrium with the given parameters,

m∗ (θ) = (12.276, −1.438, −6.771, −2.200, 2.943) ,

which gives the Lindahl allocation of y = 4.8095 and

τ = (117.26, 187.8, 99.855, 49.469, 26.567)
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To accommodate the disperse equilibrium messages, the message space is expanded

to Mi = [−10, 15] for each i ∈ I.

Although this mechanism implements Lindahl allocations in Nash equilibrium,

its equilibria are known to have instability problems. In the quadratic environment,

the 1-period best response dynamic can be represented by the system of difference

equations mt = Amt−1 + h, where the row sums of A all equal − (n − 1). This

matrix is irreducible and non-positive, so by Harriff et al. [45, Corollary 1], its

dominant eigenvalue must then equal − (n − 1), which is greater than 1 in absolute

value. Thus, Cournot best response is unstable under any parameter choice θ.17

Chen & Tang [22] also argue that the cost of small deviations from equilibrium in

the Walker mechanism are lower than in the Groves-Ledyard mechanism, making the

former less robust to experimentation.

2.4.5 Continuous VCG (cVCG) Mechanism

The cVCG mechanism represents a particular selection from the class of dominant

strategy incentive compatible mechanisms developed independently by Vickrey [99],

Clarke [24], and Groves [42]. In these direct mechanisms (where Mi = Θi), truth-

telling weakly dominates all other strategies. However, given any m−i, there exist

messages mi �= θi such that mi ∈ Bi (m−i; θi). As will be demonstrated, with two

preference parameters, all points on a particular line in the strategy space that inter-

17If A were non-negative, instability of the one-period model would be sufficient (and necessary)
for instability in the k-period model. This result does not extend to the case of non-positive matricies.
However, for the experiment parameters, the k-period model is unstable for all values of k in the
range under consideration, and it is conjectured that no value of k will guarantee stability in this
environment. See Harriff et al. [45, p. 359] for the relevant theorems and counter-examples.
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sects the ‘truth-telling’ strategy are best responses to m−i. Consequently, a best re-

sponse learning model predicts that agents select messages from the best response line

that are not necessarily the truth-telling equilibrium. Given that the dominant strat-

egy equilibrium is a zero-dimensional set, the best response set is one-dimensional,

and the strategy space is two-dimensional, it is easy to distinguish between equilib-

rium, best response, and random (or, unexplained) strategy choices.

In the cVCG mechanism, Mi = Θi, which equals R2
+ in the experiment, and

any message mi can be equivalently expressed as an announced parameter value

θ̂i = (âi, b̂i). Agents are free to misrepresent preferences by announcing θ̂i �= θi. The

outcome function takes the vector of announced parameter values θ̂ and solves for the

Pareto optimal level of the public good on the assumption that θ̂ is the true vector

of preference parameters.

Each agent’s tax is comprised of three parts: an equal share of the cost of produc-

tion, a reward equal to the net utility of all other agents assuming their preference

announcements are truth-telling, and a penalty equal to the maximum possible net

utility of all others under their given preference announcement. The third term nec-

essarily dominates the second, so the sum of transfers is always weakly greater than

the cost of the project.18

This mechanism is constructed so that each agent i prefers an announcement θ̂i

that yields a Pareto optimal level of the public good under the assumption that θ̂−i =

θ−i. To see this directly, note that the first-order condition for utility maximization

18This mechanism is known to be budget-balanced in the quadratic environment when all agents
have the same slope parameter. This is not true in the current environment.
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with quadratic preferences is that

dy

dθ̂i

([
bi +

∑
j �=i

b̂j − κ

]
− y(θ̂)

[
2

(
ai +

∑
j �=i

âj

)])
= 0.

Since dy/dθ̂i �= 0 for all θ̂i ∈ Θi and all i ∈ I, utility maximization is achieved by

setting the term in parentheses to zero through manipulation of y(θ̂). The necessary

and sufficient condition for maximization is therefore

y(θ̂i, θ̂−i) =
bi +

∑
j �=i b̂j − κ

2
(
ai +

∑
j �=i âj

) = y(θi, θ̂−i). (2.3)

Thus, any announcement by player i that results in the same level of the public good

as would have obtained under truth-telling is necessarily a best response.

Since θ̂i = θi satisfies (2.3) for all θ̂−i, truth-telling is a dominant strategy. Given

a particular value of θ̂−i, however, there exists a range of θ̂i �= θi that satisfy condition

(2.3). This set of values is given by the best response correspondence

Bi

(
θ̂−i; θi

)
=

{
(âi, b̂i) ∈ Θi :

(
b̂i − bi

)
= 2 (âi − ai) y(θi, θ̂−i)

}
. (2.4)

Clearly, the manifold of best responses to θ̂−i is a line through �i that must contain

θi. The slope of this line depends on θ̂−i, so the best response line rotates about

θi as θ̂−i varies.19 If an agent holds a prediction that places non-zero probability on

multiple values of θ̂−i, then the dominant strategy point becomes the unique best

19Note that θ̂i affects agent i’s utility only through the value of y(θ̂i, θ̂−i), so indifference curves
in agent i’s strategy space correspond to level curves of the y(·, θ̂−i) function. The set Bi(θ̂−i;θi) is
therefore the level set of i’s most preferred quantity of the public good, given θ̂−i.
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response.

It is important to reiterate the fact that the set of Nash equilibria of this mech-

anism extends beyond the dominant strategy equilibrium. As a simple example, if

n − 1 agents submit θ̂i = θi while the nth agent announces θ̂n ∈ Bn (θ−n; θn) \ {θn},

then a Nash equilibrium with a weakly dominated strategy has obtained. Since

y(θ̂n, θ−n) = y (θ) = yP (θ), this equilibrium is also outcome efficient.

Although this mechanism is known to be inefficient due to its lack of budget bal-

ance, the size of the predicted inefficiency varies with the parameter choices. The

results obtained in the laboratory may be sensitive to the choice of preference para-

meters. In the current experiment, equilibrium efficiency is over 99%. The discussion

in Section 2.5.8 will highlight the significance of this (or any) fixed parameter choice

in analyzing the results.

2.5 Results

2.5.1 Calibrating the Parameter k

Using the observed data, best response model predictions for each period t > k are

generated for k ∈ {1, . . . , 10} and compared to the observed message. To focus

further analysis of the best response models, the value of k that minimizes the mean

absolute deviation between the best response prediction and the data is selected from
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k ∈ {1, . . . , 10}. Define k∗ to be the parameter that minimizes

5∑
g,i=1

4∑
s=1

1

51 − tmin

50∑
t=tmin

(
inf

m̂i∈Bg,i(m̄t,k
g,s,−i;θi)

∥∥mt
g,s,i − m̂i

∥∥)
,

where g represents each of the five mechanisms under consideration, s indexes the

4 identical sessions of each mechanism, and ‖·‖ is the standard Euclidean norm.20

Since the first k periods of each model are used to seed the initial beliefs, they must

be excluded from analysis. Consequently, tmin must be strictly larger than k. In

four of the five mechanisms, Bg,i(m̄
t,k
g,s,−i; θi) is unique and Mg,i ⊆ R1, so the term in

parentheses reduces to a simple absolute difference. In the cVCG mechanism, this

term represents the orthogonal distance from the observed message to the appropriate

best response line.

Table 2.3 reports the average deviation for various values of k and tmin. Note

that for every value of k considered, the average score decreases in tmin, indicating

that the models are less accurate in early periods than in later periods. Therefore,

comparisons between models should only be made for fixed values of tmin.

Given that messages are serially dependant and the nature of this dependence

20A ‘scoring rule’ such as the quadratic scoring rule characterized by Selten [92] would be more
appropriate if the behavioral models generated probabilistic predictions of play. With deterministic
behavioral models and a continuum strategy space, the scoring rule simply counts the number of
observations that exactly match the prediction. In the Walker mechanism, for example, 47,025
individual predictions are generated across the 10 models and only one of them is exactly correct.
Since the strategy space is endowed with a distance metric, a notion of error based on that metric
is used rather than a measure of error in the space of (degenerate) probability distributions. This
is similar in spirit to the notion of error in econometric models, where mean squared deviation is
most often used because it is tractable and can be interpreted as an estimate of variance. These
considerations do not apply here, and the mean absolute deviation measure is more robust to outliers.
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First time period used in calculating average minimum deviation (tmin)
k 2 3 4 5 6 7 8 9 10 11
1 1.407 1.394 1.284 1.151 1.104 1.088 1.072 1.054 1.054 1.049
2 - 1.240 1.135 0.991 0.967 0.949 0.932 0.922 0.913 0.910
3 - - 1.097 0.963 0.940 0.925 0.904 0.888 0.883 0.875
4 - - - 0.952 0.932 0.915 0.898 0.877 0.866 0.861
5 - - - - 0.924 0.911 0.895 0.876 0.860 0.853
6 - - - - - 0.911 0.897 0.881 0.868 0.854
7 - - - - - - 0.899 0.884 0.873 0.863
8 - - - - - - - 0.884 0.874 0.864
9 - - - - - - - - 0.879 0.870
10 - - - - - - - - - 0.875

Table 2.3: Calculated average quadratic score for various k-period best response mod-
els. Boldfaced entries represent, for each value of tmin, the smallest average quadratic
score among the 10 models tested. Note that the measure cannot be calculated for
k ≥ tmin since k periods are used to “seed” the model.

is unknown, no appropriate notion of significance is applicable to this analysis.21

The objective of this subsection is to make further analyses tractable by selecting a

single value k∗ to represent the class of k-period best response models. Therefore,

statistical significance of the difference in quality of fit between best response models

is unimportant in this context; choosing the minimum-deviation model is sufficient.

Result 2.1 Among the k-period best response models with k ∈ {1, . . . , 10}, the 5-

period model is estimated to be the most accurate.

Support. The result follows immediately from inspection of the average deviation

measures in Table 2.3. The measures are strictly decreasing in k for all tmin ≤ 5 (for

21Serial dependence is clear from inspection of correlograms. Several models of serial dependence
were estimated, including various time trend regressions, GARCH models, and a variety of stochastic
differential equations. None of these procedures fit the data well or generated an uncorrelated error
structure.
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which the k = 5 model cannot be calculated). For every tmin ≥ 6, k = 5 minimizes

the average score, with one minor exception.22

Other types of best response models were also considered. For example, a more

general k-period model that includes a discount factor so that more recent observa-

tions receive greater weighting slightly outperforms the undiscounted k = 5 model,

but the increase in accuracy is marginal, considering the added parameter. Empirical

analysis of the best response models will henceforth be limited to the undiscounted

5-period model. 23

2.5.2 Best Response in non-VCG Mechanisms

Due to the substantial difference between the structure of the first four mechanisms

and that of the cVCG mechanism, results pertaining to the latter will be considered

separately.

Given that each of these public goods mechanisms was developed under the as-

sumption that agents play Nash equilibrium strategies, the static Nash equilibrium

serves as a key benchmark against which the best response models may be tested,

even though the experimental environment is one of incomplete information. This

is particularly true for the Groves-Ledyard and Walker mechanisms, where the Nash

equilibrium is the only point at which efficient outcomes obtain. If a dynamic best

response model is found to provide significant improvement in predictive power over

22Table 2.3 was also generated using a squared deviation metric. In this case, k = 8 yields slightly
smaller error measures than k = 5 when tmin = 8 or 10, but k = 5 is more often the minimizer.

23Complete analysis was performed on all models in k ∈ {1, . . . , 10}, and results for k ≥ 2 are
similar to the case of k = 5. As is apparent from Table 2.3, the k = 1 model is notably less accurate
than the others because the smoothing achieved by the k ≥ 2 models provides a better fit.
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Nash equilibrium, then mechanism design theory is improved by insisting that mech-

anisms converge quickly under this dynamic.

2.5.3 Comparison of Best Response and Equilibrium Models

The goal of this section is to determine whether the error of the best response model

is significantly smaller than the error of the Nash equilibrium prediction. Standard

parametric tests are inappropriate for this data because a one-sample runs test for

randomness indicates that neither time series of errors is randomly drawn from a

zero-median distribution, and tests for correlation indicate that the errors are serially

dependent.24 This non-stationarity implies that statistics aggregated across time

may be easily misinterpreted.25 For example, the average prediction error across all

periods does not estimate the expected error in any one period; analysis of the average

must be considered specific to the length of the experiment.26 For these reasons,

empirical analysis is performed on each player type in each period individually, with

data aggregated only across the four sessions of each mechanism. The results of these

period-by-period tests cannot be aggregated across time.

The prediction error of each model averaged across the four sessions is presented in

24The runs test indicates that the best response model errors for 16 of the 20 total player types are
not evenly scattered about zero at a significance level of 5%. Each of the 4 player types with model
errors apparently randomly drawn from a zero-median distribution were from different mechanisms,
indicating that the assumption of mean-zero random errors for all player types in any one mechanism
is likely invalid. The errors of the equilibrium model were not evenly scattered about zero for 19 of
20 player types at the 5% significance level. Tests of first-order correlation indicate that the errors
are serially correlated for all 20 player types in both models.

25The dependence also implies that neither model fully captures the true dynamics of subject
behavior in repeated games.

26This is a point occassionally forgotten in past analyses of time series data in experiments, leading
to results that likely depend on the somewhat arbitrary choice of experiment length.
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Voluntary Contribution Mechanism

5−period BR model deviations Nash equilibrium model deviations
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Figure 2.1: Average model error for the 5-period best response model and Nash
equilibrium models in the Voluntary Contribution mechanism.
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Figures 2.1 through 2.4. Around each data point is a 95% confidence interval generated

by the bias-corrected and accelerated bootstrapping method.27 These graphs begin

to illustrate the superiority of the best response model over the Nash equilibrium

model. While the two predictions are often very similar, there are certain player types

for whom the equilibrium model systematically under- or over-predicts the observed

strategies. The best response model appears both more accurate and more precise

than the equilibrium model whenever differences between the two are observed.

The statistical analysis is aimed at testing the null hypothesis

H0 : E
[∣∣mt

i − m∗
i (θ)

∣∣] ≤ E
[∣∣∣mt

i − Bi

(
m̄t,k

−i ; θi

)∣∣∣] (2.5)

for each player type i and period t > k, where the expectation is taken across the four

sessions of each mechanism. A non-parametric permutation test for a difference in

means between the two model errors is performed in each period for each player type

in each mechanism. Each test was based on a simulated distribution of 2,000 draws,

more than enough to minimize the variation in estimated p-values due to random

sampling.

The power of the permutation test depends on this difference between the predic-

tions of the two models. If the two models have very similar predictions, the outcome

of the test will not yield strong posteriors about the truth of the alternative hypo-

thesis. In the following analysis, tests will only be run when there is enough power to

27Two thousand draws are used in each period for each player type in each mechanism, which is
more than enough to eliminate any bootstrap sampling error. See Efron & Tibshirani [28] for details
on the bootstrapping method and related statistical tests.
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Proportional Taxation Mechanism

5−period BR model deviations Nash equilibrium model deviations
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Figure 2.2: Average model error for the 5-period best response model and Nash
equilibrium models in the Proportional Taxation mechanism.
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Groves−Ledyard Mechanism

5−period BR model deviations Nash equilibrium model deviations

−2
−1

0
1
2

P
la

ye
r 

1

−2
−1

0

1
2

P
la

ye
r 

2

−2
−1

0
1
2

P
la

ye
r 

3

−2
−1

0
1
2

P
la

ye
r 

4

10 20 30 40 50

−2
−1

0

1
2

Period

P
la

ye
r 

5

10 20 30 40 50

Period

Figure 2.3: Average model error for the 5-period best response model and Nash
equilibrium models in the Groves-Ledyard mechanism.
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Walker Mechanism

5−period BR model deviations Nash equilibrium model deviations
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Figure 2.4: Average model error for the 5-period best response model and Nash
equilibrium models in the Walker mechanism.

conclude that P [HA True | Reject H0] ≥ 90%. Assuming diffuse priors on the truth

of HA and a standard significance level of 5%, this is equivalent to requiring a test

power of at least 45%. Without this level of power, it is likely that a rejection of H0

is due to random sampling rather than an actual difference in model errors. If one

additionally required that P [HA True | Do Not Reject H0] ≤ 10%, a power of 89.4%

would be needed.

In order to identify what difference between model predictions is necessary to

guarantee a test power of 45%, a simulation of the permutation test is performed for
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various differences between model predictions. Specifically, four independent, nor-

mally distributed random messages (w1, . . . , w4) are generated with mean µa and

variance σ2
w. These represent four observations of a particular player type in a par-

ticular period. This is repeated 100 times and the permutation test is performed in

each repetition on the hypotheses H̃0 : E [|w − µb|] ≤ E [|w − µa|], where µa and µb

represent the predictions of two different models, the first of which is correct in the

sense that it predicts the true mean of the data. An estimate of the power of the per-

mutation test is given by the percentage of simulated tests that correctly reject H̃0.

The simulation is repeated for various values of (µa − µb) and σ2
w, and the estimated

power of the test is plotted as a function of (µa − µb) /σw in Figure 2.5.28 From this

graph, it is clear that the distance between the two predictions should be at least 1.75

standard deviations of the data in order to keep the probability of incorrect rejections

of H0 to under 10%.

Figures 2.6 through 2.9 display the p-value of the permutation test for each player

type in each period, along with the estimated power of each test (from Figure 2.5),

and for those tests with power greater than 45%, whether or not the test rejects the

null hypothesis at the 5% and 10% significance levels.

Result 2.2 The 5-period best response model is overall a more accurate model than

the Nash equilibrium model for the non-VCG mechanisms.

Support. In the Voluntary Contribution mechanism (Figure 2.6), players 1, 3, 4,

and 5 have a strict dominant strategy, so the power of the test is zero for these

28It should be noted that if the mean of the data were µw �= µa and µw > µa > µb, then the test
would have more power. If µa > µw ≥ (µa + µb) /2, the test would have less power.
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Figure 2.5: Simulated power of the permutation test given in Equation for various
differences in model predictions as a ratio of the data’s standard deviation.

player types. Although the p-values for player 2 never indicate a rejection of the

null hypothesis, the power of the test is always below 40%, rendering its conclusions

ambiguous. In the Proportional Tax mechanism (Figure 2.7,) players 3, 4, and 5 have

little incentive to contribute, given the contributions of others so that the free-riding

equilibrium strategy is most often a best response. For players 1 and 2, best response

is occasionally far from equilibrium, providing enough power for the permutation

tests to be conclusive. For player 1, all 16 tests with sufficient power reject the null

hypothesis at the 10% level, and 15 of 16 reject at the 5% level. Player 2’s results are

similar, although the data revert toward equilibrium in the final periods (see Figure

2.2 as well.) The rapid convergence of the Groves-Ledyard mechanism (Figure 2.8)

to equilibrium, which is accompanied by the convergence of best response predictions

to equilibrium, reduces the power of the test in most periods. The ten tests with
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Figure 2.6: p-values and estimated power for the permutation tests in the Voluntary
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represents rejection at the 10% level, and O represents no rejection of H0. Note that
this mechanism has no test with power ≥ 45%.
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Figure 2.7: p-values and estimated power for the permutation tests in the Proportional
Tax mechanism. Stars, Xs, and Os represent test results for those tests with a power
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Figure 2.8: p-values and estimated power for the permutation tests in the Groves-
Ledyard mechanism. Stars, Xs, and Os represent test results for those tests with a
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49

Walker Mechanism
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Figure 2.9: p-values and estimated power for the permutation tests in the Walker
mechanism. Stars, Xs, and Os represent test results for those tests with a power of
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sufficient power (out of 175 possible) do favor the Nash equilibrium model, though

the test power being well below 89.4% in all ten tests prevents conclusive rejection

of HA. The Walker mechanism (Figure 2.9) provides the most testing power due to

the lack of convergence of the data. Of the 41 tests due to player 3, only two fail to

reject the null hypothesis at the 10% level, while 37 tests reject H0 at the 5% level.

Of the 37 tests due to player 5, eight fail to reject H0 at the 10% level, while 12 tests

reject H0 at the 10% level and 17 tests reject at the 5% level. The p-values of all

37 tests are below 0.20. These rejections are scattered evenly throughout the session,

indicating no particular pattern over time. Of the other three player types, players

1 and 2 have low p-values on average, with five rejections of H0 and only one failure

to reject. Player 4 shows mixed support overall, and in the few tests with sufficient

power, shows fairly strong support for equilibrium behavior. This can also be seen in

Figure 2.4.

The significance of this result lies in its implications for implementation in a

repeated interaction setting, where the assumption that agents play the stage game

equilibrium is less accurate than a simple best response behavioral assumption. Mech-

anisms constructed under the assumption of equilibrium behavior may fail to imple-

ment the desired outcome due to instability in the behavioral process. Although

the best response model does not provide a complete description of human behavior,

a mechanism designer who assumes this simple dynamic will be able to more ‘accu-

rately implement the desired outcomes than a designer who assumes static equilibrium

behavior.
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2.5.4 Best Response in the cVCG Mechanism

In this direct mechanism, agents announce both âi and b̂i. The decisions of subjects

can be grouped into three categories: ‘full’ revelation (âi = ai and b̂i = bi, which is

the dominant strategy), ‘partial’ revelation (âi = ai or b̂i = bi), and no revelation.

The equilibrium model predicts that all messages will be of the first type. The best

response model predicts that all three types of messages are possible, but messages

that aren’t fully revealing must lie along the best response surface. The following sub-

sections look at (a) what percentage of messages are fully revealing, and (b) whether

non-revealing messages are scattered randomly or are centered around the line of best

responses.

2.5.5 Frequency of Revelation

Previous experimental tests of dominant strategy mechanisms with a weak dominant

strategy indicate that around half of all subjects play their dominant strategy. Table

2.4 indicates that this result holds true in the current study. Rates of both full and

partial revelation in the cVCG mechanism are reported. Note a message that varies

from truth-telling by any amount is encoded as non-revealing.

Result 2.3 Truthful revelation in the cVCG mechanism is observed in the majority

of decisions. This frequency increases in the final periods.

Support. Refer to Table 2.4. On average, 54% of all observed messages are full

revelation strategies, with the frequency increasing to 59% in the final 10 periods.

Average partial revelation rises from 64% to 72% over the last 10 periods. Half of
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the twenty subjects fully reveal in at least nine of the last ten periods, and twelve at

least partially reveal. Three subjects never choose full revelation, and an additional

three subjects reveal fully only twice. Every subject reveals partially at least twice

over the course of the experiment.

Analysis of individual data also reveals that in 98% of the cases where a subject

only partially reveals, it is the b̂i term that is misrepresented. This is likely due to

the fact that altering the linear term has a more transparent effect on payoffs than

the quadratic term.

2.5.6 Misrevelation & Weakly Dominated Best Responses

Recall from Section 2.4.5 that given θ̂−i, agent i has a line of best responses through

θi that are payoff equivalent to truth-telling. The slope of this line depends on θ̂−i,

so the best response line is sensitive to a player’s prediction about the strategies

of the others. Since the k-period best response model provides a point prediction

of θ̂−i, it is easily testable in this framework. In particular, the model cannot be

rejected if misrevelation messages are centered around the particular best response

line suggested by the k-period average prediction.

A convenient method for analyzing the data is to convert each two-dimensional

message (ât
i, b̂

t
i) into polar coordinates (φ̂t

i, r̂
t
i) with the origin at the truthful revelation

point (ai, bi). Here, φ̂t
i represents the angle from (ai, bi) to (ât

i, b̂
t
i) and r̂t

i represents

the distance between these points. Fully revealing observations are not included in

this analysis since they are consistent with both best response and equilibrium play.
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Figure 2.10: Polar-coordinate representation of the cVCG data with the origin at the
truth-telling point and the horizontal axis corresponding to the 5-period best response
surface. Two different scalings of the same graph are presented.

For each period t > k and player i, the k-period best response model identifies

a particular angle φB
i

(
θ̄t,k
−i ; θi

)
such that any announcement θ̂t

i with φ̂t
i = φB

i is a

best response to the average of the previous k values of θ̂−i. Figure 2.10 graphs

(φ̂t
i − φB

i , r̂t
i) in polar coordinates, where φB

i is the angle generated from the 5-period

model. In this figure, the origin (r̂t
i = 0) represents a full revelation announcement

and the horizontal axis (φ̂t
i − φB

i ) represents a message consistent with the 5-period

best response model. If subjects play the dominant strategy equilibrium, the data

should scatter evenly around the origin. If subjects follow the 5-period best response

model, the data should scatter around the horizontal axis.

Unfortunately, the removal of all full-revelation observations reduces the average

sample size to less than two observations per period – not enough to perform a sta-

tistical test. Qualitatively, the evidence strongly supports the 5-period best response

model. Half of all non-equilibrium observations are within 1.3 degrees of the best
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response line and 81% are within 10 degrees of the prediction. This analysis includes

all partial revelation observations for which φ̂t
i is necessarily a multiple of π/2. Af-

ter removing these observations, just over half of the remaining data are within 0.83

degrees of the best response prediction, and 79% are within 10 degrees.

Figure 2.11 shows the time-series representations of r̂t
i and φ̂t

i − φB
i

(
θ̄t,k
−i ; θi

)
for

each player type in the cVCG mechanism. The 95% confidence intervals are again

formed by the bias-corrected and accelerated bootstrapping method with 2,000 draws.

The average distance from truth-telling is frequently large, highly variable, and does

not converge toward zero for three of the five player types. The graphs of φ̂t
i −

φB
i (θ̄t

−i; θi) across time show that the off-equilibrium data are centered at or near the

best response prediction, with more stability in later periods. Again, small sample

sizes prevent clean statistical analyses.

The tendency for the angular deviation to be slightly positive by about six degrees

(visible in both figures) arises from the partial revelation observations. Around 87%

of the best response lines are between 83◦ and 85◦, while 20% of all off-equilibrium

observations are partial revelation strategies located at 90◦.

2.5.7 Testing Theoretical Predictions of the Model

In Section 2.2, various theoretical properties of the k-period average best response

model are derived. Each of these may be tested empirically to confirm that the

important implications of this behavioral assumption are observed in the laboratory.

In the cVCG mechanism, the best response line for each player is characterized by
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equation (2.4). Given θ̂−i, each of these is a single equation of two variables, so the

set of Nash equilibria of the game is the set of solutions to a system of n equations

with 2n variables. Clearly, there exists a large number of such solutions. An observed

strategy profile θ̂ is an ε-equilibrium if, for each i ∈ I, the loss in utility between

announcing θi and θ̂i is less than ε. This does not necessarily indicate that θ̂i is close

to θi since θ̂i may be a neighborhood of Bi

(
θ̂−i; θi

)
that is far from θi.

Result 2.4 Weakly dominated ε-Nash equilibria are observed, while the dominant

strategy equilibrium is not.

Support. Setting ε = 1, 30.5% of observed strategy profiles in the cVCG mechanism

are weakly dominated ε-Nash equilibria.29 At ε = 5, 67% of the profiles are ε-

equilibria. Across the last 12 periods, ε-equilibria are observed 93.8% of the time for

ε = 5. In the first session, subjects play a particular ε-equilibrium (for ε = 1/2) in

each of the final 19 periods. In none of the 200 repetitions of the cVCG mechanism

is the truth-telling dominant strategy equilibrium observed.

Beyond providing further support for a best response model of behavior, this

result has greater implications: it suggests that elimination of weakly dominated

strategies leads to the elimination of certain Nash equilibria that are observed in

the laboratory. This equilibrium selection technique is consequently inappropriate

as a realistic equilibrium selection algorithm. The following result indicates that

elimination of strictly dominated strategies is consistent with observed behavior:

29Agents typically earn over 300 francs per period, so ε = 1 represents a deviation from optimality
of less than 0.33%.
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Result 2.5 (Proposition 2.1) Messages quickly converge to, and do not significantly

deviate from, strictly dominant strategies in any period t > 5.

Support. Players 1, 3, 4, and 5 in the Voluntary Contribution mechanism are the

only players with strictly dominant strategies. From Figure 2.1, it is clear that these

players quickly converge to their equilibrium strategies. The bootstrapped confidence

intervals must lie in the strategy space. Of the 180 confidence interval lower bounds

after period five, only 15 are different from zero, and only one is greater than 0.1. In

the last nine periods, the upper bound of the intervals are all no greater than 0.25,

and no greater than 0.1 in the last four periods.

The following results indicate that convergence to, or repetition of, a message

profile are often indicative of a Nash equilibrium, as predicted by the best response

model of behavior.

Result 2.6 (Proposition 2.2) If a strategy profile is observed in 6 consecutive periods,

then it is most likely a Nash equilibrium.

Support. In the non-cVCG mechanisms, there are 754 messages mt
i such that mt

i =

mt−1
i = · · · = mt−5

i . Of those, 74.8% are Nash equilibrium messages. 80. 1% of such

messages are within 1 unit of Nash equilibrium. In the cVCG mechanism, 45% of the

375 such messages are ε-equilibria with ε = 1. Setting ε = 5 increases the frequency

to 82.1%.

Result 2.7 (Proposition 2.4) If a sequence of strategy profiles converges to a point

q, then q is most likely a Nash equilibrium strategy profile.
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Support. Of the 20 groups across the 5 mechanisms, only one played the same strat-

egy profile in all of the last 10 periods, indicating convergence to a particular strategy

profile; the first session of the cVCG mechanism converged to an ε-equilibrium (for

ε ≥ 1/2) in all of the final 19 periods. One group in the Proportional Tax mecha-

nism played a particular non-equilibrium strategy in 15 of the final 25 periods, while

another group played the Nash equilibrium profile in 7 of the final 10 periods.

Finally, Propositions 2.7 and 2.9 are confirmed empirically by the convergence of

the data to equilibrium in the Groves-Ledyard mechanism, which is supermodular

and satisfies the dominant diagonal condition for the given parameters.

Overall, the above results indicate that the dynamic properties of observed beha-

vior are generally in line with the theoretical properties of the k-period best response

dynamic. The k-period dynamic is apparently a reasonably accurate yet tractable

model for predicting repeated game behavior and convergence in these settings.

2.5.8 Efficiency & Public Good Levels

The ability to compare data across a fairly large number of mechanisms leads to

the natural question of which mechanisms generate the most efficient outcomes. In

fact, this study provides a unique opportunity to do so since no other experiment to

date has tested as many processes side-by-side. It should be understood, however, that

any experimental result may be very sensitive to changes in parameters. For example,

it may be the case that if the efficiency of the dominant strategy equilibrium of the

cVCG mechanism were lower, then subjects would play it less often, possibly reducing
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Figure 2.12: The average level of public good and realized efficiency for each mecha-
nism in each period along with 95% confidence intervals. PO represents the Pareto
Optimal level of the public good (4.8095) and IR represents the efficiency of the initial
endowments (71.18%.)

realized efficiencies even lower. With this note of caution, the average public good

level and realized efficiency are presented in Figure 2.12 along with 95% bootstrap

confidence intervals.

Result 2.8 For the given parameters, the average public good levels are closest to

the Pareto optimal level in the cVCG mechanism, followed by the Groves-Ledyard

mechanism. Overall efficiency in these two mechanism is also higher than the oth-
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ers, with the Walker mechanism often resulting in efficiency below that of the initial

endowment.

Support. The average public good level is not significantly different from the Pareto

optimum (yP = 4.8095) in 43 of the 50 periods for the cVCG mechanism, and 35

of 50 periods in both the Groves-Ledyard and Walker mechanisms. However, the

realized public good level in the Walker mechanism is highly variable. The average

public good level in the cVCG mechanism is not significantly different from the Pareto

optimum in 22 of the final 25 periods, whereas the same is true in only 15 of the final 25

periods for the Groves-Ledyard mechanism. As predicted, the Voluntary Contribution

mechanism significantly under-provides, and the Proportional Tax mechanism over-

provides the public good. The cVCG mechanism is the most efficient, followed by

the Groves-Ledyard mechanism. The average efficiency of the Walker mechanism is

not significantly greater than the efficiency of the initial endowments (71.18%) in

38 of the 50 periods, and is significantly lower in four periods. This trend does not

disappear across time.

Recall from Section 2.4.5 that there exists a large set of Nash equilibria of this

mechanism that are necessarily outcome efficient, so the high level of efficiency realized

by the cVCG mechanism is due to best response behavior and not preference revela-

tion. Also, the fact that the Walker mechanism often realizes efficiencies at or below

the initial endowment is particularly surprising, given that it is the only outcome-

efficient mechanism tested whose equilibrium guarantees outcomes that Pareto dom-

inate the endowment.
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2.5.9 Open Questions

The fundamental difficulty of testing the efficiency of mechanisms in the laboratory

lies in their sensitivity to parameter choice. Past research has focused on chang-

ing punishment parameters of the mechanisms, but it is unknown how behavior dif-

fers when preferences are varied within a mechanism. In particular, the role of the

incentive-efficiency trade-off in guiding behavior is not known.

The current set of experiments makes use of the ‘What-If Scenario Analyzer’ tool

that enables subjects to calculate hypothetical payoffs. This tool is provided as an

alternative to the payoff tables often provided in experiments. The effect of this tool

on dynamic behavior is not well understood. The version of the software in use for this

study does not store data about what hypothetical scenarios subjects considered; only

actual decisions are tracked. The possibility of studying hypothetical explorations is

an exciting extension to this research that may provide additional understanding

about the learning dynamics in use.

On the theoretical front, much work remains with respect to dynamics in public

goods mechanisms. The literature is far behind that of market dynamics for pri-

vate goods, where stability has been extensively analyzed for several decades. Kim

[56] shows that mechanisms for Nash implementing Lindahl allocations must be lo-

cally unstable for some environment. However, restricting attention to quasilinear

environments, a dynamically stable game form is introduced that implements the

Lindahl correspondence. Similarly, de Tranqualye [27] and Vega-Redondo [98] intro-

duce mechanisms that converge to the Lindahl allocation under Cournot best response
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behavior. Some mechanisms such as that studied by Smith [94] use convergence of

tatonnemont-like dynamics as a stopping rule in each period of the mechanism. How-

ever, there have been only limited attempts to seriously consider dynamic issues in

the theoretical mechanism design literature.

2.6 Conclusion

Motivated by the observation that many of the results of previous experimental studies

are consistent with a simple best response dynamic model, this chapter experimentally

compares five different public goods mechanisms in order to test this conjecture. In

particular, dynamically stable and unstable Nash mechanisms are compared along

with a weak dominant strategy mechanism whose best response properties provide

an opportunity to distinguish between best response and equilibrium behavior. This

latter mechanism, though tested in simpler forms in previous experiments, has never

been tested in the laboratory with more than one preference parameter.

The results of these experiments support the best response behavioral conjecture,

particularly as an alternative to the static equilibrium hypothesis. Strategies converge

to Nash equilibria that are asymptotic attractors in a best response dynamic and

diverge from equilibria that are not. In the weak dominant strategy mechanism,

behavior tends to track a rotating best response line through the strategy space,

implying that subjects who do not understand the undominated properties of truthful

revelation instead seek a best response strategy, resulting in convergence to weakly

dominated Nash equilibria. This result implies that elimination of weakly dominated
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strategies is an inappropriate tool for game theoretic analysis.

Although outcomes and efficiency are sensitive to parameters, the continuous VCG

mechanism performs well in both categories, as does the Groves-Ledyard mechanism.

The Walker mechanism, due to its instability, generates efficiencies often below that

of the initial endowment.

The implications for mechanism design are straightforward. Most theorists have

ignored dynamic stability in designing mechanisms. The significant contribution of

this chapter is that it bridges the behavioral hypotheses that have existed separately

in dominant strategy and Nash equilibrium mechanism experiments. The finding

that a 5-period average best response dynamic is a reasonably accurate behavioral

model in all of these settings implies not only that dynamic behavior should be

considered in theoretical research, but it also provides some guidance as to which

behavioral models are appropriate. In particular, Nash implementation mechanisms

should satisfy dynamic stability and dominant strategy mechanisms should satisfy the

strict dominance property if either is to be considered for real-world use in a repeated

interaction setting.

2.7 Appendix

Proof of Proposition 2.7. Let m = inf M and m = supM. Define B (m, θ) =

inf B (m, θ) and B (m, θ) = supB (m, θ) as the infimal and supremal best responses

to a given message profile m. Since the game is supermodular, m and m are finite

elements of M, and B and B are elements of B for all m and θ. Furthermore, B
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and B are non-decreasing functions of m and there exists a smallest Nash equilibrium

E (θ) and a largest Nash equilibrium E (θ).

Consider the sequence {mt}∞1 where mt = m for t = 1, . . . , k and mt = B (
m̄t,k, θ

)
for t > k. In order to establish by induction that the sequence is monotone increasing,

assume that mt ≥ ms for some t > k and all s < t. This is certainly true for t = k+1.

Since mt ≥ mt−k, then m̄t+1 ≥ m̄t. By monotonicity of B, it must be that mt+1 ≥ mt.

This implies that mt+1 ≥ ms for all s < t. By induction, it is established that {mt}∞1
is a monotone increasing sequence. Since m is finite, {mt}∞1 must converge to some

point m∗ ∈ M. By Proposition 2.4, m∗ is a Nash equilibrium profile.

Assume that for some t > k, ms ≤ E (θ) for all s ≤ t, which is true for t = k + 1.

Then m̄t ≤ E (θ) and, by monotonicity of B, mt ≤ B (E (θ) , θ) ≤ E (θ). This implies

that ms ≤ E (θ) for all s ≤ t + 1. Therefore, the sequence {mt}∞1 is bounded above

by E (θ).

Since {mt}∞1 converges to some equilibrium point, it must be that limmt = E (θ).

Similar induction arguments establish that the sequence {mt}∞1 of k-period average

best responses starting from m must converge to E (θ).

Now consider any arbitrary sequence {mt}∞1 . If ms ≤ ms ≤ ms for all s less than

some t > k, then by monotonicity of B and B, it must be that mt ≤ mt ≤ mt. Since

this hypothesis is true for t = k + 1, induction implies that mt ≤ mt ≤ mt for all t.

These bounds establish the result in the limit.
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Proof of Proposition 2.9. Recall that Mi = [0,∞) and, for each θ in some Θ0 ⊂ Θ,

lim
mi→+∞

∣∣∣∣ ∂ui

∂mi

(m)

∣∣∣∣ = +∞

and [∂2ui/∂mi∂mj]
n

i,j=1 satisfies diagonal dominance on a set Θ0 ⊆ Θ.

Fix θ ∈ Θ0. Gabay & Moulin [38, Theorem 4.1] show that there must exist

an unique Nash equilibrium m∗ (θ) and that diagonal dominance implies B (m, θ) is

single-valued and strictly non-expansive in the sup-norm, so that for all m,m′ ∈ M,

‖B (m, θ) − B (m′, θ)‖∞ < ‖m − m′‖∞ , (2.6)

where ‖m‖∞ = supi |mi|. If {mt}∞1 is consistent with the k-period dynamic, then by

(2.6),

∥∥mt − m∗ (θ)
∥∥
∞ <

∥∥m̄t − m∗ (θ)
∥∥
∞

=

∥∥∥∥∥1

k

k∑
s=1

(
mt−s − m∗ (θ)

)∥∥∥∥∥
∞

≤ 1

k

k∑
s=1

∥∥mt−s − m∗ (θ)
∥∥
∞

≤ sup
1≤s≤k

∥∥mt−s − m∗ (θ)
∥∥
∞

for every t > k. If

lim
t→∞

sup
1≤s≤k

∥∥mt−s − m∗ (θ)
∥∥
∞ = 0, (2.7)

then convergence of {mt}∞1 to m∗ (θ) is established.
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Take any q ∈ Mk ⊆ Rnk. For any such q, there exists a unique sequence {mt}∞1
consistent with the k-period dynamic such that

(
m1, . . . ,mk

)
= q. Define G (q, θ) =

(
mk+1, . . . ,m2k

)
to be the next k terms of the k-period dynamic, all of which can be

uniquely determined given q and θ. Iterated application of G generates a sequence

{qr}∞1 where q1 = q and qr+1 = G (qr, θ). Define q∗ (θ) = (m∗ (θ) , . . . ,m∗ (θ)) and

note that q∗ (θ) is a fixed point of G (·, θ). Condition (2.7) can now be rewritten as

limr→∞ ‖qr − q∗ (θ)‖∞ = 0.

The following demonstrates that G is strictly non-expansive. Pick any points q =

(
m1, . . . ,mk

)
and q̂ =

(
m̂1, . . . , m̂k

)
. If G (q, θ) =

(
mk+1, . . . ,m2k

)
and G (q̂, θ) =

(
m̂k+1, . . . , m̂2k

)
, then by (2.6),

∥∥mk+1 − m̂k+1
∥∥
∞ <

∥∥∥∥∥1

k

k∑
s=1

(ms − m̂s)

∥∥∥∥∥
∞

≤ 1

k

∞∑
s=1

‖ms − m̂s‖∞

≤ sup
1≤s≤k

‖ms − m̂s‖∞ .

Similarly,

∥∥mk+2 − m̂k+2
∥∥
∞ < sup

2≤s≤k+1
‖ms − m̂s‖∞ .

By replacing
∥∥mk+1 − m̂k+1

∥∥
∞ in the argument of the supremum with

sup
1≤s≤k

‖ms − m̂s‖∞ ,
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the inequality becomes

∥∥mk+2 − m̂k+2
∥∥
∞ < max

{
sup

2≤s≤k
‖ms − m̂s‖∞ , sup

1≤s≤k
‖ms − m̂s‖∞

}

= sup
1≤s≤k

‖ms − m̂s‖∞ .

Applying this reasoning to
∥∥mk+t − m̂k+t

∥∥
∞ for all t = 2, . . . , k gives

∥∥mk+t − m̂k+t
∥∥
∞ < sup

1≤s≤k
‖ms − m̂s‖∞ ∀t = 1, . . . , k,

or

sup
1≤s≤k

∥∥mk+s − m̂k+s
∥∥
∞ < sup

1≤s≤k
‖ms − m̂s‖∞ .

This is equivalent to

‖G (q, θ) − G (q̂, θ)‖∞ < ‖q − q̂‖∞ ,

so G (·, θ) is strictly non-expansive for each θ ∈ Θ0 and for all q, q̂ ∈ Mk. By

an application of Edelstein’s Theorem (see Ortega & Rheinbolt [78, p. 404],) the

sequence {qr}∞1 must converge to q∗ (θ).30 This implies that (2.7) holds, completing

the proof.

30Edelstein’s Theorem requires compactness. In this case, the set{
m ∈ M : ‖m − m∗ (θ)‖∞ ≤ ∥∥m1 − m∗ (θ)

∥∥
∞

}
is compact for each {mt}∞1 and, by (2.6), all subsequent elements of the sequence lie in this compact
set. By restricting attention to this set, Edelstein’s Theorem applies.


