Institutions, Incentives and Behavior:
Essays in Public Economics and Mechanism Design

Thesis by
Paul J. Healy

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2005
(Submitted May 17, 2005)
For Meredith
Acknowledgements

I wish to thank John Ledyard for his support, funding, and encouragement. I am also indebted to Colin Camerer, Preston McAfee, and Federico Echenique for their helpful comments and frequent guidance. I am particularly grateful to John Ledyard and Charlie Plott (and the EEPS Lab at Caltech) for funding the two sets of experiments presented. Ken Binmore’s energy and encouragement have had a very positive impact on my work, and for that, I thank him. Many people have contributed to my research through innumerable stimulating conversations, including (but not limited to) Kim Border, Matt Jackson, Tom Palfrey, David Grether, Simon Wilkie, Tim Cason, Ivana Komunjer, Chris Chambers, and Ernst Fehr. This work has also benefitted from research support provided by the ARCS Foundation. Finally, I am grateful for the research assistance provided by Isa Hafalir, Joel Grus, and Basit Kahn, each of whom assisted in running the experiments presented in Chapter 4.
Abstract

The economic outcomes realized by a society are a function of the institutions put in place, the incentives they create, and the behavior of agents in the face of those incentives. Selecting the appropriate institutions for a given economy is particularly important in the domain of public economics, where individual incentives are often inconsistent with efficiency. Three major concerns in institutional design are addressed. First, do agents select the equilibrium strategies at which efficient allocations obtain? Second, does the repeated game nature of a long-lived institution impact behavior? Third, what degree of coercion is necessary for a planner to guarantee that the allocation selected by a mechanism can be enforced? Answering these questions helps to understand which institutions are most appropriate in various environments.

In Chapter 2, five public goods mechanisms are experimentally tested in a repeated game environment. Behavior is well approximated by a model in which agents best respond to an average of recently observed data. This model provides various sufficient conditions a mechanism must satisfy for play to converge to an efficient equilibrium. In Chapter 3, it is assumed that the designer of a one-shot mechanism must allow agents a ‘no trade’ option in which they are free to contribute nothing but enjoy the public good produced by others’ contributions. It is shown that a large set of
economies exist in which there is some agent at every allocation who prefers this option. Even in economies where this is not true, it becomes true as the economy is replicated, making it impossible to implement any allocation except the endowment in large economies.

In the final chapter, a model of group reputations is developed to explain why moral hazard problems are significant in some laboratory experiments and less significant in others. If firms believe that either all workers are selfish or all workers are reciprocal, then selfish workers may have an incentive to develop a ‘group reputation’ of being reciprocal for a fixed number of periods in order to extract higher wages. As predicted, only in those experiments in which this incentive is sufficiently large is the moral hazard problem mitigated.
Contents

Acknowledgements iv

Abstract v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Learning Dynamics for Mechanism Design 8

2.1 Previous Experiments 11

2.2 Setup and Environment 14

2.2.1 A Best Response Model of Behavior 16

2.3 Experimental Design 22

2.4 The Mechanisms 26

2.4.1 Voluntary Contribution Mechanism 27

2.4.2 Proportional Tax Mechanism 28
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Model errors in the Voluntary Contribution mechanism</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Model errors in the Proportional Taxation mechanism</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Model errors in the Groves-Ledyard mechanism</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>Model errors in the Walker mechanism</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Simulated power of the permutation test</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>Tests of model accuracy in the Voluntary Contribution mechanism</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>Tests of model accuracy in the Proportional Tax mechanism</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Tests of model accuracy in the Groves-Ledyard mechanism</td>
<td>48</td>
</tr>
<tr>
<td>2.9</td>
<td>Tests of model accuracy in the Walker mechanism</td>
<td>49</td>
</tr>
<tr>
<td>2.10</td>
<td>Accuracy of the best response model in the dominant strategy mechanism</td>
<td>54</td>
</tr>
<tr>
<td>2.11</td>
<td>Time series of model accuracy in the dominant strategy mechanism</td>
<td>56</td>
</tr>
<tr>
<td>2.12</td>
<td>Public good levels and efficiency levels for each mechanism</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>The induced participation games from Example 3.5</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Graphical examples of equilibrium participation and the point $z^{(-i)}$</td>
<td>81</td>
</tr>
<tr>
<td>3.3</td>
<td>Example of allocations satisfying equilibrium participation for one agent</td>
<td>83</td>
</tr>
<tr>
<td>3.4</td>
<td>A graphical example demonstrating necessary and sufficient conditions for equilibrium participation</td>
<td>90</td>
</tr>
</tbody>
</table>
3.5 Equilibrium participation with quasilinear preferences 93
4.1 Isoprofit lines for workers and firms across two designs 110
4.2 Data from sessions S1 and S2 115
4.3 Data from sessions S3 and S4 116
4.4 Data from session S5 .. 117
4.5 The mini-games analyzed in the stereotyping model 125
4.6 Strategy pairs and beliefs that support a reputation equilibrium with stereotyping: Current experiments 132
4.7 Strategy pairs and beliefs that support a reputation equilibrium with stereotyping: Previous experiments 135
A.1 Record Sheet: Buyers, HRA and HRP Treatments 167
A.2 Record Sheet: Sellers, HRA and HRP Treatments 168
A.3 Record Sheet: Buyers, LRP Treatment 169
A.4 Record Sheet: Sellers, LRP Treatment 170