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ABSTRACT 

Although control algorithms have been conceived for industrial chemical 

systems. their acceptance by industry has been slow due to a lack of direct 

experimental evidence of their effectiveness and to volumes of conflicting, or at 

least incompatible, recommendations on control structure design. This thesis 

provides the basis for a concerted theoretical and experimental program in mul

ti variable process control structure design for packed bed chemical reactors by 

presenting an in-depth control analysis of a practical, multivariable, distributed 

parameter system-the heat conduction problem defined by the simple diffusion 

equation-using both frequency-domain and time-domain analyses and the for

mulation, numerical solution, and analysis of a detailed model for packed bed 

reactors, along with reduction to a low-order state-space representation suitable 

for on-line process control. 

The study of the heat conduction system allowed for consideration of vari

ous control design techniques and the relation between measurement structure 

and control system design. This study shows that the choice of measurements 

and their locations significantly affects the optimal control design and the use

fulness of the different design techniques and the importance of an accurate 

process model and the necessity of model reduction to a low-order state-space 

representation for control structure design and implementation. 

The second portion of this study provides a detailed mathematical modeling 

analysis of packed bed catalytic reactors that significantly extends previous stu

dies· in the detail of the model and in the consideration of all aspects of the 

model development and reduction to a state-space control representation. The 
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general view that modeling simplifications are desired since they lead to a 

reduction in numerical solution effort is contested, and it is shown that many 

simplifications are no longer necessary with today's advanced computational 

capabilities. A unified approach to dynamic reactor modeling is developed and 

its importance in the accurate description of dynamic and steady state reactor 

behavior, in the investigation of reactor start~up or the effects of process distur~ 

bances, and in lhe development of an accurate reduced stat~space model for 

the design of control structures to stabilize the reactor under various distur~ 

bances or to provide optimal system recovery from input changes is shown. 
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One of the major difficulties in the application of advanced process control 

theories to industrial chemical processes is the lack of complete understanding 

of the chemical process and the inability to predict system behavior in the pres

ence of unknown and uncharacterized disturbances. This difficulty is com

pounded by physical and chemical interactions or nonlinear coupling of the pro

cess variables. Although complex control algorithms have been conceived for 

industrial chemical systems, their acceptance by industry has been slow due to 

a lack of direct experimental evidence of their effectiveness and to volumes of 

conflicting, or at least incompatible, recommendations on control structure 

design. Significant research efforts are necessary in duplicating industrial 

processes in a research setting and providing a unified approach to the 

mathematical modeling and control structure design. 

This thesis provides the basis for a concerted theoretical and experimental 

program in multivariable process control structure design for packed bed reac

tor systems. Along with the detailed design and construction of both a kinetics 

and pilot-scale control reactor {Strand, 1984), this work presents the necessary 

prerequisites to a substantial effort in the study of the applicability of process 

control theory to a laboratory- or pilot-scale industrial chemical process. In 

view of these objectives, this thesis is divided into two major sections: 

- an in-depth analysis of a practical. multivariable, distributed parame

ter system-the well-defined beat conduction process defined by the 

simple diffusion equation-using both frequency-domain and time

domain analyses and 

-the formulation, numerical solution, and analysis of a detailed 

dynamic model for packed bed reactors, along with reduction to a low-



order state-space representation suitable for on-line process control. 

The first section of this work, the analysis of the heat conduction problem, 

is presented in Chapter 2 and is a self-contained presentation of many of the 

control aspects of a multivariable, distributed parameter system (Khanna and 

Seinfeld, 1982). Although this heat conduction system is much simpler than the 

packed bed reactor, a considerable amount of insight into control structure 

design can be obtained from this process since the control aspects are not lost 

in the complexity of the mathematical system as they may be in an initial 

detailed control study of the experimental packed bed reactor. In particular, an 

analysis of a number of multivariable process control strategies, including non-

interacting control, optimal control. inverl:!e Nyquist array, and characlerislic 

locus techniques, is carried out theoretically on a one-dimensional. two-input 

heat conduction system. The potential improvements in control performance 

through the usc of extra measurements and through the appropriate selection 

of measurement locations is assessed and a new non-interacting control stra-

tegy, termed inner-loop decoupling, is developed. 

The remainder of this thesis centers on the complete dynamic modeling 

analysis of a packed bed reactor, along with reduction to an accurate low-order 

state-space representation suitable for control studies. According to Jutan et al. 

( 1977). this is 

"one of the more complicated processes to model in chemi
cal engineering. Because of this, it is essential when deriving 
a process model to keep in mind the purpose for which the 
model is to be used. If, for example, the model is to be used 
as the basis for on-line regulatory control of the reactor, 
large simplifications to most of the models proposed in the 
literature must be made. Although most of the models tend 
to be somewhat complex and, in general, unsuitable for con
trol. by examining the formulation of these models some 
insight into the important effects occurring within a reactor 
may be gained, and ideas for simplifying the models for the 
purpose of the control may be found." 
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In view of these comments, this study allows accurate description of dynamic 

and steady state reactor behavior for process optimization and design. for the 

investigation of reactor start-up or the ef:J'ects of process disturbances, and for 

the analysis and design of control structures. Various common assumptions 

and model structures are considered, and the appropriate numerical solution 

techniques are discussed. This analysis is not intended to be specific to any par

ticular packed bed reactor system but rather to present a detailed study of 

modeling techniques, assumptions, and solutions and to develop a unified 

approach to dynamic reactor modeling and control model development. The 

work significantly extends previous studies in the detail of the mathematical 

model and in the systematic consideration of all aspects of the model develop

ment and the reduction to a state-space control representation. 
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1.2 INDUSTmAL CONTROL CONSIDERATIONS 

Until only recently, the process control industry has been dominated by 

applications to mechanical or electrical processes where systems are generally 

well-defined and numerically simple due to minimal nonlinearities and relatively 

simple physical characteristics. Even so-called 'modern' control theories 

developed in the 1960's have only played an important role in fields such as 

robotics and the space program. Their applicability to complex industrial chem

ical processes which are inherently burdened by nonlinearities, large time 

delays, and distributed parameter behavior has been extremely limited in spite 

of an enormous effort by researchers. Although significant theoretical efforts 

have been made by many research groups in the development of control algo

rithms for ill-defined distributed parameter systems as are common in the 

chemical industry, these efforts have not found wide application in actual indus

trial problems. Thus during the past twenty years, a significant control 'gap' has 

developed between process control theory and practice (Foss, 1973; Seborg and 

Edgar, 1982). 

Due largely to increased costs for energy, increased governmental safety 

and environmental restrictions, and increased foreign competition, significant 

efforts are now being made by industry to modernize and automate production 

facilities with a major emphasis on integrating energy requirements and improv

ing throughputs and system performance (Ray, 1981). Additionally with the 

major improvements and general acceptance of computers suitable for on-line 

control, attempts at applying sophisticated control theories are only now begin

ning. One of the conclusions of the discussion on the problem of the control 

'gap' between academic theories and practice is that there exists a ·pressing 

need for careful, systematic studies of the design and implementation of control 

systems for pilot-scale industrial processes, thus providing the prime motivation 



behind the current theoretical and experimental program for which this thesis 

provides a basis. 

Several steps are necessary prior to developing and testing control stra

tegies. These include the design and construction of a pilot-scale system pos

sessing much of the modeling characteristics and control difficulties of the 

actual industrial process, the development of an accurate mathematical model 

for process design and analysis, and the reduction of the full model to one suit

able for control structure design and on-line control. The first of these steps 

was performed by Strand (1984), and the latter two steps are the concern of this 

current work. A packed bed nonadiabatic chemical reactor was selected as the 

chemical process to be studied due to its complexity and inherent control 

difficulties and its extensive industrial importance for carrying out exothermic, 

gas phase reactions. 

Upon completion of these preliminary research efforts. the elements of the 

control structure: 

• the measured variables, 

• the manipulated variables, 

• the control configuration connecting the measured and manipulated 

variables, and 

• the control logic governing the behavior of the manipulated variables 

can be considered. In particular, it is important to determine control struc

tures that make optimal use of the availiible measurements in the chemical pro

cess. Although in general there may be quite a few measured variables available, 

they may not be the variables of most concern, and these variables may need to 

be reconstructed using the process model. An example of this is the measure

ment of the outlet gas temperature in the packed bed reactor from which the 
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outlet concentrations may need to be estimated. Further problems with meas-

urements result from various random and systematic errors or noise in the 

measurements and long delays due to the complexity of the chemical or physi

cal analyses. 1 The use of an accurate process model can in many cases minimize 

these diffl.culties by allowing prediction of some unavailable measurements, by 

improving the knowledge of the system performance through simulations, and 

by allowing design improvements to the process. 

Thus the central role played by dynamic and steady state models in the 

design and optimization of chemical processes and in the development and 

application of control strategies justifies considerable effort in their develop-

ment. The philosophy of this modeling work is presented by Foss ( 1973), 

'Forms ot the models range from sets of nonlinear 
differential equations to empirically or experimentally 
derived transfer functions. The forms of the models may 
not be selected arbitrarily: they are determined in part by 
the control objectives and the type of control analysis to be 
pursued. In short, process modeling is a substantial and 
crucial task, and by no means routine. .. . The operation of 
control systems of modern design also requires estimates of 
the process states used for control. This requires a process 
modeL perhaps different than that used for design calcula
tions, and a means of rapid solution of the model equa
tions." 

The work presented in this thesis is intended to minimize the diffl.culties associ-

ated with process modeling by providing an accurate unified approach to the 

model development for packed bed chemical reactors. 

1. Such as using a chromatograph to measure outlet concentrations :!'rom a reactor. 
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1.5 REVIEW OF EXPERIIIENTAL CONTROL S'I'UDIES 

Several experimental laboratory-scale packed bed reactor systems have 

been studied in terms of control considerations. Table 1.2-1 outlines some of 

the work done by several groups that have made significant contributions in this 

area. Their work is by no means the extent of control applications for chemical 

processes (there is much published work on the control or separation processes 

and other reactor configurations) but is the major extent of published experi

mental application of control techniques to packed bed reactors. 

The Denmark group (Clement and Jorgensen, 1981; Clement et al., 1980; 

Hallager and Jorgensen, 1981; Sorensen, 1977; Sorensen et al., 1980) considered 

an adiabatic pilot-plant chemical reactor with the reaction between oxygen and 

hydrogen over an alumina supported platinum catalyst. Initial dynamic model

ing and experimental studies were carried out by Hansen and Jorgensen (1974, 

1976ab) and by Sorensen (1976). The group considered various reactor and 

control models and investigated control strategies based on optimal control. 

direct Nyquist arrays, and the self-tuning regulator. 

The Berkeley group (Foss et al., 1980; Michelsen et al., 1973; Silva et al., 

1979; Vakil et al., 1973; Wallman et al., 1979) studied the same hydrogen/oxygen 

system but used a two-bed reactor structure with an interstage quench stream. 

Again the beds were taken as adiabatic, and various control strategies were de

vised. The first control studies by Silva et al. (1979) and Wallman et al. (1979) 

considered the control of the quench fiowrate and temperature using tempera

ture measurements and a product concentration estimator using the stochastic 

linear quadratic regulator and multivariable integral control. The latter work 

by Foss et al. (1980) uses the tlowrate and temperature of the quench stream 

and the feed temperature to regulate the product concentration and tempera-
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ture using the characteristic locus method of control system analysis. A major 

significance of their work was the consideration of the large number of available 

measurements and the appropriate choice of control contlguations. 

The McMaster group (Jutan et al., 1977; MacGregor and Wong, 1978; Wright 

and Schryer, 1978) considered the hydrogenolysis of butane carried out over a 

nickel on silica gel catalyst in a nonadiabatic packed bed reactor. The work by 

Jutan et al. ( 1977) provides an excellent foundation for packed bed reactor 

modeling and control studies for multiple reaction systems by specifically con

sidering the state-space model development, the parameter estimation and sto

chastic disturbance identification, and on-line linear quadratic control. The ear

lier work by MacGregor and Wong (1978) and Wright and Schryer (1978) deviated 

from the mechanistic approach to reactor modeling taken by most studies 

where models are developed by careful consideration of the important chemical 

and physical phenomena occurring within the process. They considered the use 

of statistical methods to identify process transfer functions from empirical 

input/ output process data. They then applied a model reference adaptive con

troller and a state-space stochastic linear quadratic regulator. 

Finally. the dynamic behavior of an autothermal reactor with internal 

countercurrent heat exchange using the steam-shift reaction was modeled by 

Bonvin (1980) and Bonvin et al. (1979, 1980). Modal control using state feed

back was found appropriate for stabilizing the reactor around an unstable 

steady state. 
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Chapter 2 

:MULTIV.ARIABLE CONTROL STRUCTURE DESIGN FOR 

A HEAT CONDUCTION SYSTEM 
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2.1 INTRODUCTION 

Classical process control techniques were largely developed on a trial and 

error basis, with the theoretical concepts developed later to substantiate the 

empirical results. The classical controller was based on a single-input, single

output (SJSO) system with three types of possible control action-proportionaL 

integral, and derivative-based on the feedback error. Although design tech

niques such as root-loci, Bode diagrams, and Nyquist plots led to empirical rules 

for setting the appropriate amounts of control action, these methods were lim

ited to SISO systems. Since most processes have multiple inputs and outputs, 

additional considerations became necessary, due to the failure of single-loop 

analysis for interacting loops. Since frequency-domain methods dominated con

trol system design in the scalar case and led to relatively simple controllers, it is 

not surprising that considerable effort went into extending these methods to the 

multivariable case. However, direct extension of scalar frequency-domain pro

cedures was not possible, and major modifications of the existing theories were 

necessary to meet the design objectives. Furthermore, design complexities were 

often enhanced due to the additional objective of noninteraction. Nevertheless, 

several excellent frequency response procedures were developed in the late 60's 

and 70's, led by the work of Rosenbrock, MacFarlane, and Kouvaritakis. 

At the same time, ''modern" control techniques were developed. These 

methods rely on an exact knowledge of the system state, which is reconstructed 

from a finite number of measurements using current theories in optimal filter

ing, smoothing, and estimation. The ideas have been extended to account for 

modeling and measurement uncertainties and inaccuracies. Although these 

''modern" methods, which rely heavily on variational calculus and dynamic pro

grarn.ming, generally lead to a more complex control structure, they are less 

heuristic than the frequency-domain methods and allow for more precise 
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control objectives, such as the minimization of the variance in the state vector. 

This chapter describes an in-depth analysis of a practical. multivariable, 

distributed parameter system using both frequency-domain and time-domain 

analysis. As a typical distributed system, a one-dimensional, heat conduction 

problem is considered. The process is described by the difiusion equation 

tJ2y(z,t) 
az2 

By(z.t) 
Bt 

(2.1-1) 

where the temperature distribution, y(z,t). is dependent on the space coordinate 

z. which is normalized (0.0 < z < 1.0) with respect to the thickness of the sys-

tern, and on time, which is normalized so that the coefficient corresponding to 

the thermal difiusivity is unity. For simplicity, the controls u 1(t) and u2(t) are 

taken to be the heat fiuxes at z ""' 0 and z ""' 1. Thus the initial and boundary 

conditions are 

y(z,O) = Yo(z) (2. 1-2) 

By(z.t) j = -ut(t) . 
Clz •=O 

By(z,t) j = u2(t). 
az •=1 

(2. 1-3) 

Although this heat conduction process is a relatively simple control prob

lem due to the simplicity of the model and ease of obtaining measurements. the 

analysis leads to conclusions that can be extended to general, multivariable con-

trol theory. Actually the system is an excellent choice, since Equations (2.1-1) -

(2.1-3) can be solved analytically to give the temperature distribution for any 

control action. Thus model reduction and control design techniques can be 

applied to the reduced system and compared with the actual process model. 

Additionally, the heat conduction system is a highly interacting process with 

implicit transportation lags. 

Due to the simplicity of the model. both distributed and lumped analyses 



- 16-

can be performed. Since most frequency-response techniques require a low

order, lumped, state-space representation, model reduction is an important 

step in the analysis. Section 2.2 discusses the model lumping and reduction 

using exact techniques. Additionally, an analysis of output and system control

lability, along With a multivariable root-loci analysis, is presented. Much insight 

can be obtained from these preltminary considerations. 

Section 2.3 discusses the time-domain analysis of both the lumped and dis

tributed models of the system. Both optimal feedback control and modal tech

niques are discussed in detail, along With derivations of the control schemes. 

Since much work has been published on the application of optimal control 

theory to the single-input, one-dimensional heat conduction problem and since 

little additional complexity 1s introduced in the optimal analysts by adding 

another control. this aspect is not dealt With in detail. 

Section 2.4 considers non-interacting control. Since a major difficulty in 

multivariable, feedback control design arises from the steady state and dynamic 

interactions that occur between the various input and output variables. it is 

usually desirable to reduce these interactions. If they can be reduced 

sufficiently, single-loop control theories can be applied directly to each of the 

non-interacting loops. The technique of perfect, non-interacting compensation 

is attempted for this purpose. However since such compensation is in many 

cases impractical or excessively complicated, other methods that only eliminate 

steady state interactions are also considered. Finally, a new method, that uses a 

relatively simple control structure to eliminate all steady state and dynamic 

interactions, is considered. This procedure, called inner-loop decoupling, makes 

use of extra available measurements through an inner-loop structure. 

Several methods at the forefront of current multivariable frequency-



responsA analysis are also studied. Section 2.5 discusses the application of 

Rosenbrock's (1962) inverse Nyquist array technique, which is an extension of 

the classical Nyquist stability criterion. Section 2.6 analyzes the heat conduc

tion system using the characteristic locus method. The analysis is based on the 

latest refinements of the technique originally introduced by Belletrutti and 

MacFarlane (1971). The current work provides a systematic approach for 

designing a proportional-integral controller with the best compromise of system 

stability, interaction, integrity, and accuracy. 

Section 2.7 presents an overall analysis of the control system performance. 

Using computer simulations of the responses of both the lumped model and the 

actual system to step input changes, the effectiveness of the various control 

designs are compared. This analysis leads to conclusions about the model 

reduction and design techniques that can be extended to general, multivariable 

feedback control. 
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2.2 PRELllliNARY ANALYSIS 

Difficulties arise in the control system design of distributed parameter sys

tems because of state variations in both time and space. The thrust of many of 

the feedback control design techniques for distributed systems is to reduce the 

system to a lumped one and then to take advantage of the many theories avail

able for lumped parameter control design. However, problems arise in that all 

of the analysis performed on the lumped system is dependent on the method 

and accuracy of the reduction. Although considerable model reduction is neces

sary to reduce computational complexities in the design procedures, excessive 

or inaccurate reduction can lead to a system whose behavior is quite different 

from that of the original process. 

2.2.1 Yodel Reduction 

To obtain the lumped parameter model for a system described by partial 

differential equations, many efficient techniques are described in the literature. 

In particular, much work has been published on various lumping strategies for 

linear diffusion equations. A particularly useful means of treating both linear 

and nonlinear partial differential equation systems is the method of weighted 

residuals along with other pseudo-modal techniques, such as finite element 

methods (Norrie and DeVries, 1973) or the use of spline functions (Finlayson, 

1972). The method of weighted residuals is comprised of the following basic 

techniques, depending on the choice of the weighting function (Prabhu and 

McCausland, 1970; Ray, 1961): 

a. Galerkin's Method (Lynn and Zahradnik, 1970; Newman and Sen, 

1972: Prabhu and McCausland. 1970) 
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b. Method of Subdivisions 

c. Method of Moments 

d. Method of Collocation (Finlayson, 1972) 

e. Least Squares Method. 

Although these techniques are quite powerful, Mahapatra (1977) points out that 

solutions using the method of weighted residuals often require considerable 

effort to determine the set of orthogonal coordinate functions and a high·order 

lumped model for accurate results. To eliminate these difficulties, spatial 

discretization techniques (Leden, 1976; Mahapatra, 1977) are often quite useful 

tor linear ditfus10n systems, since they retain the physical characterist1cs of the 

system. However, they too often lead to high-order lumped models. 

Thus to improve the accuracy and reduce the order of the model, it may be 

best to use an exact reduction technique. Since the heat equation is governed 

by a parabolic equation, exact lumping can be performed using a Laplace 

transform in time or through a modal analysis. The latter, which is simply an 

application of the separation of variable solution procedure, is quite attractive 

for systems which can be made self-adjoint, since the technique leads directly to 

the eigenvalues and eigenfunctions (modes) of the system. If the eigenvalues 

are real, discrete and well spaced, the modal representation is a convenient 

method to reduce the order of the system, since only the dominant modes need 

be retained for design purposes. 

Both the Laplace transform and modal analysis techniques were applied to 

the one-dimensional heat conduction problem. Other techniques have been dis

cussed in detail in the literature. Although the methods can be shown to lead to 

equivalent results, the modal analysis leads directly to a lumped, state-space 

representation. Disadvantages of the separation of variable technique were 



cited by Prabhu and McCausland (1970), but the technique is well suited to the 

linear diffusion problem because time and space variables are easily separated 

and an analytic solution is possible. 

Consider the system described by Equation (2.1-1), scaled so that y0(z)=O. 

Taking the laplace transform with respect to time gives: 

sy(z s) = d2y(z,s) 
, dz2 , 

which has the solution 

y(z,s) =A sinh ...JSz + cosh...JSz . 

After application of the boundary conditions 

dy(O,s) _ ( ) - -u1 s 
dz 

dy(l.s) = u2(s) . 
dz 

the solution in the Laplace domain is 

y(z,s) = GJ'(z,s)u(s). 

where 

T _ [ ] _ fl cosh( 1-z)-Vs cosh zv'S J . 
Gp- g1(z,s) 'g2(z,s) - v'Ssinhv'S ' v'ssinh..JS 

(2.2-1) 

(2.2-2) 

(e.z-s) 

(2.2-4) 

(2.2-5) 

(2.2-6) 

Thus a distributed transfer function representation is obtained, from which a 

simple feedback control strategy can be env{sioned (Figure 2.2-1). The closed-

loop distributed transfer function is 

y{z,s) 
Yd(z,s) 

(2.2-7) 

However in general, measurements will only be available as discrete points. If 

these points are Z~o ... , ZN. the appropriate block diagram structure is shown in 
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Figures 2.2-2 and 2.2-3 with 

(2.2-8) 

Note that Figure 2.2-3 is equivalent to Figure 2.2-1 with Gc(z,s) = Gc(s)A 

Using contour integration to invert Equations (2.2-4)-(2.2-6), the time-

domain representation of the solution can be obtained. The inverse of g,;(z,s) is 

the sum of the residues of estg1(z,s). Each g,(z,s) has an infinite number of sim

ple poles at Sn = -n2rr2, n = 1, 2, 3, ... and a pole at s0 = 0.0. Simple expansions of 

the numerator and denominator of estg,(z,s) about s0 = 0.0 lead to a residue of 

1. 0 at s0. The residues at Sn are obtained by Taylor expanding sinh ....; s about sn 

and applying residue theory. This results in 

- 1!2t, g1(z.t) = 1.0+ 2: 2.0(-~)ncosnrr(l-z) e-n n 
n=l 

g2 (z,t) ::::: 1.0 + ~ 2.0( -1) ncos n1rz e-n2wl1. 
(2.2-9) 

n=l 

Then using convolution theory. the t1me-domain behaVior is directly related to 

the control action: 

t 
y(z,t) ::::: fo G(z.t--r)u(1)d1 G'l'(z,t) = [g1(z,t), g2(z,t)] . (2.2-10) 

Since the time-domain results are obtained as an infinite series of exponen

tials with eigenvalues Xn = n 21r2 , the Laplace-domain behavior can also be 

represented as an infinite series with y(z,s) being described by Equation (2.2-4) 

along with the following: 

GJ(z,s) = [.L+ f: 2(-l)ncosnrr(1-z), .L+ f: 2(-l)ncosnrrz l .(2.2_11) 
S n=l s-Xn s n=l s-Xn 

Then if the series can be truncated after the first few terms without excessive 

inaccuracy, normal multivariable design techniques can be applied directly. 



-22-

However since separation of variables for the one-dimensional heat conduc-

tion system leads to a self-adjoint operator With real. discrete eigenvalues, 

modal decomposition is attractive for this system. The problem can be 

redefined using the Dirac delta function: 

By1~·t) = 
02~~~,t) + ~(z-o)ut(t) + o(z-1)ll2(t) 

z = o-, z = 1 + ~~.t) = o . 
(2.2-12) 

It can be proven that this change is rigorous by integrating Equation (2.2-12) 

across the infinitesimal intervals 1- < z < 1 +and o- < z < o+. For example: 

,.o+ B ,.o+ B [ ~y) o-~- ,.o+ 
;

0
_ ¥t-dz = Jo- oz BZ]dz + fo- 6(z-D)u1(t)dz + Jo- c5(z-1)ll2(t)dz (2.2-13) 

Thus 

But ~"} = 0 at z = o- : therefore ~i = -u1 ( t) at z = o+. Thus formulation 

(2.2-12) is equivalent to that described by Equations (2.1-1)- (2.1·3). 

The space and time variables can then be separated by assuming a solution 

of the form 

.. 
y(z,t) ::: ~ an(t)~n(z) 

n=O .. 
t5(z-D)u1(t) +o(z-1)u2(t) =I; bn(t)9'n(Z) . 

n=O 

A!ter substituting into (2.2-12) and simplifying, the equations become 

(2.2-14) 
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n = 0, 1. 2, ... . (2.2-15) 

z=O 
dscn(z) -'-:;;.......;-= 0 ' z = 1 dz 

By choosing the separation constant as -An, 

n=O, 1, 2, ... . (2.2-16) 

Clearly (2.2-16a) is a self-adjoint differential equation that can be solved to yield 

(2.2-17) 

after application of the boundary conditions from (2.2-15). Because (2.2-16a) is 

a homogeneous, self-adjoint differential equation With homogeneous boundary 

conditions, the eigenfunctions, Equation (2.2-17), are orthogonal. It is con-

venient to choose the arbitrary constant An so as to make the eigenfunctions 

orthonormal, i.e., 

1 fo sc~(z) dz = 1.0 (2.2-18) 

The appropriate choice of An leads to 

{ 
1.0 

Y'n(Z) = -.n_ cos n1iz 
n=O 
n= 1. 2 .... (2.2-19) 

Then by application of the orthogonality of the eigenfunctions 

1 

e.n(t) = fo sPn(z)y(z,t) dz , (2.2-20) 

or in particular for y0(z) = 0, an(O) = 0. Similarly the coefficients bn(t) are given 

by 



Thus 

1 
bn(t) = fo 9'n(z)[o(z-O)ut(t) +o(z-l)u2(t)] dz 

= 9'n(O)ul(t) +9'n(l)lll,l(t). 

n=O 
n=1,2, ... 

(2.2-21) 

(2.2-22) 

Since the eigenvalues, 7\n = n21T2 , increase rapidly with increasing n, the sys-

tern can be accurately represented by the first few eigenfunctions, n = 0, 1. ... , N. 

The process model can then be obtained as an Nth-order lumped state-space 

representation with theN+ 1 states a0, ... , aN. 

X(t) = Ax(t) + Bu(t) , y(z,t) = Cx(t) . 

where 

1 1 
'-'Z -..JZ 

(2.2-23) 

The resulting feedback control system can be drawn in block diagram form (Fig-

ure 2.2-4) 

In theory, the control scheme of Figure 2.2-4 (and of Figure 2.2-1) requires 

the complete temperature profile, y(z,t), of the system. However, Ray (1981) 

points out several means of circumventing this problem. He suggests: 
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L measuring y(7,,t) at many points i = 1. 2, ... , M and using an optimal 

smoothing technique to approximate y(z,t), 

ii. measuring y(Zt.t) at a few points and using a state estimator to esti

mate y(z,t), 

iii. or measuring y(zt.t) an N+l spatial points and letting 

y(t) = [y(zt.t). y(z2.t), .... y(zNH.t)] 

C= (2.2-24) 

Then y(t) = Cx:(t) or x(t) = C 1y(t) as long as z1 .... , ZN+l are selected to 

keep C nonsingular. 

Actually it is possible to control the system by taking measurements at M points, 

where M < N+l. For tbis case, the system should be controlled by using set 

points on the outputs rather than on the states, since the N+ lth-order state 

vector x:(t) cannot be obtained uniquely with M < N+l measurements. 

Regardless of the technique for estimating y(z.t), the appropriate transfer 

function representation can be obtained by converting to the laplace domain. 

With Yo (z) = 0, 

x(s) = (sl -A)-1 Bu(s), y(z,s) = Cx:(s) , (2.2-25) 

or with measurements at M distinct points: 

y(s) = Cx:(s) , C= (2.2-26) 
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Thus the lumped parameter system process transfer function is given by 

(2.2-27) 

2.2.2 Controllability 

The distributed system has been lumped through an N eigenfunction 

decomposition. Before attempting to design a control strategy for the lumped 

system, an analysis of system and output controllability is necessary. 

Although the concept of controllability is formally defined in many refer

ences (Brockett, 1970; Douglas, 197Z; Lee and Marcus, 1967; Ray, 1981), it is con-

venient to consider a system completely controllable if some control action 

exists that will take the system from any given initial state to any specified final 

state in finite time. The necessary and suffi.cient condition for complete control-

lability of the system described by (2.2-23) with N-1 states and two controls is 

that the controllability matrix It: 

' 1 
..JZ 

1 
-"2 

0 
-(_,.2~-JZ 

(2.2-28) 

has rank N-1. Since It: has full rank for all N, the system is completely controll

able. Thus the two controls u 1 and u2 are capable of influencing all of the states. 

However, the lumped. analysis will be based on k measurements. Thus a 

more important concept is that of output controllability, i.e., the controls must 

be able to influence all k outputs. The output controllability matrix 
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4' = [CBI CABI ... l CAN-lB] (2.2-29) 

must have rank k for the system to be output controllable. It can easily be 

shown that, for the heat conduction system, output controllability is assured if 

no two measurements are taken at the same point. 

It can be concluded that, for k distinct measurements, the lumped, one

dimensional heat conduction system is completely controllable with heat fiux 

control at z = 0 and z = 1. Thus multivariable lumped parameter control theory 

can be applied to the state-space representation of the system. However, it 

should be recalled that this analysis or controllability is dependent on the accu

racy of the model reduction and lumping. Although the approximate lumped 

parameter system has been shown to be completely controllable, the actual dis

tributed system may indeed be only partially controllable. Additionally, care 

must be taken in making conclusions from this type of analysis, since no con

sideration of the physical constraints of the system have been made. 

2.2.3 Root-Locus 

The concept of root-locus analysis is basic to classical control system 

design for single-input, single-output processes. The root-locus diagram is 

advantageous since it describes the character of the response as the gain of the 

controller is continuously changed, by allowing rapid determination of the roots 

of the characteristic equation. Although scalar root-locus techniques are well

known, the multivariable root-locus problem is relatively new. Kouvaritakis 

(1978), Kouvaritakis and MacFarlane (1976ab), and Kouvaritakis and Shaked 

( 1978) describe the technique and discuss the analysis of system zeros. 

The objective of the root-locus method is to investigate the behavior of the 

closed-loop characteristic frequencies when the feedback gain matrix has the 
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form Gc = ki. For the modal-lumped representation of the heat conduction sys

tem, the process transfer function was shown to be Gp = C(si-A)-1B. The 

characteristic equation is then (Hsu and Chen, 1968) 

(2.2-30) 

where P0 (s) is the open-loop characteristic polynomial and Pc (s) is the closed-

loop characteristic polynomial. Then if we detine 

si-A -B 

z(s) = (2.2-31) 

C Om,m 

the n-m-d closed-loop characteristic frequencies 1 will tend toward the roots of 

z(s) = 0 as k increases. These roots are the finite zeros of the process. For the 

two-control. 3rd-order, heat conduction system, there is one finite zero and two 

infinite zeros if CB has full rank. If CB has lost rank, all three zeros will be 

infinite. This occurs for the following choices of measurement locations: 

Z1 0.20 0.33 0.40 0.60 0.67 0.80 
z2 0.60 0.67 0.80 0.20 0.33 0.40 

Thus for any combination of outputs other than these, there will be one finite 

zero given by z(s) = 0. The solution to this is 

8 
= 41T

2 (c-a) 
V2(ad-bc)+(a-c) 

(2.2-32) 

1. where n is the order of the lumped model, m is the number of inputs, and d is the rank deficiency 
ofCB 
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This root is finite for all z1 and Za other than those listed above, since the 

denominator of Equation (2.2-32) is then nonzero. 

The root-loci for the system are the loci of the roots of the characteristic 

equation 

+4k(ad-bc)]s +Brr2~k(a-c)+Brr4] (2.2-33) 

as k varies from 0 to cc. Obviously, the poles (k = 0) of the system are at s = 0, 

-rr2 and -4rr2 independent of the measurements. As k approaches infinity, (2.2-

33) reduces to 

~(ad-bc)s + (a-c)s + 4rr2(a-c) = 0 

which is equivalent to (2.2-32) above. 

(2.2-34) 

Figure 2.2-5 shows the root-loci for various measurement locations. Both 

symmetric and unsymmetric cases were studied. For the symmetric cases, the 

root-loci remain stable (in the left-half plane) at high gains for z1 s: 0.33; 

whereas, the loci become unstable at high gains lor 0.33 < z1 < 0.50 . This is 

expected due to the large lag time between the control action at z1 = 0 and its 

effect on the output. The symmetric cases with z1 and z2 reversed, i.e., z1 > 0.50 

and z2 < 0.50 (not shown), lead to root-loci identical to those in Figure 2.2-5 

except that the locus beginning at -1r2 approaches +oo rather than -co. Thus 

such a system is less stable.2 Additionally from the root-loci analysis. the 

2. This is also a result of the large lag times. 
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responses for the (0.2,0.8) case are expected to be non-oscillatory; whereas, for 

all other cases, oscillations are expected at moderate to high gains. 

It can be concluded that, for symmetric measurements with z1 < 0.33 or 

for the unsymmetric case (0.4,0.8), system stability is insured even for high 

gains. Thus a proportional controller may provide adequate control action. 

Since the other cases lead to instability at high gains, more complicated control 

schemes should be considered. 
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Yd(z,s) 
A 

Yd( s)+/0\ E( s) 
Gc(s) 

u(s) __ 
Gp(Z,S) 

y(z,s) 

~ 

A 

Figure 2.2-3 
Modified Feedback Control Strategy with N Discrete Measurements 

Yd(z)+/0\ E(Z t) 
Gc(z,t) 

u(t) x= Ax +Bu y(z,t) 
'<:1 ' y(z,t) = Cx( t) --

Figure 2.2-4 
Nth-Order Lumped Feedback Control Design 
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2.3 TlME-DOM.AlN ANALYSIS 

The time-domain approach for control system analysis utilizes the 

differential or difference equations directly rather than using transfer functions, 

as in the frequency-domain analysis. Although the time-domain technique is 

actually older than frequency response techniques, its development was slow 

due to the difficulty of making calculations in the differential domain. :rhe 

emergence of digital computation as a widely accepted tool led to a resurgence 

of interest in time-domain analysis. In particular, the techniques of state esti

mation, optimal control, modal control, and adaptive control rose to the fore

front of research. Although these methods have a strong theoretical basis, they 

only became practical with the development or small and reliable digital com

puters: capable of high-speed information processing. Consideration of ideas for 

which frequency-domain techniques were inappropriate, such as simultaneous 

control of several interacting variables. and the application of different types of 

controller objectives, such as the minimization of energy consumption, became 

practical. 

Of the many time-domain procedures. optimal control and modal control 

are the most common techniques and thus have been studied extensively for 

both lumped and distributed parameter systems. The one-dimensional diffusion 

equation has often been used to illustrate the application of these methods. 

Due to the many studies of these theories and on their application to heat con

duction systems, only a cursory examination of the techniques will be 

presented. Additionally. other methods such as adaptive control and state esti

mation will not be considered in this theoretical analysis of the heat conduction 

process. although they may be quite useful in practical applications. 
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2.3.1 Optimal CGntrol 

Optimal control methods can be divided into two schemes-open- and 

closed-loop. When an excellent mathematical model of the system is available in 

terms of differential equations, open-loop control schemes can be useful for 

start-up, shut down, and other transient conditions. However in practice, most 

models contain some error; therefore, closed-loop schemes are often necessary 

for satisfactory controller performance. since they involve feedback of process 

measurements. Regardless of whether open or closed~loop control is to be used, 

the technique involves the selection of an index which measures the perfor

mance of the system, from which the optimal control strategy is selected as that 

which minimizes this index. A major difficulty in the design of an optimal con

trol system is the establishment of the criteria for optimality. The optimal con

trol procedure is in contrast to the other techniques that try to obtain satisfac

tory responses in terms of offset, gain margin or decay ratios, since once the cri

teria is selected a unique solution is obtained. 

As previously mentioned, much work has been published concerning 

optimal control of parabolic systems such as that described by the heat equa

tion. McCausland (1970), Prabhu and McCausland (1970), and Mahapatra (1977) 

studied time-optimal control of the linear diffusion process. For such control, 

the objective is to force the system to reach the desired design conditions in 

minimum time. Others (Betts and Citron, 1972; Sakawa, 1964: Sheirah and 

Hamza, 1974) treated the problem of optimal control of the heat conduction 

problem by minimizing the deviation of the temperature distribution from the 

desired distribution throughout time. Additionally much literature is available 

on the general problem of optimal control of distributed parameter systems. 

An important special case of the optimal control problem is linear~ 



-37-

quadratic control, which leads to an optimal, state-feedback control law. 

Numerous papers have been written on this problem, including several on its 

application to parabolic systems (Ahmed and Teo, 1981; Matsumoto and Ito, 

1970; Wang, 1975). This technique uses a quadratic penalty function to control a 

system at a set point without excessive control action and not exceeding accept-

able levels of state. The method is readily applicable to either a lumped model 

of the system or to the original distributed model. 

For the heat conduction system, the lumped parameter model is described 

by the linear differential equation 

i=Ax+Bu, y=Cx 1 (2.3-1) 

with A. B, i:ind C defined by Equations (2.2-23) and (2.2-26). The objective of this 

technique is to obtain the feedback law which minimizes the performance index 

(2.3-2) 

where Sp, F(t), and E(t) are symmetric, positive definite weighting matrices 

which describe the relative importance of reaching the desired set point Xo. = 0, 

using small levels of the state and using little control action. If the desired set 

point is nonzero, then deviation variables can be used to convert the problem to 

the above form. Thus let Xo. and lld be the desired steady state values. Then let-

ting 

u' = u -Uci (2.3-3) 

and recognizing that at steady state Aid + Blld. = 0, Equation (2.3-1) becomes 

i.' =AX+ Bu' (2.3-4) 

with the performance index: 
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Then from quadratic feedback control theory (Bryson and Ho, 1969; Ray, 1981), 

the feedback control law is 

u(t) = ~ - K(t)(x- X<~.) (2.3-6) 

where K(t) is given by 

K(t) = E-lJil'S(t) (2.3-7) 

and S(t) is found by solving the Ricatti equation backward from tF: 

s(t) = -SA- ATs + sm:-t]jl's- F. S(tp) = Sp. (2.3-8) 

Thus a proportional feedback controller with time-varying gain has been 

designed to control the system while minimizing the index given by Equation 

(2.3-5). This control structure is quite useful because the lime-varying gain K(t) 

can be determined otT-line since it does not depend on x(t) or u(t). Then if tp """ 

oo and A, B, F, and E are constant, S(t) becomes constant. It is the solution to 

sm:-1J3l'S- SA- ATS- F = 0 (2.3-9) 

In this case, the controller is simply a constant gain proportional controller. 

The linear-quadratic problem can also be applied to the distributed param

eter system described by Equations (2.1-1) - (2.1-3). The objective is then to 

minimize the index 

(2.3-10) 

where y· and u' are deviation variables With Yd(z) being the desired temperature 
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profile. The derivation of the optimal control law is carried out using the pro

cedure described by Ray (1981). The results are: 

1 
u 1(t) = -Eo-1 fo S(O,s,t)y(s,t) ds 

(2.3-11) 

where S(r,s,t) can be computed ofHine from 

St.(r,s,t) = -S88 - Srr + S(r,O,t)E01S(O,s,t) 

+ S(r.l.t)E}1S(l.s,t)- Fo(r-s) (2.3-12) 

with the boundary conditions 

Sa(r.l.t) = S.(r,O,t) = Sr(O,s,t) = Sr(l,s,t) = 0 (2.3-13) 

and terminal condition 

S(r,s,tr) = Sr(r,s) = S,O(r-s) (2.3-14) 

Thus linear-quadratic optimal control can readily be applied to the heat 

conduction system to obtain the feedback control law using either the lumped 

or distributed parameter model. However several problems exist with the 

optimal control technique. MacFarlane (1972) points out that optimal controll-

ers provide gain margins far in excess of those required for stability, are often 

difficult to tune on-line and may be of low integrity to transducer failures. Addi-

tionally there are several other major concerns: 

i. Optimal control design requires an accurate model of the system. This can 

lead to difficulties in the lumped parameter design due to errors intro-

duced by model reduction. Even in the distributed parameter design, 

model inaccuracies could be quite large due to heat losses or inefficiencies 

in the controls. 
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ii. Optimal control design requires all of the system states to be JiCcessible. 

Thus for the lumped model. the technique is restricted to the case where 

the number of measurements equals the order of the model and the meas

urement matrix is nonsingular. Only then are the states accessible from 

the measurements: 

(2.3-15) 

For the distributed parameter design. the entire temperature profile y(z.t) 

is needed. Considerable effort has been directed at overcoming this 

difficulty by using observers or Kalman-Bucy f:Uters to recover the inacces

sible states. Much literature has been published on combining such tech

niques with optimal linear quadratic control. 

iii. Optimal control design requires a selection of the weighting matrices Sr. F, 

and E. Unfortunately, in many chemical engineering applications. the 

choice of the weighting matrices may be quite difficult. For the heat con

duction system. no easy criterion is available for selecting the weights. 

Consequently. much of the literature dealing with optimal control of 

diffusion systems considers simple minimization of the time needed to 

reach the desired state or the deviation of the system from the desired 

state. 

2.3.2 llodal Control 

Early work in modal control was dominated by Rosenbrock ( 1962) and 

Gould and Murray-Lasso (1966), with many others (Bradshaw and Porter, 1972; 

Davison, 1970: Ellis and White, 1965abc; Fisher and Denn, 1978: Porter and 

Bradshaw, 1972) extending the basic theories. Much work has also been pub

lished on the application of modal techniques to various systems ranging from 

linear diffusion problems (Balas, 1979; McGlothin, 1974; Porter and Bradshaw, 
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1972; Wang, 1972) to large chemical plants (Davison and Chadha, 1972). 

Although many texts discuss the concepts of modal analysis, Gould ( 1969) pro

vides a detailed discussion of the use of the method for distributed systems and 

for lumped systems with an arbitrary number at states, controls, and measure

ments. This latter situation is of great interest for the heat conduction prob

lem, since the order of the model may be much larger than the number of con

trols and measurements. 

Modal analysis is based on the postulate that the transient behavior of a 

process is primarily governed by the modes associated with the smallest eigen

values and that the response of the system can be improved by using a control 

design to increase these eigenvalues. Additionally, the method suggests that it is 

possible to approximate a complicated, high-order system by a lower-order sys

tem whose slow modes are the same as the original system. This technique was 

used in the modal lumping of the previous section to obtain the Nth-order 

lumped model for the heat conduction system. However several references 

(Douglas, 1972; Gould, 1969; Ray, 1981) point out that disturbances affect the 

different modes differently; therefore, the reduced model may not be satisfac

tory if the disturbances have their greatest effect on the neglected faster modes. 

Additionally, although Rosenbrock's ( 1962) approach implied the possibility of 

altering each eigenvalue separately without limit, this is often impractical owing 

to limitations on the number of controls and measurements and their locations. 

The ideal case for lumped modal analysis is when the number of controls 

and number of measurements equal the order of the model. For the system 

described in Equation (2.2-23): 

.i: =Ax+ Bu, y=Cx (2.3-16) 

the modal technique calls for the selection of C = L, where Lis the matrix of left 
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eigenvectors of matrix A. The controller is then designed as a simP.}e propor

tional controller with 

(2.3-17) 

where R is the matrix of right eigenvectors of A and K is a diagonal proportional 

gain matrix with diagonal elements kt. With these selections. 

:i = R(A - K)Lx. .t = (A - .K)y (2.3-18) 

where A is a diagonal matrix of the eigenvalues. Thus the outputs have no 

interaction, and the eigenvalues have been shifted by k,. Since A is a diagonal 

matrix for the heat conduction system. A = A and the matrices R and L can be 

simply taken as identity matrices. Thus the technique calls for the selection of 

the measurement matrix as an identity matrix. Therefore, an appropriate com-

bination of the temperatures should be used so that the system states are actu-

ally measured. 1 

However in most practical systems, the number of states will exceed the 

number of controls. Consider the heat conductton process With two controls 

and N states and measurements. Gould (1969) shows that, if B and C can be 

chosen arbitrarily, the two lowest eigenvalues can be made as large and negative 

as desired while leaving the others and all the eigenvectors unchanged. As shown 

above, the restrictions on C can be accommodated by measuring a combination 

of the temperatures. However for the heat conduction system, B is fixed due to 

the a. priari selection of the controls. By slight modification of the analysis, 

modal control is still applicable. Consider adding both a compensator G.c to 

adjust for the fixed B and a diagonal proportional control matrix K: 

1. Thus the compensator c-t should be included after the process and set points or after the 
difference junction 
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u= -Gc,Ky with set point Yd = 0. (2.3-19) 

Note that previously when B had dimension N.2 Gc was selected as Gc = ~1R. 

However in this case, B can not be inverted. Thus 

i = (A - BGcK)x (2.3-20) 

with A:::: A and C selected as C = L. 3 Then the choice of 

_l_ 1 0 0 
2 -2v2 ... 

Gc= (2.3-21) 
_l_ 1 0 0 

2 - 2..J2 ... 

leads to 

-kl 0 0 
0 -k2 0 

-"'Zkt 0 0 

0 -..J2~ 0 
BGcK = -"'Zkl 0 0 (2.3-22) 

Thus the first two eigenvalues can be altered by arbitrary selection ot k1 and k2 

without affecting the higher N-2 eigenvalues; however, the first two eigenvectors 

have also been altered slightly. Thus a disturbance in either of the first two 

modes will cause a disturbance in the higher modes. Since they decay rapidly. 

little difficulty should result. The appropriate block diagram is shown in 

Figure 2. 3-1. 

Gould ( 1969) also presents a detailed discussion of the situation where the 

number of measurements is less than the dimension of the process. This would 

2. B Wlill invertible. 
3. Note that Lis taken as the identity matrix. 
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obviously lead to difficulties in the modal analysis since the system state cannot 

be obtained from the measurements. An appropriate control scheme can be 

designed but will lead to considerable interaction between the control loops. 

Because of the complexity of the resulting control scheme and the ease of 

obtaining temperature measurements for a heat conduction process, it is 

recommended that sufficient measurements be taken so that the state vector 

can be constructed. Balas ( 1979) discusses the introduction of a Luenberger 

observer for this purpose. 

Additionally, modal control can be applied directly to the distributed 

parameter system. Gould and Murray-Lasso ( 1966) and Gould ( 1969) present a 

detailed discussion of modal control for linear, distributed systems. However, 

using these techniques and considering the limitations imposed by taking only a 

finite number of discrete measurements and by manipulating only two controls, 

the analysis becomes equivalent to using modal lumping and applying lumped 

modal analysis. 

Although modal analysis leads to exact placing of the poles, the procedure 

leads to a simple proportional controller and can not give any guidance as to 

the selection of additional control action. More importantly, the technique uses 

no information concerning the zeros of the transfer functions. Problems can 

easily arise if the zeros of the closed-loop transmittances move into the right

half plane. Furthermore, the method gives the best results only if all the states 

of the system are accessible. Although this does not cause any difficulty for the 

heat conduction process, it is not practical for most systems. 
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Figure 2.3-1 
Lumped Modal Feedback Control Design 
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2.4 NON-INTERACTING CONTROL 

A major difficulty in multivariable, feedback control design arises from the 

steady state and dynamic interactions which occur between the various input 

and output variables. In most systems, it is desired that one specific output 

y;.(s) responds to input U;.(s). while all other outputs remain unchanged. The 

term interaction can then be used to refer to the effects that a particular input 

U;.(s) has on the output Yi(s), j ~ i. Thus low interaction is usually desirable. In 

fact if it is possible to eliminate all the coupling between variables. and if the 

number of controllable inputs and outputs is equal, the multivariable system 

can be treated as a combination of single-loop systems, and classical techniques 

can be used to tune each loop. Unfortunately, most multivariable systems have 

considerable interaction; thus, several techniques have been devised to elim

inate or at least reduce the interaction to an acceptable level. 

For the heat conduction process, analysis of the system transfer function 

Gp ;;;; C(s1-A)-1B shows that interaction is high and cannot be eliminated by sim

ple selection of the measurement locations. Thus compensators that reduce or 

eliminate interaction may be useful. Several design techniques including per

fect non-interacting compensation, steady state decoupling. and set point com

pensation are available for this purpose. The application of these methods to 

the heat conduction problem is discussed. Additionally, a new technique is 

presented that eliminates interaction by using extra measurements within an 

inner loop, leading to a relatively simple control strategy. 

2.4.1 Perfect Dynamic Compenaation 

Consider the third-order model for the heat conduction system with two 

controls and measurements. The Laplace-domain representation of the system 
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is 

y= Gpu , (2.4-1) 

with 

(2.4-2) 

B= [~ -:J (2.4-3) 

(2.4-4) 

The process transfer function Gp is 

1 ...JZc12 ...JZc1s ...JZc12 
+ 

~c1s 
-+ + 

s +4rr2 s + 1'1'2 s +41'1'2 s s + rr2 s 
Gp = 1 ~Cz;:: ~c23 ~c22 ~Cza 

-+ + 
s + 4rr2 s + 1'1'2 

+ 
s s + rr2 s s +41'1'2 

(2.4-5) 

As mentioned earlier, the off-diagonal terms are significant and cannot be elim-

inated with the selection of the measurement locations z1 and z2 . 

Consider the feedback control system (Figure 2.4-1) consisting of single-

loop controllers, represented by a diagonal transfer function matrix Gc. and a 

non-interaction compensator Gt proceeding the process. The closed-loop 

response for this scheme is 

(2.4-6) 

The compensator Gt should be designed to eliminate as much interaction as pos

·~"" sible. Ideally Gt should be selected to make Gc1 diagonal and to drive Gc1 -+ 1 for 

s = 0 (t -+ ""). Note that such analysis is only applicable to systems with square 

transfer function matrices. If there are more controls than outputs, then a sub

set of controls may be chosen for decoupling, while if there are more outputs 
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than controls, only partial decoupling is possible (Ray, 1981). 

It Gc is diagonaL a sufficient criterion for GcJ to be diagonal e.nd GcJ(O) ... I as 

the controller gains increase is to select 

~=Gp1 diag Gp(s) , (2.4-7) 

where diag Gp(s) is a diagonal matrix of the diagonal elements of Gp(s). If this 

decoupling is performed perfectly, the closed-loop response will obey 

(2.4-8) 

where di(s) are the disturbances and g~(s), Sc:«(s), and gp«(s) are the elements 

of the disturbance, controller, and process transfer function matrices, respec-

tively. This selection of Gx leads to a total decoupling for set point changes and, 

even though each disturbance can intluence all the outputs, its effect on output 

Yi is damped by a single controller gcu(s) (Ray, 1981). 

Although this method is simple and seemingly eliminates all the complica-

lions inherent in multivariable, feedback control design, it has several major 

disadvantages. Perfect compensation requires a fr~rfect transfer function 

model. Though the model is well-known for the heat conduction process, 

approximations such as finite lumping can lead to badly behaving or even 

unstable control schemes. Furthermore, MacFarlane (1972) and Ray (1981) 

point out that another potential disadvantage is that a great deal of control 

flexibility is used up in making GpGtGc diagonal. often by sacrificing closed-loop 

dynamic performance. In many cases some interaction may actually improve 

dynamic performance. Finally. the technique possibly leads to an unnecessarily 

complicated compensator and fails if the determinant of Gp has right-half plane 

zeros or if the transfer functions are not square. Thus other techniques may 

lead to a simpler control scheme which is easier to tune on-line and less 
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sensitive to model inaccuracies. 

2.4.2 Steady State Decoupling 

Although perfect compensation may be impossible or merely impractical. 

steady state decoupling is usually quite useful and can be ;;Implemented before 

applying other design techniques such as inverse Nyquist array or the charac-

teristic locus method. Steady state decoupling uses a compensator 

Gr =lim [Gp1(s) diag Gp(s)] .-.o (2.4-9) 

to eliminate steady state interaction. However, it cannot improve dynamic 

behavior. Unfortunately, due to the perfect symmetry of the heat conduction 

system, even this method leads to difficulty. For the third-order heat conduc-

tion system, the appropriate compensator is singular: 

M(c12-cz2) 
Gx = -rr2 (2.4-10) 

2-.t!(c12-cz2) 

Introduction of this compensator into the control loop leads to dependent con-

trol action and is therefore not advisable, since it will lead to excessive dynamic 

interaction and poor closed-loop performance. 

2.4.3 Set Point Compensation 

Steady state interaction arises because a change in the set point of one 

controlled variable affects all the system outputs. A means of eliminating steady 

state interaction could be to simultaneously alter all the other set points in 

such a way as to cancel the effect of the original change. This idea is the basis 

for set point compensation, which is used to eliminate or minimize steady state 
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offset due to set point adjustments. 

Consider the control scheme of Figure 2.4-2, where Yd is the actual set 

point desired, Gc is a diagonal controller matrix, and G. is the set point compen-

sation matrix. The overall closed-loop transfer function is 

(2.4-11) 

The objective is to select G8 so that Gc1 is diagonal at stead~ state. Using the 

theory of laplace transforms, 

where 

Gas= limGp 
s-tO 

(2.4-13) 

For the heat conduction system, 

Note that c12 # c22 if z1 # z2 . Although this compensator is realizable and does 

not lead to dependent control, it cannot improve the response to a disturbance 

in the system since it does not appear in the feedback loop. 

2.4.4 Inner-Loop Decoupling 

Several recent studies (Foss et al., 1980; Kouvaritakis et al., 1979) discuss 

squaring down extra measurements in an inner loop to obtain a system that 

shows better control properties from the viewpoint of the outer loop. Usually 

the inner loop is used to adjust the poles of the system, and then other fre

quency response techniques are used to design the outer-loop control for the 
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improved process. However, the method presented here uses the additional 

degrees of freedom inherent in adding an inner loop to eliminate or minimize 

the interaction, with only simple proportional gain compensators and without 

severely limiting the design freedom available for the outer loop. 

Consider the process sht wn in Figure 2.4-3, with an outer loop consisting of 

two outputs and two controls. This is identical to the system used by the previ-

ous methods. Using the third-order model for the process, a third independent 

measurement can be made. The three measurements are denoted by YJI. The 

following relationships describe the control scheme. 

(2.4-15a) 

[ 1 0 OJ 
L= 0 1 0 · (2.4-15b) 

Let Up be the transfer function from w toy, or essentially the transfer function 

of the process seen by the outer loop. The objective of the technique is to select 

the elements of F to reduce or eliminate interactions, i.e., select F so that Gp has 

small off-diagonal elements. 

The overall closed-loop transfer function for the inner loop is 

If F is taken as 

then 

__ [g1(z1,Z2,f21•f22·f23) g2(zl,Z2,fu.ft2•fts)] 
Gp- !?;a(zl.z2.f:.u.f22.f2s) g.(zl.z2.fu.ft2•fts) 

(2.4-16) 

(2.4-17) 

(2.4-18) 

To eliminate interaction, there are eight degrees of freedom available--the 
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locations of the two major measurements and the six elements of the squaring 

down compensator F. The location of the final measurement can be left to the 

discretion of the designer since it will only aff!"lct the components of F once F is 
~ 

specified. Obviously, z5 must be selected different from z1 and z2 so that C is 

nonsingular. For the third-order model of the heat conduction system, the 

measurement locations and the elements of F should be selected so that the 

(1,2) and (2,1) terms of Gp are identically zero. Since the model is third order, it 

takes three degrees of freedom to make each term identically zero. Thus of the 

eight available degrees of freedom, six are used to eliminate interaction, and the 

remaining two can be used to improve the performance (move the poles) of each 

non-interacting loop .. !l'urther analysis shows that 

To eliminate term (1,2): 

To eliminate term (2,1): 

The additional relations: 

c12 ; ~cos rrz 1 

c22 = ~cos rrz2 

c1s ;;;;; ~cos 2rrz1 

c23 = ...i'Zcos 2rrz2 
(2.4-19) 
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lead to the requirements that z1 = 0.2 or 0.6 and ~ = 0.4 or 0.8. Note that the 

elements of F are all simply constants. Thus the following situatio," .. s are allow-

able for decoupling of the loops 

zl z2 
0.2 0.4 Case I: c12=-c2s. cul=c22 
0.6 0.8 (2.4-20) 
0.6 0.4 Case II: c12=-c22· c1s=c2s 
0.2 0.8 

These rules lead to considerable simplification in the transfer functions: 

0 

(2.4-21) 
0 

0 

(2.4-22) 
0 

Thus, not only has interaction been eliminated by using simple gain in an inner 

loop, the new process is quite simple, and two degrees of freedom, along with the 

location of z3, remain at the disposal of the designer. The selection of fu and f21 

can easily be used to move the poles of each decoupled loop. 

The tlnal design then involves a squaring down compensator l' which 

together with the measurement matrix C leads to the desired F': 

fu 
1T2 "'2 2 ""2rr2-ct2f u 

c12fu-- c12fu- 1T + ~ 
2~ C12 

l'= 
,.e 2 ~11'2+c22f21 (2.4-23) 

f21 c22r21 + 2""2 -c22f2l-..J21T ..J.Zc22 
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The fact that F is a constant matrix is of great importance. If more degrees of 

freedom are desired than the two available with this technique, F can be 

designed as a function of s. For instance, term (1,2) could also be eliminated by 

letting 

with no restriction on f12 or z1. However, this leads to an unnecessarily compli-

cated feedback compensator for the third-order heat conduction system. 

Inner-loop decoupling is an improvement over the perfect, non-interacting 

control scheme for the heat conductions system. Although all of the techniques 

can be easily applied, the inner-loop decoupling strategy may lead to a very sim-

ple control structure for processes where extra measurements can readily be 

obtained while leaving considerable design freedom available for tuning the 

dynamic behavior of the overall system. The only restriction on the extra meas-

urements is that all outputs must be linearly independent. Additionally, the 

method still sutiers from the apparent necessity of an accurate process model. 

However, as we will show in Section 2. 7, although the design is conducted on the 

approximate, third-order model for the heat conduction process, interaction is 

still nearly eliminated for the actual system. In fact, simulations also show low 

sensitivity to the measurement locations. Thus the inner-loop scheme may be 

superior to conventional non-interacting control methods. 

Further analysis shows that an inner loop with constant feedback gains 

cannot be designed to decouple the heat conduction system in the absence of 
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extra measurements. However for such a case, a feedback compensator that is 

a function of s can decouple the system but is of the same complicated compli

cated form as lhal designed by the perfect, non-interacting control scheme. 

Thus without extra measurements, inner-loop decoupling has no advantage over 

conventional techniques. 

Inner-loop decoupling still suffers from some of the inherent problems 

associated with the field of non-interacting control. A non-interacting system 

may no~ be desirable for chemical processes, since the major objective in such 

processes is often the reduction of the etrects of disturbances on the system. 

Although non-interacting analyses can lead to simplifications that allow comple

tion of the design using single-loop approaches, there is no intrinsic reason for 

non-interaction to improve control. Actually, exploitation of the interaction 

among the variables may be usefuL Furthermore, the determinant of the pro

cess transfer function matrix for multivariable chemical processes often has 

right half plane zeros, which lead to poor or unstable control performance with 

the non-interacting techniques. 
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2.5 INVERSE NYQUIST ARRAY 

Since classical frequency methods have proven extremely useful for design

ing single-loop control systems, much work has been devoted to extending these 

techniques to multivariable systems. The Nyquist diagram, which is a polar plot 

of the information presented in a Bode diagram, is an excellent classical method 

for determining system stability criteria for single-loop processes, since both 

the magnitude and phase information appear in a single curve. Using the 

Nyquist representation, it is fairly simple to determine the process stability 

characteristics and the closed-loop dynamics from the graph for the open-loop 

process. 

The inverse Nyquist array (I.N.A.) technique, introduced by Rosenbrock 

(1969), is a useful extension of scalar Nyquist array methods to the design of 

multivariable control systems. It allows for considerable flexibility, is insensitive 

to model inaccuracies, and reduces to traditional methods in the single-loop 

case. Also, the technique is able to handle models specified only in terms of a 

limited amount of directly obtained experimental data (MacFarlane, 1972) and 

can be easily incorporated into a computer-aided design package. 

Assuming that the open-loop transfer function Q(s):::: Gp(s)Gc(s) is nonsingu-

lar, which is necessary for output controllability, the inverse of the closed-loop 

transfer function is 

R-1 = R = I+ Q. (2.5-1) 

The notation Q :::: Q-1 has been used for convenience, since in general 
~ A 

qiJ1(s) ¢ <t-u(s), where qv and qij denote the elements of matrices Q and Q, 

respectively. Thus the elements of R can easily be found from the elements of 



-59-

~·(•) = ~(s) + 1.0 l 
__ _ i, j = 1, 2, ... , m, 
rij(s) = qij{s) 

where m is the number of controls and outputs. Furthermore if the kth feed

back loop is opened, fA:.t(s) :::: ~(s). Then the I.N.A. is the set of m2 diagrams 

representing the loci in the complex plane corresponding to the elements of 

Q{jc..>). In terms of frequency-response plots, the I.N.A. allows easy determina

tion of the elements of R(jc.>), whether the feedback loops are open or closed. 

The basis of the LN.A. design technique is Rosenbrock's stability 

theorem (Rosenbrock, 1969): 

Let D be a contour in the complex plane consisting of the imaginary axis 

from -jex to +jex and a semicircle of radius ex in the right-half plane. where 

ex is sufficiently large to insure that all finite poles and zeros of I Q I , IR I, 

qij, qiJ', rij, and fiJ' lying in the open right-half plane are within D and 

those on the imaginary axis lie on D. Then a feedback system will be 

closed-loop stable if the system is open-loop stable and if Ge(s) is 

designed such that 

i) the inverse Nyquist mapping, ri. of each diagonal element q-n{jc.>) 

of the I.N.A. for Q{jc.>) encircles the point (-1.0,0.0) the same 

number of times in the same direction as it encircles the origin. 

ii) fori= 1, 2, ... , m and for all son D 

lcta(s)l > ~ lq'LJ'(s)l 
i='tJ"' 

iii) for each loop j which is closed and for all s on D 

(2.5-3) 

(2.5-4) 

The conditions (ii) and (iii) lead to diagonal dominance and thus insure that 



interactions are sufficiently small to allow stability (condition (i)) to be deduced 

from the diagonal elements of qj.,; alone. 

For the lumped model of the two-control. heat conduction process, the cri-

teria for diagonal dominance are that 

lq111 > lq121 
IQ221 > IQ211 

lqll + 11 > lct,21 
1422+11> ltJ2ll 

for all s on D. These conditions can be represented graphically (MacFarlane, 

1972) as in Figure 2.5-1. Thus diagonal dominance is insured if the origin and 

the point (-1.0,0.0) are not within or on any of the circles. Closed-loop stability 

can then be checked from the two diagonal entries of Q(jc.>). The system is stable 

if rl and r2 satisfy the encirclement criteria. 

The I.N.A. design method involves adding controllers to make the system's 

open-loop transfer functions diagonally dominant. The remainder of the design 

is completed on the basis of a set of individual single loops using conventional 

single-loop inverse Nyquist techniques. The I.N.A. method thus leads to a stable 

system which has high integrity and low interaction, when diagonal dominance is 

imposed. 

The third-order model of the heat conduction process was analyzed using 

the I.N .A. procedure with various measurement locations (Table 2.5-1). Both the 

symmetric (Group I) and the unsymmetric (Group II) cases were considered with 

z1 < 0.50. For the situation where z1 > 0.50, a permutation matrix should be 

used to interchange the inputs and outputs. 

Due to the symmetry of the system for Group I. only the q11 (s) and q12(s) 

elements of the I.N.A. are needed since qz2(s) and Cf2 1(s) are ident~cal. Addition

ally to aid in the design procedure, logarithmic plots of I ct,11 . l1 + q11 1, and lq121 

versus the frequency were also used. These are easier to use to check for 
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Group I GroupD 

ZJ z2 ZJ z2 

0.10 0.90 0.40 0.70 
0.20 0.80 0.30 0.80 
0.25 0.75 0.40 0.80 
0.30 0.70 
0.33 0.67 
0.40 0.60 

Table 2.5-1 
Measurement Locations 

diagonal dominance than the type shown in Figure 2.5-1. Although all of the 

cases in Group I were analyzed, only two need to be considered in detail since 

the others are similar. Figures 2.5-2 and 2.5-3 show the I.N.A. plots for measure

ment locations (0.3,0.7) and (0.4,0.6). These cases were considered since the 

root-locus analysis showed that the (0.3,0.7) case is stable while the (0.4,0.6) 

case becomes unstable for gains above about 33.0. The I.N.A. analysis for the 

cases in Group I verify the root-locus results that stability is insured at high 

gains !or the symmetric case if :t:1 < 0.33. Note that the I.N.A plots are only 

drawn for s = c.>j with CJ = 0 ... IX) , since s = -c.>j simply gives the reftection. 

For the cases with z1 < 0.33 (z1 = 0.3 in particular), the conditions for diag

onal dominance are satisfied for all s on D except at s = 0. At this point. 

q11 = q12 = ci21 = ci22 . Further analysis shows that the problem that arises at 

s = 0 is due to the pole which is at the origin in our process model. With these 

problems at s = 0 eliminated, the cases tor z1 < 0.33 would be diagonally dom

inant, and the system would be stable since the encirclement criterion is 

satisfied. 

One method of analysis is suggested by MacFarlane and Postlethwaite 

(1977). They show that when a pole occurs on the imaginary axis, the modified 
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Nyquist contour, D', shown in Figure 2.5-4 should be used. Then the conditions 

for diagonal dominance must be examined in the regions: 

a) s = c.>j 

b) s = eel'«' where R.-. ao and t ... 0. 

c) s =Rei'~' 

Mathematical calculations for these regions indicate that the conditions for 

diagonal dominance are satisfied for z1 < 0.33 with z2 = 1.0 - z1. Then since the 

encirclement criterion is also satisfied, stability is assured. The I.N.A. technique 

then concludes that elimination of interaction is unnecessary since arbitrary 

high gains can be applied to each of the two principal loops Without instability 

and Will lead to a system with little interaction. 

Figure 2.5-3 shows that the (0.4,0.6) case does not satisfy conditions (li) and 

(iii) of Rosenbrock's theorem (1962), since lq121 is larger than lq111 and lqi1 + 11 for 

some values of c.>. Although condition (i) seems to show closed-loop instability 

for this process, no conclusion can be drawn since the stabllity criterion i.s a 

sufficient condition and only becomes necessary if (ii) and (iii) are satisfied. 

The problem then is to· design a compensator, Gc(s), so that the system's 

open-loop transfer function Q(s) is diagonally dominant when 0.33 < z1 < 0.50. 

Using a general 2 x 2 compensator, the restrictions on the elements of Gc(s) can 

be derived. Specifically consider the case (0.4,0.6). Using the modified Nyquist 

contour, it can be shown that s = 0 presents no difficulty. Figure 2.5-3 then 

shows that conditions (ii) and (iii) are satisfied at low CJ but tail at high CJ. Using 

the restrictions on the elements of Gc(s), it can be shown that, owing to the sym

metry of the system, it is not possible to design a nonsingular constant matriX 

Gc(s) to make the system diagonally dominant for all s on the modified Nyquist 
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contour. However, the analysis also shows that a compensator with the following 

properties will lead to diagonal dominance: 

As t:.)-+ 0 Gc(s) -+ [~ ~]. 

Gc(s) -+ [~ ~]. 
After many controllers were tried, the best results were obtained with 

5.0 s 

Gc(s) = 
s+5.0 s+5.0 

s 5.0 
s+5.0 s+5.0 

(2.15-6) 

(2.5-7) 

Figure 2.5·5 shows the l.N.A. plots with this compensator. The controller has 

indeed made the system diagonally dominant for all s on D'; however, the enctr~ 

clement criterion shows that the system becomes unstable for moderate gains. 

This was verified using root-locus and characteristic locus analyses for the sys-

tern with this compensator. Attempts at eliminating the instability were futile, 

and further analysis showed that the stability problems arise from an unstable 

finite zero. Unfortunately, it can be shown that dependent control action is 

necessary to move this zero to the left-half plane. I.N.A. analysis using the 

dependent controllers1 

[ 

1 1 l [ 1 +s -1-s l --- -----1 -1 s s s s 
G,(s) = l-1 1] or -; ! or -1.--. 1 ;• (2.5-8) 

verifies system stability. However dependent control leads to very bad closed-

loop response and is thus not desirable. Therefore the best that can be 

obtained is a simple control scheme designed to ensure a diagonally dominant 

system for which single-loop theory can be applied to two loops that remain 

1. Dependent control results from a singular compensator matrix. 



stable only for moderate gains. 

Table 2.5·2 summarizes the results for assuring diagonal dominance With 

symmetric measurement placement. Since the conditions for stability and diag

onal dominance are satisfied for z1 < 0.33, arbitrarily high gains can be applied 

in each of the two principal loops Without instability. This is equivalent to the 

results found in analyzing the multivariable root-loci. There it was shown that 

for z1 < 0.33 high gains would not lead to instability; however, using the I.N.A. 

method it is also shown that no attempt to eliminate interaction is necessary, 

since large gains will lead to a system With little interaction. This can be seen by 

considering the transfer functions of the process with a diagonal gain con-

troller, G0 (s) = diag (kt). The effect of applying a gain k, is to multiply qil and 

qt2 by k,-1. As k 1 and ~ are increased, the system approximates over an increas-

ingly wide band to a diagonal system. The transfer function between Yeti and y~ 

when the jth (j :t- i) loop is closed with gain kt and the ith loop is open leads to 

(2.5-9) 

As k 1 and k2 become large, the interaction effect is small and 

(2.5-10) 

The design can then be carried out using the f'u (s) as though they were inverse 

Nyquist diagrams for separate loops. 

Finally it is instructive to consider the case where the measurements are 

not placed symmetrically, i.e., z2 ;. 1. - z1. The I.N.A. then consists of the four 

diagrams representing qv(jc.>). Several cases were considered using the modified 

Nyquist contour. Figure 2.5-6 shows the I.N.A. diagrams for the case (0.4,0.8). 

which is diagonally dominant and stable. Thus arbitrarily high gains can be 

applied, leading to a system With small interaction. Other cases that were 
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cl1qoD&l cloainance and at& bill t.:r 
uaured. ld.thout coapen.u.uon 

a4d coapena&tor. t.o pt. dia.gor:tal 
doainance and att .. pt to control 
\1118t&ble a1J:IIl• loopa 

a4d perautat1on coapen.u.tor 

cc • ( ~ ~I 
to intercbaJ~se the a-..tr.rMenta 
&Del. deaicn aa above 

Table 2.5-2 
I.N .A. Results for Symmetric Measurement Placement 

considered are (0.4,0.7) and (0.3,0.8). Only the first of these requires compensa-

tion. 
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2.8 CHARA.Cl'ERI.S1'1C WCUS JIETHDD 

The characteristic locus method (C.L.M.) is an extension of classical Bode

Nyquist frequency-response theories and state-space techniques for the design 

or general. multivariable feedback control schemes. The method combines the 

essential features of both approaches by using the properties of linear vector 

spaces defined over base fields of complex functions. As in the l.N.A. technique, 

the C.LM. requires the use of a computer-aided graphic display and can be 

incorporated into a computer-aided design package. Although the l.N.A. tech

nique defines approximate conditions for stability using bands on inverse 

Nyquist plots, the C.L.M. gives an exact indication of stability and a systematic 

technique for choosing the best controller matrix in terms of system stability, 

integrity, interaction, and accuracy, rather than simply stressing diagonal domi

nance and single-loop design. The original method, developed by MacFarlane 

and Belletrutti (Belletrutti and MacFarlane, 1971; MacFarlane and Belletrutti, 

1973), has been refined and systematized through the late 70's (Edmunds and 

Kouvaritakis, 1979; MacFarlane and Kouvaritakis, 1977) and has been experi

mentally tested on an automatic flight control system (Kouvaritakis et al.. 1979) 

and a two-bed reactor process (Foss et al., 1980). 

The C.LM. uses the frequency dependent properties of the eigenvalues and 

eigenvectors of the open-loop transfer function Q(s) = Gp(s)Gc(s) to assess the 

closed-loop properties of the system. The design technique attempts to compen

sate and modify the system's response by adjusting the eigenproperties of Q(s). 

The basis for this use of the open-loop transfer function in the analysis of lhe 

feedback system is the congruence of the closed- and open-loop eigenframes. 

This relation can easily be seen from the dyadic expansions of Q(s) and R(s) for 

unity feedback systems (MacFarlane and Belletrutti, 1973): 
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(2.6-la) 

(2.6-1 b) 

where qi(s) are the eigenvalues of Q(s) and wi(s) and V;.T are the corresponding 

eiR;envectors and dual eil'!;envectors. Obviously, the characteristic functions are 

the same for both the closed- and open-loop systems and the eigenvalues are 

directly related. 

The analysis for multivariable systems leads to the following criteria for 

achieving a compromise between the basic objectives of stability, integrity, 

interaction, and accuracy (MacFarlane and Belletrutti, 1973). The basis of the 

technique is the use of the characteristic loci, which are the paths in the com-

plex plane drawn by the eigenvalues of Q(s) as s traverses the standard Nyquist 

contour. 

Stability 

Closed-loop stability can be assured by selecting the compensator 

Ge(s) such that the net sum of the counterclockwise encirclements of 

the critical point (-1.0,0.0) by the characteristic loci is equal to the 

number of open-loop unstable poles Po 

where m is the number of inputs and outputs of the system and is 

thus the number of loci needed for complete description of the 

system's eigenproperties. It should be noted that the direction along 

the characteristic loci is taken as that which corresponds to a clock-

wise traversal of the Nyquist contour. For the third-order, lumped 

model of the heat conduction process, the open-loop characteristic 
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equation is s(s + rr2)(s + 4rr2). Since the poles are al 0, -rr2 , and -4rr2 , 

p0 ::: 0, and the encirclement criterion reduces to 

(2.6-3) 

Integrity 

A multivariable feedback system is of high integrity if it remains 

stable under all types of failure conditions. The major probable 

difficulties include output transducer, error-monitoring channel. and 

actuator failures. For practical systems, the control design must 

obviously take into consideration such component breakdowns. 

Integrity against transducer and error-monitoring channel failures in 

all possible combinations of the loops can be assured if the charac

teristic loci of all the principal submatrices of Q(s) satisfy the encir-

clement criterion. For integrity against actuator failures, similar con-

siderations apply to the matrix Gc(s)Gp(s). 

Interaction 

Reduction of interaction in a multivariable system is usually desired 

to improve closed-loop dynamic response and is often necessary to 

assure stability. At low frequencies, interaction can be suppressed by 

imposing high gains, i.e., lqi(jr.>)l > > 1.0. Then the dyadic expansion of 

R(s), 

(2.6-4) 

shows that the closed-loop system becomes essentially non-

interacting. However, this restriction cannot always be achieved 

because stability conditions usually require that the characteristic 
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gains have small moduli at high frequency. Since the eigj';'lnvalues of 

G(s) satisfy lqi(jc.>)l < < 1.0 at high frequency, 

R(jc.>) -* ~ ~(jc.>)w,(jc.>)vl(jc.>) = Q(jc.>) , 
1::1 

and therefore the cross-couplings in R(jc.>) are carried over from Q{jc.>). 

Thus to suppress interaction at high frequency, Gc(s) should be 

selected so that the eigenvectors of Q(s) are nearly as possible aligned 

with the standard base set. If the measure of alignment is taken as 

the angles between the eigenvectors w,(jc.>) and the base vectors ~ for 

i= 1,2 (since m = 2 for the heat conduction system), the objective is 

to reduce the misalignment angles. MacFarlane and Belletrutti ( 1973) 

show that, although these criteria lead to a reduction in interaction, 

they do not necessarily result in a Q(s) which is nearly diagonal or 

diagonally dominant, and thus a feedback system can be made nearly 

non-interacting without imposing diagonal dominance. 

Accuracy 

A system has high accuracy if the actual system output closely follows 

the desired output. In e;eneral, system accuracy will be high provided 

that the characteristic loci have large moduli at low frequency. 

The objective of the characteristic locus method is then to select a con-

troller Gc(s) so that the characteristic loci of Q(s) satisfy the stability criterion 

and have high gains at low frequencies and low misalignment angles at high fre-

quencies. Additionally, Gc(s) should be selected so that its elements are rational 

functions of s, so that IGc(s)l is nonsingular and has no right half plane zeros, 

and so that aU the poles or Gc(s) are in the open left half complex plane. 
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MacFarlane and Kouvaritaki.s ( 1977) present a systematic approach for 

using the C.L.M.. In particular, a means of manipulating the characteristic loci 

and characteristic directions is developed so that the phase of the loci can be 

adjusted to achieve acceptable stability and integrity and so that the directions 

can be aligned and the gains balanced to reduce interaction. As outlined in 

several publications, a procedure for optimal alignment of a given complex 

plane with a real frame according to a misalignment measure can be incor-

porated into a computer algorithm. 1 The design procedure can then be split into 

two distinct parts: 

i. Htgh-Frequency Controller Performance 

At high frequencies, it is desirable to reduce the misalignment angles 

between the compensated system's characteristic direction set and 

the standard basis vectors. This can be accomplished by designing a 

real compensator KH that approximates the complex frame of Gp1(j(.)) 

at some high frequency i:Jb.. A program ALIH which was written for this 

purpose uses the routine ALlGN to perform the actual alignment. A 

listing of the program is presented in Appendix 1. The signs of the 

columns of KH are arbitrary and are selected so that the eigenvalues 

of ~ are positive. real. The compensated system then has infinite 

zeros with asymptotes on the negative real axis. 

ii. Low-Frequency Controller Performance 

At low frequencies, the encirclement criterion should be satisfied and 

the moduli of the characteristic loci should be large. This can be 

accomplished by manipulating the loci with an appropriate approxi-

1. This algorithm (ALIGN), which is a basis for high frequency alignment and low frequency manipu
lations, was written specifically for this project and is included in the programs AI.JH and ALIL 
d.isoussed below and listed in Appendix 1. It should not to be confused with the program AI.JGN 
referred to by other authors, although their structures should be similar. 
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ma.tely commutative controller Ki.. where JG. = Af'k(s)B with A and B 

being the real frame matrices that approximate the complex frame of 

the eigenvector matrix W(jc.J) and dual eigenvector matrix V(jCJ). Again 

the rout.i.ne ALIGN is incorporated into a program AUL for this pur-

pose. This program is also listed in Appendix l. The elements of the 

diagonal matrix rk(s) are then chosen on the assumption that q.,; = 
g..;'!<i where q,: and g, are the eigenvalues of the compensated and 

uncompensated system and k. are the elements of rk(s). The compen

sator Ki. is thus used to insure stability and integrity and to adjust the 

gains at low frequency to reduce interaction. 

The etiect of I<H and KL must be combined in such a manner so that each 

operates in the appropriate frequency range without significantly altering the 

efiect of the other in its appropriate range. This is achieved by using the low-

frequency controller as matrix-integral control: 

Gc(s) = ~KL + I<H 
s 

(2.6-6) 

where a is a constant chosen to achieve a suitable transition from the low-

frequency to high-frequency behavior of Ge(s). 

Although the C.L.M. is seemingly complicated, it is actually a simple design 

technique once the appropriate computer facilities and programs are available. 

The major programs are ALIH and AlJL. while other programs were used to cal-

culate and graphically display the characteristic loci and misalignment angles. 

All programs were tested on the automatic flight control system (Kouvaritakis et 

al., 1979) and gave results equivalent to those published. Then for the heat con-

duotion process, the design was performed using the third-order, lumped model 

with two controls and outputs and then with an extra measurement, which was 

squared down in an inner loop. 
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2.6.1 Basic System Analyais 

For the uncompensated system, characteristic locus plots were drawn for 

the cases that were considered in the I.N.A. design (Table 2.5-1). Figures 2.6-1 -

2.6-3 show the loci With the measurement locations (0.3,0.7), (0.4,0.6) and 

(0.4,0.8).2 For the symmetric cases with z1 < 0.33, the encirclement criterion is 

satisfied for all gains. As was also shown using root-loci and I.N.A. analyses, 

these cases Will remain stable with increasing gain. Also as expected, high gains 

lead to instability for 0.33 < z1 < 0.50. In particular, a maximum gain of 32.0 

would be allowed before the critical point is encircled tor z1 ::: 0.4. Thus, for the 

symmetric cases, compensation is required for stability of the system at high 

gains when 0.33 < z1 < 0.50. Additionally, regardless of the measurement loca-

tion, one eigenvalue has large magnitude at low frequencies while the second has 

very small magnitude, and the misalignment angles are both 45° at high fre-

quencies. Thus some compensation is desired for all the cases to improve 

integrity, interaction, and accuracy of the system. Although the unsymmctric 

case (0.4,0.8) is also stable for all gains, compensation is desired to improve its 

closed-loop response. Since the cases (0.3,0.7), (0.4,0.6), and (0.4,0.8) are 

representative of the problem, they will be analyzed in detail using the C.LM .. 

2.6.1.1 Ca.se 1: Measurements z1 = 0.3, Z2 = 0.7 

As discussed above, this case satisfies the stability criterion for all gains. 

The objective of the control action is thus to improve dynamic system perfor-

mance by aligning the characteristic directions at high frequency, balancing the 

gains of the characteristic loci at low frequency, and injecting gain into the 

overall system. while maintaining stability. An analysis of the integrity against 

2. Note that! the ver.tl ical axis in the figures of lq"l versus frequency I'U'e defined in terms of 
dB = 20 los q1. (j r.>) . 
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all types of failures leads to the conclusion that the system is of high integrity, 

since the characteristic loci of the principal subrnatrices of G(s) also satisfy the 

encirclement criterion. 

Preliminary analysis shows that the compensator 

(2.6-7) 

balances the gains perfectly and significantly reduces misalignment, but further 

analysis shows that such a compensator leads to system instability. Therefore 

rather than trying to guess the appropriate control structure, it is best to per

form the systematic alignment procedure discussed previously. 

The first step involves designing KH to reduce the misalignment angles. For 

the third-order model of the heat conduction with symmetric measurements, 

the matrix of eigenvectors is approximately8 

[
1.0 + Oi -1.0 +Oil 

W= l.O+Oi l.O+Oi (2.6-8) 

throughout the frequency range 10-4 to 10~ F1gures 2.6-1 and 2.6-2 show that as 

expected the angles between the standard base vectors and the characteristic 

direction set are about 45°. . The alignment is attempted using ALIH at several 

frequencies in the range !'.>}1 = 1 .... 100, but unfortunately the analysis of many 

possible compensators :Kh leads to the conclusion that no real matrix can ade· 

quately reduce misali.inment angles at high frequencies for symmetric measure-

ments without leading to system instability. This problem results from the 

eigenvector matrix W being nearly real and having off-diagonal terms identical in 

magnitude to the diagonal terms. Although it seems plausible to select a com

plex compensator KH = G-1 (jr.>)l), the resulting controller is not physically realiz-

3. The imaginary parts are of 0(10-10) at cw = 10-4 and O(lQ-4) at cw = 104). 
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able. Thus KH should merely be selected as the identity matrix. If in~tead KH is 

selected as the zero matrix, Gc = E!.. :KL and as s approaches infinity, Gc 
s 

approaches zero. This could lead to problems. 

At low frequencies, AlJL is designed to calculate real matrices A and B which 

approximate the eigenvector and dual eigenvector matrices; however. this leads 

to numerical difficulties with symmetric measurement placement. The problem 

is actually trivial since W is approximately real at all frequencies (especially at 

low frequencies). Thus with the selection of A= Wand B = V. Ki:. = WAkV. The 

gains were then balanced at the frequencies ">>.. = 1.0, 0.1, 0.01, and 0.001 by 

selecting 

[1 OJ lq1 (jCJL)I 
A = 0 1 , where 1 = l~(jCJL)I (2.6-9) 

Furthermore since Gc(s) = E!..Ki. + I. the values of a can be adjusted to give the s 

best response. Mter consideration of many combinations of a and (.)L, the best 

balance at low and moderate gains was obtained with 

1 0 [ 6.4 -5.4J [1 OJ 
Gc(s) = ~ -5.4 6.4 + 0 1 (2.6-10) 

Figure 2.6-4 shows that this compensator leads to a stable system with nearly 

identical gains at c.>= 1.0 and high gains throughout the range c.>< 1.0. However, 

the misalignment angles have not been reduced. The final step in the design is 

to increase the moduli by injecting gain into the compensated system. 

2.6.1.2 Case II: Measurements z1 = 0.4, Z2 = 0.6 

Since this case is stable only for gains less than 32.0, the major concern of 

the compensator should be to insure stability for higher gains. Attempts are 
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made to design such a high frequency compensator. However even by using A1JH 

and selecting the compensators so that the eigenvalues of CBKH are positive, the 

overall system remains unstable. This is explainable since the condition that 

the eigenvalues of CBKH are positive is necessary for stability but is not 

sufficient. In addition to the two infinite zeros, there is a finite zero at approxi-

mately +63.0, according to the root-loci analysis. In designing K.H. there are only 

two degrees of of freedom available for selecting the appropriate signs, so only 

the two infinite zeros can be placed. Further analysis shows that dependent 

control action is necessary to move the finite zero into the left half plane.4 The 

problem essentially reduces to a single-input, double-output system. However 

since dependent control leads to very bad closed-loop response/' the best that 

can be accomplished is to reduce interaction and mcrease accuracy Wlthout 

eliminating the instability for high gains. 

Using AIJH and Al.JL, the best design for balancing gains and reducing 

misalignment angles is 

1 0 [ 11.8 -10.8] + [ 0 -1] 
Gc(s) = ~ -10.8 11.8 -1. 0 (2.6-11) 

The characteristic loci for the system with this compensator is shown in Figure 

2.6-5. Unfortunately, this system is unstable for all gains and is therefore not 

desirable. Thus a better control strategy is necessary for the heat conduction 

system with measurement locations (0.4,0.6). 

2.6.1.3 Case III: Measurements z1 ::: 0.4, Z2 = 0.6 

Though this case is stable for all gains without compensation, Figure 2.6-3 

shows that a compensator may be quite useful to balance the magnitudes of the 

4. The same conclusion was reached using the I.N.A. design procedure. 

5. This is shown in the simulations in Section 2.7. 
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loci at low frequency and to reduce misalignment angles at high frequency. 

Whereas the misalignment angles were always 45° and could not be reduced in 

the symmetric cases without causing instability, high frequency compensation is 

useful for this unsymmetric case. Considerable analysis using AlJH and AlJL at 

various frequencies along with adjusting a leads to an excellent C.L.M. design. 

With the compensator 

0.8 [ 4.348 -4.348] [1.0 -Q.371] 
Gc(s) = -s- -4.348 4.348 + 0 0.929 · (2.6-12) 

the characteristic loci (Figure 2.6-6) have nearly identical moduli at low tre-

quency, and the misalignment angles are quite small at high frequency. Thus 

the C.L.M. seemingly leads to a stable system with high integrity, low interaction 

and high accuracy. Furthermore, the method concludes that this design has the 

best compromise between these qualities, since the compensators were designed 

using approximately commutative theories. The final step in the design is to 

inject gain into the compensated system. 

Thus the C.L.M. provides a SJ5tematic approach for designing a system 

which best satisfies the criteria of stability, large moduli of the characteristic 

loci at low frequencies and small misalignment angles at high frequency. Simu-

lations are necessary to show the actual extent of the improvement obtained by 

using this design technique, but it is apparent that the designs for the sym

metric cases do not adequately satisfy the C.LM. criteria. Only for the (0.4,0.8) 

case is an excellent design obtained. Thus it may be advantageous to use extra 

temperature measurements within an inner loop to improve the system, for 

which the C.L.M. will be used to design the outer-loop controller. 
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2.6.2 Inner-I.Dop Analpia 

The use of easily available measurements in excess of the commanded out

puts6 is considered, so as to make more effi.cient use of the gain. The procedure 

involves squaring down the extra measurements within an inner loop, in order 

to form a new set of outputs equal in number to the number of inputs. Instead 

of using the extra degrees or freedom to reduce interaction as was done in Sec-

tion 2.4, the objective is to use the inner loop to suitably place the poles of the 

outer loop so that the C.L.M. (or I.N.A. method) can be applied to a 'better' sys-

tern as seen !rom a control point of view. The inner-loop design is based on the 

placement of the finite zeros and the manipulation of the root-loci asymptotes 

for the inner loop so that by finally setting the inner-Loop gain at a suitable 

value, the poles of the outer loop are pulled into better locations in the complex 

frequency plane. 

Consider the process shown in Figure 2.6-7. The outer loop consists of two 

measurements and two controls. However, three measurements are actually 

taken and squared down in an inner loop usill€ the compensator F. The system 

is described by the following relationships, where Land C were defined in Section 

2.4. 

y = J£x = C:x: 
I= (sl-A)-1Bu 
u = Ki:(a-YF) 

.YF=h="FCI 
a = Gc[yd-y] . 

The method involves designing F. from which Y can be calculated if C is non-

singular. Using the above description of the process, the inner-loop closed-loop 

response is 

(2.6-14) 

6. The commanded outputs are those directly needed for comparison with the set points. 
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The characteristic equation for the inner loop is 

lsi-AI·II+GtKil = o . (2.6-15) 

from which the root loci are obtained by letting Ki = kl Then the overall closed

loop response is given by 

with Gp given by Equation (2.2-27), and the characteristic equation for the 

overall system is 

(2.6-17) 

Using Gc(s) = k'l, the poles of the outer system are given by k' = 0 and are thus 

described by the solutions to 

lsJ-AI·II+GtKil = o . (2.6-18) 

Since Equations (2.6-15) and (2.6-18) are equivalent, the poles of the outer sys

tem are described by the root-loci or the inner system. Thus the inner-loop 

design can be used to place the outer-loop poles by selecting k. 

Consider the case with F = C.7 Then since G:t = Gp. the root-loci for the inner 

loop are identical to those obtained in Section 2.2 for the outer loop. Thus if the 

root-loci of the original system without an inner loop show good characteristics

-zeros well into the left half plane and little oscillation--then extra measure

ments may not be needed. The outer-loop poles can be shifted simply by imbed

ding an inner loop with sufficient gain. This is similar to the ideas of modal con

trol. 

The desired characteristics of the inner root-loci are that the infinite zeros 

are along the negative real axis and that the finite zeros are well into the left 

half plane. Obviously. many possible Ji' matrices can lead to such root-loci. In 

7. One possibility would be to take no additional measurements. 
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the following analysis, we consider only four such matrices. 

Remembering that the root-loci of the original system with z1 < 0.33 and z2 

= 1.0 - z1 satisfy the desired criteria, the inner-loop compensator can be taken 

as F = C(z1,z2). where C(Zt.Z2) is the C matrix obtained with the points z1 and z2 . 6 

The cases that were considered are FA, FB. and Fe shown in Table 2.6-1. 

( 1.000 , . 
A 1.000 

('.000 , . 
B 1.000 

( I.OO<l , . 
c 1.000 

'n • ( ..... z.ooo 

o.tt)l -o ... ,.,) 
• C( .J •• 8) 

-1.141+ 0.4)7 

0.8)1. -··"11) • c(.J •• ?} 
-0.8)1. -0.4)7 

1.144 •·•11) • C( .2 •• 8) 
-1.144 0.4)7 

1.000 ... .... ) 
-1.000 -o.414 

Table 2.6-1 
IQner-Loop Compensators 

It • B.O 

k. 6.0 

Jt • 10.0 

k. 4.0 

For F rt: C, the criteria necessary to have infinite zeros along the negative 

real axis (i.e., FB has all positive, real eigenvalues) and the finite zero well into 

the left half plane are 

8. Note that the Z1 and Z2 have no relation to the actual mealJW'ement locations for this inner-loop 
problem. This structure of F :is only used for convenience since we know that the C matrices 
with z1 < 0.3_3 and Z:z = l.Q..- z1 have root-loci with the desired features. The actual measure
ments define C, from which F is determined. 
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a) fu + ~fuz + ~fts > 0 

b) (ft2f21-fufr22) + ~(f2sf12-f22fts) > 0 

c) f2tfu! - fuf22 >> 0 . 

Although the elements of F should be selected to satisfy these conditions, there 

are still an infinite number of possibilities available. However, consider 

- [ 1 1 l B= ~ -v2" 
a.= fu +~f13 

p = f21 +"V"2'f23 
(2.6-19) 

and specify that Q = FB = FB should have all real, positive eigenvalues. Then 

with the further restriction that the rate of divergence to the infinite zeros is 

the same for all corresponding root-loci. F must be of the form F = 7s-1. After 

trying various values of -y, f 11 , and f21 , the best inner-loop design using this tech-

nique was found to be Fo shown in Table 2.6-1. 

The second stage of the design procedure, the outer-loop design, consists of 

the application of the C.L.M. to the system with the inner loop in place. Again 

the design is considered for commanded outputs (0.3,0.7), (0.4,0.6), and 

(0.4,0.8). Since the inner loop has been designed and since only z1 and z2 are 

needed for the outer loop, z3 can be selected arbitrarily as long as C remains 

nonsingular. This restriction is satisfied if Za is not equal to z1 or z2. Then 

although the best C.L.M. design for the system without an inner loop was unable 

to reduce misalignment angles, it may be possible to improve on that design. 

2.6.2.1 Case I: Mea.suremants z1 = 0.3, z2 = 0.7 

Although the outer-loop design was performed using all the inner-loop com

pensators shown in Table 2.6-1, only the analysis With FA will be discussed since 

all the cases lead to similar loci and since FA leads to the best overall design. A 
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preliminary examination of the characteristic loci for this case without outer-

loop compensation (Figure 2.6-8) establishes the need for such compensation 

due to the disparity of the characteristic gains and the high misalignment 

between the characteristic directions of Q(j~) and the basis vectors. 

The C.I...M. is then performed using slightly modified versions of the pro

grams previously discussed. Although AUH can be used to calculate .KH. un!or-

tunately it cannot be used to solve the inherent sign ambiguity. PreViously this 

was possible since the infinite zeros were along the negative real axis if CBKH had 

positive, real eigenvalues. However, the analysis with the inner loop in place 

shows a much more complicated result. If r. C, and B were square matrices, the 

simpler result could be derived. 

With the inner-loop structure, it is possible to change the misalignment 

angles by designing an appropriate .KH. However whenever one of the misalign-

ment angles is reduced at high frequency, the other is increased by about the 

same amount. Thus KH = I still provides the best compromise. Low-frequency 

compensation is then designed using AUL at several frequencies, and a is 

adjusted to give the best balance between the low and high effects. The final 

overall design is 

JG = diag(8.0) F = [1.0 0.831 -Q.437] 
1.0 -1.144 0.437 

10.0 [ 1.267 -Q.267] [1 OJ 
Gc(s) == -;-- -Q.457 1.457 + 0 1 · 

(2.6-20) 

The characteristic loci With this design are shown in Figure 2.6-9. They obviously 

indicate that this design is better than that without an inner loop. In particular, 

the loci are much better balanced, and although the misalignment angles were 

immobile Without an inner loop, they are greatly reduced for moderate rrequen-
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cies with this design. Unfortunately, they are still 45° at very high frequency 

(c.>> 100 ). 

2.6.2.2 Case II: Measurements z1 = 0.4, z2 = 0.6 

Previously this case was found to be unstable for high gains due to an 

unstable finite zero, and it was shown that only dependent control would lead to 

stability since such control action was necessary to move the finite zero. Unfor-

tunately. simple algebraic calculations show that an inner loop has no effect on 

the finite zeros of the system, and therefore the stability arguments are 

unchanged. Nevertheless, a compensator can be designed to improve the sys-

tern by reducing interaction and increasing accuracy, if the values of the gain 

are restricted so as to assure stability. 

Figure 2.6-10 shows characteristic loci for the best overall design that was 

obtained using the C.L.M.. The design consists of 

Ki: = diag(8.0) F = [1.0 0.831 -Q.437] 
1.0 -1.144 0.437 

1.0 [1 OJ [ 0 1] Gc~s) = -s- 0 1 + -1 0 · 

(2.6-21) 

This system has a good balance of gains at low frequencies and low misalign

ment angles at high frequencies but will be unstable for outer-loop gains greater 

than 3.1. Since this is an overall gain of 24.8,9 it is not much lower than the sta

bility limit for the uncompensated system. 

9. The overall gain is the product of the outer-loop gain and the inner-loop gain. 



-95-

2.6.2.3 Case III: Mea.s'I.I:T'emrmts z1 = 0.4, z2 = 0.8 

Since the C.L.M. design for this case without an inner loop led to a compen-

sator that perfectly balanced the gain at low frequency and significantly 

reduced the misalignment angles at high frequency, there seems to be little or 

no need to add an inner loop. Nevertheless, such an analysis was performed 

leading to the following design. 

Ki = diag(8.0) :r = [1.0 0.831 -Q.437] 
1.0 -1.144 0.437 

( ) - 10.0 [1.080 -0.212] [1 0] 
Gc s - s 0.091 0.747 + 0 1 . 

(2.6-22) 

The corresponding root-loci are shown in Figure 2.6-11. This design does not 

appear to be as good as that without an inner loop. Further refinement could 

lead to a slightly better system. 

2.6.3 Modified Inner Loop Analysis 

Finally, another outer-loop design suggested by Kouvaritaki.s et al. ( 1979) 

was considered (Figure 2.6-12). Since the purpose of the inner loop is to 

improve system dynamics oy making use of all available measurements, while 

the overall objective is to exercise control over two of the measured variables, 

some minor modifications are made so that the inner loop operates only on the 

extra measurement. The new configuration makes more efficient use of gain 

since il closes lhe loops around z1 and z2 only once. 

The design consists of 

41 ;: (0 0 1) (2.6-23) 

while F2 is 2 x 1 and F1 is 2 x 2. However using this design, the inner-loop root-



loci for the previous system (Figure 2.6-8) do not describe the behayior of the 

poles for the outer loop of the new system. Only with Gc = I are the resulting 

root-loci for varying k identical to those obtained before rearrangement. Apply

ing the C.L.M. to the new inner-loop system results in similar characteristic loci 

to those obtained previously, but the new configuration makes more efficient 

use of the gain. 

Finally it can be concluded that, although the inner loop is often beneficial, 

it does not always improve the overall design. If the criteria for a good C.L.M. 

design can be satisfied without an inner loop, then further analysis may not be 

necessary. However, if the misalignment angles cannot be reduced or the gains 

balanced without an inner loop, the inner loop may be useful. 
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Figure 2. 6-l 
Characteristic Loci Diagrams for Outputs z1 =0.3, zz=0.7 

a. C.L.M. Plots b. Magnitude vs. Log Frequency 

c. Misalignment Angles vs. Log Frequency 
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Figure 2.6-2 
Characteristic Loci Diagrams for Outputs z1 =0.4, z2=0.6 

a. C.L.M. Plots b. Magnitude vs. Log Frequency 

c. Misalignment Angles vs. Log Frequency 
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Figure 2.6-3 
Characteristic Loci Diagrams for Outputs z1=0.4, z2=0.8 

a. C.L.M. Plots b. Magnitude vs. Log Frequency 

c. Misalignment Angles vs. Log Frequency 
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Characteristic Loci Diagrams for Outputs z1 =0.4, z2=0.6 

Compensator Given by Equation (2.6-11) 

a. C.L.M. Plots b. Magnitude vs. Log Frequency 

c. Misalignment Angles vs. Log Frequency 
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Figure 2.6-6 
Characteristic Loci Diagrams for Outputs z1 =0.4, z2=0.8 

Compensator Given by Equation (2.6-12) 

a. C.L.M. Plots b. Magnitude vs. Log Frequency 

c. Misalignment Angles vs. Log Frequency 
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Inner-Loop Control Design Strategy 
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(a) 

Figure 2.6-11 
Characteristic Loci Diagrams for Outputs z1 =0.4, z2=0.8 

Inner-Loop Compensator FA 
Outer-Loop Compensator Given by Equation (2.6~22) 

a. C.L.M. Plots b. Magnitude vs. Log Frequency 

c. Mi:salignment Angles v:s. Log Frequency 
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2. 7 CONTROL SYSTEM PERFORIIANCE 

The control structure analysis for the heat conduction system was per

formed on the third-order, lumped model using various frequency-response 

techniques. These include non-interacting control methods, root-loci analysis, 

inverse Nyquist array, and the characteristic locus method. Additionally, the 

time-domain techniques of optimal and modal control were applied to both the 

lumped and distributed models. Since all of the schemes provide a design for 

the control structure, a comparison among the system responses is needed to 

determine the extent of improvement in the closed-loop behavior of the overall 

process. Additionally since most of the designs were performed using the third

order lumped model, simulations of the actual system are necessary to assess 

the effectiveness or the designed controllers. Computer simulations or lhe sys

tem responses to various set point changes were performed for the different 

control system structures. Simulations of the optimal control strategies were 

nol performed, since such simulations could not easily be compared to those 

using frequency-response designs due to the necessity of defining the conditions 

of optimality. In practice, these conditions are usually selected to minimize 

energy costs or to increase profit margins, rather than simply to reduce 

response times or interaction. Responses of the heat conduction system with an 

optimal controller to set point changes and system disturbances are shown in 

literature (Betts and Citron. 1972; Sakawa. 1964). 

Simulations of the heat conduction process can easily be performed using 

the modal or laplace models derived in Section 2.2. Since both of these were 

shown to be equivalent, either model can be used; however, since the frequency

response designs were performed on the lumped, state-space representation 

obtained from the modal-lumping procedure, the simulations used the following 

results: 
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(2.7-1) 

[ 
1.0 

'i"n(z) = ~cosnrrz 
n=O 
n = 1, 2, ... (2.7-2) 

with an(t) given by 

(2.7-3) 

1 

an(O) = fo 9'n(z)yo(z)dz , 

n=O 
n = 1. 2, ... (2.7-4) 

Then if y0(z) = 0, 

(2.7-5) 

The closed-loop response y(z,t) can then be obtained by applying a discrete time 

analysis to the control structure and feedback information. Although the actual 

distributed system is described by the infinite-order model (Equation 2.7-1), 

simulations show that a tenth-order analysis accurately describes the actual 

process. Thus system responses for the various control strategies were calcu-

lated using both third- and tenth-order lumped process models. 

The first control structure to be considered is proportional feedback con-

trol. Although such control may seem excessively elementary, it has the advan-

tage of simple implementation and is the method of control recommended by 

several of the design techniques. For stable, diagonally dominant systems, the 

conclusion of an I.N.A analysis is that no attempt should be made to reduce 

interactions by using more complicated compensation. Instead, large gains 

should be used in each feedback loop, leading to a stable system with little 
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interaction. The root-locus analysis, C.L.M., and I.N.A. methods show that the 

symmetric cases with z1 < 0.33 and the unsymmetric cases (0.3,0.8) and 

(0.4,0.8) are diagonally dominant and stable. However since these conclusions 

were based on the third-order lumped model, proportional control should be 

attempted on the actual system. 

In general, the simulations show that the exact process behaves qualita

tively similarly to the third-order model and that high gain significantly reduces 

interaction for certain cases. However, proportional control leads to consider

able offset. Even if only one of the two set points is changed, there is offset in 

both outputs. This is obviously a result of the steady state interactions in the 

system. Although steady state decoupling would seem beneficial. previous 

analysis showed that such compensation leads to a dependent control system. 

Thus although the root-loci and l.N.A. analyses showed that arbitrarily high 

gains would reduce interaction without leading to instability in certain cases, 

very hlgh gains are often needed to sumciently reduce the otrset and interac

tion. Such high gains may be impractical or may lead to large overshoot, and 

even when steady state interactions are reduced by high gains, considerable 

dynamic interaction may still be present. 

Thus although simple introduction of high gain into both control loops may 

be adequate, the control structure can often be improved by a slightly more 

complicated compensator. From classical theory, it is obvious that some form 

of integral action should be introduced to eliminate the offset. The C.L.M. deter

mined the best compensator of the proportional-integral (PI) form to reduce 

interaction, to increase system integrity and accuracy, and to insure stability. 

However, simple analysis shows that, due to the integral action, the closed-loop 

responses become oscillatory. Simulations were performed using the C.L.M. 

destgns With and without the inner loop. They show that system responses can 
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be improved with integral action and that appropriate design of the inner loop 

can eliminate the oscillations. 

Obviously in a heat conduction problem, another difficulty in designing a 

control scheme is the lag time between a control action and the response of the 

outputs. For the heat conduction process, this lag leads to large overshoot 

when the feedback loop has high gains but will not lead to 1nstab1l1ty as long as 

the measurements are placed within the first and last third of the system. If the 

measurements are very near the edges of the system, even high gains will not 

lead to overshoot; whereas, high gains leads to system instability if the measure

ments are within the center third of the system. Thus it would seem appropri

ate to add some sort of anticipatory control. i.e., add some derivative action. 

This should reduce oscillations and keep the system stable up to higher gain. 

None of the common multivariable control design techniques incorporates the 

use of derivative action, since it is often difficult to physically incorporate into 

the process and can lead to difficulties for step input changes and for noisy sys

tems. Nevertheless, the application of derivative action is considered for the 

(0.4,0.6) case. 

Additionally, the inner-~oop decoupling control strategy was considered. 

Theoretically, it led to a perfectly non-interacting system for several measure

ment locations, but the design was based on the third-order model and could be 

useless for the exact system. However, simulations show that it is an excellent 

control scheme for the heat conduction process, even when the measurement 

locations are not those specified by the technique. With inner-loop decoupling, 

it was shown that 
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0 

(2.7-6) 
0 

with the measurement locations (0.2,0.8) or (0.6,0.4) and arbitrary f 11 and f21 . 

Using additional proportional control with gain ~ in the ith loop, the response 

to a set point change is 

where 

k,A.;. 
c .. = l+kiA. 

1 
A1 = C12-f-

11 

At.= 1 
f21(2-2~c12) 

(2.7-7) 

(2.7-8) 

f 
Consider the first loop. The offset is obViously 1.0 - C1 = f 11k . Thus no offset 

u+ 1 

occurs if f 11 = 0 or as k 1 -+co. However if f 11 is negative, y( t) is unstable. 1 The 

simulations verify these results. The application of integral action to eliminate 

the offset is also considered. 

Finally, perfect non-interacting compensation and steady state decoupling 

are considered. The latter is obViously undesirable since it leads to dependent 

control. Additionally, perfect compensation sacrifices closed-loop performance 

to non-interaction and thus leads to poor dynamic behaVior. Simulations using 

the perfect, non-mteracting compensator led to numerical dimculties. 

Simulations of the closed-loop responses were performed for step changes 

with various measurement locations. For the system with symmetric outputs 

1. Note that c12 is positive for the cases of interest. 
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and control action, both outputs respond identically to a set point change of 

(1,1),2 and the responses for (0,1) are reversed from that for (1.0). Simulations 

were performed using both the third- and tenth-order process models.9 

2.7.1 Case I: llewru.rements z1 = 0.2, Z2 = 0.8 

Previous analysis showed that this case is stable and diagonally dominant. 

Thus high gains should reduce offset, interaction, and response time. Figure 

2.7-1 shows the third-order response to a step change (0,1) with feedback gains 

1.0 and 50.0. Although interaction is small at a gain of 50.0, such gain is quite 

high, and steady state offset is still about 5%.4 

This case was one shown to be applicable to inner-loop decoupling. Using 

extra measurements and an appropriate inner-loop compensator, the third-

order model was shown to reduce to a completely non-interacting system for 

which classical methods could be used to complete the design. Third-order 

simulations (Figure 2.7-2) verify the results predicted from the model. Interac-

tion is completely eliminated and the response is non-oscillatory. Additionally 

with f 11 = f21 = 0, proportional control does not result in steady state offset. As 

f 11 and f21 increase, offset increases, and as the gain increases, offset decreases. 

Negative values for f 11 and f21 lead to instability. 

Even the tenth-order model acts qualitatively as expected. Simulations 

(Figure 2.7-:3) show that high gain leads to overshoot and eventually to instabil-

ity. Nevertheless for moderate gain. there is only a very small amount of 

interaction. Thus even though the gain is somewhat limited, offset can be elim

inated and interactions greatly reduced while still having excellent response 

2. This notation means that the set points are Yd
1 

= 1.0 and Yd
8

= 1.0 fort~ 0 with Yc1
1 

=Yc1
11 

=0.0 
fort< 0. 

3. Note that the tenth-order model is taken to represent the exact process. 
4. In comparing the simulations, note that the time axes vary s:ignitl.cantly. 



- 125-

time. For example. with a gain of 20.0, the response time is about 0.08 and 

there is negligible interaction. With simple proportional control. even with a 

gain of 50.0, the response time is 50% more, while interaction and offset are 

significant. Finally, integral action can be added but is not necessary since 

f 11 = f21 = 0 leads to a response with no offset. Also as shown in Figure 2.7-3, 

offset increases if f 11 and f:H are greater than zero. 

2.7.2 Case U: Mee.surements Zt = 0.3, Za = 0.7 

This case is similar to the previous ln that high gains should reduce 

response times. offset, and interaction, without leading to instability. The simu

lations (Figures 2.7-4 and 2.7-5) for proportional control behave as expected. 

For low gains, considerable interaction and offset arc present along with long 

response times. For high gains, interaction is reduced and the system becom~s 

oscillatory. However even for very high gains, the overshoot is only about 10% 

with a large decay ratio, and thus the response times are short. Additionally, 

the simulations show that the qualitative behavior of the responses for the 

tenth-order system are identical to those for the third-order model, though 

some qualitative differences are apparent at high gains. 

Figure 2.7-6 shows the responses of the system with the addition of the 

compensator that was designed using the characteristic locus method. At a gain 

of 1.0. the third- and tenth-order responses are similar (only the tenth-order 

responses are shown). The addition of the compensator has eliminated offset 

and steady state interactions while adding some overshoot. However dynamic 

interactions are still significant for t < 3.2. Increasing the gain reduces the 

response times and interaction but increases the overshoot. At the extremely 

high gain of 200.0, the tenth-order model (not shown} shows that the system is 
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unstable, although the third-order model shows a good response. Nevertheless. 

short response times and little interaction can be obtained at much lower gain. 

The C.L.M. procedure predicted a dramatic improvement with the addition 

of an inner loop. Third- and tenth-order simulations were performed using the 

design obtained in Section 2.4. The responses for the system with an inner loop 

and with only proportional control in the outer loop showed considerable offset 

even for step changes of ( 1.1). However, the responses (Figure 2.7-7) for the sys

tem with the inner-loop compensator FA and the designed outer-loop compensa

tor Gc given by Equation 2.6-20 show tremendous improvement. Although the 

( 0,1) and ( 1 ,0) step changes no longer give identical results, the responses are so 

similar that only one is shown. For gains below 8.0, both the third- and tenth

order models show no oscillation (again only the tenth-order responses are 

shown). The third-order model also shows an elimination of not only the offset 

but almost all the interaction. Even though the actual system is unstable for 

very high gain, the inner-loop design is excellent, since even at a relatively low 

overall gain of 20.0,5 oscillaLions and interaction are minor and response times 

are short. 

2.7.3 Case ill: lleesu.rements z1 = 0.4, z2 = 0.6 

All of the design techniques showed that this case becomes unstable at high 

gain (above ""'32.0). The responses (Figure 2.7-8) verify these expectations. For 

low gain. the system has high interaction, large offset and long response times. 

As the gain increases, the oscillations increase while the response times and 

offset decrease. Nevertheless, interactions remain high at short times-t < 0.5. 

Slight differences between the third- and tenth-order models are apparent at 

5. The overall gain equals outer-loop ga.in-2.5-times the inner-loop gain -8.0. 



- 127-

higher gain. Although the third-order system is unstable at a gain of 35.0, the 

actual system remains stable up to a higher gain (""45.0). 

Both the I.N.A. technique and C.L.M. showed that the only compensator 

capable of insuring system stability at high gain is a dependent controller. How

ever as previously discussed, the use of such a controller has serious disadvan

tages. For a set point change of (0,1) or for unsymmetric dependent control 

with ( 1.1). the closed-loop behavior shows very high offset (Figure 2. 7-9), and for 

symmetric dependent control, a set point change of ( 1, 1) has no effect on the 

system--the output remains unchanged. 

Even by squaring down extra measurements through an inner loop, stability 

cannot be assured at high gain. However with the inner- and outer-loop con

trollers that were designed using the C.L.M., the responses (Figure 2.7-10) at 

moderate gain have no offset. but at the expense of increased oscillation and 

response time. High overall gain(> 40.0) does indeed lead to instability. 

Thus a good design has not been found for the heat conduction system with 

measurements at (0.4,0.6). Obviously good feedback information is not available 

due to excessive transportation lag. Thus a PD or PID controller may be useful. 

If a slight amount of derivative action is added, both the third-order model at a 

gain of 35.0 and the actual system at a gain of 50.0 are stable (Figure 2.7-11). 

The system has a very short response time but shows some slight offset. By 

further introduction of some integral action (PID control), the offset can be 

eliminated. At higher gains, it becomes necessary to increase the derivative 

action to insure stability; however, high gains and increased derivative action 

cause numerical difficulties due to a small downward oscillation in the initial 

response (t < 0.2). Since such a downward "blip" is not physically explainable, 

it must be a consequence of the model reduction. This is proven in Figure 2.7-
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12. The region t < 0.064 is enlarged, and it is obvious that the "blip" gets 

smaller as the order of the model is increased. Finally, Figure 2.7-12 shows the 

response with derivative action with the 'blip" artificially removed. This 

response is physically reasonable due to the transportation lag between the 

inputs and the outputs. However, although this technique allows higher gain, 

derivative action is still not advisable due to problems with implementation and 

process disturbances. 

Finally the case (0.6,0.4) was shown to be applicable to inner-loop decou~ 

pling. Thus with the measurements at (0.4,0.6), a permutation matrix could be 

used to convert the system to that necessary for use of this technique. How

ever, the tenth~order response for the system with the permutation matrix and 

inner~loop decoupling shows instability at moderate gain due to the excessive 

transportation lag with the outputs at a distance of 0.6 from the inputs. The 

inner-loop structure designed for the (0.6,0.4) case is applied directly to the 

(0.4,0.6) case. Surprisingly the results (Figure 2.7-13) are excellent! Although 

the interactions are not completely eliminated, they are small and may be 

reduced further by improving the outer-loop design with the C.L.M.. The choice 

f 11 = f21 = 0 eliminates offset, and even moderate gain leads to little interaction 

and small response time. Unfortunately, the system is still unstable at high 

gains. 

2.? .4 Cue IV: JIElBSUl'eiilents z1 = 0.4, Z2 = 0.8 

This case gives further insight into the system since the outputs are not 

symmetric and since the root-loci have vertical asymptotes for the third-order 

model. Due to the lack of symmetry, simulations are considered for the set 

point changes (1,1), (1,0), and (0,1). As expected, the responses of the two out~ 
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puts are not identical, and the measurement at z2 = 0.8 responds faster than 

that at z1 = 0.4. Although the third- and tenth-order models show similar 

responses for low gain. they differ considerably at higher gains. The actual case 

shows much worse behavior than the third-order model predicts. For propor

tional control (Figure 2.7-14), the offset is reduced as the gain increases. How

ever even at a gain of 50.0. the responses are quite bad. The actual system 

shows a high degree of oscillation and a long response time. The output at z2 = 

0.8 has an overshoot of 30%, while the other has an overshoot of 80% for a set 

point change (1,1). The effects or interaction are clearly illustrated by the set 

point change (0,1). The measurement at z2, whose set point was changed, has a 

fast response while the other output, whose set point remained unchanged 

shows significant oscillation and long response time. Ir instead the set point 

change ( 1,0) is considered, the measurement at Z:a is only slightly affected. Obvi

ously the output at z2 = 0.8 is much more stable than that at z1. 

For a gain of 100.0, the third-order response is stable and shows shorter 

response times. However for all of the set point changes, the response of the 

output at z1 is unstable while that at Z:a remains stable. Even when only the set 

point at z2 is changed, the . interactions cause the other output to become 

unstable. The instability of the tenth-order model can be explained through a 

root-locus analysis, since the tenth-order model has additional poles and zeros 

which can cause the vertical asymptotes to curve into the right half plane. 

Since high gains are desired to reduce offset and interaction and since very 

high gains lead to an unstable response at z1, it seems best to impose high gains 

in the feedback loop on z2 and moderate gains on the output at z1. Figure 2.7-15 

shows the responses with gains 25.0 and 100.0 imposed on the two outputs. The 

output at z2 responds quickly and is only slightly affected by interaction, while 

the other responds more slowly. 



- 130-

The precompensator that was designed using the C.L.M. is then added to the 

system. The C.L.M. showed that the compensator should reduce interaction and 

lead to a stable system with high accuracy and integrity. The responses 

(Figure 2. 7-16) show that though otJset has been eliminated, dynamic interac

tion is only slightLy reduced. Again it is eVident that the output at z1 has too 

much transportation lag. Its reponse is highly oscillatory and becomes unstable 

at very high gains, even though the third-order model predicts stability. Thus 

although the C.L.M. leads to a compensator that reduces interaction, the insta

bility problem is still present. As in the (0.4,0.6) case, some derivative action 

may be useful if very high gains are desirable. Finally even if an inner loop is 

added, the C.L.M. showed that little improvement is obtainable. This is verified 

using system simulations. 



l 

.. • 

~ 

• 131 -

0+-........ ~ ........ ~ ........ r-........ ~ .... ~~--~ .... --~ ........ ~ 1
0. oc o. 50 l. 00 1. 50 2. 00 2. so 3. 00 3. 50 .... oo 

0 .... 

0 ... 

(a) 

]a~------~~====~~~==~~~~==~~==~ 0 

0 ... 
0+-.... --~ ........ ~----r-----r---~~--~----~~----~ 'o. 00 0. 04 11. 01 II. l2 11. l & II. 20 0. 24 II. H 11. 32 

(b) 

Figure 2.7-1 
Third-Order Simulations with Outputs z1 =0.2, z2=0.8 

Set Point Change (0,1) 

a. Gain= 1.0 b. Gain = 50.0 



! . 
i 
E .. 
I! 

! 
1 
!! 

1 
I 

" ~ 
~ . 
! 
t 
" .. . .. 

0 
0 

0 

"' .; 
'o.oo 

0 
0 

"' 
0 

"' _; 

0 
0 

-

I ~ 
... 0 
l 
!! 

' 0 
! ~ 

"' 
0 

"' d 
'o. oo 

0. so 

0. 08 

• 132-

1. 00 1. SO 2.00 2.SO 3.00 3.50 

llonll11nd TIM 

(a) 

o. 16 o. 24 o. 32 0. 40 0.46 0.~6 

•-Hzttl T1• 

(b) 

Figure 2.7-2 
Third-Order Simulations with Outputs z1 =0.2, z2 =0.B 

Inner-Loop Decouplin.g with f 11 = f21 = 0 
Set Point Change (0,1) 

a. Feedback Gain = 1.0 b. Feedback Gain= 20.0 

•• oo 

0.64 



! .. • 
l 
e 
i 
I ... 
'! 
i 
i 

! 
!! .. 
& 
t 
" .. : 
! 
~ 
l 
i 

.. .. 

.. 

0 

0 .,. 
.; 
'o. oo 

"" 0 

"' 
0 

"' 

.. 

0 

"' c 
'o. oo 

o. 40 o.eo 

o. 04 o. 08 

- 133-

1. 20 1. 60 2.00 2. 40 2.80 

...,...11%14 Tl• 

(a) 

0.12 o. 16 o. 20 0.24 0.28 

llo,...l1zl4 H• 

(b) 

Figure 2.7-3 
Tenth-Order Simulations with Outputs z1 =0.2. z2=D.8 

Inner-Loop Decoupling 
Set Point Change (0,1) 

3.20 

0.,2 

fu =fa!l =0: a. Gain= 1.0 b. Gain= 20.0 c. Gain= 100.0 

fu = f21 = 1: d. Gain= 20.0 



! 

g .. 
g 
.,; 

• 8 
i ... 
i 
j .. -

! • 
i 
r: a 

I ... ... • 
-= l 
i 

0 
u 

iO.oo 

"' "' ...; 

0 

"' ..: 

0 
0 

..: 

0 

"' 0 

0 
0 

d 

0 

"' ci 
'o. oo 

0.02 

o. 04 0.08 

- 134-

0.06 o.oe 0.10 0.12 0.14 o. 16 

(c) 

0. 12 0. 16 0.20 0.24 0. 28 0. 32 

(d) 

Figure 2.7-3 Continued 



• 135-

-: 
:: 

1 
j 

1. so 2.00 2. so 3.00 '·so •• oo 
llo,.lln<l Tl• 

0 .. 
ci 

I 

(a) 

0 .. 
.. ... 

c ------ -~--------! ... . 
j 
t a . .. 
I .. 
11 
!! 

'i 
j 

o.oe D. 12 0.16 o. 20 D. 2• 0.211 o. ~2 
Nol'llllized n. 

:: 
9 

(b) 

Figure 2.7~4 
Third-Order Simulations with Outputs z1=0.3, z2=0.7 

Set Point Change (1,1): a. Gain= 1.0 b. Gain= 20.0 

Set Point Change (0,1): c. Gain= 1.0 d. Gain= 20.0 



a .. 
.. 
N 

a .... 

- 136-

<>-+-.---....,,----....,..----,----,-------,-------·-·------.,-·-· 
'o. oo o. so t. oo t. so 2. oo 2. sa s. aa 

a .. 

(c) 

! ---------~--------- ------------~---
~ a 

i : 
~ . 
! : 
! 
1 g .. 

a ... 
0+-------r-----r-----,----r---~-----,-----~--~ 'a. 00 0. OS 0.10 o. IS 0. 20 0. 2$ 0. SO 0. !IS G. 40 

(d) 

Figure 2. 7-4 Continued 



~ 
1 
t .. .. 

<::> 

"' -

0 . 
Q 
I 

0 .. 
..: 

<> ... 

"' .. 
ci 

i ~ 
... 0 

~ 
i 0 

i 0 

~ 00 

0 . 
c:i 

I 

o. 04 

- 137-

Norw11zed Tl• 

(a) 

o. 08 0.12 o. 16 o. 20 D. 24 0.211 0.3:1 

No,...11ztd T1• 

(b) 

Figure 2.7-5 
Tenth-Order Simulations with Outputs z1=0.31 z2=0.7 
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2.8 DISCUSSION OF CC1NTBOL ANALYSIS 

Although much of the analysis and design in this project is an application 

of published results, the work provides an insight into the current state of mul

tivariable, feedback control theory. Unlike a review paper that compares the 

theoretical bases of the design techniques, this project performed a complete 

analysis of a distributed control problem using various currently available 

methods. In particular, an extensive study of time-domain analysis, frequency

domain design, and non-interacting control has been conducted for a two-input, 

heat conduction system. Although heat conduction systems have previously 

been studied in relation to optimal and modal control. the multiple-input prob

lem has been relatively neglected. 

Additionnlly, the role of the number of measurements and their location 

was studied. Due to the ease of taking temperature measurements for the heat 

conduction problem, outputs can be obtained as needed by the control system. 

Thus the complete system state could easily be approximated using many meas

urements and optimal smoothing or fewer measurements and state estimation. 

However, since such flexibility is not available in many practical, distributed sys

tems, the control scheme must work on a limited amount of output information. 

Thus the analysis of the heat conduction system was performed with a finite 

number of measurements, leading to the problems of measurement placement 

and feedback loop interaction and instability. Since most design techniques 

require feedback of outputs equal in number to the inputs, analysis of the use 

of 'extra' measurements for improving system response, by reducing interaction 

or moving system poles, was performed. This work led to the new technique of 

inner-loop decoupling, which shows excellent results for the highly-interacting, 

highly-symmetric, heat conduction system. 
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Although the problem that was studied is a relatively simple heat conduc

tion process with two heat-fiux controls, the results lead to conclusions that can 

be extended to general. multivariable control theory. The choice of the particu

lar system is actually quite good since many difficulties arise in the feedback 

design. due to excessive transportation lags and high interaction between the 

outputs. In particular. the classical means of steady state decoupling and per

fect, non-interacting control are not useful for this system, and thus more com

plicated design methods are necessary. Therefore, though this project leads to 

results specific to the heat conduction problem. the major contribution of the 

work is in the general area of feedback control theory. 

The study clearly showed that, although excessive model lumping and 

reduction can lead to significant inaccuracies, a high degree of model reduction 

is usually needed so that the various techniques of control design can be con

sidered. Most methods require a low-order, state-space representation ot the 

process for practical and efficient control structure design. Although the exact 

lumping techniques of modal analysis and Laplace transform were easily appli

cable to the heat conduction system, many other efficient techniques are avail

able and are necessary for processes described by more complicated differential 

equations. These methods include space discretization techniques and the 

method of weighted residuals. along with other pseudo-modal procedures. 

Before attempting any control design strategy, an accurate system model is 

required. However regardless of the accuracy of the model. its usefulness is lim

ited unless accurate model reduction can be performed. For the heat conduc

tion process, modal lumping led to simple model reduction by directly specifying 

the system eigenvalues. Since they were shown to increase rapidly. only the first 

tew dominant modes needed to be retained to accurately represent the system. 

The simulations showed that the qualitative behavior of the third-order model is 
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similar to that of the actual system, but the differences are magnified at high 

gain and often lead to quite different behavior. 

The project also allows for an excellent comparison of the currently avail

able design techniques. Overall, the best technique that was studied in this proj

ect is the characteristic locus method. Both with and without an inner loop, this 

scheme provides a systematic, computer-aided design strategy in terms of high 

and low frequency compensation that leads to an excellent, proportional

integral controller. Actually at the specific frequencies used in the design. the 

technique determines the best possible controller to insure stabiUty, reduce 

interaction, and increase integity and accuracy, by calculating the compensator 

that best aligns the real and complex frames. The method is based on manipu

lating the characteristic loci and characteristic directions of the system to meet 

the necessary objectives. Once the appropriate computer programs and plotting 

facilities are available, the final design can readily be obtained by considering 

various high and low frequencies at which the alignment is applied. 

The inverse Nyquist array analysts can also easily be performed with the 

appropriate computer facilities but does not lead to as good a control design. 

The procedure involves maJ:ting the system stable and diagonally dominant. 

Then a high amount of proportional gain can be used to reduce interactions. 

However such high gain is often impractical and leads to excessive oscillations. 

Additionally due to the lack of integral action. otfset is a significant problem at 

low gain and can only be reduced by increasing the gain substantially. The 

major advantage of this technique over simple multivariable root-loci analysis is 

that, although both can be used to check stability, the inverse Nyquist method 

also insures diagonal dominance. However, the characteristic locus anal,Y5is 

shows that diagonal dominance is not a necessary condition 1 for reduction of 

1. However it is sufficient. 
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interaction at high gain. 

Non-interaction control methods were also considered for the heat conduc

tion system. Although perfect, non-interacting control and steady state decou

pling have little use for this particular system, they may in general be applica

ble. Whereas non-interacting control usually leads to an excessively complicated 

controller and requires an accurate system model, steady state decoupling is 

usually very simple and an excellent technique to perform in conjunction with 

other control schemes. Furthermore, the inner-loop decoupling strategy, that 

uses extra measurements to eliminate or reduce the interactions, seems to be 

quite promising. Though further analysis of the method for a more complicated 

system is necessary, it seems to be quite insensitive to model inaccuracies and 

leads to a very simple feedback system with little interaction. 

Other conclusions pertaining to general multivartable, feedback control can 

be made. In particular, it was shown that none of the currently available design 

techniques allow for derivative action. Though such control action may be use

ful in many processes where transportation lags are signitlcant, it is impractical 

to physically incorporate into the system and leads to problems with step 

changes and noisy processes by requiring excessive control action. 

Additionally, the project showed that the use of extra measurements may 

drastically improve the control design or may have little or no effect, depending 

on the placement of the commanded outputs. The extra outputs can be used 

for inner-loop decoupling or for adjusting the poles of the process so that an 

improved characteristic locus design can be obtained. In cases where extra out

puts are available or easily accessible, they should be considered and may sim

plify the control structure significantly. However, since a simple inner loop can

not move system zeros, stability problems due to unstable finite zeros cannot 
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easily be eliminated with extra measurements. Unfortunately, no good tech

nique is currently available to insure stability of such systems. 

Finally the role of measurement location has been considered. Each choice 

of measurement location leads to a completely different optimal design and 

significantly affects the usefulness of each design technique, since the locations 

determine the extent of interaction and system symmetry. AB expected, prob

lems are minimized with measurements near the edges of the system, since 

interaction and transportation lags are reduced. 

Thus though the two-control, heat conduction process has been analyzed in 

detail, further analysis could lead to additional insight. In particular, the trans

portation lag problem should be further studied, especially in regard to current 

work on computer-aided, multivariable control design for systems with time 

delays (Ogunnaike and Ray, 1979). More importantly. an analysis of the stochas

tic problem needs to be performed, along with an analysis of heat losses and 

other disturbances. Finally, several computer-aided design packages should be 

tried to further verify the results and spatial-discretization lumping procedures 

and adaptive control techniques should be considered. 
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Chapter 3 

:MATHEllATICAL MODEl. OF A 

PACKED BED CATALYTIC REACTOR 
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3.1 INTRODUC'nON 

The central role played by dynamic and steady state models in the design 

and optimization of chemical processes and in the development and application 

of control strategies justifies considerable effort in their development. The area 

of packed bed reactor modeling has been the emphasis of a considerable 

amount of research effort during the past twenty years and has really been at 

the forefront of modeling research since the early 1970's With the acceptance of 

new mathematical techniques for the solution of the systems of partial 

differential equations encountered throughout the chemical industry. Still one 

of the most challenging problems is that of packed bed catalytic reactor model

ing. 

Packed bed catalytic reactors are extensively used for carrying out exo

thermic, gas-phase reactions. The complexities of the simultaneous heat and 

mass transfer processes in such reactors have led to considerable effort in their 

mathematical modeling. A major concern has been in the amount of detail 

necessary for accurate description of the dynamic and steady state behavior of 

these renctors (Heiberg et al., 1971). Although it is obvious that insufficient 

detail can lead to a model in_capable of accurately representing the physical sys

tem, model compleXity has often been limited by computational considerations. 

Many authors have concluded that, although the mathematical treatment of 

every aspect of the reactor system may be intellectually fulfilling, a model based 

on such detail could be impractical since the resulting system of partial 

differential equations would be computationally intractable. For these reasons, 

much work has been directed at determining the processes that are of minor 

importance and can safely be neglected in the models. 

Such work has led to the extens1ve use of pseudo-homogeneous models--
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those that do not distinguish between the conditions within the ftuid and those 

on the solid catalyst. For highly exothermic reactions, a pseudo-homogeneous 

description is often inaccurate due to the large temperature gradients that 

exist between the solid and tluid phases. A more detailed two-phase model, in 

which the exchange of energy and mass between the two phases is explicitly 

described, is then necessary. Furthermore, in order to limit the complexity of 

the heterogeneous model, radial concentration and temperature gradients, axial 

dispersion and the variation of physical properties are frequently neglected 

(Carberry, 1976; Finlayson. 1971; Heiberg et al., 1971; Jutan et al.. 1977). 

Advances over the past decade in computational techniques for the solution 

of partial differential equations-the orthogonal collocation method, in 

particular-have made extensive simplifications of packed bed reactor models 

unnecessary. Thm; the formulation and solution of accurate dynamic models of 

chemical packed bed reactors is now possible, allowing 

accurate description of dynamic and steady state reactor behavior 

for process optimization, design and safety considerations, 

investigation of reactor start-up or the effects of system distur

bances, and 

the analysis and design of control structures to stabilize the reac

tor under various disturbances or to provide optimal system 

recovery from input changes. 

As a basis for a concerted effort in multivarible control system design, the 

present study provides a mathematical modeling analysis of packed bed cata

lytic reactors that significantly extends previous studies in the qetail of the 

mathematical model and systematic consideration of all aspects of the model 

development and the reduction to a state-space control representation. This 
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analysis is not intended to be specific to any particular packed bed system, 

although our experimental methanation reactor is used throughout most of the 

discussions, but rather to present a detailed study of modeling techniques. 

assumptions, and solutions and to develop a unified approach to dynamic reac-

tor modeling. We feel that the modeling approach and the conclusions concern

ing the model development and the importance of model simplifications 

presented in this thesis should carry over to other similar catalytic packed bed 

systems. 1 

In particular, this thesis provides a complete modeling analysis of a packed 

bed chemical reactor based on currently available computational procedures. 

Various common assumptions, model structures, and numerical solution tech-

niques are discussed. Although some simplifying model assumptions are con-

sidered. their necessity and effect on the resulting system simulations are 

rigorously analyzed. 

After providing a cursory review of packed bed reactor modeling. the for-

mulation and numerical solution of a dynamic model, incorporating all of the 

mechanisms necessary for an accurate description of the physical and chemical 

phenomena occurring in industrial reactors, is presented for a packed bed reac-

tor in Section 3.3. The model accounts for axial and radial dispersion of mass 

and energy. for mole changes that occur along the bed due to reaction, and for 

temperature, pressure and mole dependencies of gas velocity, density, average 

molecular weight. heat capacity, reaction rate constants, and heats of reaction. 

Additionally, a central axial thermal well is included in the study to provide an 

accurate representation of many industrial reactors, where the well is often 

1. In line with this reasoning, all computer programs developed in this work for the reactor model 
are modular and allow :for simple modification to study various packed bed reactors with varying 
degrees of model complexity. Furthermore, the analysis presented is for the general packed bed 
system with a cooling jacket and axial thermal well. The model and computer programs are set 
up for consideration of simpler systems. such as adiabatic reactors and those without a thermal 
well. These are merely subsets of the more general case. 
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used to obtain the temperature measurements necessary for process control. 

Finally, the model is based on a three-dimensional--time, axial. and radial-

heterogeneous analysis and incorporates the effects of axial pressure gradients. 

The model can then be used to study the steady state and dynamic 

behavior of the methanation reactor, the effects of reactor operating conditions, 

and the overall effects of various common modeling simplifications. The gen

erality of the analysis also allows for studies of similar systems under adiabatic 

operation and without axial thermal wells. These extended analyses are 

presented in Section 3.4. 

Unfortunately, the numerical solution procedures used throughout the 

early portions of the analysis may be inappropriate for reactors with very steep 

axial concentration or temperature gradients due to numerical difficulties 

inherent in the model discretization. Section 3.5 considers such conditions and 

presents an extended numerical solution procedure using orthogonal colloca

tion on finite elements that remains stable even under the worst of these simu

lations. 

The analysis of the mathematical relationships describing the chemical and 

physical processes within the reactor and the numerical approximation 

methods leads to a computational technique for simulating the steady state and 

dynamic behavior of the packed bed reactor. However, computing facilities gen

erally available for on-line control cannot perform the necessary calculations 

rapidly enough for practical control applications with the full, nonlinear model. 

Furthermore, solution times for dynamic simulations with this model even make 

detailed parameter studies and process optimization impractical. Thus a 

simplified lower-order model is desired for on-line multivariable control and for 

process studies and is developed in Section 3.6. 
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Finally, a major difficulty in accurate packed bed modeling is that of exces

sive model dimensionality. Incorporation of all of the physical information 

available into an accurate description of the reactor can lead to numerical 

models of very high dimensionality. An analysis of the effect of the model 

discretization on model dimensionality and techniques for accurate reduction of 

the size of the model are presented in Section 3.7. 

Before control studies can be performed using the model developed in this 

work and even before extensive simulations are used for system design and 

optimization, parameter estimation for the system of interest is necessary. 

Although many of the parameters needed for the mathematical description of 

the reactor system can be calculated directly from physical considerations, the 

reaction and heat transfer parameters must be measured directly for the exper

imental system. This step, outlined in Section 4.2, is by no means trivial and 

may require considerable experimentation to obtain kinetic data, including con

sideration of transient kinetics, and to obtain heat transfer and energy and 

mass dispersion parameters. 
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3.2 REVIEW OF PACKIID BED REACTOR IIODEUNG 

The area of packed bed reactor modeling was the emphasis of considerable 

amount of research effort into the early 1970's. Many specific aspects of the 

models were investigated, and well defined techniques for packed bed reactor 

models were developed (Carberry, 1976; Froment, 1972; Hlavacek, 1970; Karanth 

and Hughes, 1974a; Paris and Stevens, 1970; Smith, 1970). 

Conclusions based on careful analyses of each specific aspect of the reactor 

design led to modeling simplifications that were necessary due to limitations of 

the available numerical solution techniques and computational equipment. The 

use of pseudo-homogeneous models, the elimination of dispersion effects, and 

the assumption of constant physical properties were often necessary and 

became standard modeling practice. Steady state analyses dominated the 

modeling efforts, since computational techniques for dynamic simulations were 

not well-developed. However, these steady state models were able to provide 

fairly accurate results for most investigations. 

Advances over the past decade in.computational techniques for the solution 

of partial differential equations such as those describing a packed bed catalytic 

reactor have made extensive simplifications of the analysis unnecessary. In par

ticular, a drastic reduction in computer time has been achieved by application 

of the orthogonal collocation method, which is ideally suited to boundary value 

problems of the type encountered in catalytic reactor modeling. In the colloca

tion procedure, the solution is approximated by a series of known functions with 

unknown coefficients, which are then determined by satisfying the differential 

equations at a number of collocation points. As developed by Villadsen and 

Stewart (1967), the technique uses orthogonal polynomials as the expansion 

functions and the roots of these polynomials as the collocation points. The 
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method has been applied to various problems including the non-symmetric axial 

diffusion for a tubular reactor (Fan et al., 1971), the steady state solution for a 

nonadiabatic packed bed reactor (Finlayson, 1971), the simulation of a 

simplified adiabatic packed bed reactor (Karanth and Hughes, 1974b), and the 

modeling of a nonadiabatic packed bed reactor using a pseudo-homogeneous 

approach (Jutan et al., 1977). 

Obviously, we cannot attempt to provide a detailed review of packed bed 

reactor modeling in this thesis since entire books or major portions of reaction 

engineering textbooks (Carberry, 1976; Karanth and Hughes, 1974a; Smith, 

1970) arc devoted to this subject. Instead, we wish simply to outline some of the 

major advances in this area and to show the wide disparity in modeling tech

niques and thus the importance of a unifying study such as that presented here. 

Table 3.2-1 shows a brief summary of several published nonisothermal, nonadia

batic packed bed reactor models developed during the past twenty years. This 

table is not intended to present all of the models used throughout this period or 

even present the major modeling techniques, but instead to describe represen

tative models that exemplify the progress of this field during the period. The 

table shows the continuous increase in model complexity due to computational 

improvements and the generality of the present work in comparison to previous 

studies. 



Reference System Solution Heterogeneowr Dyua.mic Technique 

Current Methanation Orthogonal Yes Yes Collocation 

Jutan et al. (1977} Butane Orthogonal No Yes Hydrogenolysis Collocation 

Valstar et al. (1975} Vinyl Acetate Finite No No Synthesis Differences 

Hoiberg et al. ( 1971) H2 + ~ 
No {s.s.) 

Yes Yes (dynamic) 

De Wasch and Froment (1971} A+B ... C Finite Yes No Differences 
Orthogonal Finlayson ( 1971) Collocation No No 

Hlavacek ( 1970) A_. B Finite No No Differences 

Carberry and White (1969) Naphthalene Finite No No Oxidation Differences 

Carberry and Wendel (1983} 
A-. B-. C Finite No No Quasi-Adiabatic Differences 

Table 3.2-1 
Summary of Nonisothermal. Nonadiabatic Packed Bed Modeling 

Dispersion 
Thermal Mass 

Axial Axial 
Radial Radial 

Radial Radial 

Radial Radial 

Radial Radial 

Radial Radial I 

! 

Radial Radial 

Radial Radial 

Radial Radial 

Axial Axial 

I .... 
--2 ..p. 
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Carberry and Wendel ( 1963) considered the influence of inter-intraphase 

transport phenomena yield for consecutive reactions in an adiabatic packed bed 

catalytic reactor. A simple digital computer model was developed with simple 

extensions to the nonisothermal, nonadiabatic case in the absence of radial gra

dients (quasi-adiabatic analysis). This study was extended by Carberry and 

White ( 1969) to the steady state modeling of a packed bed catalytic reactor for 

the highly exothermic oxidation of naphthalene over V205. Their numerical 

simulations demonstrate the necessity of a two-dimensional, axial and radial, 

description of the temperature distribution and the adequacy of a one

dimensional mass continuity description. Detailed computations further 

showed the existence of significant interphase concentration and temperature 

differences, even at steady state, for the highly exothermic reaction. 

Hlavacek ( 1970) provided a unified review of the design of packed catalytic 

reactors, including the formulation of modeling equations governing heat and 

mass transfer in packed bed reactors and considerations of heal transfer 

simplifications in packed beds and numerical solution methods for the resulting 

set of nonlinear partial differential equations. Hlavacek describes both one- and 

two-dimensional modeling of a packed bed reactor for a simple A ~ B reaction. 

As with most packed bed analyses, he assumes a homogeneous reaction system, 

in contradiction to the real heterogeneous structure of the packed bed. His 

resulting system of nonlinear elliptic partial differential equations is reduced to 

a set of parabolic equations by omitting the effects of axial mixing. Finally, 

steady state solution of the equations is performed using finite ditierences. The 

major contribution of his work is really in unifying the approach to packed bed 

reactor design by showing the necessity and use of accurate reactor models in 

studying design considerations. 
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Major advancements in packed bed reactor modeling were published in 

1971. Finlayson ( 1971) presented the first orthogonal collocation solution for 

packed bed reactor analysis. Although he showed the method to be much faster 

and more accurate than finite difference calculations and easily applicable to 

two-dimensional models with both radial temperature and concentration gra

dients, the finite difference technique remained the generally accepted pro

cedure for packed bed reactor model solution until about 1977 when the 

analysis by Jutan et al. ( 1977) of a complex butane hydrogenolysis reactor 

showed the real potential of the collocation procedure. 

Also in 1971, De Wasch and Froment (1971) and Hoiberg et al. (1971) pub

lished the first two-dimensional packed bed reactor models that distinguished 

between conditions in the ftuid and on the solid. The basic emphasis of the work 

by De Wasch and Froment (1971) was the comparison of simple homogeneous 

and heterogeneous solutions and the relationships between 'lumped' heat 

transfer parameters (wall heat transfer coefficient and thermal conductivity) 

and the 'effective' parameters in the gas and solid phases. Hoiberg et al. (1971) 

presented the first detailed, two-dimensional, heterogeneous dynamic modeling 

analysis (a homogeneous analysis was used for steady state calculations). This 

work considered the amount of detail necessary in dynamic models through a 

comparison of experimental and calculated results for a packed bed reactor in 

which the highly exothermic reaction between hydrogen and oxygen occurred on 

a platinum catalyst. The major limitation of this work was the amount of detail 

possible for numerical solution using the finite difference solution scheme. 

The work by Valstar et al. (1975) provided the first real experimental com

parisons between two-dimensional packed bed calculations and radial measure

ments. Although their model was somewhat simple, especially for as late as 

1975 (four years after the detailed modeling work by Heiberg et al. (1971) was 
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published), their experimental radial temperature measurements provided the 

basis for the generally used assumption of quadratic radial temperature 

profiles. 

Finally, a significant advance in packed bed reactor modeling and control 

model development was published by Jutan et al. (1977). They used the orthogo

nal collocation discretization technique to reduce an accurate dynamic three

dimensional--Lime, axial. and radial-partial differential equation model for the 

multiple butane hydrogenolysis reactions in a packed bed catalytic reactor to a 

state-space representation suitable for on-line control studies. 

Other recent work by MacGregor and Wong (1978) and Wright and Schryer 

( 1 978) deviated from the mechanistic approach taken by most studies where 

models are developed by properly including the major phenomena occurring 

within the system through the application of the basic physical and chemical 

laws governing such systems 1'hey considered the use of statistical methods to 

identify process transfer functions from empirical input! output process data. 

The advantages of this statistical approach include rapid implementation 

without the necessity of any specific knowledge of the procel'ls. However. these 

empirical models are only valid within a very narrow region about the operating 

conditions for which they have been derived and are only practical in cases 

where very low-order models will suffice. With such complex systems as packed 

bed reactors, such low-order models may be insufficient to accurately describe 

the dynamic behavior of the process. Thus, these models cannot in general be 

safely used for process optimization and design or the investigation of start-up 

procedures and the effects of major system disturbances. 

The current work presented in this thesis uses these past studies as a basis 

to develop a unified general approach to packed bed reactor modeling and con-
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trol model development. This approach includes detailed heterogeneous 

dynamic modeling with complete axial and radial, mass and temperature con

siderations and gas and solid property variations with minimum a priori 

simplifications. 
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3.3 IIODEL DEVELOPIIENT FOR PACKED BED CATALYTIC REACTORS 

3.3.1 Reactor System 

Due to the need for careful. systematic studies of the model development 

and the design and implementation of control processes, a fully automated, 

completely instrumented, non-adiabatic, tubular, catalytic reactor was designed 

and built (Strand, 1984). The reactor system was constructed, not specifically 

for any particular reaction mechanism, but rather lo include various heat and 

mass transfer mechanisms of interest in control studies and is versatile enough 

for multivariable computer control studies of a variety of catalytic reactions. 

Figure 3.3-1 shows a detailed schematic of the experimental system. The pri

mary reaction process chosen for the initial studies is the methanation reac

tion, discussed in Section 3.3.2. 

Because of the difficulttes in heat removal rrom a packed bed, exothermic, 

catalytic reactor and the subsequent problems with temperature and concen

tration control. various reactor designs have been used to permit easier heat 

removal. A common approach is Lhal of using multiple adiabatic reactor beds 

with interstage quench cooling. In such systems, careful control of the tempera

ture and concentration is necessary to assure that the adiabatic temperature 

rise across the bed is not too large. Control of such a system was studied by 

Foss et al. (1960), Silva (1976), Silva et al. (1979), and Wallman et al. (1979). 

Another approach is to remove the heat of reaction through the reactor 

walls into an outer jacket filled with a cooling fiuid. This approach is especially 

useful for highly exothermic systems, since heat is removed continuously along 

the reactor bed, but requires small reactor diameters due to ·radial heat 

transfer limitations. Nonadiabatic reactors for highly exothermic systems are 
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then typically built with a large number of tubes in a cooling oil shell. Our reac

tor is designed to simulate one of these tubes. Due to the high radial thermal 

gradients in such tubes, detailed radial modeling is necessary. 

The cooling system for the experimental reactor consists of a high tempera

ture oil (Dowtherm) circulating between the reactor jacket and condenser by 

natural convection. Continuous temperature measurements of the oil are avail

able, and its boiling temperature can be controlled by adjusting the pressure of 

nitrogen within the condenser. At normal operating conditions, the cooling fluid 

will boil1 in the jacket leading to a countercurrent flow of the oil through the 

outer jacket. and the reactor wall temperature will be nearly independent of 

length along the reactor. The coolant system was sized based on expected heat 

loads of the reactor. A computer-controlled immersion heater is located in the 

Dowtherm reservoir so that the Dowtherm can also be used to heat up the reac

tor during start-up, since low operating temperatures can lead to undesired side 

reactions. 

The experimental system is designed for both feed-effluent heat exchange 

and cold gas recycle that can lead to steady state multiplicities and instabilities 

and are of great interest in control system design. The cold gas recycle can 

actually be used to damp the highly exothermic methanation reaction by dilut· 

ing the feed concentration, inhibiting the forward reaction by the introduction 

of methane and by increasing the heat capacity of the feed mixture due to the 

large specific heat of the methane product. A double-acting. reciprocating 

piston-type compressor is used for the recycle, requiring an upstream water 

knockout drum to remove the condensing water in the reactor effluent. 

In addlLion Lo Lhe feed-effluent heat exchanger, a.n electric ·preheater is 

1. The normal boiJ.:in8 point of l)owtberm is 257° C. 
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available for controlling the inlet gas temperature to the reactor. Thus the con-

trol configuration can consider the complete control of the inlet feed tempera-

ture or simply feed-effluent heat exchange. 

The actual reactor bed consists of a 1.194 em radius stainless steel tube, 

through the center of which runs a 0.159 em radius thermal well containing 

thermocouples at various axial positions2 The reactor chamber is about 30 em 

long and packed with finely ground~ nickel on alumina catalyst particles. 

Because of the cooling jacket, radially mounted thermal wells are impractical. so 

all internal temperature measurements are made within the thermal well, as is 

common in many industrial reactors. 

All feed gases to the reactor are supplied by standard gas cylinders. Each 

stream is controlled by a mass fiow controller and is equipped with a regulator, 

an oxygen absorber I catalyst, a filter I drier. a moisture indicator and a solenoid 

shutoff valve. Under normal operations for the methanation process, nitrogen, 

hydrogen and carbon monoxide are used as the inlet streams. 

The computer system used for measurements and control is a Digital Equip-

ment (DEC) LSI 11123 to which all control valves, thermocouples, heaters, and 

solenoid valves are connected. Concentration measurements are obtained 

periodically using a gas chromatograph with a thermal conductivity deleclor. 

An on-line CO I C02 detector will be installed for future control studies. 

This experimental system is advantageous for multivariable computer con-

trol studies due to its flexibility, the large number of available of measurements, 

feed-effluent heat exchange. the possibility of product recycle. and the inherent 

time delays. The reactor can actually be used to study a large number of 

processes simply by changing the inlet gases and the catalyst. 

2. The thermal well is designed to contain up to 24 thermocouples. 
3. 0.8- 1.0 mm average diameter 
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3.3.2 Reaction Kinetics 

Alhough a large variety of reaction processes could be studied in this exper

imental packed bed reactor, the methanation reaction was chosen for the initial 

studies since methanation is highly exothermic and the temperature and con

centration control of exothermic packed bed systems has traditionally been 

difficult. since methanation is a reaction of great industrial importance and 

since methanation has been well-characterized in the literature. Methanation is 

one of a more general class of Fischer-Tropsch processes where carbon monox

ide and carbon dioxide are hydrogenated to form various light hydrocarbons 

and water. When using specific selective catalysts. the resulting product is pri

marily methane. The catalyst used in our studies is Girdler catalyst G-65, a 

nickel on alumina catalyst used industrially to specifically promote methanation 

without the excessive formation of other hydrocarbons. Another advantage in 

using methanation for the initial control studies is that by simply replacing the 

catalyst, higher-order Fischer-Tropsch processes with additional control 

difficulties can be studied. 

Although the primary reaction on this catalyst is the methanation of car

bon monoxide, appreciable side reactions can occur in the methanation system. 

ThP.se are shown in Table 3.3-1 and include carbon dioxide methanation. steam

shift, carbon deposition, nickel carbonyl formation and other Fischer-Tropsch 

processes. By operating at H2:CO ratios of about 3:1 and temperatures above 

zooa C. most side reactions are suppressed and only the CO methanation, C02 

methanation, and steam-shift reactions should be significant. Of these three 

reactions, only two are independent. In light of the discussion below on C02 

methanation, the CO methanation and steam-shift reactions are .taken as the 

independent reactions. These reactions have been studied extensively and 

ldnetic information is available. 
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CO Methanation: CO + 3~ = CH4 + H20 

C02 Methanation: C~ + 4~ = CH4 + 8H20 

Steam-Shirt: CO + H20 = C02 + H2 

Carbon Deposition: 2CO _. C02 + C 

Nickel Carbonyl Formation: Ni + 4CO ,... Ni(CD)4 

Fischer·Tropsche: nCO + 2nH2 = ( CH2)n + nH20 

Table 3.3-1 
Reactions in Methanation Systems 

(Source: Strand, 1984) 

A general rate expression for CO methanation over a nickel catalyst is given 

by Lee (1973) and Vatcha {1976). They report that a Langmuir-Hinshelwood 

equation of the torm 

(3.3-1) 

where (3.3-2) 

is superior to simple power law relationships. These reaction kinetics (Equations 

3.3-1 and 3.3-2) are based on experimental data taken by Lee ( 1973) in a cata-

lytic CSTR under conditions of ideal mixing for CO methanation over a Harshaw 

Ni-0101T nickel-Kieselguhr catalyst and extensions by Vatcha (1976) to include 

the factor ( 1-v) to reduce the rate to zero at equilibrium. The range of validity 

for this expression is given in Table 3.3-2, and empirical values for the rate con-

stants are given in Table 3.3-3. Vatcha reports that the low activation energy 

indicates that the above rate expression describes the global rate, thus incor-

porating any mass transfer limitations. Gas phase concentrations can then be 

used in the reaction analysis. This use of gas phase concentrations in the 
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analysis does not limit the generality of the model, since the mass transfer 

effects are simply included in the rate expressions and since the interparticle 

mass transfer limitations are often minimal for packed bed reactors where the 

gases flow rapidly over solid catalyst particles (Jutan et al., 1977). 

As far as side reactions, Vatcha (1976) concludes that 

'the presence of CO strongly inhibits the methanation of 
C02, but C~ barely influences the methanation of CO in 
their mixtures. Thus, in a reactor C02 would remain uncon
verted until the CO became depleted to a very low concen
tration (typically 200 ppm on nickel) and only then would 
the C02 begin to get methanated." 

kou 

EaM 

K1 
K2 

Total Pressure 1-69 atm 
Temperature 547-755° K 
F'eed Gas Composition 
~:CO > 2.85 
H20 < 5% 
c~ < 20% 
N2 < 50% 
HaS < 0.5ppm 

Table 3.3-2 
Validity Range of Methanation Rate Expression 

(Source:Vatcha, 1976) 

Jlethanation Steam-Shift 

0.075 mole CO 
kos 17.816 

mole C02 

sec g cat atm L5 atm2 g cat sec 

6944. cal 
Eas 18900. cal 

g-mole g-mole 
1.47 atm-1 fl 0.83 atm 
0.73 atm-1 rl! 0.17 

Table 3.3-3 
Empirical Constants for Equations (3.3-1) and (3.3-3) 

· Although Vatcha also shows that literature surveys on the steam-shift reac-

tion are inconclusive, we have included this side reaction in our modeling 
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analysis. This allows consideration of multiple reactions in the control model 

development. A complete analysis of the steam-shift reaction is provided by Moe 

(1962). Based on correlations of experimental data, he reports a rate expression 

of the form 

(3.3-3) 

which should be appropriate over a wide range of operating conditions. The 

pressure dependence of the steam-shift reaction rate 

(3.3-4) 

is also derived from empirical results (Moe, 1962). 

Finally, the equilibrium constants Kpll and KPs are taken as functions of 

temperature as given by van't Hoff's equation: 

ln I<p., = KP11t + ~~~ 
ln~ = ~1 + ~2 

The necessity of these relationships and values for the parameters in these 

expressions are presented in Section 3.4. 

The empirical rate expressions given in Equations (3.3-1) and (3.3-3) were 

used for initial simulations. Actual rate expressions for our specific catalyst, 

reactor bed and expected operating conditions were determined in preliminary 

experiments using a kinetics reactor (Strand, 1984) bullt specifically for these 

studies. Preliminary results show that the kinetics for our catalyst are actually 

much different than those predicted by the above expressions. The dependence 

of the rate on the specific concentrations of carbon monoxide, hydrogen, and 

methane are significantly different, and the activation energy is much higher. In 
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particular. the reaction was much more sensitive to operating conditions and 

especially to the temperature, leading to much steeper gradients in the axial 

concentration and temperature profiles. These new methanation kinetics are of 

the form (Strand, 1984) 

(3.3-6) 

With the rate constants shown in Table 3.3-4. The final term, e-(lt, in the rate 

expression is an empirical catalyst deactivation term. The steam-shift reaction 

was found to be negligible with the nickel on alumina catalyst under the prelim-

inary experimental conditions. 

1.2BxlOt4 mole CO 
sec gr cat atm2 

37000_ .s&_ 
mole 

110. atm-1 

2.32 atm-1 

0.3 hr-1 

Table 3.3·4 
Rate Constants !or Methanatton Reaction 

Kinetics Given By Equation (3.3-6) 

This rate expression differs significantly from that proposed by Vatcha 

( 1976). The new expression does not include any terms explicitly for the equili

brium (i.e., a term like 1-v in Vatcha's expression). This term was not found to 

be needed under the limited planned operating conditions (relatively Low tem

peratures and concentrations), since at these conditions the equilibrium con

stant KPu is approximately 109 and the reaction therefore goes to nearly 100% 

completion. Furthermore. experimental results showed a very high activation 

energy and rapid deactivation of the catalyst. The rate expression includes an 

empirical deactivation term, although the activity remains nearly constant dur-
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~ most control experiments of reasonable duration (3~5 hours) after an initial 

deactivation period of about 100 hours. 

Significant insight into the mathematical modeling of packed bed reactors 

can then be obtained by completely modeling the experimental reactor using 

both reaction rate expressions for methanation. Because of the preliminary 

nature of the new kinetic expression (Equation 3.3-6), much of the analysis 

presented in this thesis is performed using the methanation kinetics expression 

given by Equation (3.3-1). Conclusions in this modeling work were verified with 

the new reaction kinetics, thus allowing consideration of various kinetic models 

in the modeling analysis. The only major effect of the new kinetics on the 

modeling work is discussed in Section 3.5. 

As pointed out in this section, global reaction kinetics are used in this 

analysis. These kinetics must then account for the the adsorption/desorption 

on the catalyst surface and the intraparticle diffusion. However, most available 

kinetic information is based on steady state data. A major concern is then the 

importance of the transient behavior of the adsorption/desorption processes 

and the characteristic times for the intraparticle diffusion dynamics. Although 

the intraparticle diffusion can be shown to be generally insignificant in the reac

tor dynamics:' experimental efforts are needed to gain further information on 

the dynamics of the adsorption/desorption processes. 

3.3.3 Formation of Complete llathematicalllodel 

A two-dimensional, two-phase mathematical representation of the experi

mental packed bed reactor is developed in this section. This mathematical 

4. The time constants for the temperature and concentration profiles in the pellet to change are at 
least an order of magnitude faster than the time constants for the temperature and concentra· 
tion proilles in the reactor bed. 
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model significantly extends previous packed bed modeling studies through a 

reduction in a priori simplifications. Detailed consideration of the common 

simplifications is then possible, and the validity of certain assumptions can be 

assessed in light of the combined effect of multiple assumptions and of the 

overall benefits of the assumptions. The general view that modeling 

simplifications will lead to a reduction in numerical solution effort and are 

therefore desirable or in many cases necessary is shown to not be universally 

correct with today's new computational capabilties. Furthermore, most previ

ous modeling studies have been restricted to specific systems due to the appli-

cabiltiy of the chosen assumptions for each individual case. The approach 

taken in this work was to minimize these assumptions so as to develop a general 

packed bed reactor model that could be transported to other systems with 

minimal efi'ort.:s 

The heterogeneous packed bed reactor consisting of solid, nonspherical 

catalyst particles and reacting gas is treated as two phases with the assumption 

that the packed bed may be treated as a continuum insofar as changes occur 

smoothly and continuously within each phase throughout the bed. This assump

tion is generally valid for most industrial reactors and should be valid under the 

conditions of this analysis (Carberry and Wendel. 1963; Hlavacek. 1970; Stewart, 

1967), since the ratio of bed diameter to particle diameter for the experimental 

reactor is about Z5 and the axial aspect ratio is very large (ZOO- 300). The heat 

and mass fluxes can then be treated in a form analogous to Fourier and Fick 

laws, respectively. 

Previous investigations have often assumed that the difference between the 

catalyst and gas temperatures are negligible in tubular reactors for fast flowing 

5. Although this current modeling is for a general, nonadiabatic packed bed reactor with an axial 
thermal well, the analysis easily extends to the consideration of adiabatic reactors and those 
without a thermal well. These are merely subsets of the more general case. 
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gas-solid systems. Industrial experience and experimental studies (Froment, 

1974; Gould, 1969; Hoiberg et al., 1971; Jutan et al., 1977) have verified that 

there is essentially no temperature dift'erence ( < 5a K) between the catalyst and 

gas at steady state. Furthermore, this assumption has also often been defended 

by the argument that it is difficult in practice to measure separately the gas and 

solid temperatures. However, for control studies, the two-phase representation 

is necessary since considerable (> 10° K) differences can exist between gas and 

solid temperatures during dynamic conditions, and for control applications, the 

dynamic situation is of major importance. The measurement problems can and 

often are in practice reduced by measuring temperatures within an internal 

thermal well rather than in either the gas or catalyst. Modeling of the thermal 

well in the system is then necessary to perform accurate dynamic control. 

A variety of assumptions is often made concerning the axial and radial 

dispersion of mass and energy. These assumptions are based on a significant 

amount of supporting literature and for most systems involve neglecting axial 

and radial mass diffusion and axial energy diffusion, depending on the aspect 

ratios of the reactor bed. Although these assumptions have often been neces

sary in the past due to limitations of the computational techniques available for 

numerical solutions of the model and in particular the second derivative 

ditiusion terms, current techniques do not require such assumptions and may 

indeed be hindered by them. 

The present analysis begins by incorporating all axial and radial dispersion 

effects, including axial conduction within the thermal well. Axial conduction in 

the outer wall is neglected based on the first assumption presented below and 

on Bonvin's (1980) results that the conduction in the outer wall is most likely 

insignificant and can be neglected from the model it axial dispersion in the bed 

is retained. Although many dynamic analyses of packed bed reactors have 
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neglected radial gradients to limit the complexity of the resulting model. this 

work considers a packed bed system with extensive cooling at the reactor wall 

and thus must account for the radial profiles within the bed (Jutan et al., 1977). 

Radial temperature gradients are neglected within the thermal well due to its 

comparitively small radius and high thermal conductivity. 

Also accounted tor by the model are density, heat capacity, and molecular 

weight variations due to temperature, pressure, and mole changes, along with 

temperature induced variations in equilibrium constants, reaction rate con

stants, and heats of reaction. Axial variations of the tluid velocity are 

accounted for in the mathematical description using the overall mass conserva~ 

tion or continuity equation. These variations are the result of axial tempera

ture changes and the change in the number of moles due to the methanation 

reaction. 

The major assumptions underlying the original model are: 

1. The reactor wall temperature is equal to the cooling tluid temperature 

and is independent of length along the reactor (Carberry and Wendel, 

1963; Jutan et al., 1977; Smith, 1970). The validity of this assumption is 

generally based on the very hiJ;h thermal conductivity of the reactor wall 

and on the use of boiling ftuids or high convection in the outer cool.ing 

shell. The experimental reactor is designed to have boiling fluid in the 

cooling jacket, as is common in highly exothermic industrial reactors. 

2. Gas properties are functions of temperature, pressure, and total moles as 

dictated by the ideal gas law. The assumption of ideal gas behavior will be 

accurate as long as the operating temperatures of the reactor are much 

higher than the critical temperatures of the component species and the 

pressures are relatively low. These conditions should be met at the 
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expected operating conditions of the experimental methanation reactor 

and are in general valid for most gaseous reaction systems. 

3. There is no radial velocity, and the axial velocity across the radius of the 

packed bed is uniform. Schwartz and Smith ( 1953) found that the veloc

ity across the diameter of a packed bed is not uniform for radial aspect 

ratios (tube-to-particle diameter) less than about 30, due to the 

significant effect of the increased void space near the wall where the par

ticles are locally ordered. This result has been verified by Hoiberg et al. 

(1971) for a packed bed reactor with radial aspect ratio about 50. They 

considered a radial velocity runction suggested by experimental observa

tions with a sharp peak about 15% greater than the mean fluid velocity 

situated close to the wall. Simulations using their model showed results 

virtually identical to those obtained with a uniform velocity profile. 

Although the radial aspect ratio for our experimental reactor is under 

30,6 a uniform velocity profile was assumed. Preliminary residence time 

distribution studies should be conducted on the experimental packed bed 

reactor to test this assumption. Although in many cases it may be 

desired to increase the radial aspect ratio (possibly by crushing the 

catalyst), this may be difficult in our system due to the highly exothermic 

solid-catalyzed reaction that can lead to excessive temperature rises 

near the center of the bed. Carberry ( 1976) recommends reducing the 

radial aspect ratio to minimize these temperature gradients. If the velo

city profile in the experimental reactor is significantly nonuniform, the 

mathematical model developed here allows predictive equations such as 

those by Fabien and Stankovic ( 1979) to be easily incorporated. 

6. Actually there are only about 12 particle die.meten~ between the thermal well and outer wall. 
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4. The physical properties of the solid catalyst and thermal well are taken 

as constant, since the conditions within the reactor introduce only minor 

vartations in these parameters, and the heats of reaction and gas heat 

capacities are taken as linear functions of temperature. 

5. Hlavacek ( 1970) has shown that radiation between the solid catalyst and 

gas can signifl.cantly affect the temperature dynamics in packed bed sys

tems operating in excess of 673° K. Since the system considered in this 

work usually operates well below these conditions, radiation terms are 

not explicitly included in the model. However, their effect can to some 

degree be accounted for in the overall heat transfer coeffi.cients.7 

It should be noted that the model developed in this analysis may be much more 

complex than that necessary for accurate description of the experimental 

methanation reactor. The increased complexity and generality allow simple 

extensions of the model to other systems and to include additional physical and 

chemical processes such as radial velocity variations and the dependence of 

heat transfer coefficients on physical properties as defined by heat transfer 

correlations. 

3.3.4 Mathematical Relationships 

The analysis in this thesis centers around the actual reactor bed. Combin

ing these results with a simple analysis of the external processes, such as the 

product recycle and feed-effiuent heat exchanger. allows overall system analysis. 

Figure 3.3-2 shows an expanded section of the reactor bed and defines the coor

dinate system for the mathematical modeling. 

A complete mathematical description or the reactor bed results using the 

7. But not entirely since radiation effects are nonlinearly related to temperature. 
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six differential equations that describe the catalyst, gas, and thermal well tern-

peratures, CO and C02 concentrations, and gas velocity. These are the con

tinuity equation, three energy balances, and two component mass balances. The 

following equations are written in dimensional quantities and are general for 

packed bed analyses. Systems without a thermal well can be modeled simply by 

letting hu. ht.g. and Ro equal zero and by eliminating the thermal well energy 

equation. Adiabatic analysis simply involves setting h.,... and h.,, equal to zero. 

Total mass conservation (continuity): 

Z = 0 PgUg = PgoUgo 

Energy balance for the gas: 

(3.3-B) 

Then for the reactor bed after assuming kzg and krg constant, 

(3.3-9) 

r=R0 
BT 

kr8 7jf-= hq(T8-Tt) 

BT 
-kr8~= h.,..8(T1-T..-) 

z=O 
8T kq,7f:-= hsg(T8-T9) - UgCpfgE(To-T1) 

8T 
-kr.g,Tz-= hs,g(T8-T8) z=L 
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Note that the convective term in the outlet boundary condition is generally 

assumed negligible (Heiberg et al., 1971). This assumption is used 

throughout the ensuing analysis. Also note that the gas heat capacity, cPs· 

gas density, p8, and gas velocity, u8 , are functions of position and time due 

to their dependence on mole changes, pressure, and temperature. Original 

calculations considered the gas heat capacity and thermal conductivity as 

linear functions of temperature since expected changes in molar composi-

tion throughout the bed had minimal effects ( < 1%) on these properties. 

However, later analysis replaced the thermal conductivities and heat 

transfer coefficients with dimensionless Peclet and Biot numbers which 

were taken as constant throughout the bed. 

Energy balance for the catalyst: 

Using a similar analysis to that for the energy balance of the gas and 

after assuming constant physical properties of the solid phase, 

(3.3-10) 

r=Ro krs ~· = ht.s(Ts-Tt) 

r~Rl -krs ~ ~ h.w.(Ts-Tw) 

BT8 ( ) z=O ~~az-=h88 T8 -T8 

-kzs ~; = hag(Ts--Tg) 

The heats of reaction for the methanation and steam-shift reactions are 
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taken as linear functions of temperature: 

i =S, M (3.3-11) 

based on literature data and standard temperature dependence of the 

heat capacities of the gas components. A verification of the necessity and 

applicability of this relationship along with the specific parameters for 

methanation and steam-shift is given in Section 3.4. 

Energy balance for the thermal well: 

Assuming constant physical properties in the thermal well, 

(3.3-12) 

z=O 

z=L 

De Wasch and Froment (1971) discuss the calculation of the wall heat 

transfer coefficients for the fluid and gas phases based on a lumped wall 

heat transfer coefficient. Furthermore, radial heat conduction in the ther-

mal well is neglected since it should be of minor importance for a thin solid 

well. 

Mass balance in the reactor section: 

Since two independent reactions are expected to be important within the 

reactor, a mass balance must be written for each of two independent 

species. Due to the sensitivity of the concentrations of the gaseous species 

in the reactor under the planned operating conditions and to difficulties in 

accurate concentration measurements, these two are taken as CO and C02 

in this analysis. Both of these species can accurately be detected using a 
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chromatograph with a simple thermal conductivity detector or with a. con-

tinuous CO/C02 analyzer. Note that i = 1 refers to CO and i = 2 refers to 

c~ in the following analyses. 

The equation of continuity in cylindrical coordinates is (Bird et al .. 

1960) 

But 

BN,e = O 
1. Be 

thus 

(3.3-13) 

If we then incorporate the void fraction and apply the continuity equation 

for species i along with Fi.ck's law of diffusion and the assumption of con-

stant ditiusivity and no radial velocity 

oci _ o(C(ug) D o [ Bx,; l Dr a [ Bx,; l Rt --- - + - c + -- rc --Bt Bz 21 Bz Bz r or Br e 

where Rt = Rw-Rs . ~ = Rs . 

z=O 

z=L 

i:}~ 
-=0 Br 

ax.. 
Ug(Ci0-c,) = -cDzaz 

a~ 
-=0 
Bz 

(3.3-14) 
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The rate terms R11 and R5 are taken to be global rates, incorporating all 

mass transfer limitations. This allows bulk phase concentrations to be 

used throughout the analysis. Although species concentration is proper-

tional to mole fraction, 0( = CX(, complications arise since the total number 

of moles decreases as the methanation reaction progresses. Therefore to 

simplify the analysis technique, the mass balances are written using molec-

ular weights and mole fractions based on inlet conditions. Letting o be the 

moles of CO reacted in the methanation reaction per total inlet moles, 

(3.3-15) 

the following relations hold 

(3.3-16) 

The advantage of this formulation is that the molecular weight based on 

inlet conditions, Mg. is constant. Thus 

(3.3-17) 

Then after application of the overall continuity, Equation (3.3-15) becomes 

D,. a [ o:Ki 2pgJCir aoj_ ~Mg + -- rp --+ .....;....>-<-::-:-r ar g ar 1-20 ar £' 
(3.3-18) 

z=O 

z=L 
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Furthermore, algebraic manipulation of the boundary conditions using the 

reaction relationship 6 = X'10 +X2
0 
-X'1 -X'2 leads to8 

z=O 

z=L 

Additional relations: 

Finally, relationships for density and pressure changes are necessary. The 

ideal gas law leads to 

(3.3-19) 

The changes in the pressure along the bed are taken as linear by assuming 

uniform packing and negligible wall effects. he overall pressure drop 

across the bed is simply defined by the Ergun equation (Perry and Chilton, 

1973) 

6P- 1[150(1-E)J.Lg + 175 ]1-c Ug, 
- Dp . P&o ~ e Dp (3.3-20) 

where D = 6(volume of particle) 
P external surface area of particle 

This could easily be replaced with a Blake-Kozeny type relationship 

P =Po at z=O (3.3-21) 

if the original assumption is inadequate. 

B. The stipulation x10 + X2
0 

# * is needed for l"'.igorous mathemaucal derivation of the reduced 
boundary conditions. 
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It should be noted that the importance of the continuity equation in the 

general modeling presented throughout this thesis may be questionable since its 

only use is in evaluating actual velocities Within the reactor bed as intluenced by 

the mole, temperature, and pressure changes. Because of the use of mass veloci

ties (pgug) throughout much of the analyses, the importance of the actual veloci

ties is really restricted to analyses where pressure relationships such as the 

Blake-Kozeny equation or velocity effects on heat transfer parameters are con

sidered. Since our analysis is set up to be general and allow the inclusion of 

these effects, the continuity equation is necessary. As seen later, very little 

increased computational effort is introduced by retaining this equation, since it 

is solved as a set or algebraic equations. 

3.3.5 NUIIlericu.l Soluliuu. 

Before attempting to solve the system of partial differential equations. they 

are reduced to dimensionless form. The axial parameters are normalized with 

respect to the reactor length, L, radial parameters with respect to the outer 

radius, R1, time with respect to the characteristic time L/u80 , and the remaining 

parameters with respect to the steady state inlet conditions. The concentra

tions are actually normalized with respect to the inlet steady state concentra

tion of CO rather than with respect to each individual component, since some 

inlet concentrations (except CO) may be zero during normal experimental con

ditions. 

The resulting mathematical system consists of six coupled, three

dimensional, nonlinear partial differential equations along with nonlinear alge

braic boundary conditions, which must be solved to obtain the temperature 

profiles in the gas, catalyst, and thermal well, the concentration profiles, and 
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the velocity profile. These equations are presented in Appendix 2. In their 

present form. direct solution is not possible. However, approximation tech

niques are available to reduce the equations to a set of tl.rst-order ordinary 

ditl'erential equations in the time domain. The resulting system can then be 

solved numerically using a variety of standard techniques. In this work, the 

method of orthogonal collocation is used for this reduction, since it has proven 

to be an extremely powerful technique in reactor modeling (Bonvin, 1980; Fin· 

layson. 1971; Jutan et al., 1977). 

3.8.5.1 Solution Techniques 

Considerable emphasis has been placed during the past twenty years on 

numerical solution techniques for complex nonlinear systems of the types com

mon in chemical reactors. Traditional finite difference schemes are being 

replaced by applications of the methods of weighted residuals. Finlayson ( 1972, 

1980) has presented and compared the application of these various techniques 

for the nonlinear annl.ysis of problems in chemical engineering. 

The finite difference method involves dividing the domain up into intervals 

with the boundary points between intervals being called the grid or mesh points. 

Then for a continuous function across the interval, a Taylor series expansion 

can be used to deduce ditrerence formulas for first and second derivatives. If 

the ditrerential equations are written at each grid point using the difference for

mulas and the values at the first and last grid point solve the boundary condi

tions, enough equations are available to solve for the value of the function at 

each grid point and thus provide a representation of the solution. For most 

chemical systems. the resulting equations are nonlinear, and accurate solution 

requires a large number of grid points. Solution of the system is not trivial but 
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can usually be obtained quite rapidly using various standard numerical pro-

cedures (Dahlquist and Bjerke, 1974; Davis, 1984; Finlayson, 1980). 

The finite difference method can easily be extended to multidimensional 

systems by applying the same techniques in each of the dimensions. However, 

the scale of the numerical problem increases dramatically with the number of 

dimensions. Since nonadiabatic packed bed reactors consist of two important 

spalial dimensions, radial and axial, along with the lime dimension and usually 

require a large number of grid points. accurate solution using the finite 

difference scheme is often computationally prohibitive and may limit the com

plexity of the mathematical model. 

The method of weighted residuals presented in detail by Finlayson (1 972. 

1980) is a general method of obtaining solutions to both linear and nonlinear 

systems of partial differential equations and is often used in one of its forms to 

reduce the computation time from that of the finite difi'erence technique. In the 

method of weighted residuals, the unknown exact solutions are expanded in a 

series of specified trial functions. that are chosen to satisfy the boundary condi-

tions, with unknown coefficients that arc chosen to give the 'best' solution to the 

differential equations: 

y(x) = ~0(x) + t CA:¥"A:(x) 
k~ 

(3.3-22) 

These trial functions are substituted into the differential equations, and the 

result is the residual (R). This residual is weighted by functions characteristic 

of the particular method, and the weighted residuals are minimized over the 

domain of the independent variable (V). In particular, the weighted integrals of 

the residuals are set to zero: 
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j = 1. 2, ... , N (3.3-23a) 

where the inner product is defined by 

(3.3-23b) 

The method of weighted residuals is comprised of the following basic tech

niques, depending on the choice of the weighting function (Finlayson. 1972): 

Subdomain Method 

The domain is divided up into N subdomains, V;, and the weights are 

chosen as 

X inVj 
X not in Vj 

The differential equation, integrated over the subdomain, is then zero. 

As N increases, the differential equation is satisfied on the average in 

smaller and smaller subdomains and approaches the exact solution 

everywhere. 

Collocation Method 

The weighting functions are chosen to be the Dirac delta function 

(3.3-25) 

Thus 

fv Wj R dV = R l '1<1 (3.3-26) 

This technique then forces the residual to be zero at N specified collo-

cation points. As N increases, the residual is zero at more and more 

points and presumably approaches zero everywhere. 



-203-

Um.st. Squares Method 

The least squares method uses the weighting functions 

BR W·=--
J Bcj 

(3.3-27) 

so that the mean square residual fvR2(e;.,x) dV is being minimized. 

The mean square residual is zero for the exact solution, so that, as 

the number of parameters is increased, the mean square residual 

gets smaller and the approximate solution approaches the exact solu-

tion. 

Galerkin's Jlethod 

In this method, the weighting functions are chosen to be the trial 

functions, which must be selected as members of a complete set of 

functions. (A set of functions is complete if any function of a given 

class can be expanded in terms of the set.) Also according to Finlay-

son (1972), 

"a continuous function is zero if it is orthogonal to every 
member of a complete set. Thus the Galerkin method 
forces the residual to be zero by making it orthogonal to 
each member of a complete set of functions (in the limit 
as N-+ oo )." 

Method of 'Moments 

In the Method of Moments, the weighting functions are chosen as 

w· = x1-t 
J (3.3-28) 

Thus successively higher moments of the residual are required to be 

zero. 

All of these methods of weighted residuals have proven to be quite powerful and 

have been shown by Finlayson ( 1972, 1980) to be accurate numerical techniques 
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superior to finite ditl'erence schemes for the solution of complex differential 

equation systems. 

Another potential solution technique appropriate for simulations of the 

packed bed reactor is the method of characteristics. This procedure is suitable 

for hyperbolic partial differential equations of the form obtained from the 

energy balance for the gas and catalyst and the mass balances i! axial disper

sion is neglected and if the radial dimension is first discretized by a technique 

such as orthogonal collocation. The thermal well energy balance would still 

require a numerical technique that is not limited to hyperbolic systems since 

axial conduction in the well should be significant. 

3.2.0.1 Orthogonal Collocation 

Of the various methods of weighted residuals presented in the previous sec

tion, the collocation method and in particular the orthogonal collocation tech

nique described in this section has proven to be quite effective in the solution of 

complex, nonlinear problems of the type typically encountered in chemical reac

tors. The basic procedure was used by Stewart and Villadsen (1969) for the 

prediction of multiple steady states in catalyst particles, by Ferguson and Fin

layson ( 1970) for studying the transient heat and mass transfer in a catalyst 

pellet, and by McGowin and Perlmutter (1971) for local stability analysis of a 

nonadiabatic tubular reactor with axial mixing. Finlayson (1971, 1972, 1974) 

showed the importance of the orthogonal collocation technique for packed bed 

reactors. 

The orthogonal collocation method has several important differences from 

other reduction procedures. With other techniques, difficulties are often 

encountered in deriving the values of the integrals involving complex nonlinear 
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terms. In collocation, it is only necessary to evaluate the residual at the colloca

tion points. The orthogonal collocation scheme developed by Villadsen and 

Stewart ( 1967) for boundary value problems has the further advantage that the 

collocation points are picked optimally and automatically so that the error 

decreases much faster as the number of terms increases. The trial functions 

are taken as a series of orthogonal polynomials which satisfy the boundary con-

ditions and the roots of the polynomials are taken as the collocation points. 

Thus the choice of the trial functions and collocation points is no longer arbi

trary, and further analysis (Finlayson, 1972) shows that with this choice, low-

order collocation results are more dependable. A major simpllficatlon that 

arises with this method is that the solution can be derived in terms of its value 

at the collocation points, instead of in terms of the coefficients in the trial func

tions, and that at these points the solution is exact. 

A rigorous description of the technique requtres appropriate definitions of 

the orthogonal polynomials Pm(x) as 

(3.3-29) 

with degree m and order m+l. The coefficients are defined so as to require the 

orthogonality condition 

b J. w(x)Pn(x)Pm(x) dx n=O, l, 2, ... , m-1 (3.3-30) 

to be satisfied for weighting functions w(x) ~ 0. For boundary value problems, 

the solution is expanded in terms of orthogonal polynomials with the first term 

satisfying the boundary conditions followed by a series that has unknown 

coefficients, with each term satisfying the homogeneous boundary conditions. 

Var.ious expansions are then possible. The most common and useful are: 
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(3.3-31) 

YN(X) = ~ y(X-t)"(x) 
i=l 

Since derivatives are actually expressed in terms of the solution at all of the 

grid points in the collocation scheme rather than simply in terms of the neigh-

boring grid points as in finite difference schemes, the orthogonal collocation 

technique then leads to computer programs that are relatively simple and to 

numerical solutions that require a very few number of collocation points in 

comparison to the number of grid pointR neceRsary for a similar finite difference 

solution. 

3.3.6.3 Mod.el Reductwn 

Finite difference methods have traditionally been used for reduction of par-

tial differential equation systems to ordinary differential equations or even to 

systems of algebraic equations that can readily be solved using simple numeri-

cal techniques. However in chemical reactors, this method has a major draw-

back. For the system of six coupled, three-dimensional. nonlinear partial 

differential equations describing the methanation reactor, if we assume that 

even 5 grid points are adequate for discretizing the radial direction and 30 grid 

points for the axial direction,9 we have a mesh of 150 grid points. At each grid 

point, there are six ordinary differential equations in time. Hence the total 

number of ordinary differential equations necessary to describe the system 

would be 900! Much too large for extensive simulations or for control. 

. The method of orthogonal collocation on the other hand has been very sue-

9. Other studies have used up to 20 radial grid points and 10000 axial grid points! 
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cessfully applied to chemical reactors and provides an accurate means of 

transforming partial differential equations into a reasonably small set of ordi

nary differential equations. This procedure is applied to the reactor model to 

discretize both the radial and axial dimensions, leaving a manageable set of 

ordinary differential equations in time. 

3.3.5.3.1 Radial Collocation 

The first step in the solution procedure is discretization in the radial direc-

tion. This involves writing the three-dimensional differential equations as a pos-

sibly enlarged set of two-dimensional equations at the radial collocation points 

with the assumed profile identically satisfying the radial boundary conditions. 

An examination of experimental measurements (Valstar et al., 1975) and typical 

radial profiles (Finlayson, 1971) indicates that radial temperature profiles can 

adequately be represented by a quadratic function of radial position. The qua-

dratic representation is preferable to one of higher order since only one interior 

collocation point is then necessary, 10 thus not increasing the dimensionality of 

the system. The assumed profile is of the form: 

(3.3-32) 

with the number n of interior radial collocation points taken as one. This profile 

must satisfy the boundary conditions and must be exact at the collocation 

points r = t;Do. rc• and 1.0, where the interior collocation point rc is selected as 

the zero of the appropriate orthogonal polynomial. This formulation is 

equivalent to the trial function 

y(x)::::: b +cx+x(l--x) ~ a,;Pi-t(X) 
i=l 

10. Along with two boundary points, there are three collocation points. 
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(3.3-33) 

given byVilladsen and Stewart (1967) for nonsymmetric profiles. 11 

Rigorous application of the procedure as presented by Finlayson ( 1972) or 

the equivalent procedure presented below of satisfying the boundary conditions 

with the assumed profile, leads to the coefficients c4(19.() for the gas and tern-

perature profiles in terms of the temperatures at the collocation point, within 

the well. and at the outer wall. Since the objective of radial collocation is to 

eliminate the radial derivatives, Equation (3.3-32) is then substituted into the 

partial differential equations. 

For example, consider the radial temperature profile in the gas. At the 

three radial collocation points r = 9'o· rc, and 1.0, let the gas temperatures be 

98o, air. and ®g
1 

and assume that the radial profile is quadratic: 

(3.3-34) 

This profile must satisfy the boundary conditions 

(3.3-35) 

where A.trg and A.wrg are the dimensionless radial Biot numbers at the thermal 

well and cooling wall. respectively. The profile must also be exact at the three 

collocation points: 

e8o =do+ d19'o + d29'§ 

air= do + dlrc + d:!r; 

9g1 = do + dl + ~ 

After rearranging and eliminating 98o and 9g
1

• 

(3.3-36) 

11. Due to the presence of the thermal well, a nonsymmetric function is nece83ru"Y to dei!Cribe the 
profile between r = 9'o and T = 1.0. 
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(3.3-37) 

The expressions for c4(1).() in terms of 9~,.. 9t and 9w can be simply obtained by 

applying Cramer's Rule. These solutions are shown in Appendix 3. 

Since 

(3.3-38) 

the dimensionless form of Equation (3.3-10) becomes 

(3.3-39) 

where Sg and 0 8 are now the temperatures at the radial collocation point rc, and 

p8 and cp
11 

are now dimensionless parameters, normalized with respect to Lbe 

inlet steady state values. Similar results are obtained for the energy balance of 

the catalyst. Although the solutions of the d.ift'erential equations are then 

obtamed for the temperatures at the radial collocation point, the temperature 

at any radial point can easily be determined using the radial profile given by 

Equation (3.3-34) along with the solutions to Equation (3.3-37) for d,('l).() 

presented in Appendix 3. 

The radial collocation point is then selected as the zero of the orthogonal 

polynomial for cylindrical geometry between r = 'i"o and r = 1.0. To be rigorous, 

the entire analysis could be based on the shifted variable 

T\Do 
r'=--

l~Do 
0 ~ r' ~ 1 (3.3-40) 

However, lengthy algebraic manipulations show that the results are identical. 
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Nevertheless, it is convenient to use r' to find the radial collocation point, which 

is then the zero of the Jacobi polynomial tor a nonsymmetric system between 

zero and one. 12 

For radial concentration profiles, a quadratic representation may not be 

adequate since application of the zero fiux boundary conditions at r = rp0 and 

r = 1.0 leads to d2 = ds = 0. Thus a quadratic representation for the concentra

tion profiles reduces to the assumption of uniform radial concentrations, which 

for a highly exothermic system may be significantly inaccurate. Although addi

tional radial collocation points greatly increase the dimensionality or the result

ing model. they may be necessary to accurately express the radial concentra

tion protlles. Preliminary analysis in this section considers only one interior 

radial concentration collocation point. although a detailed analysis of this 

assumption is presented in Section 3.4.5. In that analysis, an assumed concen

tration profile of the same form as Equation (3.3-32) is solved with several inte

rior radial collocation points to determine the radial concentration coefficients. 

The mass balances are then satisfied at each collocation point. 

Thus, the original differential equations have been reduced from three

dimensional in variables (, r, and ~to two-dimensional in variables ( and ~by 

orthogonal collocation in the radial variable -r. The reduced temperature equa

tions are a function of the dependent variables at the radial collocation point rc, 

but incorporate radial information via the well and wall temperatures. Radial 

profiles can be generated Cram the collocation equation using the expressions 

for the coefficients di(~.() presented in Appendix 3. Similarly, the continuity 

equations are functions of the concentrations at each collocation point for mul

tipoint radial collo~::ation. With one interior collocation point for the concentra

tion analysis, the system consists of six differential equations describing the 

12. The s:in&Je radial collocation point is taken as r' = 0.5 for the methanation system. 
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overall continuity, energy balance for the thermal well, energy balance for the 

gas and catalyst in terms of conditions at rc, and mass balances for CO and C02. 

This shows the incentive for using only one radial collocation point, since the 

number of two-dimensional partial differential equations is the same as the ori-

ginal number of three-dimensional equations. 

3.3.5.3.2 Axial Collocation 

Since the resulting system after radial collocation is still too complex for 

direct mathematical solution, the next step in the solution process is discretiza-

tion of the two-dimensional system by orthogonal collocation in the axial direc-

tion. Although elimination of the spatial derivatives by axial collocation greatly 

increases the number of equations,18 they become ordinary differential equa-

tions and are easily solved using traditional techniques. Since the position and 

number of points are the only factors affecting the solution obtained by colloca

tion, any set of linearly independent polynomials may be used as trial functions. 

The Lagrangian polynomials of degree N based on the collocation points (1 

i=O, 1, ... , N+l {3.3-41) 

are used here. The ditlerential equations are then collocated at theN zeros, {,t. 

k ::: 1, 2, .... N, of a Legendre polynomial. Since only one lagrangian is non-zero 

at a collocation point and since the residual is set equal to zero at this paint, 

the coetlicient of the Lagrangian term is equal to the solution at that point. 

Following the development of Villadsen and Michelsen ( 1978), the assumed 

axial profiles are: 

13. Since more tha::1 one axial collocation point is generally necessary. 
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j =1, 2 

(3.3-42) 

Since the l.,;(() are known functions based solely on the collocation points, the 

differential operators can be applied a priori: 

A;;. = dl.,;(() J 
d( ~j. 

(3.3-43) 

Then after operating on the assumed solutions with the differential operators 

and substituting into the partial differential equations. the residuals are set 

equal to zero at the collocation points. 

The collocation points are calculated using programs given by Vllladsen and 

Michelsen ( 1978) for calculating the zeros of an arbitrary Jacobi polynomial 

plf.Bl(x) that satisfies the orthogonality relationship 

(3.3-44) 

where c, is a constant, t5v is the delta function and a and (3 are chosen based on 

the geometry of the system. For the methanation reactor, zeros of Ptf·0>(z) are 

used as collocation points. 

The resulting equations in terms of conditions at the collocation points ~ 

are: 

Catalyst Energy Balance 

(3.3-45) 
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Gas Energy Balance 

.(3.3-46) 

:U:a.ss Balances 

+ 4y~ [ oa~ Jz] + 
( 1-2o)2 ~ 

(3.3-47) 

k:;:; 2 
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where 

Thermal Well Energy Balance 

Overall Continuity 

(3.3-49) 

Note that i = 1, 2 .... , N for all of the equations except the last where 

i = 1, 2, ... , N+ 1, that the G.>t coefficients are the result of radial collocation and 

are presented in Appendix 3, and that all other dimensionless parameters are 



defined in Appendix 2. Furthermore, the reaction terms R'll and R's are calcu

lated at the conditions at the collocation points. 

The resulting equations are a set of 6N+l ordinary differential equations 

along with algebraic boundary conditions. The solution procedure is further 

simplified by solving the last equation for v~ as a set of algebraic equations, 

using the gas temperatures and derivatives of the gas temperatures from the 

solutions of the remaining differential equations. 14 Additionally, simple algebraic 

manipulation allows for explicit solution of Vio, eto, etN.f.l' Yio and Y;.:NH' while 

solution for @llg, @IIN+t' 9.1o, and 9gN+l requires the SimultaneoUS solution of four 

coupled algebraic equations. The resulting dynamic model is then a set of 5N 

coupled, nonlinear ordinary differential equations and N+5 coupled, nonlinear 

algebraic equations, where N is the number of interior axial collocation points. 

Typical steady state profiles along a reactor obtained by other authors 

(Jutan et al., 1977; Heiberg et aL. 1971) indicate that these profiles can be 

represented by relatively low-order polynomials. However, temperature profiles 

with steep gradients, as may be likely in a highly exothermic system such as 

methanation, may require higher-order polynomials. Although approximation 

error is reduced by increasing the number of collocation points. numerical 

problems with fitting higher-order polynomials to process curves may result. 

Section 3.7 discusses the model dimensionality in detail. Presently, let it suffice 

to say that 6 - 8 axial collocation points are generally sufficient. leading to a sys-

tern of 30 - 40 coupled, nonlinear ordinary differential equations and 11 - 13 

coupled, nonlinear algebraic equations. 

de 
14. i.e., effectively substitut.iiJ8 Equation (3.3-46) into Equation (3.3--49) for d: . 
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S. S. 5. 4 Numsrical Simulation 

Steady state solutions can be obtained by carrying a dynamic simulation to 

steady state or by setting the time derivatives equal to zero in the ordinary 

differential equations and then solving the resulting system of 6N+5 algebraic 

equations. In the latter technique, solutions for very steep axial profiles often 

show numerical convergence problems. These can be reduced by using better 

initial guesses or by varying the actual solution algorithm. In extreme cases. it 

may be necessary to carry the dynamic solution part way to steady state and 

then use its results as an initial guess of the steady state solution. 

Due to the large size of the mathematical problem and the complexity of 

the nonlinear equations, both dynamic and steady state solutions require 

powerful algorithms for the solution of nonlinear algebraic equations and for 

the solution of initial value problems in ordinary differential equations. Consid

erable analysis of various solution algorithms led to the final selection of the 

techniques described in this section due to their robustness under a great 

variety of conditions and their relative speed of solution in comparison to other 

techniques. Most other procedures exhibited convergence problems. Even the 

selected techniques fail to converge under certain conditions. but in general are 

flexible enough to allow solution with the adjustment of several convergence 

parameters. 

Although the solution of the algebraic equations is relatively simple for the 

dynamic simulations. it is extremely difficult for steady state solutions with poor 

initial estimates of the solution profiles. Two methods are used in the computer 

simulation programs developed in this work for the solution of the systems of 

nonlinear algebraic equations. These are based on algorithms by Powell (Rabi

nowitz. 1970) and Brown (1967). Although Brown's algorithm is in most cases 
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more powerful than that of Powell, it is in general significantly slower. Thus 

although the computer programs are written to use either technique, Brown's 

algorithm is only used in those cases where Powell's algorithm fails to converge 

to an appropriate solution. 

Consider the system of nonlinear equations 

Jc = 1. 2, .... n (3.3-50) 

where xis the vector of unknowns (x1, K2· ... , xJ. F(x) is the sum of squares of 

the residuals 

F(x) = f: [ft(x)]2 . (3.3-51) 
.t=l 

Powell's technique tor the solution of nonlinear equations is a hybrid of the 

classical Newton-Raphson procedure and the Levenberg/Marquardt steepest de

scent method. The new algorithm retains the fast convergence of the Newton 

method but ts modified to take steps along Lhe sLeepe::oL descent direction of 

F(x), if it seems that the classical Newton iteration diverges. 

The major difference between this hybrid algorithm and the standard 

Levenberg/Marquardt iteration is that Powell's procedure does not require 

explicit expressions for the derivatives of the functions, but instead uses succes-

sive values of f,;(:xU)) ( i = 1, 2, ... , n: j =1, 2, ... ) to build up a numerical approxi

mation to the Jacobian matrix. Note that r.;) is the jth estimate of the solution. 

The technique further includes several parameters that can be adjusted to 

improve convergence for each particular system. One common difficulty with 

this algorithm is that the method may converge to a stationary point or F(x), 

although this may not be a global minimum. The theory underlying this pro-

cedure, along with examples and a sample Fortran program are given by Powell 

(Rabinowitz, 1970). 
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In the event that Powell's algorithm fails to obtain a solution to the equa

tions, a different initial estimate of x can be attempted or Brown's (1967) qua-

dratically convergent algorithm can be used. Basically, Brown's procedure con-

sists of 

"expanding the first equation in a Taylor series about the 
starting guess, retaining only linear terms, equating to zero 
and solving for only one variable, say x..:. as a linear combi
nation of the remaining n-1 variables. In the second equa
tion, Xt is eliminated by replacing it with its linear represen
tation found above, and again the process of expanding 
through linear terms. equating to zero and solving for one 
variable in terms of the now remaining n-2 variables is per
formed. One continues in this fashion, eliminating one vari
able per equation, until for the nth equation, we are left 
with one equation and one unknown. A single Newton step is 
now performed, followed by back-substitution in the tri
angularized linear system generated for the x.'s. A pivoting 
effect is achieved by choosing for elimination at any step 
that variable having a partial derivative of largest absolute 
value ... (Brown. 1 967) 

Dynamic solutions of the mathematical model ror the packed bed reactor 

also require a powerful method for initial value problems in ordinary differential 

equations. The procedure selected in th1s work 1s a standard Adams-Moulton 

predictor-corrector technique. This procedure is based on the formula 

(3.3-52) 

where the differential equations are defined as 

~= f(x,y(x)) (3.3-53) 

In the Adams-Moulton case, f(x:,y(x)) is approximated by an interpolation poly-

nomial determined by the values at each iteration, f"+ 1• fn, ... .fn--.~: +1· In the par-

Licular routines used in Lhis work, k is taken as three and the predictor-

corrector formulas are 
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y!n:F) -Yn = ~~ (55fn -59fn-1 -37fn -2-9fn-:3) 

Y~Cfr) = Yn+ ~: (9fn+l+19fn-5fn-l+fn-2) 
(3.3-54) 

This method is combined with an automatic control of the step size and uses the 

method of Runge-Kutta-Gill to start the integration process and to restart the 

integration any time the interval size has been changed. 

Thus the system of ordinary differential equations describing the reactor is 

solved using an Adams-Moulton predictor-corrector technique with the method 

of Runge-Kutta-Gill being used to start the integration process, and the non-

linear system of algebraic equations is solved using Powell's hybrid algorithm 

(Rabinowitz, 1970) or Brown's ( 1967) quadratically convergent algorithm. 

The computer simulation programs developed for this system use modified, 

double precision versions of the Caltech library routines MODDEQ, NSESl. and 

NSES2 for these algorithms. Combining these techniques with a variable time-

step analysis, based on increasing the time-steps as the derivatives decrease 

during the approach to steady state. leads to an efficient solution procedure for 

obtaining dynamic reactor responses. All programs are written in double preci-

sian and are modular so as to allow for easy modification or use with other reac-

tor systems by simple subroutine replacement. These computer programs and 

complete operating instructions are included in Appendix 4. 

Although the technique described above is useful for simulating the full, 

nonlinear ordinary differential equation model, solution times can often be quile 

long. even up to several hours of computation time on a Digital Equipment (DEC) 

Vax 111780 for a fifteen minute simulation due to the size and nonlinearity of 

the system. These ·can be reduced significantly by linearizing the set of ordinary 

differential equations around the steady state solution. 15 The linearization is not 

15. This of course requi.res the ability to directly solve for the steady state solution. 
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lim1ted to only the rate expressions but is performed on the entire differential 

equations and is complicated by the dependence of the velocities, densities, heat 

capacities. and other gas properties on the temperatures and compositions 

throughout the bed. A linearization around steady state conditions leads 

directly to a model of the form 

:i(t) = Ax(t) + Bu(t) + D (3.3-55) 

where the state vector x includes the solid, gas, and thermal well temperatures, 

and CO and C02 concentrations at the collocation points. The control vector u 

consists of the expected disturbance and control variables, including cooling 

wall temperature, inlet velocities. inlet gas temperatures, and inlet concentra

tions of all species. 

This linearized model can be solved explicitly in terms of matrix exponen

tiation for time periods t 0 to ~ where u remains fixed: 

(3.3-56) 

This analytic solution can then be simulated using eigenfunction evaluation of 

the matrix exponential. Further explanation of this analysis is presented in 

Sections 3.6 and 3.7. 
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Figure 3.3-1 
Process Diagram for Experimental Catalytic Reactor 

(Source: Strand, 1984} 
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3.4: IIODEL ANALYSIS 

The objective of developing a complete mathematical description of an 

experimental reactor is not simply intellectual fulfillment, but rather to study 

the steady state and transient effects of various parameters. operating condi

tions, and modeling assumptions on the behavior, or actually the predicted 

behavior, of the experimental process. This allows gaining significant insight 

into the operation of the system without unnecessary lengthy and often hazard

ous experiments. Using the fully developed model. specific experiments can be 

planned, and the experimental design can be optimized to minimize potential 

hazards and to focus on the areas of concern. 

The steady state and transient effects of various parameters and assump

tions on the mathematical simulations of the packed bed catalytic reactor are 

now examined using the complete mathematical model developed in the last sec

tion. These studies lead to conclusions concerning the importance of various 

physical and chemical phenomena and to the importance of a generalized 

overall model structure. Note that the importance of this study is not simply in 

defining our experimental system, but rather in its general applicability to 

packed bed reactor modeling. All of the analyses presented in this thesis are 

based on numerical solutions of the full, nonlinear model using the methanation 

kinetics of Vatcha (1976), although many analytic solutions using the reduced 

linear model developed in Section 3.6 and solutions with the methanation kinet

ics proposed by Strand (1984) were used as verification of the important conclu

sions. 

Unless otherwise stated, all figures presented throughout this and the fol

lowing sections are based on the reversible methanation kinetics of Vatcha 

(1976), all axial gas and catalyst temperature profiles are at the radial colloca-
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lion point, and all concentration profiles are mole fractions based on the total 

inlet moles as defined by Equation (3.3-17). Furthermore, all simulations are 

based on the kinetic parameters in Table 3.3-3, along with the modeling parame-

ters and operating conditions presented in the next section. The purpose of this 

is to retain consistency throughout this thesis so that the various simulations 

can easily be compared. 

3.4.1 Modeling Parameten 

The numerical values of the parameters used for this analysis are based on 

published results of other packed bed analyses. Typical values of the major 

parameters are shown in Table 3.4-1. The kinetic parameters are given in Table 

3.3-3. Unless stated otherwise, these are the parameters used in the prelim-

inary simulations. 

Catalyst Parameters Thermal Well Parameters 

Cp. 0.23 Opt 0.12 

Ps 1.04 Pt 8.02 
kzs,krs 0.0005 kzt 0.039 

Heat Transfer Parameters Reactor Parameters 

Us.g 17.02 L 30.00 
Uts 0.02 Ro 0.159 
Utg 0.14 R1 1.194 
~s 600.00 Penu: 10.00 
~ 13.00 Pernr 2.00 
"-trs=~s 7.16 p~ 2.00 
Xtr2 =X..,.,., 1.25 Peru- 8.00 

Table 3.4-1 
Typical Reactor Parameters 
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The physical reactor parameters were measured for the experimental 

methanation reactor. The void traction must be empirically determined for the 

specific catalyst used in the experiments due to differences in catalyst crushing. 

The catalyst used for the preliminary experiments is standard Girdler G-65 

methanation catalyst. Its physical properties are shown in Table 3.4-2, which is 

reproduced from the specification sheet from United Catalysts Inc. Although 

the density of the catalyst is given in the specification sheet, the overall density 

should be measured for the specific experimental conditions since the catalyst 

is actually crushed substantially for our use. The heat capacity of the catalyst 

is calculated over the expected temperature range of operation based on the 

heat capacities of the individual components of the catalyst and the catalyst 

composition. Results of this ana.lysis a.re are shown in Table 3.4-3. Since the 

temperatures within the reactor bed should generally remain within 100° K, a 

constant heat capacity can be used. 

The Lhermo.l well properties are calculated using data for stainless steel 

(type 304) from CRC Handbook of Chemistry and Physics (Weast, 1976) and 

Chemical Engineers' Handbook (Perry and Chilton, 1973). The heats of reaction 

and equilibrium constants for the methanation and steam-shift reactions are 

also readily available. linear regression of data provided by United Catalysts 

Inc. is shown in ~,igures 3.4-1 and 3.4-2 over the expected temperature range of 

operation and is used to determine linear temperature relationships for the 

heats of reaction and relationships for the equilibrium constants based on van't 

Hoff's equations (Equation 3.3-5). Notice that the heats of reaction and the 

equilibrium constants for both the mcthanation and steam-shift reactions vary 

greatly over the temperature range of interest. Although the use of constant 

values for these parameters would be highly inaccurate, relationships based on 

van't Hoff's equation for the equilibrium constants and linear equations of the 
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M.thanatlon Catalylt ~ICh~~land 
Ph~lcal Prop41ftlee 

C..Uiylt l)J141, C.tllyat Type ........... G-e.s EffectMII: Jaroary 25. 1110 
5u!>lt'MdiiS: January 31, 11J711 form and lla Form .................. Tabt.ta 

SIZit • . • . ...........•.. \4" X \4 .. 

--- ---Chemical Nl" . . . . .............. 24-27 ... ,o ................. <0.15 
Composition Alr01 .... , · ... · · · · · · · · ~ MQO ....... : . ......... <0.10 

c.o .................. 4-t 
SIOr .................. <0.30 LOf to Conatant Weight at: 
C (AI Graphite) ......... !S-5 
s• (MlXImum) .......... 0.()!5 ---10000F· ............. 10.0 Mu. 
Na• (Mnlmum) ........ 0.30 

Physical A. Bulle O.nalty, lba./ cu. ft. .............. 85 :1:: 5 
PropertiM 

B. Surfac. Arwa, m'lg .................. 3:5-4! 
'\'he surface arwa is obtained by a modified BET method which conalaw of 
nitrogen adaorptlon bV the aampla. Tile sampla it ;round to a fine powder 
(~100 IT'Ifth) and purged with nitrogen at 200•c to 1 conatant night. 

C. Porw Volume, cc/g .................. 0.15-0.25 
~ porw volume is obtained with a mercury porsimatar at 110.000 peig which 
corrwsponda to the total pore volume or paras greater then 211.2 All;stroma 
dia.,.ter. 

D. Cruth Strwngth, Minimum AVIrage• ..... SIO.O lbl. 
No Morw Than 5% Leu Than .......•.. -40.0 I be. 
Aj)carahra- HYdraulic oms with horizontal Platas of which the bottom plat. 
move• vertically. In Mrias with the bottom plata Ia a prnaurw gauge which 
~ordl the prnaure axartad on 11'11 tablat 

PrOCidunt- The tab lot Ia pta cad on lla aida and the lonr plat. It rwiHd to 
the tablet with Z&ro pounds pressure on tile gauge. The preuurw is then 
tntroasao on tilt t>onom plata until tilt tablet cru•'- and ,,... p..uurw at 
breakage ia rweol'ded. 

The cruah on • minimum of tnnty·fiVI tablets It obtained anclll'le IWI1'111Je It 
taken arlth.,.ticalty. 

To prwtrwat tne Nmpt•, Clry tne catalyat 11 400"F lor thfll houra and allow to 
COOl. 

Cruth St11tngth Range on 
Individual Tablets ........•...•....... -40-150 

• ...__ _....., --- "' Quooll!r Clonlolltl 

Table 3.4-Z 
Girdler G-65 Catalyst Specifications 

form given in Equation (3.3-12) should be very accurate. As discussed in Section 

3.3, these equations were incorporated in the original model. The coefficients 

for our experimental conditions calculated using linear regression of the data 

presented in Figures 3.4-1 and 3.4-2 are given in Table 3.4-4. 

The remaining parameters for the mathematical description of the experi-

mental system are the heat transfer variables and the reaction kinetics. 
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Temperature (0 K) 

550. 
575. 
600. 
625. 
650. 
675. 
700. 
725. 

Cp
1 

(cal/ g o K) 

0.225 
0.228 
0.230 
0.231 
0.232 
0.233 
0.235 
0.237 

Table 3.4-3 
Temperature Dependence of Catalyst Heat Capacity 

Although these need to be estimated from initial experiments for our specific 

catalyst and reactor bed (described in Section 4.2), preliminary values from 

literature are used. Effective thermal conductivities and heat transfer 

coefficients are given by De Wasch and Froment (1971) for the solid and gas 

phases in a heterogeneous packed bed model. Representative values for Peclet 

numbers in a packed bed reactor are given by Carberry ( 1976) and Mears 

(1976). Values for Peclet numbers from 0.5 to 200 were used throughout the 

simulations. 

For consistency, several sets of typical operating conditions are used for 

the simulations presented in this thesis. These are shown m Table 3.4-5 and wtll 

be referred to as standard Type 1, II. or Ill conditions. These three significantly 

different sets of conditions were chosen to cover a wide range of potential 

operating conditions. Type I corresponds to operation at moderate to high tern-

peratures. pressures. and fiowrates wtth relatively low inlet CO and H2 concen-

trations and small amounts of inlet CH4, C0:2. and H20 either from recycle or 

from the upstream process when the methanator is being used to cleanup the 

process stream prior to ammonia synthesis. Type II corresponds to realistic 

conditions for the industrial use of methanation in synthetic natural gas pro-
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Jlethanation Steam-Shift 

~1 -29.44 KPst 4.39 

KP1L2 26341. KPsa -4615. 
.6Hu. -6.14 l'1Hs1 -2.44 
.6Hu2 -48350 .6Hsa 10760 . 

Table 3.4-4 
Coefficients for Equations (3.3-5) and (3.3-12) 

duction. Note that the inlet methane concentration is much higher than in Type 

1. This large amount of methane significantly reduces the reaction rate. Finally, 

Type III corresponds to single-pass laboratory experimental conditions where 

only CO and H2 are fed to the reactor. Flowrates and temperatures are rela-

tively low. 

Type I Conditions 

Parameters: ~:=0.40 T0 =573° K Tw=573" K 
Ug

0 
= 75.0 em/sec P=20 atm 

Inlet Mole Fractions: 
XCH4 =0.02 xco

2
=0.03 xa20 =0.024 

xco=0.03 xa,=0.20 

Type II Conditions 

Parameters: 1! = 0.57 T0 =573" K Tw=573" K 
u& = 75.0 em/sec P= 10 atm 

Inlet Mole Fractions: XcH
4 

=0.60 Xco
2 

=0.015 Xa
2
o =0.02 

Xco =0.06 xa,= 0.19 

Type ill Conditions 

Parameters: t=0.57 T0 =510o K Tw= 530" K 
Ug

0 
= 14.0 em/sec P=ZO atm 

Inlet Mole Fractions: XcH4 =0.00 xco
2

=0.00 Xf!2o =0.00 
xco =0.04 xHe= 0.12 

Table 3.4-5 
Typical Operating Conditions 
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3.3.1 Stee.drState Beha<fior 

Steady state axial gas and solid temperature profiles at various radial posi

tions and concentration profiles for the standard Type I operating conditions 

are displayed in Figure 3.4~3, and the corresponding radial temperature profiles 

are displayed in Figure 3.4-4. AB mentioned previously, the concentration 

profiles show the mole fractions of CO and C02 based on the total inlet moles. 

The definition of these values is the moles of CO or C02 divided by the total inlet 

number of moles. This definition is used rather than standard mole fractions in 

most situations since the total number of moles decreases rapidly in the bed. 

At the conditions chosen for Type I operation, the methanation reaction is 

quite rapid and approaches completion. The steam-shift reaction. which is 

much slower, leads to a slight formation of C02. Note that the overall conver

sion of the C02 is actually quite small (less than 1%). 

The steady state temperature prot:lles (Figures 3.4-3b and 3.4-4) show that a 

'hot spot· is present about half way through the reactor bed and is predominant 

near the center of the bed. The presence of such a hot spot is a result of the 

cooling jacket and is common in nonadiabatic packed bed reactors. The steady 

state temperature profiles show a difference of up to 1 0" K between the solid and 

gas temperatures, and later transient results show differences up to 20" K (lead

ing to differences of over 20% in the reaction rates), thus providing initial 

verification of the necessity of the heterogeneous analysis. 

In the small region near the cooling wall. even the steady state temperature 

d.i.fferences between the solid and gas are significant due to the higher heat 

transfer between the solid and cooling wall than that between the gas and the 

cooling wall. The radial temperature profiles (Figure 3.4-4) also verify the neces

sity of the radial temperature analysis, since the radial gradients are significant 
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throughout the bed. Notice that except near the cooling wall the catalyst tem

perature is greater than the gas temperature due to the exothermic reaction 

occurring on the catalyst surface. 

The standard Type II operating conditions are much milder and result in 

only about 40% CO conversion and much lower reactor temperatures due to the 

lower pressure, the larger void fraction, and the large amount of methane in the 

feed. Steady state axial temperature and concentration profiles for these condi

tions are shown in Figure 3.4-5, and the steady state radial temperature profiles 

are shown in Figure 3.4-6. Again the temperature differences between the solid 

and gas are significant. 

3.3.2 Dynamic Simulations 

The real power of the model developed in this work is not in steady state 

analyses, since this is relatively simple and has been investigated in detail in the 

past, but rather in the transient or dynamic simulations necessary for control 

design. This model has been used to simulate the effects of various process dis

turbances and input changes. Under normal reactor operating conditions, step 

or pulse changes in inlet gas temperatures, concentrations, or velocity or 

changes in cooling rates can significantly affect the behavior of the process. 

These disLurbances must be understood for optimal system operation and con

trol. 

Figure 3.4-7 shows the effect of a 10% drop in the inlet gas temperature 

(from 573" K to 515.7" K) on the axial temperature profiles within the reactor 

for standard Typ~ I operating conditions. Since such a disturbance would, in 

general. not occur instantaneously, the inlet temperature was actually changed 

from its initial to final value in a 0.5 second ramp. The complexities of the 



- 231-

resulting reactor profiles are enhanced by the behavior of the cooling system. 

Although the inlet gas temperature is reduced, the cooling jacket temperature 

remains unchanged (T., = 573" K). Thus the cooling jacket acts as a heating sys

tem in the early part of the reactor and as a cooling system in the later part, 

thus in effect transferring heat from the later stage to the early stage of the 

reactor. Figure 3.4-7 also shows that although the inlet gas temperature is 

reduced, the steady state outlet temperature actually increases by about 8° K. 

since the hot spot shifts further down the reactor, effectively reducing the cool

ing region. As expected, the responses of the concentration profiles (not shown) 

are much faster than that of the thermal profiles. indicating the possible appli

cability of the quasi steady state approximation for the concentrations (this will 

be discussed in detail in Sec lion 3. 7). 

Figure 3.4-8 shows the axial gas and solid temperature profiles during start

up operation. Notice that the 'hot spot' in the reactor moves down the bed as 

the heat generated from reaction heats up the catalyst particles. Also note the 

significant temperature difference between the catalyst and gas in the early part 

of the reactor where conversion is rapid. These differences are even more pro

nounced (over zoo K) near the center of the bed and near the outer wall. 1 

Figure 3.4-9 shows the temporal behavior of the catalyst, gas, and thermal 

well temperatures at ( == 0.38 and ( = 1.0 for a step change in the cooling fluid 

temperature from 573c K to 593° K as would occur through increasing the nitro

gen pressure in the Dowtherm condenser. This figure exemplifies the slow 

response of the catalyst and thermal well temperatures due to their high ther

mal capacitance. As discussed later, the gas temperature merely follows the 

behavior of the solid due to the negligible accumulation of energy in the gas and 

the high heat transfer coefficient between the gas and solid. This figure along 

1. The profiles shown in Figure 3.4·8 are at the radial collocation point r c· 
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with further evidence presented later in this thesis shows that the dynamic 

behavior of the reactor is dominated by the catalyst and thermal well thermal 

behavior. 

Many other disturbances have been simulated, leading to an Wlderstanding 

of the control complexities of the system. Many of these simulations are shown 

in Sections 3.6 and 3.7 and are therefore not reproduced here. Axial tempera

ture measurements have been found to be essential in determining and control

ling the behavior of the process. Outlet temperatures alone cannot provide ade

quate information for control of the reactor. 

3.3.3 Effects of Reactor Operating Conditions 

One of the major purposes of accurate mathematical modeling of the reac

tor bed is to study the effects of various operating conditions on the behavior of 

the reactor, thus allowing process optimization and insight into the perfor

mance of the system under changes in various input parameters. This enables 

careful design of control structures for the experimental system without 

significant a priori experimentation. 

Figure 3.4-10 shows the effect of the inlet gas temperature on both the 

outlet gas temperature and CO conversion for the reversible kinetics given by 

Equations (3.3-:) and (3.3-3), and Figure 3.4-11 shows the effects on the steady 

state axial gas temperature profiles. As expected. the conversion and the 'hot 

spot' temperature increase with increasing inlet gas temperature. However 

under many conditions, the outlet gas temperature is inversely related to inlet 

gas temperature. An increase in the inlet gas temperature produces a decrease 

in the outlet gas temperature2 as a result of the shifting of the 'hot spot' down 

2. Tne so-called 'wrong-way' behavior. 
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the bed (see Figure 3.4-7 also). However as shown in Figure 3.4-10, this is not 

t:rue throughout the possible operating regimes. Obviously, this behavior can 

lead to significant control difficulties it the control design is based on the outlet 

gas temperature as is often the case. 

The steady state axial concentration profiles for an inlet gas temperature 

of 623° K are shown in Figure 3.4-12. As before, the steam-shift reaction leads to 

a slight formation of C02 in the early part of the reactor due to the presence of 

a large amount of CO. However as the CO is rapidly depleted in methane forma

tion, the steam-shift reaction reverses. Due to the higher temperatures Within 

the reactor, the rates for both reactions are much higher than for the standard 

Type I conditions. 

Figure 3.4-10 also shows the tremendous etiect that the inlet velocity or 

flowrate has on conversion and temperatures. Figure 3.4-13 shows the steady 

state axial gas temperature profiles at various inlet gas velocities. A sudden 

drop in the inlet fiowrate would cause the 'hot spot' to become much more pro

nounced and to shift towards the entrance of the bed. The lower fiowrates also 

lead to higher conversions (not shown). 

Finally, the effects of the inlet CO concentration and cooling fluid tempera

ture on the CO conversion and outlet gas temperature are shown in Figures 3.4-

14 and 3.4-15. An increase in either the inlet CO concentration or the Dowtherm 

temperature3 increases the conversion and the outlet gas temperature. Not too 

surprisingly, the relationship between the outlet gas temperature and cooling 

fluid temperature is nearly linear since for these conditions the reaction is 

nearly complete in the first half of the reactor and the second half acts as a 

heat exchanger to cool the gas. 

3. This would be the result of increasing the nitrogen pres~mre in the Dowtherm condenser. 
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3.3.4 Radial Concentration Analysis 

Radial gradients are generally ignored in dynamic analyses of packed bed 

reactors, mainly due to the increased complexity of the resulting model. As 

pointed out by Jutan et al. (1977), in the only other major dynamic packed bed 

reactor study that incorporates radial profiles, radial gradients are important in 

industrial processes where wall cooling is required for safety or control. The ori

ginal mathematical model developed in the proceeding section includes com

plete radial analysis of both the temperature and concentration profiles. How

ever, explicit solution of the resulting partial differential equation model is not 

feasible, and discretization is needed to reduce the model to a form suitable for 

numerical solution. This reduction used the method of orthogonal collocation 

in both the radial and axial dimensions. 

The radial discretization must then account for the projected radial 

profiles. In the analysis performed in the lasl seclion. one interior radial collo

cation point was used. This along with the two radial boundary values at the 

thermal well and cooling wall resulted in an inherent assumption of quadratic 

radial gradients. An examination of experimental measurements (Yalstar et al.. 

1975) and typical radial profiles (Finlayson, 1971) for similar reactors indicates 

that radial temperature profiles can adequately be represented by a quadratic 

function of radial position. This quadratic representation is preferable to one of 

higher order since the dimensionality of the system is minimized through the 

use of only one interior collocation point. 

However, a quadratic representation of the radial concentration profile may 

not be adequate since application or zero .tlux conditions at the inner thermal 

well and outer cooling wall with a quadratic profile reduces to an assumption of 

constant radial concentrations. Although additional radial collocation points 
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greatly increase the dimensionality of the resulting model, they may be neces-

sary to accurately express the radial concentration profiles. This section con-

siders the problem in detail by comparing simulations with additional radial col-

location. 

The original model is discretized in the radial dimension using orthogonal 

collocation with multiple interior collocation points for the concentration 

profiles and a single radial collocation point for the gas and catalyst tempera-

tures. For example, with two interior collocation points, the assumed radial 

concentration profile is 

(3.4-1) 

This profile must satisfy the boundary conditions 

(3.4-2) 

The profile must also be exact at the collocation points, r =t;Q 0 , rc
1

, rc
2

, and 1.0: 

Yi 0 = do + d1 'Po + d2cp~ + dstf'& 

Ytc
1 

= do + dtrc1 + ~r;1 + dar~1 
Yica =do+ d1rc2 + d2r;2 + dsrg2 

Y1. 1 = do + dt + d2 + ds 

After rearranging and eliminating Yio and Yi
1

• 

0 1 2 3 do 0 
0 1 2t;Qo 3t;Q§ dl 0 

2 s d2 = 
Yir 1 rcl rcl rcl 

da 
cl 

1 rea 2 r3 rc2 Ce Y;,r 
02 

The expressions for di(~() can be obtained as: 

(3.4-3) 

(3.4-4) 
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(3.4-5) 

(3.4-6) 

(3.4-7) 

(3.4-8) 

where a = [ (rk', -rl,l - ~ (r~.- r~,) ( 1 + l"ol + 31"o(r ,, -r,,) r (3. 4-9) 

These radial collocation solutions are then substituted into the partial 

differential equations, using the relationships 

Byt 2 
&t = d1~ + 2d~r + 3d3,r 

a2y· 
.--!....: 2~ + 6d r 1Jr2 ' s, 

Bp, = _ M,Pt B@, 
ar a: ar 

Bc5 -o 8yl - By2 
ttr = -xco iJr - Xcog 7ir' 
CJ2o _ -o B2

Y1 - fPy2 
c;r2 - -xco c;r2 -- Xco~ ar2 

(3.4-10) 

ae 
where tJrg is obtained from the one point radial collocation of the gas tempera-

tures. The concentration equations are then valid at both radial collocation 

points rc
1 

and rez since the residuals will be zero at these points. The full radial 
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concentration profile can be reconstructed from Equations (3.4-1) and (3.4-5) 

through (3.4-9). The energy balances for the gas, catalyst, and thermal well and 

the continuity equation are unchanged. 

Axial collocation and numerical solution is performed in an identical 

manner as before with this larger system of equations. The size of the 

differential equation model has been increased by 2N nonlinear ordinary 

differential equations, where N is the number of axial collocation points. Note 

that for each additional radial collocation point for the concentrations, the 

model will be increased by 2N nonlinear ordinary differential equations. 

Simulations were then performed with this model and compared to those 

using the earlier model. In the simulations, the bulk concentration can then be 

obtained by integrating the radial profiles: 

Bulk Concentration (3.4-11) 

This allows direct comparison with previous simulations. Figure 3.4-16 shows a 

comparison of the axial gas temperature and bulk concentration profiles for the 

reactor with standard Type I operating conditions using the original model with 

no radial concentration gradient (i.e., infinite radial diffusion) and using the new 

model with a representative radial mass Peclet number of 2.0 and with a radial 

mass Peclet number of oo (i.e., no radial diffusion). Figure 3.4-17 shows a similar 

comparison with Type II operating conditions. 

Figure 3.4-18 shows the radial temperature profiles at the reactor outlet. 

The radial and axial temperature and bulk concentration profiles are effectively 

not influenced by these modeling differences. Figure 3.4-19 shows the radial con-

centration profiles at ( = 0.38 and at the reactor outlet. Even with very high 

Peclet numbers, the differences between the radial concentration profile across 
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the relatively small bed and the assumed uniform profile are minimal. Definitely 

under planned operating conditions with small Peclet numbers, there is no 

benefit to increasing the number of radial collocation poinls, especially in light 

of the increased dimensionality of the resulting system. 

3.3.5 Adiabatic Analysis 

Modeling of the packed bed catalytic reactor under adiabatic operation sim

ply involves a slight modification of the boundary conditions for the catalyst and 

gas energy balances. A zero flux condition should be used at the outer reactor 

wall. This can be accomplished us1ng the programs developed in this work sim

ply by setting the outer wall heat transfer coefficients. hws and hwg (or 

corresponding Biot numbers), equal to zero. Simulations under adiabatic opera

tion do not significantly alter any of the conclusions presented throughout thls 

work and are often used for verification of worst-case nonadiabatic operation. 

Figure 3.4-20 shows the adiabatic steady state temperature and concentration 

profiles for standard Type 1 operating conditions. As expected, the temperature 

rise through the bed is more dramatic than in the non-adiabatic case, leading to 

much higher conversions through the bed. Due to the lack of any cooling, no 

'hot spot' develops and all heat generated by the reaction is removed from the 

bed by the product gas, resulting in a very high temperature rise (200° K) within 

the bed. Such high temperatures are undesirable since they can significantly 

increase catalyst deactivation. Also note that in the adiabatic analysis the tem

perature difference between the gas and catalyst is negligible. Although the heat 

transfer coefficient between the gas and solid are as large as in the nonadiabatic 

analysis, major differences exist during nonadiabatic operation between the 

radial heat transfer through each phase.4 The results shown in 3.4-20a along 

4. The heat tran.s:!'er coefficient from the solid to the outer wall and the radial conduction in the 
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with other simulations indicates that a homogeneous analysis of the bed may be 

adequate for adiabatic analyses. 

Figure 3.4-20b shows that CO conversion is much higher under adiabatic 

operation due to the higher bad temperatures. Note that the conversion of the 

C02 becomes important as soon as CO is nearly depleted. The 'rippling' in the 

C02 curve is a result of the axial orthogonal collocation.15 Numerical solution 

problems such as this will be discussed in Section 3.5. 

3.3.6 Importance of Thermal Well 

The mathematical model developed in this work allows for an analysis of 

the effects of a central axial thermal well. Although the presence of the well was 

found to have little effect on the concentration profiles, it significantly alters the 

transient temperature response of the reactor bed, since its large thermal capa-

cllance increases the thermal time constant of the bed. Figure 3.4-21 shows the 

radial gas and solid temperature profiles at the reactor exit (z = L) during reac

tor start-up. As shown, the steady state profiles are similar, although conduc-

tion along the thermal well slightly alters the surrounding gas temperature. The 

transient behavior exemplifies the slow response of the thermal well. It can be 

seen that the response of the exit temperature profile is rapid without the well, 

With steady state being approached in under one minute; whereas, the presence 

of the well introduces a finite heat sink into the reactor center that slowly 

absorbs some of the heat produced. Over ten minutes are necessary to 

approach steady state with an eighth-inch diameter well. This is further seen in 

Figure 3.4-22 where the temporal behavior of the catalyst and gas temperature 

solid is greater than the correspondi.ng parameters in the gas phase. 
5. Although only 6 axial collocaLlou poinl.8 a.re used in most simulatioil3, 12 points were necessa.ry 

here and even then the results are less than optimum.. 
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at the reactor exit are compared With and without the presence of the thermal 

well. These figures also show that the temperatures in the reactor center are 

higher without the thermal well as would be expected. However, Figure 3.4-23 

shows that the well has very little effect on the axial concentration profiles, and 

overall conversion is only slightly affected. 

Although the thermal well increases the thermal capacitance of the reactor 

bed and reduces the reaction volume, these effects alone cannot account for the 

dramatic increase in the thermal time constants of the bed with a thermal well.6 

Whereas the dynamics of the catalyst particle temperatures are very fast due to 

the heat generation on the particles from the exothermic reactions. the dynam-

ics of the thermal well temperatures are much slower since the heat is gen-

erated on the surrounding particles. Much of this energy is transferred to the 

outer cooling jacket or out of the bed with the gas phase Only a small portion is 

transferred to the thermal well and even this through relatively slow mechan-

isms, thus resulting in the slow dynamic behavior of the well. 

Since a thermal well is sometimes used m mdustry to obtain temperature 

measurements for process monitoring or control, we note the importance of 

incorporating even a relatively small well into the modeling and control analysis. 

Basing decisions on measured temperatures Wlthin an ax1al thermal well and a 

model without a thermal well (i.e .. assuming that the measured temperatures 

are the predicted temperatures at the center of the bed) can be dangerous. 

Simple modifications to the model development presented in this work 

allow for simulating systems that do not include central thermal wells. 1n such 

cases, the dimensionality of the mathematical system is reduced by N, since one 

partial differential equation is eliminated. The modeling programs 'developed in 

6. Due to the relatively small radius of the well, the thermal capacitance (Vpeo) o~ the bed with the 
thermal well (16 cal/ 0 K) is only slightly higher than that without (14 caft"K) a.."ld the loss in 
reaction volume is only about 2~. 
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this work can be used directly for systems without thermal wells simply by set

ting the parameters for the well diameter and the thermal well heat transfer 

coefficients, hts and htg (or corresponding Biot numbers), equal to zero. 

3.3.7 D:ispennon Effecl:s 

Much work has been focused on the significance of dispersion terms in the 

transient material and energy equations for packed bed reactors. In general. 

axial diffusion of mass and energy and radial diffusion of mass have been 

neglected in comparison with convective terms in most packed bed reactor stu

dies (Carberry and Wendel, 1963; De Wasch and Froment, 1971; Hlavacek, 1970; 

Heiberg et al., 1971: Jutan et al. 1977: Valstar et al., 1975) 

For packed bed reactors, Carberry and Wendel (1963), Hlavacek and Marek 

( 1966), and Carberry and Butt ( 1975) report that axial dispersion effects are 

negligible if the reactor length is sufficient. These and other researchers (Mears. 

1976; Young and Finlayson, 1973) have developed criteria based on the reactor 

length for conditions where the axial dispersion can safely be neglected. Since 

the tube length/pellet diameter for the experimental methanation reactor is 

about 150, just at the limit of most of the published criteria for neglecting axial 

heat dispersion, careful analysis of these dispersion effects is needed. However, 

neglecting axial mass dispersion should be a safe assumption since the tube 

length/pellet diameter for the experimental system is well above the value of 50 

generally recommended. Radial mass dispersion can also be neglected and is 

inherently eliminated from our model since the one point radial collocation 

results in a constant radial concentration profile. However, the radial d.i.fi'usion 

of energy must be retained since it is one of the most important physical 

processes influencing the dynamic and steady state behavior of the system by 
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governing the radial fl.ow or energy through the bed to the cooling wall. 

Simulations using the full model were then used to study the necessity of 

these dispersion effects and to verify some of the common assumptions. A wide 

range of Peclet numbers were used in the simulations. The actual values for the 

methanation reactor will have to be estimated from preliminary heat transfer 

experiments in the reactor (Section 4.2). Based on extensive previous studies. 

the radial gas Peclet number should range from 5 to 10 and the axial gas Peclet 

numbers from 0.5 to 2.0 (Carberry, 1976). For completeness, our simulations 

used Peclet numbers over a much wider range. 

Comparison of steady state profiles for Type I conditions (Figure 3.4-24) 

shows that neglecting axial ma~~ difl'u~ion has very little effect on the tempera

ture and concentration profiles even though the axial gradients are significant. 

However, Figure 3.4-25 shows that neglecting the axial thermal dispers10n in the 

gas docs affect the solution profiles. The axial temperature profiles are offset 

and the concentration profiles are shifted slightly. Further simulations show 

minimal effect of neglecting the axial conduction of energy in the solid. 

Figure 3.4-26 shows that, for standard Type II operating conditions, neglect

ing the axial thermal dispersion leads to instabilities in the orthogonal colloca

tion solution with six collocation points. Although the solutions at the colloca

tion points are similar, neglecting axial dispersion of heat leads to some 'rip

pling' in the axial temperature profiles. However, the concentration profiles are 

nearly unaffected. This 'rippling' is a result of the axial orthogonal collocation 

and can be reduced by increasing the number of collocation points. However, 

this leads to a substantial increase in model dimensionality and thus solution 

time. Obviously, the axial thermal diffusion has a stabilizing effect o'n the numer

ical solution using orthogonal collocation and actually damps the behavior of 
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the solution polynomial. 

Finally, Figure 3.4-27 shows the effect of neglecting axial diffusion on the 

dynamic simulations of the reactor under start-up operation with Type II condi

tions. Significant differences are apparent. 

The reduction in solution time for these simulations is minimal nnd in some 

cases the elimination of the axial diffusion terms actually increases the solution 

time. Simulations show that neglecting the axial dispersion of mass has little 

effect on numerical computation time; whereas, eliminating axial dispersion or 

energy may significantly increase computation time and only rarely decreases it 

substantially. 

Thus our analysis of the effects of dispersion on the simulated behav10r of 

Lhe rea.ctor along with the work by Bonvin (1980) shows the necessity of mclud

ing the thermal diffusion terms. Simulations here verify that the numerical 

stability of the model is greatly enhanced by retaming these dispersive effects 

and that, although minor additional effort may be necessary in the model 

development, the numerical solution time may actually be reduced by retaining 

some of these terms. Furthermore, simulations verify that the axial dispersion 

of mass can usually be neglected. although the inclusion a! these terms in the 

model introduces little complication in the collocation solution; whereas, other 

solution procedures are often significantly hindered by these second derivative 

terms. The radial dispersion of mass seemingly has little effect on either the 

simulated results or solution times and can safely be neglected. This conclus10n 

is based on the radial concentration analysis presented in Section 3.4.5, since 

the standard mathematical solution that uses one point radial collocation in 

thts work effectively assumes no radial concentration gradient. 
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Figure 3.4-13 
Effects of Inlet Gas Velocity 

Steady State Axial Gas Temperature Profiles 
Standard Type I Operating Conditions 
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Effects of Inlet CO Concentration 

Standard Type I Operating Conditions 
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Effects or Cooling Fluid Temperature 
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Figure 3.4-16 
Multipoint Radial Concentration Collocation 

Axial Gas Temperatures and Bulk Concentration Profiles 
Standard Type I Operating Conditions 

Original Model - Infinite Radial Diffusion 
New Model- Radial Mass Peclet Number = 2.0 
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Figure 3.4-17 
Multipoint Radial Concentration Collocation 
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Standard Type II Operating Conditions 
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Figure 3.4-18 
Multipoint Radial Concentration Collocation 

Radial Gas and Catalyst Temperature Profiles at Reactor Outlet 
Standard Type II Operating Conditions 

- Original Model - Infinite Radial Diffusion 
- - - New Model - Radial Mass Peclet Number = 2.0 
--- - New Model - Radial Mass Peclet Number :::: oc 



-'a ...... 
:.: 

D 
u 
z 
D -1-
u 
a: 
a: 
LJ.... 

w 
....J 
D 
:::r:: 

-262 

0.60 T l 

0.55 

z = 0.38L 
0.50 --=---=-

0.45 

-
0.40 

z = L - - --
0.35 -----=- .....----=------

- - -

0.30 
0.0 0.2 0.14 0.6 O.B 

RADIAL PCJSITICJN, R/Rl 

Figure 3.4-19 
Multipoinl Radial Concentration Collocation 

Radial Concentration Profiles 
Standard Type I Operating Conditions 

---....... Original Model- Infinite Radial Diffusion 
- - - New Model - Radial Mass Peclet Number = 2.0 
- - - - New Model - Radial Mass Peclet Number = co 

I 

1.0 



750 ::.::: 
t.:) 

w 
Cl 

700 

w 
a: 
:::> 
t- 650 a:: 
a: 
w 
0.... 
:r: 
I.I.J 600 t-

550 
0.0 

O.ij 

"io 

J: 0.3 
0 
u 

z 
0 

t· 
0.2 

u 
a:: 
a: 
1.!... 

w o. 1 _J 

0 
:r: 

o. 0. 
0.0 

-263-

0.2 0.1! 0.6 0.6 1.0 
AXIAL PDSITIClN, Z/L 

(a) 

3.05 

C02 -- 3.00 ""'-
............ 

'\ ----~ co 

" ""' " 2.95 "" "'-.. ~ ' ""' ----
0.2 O.ij 0.6 0.6 

AXIAL POSITION, ZIL 

(b) 

Figure 3.4-20 
Adiabatic Steady State Axial Profiles 

Standard Type I Operating Conditions 
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Figure 3.4-21 
Effect of Thermal Well on Transient Radial Temperature Profiles 

Standard Type II Operating Conditions 
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Figure 3.4~24 
Steady State Axial Profiles - Neglecting Axial Mass Diffusion 

Standard Type I Operating Conditions 

Original Model No Axial Mass Diffusion 
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Figure 3.4-25 
Steady Stale Axial Profiles -Neglecting Axial Heat Diffusion 

Standard Type I Operating Conditions 

Original Model No Axial Heat Di1fusion 

a) Gas Temperature 
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Figure 3.4-26 
Steady State Axial Profiles - Neglecting Axial Heat Diffusion 

Standard Type II Operating Conditions 
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3.5 OCFE MODEL ANALYSIS 

The reaction rate expression for the methanation reaction, Equation (3.3-

1), used throughout much of this work is based on empirical work by Lee (1973) 

and Yatcha ( 1976). This expression, along with the rate equation. Equation (3.3-

3), for the steam-shift reaction given by Moe (1962) provides valuable insight 

into the modeling of multiple reaction systems. Both reactions are reversible 

and are described by complex nonlinear rate expressions. Due to the reversibil

ity of the reactions and the equilibrium constraints included in the rate expres

sions, severe temperature and concentration profiles are generally not observed. 

The orthogonal collocation procedure used for the numerical solution of the 

resulting mathematical model shows very little numerical instability and allows 

for rapid solution of even the most difficult profiles simply by increasing the 

number of collocation points. 

However, in many chemical systems including packed bed reactors with 

rapid nonreversible kinetics, the interesting features of the solution are 

confined to a very small region where the solution profile changes rapidly. The 

orthogonal collocation method may become unwieldy because a large number of 

collocation points may be needed so that enough are plac.ed within this region to 

provide an accurate representation of the solution. 

A significant drawback of the orthogonal collocation technique is then its 

inability to accurately define profiles with very sharp gradients or abrupt 

changes, since the technique requires fitting a single polynomial to the entire 

profile. Under such cases, although the solution will be exact at the collocation 

points, significant oscillations in the profile are observed, and the obvious choice 

would be to resort to a finite difference procedure which considers each interval 

separately using first and second derivative matching conditions on the bound-
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aries or to a finite element approach. Accurate representation of the solution is 

then possible even under extremely steep gradients simply by increasing the 

number of grid points. However, this technique can easily become numerically 

prohibitive due to the extremely high dimensionality of the resulting mathemat

ical system. A compromise between the orthogonal collocation (OC) and finite 

dl.1.':ference techniques has been proposed by Carey and Finlayson (1975). This 

procedure is called Orthogonal Collocation on Finite Elements (OCFE). 

3.5.1 Formulation of OCFE Technique 

Although most or the preliminary analyses in this modeling work used the 

rate expressions by Lee ( 1973), Moe ( 1962), and Vatcha ( 1976). all significant 

conclusions were verified using the rate expression of Strand ( 1984) and ignor

ing the steam-shlft reaction. An important difference between the two kinetic 

descriptions is the sharpness of the resulting profiles. The reaction kinetics 

determined by Strand (1984) are much faster than that proposed by Vatcha 

( 1976) and can lead to rapid complete conversion Within the reactor bed. For 

such kinetics, the numerical solution procedure described in Section 3.3.5 can 

have difficulties during solution of the steady state profiles. 

Specifically, numerical solution of the expected steady state profiles with 

the new kinetics often requires excellent initial estimates, and in many cases 

even then has numerical convergence difficulties. This is often due to the rapid 

complete reaction of the carbon monoxide early in the reactor bed leading to 

steep temperature and concentration profiles, an abrupt change in the concen

tration profiles when the CO is depleted, and a linear concentration profile after 

complete conversion of the CO. The orthogonal collocation on finite elements 

procedure is then attempted to minimize the numerical difficulties associated 
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with orthogonal collocation. 

Finlayson ( 1980) used the OCFE procedure for several examples with 

extremely sharp gradients. including diffusion and reaction in a porous catalyst 

pellet and transient convective diffusion. His analysis of the orthogonal colloca

tion method, the finite difference method, and the orthogonal collocation on 

finite elements scheme for these and other chemical systems shows that the 

"orthogonal collocation method is by far and away the best method" except for 

systems with sharp profiles. The OCFE technique is then preferred. Finlayson 

points out that detailed, comparative studies of even simple two-dimensional 

problems using OCFE are rare, due to the complexity of the procedure. T.b.is sec

tion provides the first complete OCFE analysis of a packed bed reactor along 

with comparisons to simple orthogonal collocation results. This OCFE analysis is 

performed on the two-dimensional system resulting after the radial orthogonal 

collocation presented in Section 3.3.5. 

The orthogonal collocation procedure uses a series of polynomials, each of 

which is defined over the entire range 0 :S ~ :S 1, as a trial function for the axial 

collocation. Complications wilh this global procedure arise in the presence of 

steep gradients or abrupt changes in the solution profile. In such situations. it 

may be advantageous to use trial functions that are defined over only part of 

the region and piece together adjacent functions to provide an approximation 

over the entire domain. Using such a procedure, smaller regions can be used 

near the location of the steep gradient. The OCFE technique involves using 

orthogonal collocation within each of these elements. A similar analysis can be 

performed using the Galerkin method within each element. Howeve!' for non

linear problems, it may be necessary to use quadrature formulas to evaluate the 

integrals, resulting in lengthy calculations. 
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Two major forms of the OCFE procedure are common and differ only in the 

trial functions used. One uses the Lagrangian functions and adds conditions to 

make the first derivatives continuous across the element boundaries, and the 

other uses Hermite polynomials, which automatically have continuous first 

derivatives between elements. Difficulties in the numerical integration of the 

resulting system of equations occur using both types of trial functions, and per-

sonal preference must then dictate which is to be used. The final equations that 

need to be integrated after application of the OCFE method in the axial dimen-

sion to the reactor equations (radial collocation is performed using simple 

orthogonal collocation) can be expressed in the form 

C da = Aa- f(a) 
dt 

(3.5-1) 

Using Hermite interpolation Within the elements, the C matrix is not diago

nal. Explicit solution methods cannot be applied to this system of equations 

easily because of this nondiagonal matrix, and most integration packages are 

also not suitable for such a system. However using Lagrangian functions Within 

the elements, the continuity and boundary conditions have no time derivatives, 

and the C matrix in the above equation is diagonal with nonzero elements 

representing a residual and zero diagonal elements for the algebraic conditions. 

Most standard integration packages are also not suitable for mixed systems of 

algebraic and ditlerential equations. However, our computer programs for the 

standard orthogonal collocation procedure (Appendix 4) are written for mixed 

systems. Thus the Lagrangian functions are used in this OCFE analysis. 

The OCFE discretization analysis and computer programs developed in this 

work allow general. specification of the number of finite elements and ~he degree 

of the collocation functions Within each element. This is again an advancement 

over prior analyses where the same degree of collocation was often used within 
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each element. The entire domain is divided as shown in Figure 3.5-1. Within 

each of NE elements, we apply orthogonal collocation as usual using Lagrangian 

functions. The residual is evaluated at the internal collocation points. Using the 

Lagrangian polynomials, we need to guarantee continuity of the first derivatives 

or fluxes between elements. In our analysis, we use the continuity of the first 

derivative. We thus append NE-1 conditions at the element boundaries. Then 

the solution has continuous derivatives throughout the domain. With the addi-

tional two boundary conditions at ~ = 0 and at ~ = 1, there are a sufficient 

number of conditions to solve for tho profile at all of the collocation points and 

at the element boundaries. 

For the k th element, we define the transformation 

hJ; :::;; Z(Hl) - Z(.t) (3.5-2) 

so that the variable u is between zero and one in the element. 1 Redefining the 

differential equations in terms of the variable u allows the application of stan

dard orthogonal collocation within each element. Figure 3.5-2 illustrates the 

local numbering system within each element. If we then define NE as the 

number of elements, Nk as the number of interior collocation points in element 

k, and Mh as Nk + 2, the relation between the global numbering i ,j and the local 

numbering I ,J is given by 

[
k -1 l i = ~ (Ni + 1) + I 
J =1 

Zi = Z(A:) + UJh.t (3.5-3) 

Then starting from the most general form of the dimensionless equations 

after the one point radial collocation, we can apply the OCFE procedUre. As an 

example, let us consider the energy equation for the solid: 

1. Note that z in this expression is the normalized axial coordinate (equivalent to t). 
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(3.5-4) 

z=O 

z=l 

All temperatures in this equation are in terms of the conditions at the radial 

collocation point. 

Then for k = 1 to NE 

Z = Z(.t:) + uh.t (3.5-5) 

Thus within each element 

with the overall boundary conditions 

If we assume axial profiles within each element k = 1. ... , NE of the form 

(3.5-7) 

where as before 1.;, are lagrangian interpolation polynomials, then as usual 

dl;(u) j A - _...;.....:._:.... 
I.J- du ii 

B - d2l;(u) l 
I.J- duz ~ 

(3.5-8) 

After applying orthogonal collocation. 



"277-

(3.3-9) 

within element k for the interior collocation points i = 2 .... , N.,t:+1. 

Then if we require the continuity of the first derivatives between the ele-

ments so that the first derivative of the solution is continuous in the entire 

domain 0 ~ t~ 1: 

(3.5-10) 

The system boundary conditions then only a*!ect the first and last elements: 

ll 

h ~ Al,J 9s1 = Agzs(9111 -9g1) 
1 .1=1 

h 

11f ANE.J 9a1 = Agzs(9g:w: -9SJ4 ) 
NE J'"'l NE NE 

(3.5-11) 

This same analysis is then performed for the energy balance for the gas, 

the energy balance for the thermal well, the two mass balances, and the con

tinuity equation. The final coupled system of algebraic and differential equa-

tions is shown in Appendix 5, along with computer programs for steady state 

solution using this OCFE procedure. It consists of 5N ordinary differential equa

tions and N + 6(NE + 1) algebraic equations, where 

(3.5-12) 

The techniques used for the solution of this system are similar to those 

used previously with the orthogonal collocation analysis. The majol'- complica-

tions are the potentially large number of resulting equations2 and possible con-

z. Depending on the number of elements and number of interior collocation points per element. 
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fusion and errors in setting up the indexing in the computer algorithm. 

Extreme care must be taken in this last respect. 

It should be pointed out that this approach using Lagrangian polynomials 

gives identical results to those that would be obtained using Hermite polynomi

als since on each element we use orthogonal polynomials of the same order, 

since the boundary conditions are satisfied by both solutions, since the residu

als are evaluated at the same points, and since the first derivatives are continu

ous across the element boundaries. The only preference for one over the other 

is for convenience. The Lagrangian formulation, however, has the added advan

tage of being applicable in situations where the flux is continuous across the ele

ment boundaries but the the first derivative is discontinuous. This can occur if 

there is some type of physical change at the boundary. 

A maJor advantage of the orthogonal collocation solution schemes is LhaL 

the optimal location of the collocation points is automatically determined as the 

zeros of the orthogonal polynomial after specification of the number of colloca

tion points. This point carries through to the OCFE technique; however, in this 

procedure, you must also specify the number and position of the elements. 

Several means for this are available. The simplest involves preliminary solutions 

using orthogonal collocation to provide reasonable estimates since, even though 

the OC solution may be numerically unsatisfactory due to oscillations in the 

profiles, it can give accurate indications of break points in the profiles. 

If the OCFE solution procedure is to be used regularly for system analysis, a 

careful study of the problem of locating elements is necessary. Finlayson ( 1980) 

gives a basis for this study in a cursory examination of variable grid spacing and 

elements sizes, or 'adaptive meshes' as he calls them. The simplest 'procedure is 

based on physical information about the solution profile such as the point 
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where CO is depleted within the reactor bed. Several direct mathematical 

approaches are also discussed by Carey and Finlayson ( 1975) and Finlayson 

( 1980). The first is based on the solution residuals. Although the residual is 

zero at the collocation points when using orthogonal collocation or OCFE, it can 

generally be nonzero elsewhere. After an approximate solution is calculated, the 

residual is evaluated throughout the interval 0 :S;; ( :S;; 1. Ferguson and Finlayson 

( 1972) and Carey and Finlayson ( 1975) show that the error in the solution is 

bounded by the mean square residual. Since we want the residual to be small 

everywhere, we can locate the elements to make the residuals approach zero 

everywhere. In particular, additional elements should be inserted at points 

where the residual is large. According to Carey and Finlayson ( 1975), 

"in this way, as the number of elements is increased the 
solution should converge faster than for a uniform spacing 
of elements because the elements are placed where needed. 
.. . However, the largest residual usually occurred at the 
endpoint of the element since a continuity condition is 
imposed there rather than setting a residual to zero. Thus 
in other calculations it would probably suffice to calculate 
the residual at the end points of the element and use that 
residual to determine the location of additional elements." 

Other mathematical procedures are described by Finlayson ( 1980) based on 

extensions to Pearson's (1968) technique for finite difference methods and on 

work by Ascher et al. ( 1979) and Russel and Christiansen ( 1978). These are not 

discussed here since the above techniques are used in this thesiS. 

3.5.2 Model Comparisons 

A large number of steady state simulations were performed us~ this OCFE 

procedure with various rate expressions to determine the applicability and 

necessity of the technique for packed bed reactor modeling. Using the original 

rate expressions of Lee (1973), Moe (1962), and Vatcha (1976), there is no major 
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necessity of the OCFE procedure since even for conditions With very steep 

profiles, an accurate, non-oscillating solution can usually be obtained simply by 

increasing the number of collocation points in the orthogonal collocation 

analysis.:!! Due to the reversibility of the kinetics and the relatively low activation 

energy. the profiles remain relatively smooth Without any abrupt changes or 

sharp transitions. 

The importance of the orthogonal collocation on finite element approach is 

then considered using the single reaction non-reversible kinetics proposed by 

Strand (1984). Figure 3.5-3 shows the steady state axial gas temperatures using 

these kinetics With standard Type III (Table 3.4-5) operating conditions and With 

the parameters shown in Tables 3.4~1 and 3.3-4 along With the exceptions Usg = 
8.50, kow = 25.1, and Ea11 = 7000. Figure 3.5-4 shows a comparison of the steady 

state axial temperature profiles using both orthogonal collocation (OC) and 

orthogonal collocation of finite elements (OCFE) for the same conditions. As 

shown. the numerical problems (oscillatory solution) exhibited in the orthogo-

nal collocation solution With six collocation points are completely eliminated by 

increasing the number of collocation points or by using OCFE With appropriate 

selection of the elements and order of collocation within the elements. The 

major difference then between the OC solution with 12 interior collocation 

points and the OCFE solution with three elements and only 10 interior colloca

tion points (plus two interior element boundaries) is the solution time. The 

OCFE steady state solution took almost exactly twice as long (123 seconds 

versus 59 seconds)! Thus if at all possible, the orthogonal collocation procedure 

is preferred, even at the expense of using additional interior collocation points. 

Another major difficulty of the OCFE procedure is displayed in Figure 3.5-5. 

3. Figures 3.4-26b and 3.4-20b show simulations 1lll'i.ng orthogonal collocation with possible numeri
cal difficulties. 
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This is the non-trivial problem of optimal selection of the number and position 

of finite elements. Figure 3.5~5 shows a comparison of the OCFE steady state 

axial temperature profiles for the conditions of Figure 3.5·3 with three elements 

of length 0.15, 0.70, and 0.15 with N1 = 2, N2 = 5, and N3 = 3 and with three ele

ments of length 0.10, 0.80, and 0.10 with N1 = 1. N2 = 5, and Ns = 1. Although 

these finite element schemes are only slightly different, the resulting solution is 

significantly affected and is nearly as bad as the orthogonal collocation solution 

with too few collocation points. 

A final example shows the real power of the OCFE procedure. Figures 3.5-6 

and 3.5-7 show 'best' solutions obtained using orthogonal collocation and OCFE 

for the steady state axial temperature and concentration profiles for the non

reversible kinetics where the reaction is extremely rapid With complete conver

sion early in the reactor bed. These conditions are identical to those in Figures 

3.5-:1 t.n 3 5-5 P.xcept that. the reaction rate is twice as large (k 011 = 50.2). As we 

would expect, the profiles are very sharp, and there is an abrupt change in the 

concentration profiles at the point of complete conversion. The 'best' solutions 

obtainable using orthogonal collocation require ten interior coUocation points 

and still show significant numerical problems in both the temperature and con

centration profiles. The use of more or less collocation points increases the 

oscillations m the profile, espeCially m the vicinity or zero concentration. 

The solutions using the OCFE procedure show dramatic differences in the 

profiles. Based on an expected abrupt change in the concentration profile at 

about ( =0.40 (from the preliminary orthogonal collocation results), an OCFE 

solulion was obtained using two elements of length 0.4 and 0.6 with N1 = 5 and 

N2 = 1 or a total of only six interior collocation points and one interior bound

ary point. These OCFE axial profiles are much sharper than those predicted by 
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the orthogonal collocation procedure simply because orthogonal collocation 

actually smooths the steep profiles by attempting to fit a single polynomial 

through the entire region. Figures 3.5-6 and 3.5-7 show the locations of the col

location points for both schemes. Grouping the collocation points around the 

region of sharp profile changes in the OCFE procedure allows more accurate 

representation of these changes. This is identical to the concept of increasing 

the number of grid points around a sharp transition when using standard finite 

element techniques. 

AE shown in Figure 3.5-?, the OCFE procedure is also capable of handling 

the abrupt concentration profile change where the reaction reaches completion 

with only a single collocation point being necessary in the final element. while 

the orthogonal collocation procedure shows significant error in the protlles even 

with additional collocation points. Increasing the number of collocation points 

in either element for the OCFE solution has no significant beneficial effect on the 

axial profiles and can introduce oscillations in the first element as shown in Fig

ure 3.5-8. Increasing the number of elements without using sufficient interior 

collocation points or misplacing the elements can lead to very strange results 

(Figure 3.5-9 and 3.5-10) due to the individual polynomial representations and 

continuity conditions at the element boundaries. 

Table 3.5-1 summarizes the steady state solution times and qualitative 

behavior of the resulting axial profiles for a variety of solution schemes. Notice 

that the solution times increase rapidly as the number or collocation points is 

increased with both solution techniques. The numerical computation times for 

the orthogonal collocation and OCFE solutions shown in Figures 3.5-6 and 3.5-7 

are 11.3 minutes and 1.5 minutes, respectively, thus providing further evidence 

of the necessity of the OCFE procedure ror these particular conditions. 
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Based on these and other simulations along with those by Finlayson (1974), 

we can conclude that. tor chemical packed bed reactor modeling, orthogonal 

collocation is generally optimwn in terms of accuracy and numerical solution 

times. However if steep gradients or abrupt profile changes occur within the 

reactor bed due to extremely fast kinetics or complete conversion of the limit-

ing component, OCFE may be more accurate and faster than simple orthogonal 

collocation. It is then recommended that, if such conditions are expected, the 

modeling computer programs be written to allow either procedure to be used. 

Otherwise, the programs can be written only for orthogonal collocation. The 

computer programs in Appendix 5 are written for OCFE but allow orthogonal col

location simulation simply by letting NE equal one. 

Procedure hi N.,; Solution Time Anal Profiles 

6 4:54 Ba.d. 
7 5:28 Bad 

oc 8 6:07 Bad 
10 11:20 Bad 
12 14:06 Bad 

5, 1 1:33 Excellent 
e. 1 1;18 Slight OscillaLion 
7, 1 2:19 Slight Oscillation 

0.4, 0.6 5,2 4:51 Excellent 
5,3 6:27 Excellent 
5,5 11:28 Excellent 

OCFE 4, 3 5:44 Excellent 
3, 3 4:19 Bad 

0.15, 0.25, 0.60 1, 5. 1 2:15 Fair 
2,5, 2 14:01 Fair 

0.15, 0.20, 0.65 3, 5, 2 17:04 Bad 
0,15, 0.15, 0.70 4 5,3 15:27 Bad 

Table 3.5-1 
OC and OCFE Solutions tor Conditions in Figure 3.5-8 
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Figure 3.5-3 
Orthogonal Collocation Axial Temperature Profiles 

Standard Type III (Table 3.4-5) Conditions 
Non-Reversible Kinetics (Usg=B.5. k 0m =25.1. Eell=7000) 
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Figure 3.5-4 
Axial Temperature Profiles 

Same Conditions as Figure 3.5-3 

OCFE solution with 3 elements of length O.lb, 0.70, 0.15 
N1 = Z, N2 = 5, Ns = 3 

- - - -- - OC solution with N = 12 
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Figure 3.5~5 
Axial Temperature Profiles 

Same Conditions as Figure 3.5-3 

OCFE solution with 3 elements of length 0.15, 0.70, 0.15 
N1 = 2, N2 = 5, Na = 3 

---- OCFE solution with 3 elements of length 0.10, 0.80, 0.10 
N1 = 1. N2 = 5, N3 = 1 
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Figure 3.5-6 
Axial Temperature Profiles 

Same Conditions as Figure 3.5~5 except Double the Reaction Rate (knu:=50.2) 

a) OCFE wi.th 2 elements of length 0.4 and 0.6. N1=5. N2 =1 
b) OC with N=lO 
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Figure 3.5-7 
Axial Concentration Profiles 

Same Conditions as Figure 3.5-6 
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a) OCP'E with 2 elements of length 0.4 and 0.6, N1=5, N2 =1 
b) OCwithN=lO 
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Axial OCFE Temperature and Concentration Profiles 

Two Elements of Length 0.4 and 0.6 
Same Conditions as Figure 3.5-6 

a. Gas Temperatures b. CO Concentrations 

---- N1 =6. N2 = 1 



-'o 

D 
u 

o.s 

0.4 

~ 291-

• Collocation Points 

El-111 t~Eitmtlftl 2 ~~<E------ Element 3-----~ 
I I 
I I 
I I 
1 I 
I I 
I 

~ 0.3 

1-
u 
a: 
a: 
1.1.... 

w 
.....J 
D 
:.E 

0.2 

o. 1 

o.o 

-0.1~--._--~ __ _. __ ~----~--~--~--~-~--~ 
0.0 o.~ o.ij o.s 

AXIAL POSITION, 

Figure 3. 5-9 

0.8 
2/L 

Axial OCFE Concentration Profiles 
Same Conditions as Figure 3.5-6 

hl=O.l5, h2=0.20, hs=0.65; N1=3, N2=6, N3=2 

1.0 



X: 

(..!) 

LLJ 
Cl 

LI.J 
a:: 
=> 
1-
a: 
a:: 
LLJ 
0.. 
::1: 
LI.J 
1-

U1 
rr 
<..::l 

-292-

750 

725 • Collocation Points 

700 

675 

650 

625 

600 

575 

550 
I 
I 
I 

525 
I 
I 
I 
I 

500 Elemtnt ~Element E:lt-13 
1 I 

I 

l!75 
0.0 0.2 0.'-t 0.6 O.B 

AXIAL POSITION. Z/L 

F~ure 3.5-10 
Axial OCFE Gas Temperature Profiles 

Same Conditions as Figure 3.5-6 

h1=0.15, ~=0.25, hs=0.60; N1=l. N2=S, Ns=l 

1.0 



-293-

3.8 CONTROL IIODEL DEVELOP'IIENT 

As discussed by Ray (1981), the feedback control of distributed parameter 

systems requires a reduction of the distributed system to an appropriate 

lwnped parameter modeL Although this lumping can be performed prior to or 

subsequent to a control structure analysis, the modeling equations must be 

lumped for numerical integration during implementation. Our analysis of the 

mathematical relationships describing the chemical and physical processes 

within the reactor have used orthogonal collocation (OC) or orthogonal colloca

tion on finite elements (OCFE) to replace the full distributed parameter system 

with a lumped approximation that allows simulation of the steady state and 

dynamic behavior of the packed bed catalytic reactor. Rather than making 

major simplifications a. priori, the system analysis and numerical lumping used 

a detailed mathematical description of the reactor. However, computing facili

ties generally available for on-line control cannot currently perform the neces

sary calculations rapidly enough for practical control applications with the full, 

nonlinear model developed to this point. Furthermore, solution times for 

dynamic simulations with this model even make detailed parameter studies and 

process optimization impractical using the full model. Thus a simplified lower

order model is desired for on·line multivariable control and for process studies. 

3.6.1 State-Space Representation 

In simplifying the process model. it is advantageous if the equations can be 

reduced to fit into the framework of modern multivariable control theory, which 

usually requires a model expressed as a set of linear first-order ordinary 

difl'erential equations in the state-space form· 
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~t) = JU[(t) + Ekl(t) + Ihi(t) 
y(t) = Hx(t) + Fu(t) (3.6-1) 

where x(t), u(t), d(t), and y(t) are the state, control. disturbance, and measure-

ment vectors, respectively. 

Since the orthogonal collocation or OCFE procedure reduces the original 

model to a first-order ordinary differential equation system, linearization tech-

niques can then be applied to obtain the necessary representation. A major 

advantage of the orthogonal collocation or OCFE procedure for the reduction of 

the partial differential equations over previous techniques such as finite 

differences or finite elements is that the size of the resulting ordinary 

differential equation system is inherently quite small. Further reduction may be 

desired and is discussed in Section 3.7. Once the dynamic equations have been 

transformed to the standard state-space form and the model parameters are 

estimated, various procedures can be used to design one or more multivariable 

control schemes, or the reduced model can be used for detailed process simula-

tion and optimization. 

However. real processes cannot accurately be described by the determinis

tic form of Equation (3.6-1). For control applications, modeling and measure-

ment errors, reduction inaccuracies, and noise in the system may need to be 

accounted for by considering the addition of stochastic disturbance terms to 

the equations: 

i(t) = JU[(t) + lkl(t) + Ihi(t) + l{t) 
y{t) = Hx(t) + Fu(t) + f](t) (3.6-2) 

where 1(t) is a vector of random process noise and 7'](t) is a vector or random 

measurement error. These can be thought of as representing the total effect of 

all of the disturbances or noises in the process not accounted for by the deter-

ministi~ model. These stochastic disturbances can include uncontrolled or 
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unmodeled fluctuations in inlet concentrations or flow rates, in catalyst activity, 

in cooling wall temperature, and in heat transfer coefficients and can lead to 

suboptimal reactor performance or even system uncontrollability. 

In developing a general state-space representation of the reactor, all possi-

ble control and expected disturbance variables need to be identified. In the fol

lowing analysis, we will treat the control and disturbance variables identically to 

develop a model of the form 

i(t) = AI{t) + Ww(t) 
y(t) = Hx(t) + Fw{t) (3.6-3) 

where w{t) now contains all control and disturbance terms, 

Ww(t) = Bu(t) + Dd(t). This model can then be used for process simulations. 

When specific control studies are desired, the Ww(t) term can simply be 

separated into the appropriate control term Bu(t) and disturbance term Dd(t). 

depending on the selected control configuration. Examples of this are shown in 

Section 4.3. 

Consider lhe simplified tlow diagram of the reactor system shown in Figure 

3.6-1. The possible control variables or disturbances to the process are the 

tlowrates of the input gases, the recycle ratio, the cooling jacket temperature, 

the heat load of the preheater, and the feed-effluent heat exchanger bypass. 

From the reactor's point of view (and thus the reactor model), the inlet gas tern-

perature, the cooling wall temperature, the gas velocity, and the inlet gas con-

centration can be affected. We will thus consider the control and disturbance 

vector of the form 

(3.6-4) 

where these variables are nondimensional and the superscript (0
) or subscript 

( 0 ) indicates inlet conditions. 



~ 296 ~ 

3.6.2 .llodel I..i.nearisation 

The major complication in the model after reduction of the original partial 

ditierential equations to ordinary ditrerential equations is the nonlinearities that 

result from the nonlinear rate expressions and from the temperature, concen-

t:ration, and velocity dependencies of the convective terms and of the gas and 

reaction properties. The reduction of the first-order ordinary differential equa

tion model to the state-space representation involves linearization of the alge

braic and differential equations about the steady state. The resulting 

mathematical description is then valid for small perturbations around this 

steady state. 

This analytic linearization, although conceptually quite simple, is extremely 

tedious. Simple numerical linearization could be used during simulations and 

control through various readily available computer programs but does not pro

vide a detailed analytical solution from which the effects of various parameters 

can be investigated. 

Minor reduction of the nonlinear ordinary differential equation model 

developed using orthogonal collocation or OCFE first involved assuming constant 

heat capacity of the gas throughout the reactor bed1 and neglecting the axial 

and radial mass diffusion terms, based on the results of the model analysis 

presented in Section 3.4. The resulting model was then linearized in three 

stages: linearization of the reaction rates, linearization of the algebraic equa-

tions and substitution into the differential equations, and linearization of the 

resulting ordinary differential equations. 

1. Simulations showed no loss in accUiacy by this assumption. Its only real benefit is a minor 
:reduction in linearization etfort. 
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3. 6. 2.1 Lineariza.titm. of the Reaction Rates 

The nondimensionalized reaction rate expressions 

(3.6-5) 

(3.6-6} 

(3.6-7) 

v = Kq. YCH..YHeO 
KPJ'~P~ Yeo (YH8)

3 (3.6-B) 

Kp + l it KP, = e i = S, M (3.6-9) 

(3.6-10) 

are first linearized about the steady state operating conditions (ss) using a Tay

lor series linearization approach. If we neglect the second and higher order 

terms in the Taylor series expansion, the linearization is of the form 

(3.6-11) 

After lengthy analytic manipulation of the expressions, the resulting linearized 

rate expressions are of the form given in the equation above with the [ BR l 
OZ A 

terms defined in Appendix 6. 

It is important to remember that the linearized expressions are only valid 



-298-

in the Vicinity of the specified steady state conditions. A comparison of the rela· 

tive magnitudes of the linear and nonlinear reaction rates is presented in Table 

3.6-1 for both Type I and Type II standard operating conditions defined in Table 

3.4-5. These results are presented mainly to show the necessity for caution in 

using the linearized expressions since significant errors can occur away from 

the steady state. In general, although the rate expressions are highly nonlinear, 

the errors are relatively small even at considerable deviations from steady state. 

Although the errors in the steam-shift rate are quite large in several cases, the 

reaction rates in these cases are so small that the steam-shift reaction has 

insignificant effect on the reactor dynamics. 

Type I Conditions 

T. Tg 
%Error 

Yt Y2 Rv Rs 
steady state 630 627 0.13 1.00 

640 637 0.13 1.00 0.23 12.5 
650 647 0.13 1.00 0.85 25.1 
620 617 0.13 1.00 0.27 24.2 
630 627 0.25 0.99 0.27 7.5 
630 627 0.03 1.02 0.91 4.2 
64-o 637 0.25 0.99 4-.03 2.5 

Type n Conditions 

T. Ta Yt Y2 
%Error 

Ru Rs 
steaty state 613 610 0.71 1.01 

603 600 0.71 1.01 0.31 0.57 
623 620 0.71 0.71 0.26 0.45 
613 610 0.82 1.01 0.15 2.60 

Table 3.6-1 
Nonlinear vs. Linearized Reaction Rates 

3.6.2.2 Linearization of the Algebraic Equa.tions 

The algebraic equations for the orthogonal collocation model (shown in Sec-

tion 3.3.5) consist of the axial boundary conditions along with the continuity 



-299-

equation solved at the interior collocation points and at the end of the bed. This 

latter equation is algebraic since the time derivative for the gas temperature 

can be replaced with the algebraic expression obtained from the energy balance 

for the gas. 

The boundary conditions for the mass balances and for the energy equation 

for the thermal well can be solved explicitly for the concentrations and thermal 

well temperatures at the axial boundary points as linear expressions of the con

ditions at the interior collocation points. The set of four boundary conditions 

for the gas and catalyst temperatures are coupled and are nonlinear due to the 

convective term in the inlet boundary condition for the gas phase. After a Tay

lor series linearization of this term around the steady state inlet gas tempera

ture, gas velocity, and inlet concentrations, the system of four equations is 

solved for the gas and catalyst temperatures at the boundary points. 

Linearization and solution of the continuity equation for the velocities at 

the interior collocation points and at the end of the reactor are somewhat more 

complex. Unfortunately, the time derivative of the gas temperature term adds 

significant complexity to these algebraic equations. Since the linearized model 

is expected to be valid over only a limited region around the steady state, and 

since a sludy or the magnitudes of the terms in this equation showed that this 

time derivative term is relatively small near the steady state, the term was 

neglected (equivalent to assuming ":t' = 0). Simulations using the full, non

linear model verified that negligible error resulted from dropping this term. The 

maximwn error seen was during the first 10 seconds of a dynamic simulation 

and was generally less that 0.1% even during this period. 

The resulting equation 
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(3.6-12) 

for i = 1, ... , N + 1 was then linearized using the folloWing relationship 

(3.6-13} 

The algebraic equations for the endpoint gas temperatures were then substi-

luted into the linearized continuity equations. These equations were then solved 

for the velocities. The results of this linearization of the algebraic equations is 

shown in Appendix 6. 

3. 6. 2. 3 Linsarizatian of the IJiflerential Equatians 

The linear reaction rate expressions and the linear expressions for the 

velocities and for the concentrations and temperatures at the axial boundary 

points were then substituted into the ordinary differential equations. Lengthy 

algebraic manipulation waS' necessary to linearize these equations due to 

extreme couplings between the different state variables. The linearization was 

completely analytical and retained all possible complications. The results of 

this analysis are shown in Appendix 6. Again great care must be exercised dur

ing this algebraic reduction due to the extreme complexity of the model. All 

results were verified through careful model simulations and ftnally by using the 

symbolic equation solver SMP available on the Caltech computer system. 

The final linearized model is of the form 

i: = Ax + lfw + C (3.6-14) 

where the state vector 
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consists or the catalyst temperatures, the gas temperatures. the thermal well 

temperatures, the CO concentrations, and the C02 concentrations at the interior 

collocation points. The control and disturbance variables are 

(3.6-16) 

This linear system is then of order 5N, where N is the number of interior colloca-

tion points. Analytical expressions for the elements of the matrices 'A and W are 

shown in Appendix 6. The constants C in the equations can be easily eliminated 

by using deviation variables about the steady state values. At steady state, i: = 0 

and thus 

O=Ai:+fi+C 

Subtra.cting this from the original equation, 

:i: = A(x-x) + W(w-w) (3.6-18) 

Letting 

I'=x-x and w' = "--w (3.6-19) 

the resulting equation is of the desired state-space representation: 

r =AX+ lfw' (3.6-20) 

Note that in the remaining analyses, we will drop the ('). It should still be clear 

that deviation variables are being used. Then as per the previous discussion, 

this linear representation can easily be separated into the standard state-space 

representation shown in Equation (3.6-1) for any particular control 

configuration. 
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3.6.2.4 Numerical Solution of tha Li:nearized. Model 

Numerical simulation of the behavior of the reactor using this linearized 

model is significantly simpler. The first step in the solution must be to solve the 

full, nonlinear model for the steady state profiles. This is accomplished using 

either the algorithm by Powell (Rabinowitz, 1970) or Brown ( 1967) discussed in 

Section 3.3.5. This first step, is limiting in the sense that no further linearized 

analysis is possible without it. Due to the complexity of the nonlinear model. 

numerical convergence problems may be significant during this steady state 

solution. Obviously. the success of this solution is often based on the initial 

guesses for the steady state profile. Experience or empirical data can help in 

setting these values. Additionally, under extreme cases, the nonlinear dynamic 

simulation programs can be used to simulate the behavior of the system from 

specified profiles to the final steady state. As the dynamic solution approaches 

the steady state, the resulting profiles can be used as the initial guesses for the 

steady state solver so that the dynamic solution does not need to continue com-

pletely to steady state. 

The steady state profiles are then used to calculate the matrices A and Y. 

The Adams-Moulton predictor-corrector technique can again be used t.o numeri-

cally integrate the linear model for dynamic simulations. However, due to the 

linearity of the resulting mathematical system, an analytical solution of the 

difi'erential equations is possible. The general solution of the clifl'erential system 

given by Equation (3.6-20) is 

(3.6-21) 

Then if we consider a time interval (t -.. t + dt) over which w is constant,2 this 

solution simplifies to 

2. We can take very small time steps, dt, i! needed. 
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(3.6-22) 

The major complications in this analytical solution are obviously the matrix 

exponential and matrix inverse. If we let 

A= SA s-1 (3.6-23) 

where A is a diagonal matrix of the eigenvalues of A and S is the corresponding 

matrix of eigenvectors, we then get 

(3.6-24) 

where eA dt and A-t are easily calculated smce A is diagonal. Thus after the 

steady state is determined and the time steps (dt) are selected, we can calculate 

the eigenvalues and eigenvectors of the matrix A and from these the values of 

A-1 and eAdt. These lengthy calculations only need to be performed once for 

each steady state and selected time step! Of course these time steps can be 

quite large with the only restriction being that the control and disturbance vari-

ables are nearly constant during this period. If these variables are constant 

over more than one selected time step, even the value of A-1(eAdt_I)Ww' will be 

constant and will not have to be recalculated between time steps. 

Several computer programs have been written to simulate this linearized 

model of the reactor. These programs are discussed and listed in Appendix 4. 

Basically, two programs are usedfor the linear model. The first called LINMOD 

uses the Adams-Moulton predictor-corrector numerical integration of the linear 

differential equation system, including our variable time-step analysis. This pro

gram is similar in structure and operation to the nonlinear program NLNMOD. 

The second program written for the linear model simulation. ANAMOD. uses the 

analytical solution· of the linear equations rather than performing a numerical 

solution. Thus it takes only a fraction or the solution time. 
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These programs are set up to automatically determine the steady state 

solution, to calculate the coefficient matrices for the linearized modeL and to 

optimally perform the dynamic simulations for a large variety of step changes 

or disturbances or for start-up conditions. The program ANAMOD only performs 

the matrix inversions, exponentiations, and multiplications as necessary. The 

matrix inversion or the eigenvector matrix simply involves transfornung the 

matrix into upper triangular form by successively multiplying it on the left by a 

transformation matrix that preserves the determinant of the original matrix. 

The triangular matrix is inverted by back substitution and ftnally the inverse of 

the original matrix is obtained by multiplying the inverse of the triangular 

matrix by the original transformations on the right. 

The determination of eigenvalues and eigenvectors of the matrix A is based 

on a routine by Grad and Brebner (1968). The matrix is ttrst scaled by a 

sequence of similarity transformations and then normalized to have the Eucli

dian norm equal to one. The matrix is reduced to an upper Hessenberg form by 

Householder's method. Then the QR double step iterative process is performed 

on the Hessenberg matrix to compute the eigenvalues. The eigenvectors are 

obtained by inverse iteration. 

3.6.3 State-Space 'Simulatiom 

Figure 3.6-2 shows the simulated dynamic behavior of the gas temperatures 

at various axial locations in the bed using both the linear and nonlinear simula

tion programs for a step change in the inlet CO concentration from a mole frac

tion of 0.06 to 0.07 and in the inlet gas temperature from 57:3° K to 593" K. Fig

ure 3.6-3 shows the corresponding dynamic behavior of the CO arid CO:a concen

trations at the reactor exit and at a point early in the reactor bed. The axial 
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concentration profiles at the initial conditions and at the final steady state 

using both the linear and nonlinear simulations are shown in Figure 3.6-4, and 

the axial gas temperature profiles are shown in Figure 3.6-5 at t = 0, 15 seconds, 

and 100 seconds (steady state). The temporal behavior of the profiles shows 

that the discrepancies between the linear and nonlinear results increase as the 

final steady state is approached. Even so, there are only slight discrepancies 

(less than 2% in concentrations and less than 0.5% in temperatures) in the 

profiles throughout the dynamic responses and at the final steady state even for 

this relatively major step input change. 

Figure 3.6-6 shows dynamic linear and nonlinear simulations of the gas 

temperatures at t = 0.17 and ( = 0.38 and Figure 3.6-7 shows the exit CO and 

C02 concentrations for a 50 second disturbance in the inlet gas temperature 

from 573° K to 601.65° K (a 5% increase) and in the inlet CO concentration from 

a mole fraction of 0.06 to 0.072 (a 20% increase). Again we find that only minor 

differences (less than 2%) are apparent between the two models and only then at 

conditions sufficiently far from the steady state. As expected, the models give 

identical results when the orl.ginal steady state is reestablished after the distur

bance. 

Figure 3.6-8 shows the temporal behavior of the exit gas temperature and 

the gas temperature at ( = 0.38 under start-up operation using both the linear 

and nonlinear simulation programs. Figure 3.6-9 shows the axial temperature 

profiles at 15 seconds, 30 seconds. and at steady state. As expected, the major 

deviations between the models occur early in the simulation where the reactor 

conditions are relatively far from the steady state conditions around which the 

model is linearized .. However, the magnitudes of the deviations are actually very 

small, thus verifying the ability of the linearized model to simulate reactor 

behavior even relatively far from steady state. 
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Thus the simulations show that the linear model is quite accurate even for 

relatively large deviations from the steady state. Of course, losses in accuracy 

are greater the larger the deviation. For start-up and disturbance simulations, 

the linearized model does predict an eventual return to the steady state around 

which the system was linearized. However for step input changes where the final 

steady state differed from the original, some minimal loss in accuracy is 

apparent in the final steady state reached using dynamic simulations of the 

linear model from the original steady state. This difficulty can easily be circum

vented in the case of step changes by relinearizic.g about the new final steady 

state conditions somewhere during the simulation. 

Table 3.6-2 shows a comparison of the solution times for the various 

dynamic simulations using the three models. As shown, the reduction in solu-

tion time is enormous using the linear modeL Using numerical integration of 

the linear state-space model, simulation times are reduced by a factor of 10. 

The analytical solution reduces simulation times by another factor of up to 100 

(to a point where real time .solution is possible)! As expected, the results using 

both the numerical and analytic solutions of the linear model are identicaL 

Simulation 
llodel 

NLNMOD LINMOD 

Step 

Step 
Start-up 
Disturbance 
(50 seconds) 

T0 ... 593cK 
2:54:24 12:54 

x:m--0.07 
T., ... 593°K 3:14:41 18:04 

4:43:26 28:39 
T0 -+ 60::~°K 4:58:42 23:10 x:m .... 0.072 

Table 3.6-2 
Comparison of Simulation Times 

ANAMOD 

00:36 

00:34 
00:29 

00:31 

Thus the results of this investigation concerning locally linearized models 

along with the results of prior investigators (Heiberg et al., 1971; Sinai and Foss, 
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1970) show that such models are quite descriptive of the overall system and are 

an extremely useful means of reducing model complexity. AB pointed out by 

Hoi berg et al. ( 1971) and verified in this analysis, there is relatively little incen

tive for retaining the nonlinear representation in View of the large uncertainties 

in the numerical values of the physical and chemical parameters. 
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Temporal Behavior of Gas Temperatures during Start-Up 
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3.7 MODEL DIMENSIONALITY 

Mathematical models are widely used in the design. simulation. optimiza

tion, and control of chemical packed bed reactors. Although low-order models 

are often developed for control of simple chemical systems using statistical 

analysis of input/output data, these empirical models are generally inappropri

ate for complicated, highly nonlinear packed bed analyses where very low-order 

models are not sufficient and where operating conditions may vary greatly from 

the vicinity of the operating point for which the models were developed. For 

these systems. the mechanistic modeling approach presented in this thesis is 

necessary. In this mechanistic analysis, a detailed mathematical description of 

the physical and chemical phenomena in the system is solved directly. Although 

this generally provides a more detailed solution valid over a wider operating 

range and allows detailed investigation and prediction of the reactor behavior, 

the model even after linearization is often too complex for controller design or 

for implementation as part of the actual control system. Low-order models are 

thus required for on-line implementation of multivariable control strategies. 

This section presents a dimensionality study of the model discretization 

and physical modeling assumptions for the mechanistic packed bed reactor 

model. A further discussion of model reduction to approximate the full system 

with one of moderate order (2Nth-order) is also presented. It is our opinion that 

further reduction probably is not needed or desired for control studies. lf addi

tional reduction is necessary, model reduction techniques such as those 

presented by Bonvin (1980) and Wilson et al. (1974) should be attempted. 

3.7.1 Model ~tion 

The model discretization or the number of collocation points necessary tor 
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accurate representation of the profiles within the reactor bed has a major effect 

on the dimensionality and thus the solution time of the resulting model. As pre

viously discussed, radial collocation with one interior collocation point generally 

adequately accounts for radial thermal gradients without increasing the dimen

sionality of the mathematical system. However, multipoint radial collocation 

may be necessary to describe radial concentration profiles. The analysis of Sec

tion 3.4.5 shows that even with very high radial mass Peclet numbers, the radial 

concentration is nearly uniform and that the axial bulk concentration and 

radial and axial temperatures are nearly unaffected by assuming uniform radial 

concentration. Thus model dimensionality can be kept to a minimum by also 

performing the radial concentration collocation with one interior collocation 

point. 

In this section, the optimal choice for the number of axial collocation 

points is discussed. Obviously, if the number of axial collocation points is 

insufficient. the resulting axial solution for the temperature and concentration 

profiles will be incorrect. On the other hand, one of the problems with fitting 

high-order polynomials to the axial profiles is that the polynomials, if of 

sufficiently high order, may begin to ripple along the curve. As pointed out by 

Jutan et al. ( 1977), this rippling can be extremely detrimental since the colloca

tion formulas are used to approximate derivatives. Since there is a tradeoff 

between lowering the number of collocation points to reduce model dimen

sionality and reduce profile rippling and increasing the number of collocation 

points to retam high simulation accuracy, extreme care is required in the selec

tion of the number of axial collocation points. 

The first attempts at determining the optimal number of axial collocation 

points simply involved repeating simulations with differing axial discretization to 

find conditions with minimum ripple and maximum accuracy. Figure 3.7-1 
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shows the steady state axial temperature profiles for standard Type I (Table 3.4-

5) conditions as the number of axial collocation points is changed. Eight or 

more axial collocation points provide similar results, and even simulations With 

six coUocati.on points show minimal inaccuracy. However, reducing the number 

of collocation points below this leads to major discrepancies in the axial profiles. 

These errors are even more important in the dynamic simulations shown in Fig

ure 3.7-2. 

Although this simulation procedure provides an optimal choice of the 

number of axial collocation points for steady state and can give an indication of 

the appropriate number of collocation points for dynamic simulations, Bonvin 

(1980) shows that the convergence pattern of the dominant eigenvalues of the 

model as the number of collocation points LS increased can also be used as an 

important procedure for determining the optimal axial discretization. Since 

these dominant modes only describe the dynamic behavior of the linearized sys

tem, simulation of the full model should be used to verify the results for tran

sient and steady state analyses. 

If the axial discretization is fine enough, the dominant eigenvalues have 

converged to their true values. Figures 3.7-3 and 3.7-4 show the convergence of 

the dominant eigenvalues for the Type I and Type II (Table 3.4-5) operating con

ditions. The conditions for Figure 3.7-3 are the same as those used for Figures 

3.7-1 and 3.7-2. The eigenvalue analysis shows that less than six collocation 

points will lead to significant errors in the dynamic simulations tor these condi

tions since the dominant eigenvalues are far from their true values. Seven col~ 

location points would seem lo be sufficient and six may be satisfactory. These 

results verify those obtained above using simulations with differing discretiza

tion (Figure 3.7-1 and 3.7-2). With six interior axial collocation points, the full 

model would consist of 30 coupled, nonlinear ordinary differential equations 
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along with their algebraic boundary conditions. The linear model would be a 

30th-order state-space representation! 

Under conditions where very steep gradients exist within the reactor bed, 

collocation may lead to oscillatory axial profiles (rippling) due to the attempt to 

fit an Nth-order smooth polynomial function to the axial behavior. Although 

these oscillations can be often reduced by decreasing the number of collocation 

points, significant errors in the profiles can then result. Simple trial·and-error 

should be used to determine the best number of aXial collocation points to 

reduce rippling and retain accuracy. In extreme cases with very steep axial 

profiles or abrupt changes m the profiles. the orthogonal collocation on finite 

element procedure explained in Section 3.5 may be necessary. Using this tech

nique, not only the number of collocation points in each element needs to be 

specified but also the number and size of the elements. 

3.7.2 Ph}Sicalllodeling Simplifications 

Due to the complexities of the full mathematical description of a packed 

bed reactor and the complications with numerical solution and analyses of such 

descriptions, the extensive use of physical modeling simplifications is common. 

Assumptions that reduce the complexity of the resulting mathematical model 

such as neglecting dispersion effects and radial gradients have been discussed 

elsewhere in this work. Basically, the common assumptions of neglecting radial 

temperature gradients, neglecting thermal dispersion. and neglecting the varia

tion of physical properties significantly reduce the accuracy of the resulting 

model for numerical simulations and for further optimization or control studies 

without reducing the dimensionality of the resulting representation. In view of 

the advances in computational techniques over the past decade for the solution 
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of partial differential equation systems, 1 these simplifications are unnecessary 

and provide minimal, if any, reduction in solution etlort. Transient reactor 

behavior can thus be simulated using accurate three-dimensional modeling With 

the inclusion of known dispersion effects and parameter variations. 

To this point in the modeling analysis, we have tried to incorporate all of 

the mechanisms necessary for accurate description of the physical and chemi

cal phenomena occurring in industrial reactors and to study the ef!ects of vari

ous modeling simplifications. We continue this study by considering several 

major simplifications which do not simply reduce the structure of the partial 

ditlerential equations but actually significantly reduce the number or necessary 

equations or the dimensionality of the process. These include the extensive use 

of pseudo-homogeneous models-those that do not distinguish between the con

ditions within Lhe fluid and those on the solid catalyst-and the assumptions of 

quasi steady state for concentrations and negligible energy accumulation in the 

gas phase. 

3. 7.2.1 Homogrmaous Analysis 

The mathematical models of the heat and mass transfer processes in 

packed bed reactors are classified in two broad categories: 

1. One-phase or pseudo-homogeneous models in which the reactor bed is 

approximated by a quasi-homogeneous medium. 

2. Two-phase or heterogeneous models where the catalyst and ftuid 

phases and the heat and mass transfer between phases are treated 

explicitly. 

1. In partiC'J.lar, the collocation techniques. 
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Although the heterogeneous models are more realistic, they have been generally 

ignored until only recently due to difficulties with numerical solution and 

increased model dimensionality. Even several nonadiabalic packed bed reactor 

studies that begin with a two-phase analysis reduce the model to a pseudo

homogeneous form by assuming equal gas and catalyst temperatures for steady 

state and dynamic solution (Jutan et al., 1977) or at least for the steady state 

solution (Heiberg et al., 1971). Some authors (Yortmeyer and Schaefer, 1974; 

Vortmeyer et al., 1974) have even considered the equivalence of the one- and 

two-phase approaches for one-dimensional or adiabatic studies. This thesis 

presents the first detailed two-dimensional heterogeneous dynamic and steady 

state packed bed reactor analysis. 

However since it has been common practice to develop models for catalytic 

reactors that do not distingUish between thermal conditions within the tluid 

phase and those on the solid catalyst, a cursory examination of the homogene

ous analysis is presented here. This assumption is generally justified by the 

expectations of small temperature differences between the solid and gas phases 

and results in a one-phase ctintinuum representation of the actual reactor bed. 

As discussed by Jutan et al. (1977). the difference between gas and catalyst tem

peratures for fast flowing gas systems should be negligible. They further refer

ence the work by Shaw ( 1 974) that shows that there is ample driving force to 

remove the heat generated by reaction and that no temperature difference 

should exist between the gas and catalyst at steady state. 

In our original system of partial differential equations, the two energy bal

ances can be combined as proposed by Jutan et al. ( 1977) by eliminating the 

u . 
term, ~(T8-Tg). that describes the heat transfer between the solid and gas. If 

the gas and solid temperature are assumed equal (T1 = Tg). and the homogene-
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ous gas/solid temperature is defined as T, the original combined energy balance 

for the gas and solid becomes 

+ ( -AH:u:)Ru: + ( -AHs)Rs (3.7-1) 

where kz and kr are effective conductivities for the combined gas/solid system. 

Additionally, since 

the coefficient of the time deri.vative reduces to 

The boundary conditions are 

6T 
z=O k,. oz = UgCp,fgE (T -T0) 

z=L aT = o 
l'z 

r=Ro kr oT = ht(T -Tt) ar 
r=R1 -kr aT = hw(T -T,) 

6r 

(3.7-2) 

(3.7-3) 

(3.7-4) 

where ht and hw are effective heat transfer coefficients between the gas/solid 

medium and the thermal well and cooling waLL respectively. 

This equation is solved with the continuity equation, the energy balance tor 

the thermal well,2 and the concentration equations using the same procedure as 

for the full system. The dimensionality of the model has now been reduced by N 

(i.e., the model now has order 4N). Computer simulation programs were written 

2. With a."'l overall heat transfer coefficient being used rather than Uta and Utg. 
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for this homogeneous model. Unfortunately, no direct comparisons can be 

made between the simulations with the two-phase analysis and the homogene

ous analysis since no direct mathematical relationship can be made between the 

effective and overall heat transfer coefficients of the homogeneous model 

(kz, kr, ht. hw, Ut} and the individual gas and solid coefficients of the two-phase 

model (kzs• kzg, krs, krg. hts. hq, ht.g. hwg• Uts. Ut.g). Some attempts (Vortmeyer and 

Schaefer, 1974) have been made in this regard, but are not accurate enough for 

direct comparison of the simulations of the two models. 

Solution times using the homogeneous model are 15% to 25% less than that 

for the full two-phase analysis, although the accuracy of the results may be 

somewhat in question. Figures 3.7~5 and 3.7-6 show the axial temperature and 

concentration profiles with Type 1 and II (Table 3.4-5) operating conditions and 

with realistic heat transfer parameters. Although these simulations appear 

similar to those obtained with the heterogeneous analysis, no direct comparison 

is possible as explained above. 

However, simulations usi,p.g the heterogeneous analysis even with high inlet 

velocities lead to steady state temperature profiles with differences of up to 10° 

K between the solid and gas phases and transient results with differences up to 

20" K due to the high exothermicity of the methanation reaction on the catalyst 

surface. These temperature differences can lead to significant errors in the 

predicted reaction rates. Using the kinetics proposed by Strand (1984), the 

methanation reaction rate about doubles with ever 10° K temperature rise over 

the normal operating region. Therefore although a homogeneous analysis may 

be adequate for reactions that are only slightly exothermic or simulations of 

steady state phen:omena, a heterogeneous analysis is necessary for dynamic 

simulations of highly exothermic reaction processes. 
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The increased dimensionality of the heterogeneous system can be reduced 

using other techniques discussed in this section which require much milder 

assumptions. The assumption of negligible energy accumulation in the gas 

phase based on the approximation (Equation 3. 7-3) provides the same reduction 

in system dimensionality as the homogeneous analysis but with a much less 

drastic assumption. 

Measurement difficulties that arise in model verification of parameter esti-

mation using a heterogeneous analysis are also often cited as reasons for a 

homogeneous analysis. Although theoretically it is possible to measure 

separately the gas and solid temperatures, in practice it is difficult without seri-

ously affecting flow patterns within the reactor bed. These difficulties can be 

minimized by using an internal thermal well as is common in industrial systems 

and including this thermal well in the model development. This eliminates the 

concern over whether temperature measurements within the reactor bed are 

actually measuring gas or solid temperatures or a combination of both. 

Another procedure often used with less severe assumptions than the equal-

ity of the gas and solid temperature is the pseudo-homogeneous analysis pro-

posed byVortmeyer and Schaefer (1974). This procedure has proven to be quite 

effective for simple adiabatic packed bed analyses and involves reducing the 

energy balances for the gas and catalyst to a single equation using the assump-

tion 

(3.7-5) 

Although this assumption is often not too restrictive, additional more severe 

assumptions must· be introduced to reduce our mathematical model to the 

pseudo-homogeneous form, since our reactor is nonadiabatic and requires 

radial temperature considerations. A literature search failed to find any 
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attempts of the Vortmeyer procedure for a nonadiabatic packed bed reactor. 

For the full mathematical model developed in Section 3.3, the following assump-

tions would be necessary in addition to the standard Vortmeyer assumption 

above: 

1) Negligible energy accumulation in the gas phase. 

2) No axial diffusion in the gas phase or 

3) 

4) 

Lll)2Tg 1 = o 
az6z2] 

L 11 BT,l = L 11 6Tg 1 
6rr6r Br~ 

Obviously, these assumptions are too restrictive for standard nonadiabatic 

packed bed analyses. 

3. 7. 2. 2 Quasi Steady State Approximation 

Transient analyses using the full. nonlinear model show that concentration 

profiles reach a quasi steady state quite rapidly (often within 3 to 5 seconds); 

whereas, the thermal response of the reactor bed is much slower' due to the 

large heat capacity of the reactor bed and thermal well. An example of this 

phenomenon is shown in Figure 3.7-7, where the transient responses of the solid 

3. Thermal time constants are about two orders of In88nitude greater than the concentration time 
constants. 



-327-

temperatures, thermal well temperatures, and concentrations are shown for a 

major step change in the inlet gas temperature and inlet CO concentration. In 

this example, the effect of the step change is nearly immediate on the concen

tration profiles with the major effect being within the first ten seconds. How-

ever. Figure 3. 7-7a shows that the thermal well temperatures and the catalyst 

temperatures take up to ten times as long as the concentrations to approach 

the new steady state after the input step change. Note that the catalyst tern-

peratures shown in the figure are at the radial collocation point r = rc and that 

the response of the catalyst temperatures near the center of the reactor (not 

shown) is very similar to the thermal well response. 

Furthermore, comparison of the thermal (vT) and the concentration (vc) 

wave velocities as defined by Gould ( 1969) 

p1cp u8e 
VT= a 

p8 Cp
1
(1-t) 

vc = u, (3.7-6) 

verify this quasi steady state for the concentration profiles. As in many solid 

catalyzed gas reactions. the ratio of the concentration wave velocity to the ther

mal wave velocity is quite large:' This implies that the concentration profiles 

reach a quasi steady state rapidly and that this quasi steady state then follows 

the slowly chang~ng temperature profile, thus providing theoretical backing for 

the transient behavior of the concentrations and temperatures in Figure 3.7-7. 

Packed bed studies by Jutan et al. ( 1977) have also shown that the concentra-

tion dynamics can be ignored in the packed bed modeling. 

The quasi steady state approximation then allows the concentration time 

derivatives to be set equal to zero 

4. About 250 for our reactor. 
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ax~ 
-- R:l 0 at (3.7-7) 

in the original partial differential equations or in the linearized model, thus 

reducing 2N of the discretized ordinary differential equations to algebraic equa-

tions. In the linear system, these algebraic equations can be solved directly for 

the concentrations and substituted into the differential equations. Computer 

programs (Appendix 4) were written to simulate the reactor using this assump-

tion for both the full and linearized models. Although this approximation intro

duces considerable simplification in the nonlinear model, its effect on the linear-

ized system is a simple reduction ln system dimensionality, and it does not lead 

to any major reductions in analytic solution times. 

Simulations show negligible differences in the transient temperature and 

concentrations profiles as a result of this approximation. Some of these simula-

tions are shown in Section 3. 7-4 where the model reduction procedures are com-

pared. The major advantage of this assumption should be apparent in control 

system design where a reduction in the size of the state vector is computation

ally beneficial or in the time-consuming simulations of the full nonlinear model. 

It should be stressed that, although this quasi steady state approximation 

involves setting the time derivatives of the concentrations equal to zero, it does 

not imply that concentrations are independent of time, since concentrations are 

still coupled directly to temperatures, and temperatures are obviously time 

dependent. 

3. 7.2.3 Negligible Energy Accumulation in Gas 

Another potential model simplification procedure involves assuming negligi-

ble energy accumulation in the gas phase as compared to that in the solid. This 
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· is equivalent to the approximation above (Equation 3.7-3) based on the relative 

magnitude of the energy accumulation in the gas and solid. For our system, the 

accumulation of energy in the solid is approximately 250 to 300 times that in 

the gas phase due to the relative thermal capacitance of the gas (Equation 3. 7-

2) and the similarity of the temporal behavior of the gas and catalyst tempera

tures (e.g., Figure 3.7-8). Thus the accumulation term in the energy balance for 

the gas phase can be neglected: 

(3.7-8) 

in comparison to the energy accumulation in the catalyst and thermal well. This 

reduces N of the original ordinary differential equations (after orthogonal collo

cation) to algebraic equations. Again after linearization. these can be solved 

directly for the gas temperatures which can then be substituted into the 

remaining ordinary differential equations to eliminate the gas temperatures 

from the state vector. Simulation computer programs were again written 

(Appendix 4) and show negligible differences in the dynamic and steady state 

profiles, small reductions in solution times for the nonlinear model. and no 

major time reductions for the analytic solution. Some of these simulations are 

shown in Section 3. 7-4. 

3.6.1 llodel Reduction 

Regardless of whether orthogonal collocation or orthogonal collocation on 

finite elements is used for the discretization, the resulting linear state-space 

representation is of high order (3D-40 states) 1 due to the original system of five 

coupled partial dHierential equations and the accurate treatment of the gas. 

catalyst and thermal well temperatures and concentrations. Although dynamic 

1. This is actually of very low-order in comparison to traditional finite difference solutions. 
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simulations using the state-space representation are very fast, computational 

difficulties still exist in developing multivariable feedback control algorithms 

due to the relatively high order of the system. For such applications, an accu

rate reduced-order model is desired. 

Significant reduction is possible through the introduction of the approxi

mations of quasi steady state for the concentrations, negligible accumulation of 

energy in the gas phase, or pseudo-homogeneity of the system. Although these 

approximations could have been made in the original modeling, doing so without 

a careful analysis of their effects on the model behavior can be dangerous. The 

complete study of the mathematical modeling of a packed bed reactor allows 

careful investigation of the significance of these assumptions and the combined 

effects of several simplifications. Additionally, an analysis or the eigenstructure 

of the system shows that simple modal reduction techniques such as those 

presented by BonVin (1980), Gould (1969), and Wilson et al. (1974) can lead to a 

lo¥.·-order state-space model. This section considers explicit modal reduction 

approaches to model reduction that result in an explicit reduced model formu

lation without statistical analysis of input! output data. 

Various model reduction approaches, or minor modifications to existing 

approaches, were proposed during the late 1960's and early 1970's. The "'asic 

strategy of these approaches is to retain certain modes of the high-order model 

in the low-order model. Wilson et al. (1974) summarized these techniques and 

showed that many of the published modal approaches are equivalent since they 

produce identical reduced models. They further considered the design of 

reduced-order control models by performing the model reduction on the high

order model and then designing a low-order controller and by designing a high

order controller and then reducing this to a low-order control law. Bonvin 

(1980) also provides a comparison of the various modal techniques with respect 
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to their steady state and dynamic accuracies as well as to the dependence of the 

reduced models on the retained state variables. 

According to Gould (1969), the central theme in modal reduction and con, 

trol is 

''that the transient behavior of a process is predominantly 
determined by the modes associated with the smallest 
eigenvalues. If it is possible to approximate a high-order 
system by a lower-order system whose slow modes are the 
same as those of the original system, then attention can be 
focused on the attempt to alter the eigenvalues of the slow 
modes so as to increase the speed of recovery of the process 
from disturbances. It is essential to be aware of the fact 
that various disturbances excite the modes differently so 
that a scheme which is based on a lower-order model may 
be inappropriate if a disturbance injects most of its 'energy' 
in a fast mode which has been neglected." 

This basic approach is really diVided into several distinct categories. Two of 

these, Davison's method and Marshall's method, provide suitable model reduc-

lion for the state-space representation of the methanation reactor to a 12th-

order model. Comparisons of the models and discussion of additional model 

reduction are presented in the next section. 

3. 7. 3.1 Davison s Method. 

The principle of this method, proposed originally by DaVison (1966), is to 

neglect eigenvalues of the original system which are farthest from the origin 

(the non-dominant modes) and retain only dominant eigenvalues and hence the 

dominant time constants of the system. If we consider the solution of the 

linearized model derived in Section 3.6, 

(3.7-9) 

and let 
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A = SAS-1 (3.7-10) 

where A is the diagonal matrix of eigenvalues 

0 

A = (3.7-11) 

0 0 

and Sis the corresponding matrix of eigenvectors, the dynamic behavior of the 

system is governed by the term 

A-l(eAdt- I)lfwtt) = SA-t (eAdt- I)s-tlfwtt) 

l.ldt e -1 
0 

At 

= s s-1Ww{t) (3.7-12) 

A,_dt 1 
0 e -

An 

Obviously by neglecting the non-dominant eigenvalues, the dynamic behavior of 

the approximate system will be similar to the original system, since the contri-

bution of the unretained modes will only be significant early in the dynamic 

response. 

Table 3.7·1 shows the system eigenvalues for our full 30th-order linear 

state-space representation for Type II (Table 3.4-4) conditions. As shown, the 

eigenvalues can be grouped into five distinct groups based on the real parts of 

the eigenvalues: 
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Group -(Real) 

Rj 50 

II 1-5 

III 4-6 

N 0.06- 0.08 

v 0.01- 0.03 

Further analysis shows that the fastest modes (Group I) correspond directly to 

the gas temperatures at the interior collocation points and those of Groups II 

and III correspond to the concentrations. It is evident that, of the 30 modes of 

the full linear model (with N = 6), 18 are very fast in comparison to the remain-

ing 12 (by two orders of magnitude or more). Thus direct modal reduction to a 

12th-order model using Davison's method should provide good dynamic accu-

racy. 

Group Real Part T, Part 
-53.49 ± 1.93 

I -52.93 ± 6.31 
-51.98 ± 10.46 
-5.03 ± 5.76 

II -2.12 ± 10.38 
- 1.37 ± 10.35 
-6.27 ± 1.89 

III -5.66 ± 1.85 
-4.34 ± 5.68 
-0.08 ± 0.010 

N -0.07 ± 0.035 
-0.06 ± 0.074 
-0.033 0.0000 

v - 0.021 ± 0.0011 
-0.018 ± 0.0009 
-0.016 0.0000 

Table 3.7-1 
Eigenvalues of Full 30th-Order linear Model 

However by simply neglecting the non-dominant modes of the system, the 
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contribution of these modes is also absent at steady state, thus leading to possi

ble (usually minor) steady state offset. Several identical modifications (Wilson et 

al.. 1974) to Davison's original method have been proposed by Davison and Chi

dambara (Chidambara and Davison, 1967abc; Davison, 1968) and by Fossard 

(1970). In these methods, the states of the reduced model are artificially recon

ditioned to ensure desired steady state behavior. 

3. 7. 3. 2 MarshaUs Method 

Marshall's model reduction technique (Marshall, 1966) differs from 

Davison's in that the steady state characteristics of the original system are 

retained in the reduced model. Since the response of any element of the state 

vector associated with a large eigenvalue is much faster than that of elements 

associated with the smaller eigenvalues (or larger time constants), the dynamics 

of the non-dominant modes can simply be neglected.6 This is equivalent to 

approximating the response of the faster modes by an instantaneous step 

change. If the fast modes in the methanation model are taken as the gas tem

peratures and the CO and C02 concentrations, Marshall's procedure is a rigorous 

mathematical reduction identical to the assumptions of quasi steady state for 

the concentrations and negligible energy accumulation in the gas phase. An 

important advantage of Marshall's method over Davison's method is that the 

reduced-order model has the same steady state as the high-order model. since 

the time derivatives are identically zero for all state variables at steady state. 

However, the retained modes may no longer optimally represent the dynamic 

behavior. 

Table 3.7-1 shows that, for the methanation reactor model, the dynamic 

6. I.e., their time derivatives are set equal to zero. 
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response of the gas temperatures and CO and C02 concentrations should be 

much faster (by two orders of magnitude) than the response of the catalyst and 

thermal well temperatures. This prediction is verified in the dynamic responses 

shown in Figures 3. 7-7 and 3. 7-6 and the previous analysis or the thermal and 

concentration wave velocities. 

Thus the state vector 

is partitioned into 

The state-space representation 

i: =Ax+ .... 

A11 A12 A1s A14 Aus 
Ae 1 Ae2 Aes Ae4 Aeo 

where A= As1 Aa2 Ass Aa4 Aao 
A.:1 A.:2 A.:s Aw ~ 
.l\s1 .l\s2 .1\ss .1\54 .1\55 

can then be partitioned into two sets of equations: 

i = 1, ... , N 

•~ 
... 2 

and W= Ws 

w4 .5 

[Au 
*•= Aal 

Ats] 
Aas x1 

+ [A12 A14 Ate~] 
Ae2 Ae4 Aa5 :1.2 + [::], 

Aet Aes ""' ""' A,,] .2 
*2= A.:l A.s :x:l + A.:2 Aw ~ Xe + .4 ... 

Ae1 Aos Ae2 Ae4 Ao5 ... 5 

(3.7-13) 

(3.7-14) 

(3.7-15) 

(3.7-16) 

(3.7-17) 

(3.7-18) 

Then we can let ie = 0 in light of the quasi steady state approximation and the 

assumption of negligible energy accumulation in the gas or in light of the 
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significant differences in the magnitudes of the eigenvalues for the x:1 and x::z 

states and solve for x::z as a function of x1. Substituting this result into Equation 

(3.7-17) results in a reduced state-space model 

(3.7-19) 

where the state variables arc now the catalyst and thermal well temperatures at 

the collocation points and the new matrices K and lJ' are simply related to the 

original matrices: 

(3.7-20) 

(3.7-21) 

Ae2 Ae4 Ae~l 
where Ac-1 = ~2 ~ ~~ 

Ao2 ~ Ao~ 
(3.7-22) 

Of course, this technique does not actually eliminate the states 

9~, y1~, and y9 . Instead it retains their steady state effects and relates their 

dynamic behaviour to the gas and thermal well temperatures. The reduced 

model is then of order 2N, or of only 12th-order for N=6. Similarly, we could con-

sider each assumption independently. If we retain the state variables 9", the 

model is of 3Nth-order. 

3.7.4 Di.scuasion of Reduced llodel 

The reduced-order model obtained using Marshall's method is an accurate 

2Nth-order approximation to the original bNth-order model. Although the 
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resulting model is equivalent to simply making the common assumptions of 

negligible energy accumulation in the gas and quasi steady state for the concen

trations, we have provided a rigorous mathematical approach to these assump

tions based on the eigenstructure analysis and have provided an accurate 

means of evaluating their applicability. The steady state problems associated 

with Davison's method are eliminated, and the potential dynamic disagreement 

between the original and reduced models is minimal for the methanation reac

tor as verified by simulations. 

Simulations using this reduced model show a reduction in computation 

time, along with storage space, without any significant loss in accuracy. Table 

3.7-2 shows the simulation times for various simulations using various models 

and solution techniques with N = 6. All computer programs are documented in 

Appendix 4. The program RDt MOD simulates the 2Nth-order model using ana

lytic solution of the equations, and RD2MOD simulates an 3Nth-order model 

where only the concentration dynamics have been neglected. Although the solu

tion time advantages between the analytic solutions of the reduced models and 

the full linear model seem to be minimal, these analyses were conducted with a 

constant control and disturbance vector 1r over the periods of disturbance or 

simulation. If these values change frequently as may be the case in practice, the 

solution time savings for the reduced models will be increased. 

Figures 3.7-9 and 3.7-10 show compariSons or the transient gas and solid 

axial temperature profiles for a step input change using the full model and the 

reduced models. The figures show negligible differences between the profiles at 

tL-rnes as low as ten seconds. Concentration results (not shown) show even 

smaller discrepancies between the profiles. Additional simulations are not 

shown since all attempted simulations showed minimal ditlerences between the 

solutions using the different linear models. Thus for the methanation system, 
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Simulation 
Model 

NLNMOD I.JNMOD ANAMOD RD2MOD RD1MOD 

Step To ... 593°K 2:54:24 12:54 00:36 00:24 00:22 Xc;o.,..0.07 
Step r .... o93°K 3:14:41 18:04 00:34 00:22 00:20 
Start-up 4:43:26 28:39 00:29 00:17 00:14 
Disturbance T0 ... 602°K 4:58:42 23:10 00:31 00:20 00:17 
(50 seconds) xco ... 0.072 

Table 3.7-2 
Comparitive Simulation Times o! Models 

Marshall's model reduction provides an accurate 2Nth-order reduced state-

space representation of the original5Nth-order linear model. 

The excellent dynamic agreement between the original and reduced models 

(Figures 3.7-9 and 3.7-10) can be explained by the eigenstructure of the reduced 

system. As shown in Figure 3.7-11, the eigenvalues of the reduced model are 

nearly identical (within 17.) to the dominant eigenvalues of the original model. 

Thus the dynamic behavior is nearly identical to that which would result from 

modal reduction using Davison's method. The advantage then of Marshall's 

modal reduction for the methanation reactor model is that some contribution 

of the 'fast' modes is still retained in the algebraic equations that result from 

the assumptions. These contributions lead to small deviations in the remaining 

eigenvalues and eliminate steady state discrepancies without seriously affecting 

the dynamic responses. 

Since the 2Nth-order reduced model based on Marshall's reduction pro-

ccdure accurately simulates the performance of the full linear model for a large 

range of input changes and disturbances, there is little or no incentive to 

attempt other techniques. If however further model reduction is desired or 

necessary for control studies, more powerful reduction techniques would be 

needed since the eigenvalues of the 2Nth-order model are of similar magnitudes 
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and simple elimination of the larger ones may lead to major errors. 

One possible procedure for further reduction would be Litz1s modal reduc-

lion described in detail by Bonvin (1980). Litz proposed that the contribution of 

the non-dominant modes be taken as a linear combination of the dominant 

modes rather than simply being neglected. The appropriate linear combination 

is determined in order to minimize the error between the responses of the non-

dominant modes in the original and in the reduced-order models. Bonvin (1980) 

further explains that the eigenvalues of the reduce model are identical to the 

dominant eigenvalues of the original model, but the eigenvectors are given a new 

optimal orientation. Bonvin uses this technique to reduce a 24th-order model 

for a tubular autothermal reactor to a 5th-order reduced model. He concludes 

that Litz's procedure is superior to all other modal approaches. 
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Figure 3.7-5 
Axial Steady State Protlles - Homogeneous Model 

Standard Type I (Table 3.4-5) Conditions 
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b) CO and C02 Concentrations 
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Axial Steady State Profiles - Homogeneous Model 
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Figure 3.7-9 
Transient Axial Temperature Profiles - Start-Up Simulation 

Standard Type I (Table 3.4-5) Conditions 

a. Gas Temperatures b. Solid Temperatures 
-- Full Linear Model 
- - - Quasi Steady State for Concentration 
- - - - Negligible Accumulation of Energy in Gas 
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Figure 3.7- 10 
Transient Axial Temperature Profiles- Start-Up Simulation 

Standard Type II (Table 3.4-5) Conditions 
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Chapter4 

RESULTS AND DISCUSSION 

OF FUTURE EXPERIMENTAL STUDIES 
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4.1 CONCWSIONS or CURRENT ANALYSIS 

This thesis provides the basis for a concerted theoretical and experimental 

program in multivariable process control structure design for packed bed chem

ical reactors by presenting an in-depth control analysis of a practical, multivari

able, distributed parameter system-the heat conduction problem defined by the 

simple diffusion equation-using both frequency-domain and time-domain anal

yses and the formulation, numerical solution, and analysis of a detailed model 

for packed bed reactors, along with reduction to a low-order state-space 

representation suitable for on-line process control. 

The first portion of this work presented in Chapter 2 centers on the control 

aspects of a one-dimensional, two-input heat conduction system. In particular, 

an analysis of a number of multivariable process control strategies, including 

non-interacting control, optimal control, inverse Nyquist array, and characteris

tic locus techniques, is carried out theoretically. The significant results of this 

study are discussed in Section 2.8 and only the major conclusions are outlined 

here. 

The study of the heat conduction system allowed for a careful study of vari

ous control design techniques. Of all of the ones considered, the characteristic 

locus procedure seems to have the most potential for this particular distributed 

parameter system. This scheme provides a systematic, computer-aided design 

strategy in terms of high and low frequency compensation that leads to an 

excellent, proportional-integral controller. The study also considers the relation 

between measurement structure and control system design. The choice of 

measurements and their locations sign.iftcantly affects the optimal control 

design and the usefulness of the different design techniques. The importance of 

'extra' measurements-those in excess of the number required in the feedback 
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loop-for improving the system response is also shown. The additional i.n!orma

tion on the process contained in these measurements can be used in a variety of 

ways, including reducing the interaction in the control system through the tech

nique of inner-loop decoupling which is proposed in this work. Finally, the 

analysis of the heat conduction problem clearly shows the importance of an 

accurate process model and the necessity of model reduction to a low-order 

state-space representation for control structure design and implementation. 

Based on these preliminary results, the second portion of this study pro

vides a detailed mathematical modeling analysis of packed bed catalytic reac

tors that significantly extends previous studies in the detail of the model and in 

the consideration of all aspects of the model development and reduction to a 

state-space control representation. Explicit consideration of common 

simplifications is then presented, and the validity of these assumptions is 

assessed in light of their effects and overall benefits. The general view that 

modeling simplifications are desired since they lead to a reduction in numerical 

solution effort is contested, and it is shown that many simplifications are no 

longer necessary with to day's advanced computational capabilities. A unified 

approach to dynamic reactor modeling is developed and its importance in the 

accurate description of dynamic and steady state reactor behavior, in the inves

tigation of reactor start-up or the effects of process disturbances, and in the 

development of an accurate reduced state-space model for the design of control 

structures to stabilize the reactor under various disturbances or to provide 

optimal system recovery from input changes is shown. 

The basic results from this modeling study can be broken down into four 

major classifications which are now discussed in detail. 
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Dynamic Modeling 

A detailed two-dimensional. two-phase dynamic mathematical 

representation of packed bed chemical reactors is developed without any 

major a priori simplifications. The model accurately accounts for multi

ple chemical reactions, axial and radial diffusion of mass and energy, 

property variations due to temperature, pressure, and mole changes, and 

an axial thermal well. Detailed analysis shows the importance of the 

heterogeneous analysis for highly exothermic reaction systems, espe

cially for control applications due to significant temperature differences 

between the gas and catalyst as a result of differences in the heat tlow 

through each of the phases radially to the cooling jacket. Although a 

homogeneous analysis may be satisfactory for adiabatic or steady state 

analyses. the equivalent reduction in system dimensionality and thus 

solution time is available through other somewhat milder assumptions. 

Radial temperature gradients were found to be important, although 

radial concentration gradients were shown to be quite small. Radial 

energy diffusion must be retained in the model since this is the basic 

mechanism for transfer of energy from the reactor bed to the outer cool

ing jacket. Although radial and axial mass diffusion are of minor impor

tance if the aspect ratios for the reactor are sufficient, their inclusion in 

the detailed mathematical model does not increase its dimensionality. 

Finally, axial thermal diffusion should not be neglected since this 

assumption can lead to inaccuracies and since eliminating the axial ther

mal diffusion terms may significantly increase numerical solution time or 

may lead to instabilities in the solution procedure. 
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Numerical Solution 

The orthogonal collocation technique of reducing the partial 

differential equations to ordinary differential equations is the best avail

able method except for conditions with sharp profiles or abrupt protlle 

changes. In such cases, the orthogonal collocation on finite elements 

procedure is recommended. This thesis provides the first analysis of a 

packed bed reactor using orthogonal collocation on finite elements. 

These techniques are far superior to finite difference procedures since 

only a fraction of the number of grid points is necessary, leading to a 

model of much smaller dimensionality. The number of collocation points 

necessary for accurate representation of the profiles has a major effect 

on the dimensionality or the resulting system of ordinary differential 

equations and thus on the numerical solution time. Simulations and 

eigenvalue analyses using the model developed in this work show that as 

few as six axial collocation points may be satisfactory for packed bed 

analyses. Further analysis shows that, if the order of the approximating 

polynomial is increased beyond that necessary for accurate representa

tion of the solution, oscillations of the polynomials between the colloca

tion points can become quite large. Since these polynomials are used for 

approximating derivatives in the partial differential equations, these 

oscillations or 'rippling' can be very detrimental to the solution. 

Far fewer collocation points are required for the radial than for the 

axial profiles. The radial temperature profiles are accurately modeled by 

a quadratic function. Thus with the boundary points at the thermal well 

and the out-er cooling wall, only one interior radial collocat~on point is 

· needed for the thermal profiles. However, using one radial collocation 

point for the radial concentration profiles inherently assumes a uniform 
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radial concentration profile due to the zero tl.ux boundary conditions. 

Although assuming a fiat radial concentration profile is not identical to a 

cubic or quartic representation, differences are extremely small and 

definitely negligible in light of the increased system dimensionality of a 

higher-order representation. 

In addition to the comparatively small dimensionality of the result

ing ordinary differential equation system, other important benefits of the 

orthogonal collocation scheme are that the collocation points and trial 

functions are selected automatically and optimally and that the solutions 

arc derived in terms of their values at the collocation points and at these 

points the solution is exact. One of the drawbacks of the orthogonal col

location on finite elements technique is the non-trivial problem of 

optimal selection of the number and position of the elements. 

Control Model 

An accurate state-space representation including all expected con

trol and disturbance terms is obtained through analytic linearization of 

the reaction rate expressions, algebraic equations, and ordinary 

differential equations obtained from the original mathematical model of 

the packed bed reactor. Simple adjustments to this representation allow 

specific control considerations. Simulations of this linearized state-space 

model show it to be very accurate even at conditions relatively far from 

the steady state around which the linearization was performed. For sus

tained step input changes, relinearization around the new steady state is 

probably de~ired. With the accuracy of this linearized model and the 

significant reduction in solution time, there is relatively little incentive 

for retaining the nonlinear representation in most considerations. 
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Two techniques were found to be effective in reducing the dimen

sionality of the linear state-space representation for on-line control. 

Both procedures provided accurate model reduction to a 2Nth-order 

model. 1 Direct modal reduction using Davison's ( 1966) procedure of 

retaining only the dominant modes is satisfactory for the packed bed 

model but can lead to possible steady state offset. Marshall's ( 1966) tech

nique retains the steady state characteristics by neglecting the dynamics 

of the non-dominant modes. The 2Nth-order model developed with this 

procedure retains the catalyst and thermal well dynamics and accurately 

simulates the performance of the full linear model for a large range of 

input changes and disturbances. 

Packed Bed Reactor Behavior 

The dynamic behavior of the packed bed reactor is dominated by the 

catalyst and thermal well due to their large thermal capacitance relative 

to the gas phase. The importance of the thermal well is minimal at 

steady state in terms of conversion within the reactor. Its significant 

effect is in the dynamics of the reactor. It does have a slight effect on the 

steady state temperature profiles by conducting heat axially. 

Finally, simulations showed that radial temperature gradients are 

significant and that a 'hot spot' develops in the bed under conditions of 

rapid conversion. Furthermore, classical problems with 'wrong-way' 

behavior where increases in the inlet gas temperature produce a decrease 

in the outlet gas temperature are predicted. Obviously this can lead to 

significant control difficulties if the control design is based on the outlet 

gas temperature. 

1. Where N is the number of axial collocation points. 



-358-

Thus the major development effort in this work has been the careful 

mathematical modeling of the experimental reactor system and detailed 

analysis of modeling assumptions, numerical solution techniques, parameter 

sensitivity, model linearization, and model reduction using kinetic expressions 

based on literature studies and preliminary experimentation and heat transfer 

values obtained from standard correlations or published results. Other parame

ters are calculated direclly lrom the physical properties ol the gas and reactor 

system. Using these parameters, significant contributions in the area of packed 

bed reactor modeling and control model development have been possible, along 

with insight into expected operational and optimization difficulties of the 

laboratory experimental reactor system. The generality of the model developed 

in this analysis allows its use for various packed bed chemical reactors including 

those under adiabatic operation and those without an axial thermal well. 

As mentioned previously, this study really provides a basis and a unified 

approach to packed bed modeling. An outline of this approach is as follows: 

• The initial model development for dynamic and steady state analysis of 

packed bed reactors should include detailed consideration of all major 

physical and chemical phenomena within the system based on general 

mass and energy balances. With current numerical techniques, minimal a 

priari simplifications are needed. Include all dispersion effects, parameter 

variations due to temperature, pressure and mole changes, and aXial varia

tions in fluid velocity. The model should be heterogeneous and include 

both the radial and axial analysis. All potential reactions should be 

included in the model. If a thermal well is used for temperature measure

ments, its analysis should also be included. 

• Nondimensionalize the equations with respect to the inlet steady state con-
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ditions and the characteristic time for the reactor. 

• Apply radial orthogonal collocation with one interior collocation point. 

Then apply axial collocation using Lagrangian polynomials of degree N.2 

• Use standard numerical techniques to simulate the behavior of this full 

nonlinear system of ordinary ditierential equations. Investigate the 

predicted behavior of the packed bed system. Check the applicability of 

the assumptions of negligible axial and radial mass diffusion. 

• Linearize the reaction rate expressions, the algebraic equations, and the 

ordinary differential equations around the steady state. Replace all vari-

ables with deviation variables. This should result in a general state-space 

representation. Compare simulations of the linear model to the original 

nonlinear model. 

• Consider the optimal model dimensionality by comparing simulations with 

differing number of axial collocation points and by plotting the behavior of 

the major eigenvalues as a function of the number of collocation points. 

• Reduce the dimensionality of the model if necessary using Davison's ( 1966) 

or Marshall's (1966) modal technique. 

• Finally, estimate the model parameters from experiments and compare 

the model simulations to empirical results. Incorporate nonuniform radial 

velocity profiles and more detailed pressure relations into the model if 

necessary. 

In addition to the analyses of control model development, the current stu-

dies provide the mathematical tools necessary to develop and study control 

structures for the reactor system in our laboratory. These studies are currently 

2. 11 sharp profiles or abrupt chal18es in the profiles are expected, use orthogonal collocation on 
finite elements instead. 
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in progress. The remainder of this chapter briefly outlines some of the experi

mental work in progress along with the applications for the models developed in 

this work. 
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4.2 PARAIIETER ESTIIIATION AND IIODEL VERIJlCATION 

Before control studies can be performed using the control model developed 

in tbis work and before the implementation of these feedback control struc

tures on the experimental reactor system, careful parameter estimation is 

necessary. Although many parameters necessary for the mathematical model 

can be calculated directly from physical considerations, the reaction and heat 

transfer parameters must be measured directly for the experimental system. If 

we neglect the radial and axial mass dispersion and the gas/solid heat transfer 

in the axial boundary conditions and assume similar heat transfer coefficients 

between the gas and solid and the reactor wall at both sides of the annulus (r "" 

Ro and r = R1), the resulting dimensionless parameters in the model are shown 

in Table 4.2-1. We can then divide the necessary input parameters for the model 

into groups as shown in Table 4.2-2. Of course in addition to these parameters, 

we do need to specify the operating conditions such as inlet concentrations, 

pressures, cooling t'luid temperature and inlet gas temperalure. 

The physical reactor parameters are measured for the experimental reac

tion system. The void fraction must be empirically determined for the specific 

catalyst used in the experiments due to differences in catalyst crushing. The 

catalyst for the preliminary experiments is standard Girdler G-65 methanation 

catalyst, and the thermal well is stainless steel (Type 304). Their physical prop

erties are readily available as discussed in Section 3.4.1. Data are also available 

tor the methanation and steam-shift reactions for heats of reaction and equili

brium constants. As discussed in Section 3.4.1. linear regression of the data is 

performed over the expected temperature ranges of operation to determine 

linear temperature relationships for the heats of reaction and relationships 

based on van't Hofl''s equation for the equilibrium constants. 
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Table 4.2-1 
Dimensionless Parameters 
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Reactor t L Rc Rt 
Catalyst Cp. p. k. dp 

Thermal Well CPt Pt kt 

Heat Transfer u. 
~ 

UWB 
x.. .. ~ 

U.q 
~ 

Pers 
~= 

Pezs 

Heat of Reaction AH:y
1 

AH:u:2 AHs1 AHs2 

Equilibrium Constant ~1 ~I! l<Pst Kp!U! 

Reaction Kinetics ko.u: Eall K1 K2 
kos Eas r. r2 

----•ruru-""'" 

Table 4.2-2 
Input Parameters for the Mathematical Model 

The remaining parameters for the mathematical description of the experi-

mental system are the heat transfer variables and the reaction kinetics. These 

remaining parameters need to be estimated from preliminary experiments for 

the specific catalyst and reactor bed. The strategy for this parameter estima-

tion is shown in Figure 4.2-1. Due to the large number of parameters necessary 

for the mathematical description of the experimental system, simultaneous esti-

mation of all parameters from preliminary experiments in the methanation 

reactor is not feasible. Instead the estimation is split into three stages. The . 
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kinetic parameters (and the actual kinetic expression) are first estimated using 

a specially constructed kinetics reactor. This reactor system and the determi

nation of the kinetic expression are discussed by Strand (1984). Preliminary 

results based on limited experiments were discussed earlier, along with their 

effect on the numerical solution of the mathematical model. The rate was found 

to be very fast and highly temperature dependent, leading to potential 

difficulties in numerical simulations due to very steep axial temperature and 

concentration profiles and complete conversion early in the reaetor bed. These 

difficulties can be reduced by using the orthogonal collocation on finite ele

ments solution technique rather than simple orthogonal collocation. Further 

experimentation is needed for accurate determination of the kinetics expres

sions, especially in terms of reaction reversibility, temperature dependence, and 

the importance of the steam-shift reaction. 

The heat transfer parameters can first be estimated using experiments 

without reaction in the bed. These can be performed by measuring temperature 

responses in the thermal well, in the exit gas, and in the cooling fluid to input 

(inlet gas temperature, cooling fluid temperature, or gas velocity) disturbances 

or step changes. 

Finally, all estimated parameters, except those that are found to be highly 

insensitive, can be updated from experiments in the methanation reactor 

operating under desired conditions. This parameter estimation is currently in 

progress. 

A sensitivity analysis was also performed to evaluate how accurately some 

of the parameters must be determined. This analysis should be used in conjunc

tion with a correlation analysis of the model parameters. The major heat 

transfer parameters were increased and decreased by twenty percent individu-



-365-

ally, and the kinetic parameters were changed by ten percent. The dynamic sen-

sitivity is evaluated by the etiect of the changes on the major eigenvalues; 

whereas, the steady state sensitivity is evaluated by the effect of the changes on 

the steady state profUes and the outlet temperatures and concentrations. 

Table 4.2-3 shows results tor the standard Type II (Table 3.4-5) conditions. 

The major parameters atiecting the dynamic behavior of the system are those 

related to the thermal well, thus verifying earlier conclusions as to the impor-

tance of the well on the dynamics of the system. For steady state behavior, the 

methanation reaction parameters are of most importance. 

DYNAIIlC STF..ADY STATE 

-Real >..1 

+20% -20% 

u. 0.0165 0.0165 
u ... 0.0167 0.0164 
u~ 0.0133 
Ap. 0.0165 0.0165 
A.s 0.0165 0.0165 
Au. 0.0164 0.0167 
Atrg 0.0155 0.0177 
Pens 0.0166 0.0165 
P~r 0.0167 0.0164 

+10% -10% 
j:O][ 0.0160 0.0165 

kos 0.0165 0.0165 
Kt 0.0165 0.0165 
~ 0.0165 0.0165 
Ea~~ 0.0166 0.0165 
Eas 0.0165 0.0165 

-Real~ T.__ 
+20% -20% +20~ 

0.0172 0.0172 609 
0.0173 0.0170 609 

0.0141 609. 
0.0172 0.0172 609. 
0.0172 0.0172 609. 
0.0170 0.0174 609. 
0.0162 0.0163 605. 
0.0172 0.0172 609. 
0.0173 0.0170 616. 

+10~ ·10% +10~ 

0.0172 0.0172 609. 
0.0172 0.0172 612. 
0.0172 0.0172 609. 
0.0172 606. 
0.0173 0.0171 595. 
0.0172 0.0172 609. 

Table 4.2-3 
Parameter Sensitivity 

-20% 
609 
609 
609. 
609. 
609. 
610. 
615. 
609. 
602. 

-10% 
609. 
606. 
610. 
611. 
622. 
609. 

Xco ___ 

+20% -20% 
0.0370 0.0368 
0.0369 0.0369 
0.0369 0.0369 
0.0369 0.0369 
0.0369 0.0369 
0.0369 0.0368 
0.0373 0.0364 
0.0369 0.0369 
0.0363 0.0376 

+10~ -10~ 

0.0366 0.0369 
0.0347 0.0392 
0.0375 0.0362 
0.0381 0.0355 
0.0473 0.0223 
0.0371 0.0358 
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Methanation Reactor 
(No Reaction) 

u.CJ • u., • u.CJ • Pe,g. PeZCJ 
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Methanation Reactor 

Update all parameters, except those 

that are highly insensitive. 

Figure 4.2-1 
Parameter Estimation Strategy 
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4.3 CO.NTROL IIODKL CONJlGURA.TION 

In this section, we consider reconfiguring the general control model for a 

specific multivariable control structure. The control configuration shown in Fig

ure 4.3·1 is studied for a single pass configuration of the reactor system. Note 

that we have also neglected the feed-effluent heat exchanger in this preliminary 

analysis. Temperature measurements are taken at M points within the reactor 

bed (using thermocouples within the thermal well). Let us consider the control 

of the gas temperature at the reactor outlet and at an internal point (possibly 

the 'hot spot') using the inlet process stream flowrate and the inlet gas tempera-

ture as the control variables and with expected disturbances in the inlet CO con- . 

centration and the cooling wall temperature. In our experimental system, the 

control of the process flowrate is really set point control of the three mass con-

trollers with the ratio of hydrogen to carbon monoxide being kept nearly con-

stant (at about 3 to 1). The control of the inlet gas temperature possibly 

involves a PID scheme with the overall control network controlling the inlet gas 

temperature setpoint and a local controller on the preheater controlling the 

actual gas temperature. 

Consider the reduced state-space model developed earlier 

(4.3-1) 

where 

%1::: [911, ... ,91tJi, 9t:t, ... ,9tNr 

w::: [aw. v&o, 90 , yf, yf, Yltao· YJi.· Y8H.r 
(4.3-2) 

and the A and W matrices are defined as before, Equations (3.7-20) and (3.7-21), 

and all variables are deviation variables. The variables in the original control 

and disturbance vector w then need to be related to the actual control or distur-
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bance variables. e.., and yf are disturbance variables, and }'it
2 

is directly related 

to yf by yfl
2 
= ?'Yf where 7 usually equals about 3. This is analogous to a process 

where the COIBa stream comes from some other process upstream and the 

ratio between the two remains nearly constant. The variables yl, yfl
2
o. and y&

4 

are not used as either control or disturbance variables in this analysis. The inlet 

gas temperature 9 0 is an input variable or is related to the heat to the 

preheater Qp. Finally, the gas velocity u#Io is directly related to the input tlowrate 

and gas temperature: 

(4.3-3) 

where the variables in this equation are dimensional. After nondimensionaliza-

tion, 

u = Fp 
lo P~o 

or in terms of the input variables 

\lao = 28-26-yX&yf 

and af'ter linearization 

where - Mao 
(J- (28-267X&)2 

Thus the original state-space representation is reconfigured to the form 

i:=AI+Bu+Dd 

where u = [Fp Oar d =[e.., yfr 

(4.3-4) 

(4.3-5) 

( 4.3-6) 

(4.3-7) 

(4.3-8) 

(4.3-9) 



-369-

and all variables are nondimensional and are deviation variables. It the original 

control and disturbance matrix W was defined as 

( 4.3-1 0) 

then the B and D matrices are given by 

aW2+Ws] 

W4 +f'W7+fJ(26,X&)W2 J 
(4.3-11) 

Finally we need to consider the measurement structure. For measure-

ments at M points within the thermal well, 

(4.3-12) 

where ®1 is the dimensionless temperature of the thermal well at point z,-. Since 

(4.3-13) 

and 

9t,O = 9o 

etJ;+l = -AN 
1 

[ t ~+l.A:eu + ~+l,Oao] 
+I.N+l Ji:=l 

(4.3-14) 

if we let the temperature of the thermal well at z = 0 equal the inlet gas tern-

perature, the measurement relationship m terms of deviation variables LS 

y=Cx+Fu (4.3-14) 

where 

c = [OwxN Lt] 
(4.3-15) 

n = [awx1 ~1 
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( ) AtJ+l,l ( ) 
ll Zt -A.. lN+l Zt 

~+l.N+l 
( ) AtJ+l,N ( ) 

lN Zt - A.. lN+l Zt 
~+l,N+l 

(4.3-16) 

( 
__ , ~+1,0 ( ) 

lo ZMJ - A.. lN+l ZJl 
~+l.N+l 

Thus we have taken the general state-space representation described by 

Equation ( 4.3-1) and reconfigured it to the appropriate control model for the 

particular structure of interest. Consider the somewhat simpler control struc-

ture with only one manipulated variable, the inlet gas temperature, to simplify 

the following discussion. The reduction of the general state-space representa-

tion to the specific control model is similar to the above analysis. If we then 

consider one measurement at ~ = 0.3, the B and C matrices for standard Type II 

(Table 3.4-5) with N = 7 are 
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0.001 0 
T 

-Q.00008 0 
0.00002 0 

-D.OOOOl 0 
0.000008 0 

-o.000009 0 
0.000009 0 

B = 22.18 c = 0.018 
-5.228 -Q.020 
2.726 1.003 

-1.733 0.014 
1.254 -o.007 

-o.970 0.005 
0.903 -o.003 

This example shows one of the potential drawbacks of the orthogonal collo-

cation procedure for reducing the partial ditl'erential equations to ordinary 

ditrerential equations. The input matrix B multiplies the input by the appropri-

ate proportionality constants to indicate the direct etJect of an input change on 

thE: state variables. From physical considerations, it is known that the only tern-

peratures within the reactor to be affected immediately by the inlet gas tern-

perature are those at the bed entrance. However as shown by the above B 

matrix, all state variables (catalyst bed and thermal well temperatures) are 

predicted by the model to be immediately affected as a consequence of the con

tinuous nature of the polynomial approximations used along the length of the 

bed. Of course, the major etfect of an input disturbance is still to the state vari-

abies closest to the bed entrance. Thus, instantaneous changes or sharp gra-

dients moving through the bed cannot be adequately represented by these poly-

nomial functions. Note that the etfect on the thermal well temperatures is 

extremely high due to the assumption that the thermal well at the entrance of 

the bed is in equilibrium with the inlet gas temperature. A simple change in this 

boundary condition can reduce this effect 1! needed. 
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The C matrix further shows the relationship between the measurement at 

("= 0.3 and the state variables. The coefficients in the C matrix show the relative 

effect of each state variable on the measurement. As expected, the dominant 

effect is or the thermal well temperature at the third collocation point (at 

("= 0.297) since this is closest to the measurement location. 

Although we have considered only two relatively simple examples, similar 

analysis on proposed control structures will be necessary to develop the 

appropriate control modeL This analysis further provides some insight into the 

behavior of the experimental system and of the proposed control structure. 
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Tl T2 • • • 

Reactor 

Figure 4.3-1 

Control Configuration 
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As discussed earlier, this thesis provides a basis for a concerted theoretical 

and experimental effort in multivariable process control structure design for 

packed bed chemical reactors. Such a control study must center around the 

basic elements of the control structure: 

• the measured variables, 

• the manipulated or control variables, 

• the control configuratton connecting the measured and manipulated 

variables, and 

• the control logic determining the effects of the measurements on the 

values of the manipulated variables. 

In an experimental system such as our methanation reactor, these decisions are 

by no means easy. It must be determined how to use the large number of poten

tial measurements effectively. Are they all to be used? Or what subset is 

optimum'? In our experimental system, the potential measurements include 

temperatures at up to 24 axial positions within the thermal well. Temperature 

measurements are also available elsewhere throughout the reactor system and 

Within the cooling jacket and Dowtherm condenser. These latter measurements 

probably are not too useful for the control structure but do provide additional 

information on the operation of the process and can signal problems such as 

lack of etiective flow through the cooling jacket. Another potentially important 

control measurement is the effi.uent CO, C02 , and CR. concentrations. Currently 

these are only available using a gas chromatograph With a delay of up to three 

or four minutes. Since this is comparable to or slightly longer than the charac

teristic time constants of the reactor, these concentration measurements may 

be of little use in dynamic control but may be useful to update the model 
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parameters periodically. Because effluent concentration measurements are 

generally available in industrial processes and because they may significantly 

affect control performance, it is planned that an on-line CO/C02 analyzer will be 

added to the process. 

The experimental system also has various possible control or manipulated 

variables. These include the heat to the preheater, the fiowrate of the process 

stream, the bypass around the preheater and feed-effluent heat exchanger, the 

ratio of the H2 to CO in the inlet process stream. and the recycle ratio. The inlet 

concentrations of other species and the cooling fiuid temperature could also be 

manipulated if desired. Again a number of decisions must be made to select the 

optimal subset of manipulated variables. 

Even after these questions have been answered, careful consideration of the 

control configuration and control logic is needed to design the control system to 

handle the large number of potential disturbances (e.g., inlet CO concentration, 

cooling fiuid temperature, fiowrates) and to meet the control objectives. For 

our experimental system, these objectives may include maintaining product 

quality, minimizing energy usage, minimizing hydrogen usage, and limiting tem

perature excursions within the bed. 

The first step in any proposed control research on a new experimental sys

tem must be the application of existing control techniques to the system to 

assess their performance. Once this has been atlempled, an important area of 

concern that should be studied is that of measurement structures in industrial 

systems. With all of the possible measured variables, decisions must be made as 

to the optimal measurement structure. However, since the measurements are 

such an important part of the overall control system, the measurement struc

ture cannot be chosen independently but must depend on the choice or manipu· 
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lated variables, the control configuration, the control logic, and even the control 

objectives. Although various studies have been published on the measurement 

problem in an open-loop framework (Aidarous et al., 1975; Amouroux et aL, 

1976; Kumar and Seinfeld, 197Bab), the measurement location problem has 

been virtually ignored with respect to closed-loop behavior. Some of the work 

presented in Chapter 2 of this thesis provides a basis for research on the 

interaction between measurements and control structure. This analysis should 

be extended to the packed bed reactor with a detailed investigation of the 

approach to optimal measurement selection in a closed-loop control 

configuration. 

Another potential control technique that should be considered is the evolu

tionary control structure. This should not be confused with the self-tuning 

regulator where the controller parameters are recomputed based on updated 

values of the model parameters. What is proposed here is an extension to the 

work by Alvarez et al. (1981). They investigated the feasibility of a variable 

measurement structure for a tubular reactor in which the best set of tempera

ture sensors along the length of the reactor is selected in response to changes 

in the operating conditions. Moreover, the actual structure of the control sys

tem may need to be altered in response to changes in the characteristics of the 

process during operation. The packed bed reactor system developed by Strand 

(1984) and modeled in this thesis is an excellent system for the study of such 

evolutionary structures due to the large number of available measurements and 

controls, the fully automated nature of the system, and the substantial variance 

in the operating profiles. The mathematical model developed in this thesis 

should allow considerable study of the evolutionary control problem prior to 

actual experimantal implementation. 
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Finally, the control of the packed bed reactor operating with energy and 

product recycle should be studied. Such systems are common in industry but 

have generally been neglected in dynamic and control analyses. 
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APPENDICES 
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APPENDIXl 

COilPUTER PROGRAMS FOR HEAT CONDUCTION PROBLEM 

Many computer programs were written for the analysis of the heat conduc

tion problem for determining root-loci, inverse Nyquist plots, and characteristic 

loci, for designing control strategies, for producing the necessary computer 

graphics, and for simulating the behavior of the heat conduction system. Since 

these programs are not unique but rather are based directly on published 

theoretical works by various authors, the computer programs are not all dupli

cated in this thesis. Rather they remain on the Caltech computer in the direc

tory [RRK.HEAT]. 

However, two programs are presented in this appendix due to their impor

tance in the characteristic locus control design for the heat conduction system. 

The first program performs the frame alignment for the design of the high fre

quency compensator. At high frequencies, it is desirable to reduce the misalign

ment angles between the compensated system's characteristic direction set and 

the standard basis vectors. This can be accomplished by designing a real com

pensator KH that approximates the complex plane of Gp-1(jc.>) at some high fre

quency "'h· Program AUH, listed in Table Al-l, was written for this purpose and 

uses the routine AlJGN to perform the actual alignment. 

At low frequencies, the encirclement criterion should be satisfied and the 

moduli of the characteristic loci should be large. This can be accomplished by 

manipulating the loci with an appropriate approximately commutative con

troller Kr.. where Kr. = M'k(s)B with A and B being the real frame matrices that 

approximate the complex frame of the eigenvector matrix and dual eigenvector 

matrix, respectively. Again the routine Al.JGN is incorporated into a program, 
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AI.JL. for tbis purpose. This program is listed in Table Al-2. The elements of the 

diagonal matrix rk(s) are then chosen on the assumption that Ch = ~k1 , where QJ 

and ~ are the eigenvalues ot the compensated and uncompensated system and 

k1 are the elements of rk(s). The compensator JCL is thus used to insure stability 

and integrity and to adjust the gains at low frequency to reduce interaction. 
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C ~ERFORMS THE FRAME ALIGNMENT FOR DESIGN OF THE HIGH FREQUENCY COMPENSATOR 

COMPLEX S,DEL,DET,BISg,z>,OISg,z) 
DIMENSION YIZ,ZI,ZIZ,Zl,EVIIZl,EVRIZI,INDIZI,CIZ,ZI,OIZ,ZI 
DATA PI /3.1.159265•/ 

IJ•l/IBJI. 
READIS,3lXXI,XXZ,W 
SO•SORTIZ. I 

C SET UP QISI 

AA•SQ*COSIPI*XXII 
BB•SQ*COSIZ.*PI*XXII 
CC•SQ*COSIPI*XXZI 
DD•SQ*COSI2.*PI*XX21 
S•CMPLXIJI.JI,IJI 
CALL QSETIS,Q,AA,BB,CC,DOI 
CALL IDENTIB,SJI,Z,I.SI 
CALL ALIGNIQ,Y,ZI 
PRINT I, W,YII,Il,Yil,Zl,YIZ,ll,YIZ,Zl 

DO ISS 1•1,4 
CALL ZEROIIEVR,ZI 
CALl ZER011EVI,ZI 
CALL ZEROIIINO,ZI 
CALL ZER021C,Z,ZI 
CALl ZER0210,2,21 
Y1•1. 
vz•t. 
IFII .EQ. 2 .OR. I .EQ. 41Yl•-Yl 
IFII .EQ. 3 .OR. I .EO . .tlVZ•-VZ 
211,11•YI*((J,+SQ*AA+SQ*881*Yil,ll + 11.-SQ*AA+SQ*BBI*YIZ,IIl 
ZI1,21•Y2*111.+SQ*AA+SQ*BBI*YI1,21 + 11.-SQ*AA+SQ*BBI*YIZ,ZII 
ZIZ,li•YI*II1.+SQ*CC+SO*ODI*YII,II + 11.-SQ*CC+SQ*ODI*YI2.111 
Zl2,2l•Y2*111.+SQ*CC+SO*DDI*YII,21 + 11.-SQ*CC+SQ*DOl*YIZ,ZII 
CALL EIGENPI2,2,Z,EVR,EVI,C,O,INDI 
PRINTZ, VI,YZ,EVRIIl,EVIIIl,EVRIZI,EVIIZl 

1gg CONTINUE 

STOP 
FORMATI1HI,//////5X,'FREQUENCY •',F1 •. 4,/////ZJIX,'MATRIX KH', 

• 5X,EIJI.3,4X,E16.3/34X,EIJI.3,.X,E1JI.3,///////I 
2 FORMATI1.8'X,'Y1 .•',F5.1,3X,"YZ •',F5.1,6X,'ElliiENVALUES OF CBKH', 

• 6X,E9.2,3X,E9.Z/6ZX,E9.2,3X,E9.2/////I 
3 FORMATI2X,3FS.II 

END 

SUBROUTINE AllliiNIV,V,MI 

C THIS ROUTINE ALIGNS THE REAL AND COMPLEX EIGENFRAMES 

COMPLEX VISS,Zl 
DIMENSION YIZ,Zl,AIZ,2l,BI2,21,CI2,21,012,2l,SI2,2l,EVRI2l, 

EVI121,1NDI21 
DATA EPS /I .• E-16/ 

DO I JIS I• I , 2 
DO ISS J•1,2 
IFIM .EO. 21 All,Jl•REALIVII,Jil 
IFIM .EQ. Zl BII,Jl•AlMA~IVIl,~ll 
IFIM .Ea. ll ACI,Jl•REALIVIJ,lll 
IFIM .EO. II ICI,JI•AIMAGIYIJ,Ill 1•• CONTINUE 

Table Al-l 

Computer program ALIH 



DO t•• I•l,Z 
l•3-l 
CALL ZEROIIEVR,Zl 
CALL ZEROIIEV1,2l 
CALL ZEROll IND,Zl 
00 IBI J•I,Z , 
DO IBI 1(•1,2 

-382-

C!J,Kl•AII,Jl*AII,Kl + Bll,Jl*Bil,Kl 
DIJ,Kl•AIL,Jl*Ail,Kl + BIL,Jl*BIL,Kl 

t•t CONTINUE 
DET•DI1,1l*OI2,2l - D!l,2l*DI2,ll 
lfiABSIDETl .LT. EPSl~O TO SBB 
Sll,ll•IC!I,1l*OI2,2l - CIZ,Il*Dil,Zll/DET 
Sll,2l•ICI1,2l*OI2,2l - Cl2,2l*Dil,2ll/DET 
Sl2,1l•ICI2,1l*DII,ll - Cll,ll*OIZ,lll/DET 
SIZ,Zl•ICIZ,Z>•D!l,ll - Cll,Z>•OIZ,lll/DET 
CALL ZER021C,2,2l 
CALL ZER0210,2,2l 
CALL EIGENPI2,2,S,EVR,EVI,C,O,INDl 
IF I EVItt 1 l .~E. EVR I 2 l lMM•l 
IFIEVR12l ,,T. EVRilllMM•2 
IFIM .EQ. 21 Vll,ll•Cti,MHl 
IFIH .EQ. Zl VI2,Il•CI2,HHl 
IFIH .EO. ll VII,ll•Cti,MHl 
lfiH ,EQ. ll VII,Zl•CIZ,HHl 

t•4 CONTINUE 
RETURN 

,.. PRINT lB. DET 
RETURN 

t• FORMATIIH1,3X,'HATRIX IS SINGULAR',SX,E1 •• 4l 
END 

SUBROUTINE ZEROIIA,Nl 
DIMENSIOI'f AINl 
00 IBB I•I.H t•• AII>•B.B 
ltETURN 
END 

SUBROUTINE ZEROZIA,N,Ml 
OIHEI'ISION AIN,Hl 
DO 111B I • 1 , H 
DO IJJB J•I,M 
All,Jl·B.B 

1.. CONTINUE 
RETURN 
END 

SUBROUTINE QSET!S,O,A,B,C,Dl 
COMPLEX QISB,Zl,AIISB,Zl,BIIS.,Zl,Rkl2,2l 
COMPLEX S,DET 
DATA PI /3.141592654/ 

CALL IDENTIB1,5B.2,l.Bl 
Qll,ll•l.IS + SQRTIZ.l*A/IS+PI**Zl +SQRTI2.l*B/IS+4.•,t••z> 
Qll,Zl•l./S- SORTI2.l*A/IS+Pl"*2l +SQRTIZ.>*B/IS+4.*Pl**ZJ 
QIZ,ll•l./S + SORTIZ.l"C/IS+PI•*Zl +SQRTIZ.l*O/IS+ •. *Pl**ZJ 
012,21•1./S- SQRTI2.l*C/IS+PI**2l +SQRT!2.J•O/IS+ •. *PI••2l 
IIETURH 
EHO 

SUBROUTINE lOENTIA,N,M,Zl 
COMPLEX AIN,HJ 
At I ,I l•CMPLXIZ,B.BJ 
All,Zl•CMPLK! •••••.• , 
A(2,1l•CMPLXt•·····•> 
AIZ,Zl•CMPLX<Z •••• , 
IIETURH 
END 

SUBROUTINE MATHULTIA,B,Nl,Ml,NZ,MZ> 
COMPLEX A!Nl,Mll,BIN2,H2l,C1 
Cl•AI 1,1 l 
Atl,li•Cl*B(I,ll + All,2J•B!2,ll 
Atl,Zl•Ci•B<I,Zl + All,ZJ•BtZ,Zl 
CI•AIZ,ll 
At2,1>•Cl*lll,ll • AIZ,Z>•BI2,11 
AC2,Zl•Cl*lll,Zl • A!Z,Zl*ll2,2l 
RETURN 
END 

Table Al-1 Continued 
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C PERFORMS THE FRAME ALIGNMENT FOR DESIGN OF THE LOW FREQ. COMPENSATOR 

COMPLEX S,DEL,DET,XI2,2l,QI2,2l,BI56,2l,V12l,C12,2l,AIS6,21 
COMMON XX1,XX2,RH11,RH1Z,RHZ1,RHZZ,RL11,RL12,RLZl,Rl22,ALPHA 
DIMENSION YIZ,Zl 
LOGICAL*4 WANTX 

WANTX•. TRUE. 
READIS,41 IS,XXl,XXZ,W,ALPHA,RHll,RHlZ,RHZ1,RHZZ,RLll,RLIZ,RLZ1, 

RLZZ 
PRINT S,W,ALPHA,RL11,RL12,RH11,RH12,RL21,RLZZ,RH21,RHZ2 
CALL !DENT IC,2,2,1.61 

C SET UP QISI 

S•CMPLl<I •.• ,1Jl 
CALL QSETIS,Ql 
CALL IOENT 18,56,2,1.61 

C CALCULATE THE EIGENVALUES AND EIGENVECTORS 

CALL EIGENCIZ,Z,Q,C,V,WANTl<,Xl 
Xl•CABSIV1111 
XZ•CABSIVIZll 
PRINT 1, Vlli,Xl,VIZI,X2,XI1,1l,XI1,21,XI2,1l,XI2,2l 
IFI IS .EO. 1 >STOP 

C NORMALIZE EIGENVECTORS 

OEL•CSQRTIXIl,ll**Z + Xl2,11**21 
OET•CSaRTIXI1,2l**2 + Xl2,21**21 
AI 1,1 l•XI 1,1 1/0EL 
All ,2l•X( 1,21/Dl':T 
AIZ,l l•XIZ,1 !/DEL 
AI2,21•XI2,2l/DET 

C ALIGN THE REAL AND COMPLEX EIGENFRAMES 

CALL ALIGN IA,V,ll 
PRINT 2, Yll,ll,Yil,Zl,YI2,1l,YIZ,21 
CALL CSLECD IA,2,B,2,DET,ILLI 
CALL ALIGNIB,Y,Zl 
PRINT 3, V11,1l,VI1,21,VI2,1l,VI2,2l 

STOP 
FORMATI//////lBX,'EIGENVALUESt', 

* 2C/3.8'X,FB.2,' + ',FS.Z,' t C ',F7.2,')'),///1P, 
* 'EIGENVECTORSt',2(/3BX,2<13P,2CF8.3.' + ',F8.3,' I', 
• 3X I I I I 

2 FORMATI/1///ZBX.'MATRIX 8',5X.E1B.3.4X.E1B.3/33X,E1B.3,4X,E1 •• 31 
3 FORMATI/1///ZIX,'MATRIX A',5X,E11.3,4X,E16.3/33X,E16.3,4X,E1 •• 3. 

• /11/l/1//) 
4 FORMATI12,3F5.1/9F8.3l 
5 FORMAT11Hl,/////I,SX,'FREaUENCY •',F8.4///15X,'ALPHA •',FS.l, 

* SX,'KL •',2F9.3,5X,'KH •',2F9.3/36X,2F9.3,9X,2F9.3> 
END 

SUBROUTINE ALIGNIV,V,M~ 

C THIS ROUTINE ALIGNS THE REAL AND COMPLEX EIGENFRAMES 

COMPLEX Vl5.,2l 
DIMENSION Vl2,2l,AI2,2l,I12,2!,CI2,Zl,DI2,2l,SI2,21,EVR!Zl, 

EVII21 ,INDIZI 
DATA EPS /1.1E-36/ 

DO 1 •• 1•1,2 
DO 16• J•t,2 
IF!M .EQ, 21 Ati,Jl•REALIVII,Jll 
IFIM .Ea. Zl ~(I,Jl•AIMAGIV!l,Jll 
l·FIM .Ea. 11 A(I,JI•REALIVIJ,Ill 
IFIM .EQ, ll 81l,~l•AtMAGIVI~,Ill 

1.. CONTINUE 

DO t•.t 1•1,2 
L•3-l 
CALL ZER011EVR,2l 
CALL ZERO!IEVI,Zl 
CALL ZEROliiND,Zl 
DO t•t J•1,Z 
DO 1•1 k•l,Z 
CIJ,ICI•AII,Jl*AII,K) + III,Jl*ICI,Kl 
DIJ,kl•AIL,JI•Ail,Kl + lll,Jl*lll,KI 

1•1 CONTI HUE 

Table Al-Z 

Computer program AlJL 
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DET•DI1,1l*DIZ,Zl - 011,Zl*DIZ,1l 
IFIABSIDETl .LT. EPSl~O TO s•• 
S I 1, 1 l • I C I 1, 1 l *0 I Z, Z l - C I Z, 1 l *0 I I, Z)) /OET 
SII,ZI•ICII,ZI*DIZ,ZI - CIZ,Zl*DII,Zll/DET 
SIZ,ll•ICIZ,ll*Dil,ll - Cll,ll*DI2,lll/DET 
SIZ,Zl•ICIZ,Zl*DI1,ll - CI1,Zl*DIZ,1ll/DET 
CALL ZEROZIC,Z,Zl 
CALL ZEROZI0,2,2l 
CALL ElGENPCZ,Z,S,EVR,EVI,C,O,INDl 
lFIEVRI1l .GE. EVRIZllMM•l 
IFIEVRIZI .GT. EVR11llMM•2 
IFIM .EO. 21 Vtl,ll•CII,MMl 
IFIM .EO. Zl VCZ,Il•CCZ,MMl 
IFIM .EO. II YCI,ll•CI1,MMl 
IFIM .EO. 11 Vll.21•CI2,MMl 

If' CONTINUE 
RETURN 

Sf. PRINT 1/1, DET 
RETURN 

1• FORMATC////////,3X,'MATRIX IS SINGULAR',SX,E1 •• 4) 
END 

SUBROUTINE ZEROliA,Nl 
DIMENSION AINl 
DO 111/1 I•I,N 1•• AIIl•ll.ll 
RETURN 
END 

SUBROUTINE ZEROZIA,N,Ml 
DIMENSION AIN,Ml 
00 IIIII 1-I,N 
DO IIIII J • 1 , M 
AII,Jl•ll./1 

tn CONTINUE 
RETURN 
END 

SUBROUTINE OSETIS,Ol 
COMPLEX 012,2l,Ali511,Zl,BIISII,Zl,RKIZ,Zl 
COMPLEX S,OET 
COMMON XXI.XX2.RH11.RH12,RH2t,RH22,RL1l,RllZ,RL21,Rl22,AlPHA 
DATA PI /3.141592654/ 

CALL IDENTIB1,5/1,2,1./Il 
SO•SQRTIZ. l 
RKil,ll•ALPHA*RLll/S + RHil 
RKII,ZI•ALPHA*RLIZ/S • RHIZ 
RKIZ,Il•ALPHA*RLZI/S + RHZl 
RKI2,2l•ALPHA*RL22/S + RH22 
AA•SO*COSIPI*XXIl 
BB•SO*COSIZ.*Pl*XXll 
CC•SO*COSIPI*XXZI 
DD•SO*COSI2.*Pl*XX2l 
011,1>•1./S + SO*AA/CS+PI**2l +SO*BB/IS+4.*P1**Zl 
011,21•1./S- SQ*AA/IS+Pl**2l +SO*BB/IS+4.*Pl**2l 
012,11•1,/S + SQ*CC/IS+PI**Zl +SO*DD/IS+4.*Pl**Zl 
012,21•1./S- SO*CC/IS+Pl**Zl +SO*DD/IS+4,*PI**2l 
CALL MATMULTIQ,RK,2,Z,Z.21 
RETURN 
END 

SUBROUTINE IDENTIA,N,M,Zl 
COMPLEX AIN,HI 
All,1l•CMPLXIZ,f.lll 
AII,Zl•CMPLXI/1./I,f,/ll 
AIZ,Il•CMPLXI/1.6,11./Il 
Al2,2l•CMPLXIZ,f./l) 
RETURN 
END 

SUBROUTINE MATMULTIA,B,Nl,Ml,N2,M2l 
COMPLEX AINI,M1l,BIN2,MZl,Cl 
CI•AII,II 
All,ll•CI*BII,ll + All,2)*812,1l 
Al1,2l•C1*111,2l + All,2l*BI2,2l 
C1•AIZ,l l 
Al2,1l•CI*BII,Il + Al2,2)*812,ll 
AIZ,Zl•Cl*lll,Zl + ACZ,Zl*l12,2l 
II.ETURN 
END 

Table Al-2 Continued 
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APPENDIX2 

NORilALIZED PACKED BED REACTOR MODEL 

The normalization of the original mathematical representation of the 

packed bed reactor is based on 

tt = !_ a=.! • !!L 
Pg =-L To Pr.o 

r=L ~ ·-~ 
Rt Y• = =o c;,.- "Cp. xro 
tUg, u .... :M, 

"6= -- vg=~ Mg =-L u.., M&o 

Note that in the following normalized equations the () is dropped from . . ..... 
p8 , cp

11
• and M8 and that 

Total mass conservation (continuity): 

• M.,~· 
P, = a 

i .... 
p('=l 

-r= -... --1 
p('=O 
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Energy balance for the gas: 

r=1.0 

<"=1.0 

Note that the gas heat capacity, cp
1

, gas density, pg. and gas velocity, Vg, are 

functions of position and time due to their dependence on mole changes, 

pressure, and temperature. 

Energy balance for the catalyst: 

Using a similar analysis to that for the energy balance of the gas and after 

assurmng constant physical properties of the solid phase, 



r=l.O 

r-o 
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ae. 
a:;=-=>-trs(9s-Bt) 

Bas 
-a:;=-=>-"n(e.-e") 

aes 
"'B( = Aszg( 9s-6 g) 

Be. 
-ar=>-szg(es-a8) 

Energy balance for the thermal well: 

Assuming constant physical properties in the thermal well, 

(=0 

(=:1.0 

Mass balance in the reactor section; 

where 



r=l.O 

~0 

~1.0 
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8y, = 0 
Br 

Byi ::::0 
Br 

Byl VII( 0) 
--:::: -Iii- Yt -y~ 
0{ am 

By1 = 0 
B{ 

In these equations, the dimensionless quantities are defined as follows. 

axial n = L1 dP 

a. = 

Aspect Ratios 

Axial Dispersion 

Dz = --= 
UI io 

Radial Dispersion 

overall a = LIR1 

a 
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fJm = = a 

Heat Transfer 

u.L 
?'. :;: ?'ts = Uao YbPsCp

1 
( 1-e) 

?'g = U!!IL 
')'tg :;: 

llgo Yt/5g/jP/ 

Heats of Reaction 

~ = 

Reaction Coetlici.ents 

~p&ou&o 

UtJ., 

v tPt Cpt ilg., 

U!iL 
VtPt,cPt'Ugo 

L( -6Hs2)"X8o2Xl'{2ko5 

ilg.,Cp
1
T0 

Mg0 4os( 1 -e )xf1ex&2k 05 

M&olp,( 1-e)xll
2
k 05 

ep&oUP.o 

Biot Numbers 

X gas = ~ Xazg = ~ kzs kq 

Awn 
hwsRl 

Awrg = hwgRl = kn krg 
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Reaction Rates 

Rw = p,( 1-e)P-t\~5(xH8)·15x&kayR'y 

Rs = Ps( 1-e)X'&XHf:o5R's . 
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APPEND1X3 

RADIAL COU.OCATION OF PACKED BED REACTOR MODEL 

Gas Phase Radial Temperature Profile 

At the three radial collocation points r = ~0 • rc, and 1.0, let the gas tern-

peratures be a&o. a,!'. and a,l and assume that the radial profile is quadratic: 

This profile must satisfy the boundary conditions 

ae, l - (9 -e) 8r r-,o - Atrg ir..,o t 

89 l ~ r-1 = -A,n.g(B&r-1-9,..) 

where Atrg and Awrg are the dimensionless radial Biot numbers at the thermal 

well and cooling wall, respectively. The profile must also be exact at the three 

collocation points: 

98o =do+ dl~O + d2~~ 

. e&r=da+dlrc+~r~ 

9g1 = do + dl + d2 

After rearranging and eliminating 98o and 981 • 

The expressions for di(~() in terms of air. at. and a,.. can be simply obtained by 

applying Cramer's Rule. Let 
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Then 

do = w19gr + w29t + w39, 

dl = w..,e&r + w5 9t + w6 9, 

d:a = W79gr + Wa9t + Wg9w 

where 

Then based on the assumed quadratic profile 
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the dimensionless form of the energy equation for the gas becomes 

where 98 and 8 11 are now the temperatures at the radial collocation point rc, and 

Pg and cp
8 

are dimensionless parameters, normalized with respect to the inlet 

steady state values. Then if we let 

G.>• = 4{1,w7 + f!.Lw.., - "Yg 
rc 

~ = 4(38wa + f!.Lwo 
rc 

c.>s = 4f3i3,w9 + !!..La,w6 rc 

the energy equation for the gas becomes 

Catalyst Phase Radial Temperature Collocation 

Similar results are obtained for the energy balance of the catalyst using the 

expression 

The values ford;.(~~) in terms of 9~ar, 9t, and e, are derived as before. Let 



Then 

where 
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do = w' 1 9~r + w'29t + w'39.., 

d1 = w' .ell:-+ w'ts9t + w'e9w 

~ = w'78fl:. + w'a9t + w'99.., 

w' _ At.rs(.\wrs+l) - Awn.(IPoA.u-s-1) 
7 - det 

w' _ At.rsXwrsrc - Xtr8 (Xwrs+l) 
a- det 

, Xwrs(IPoAtrs-1) - A.trsXwrrif'c 
Wg = det 
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The energy equation for the catalyst becomes 

Thermal Well Energy Balance 

We can now relate e.__ and e.. .. to the gas and catalyst temperatures at ,....,.o "'Z""f'o 

the radial collocation point. If we let 

!.>7 = 'lt.s(w'l +w'49'o +w'?9'8) 

Wa = 'lt.g(wl +w49'0 +w7rp6) 

CJg = 'lts(w'2 + w'o9'o +w'a9'§ -1) + )'t,g(w2 + Wo9'o +wa9'~ -1) 

Wto = 'lts9.,..(w's +w'a9'o +w'g,o~) + )'t.g9.-(ws +Wat;Oo + Wgt;O~) 

the energy balance for the thermal well becomes 

Radial Concentration Collocation 

For radial concentration profiles, a quadratic representation may not be 

adequate since application of the zero fiux boundary conditions at r = 9'o and 

r = 1.0 leads to d1 -= d2 = 0. Thus a quadratic representation for the concentra-

tion profiles reduces to the assumption of uniform radial concentrations. which 

for a highly exothermic system may be significantly inaccurate. Although 
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additional radial collocation points greatly increase the dimensionality of the 

resulting model, they may be necessary to accurately express the radial con

centration profiles. A detailed analysis of multipoint radial concentration collo

cation is presented in Section 3.4.5. 
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APPENDIX4 

DOCUM:ENTATION 

COMPUTER MODEL OF THE PACKED BKD REACTOR 

A large variety of programs have been written to model the methanation 

packed bed reactor and to produce computer graphics of the various profiles on 

a Zeta plotter or on the Versatec. This documentation describes these pro

grams, the necessary library routines and input data and the command 

sequences for operation of the programs. This description is complete only for 

the latest revision (version 4). All previous versions may have some major 

di.fferences. This revision has been extensively tested under most expected 

operating conditions. The programs are located in directory [RRKMOD4). All 

important modeling programs are also included in this appendix. 

Although the routines involve excellent numerical solution techniques, they 

may still experience numerical solution difficulties in some cases, due to the 

extreme complexity of the reactor model. Various parameters have been 

included so that the user can circumvent these numerical problems, but prac

tice is necessary. In most cases, numerical difficulties will only occur during the 

steady state solutions due in large part to very bad input profiles for the initial 

guesses. 

IIODELING ROUTINES 

A two-phase, two-dimensional dynamic model was employed in this analysis, 

with the assumption that the packed bed may be treated as a continuum insofar 
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as changes occur smoothly and continuously Within each phase throughout the 

bed. This assumption should be valid under the conditions of the methanation 

reactor (Hlavacek, 1970) and allows for treating heat and mass fluxes in a form 

analogous to Fourier and Fick laws. 

The original modeling analysis includes all major expected phenomena in 

the reactor bed. The model accounts for axial and radial dispersion of mass and 

energy. for mole changes that occur along the bed due to the methanation reac

tion, and for temperature. pressure, and mole dependencies of gas velocity. den

sity, average molecular weight, and heat capacity, reaction rate constants, and 

heats of reaction. Additionally, a central axial thermal well is completely 

modeled, including axial conduction of energy along the well. Finally, the model 

is based on a three-dimensional (time, axial, and radial) heterogeneous analysis 

and incorporates the effects of axial pressure gradients. 

The primary reaction in the analysis is the methanation reaction with the 

steam-shift reaction being the only significant side reaction. These reactions 

have been studied extensively and kinetic information is available. A rate 

expression for the methanation reaction for conditions similar to those in the 

present reactor is given by Lee(1973) and Vatcha (1976). A complete analysis of 

the steam-shift reaction is provided by Moe (1962). Although these rate expres

sions have been incorporated into the computer model of the system. the pro

grams are written in such a way that the rate expressions can easily be changed 

simply by replacing one subroutine. 

The only major assumptions underlying the original model are: 

• Reactor wall_ temperature is equal to the cooling tl.uid temperature and is 

independent of length along the reactor. 
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• Gas properties are functions of temperature, pressure and total moles as 

dictated by the ideal gas law. 

• There is no radial velocity. 

• Global rate expressions are valid. 

• Physical properties of the solid catalyst and thermal well are constant. 

• Heats or reaction and gas heat capacities are described as linear func

tions of temperature. 

This original model was coded into the programs 110DEL.YOR and DIST.YOR 

(found in directory [RRK.MODl] on the CHEMVAX). Further analysis using 

dynamic simulations to study the effect of making several major simplifications 

to the model structure are coded into the following programs (also in 

[RRK.MODl]). 

a. Negligible energy accumulation in the gas. (CilODELl, Clll) 

b. Quasi Steady state for concentration. (Cil0DEI2, Cll2) 

c. Homogeneous analysis. (CIIODEL3, Cll3) 

It was concluded from these analyses that the first two assumptions may be 

quite useful for later model reduction since they lead to minimal inaccuracies in 

the simulated profiles. 

Considerable ap.alysis using these complete modeling algorithms, led to the 

following conclusions. 

a. The temperature dependence of the heat capacity has very little effect on 

the simulations. 

b. Mass diffusion has little effect. 
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c. The central axial thermal well has little effect on the concentration 

profiles but significantly alters the transient temperature responses. 

d. Numerical stablity of the model solution is greatly enhanced by retaining 

the thermal dispersive effects. 

e. The assumption of pseudo homogeneity of the system leads to significant 

discrepancies in the dynamic and steady state protlles. 

Finally, a very detailed and careful analysis was made concerning the radial con

centration profile. The programs for this analysis are found in [RRK.CONC]. All 

of these programs use the full nonlinear model with no additional assumptions. 

A lengthy analysis concluded that the assumption of constant radial concentra

tion profiles in the reactor bed leads to inconsequential differences in Lhe axial 

bulk concentrations, radial temperatures and axial temperatures. 

Thus the final models described in this report include the additional 

assumptions of constant heat capacity, negligible axial and radial mass diffusion 

and constant radial concentration profiles. 

LA Solution Strategy 

The basic relationships taken to describe the system are the continuity 

equation, the energy balance for the catalyst, the energy balance for the gas, 

the energy balance for the thermal well, mass balance for CO, mass balance for 

C02 and relationships for the density and pressure changes. These equations 

are first normalized With respect to the steady state inlet conditions. 

The resulting system consists of six coupled, three-dimensionaJ.. nonlinear 

partial differential-equations, which must be solved to obtain the temperature 

profiles in the gas, catalyst and thermal well, the concentration profiles and the 

velocity profile. The technique of orthogonal collocation is used to reduce the 
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equations to a set of first-order ordinary differential equations in the time 

domain. 

A one point radial collocation is performed. This is quite accurate for tem

perature profiles since it assumes a quadratic radial representation of the 

profile. Since the assumed quadratic profile must satisfy the boundary condi-

tions and since the concentration boundary conditions are zero flux conditions, 

the use of one point radial collocation implicitly assumes constant radial con-

centration profiles. 

Discretization of the resulting system is then performed by orthogonal col

location in the axial direction. Since the position and number of points are the 

only factors affecting the solution obtained by orthogonal collocation, any set of 

linearly independent polynomials may be used as trail functions. The Lagran-

gian polynomials of degree N based on the collocation points z.t are used in this 

analysis. 

The resulting equations are a set of SN+ 1 ordinary differential equations 

along with eleven algebraic boundary relations, where N is the number of axial 

collocation points. The solution procedure is further simplified by solving the 

continuity equation for the velocities as a set of algebraic equations, using tem-

perature values and temperature derivatives obtained from the solutions of the 

remaining differential equations. Additionally, simple algebraic manipulation 

allows for explicit solution of seven or the boundary variables. Thus the result-

ing dynamic model consists of a set of 5N coupled ordinary differential equa

tions and N+5 coupled algebraic equations. 

The solutions _of the model are obtained using modified Caltech library rou-

tines. The system of ordinary differential equations is solved using a 

modification of the Caltech routine MODDEQ that uses an Adams-Moulton 
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predictor-corrector technique, with the method ot Runge-Kutta-Gill being used 

to start the integration process. The nonlinear system of algebraic equations is 

solved using modifications of Caltech's routines NSESJ and NSES2. The first of 

these uses the standard techniques of inverting the Jacobian matrix but calcu

lates the Jacobian numerically rather than having it input by the user. The 

second uses Brown's (1967) quadratically convergent algorithm. NSESJ is a fas

ter routine but is not as numerically powerful as NSES2. The modeling pro

grams are written to allow the user to specify which of the two routines to use to 

calculate the steady state solution. The dynamic solutions always use NSESJ. 

LB Modeling Prugra.ma 

Several programs were written to perform various types of modeling ana

lyses. All of the programs have been extensively tested and are completely com

patible. I.e., they use the same data tiles, calling formats and library routines 

and have nearly identical output formats for easy comparison. All of the rou

tines allow for completely arbitrary disturbances and step changes of the cool

ing wall temperature, linear gas velocity, inlet gas temperature and inlet concen

trations of the methane, carbon monoxide, carbon dioxide, water and hydrogen. 

The routines are very modular, allowing for simple modifications and replace

ments or reaction equations, output formats, input formats, modeling equations 

and even solution strategies. 

Difficulties may arise during some simulations due to very steep protiles or 

disturbances. The collocation solution technique has problems with these situa

tions since it assumes a smooth continuous protile along the system Sharp dis

turbances or steep- temperature protiles in the system can lead to oscillations in 

the calculated axial profiles. These problems can usually be reduced by increas

ing the number of collocation points. 
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The programs simulate the behavior of the model where the concentrations 

are normalized with respect only to the inlet steady state concentration of CO. 

This is better than normalizing with respect to the inlet steady state concentra

tion of the indiVidual species in case one or more of the other inlet steady state 

concentrations are zero. 

a. NLNIIOD 

This program simulates the complete nonlinear solution of the system. The 

above techniques are combined with a variable time-step analysis to 

efficiently obtain the dynamic and steady state reactor responses This vari

able time-step procedure is automatic and involves increasing the time steps 

as the system approaches steady state since the derivatives become smaller. 

This program must be linked to MLIB and ILIB. A listing or this program is 

included in Table A4-1. 

b. LINMOD 

This program performs the simulation for the linearized version of the 

model, where the model is linearized about the steady state solution. The 

program thus first calculates the initial steady state solution. based on a 

user-defined initial guess. The program uses the standard numerical tech

niques used in Nl.N110D. including the variable time-step analysis. 

The linear system is of order 5N With the states being the solid tempera

tures, gas temperatures. thermal well temperatures, CO concentrations and 

C~ concentrations at the collocation points. 

This program must be linked to III1B and UJB. A listing of this program is 
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included in Table A4-2. 

c. ANAIIOD 

This program performs the same simulation as LIN110D except that it uses 

the analytical solution of the linear equations rather than performing a 

numerical solution. Thus it takes only a fraction of the solution t1me and 

does not need the variable time-step analysis. The solution of the equations 

can be obtained explicitly at any desired time. 

This program must be linked to 1lLIB, EIJB and LIJB. A listing of this pro

gram is included in Table A4-3. 

d. RDlllOD 

This program performs the simulations for the reduced linear model using 

the analytical solution. The assumptions o! negligible energy accumulation 

in the gas and quasi steady state for the concentrations are used to reduce 

the model to an order of 2N. The retained states are the solid temperatures 

and thermal well temperatures at the collocation points. 

This program must be linked to 11L1B, EilB and LIJB. A listing of this pro

gram is included in Table A4-4. 

e. RD2110D 

This program performs the simulations for the reduced linear model using 

the analytical s_olution. The assumption of quasi steady state for concentra

tion is used to reduce the order of the model to 3N. The retained states are 

the solid temperatures, gas temperatures and thermal well temperatures 
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at the collocation points. 

This program must be linked to llLIB, ELIB and um. A listing of this pro

gram is included in Table A4-5. 

LC Input Variables 

The input variables are divided into groups and are described below. The 

group names given between slashes are the names of the COMMON arrays that 

the variables are stored in after they are read from the data file. 

/REACP I - REACTOR PARAMETERS 

EPS void fraction (cm .. 3 void/cm .. 3 bed) 

L length of reactor bed (em) 

RO radius of thermal well (em) 

R: radius of reactor bed (em) 

!CATlS! - CATALYST PARAMETERS 

CPS heat capacity (callg 0 K) 

PS density (g/cm••s catalyst) 

TC thermal conductiVity (cal/sec em QK) 

DC characteristic particle diameter (em) 

/THWEL/ - THERMAL WELL PARAMETERS 

CPT heat capacity (cal/g 0 K) 

PT density (g/cm••s) 

KT thermal conductiVlty (cal!sec em o:K) 
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!GASPAI - GAS PARAMETERS 

PTZ axial thermal Peclet number 

PTR radial thermal Peclet number 

UGS steady state inlet velocity (em/sec) 

/HEATT I ~ HEAT TRANSFER PARAMETERS 

OHSG 

OHTS 

OHTG 

BSG 

BGS 

BTS 

BTG 

heat transfer coefflcient(solid~gas)(cal!sec oK) 

heat transfer coefflcient(wall-solid)(cal!sec 0 K) 

heat transfer coefflcient(wall-gas)(callsec 0 K} 

Biot number (solid-gas) 

Biot number (gas-solid) 

Biot number (wall-solid) 

Biot number (wall~gas) 

!OPCON I - OPERATING CONDITIONS 

SCH4 steady state inlet methane mole fraction 

SCO steady state inlet carbon monoxide mole fraction 

SC02 steady state inlet carbon dioxide mole fraction 

SH2 steady state inlet hydrogen mole fraction 

SH20 steady state inlet steam mole fraction 

PTO total inlet pressure (atm) 

PTl total outlet pressure (atm) 

STO steady state inlet gas temperature ("K) 
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STW cooling wall temperature (aK) 

/REAC 1 I - REACTION PARAMETERS 

DHlA 

DH1B 

DH2A 

DH2B 

KOP 

KO 

heat of methanation constant, DHl=DHlA.-r+DHlB 

heat of methanation constant (cal/mole) 

heat of water-shift constant, DH2=DH2A•T+ DH2B 

heat of water-shift constant (cal/mole) 

Arrhenius constant, methanation 

Arrhenius constant, water-gas shift 

IREAC2/ -ADDITIONAL REACTOR PARAMETERS 

KP:A 

KPlB 

KP2A 

KP2A 

K2 

K3 

EAl 

EA2 

equil constant, methanation, ln KP1 =KP1A+KP1B/T 

equil constant, methanation 

equil constant, water-gas shift lnKP2=KP2A+KP2BIT 

equil constant, water-gas shift 

constant for methanation reaction rate 

constant for methanation reaction rate 

activation energy, methanatton (cal/g mole) 

activation energy, water-gas shift (cal/g mole) 

OTHER INPUT PARAMETERS: 

DTO 

N 

TMAX 

time step (sec) 

number of axial collocation points 

maximum time (length or simulation) (sec) 
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IFLAG 
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radial collocation point with 0 < rr < 1 

precision in numerical routines, lO .. nep 

type of initial profile guess 

0 values input for canst temps, cone, vel 

1 entire profiles input 

steady state algebraic equation solver 

1- NSES1, 2- NSES2 

DL length of disturbance (sec) 

IF max time step for variable time stepping is DT0•4••(IF-1) 

NP number of time steps between printing 

These variables are read in under the following format: 

READ 1. EPS,L,RO,R: 

READ 1. CPS,PS,TC.DC 

READ 1, CPT,PT,KT 

READ 1, PTZ,PTR,UGS 

READ 1, OHSG,OHTS,OHTG,BGS,BSG,BTS,BTG 

READ 1. SCH4,SCO,SC02,SH2,SH20,PTO,PT1,STO,STW 

READ 1, DH1A,DH1B,DH2A.DH2B,KO,KOP 

READ 1. KP1A,KP1B,KP2A,KP2B,K2,K3,EA1,EA2 

READ 2, DTO,TMAX.RR,DL.N,NP.NEP,IFI.AG,IF.NFLA.G 

where format 1 is (9!8.2) and format 2 is (4f8.2/6i8). All of these variables may 

not be necessary for all of the programs but to keep consistency in the input 

data tiles they are all included. 
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Note: Two of the variables change meanings in the different programs so that 

the values in the data tile do not have to altered and so that the outputs 

of the programs will be identical. These are DTO and NP. In the pro

grams that require numerical solution (NLN110D, UN110D), DTO must be 

taken very small (around 0.005 second) and then NP is set large so that 

the profiles are only printed out for every five or ten seconds during the 

simulation (i.e. NP= 1000). However, in the programs that are based on 

analytical solutions, it is not necessary to take such small steps. If 

printouts of the solutions are desired for every 5 seconds, then the time 

steps should be set at 5 seconds. However, this would involve changing 

the data files if you wanted to run say NLNliOD and then compare it to 

ANAIIOD. To eliminate this problem, the actual time steps used in the 

analytical programs are DTO•NP. 

After this set of inputs, the user must specify the initial guesses for the steady 

state calculation as per the type specified by IFLAG: 

!FlAG= 0 

Input the constant gas temperature, solid temperature, thermal well 

temperature. CO concentration, C02 concentration and velocity under 

format (6f8.2). 

IFLAG = 1 

Input the gas temperature, solid temperature, thermal well tempera

ture, CO concentration, C02 concentration and velocity at each collo

cation point under the format (6f8.2) and then the solid tempera

ture at z=O and z= 1, the gas temperature at z=O and z= 1 and the 

velocity at z=O under the format {5f8.2). The temperatures must be 



-411-

entered in nondimensional terms (as is output by the programs) and 

the concentrations must be based on the inlet number of moles (as is 

the output). Thus these inputs can be directly taken from one of the 

output profiles. 

Then !lnally, the type of simulation must be entered. The next input JFIAG tells 

what type of simulation is being run. This variable is entered under the format 

(i2). 

JFIAG = 0 (step or disturbance) 

The step or disturbance vector is then input. The inlet gas velocity, 

inlet gas temperature, CO concentration, C02 concentration, H20 con

centration, H2 concentration, CJ-4 concentration and cooling wall tem

perature are input under the format (8f8.2). 

JFLAG = 1 

This is to simulate the behavior of the system starting from any arbi

trary profile to steady state. The entire profile should be input just as 

in IFLAG = 1 above. 

A sample data file is shown below and is stored in [RRK.MOD4] as MOD4.DAT. 

This data files performs a simulation of the system with a step change in the 

inlet gas temperature from 573° K to 623° K. The simulation is for a stop rather 

than a simple disturbance since DL is set to infinity. The output will show the 

simulated profiles at 10 second intervals from time 0 to 100 seconds. 

0.57 30.0 P.15B7 1.194 

0.25 1.041 0.005 0.274437 

0.12 8.02 0.039 
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2.00 8.00 75.00 

17.02 0.01795 0.1436 13.09 600,0 7.163 1.25 

-6.144 -48350.-2.441 10760. 17.0 0.07524 

-29.44 26340. 4.385 -4615. 1.470 0.7348 6950. 18900. 

0.005 100.0 0.5 9999999. 

8 2000 -8 0 3 0 

573.0 573.0 573.0 0.06 0.015 75.0 

0 

75.0 623.0 0.06 0.0150 0.02 0.19 0.60 573.0 

LD Other Program Variables 

Some of the other variables and arrays used throughout the routines are 

described below. The minimum dimensions of the arrays are based on the 

number of collocation points and are also described. 

BWG = Biot number (wall-gas)- usually set equal to BTG 

BWS = Biot number (wall-solid) -usually set equal to BTS 

PGS = steady state inlet density (g/cm .. 3 gas) 

ASG = heat transfer area, gas-catalyst (cm .. 2) 

AST = heat transfer area, thermal well-catalyst (em .. 2) 

ATG = heat transfer area, thermal well-gas (cm••2) 

VT = volume of thermal well (cm .. 3) 

VB = volume of bed (cm .. 3) 

RG = gas constant (cm••3 atm/gmole K') 

RGP = gas constant (call gmole K) 
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CPG = heat capacity of gas (cal/g K••2) 

MG = average molecular weight (gig mole) 

The following table describes the vectors and matrices used throughout the 

modeling programs. 

NAME MIN. DIMENSIONS PURPOSE 

A N+2,N+2 first derivative collocation matrix 

AA 5"'N,5•N state matrix 'A' 

AI 5"'N.5•N inverse or the state matrix 

B N+2.N+2 second derivative collocation matrix 

BB 5•N,8 control matrix 'B' 

cc 5"'N Al"'(EX-IDENTITY)"'Q 

DD 5*N constant matrix 'D' 

ET 5"'N.5•N Al"'(EX-IDENTITY) 

EVR 5"'N real part of eigenvalues 

EV1 5•N imag part of eigenvalues 

EX 5•N,5•N EXP(AA•DT) 

R N+2 vector containing collocation points 

RLl N.e constants for linearized methanation rate 

RL2 N,9 constants for linearized steam-shift rate 

SR 5•N,5*N real part of eigenvectors 

SI 5*N,5•N imag part of eigenvectors 

SIR 5•N.5•N real part of SR.SI inverse 

SII 5•N,5•N imag part of SR,Sl inverse 

u B disturbance or control vector 

w 10 radial lumped coefficients 

y s•N+5 state vector 
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YS state vector 

The structure of the state matrix (Y) and steady state state matrix (YS) is 

l, ... ,N Solid temperature at collocation pts 

N+1, ... ,2*N Gas temperature at collocation pts 

2*N+l, ... ,3*N Thermal well temperature at collocation pts 

3*N+ 1, ... ,4*N CO concentration at collocation pts 

4*N+l, ... ,5*N C02 concentration at collocation pts 

5*N+1, ... ,6*N+l Velocities at collocation pts plus z=l 

6N+2 Solid temperature at z=O 

6N+3 Solid temperature at z=l 

6N+4 Gas temperature at z=O 

6N +5 Gas temperature at z= 1 

The structure of the control vector (U) is 

1 cooling wall temperature 

2 inlet velocity 

3 inlet gas temperature 

4 inlet CO concentration 

5 inlet c~ concentration 

6 inlet ~0 concentration 

7 inlet H2 concentration 

8 inlet Cl4 concentration 

All quantities in the programs except the inputs are nondimensional. However, 

the programs are hot based on deviation variables. Thus the form of the linear 

model is 
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X(t) = Ax(t) + Bu(t) + D 

The analytic solution of this equation used by ANAIIOD, RDl.IIOD and RD2MOD is : 

x(t1) = eA(~-~I(t0) + A-1 [eA(~-~-I][Bu + D] 

This is valid for time to to t1 during which the control is constant. 

LE Program Outputs 

The program output consists of displaying the input data, the program con

ditions, the steady state conditions, and the axial collocation points. The initial 

guess for the steady state solution is then shown with the calculated steady 

state solution. 

The simulated profiles are then printed at the specified intervals up to the 

total time period. The final steady state, calculated by setting the time deriva

tives equal to zero in the original simulation and solving the resultant system of 

algebraic equations is printed. For the linearized cases, this steady state may 

be significantly in error since the model was linearized about the original steady 

state and since some of the variables such as MG and CPG are based on the 

steady state inputs. For this reason. the 'Actual Steady State' is also printed. 

This is the steady state based on the new conditions. 

Table A4-6 show the output using the above data file with TMAX = 5 for an 

inlet gas temperature step change from 573° K to 623° K. 

Several sets of library routines have been written for the modeling and plot

ting programs. Some of these routines are modifications of Caltech library 
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routines. In these cases, the names are unchanged. The user may want to study 

the Caltech documentation that accompanies these programs. Although most 

have been changed to clean up portions of the routines not needed in this work, 

to reduce some o! the restrictions, and to work in double precision, the basic 

techniques remain the same. These libraries are described below with brief 

descriptions of the various routines in each library. All of these are found in 

[RRK.lJBR]. 

UJB.FOR This library contains the many routines necessary for modeling the 

reactor. All of these routines have been written specifically for the packed bed 

model and are listed in Table A4-~f. 

DIMLES calculates the dimensionless parameters. 

INITIAL sets up initial profiles. 

SETUPS reads the input data, makes preliminary calculations and prints 

the inputs. 

OUTPUT outputs the calculated profiles. 

RADIAL calculates the constants for the radially lumped model. 

COLLOC calculates the zeros of the orthogonal polynomial and sets up 

the axial collocation matrices. 

INTLSS solves for the initial steady state profile. 

FN 1 defines the algebraic equations for use by NSES 1 when solving 

for the steady state. 

FN2 identical to FNJ but is written to be used with NSES2. 

FN3 defines the steady state linearized equations for NSESJ. 
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LREAC calculates the coefficients for the linearized rates. 

ASETUP sets up the linearized model including the state matrix 

ACTLSS calculates the final steady states. 

INSIM initializes the simulation. 

OUTCALC calculates the velocities and endpoint temperatures. 

CPCALC calculates the gas heat capacity. 

ENDPTS calculates the endpoint conditions. 

REAC calculates the dimensionless rates. 

ELIB.FOR This library is necessary for the calculation of the eigenproperties. 

EIGENP calculates the eigenvalues and eigenvectors of a real matrix. 

This routine uses the subprograms SKALE, REAL VE, HESQR, 

COMPVE Lhal are also included in this library. 

101B.FOR This library includes various numerical and printing routines. 

DFOPR evaluates the discretization matrices for collocation. This rou

tine is from the text by Villadsen and Michelsen. 

JCOBI evaluates the roots and derivatives of Jacobi polynomials. This 

subroutine is from the text by Villadsen and Michelsen. 

MODDEQ may be used to solve a system of first-order differential equa-

NSES1 

tions. 

This routine uses the subprograms MADAM, MGILL, MREST, 

MSA VE that are also included in this library. 

solves a system of algebraic equations by numerically calculat-
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ing the Jacobian and using MATINVto invert it. 

NSES2 solves a system of algebraic equations using Brown's quadrati

cally convergent algorithm. This routine is slower than NSESJ 

but is more powerfuL 

PRINTS prints the scalars z(i) , i=l, .... , 8. 

PRINTV prints the vector z(m). 

PRINTM prints the matrix z(n,m). 

ZEROV zeros the vector z(m). 

ZEROM zeros the matrix z(n,m). 

NEGCH checks a vector for any negative values. sets the negative value 

to zero and prints a warning message. 

MAT/NV inverts a matrix. 

HNJJJNV inverts a matrix. 

CINVSE inverts a complex matrix. 

MATCPY copies a portion of one matrix to another. 

MATMULT multiplies two matrices. 

ll.A PUB.FOR 

This library of routines is necessary for the plotting routines. Several of 

the programs in this library are identical to those in MLIB except that they are 

written in single precision for the plotting. 

JCOBI same as in MUB but in single precision. 

Di''UPR same as in MUB but in single precision. 
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INTRP evaluates the Lagrangian interpolation coefficients. 

NAXS replaces the Caltech library routine for plotting the x axis. 

NY AXIS replaces the Caltech library routine for plotting the y axis. 

PWI"'1NG PROGRAIIS 

Several programs have been developed for plotting various types of profiles 

on the Zeta plotter. These programs all must be linked to PLIB. All of the rou

tines have slightly differing input data structures. Thus it may be necessary to 

study the programs before attempting to use them the first time. Many of the 

variables used by the programs are defined below. 

OX,OY 

XL,XY 

Yl,Y2 

Xl,X2 

XT,YT 

ID 

IST 

lS 

N 

- location of the origin on the page 

-length of the two axes 

- starting and ending values for the y axis 

- starting and ending values for the x axis 

- distance between tics on the two axes 

- type of line drawn between the points 

- 0 if the data is the last line for the plot, 1 if more lines follow 

- speed of the plotter 

- number of collocation points 

The folloWing are the most useful programs. They are in [RRK.PIDT]. 

PGEN plots a completely general profile. 



PLTA 

PLTC 

PLTCl 

PLTCR 

PLTR 

PLTT 

Pf,TTC 
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plots the axial temperature profiles, given the values at the col

location points. 

plots the axial concentration profile, given the values at the col

location points. 

is identical to PLTC except that the concentration that is plot

ted is that based on the inlet number of moles. 

plots the radial concentration profile. 

plots the radial temperature profile given the values at the collo

cation points. 

plots the time profiles of the temperature using the spline rou

tines to fit the curve. 

plots the concentration time profiles using the spline routines to 

fit the curve. 
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C THIS P~OGi~AM MODELS A IIOIUSOTHEIIMAL, IIOMAOIAIATIC FIXED lED UACTOII 
C \liTH lOTH A COOLING; JACKET AND A THERMAL \fELL. THE ANALYSIS IS 
C: P£1\F~MED F~ A METHANATION OF CO SYSTEM. 

C LINK TO MLI8.LLI811 

C THIS PROGRAMS SOLVES THE FULL MOMLIMEAR MODEL 1/ITII THE COIICEII~TIOIIS 
C NONOIHENSIONAL 1/.R.T. THE STEADY-STATE INLET COliC. OF CO 

IMPLICIT REAL•8 !A·M,O·ZI 
lt£AL •8 l • 1<1' ,Mt:. kJI, KllP .ICP lA.KPII.ICCl •• KP2A,KP21,KC2. ,KZP ,IC3P 

COMMON /REACP/ EPS,L,U,U 
/CATLS/ CPS, PS, TC, DC 
ITH\IEL I CPT, PT, KT 
/GASP A/ CPQ, PTZ, PTII. ,Mil:, PGS, Uli:S, UM 
/HEA TT I OHSG, OHTS, OHTI;, 8GS, BSGi, BTS ,ITIO, 1\/G, 1\/S 
/OPCON I SCHl. SCO. SC02. SH2, SHZO. PT., PTI, ST., STII 
/REACl/ DHlA,OH!B,OHZA,OHU,kJI,UP 
/OlHi.E/ ALS ,ALG .AL T ,BES, BEGi ,GAS ,GiAIO ,lOTS ,;TG, OU, 

DEZ, S II ,SIZ ,513 ,PHIZ, PHI3 ,PHI,PHZ ,PH3 
/RADIAl \llUl,\/Pl9,2l,OETA!2l,kR 
/COHAT/ AIZS,2Sl,IIZ5,ZSI,R<2Sl,N 
/I'IISCI/ UUI l'*l 
/R£AC2/ KC!ll. KP lA. KP II. KCZll .KPZA.KP21,K2P ,K3P, EAI,EAZ 
/LINEA/ AA175,7Sl,BBI75,8l,DDI7Sl,UI8) 
!STATE/ Vll.lll,YDOTIIll.l,ST,OT 

EXTERNAL OUIV,FN 

C READ IN DATA AND CALCULATE CONSTANTS 

CALL SETUPS IOTI,TMAX,DL,M,U,EP,IFLAt;,NFLAI'O,NP,!Fl 

CALCULATE THE DIMENSIONLESS PARAMETERS 

CALL DIHLES 

CALCULATE CONSTANn FOR THE RADIAL LUMPED MODEL 

CAlL RADIAL 

CALCULATE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL 
COLLOCATION I'IATRICIES A AND B. 

CALL COI.LOC 

C SOLVE FOR THE STEADY STATE PROFILE 

CALL INTLSS I Y, U ,IFLAil,NFLAG ,L, Uli$, PHI,N,EP l 

SPECIFY INITIAL CONDITIONS 

OT•DTll 
T•ll.OII 
CALL INSIMNIY,U,UU,N,JFLAGl 
PR !NT I 
ST•UUIN+Sl 
CALL NSESIIN+S,UU,EP,I.ll,I,FNJ 
CALL OUTCALN lV,UU,Nl 
CALL OUTPUT IY,U,T,L,UGS,PHI.lll 

C IIIITIALIZE INTEGRATION ltOUT!IIE MODOEQ 

LL•I 
JJI•U 
IIT•I 

UZ ~tL MODDEQ CDEit!V ,IC,S0 N, T ,,. ,YOOT ,DT ,£P) 

SOLVE THE 5N O.D.E. 'S FROM T TO T+DT 

Zlll NT•NT+ 1 
CALL MOOD EO l DER IV ,K,5*N, T ,V, VDOT ,DT ,EP) 
IF IK .EQ. -ll PRINTZ 
IF IK ,£Q. •I l STOP 

C SOLVE THE N+S ALilEBRAIC EQUATIONS AT TIME T•OT 

ST•UUIN•Sl 
CALL ffSESl~N+b~UU,EP,l •• ,.,FftJ 

C PltlNT RESULTS AND CONTINUE PROCESS IF T IS LESS THAN TMAX 

IFtLL.EQ.I .AND. T.IOE.OL) GO TO 3.1 
IFtNT.NE.NP .AND. T.LT.TMAXl 1'00 TO z•• 
CALL OUTC:ALNIY,UU,Nl 
CALL OUTPUT lY,U,T,L,Ut;S,PHI,lll 
!FIT .liE. TMAX> 100 TO ••• 
liT•• 

Table A4-1 
Computer Program NLNJIOD 
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C AOJUST TIME STEP IF NECESSARY 

lS•lFN IYOOT,Z0 N) 
JJ•IIOINT IRSI - 3 
IFIJJ .EO. 21 JJ•!IOINTilS-.2011 - 3 
!FIJJ .LE. I .OR. JJ ,;[. lfl ;o TO 211 
DTI•OTI•4.IOI••JJ 
IFIIDTI-DTl .LE • • 111101 .AMD. IJJ1+3-RSI .LT •• IRilQO TO Ul 
DT•DTI 
JJI•JJ 
PRINT 4, IDT•L/UGSI 
1:0 TO ZIZ 

C ADJUST FOR END OF IMPULSE 

Ul LL•I 
DO 311 1•2.8 

Ul Ulll•I.DI 
Ulll•PH3 
PRINT 3, IT0 L/UI:SI 
DT•DT.II 
1:0 TO 212 

C CAlCUl.TE FIM•L STEADY STATE 

Ul IFILl.EQ.I .OR. JFlAC:.EQ,JlSTOP 
CALL ACTLSSIU,Y,EP,Nl 
PRINT I 
CALL OUTPUTIY,U,I.DI,L,U;S,PH1,2l 
STOP 

FORMATIIHI l 
FORMAT I///,ZX,'ERROR- MODDEQ COULD NOT CONVEli:E',///1 
FORMATI///////t,2X,'ACTUAl TIME OF IMPULSE END •',FI.4,///////l 
FORMATI//////,2X,'NEW TIME STEP •',Fll.4//////l 
END 

SUIROUTINE INSIMMIV,U,UU,M,JFLAI:l 

C THIS SUilOUTINE INITIALIZES TME SIMULATION. 

IMPLICIT R!AL•I IA-H,0-%1 
REAL•& MG,MC:I 
DIMENSION U18l,YIIII1,UUIII11 
COMMON /GASPA/ CPG,PTz,PTR.HG,PGS,UC:S,UM 

/OPCON/ SCH4,SCO,SC02,SHZ,SHZO,PTI,PTl,STI,STV 

READ I 5 ,1) JFLAG 
lf<JFLAii .~Q. IICALL INITIALIY,U,Il 
IFIJFLAG .EO. 11110 TO 211 

READ 15,21 UGJ,TI,XCO,XCOZ,XH20,XH2,XCH4,TV 
CALL CPCALCIXHZ,XCO,XCOZ,XHZO,XCH4,TI,MQI,CP,CP!,CP2l 
UM•MG./MG*ICPI*TI+CP%1/CPQ 
U ( I l •TW/STI 
UIZ1•UGI/UGS 
U I 31 •TI/STI 
U14l•XCO/SCO 
UCSJ•XCOZISCO 
Ul6l•XHZO/SCO 
U17l•XH2/SCO 
U 18 l •XCHHSCO 
PRINT 3, CUill,l•l,II,UM 

lll 00 311 l•l,N+& 
311 VUCIJ•YCN*6+1) 

RETURN 

•oRNATe 12) 
FORMATI9F8.Zl 
FORMATI/1/,ZX,'INITIAl CONTROL VECTOla',//SX,'TV •',FI.4,1X, 

• "UGi. •• ,F8.4,SX, 'T• •",F8.4.SX. ')(CO •' ,F8.4,SX,/5)(, 
'XC02•~.F8.4,5M,'KHZO••,FI.4,6K,'XH2 •',FI.4,5X,'XCH4•'• 
F8.4/SX,'UM •',F8,4l 

END 

SUBROUTINE OUTCALN CY,UU,Nl 

IMPLICIT REAL*I CA•H,O•Zl 
DIMEISIOH Ylllll,UU!lll1 

DO Ill I•I,M+I 
Ill Y<S*N•Il•UU(IJ 

UTUU 
INO 

Table A4-1 Continued 
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SUIROUTINE O!RIY <MM,T,V,VOOTI 

C THIS su•aouTIM£ DEFINI$ THE OIFERENTIAL fOUATIONS Fa« US£ IV ~0£0. 

IMPLICIT REAL*8 IA·H,O·ZI 
REAL*I !Ill 
DIMENSION Yll •• I,YOOTII •• I 
COMMON IDIMLE/ AlS,ALG,ALT,IES,IEG,GAS,GAG,GTS,GTG,0£1, 

• OE2, 511, S 12, Sll, ,HI Z ,PHU ,PHI, ,HZ ,,H3 
/RADIAl ~ll.J.~Pl9,2J,D£TAI2J,tR 
/COMAT/ AI25,ZSI,I125,25l,RIZSI,M 
IH!SCI/ UUI IWWI 
/GASPA/ CPG,PTo,PTR,HG,PGS,UGS,UH 
II.INEAI M175,7SI,II17S,Il,OOI751,UUI 

MPZ•M•Z 
NZ•M•Z 
MJ•M*3 
M4•M•4 
TAU•PHZ·I.D. 
CALL EMDPTS ITT •• YI.,Y!MPI,YZ.,YZMPI,TTMPI,Y,PHII 

DO !WI J•l,M 
lfl'l•l+l 
PG•TAU•RIIPII+I.D• 
CALL REAC IYIMJ+Il,YIN4+1l,YIJl,YIM+II,PG,RIP,RZPI 
SI•SUMlY,,,I,UUIN•ZI,UUIN+Jl,I,Ml 
SZ•SUMfV,~,A,UU<N•4)tUU(N+5),1,Ml 
SJ•SUMIY,N,8,UUIN+41.UUIN+Sl,I,Ml 
S4•SUMIY,NJ,A,YJ.,YIMPI,I,NI 
S6•SUMIY,N4,A,YZ •• YZMPI,I,NJ 
S8•SUMIV,N2,1,TT.,TTNPI,I,Ml 

VOOTIII• ALS•SI + Wlll*Yill + W1Zl*YIN2+ll + GAS*YCM+!l 
+ PE1°RIP*Il,D••,HIZ*VCill + OE2*R2P*Cl,Q.+PHI3•YIIII 
+ WOI*UCI l 

YDOT!N+IJ• •UUIIl*$2 + tAL~*SJ + WI.)*VIN+Il + 11151*Vt112+11 
+ IOAG•VtlJ + llt6J*U!lll1Pii*YIII+IJ/UH 

VDOTtN2+1J• AlT*$8 • Wt7l*Ytll + lltii*VtN+Il + Wtti•VtN2+!J 
+ \1( t•J•Ut I l 

YDOTtN3+[)• ·UUI[)"$4 • SI2*YtN+I1*~2P/PG • SII*VIN+II*RIP/PQ 
YOOTIN4+1J• •UU([)•$6 - SIJ*YtN+II*RZP/PQ 

IWI CONTINUE 

RETURN 
END 

SUIROUTINE Fll IUU,VJ 

C THIS SUIROUTIN£ 0£fiN£S THE ALCEIRAIC EOUATIONS rCA USE IV NSESZ 

IMPLICIT kEAL*I tA·H,0·%1 
UAL*B Mil 
DIMENSION UUti •• I,Vt\1 
COMHON /COMAT/ AC25,25J,BI25,2SJ,kl2fil,N 

IIPZ•N+2 

/OIMLE/ ALS,AlG,AlT,8ES,IEG,IiAS,GAii,GTS,IiTii,DEI, 
DEZ.Stl,Stt,St3,~HJZ,PHI3,PH1,PH2,PH~ 

/STATE/ Yl 1•WJ ,.YOOTt J.JJJ,ST .DT 
/LINEAl AAI75,751,88175,8J,DDt751,UI81 
/GASPA/ CPG,PTr,PTR,M~,PiiS,UGS,UM 
/HEATT/ OHS1i,OHTS,OHT1i,IGS,ISG,ITS,8TG,IWG,IWS 

YCN+l)•$UMtY •• ,A,UU(M+2l,UUlM+3)••·"••1&S~(UUlN+tl~UU(••2>) 
VIN+3l•SUMCY,.,A,UUIN+Zl,UUIN+JI,N+I,III+IGS*IUUtN+31·UUIN•51J 
YCN••I•SUMIY,N,A,UUIN••I,UUIN+5J,I,III+BSG*IUUIN+2l·UU!N+4Jl 

+UH*Ut21•tUI3l·UUtN+4ll/Alli/UUIN+.l 
YtN+5l•SUHIY,N,A,UUtM+4l,UUtN+SI,N+I,IIl+ISii*IUUIN+5l-UUIN+lll 

TAU•PHl-1.0. 
DO Ul K•I,N z•• VI K I •Vt N>K I •SUM! UU •• ,A, Ul 2 I, UUI N+l l, K, Nl-UU( K l *SUM IV, N ,A, 

UUIN+.l,UU!N+5!,K,NI·YDOTtN+Kl+UUC<I*Y!N+Kl*TAU/ 
ITAU•R t K+l l+l.Oil 

VCII+I I•UUU+6 I *SUM! UU,.,A. Ul Z l, UUIII+I l, II+ I, M I·UUIN+I I*SUMI Y ,II,A, 
~¥in::~~~IN+Sl,N•I,NI-IUU111+5l•5TJIOT>UUIN+Il*UUtii+5J*TAU/ 

RETURN 
UD 

Table A4-1 Continued 
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C THIS ,ROGRAM MODELS A NONISOTHERMAL, NONADIABATIC Fl~ED BED REACTOR 
C . WITH BOTH A COOLING JACKET AND A THERMAL WELL. THE ANALYSIS IS 
C PERFORMED FOR A METHANATION OF CO SYSTEM. 

C THIS PROGRAM PERFORMS THE SIMULATIONS FOR THE LINEARIZED MODEL 
C USING THE NUMERICAL DIFFERENTIAL EQUATION SOLVER MODDEQ. 
c 
C LINK TO MLIB,LLIB 

IMPliCIT REAl•B IA-H,O-Zl 
REAL*8 L,KT,MG,KI,KIP,KPlA,KPlB,KCl.,KP2A,KP28,KC2B,K2P,K3P 

DIMENSION YSII •• l,RL1115,9l,RL2115,9l,YII.Bl,YDOTI1BBI 

COMMON /REACP/ EPS,L,R.IJ,Rl 
• /CATLS/ CPS,PS,TC,DC 
• /THWEL/ CPT,PT,KT 
• /GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM 
• /HEATT/ OHSG,OHTS,OHTG,BGS,8SG,8TS,BTG,BWG,BWS 
• /OPCON/ SCH4,SCO,SCOZ,SH2,SH20,PTB,PTI,ST.IJ,STW 

/REACI/ DHIA,DHIB,DHZA,OHZB,KB,KBP 
/OIM~E/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,DEl, 

• DEZ,SII,SI2,SI3,PHIZ,PHI3,PHI,PH2,PH3 
• /RADIAl WII.IYl,WP19,2l,OETAI2l,RR 
• /COMAT/ A(25,251,8(25,25l,RIZ51,N 
• /REAC2/ KCl.IY,KPIA,KPIB,KC2.1Y,KP2A,KP28,KZP,K3P,EAl,EAZ 
• /LINEA/ AAI75,751,BBI75,8l,DDI751,UIBI 
* /LALGB/ SC4,41,HI2B,4.1Yl,RII2B,4l,ALI7l 

EXTERNAL FN3,DERIV 

C READ IN DATA AND CALCULATE CONSTANTS 

CALL SETUPS IDTB,TMAX,DL,N,RR,EP,IFLAG,NFLAG,NP,IFl 

C CALCULATE THE DIMENSIONLESS PARAMETERS 

CALL DIMLES 

C CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL 

CALL RADIAL 

C CALCULATE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL 
C COL~OCATION MATRICIES A AND 8. 

CALL COLLOC 

C SOLVE FOR THE STEADY STATE PROFILES 

CALL INTLSSIYS,U,IFLAG,NFLAG,L,UGS,PHI,N,EPl 

C CALCULATE THE COEFFICIENTS FOR THE LINEARIZED REACTION RATES 

CALL LREACIYS,RLI,RL2l 
CAll ASETUPIYS,Rll,Rl21 

C SPECIFY THE PROFILE AT T•B 

T•B.D.IY 
CALL INSIMIY,YS,U,N,JFLAGI 
PRINT 1 
CALL OUTCALCIU,Y,YSIN*6•4l,ALGI 
CALL OUTPUTIV,U,T,L,UGS,,H1 •• l 

LL•B 
JJ1•2.8' 
NT•.f 
DT•DT.f z•2 K•t 
CALL MOODEOIDERIV,K,S•N,T,V,VDOT,DT,EPI 

C SOLVE THE SN O.D.E.'S FROM T TO T+DT 

ZBB NT•NT+l 
CALL MODDEQIDERlV.K,&•N,T,V,YDOT,DT,EPI 
H!K .EO. -1 l PRINT 2 
IFIK .EQ. -11 STOP 

Table A1-2 
Computer Program LIN][OD 
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C ,~tNT ~ESULTS AND CONTINUE IF T < TMAX 

IF!LL.EQ .•• AND. T.GE.DLI GO TO 3 •• 
IFINT.NE.NP .AltO. T.LT.TMAXI GO TO 2BB 
CALL OUTCALCCU,V,VS(N*6+4l,AlGl 
CALL OUTPUT!V,U,T,L,UGS,PHI,BI 
IF!T .GE. TMAXJ GO TO 4BB 
IIT•B 

C ADJUST TIME STEP IF NECESSARY 

RS•RFII CVDOT,Z•NJ 
JJ•IIOINTIRSI-3 
IF<JJ .EQ. 21 JJ•IIDJNT!RS-.ZDBI • 3 
IFIJJ.LE.B .OR. JJ.GE.IFlGO TO ZBB 
DTl•DTB*4.0B**JJ 
IFC!DTI-DTJ .LE . • BBB!DB .AND. (JJt+3-~$) .LT •• IOBH~O TO ZBB 
DT•DTl 
JJl•JJ 
PRINT 4, !DT*L/UGSI 
GO TO ZBZ 

C ADJUST FOR END OF IMPULSE 

3BB ll•l 
DO 361 1•2,8 

3B1 U!II•l.DB 
Utii•PH3 
PRINT 3, !T*L/UGSI 
DT•DTB 
GO TO 2B2 

C CALCULATE FINAL STEADY STATE 

UB IFILL .EQ. l .011.. JFLAG .EQ. l>STOI' 
PRINT 1 
CALL NSESI!S*N,V,EP*I.D-2,1BB,B,FN31 
CALL OUTCALCIU,Y,VSCN*6+4l,ALGI 
CALL OUTPUT!V.U.B.DB.L,UGS,P~1 ,21 
CALL ACTLSS!U,V,EP,NJ 
CALL OUTPUT !Y,U,B.D8,L,UGS,PH1,31 
STOP 

I FORMAT!lHII 
2 FORHATC///,2X,'ERROR- MOOOEQ COULD NOT CONVERGE",///) 
3 FORMAT!//1/////,ZX,'ACTUAL TIME OF IMPULSE END •',F8.4///////I 
4 FORMAT!////1///,ZX,'NEW TIME STEP •',F1B.4///////l 

END 

SUBROUTINE DERIV IN,T,Y,YDOTI 

C THIS SUBROUTINE DEFINES THE DIFFERENTIAL EQUATIONS FOR USE SV MODOEQ 

IMPLICIT REAL*8 IA-H,0-%1 
DIMENSION Y!lBBI,YOOTClBBI 
COMMON /LINEA/ AA175,751,BBI75,81,DOI751,UI81 

• /LALGB/ SI4,41,H!ZB,A.l,Rl128',Al,All71 

00 18'8' I•I,N 
YDOTII >•DOll I 
DO lBl J•l.N 

111 YDOT!li•YDOT!li+AAI!,J)•V!J) 
DO 18'. J•l, 8 

IBB YDOT!II•YDOT!ll+II!I,JI*U!JI 
RETURN 
EIID 

Table A4-2 Continued 
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C THIS rRO~RAM MODELS A MOMISOTHERMAL, MOMAOIABATIC FIXED lEO REACTO« 
C WITH 80TH A COOLIN~ JACKET AND A THERMAL WELL. THE ANALYSIS IS 
C 'ERFORMED FOR A METHANATION OF CO SYSTEM. 

C THIS PROGRAM PERFORMS THE SIMULATIONS FOR THE LINEARIZED MODEL 
C USING THE ANALYTIC SOLUTION. 

C LINK TO MLIB.LLIB,ELIB 

IMPLICIT REAL*& IA-H,O-Zl 
REAL*8 L,KT,H~,KB,KBP,KPIA,KP18,KCII,KP2A,KP28,KC2B,K2P,K3P 
DIMENSION VSillll,RLII15,91,RL2115,9),VIllll,YDOTIIIBl 
COMMON /REACP/ EPS,L,RB,Rl 

* /CATLS/ CPS,PS,TC,OC 
/THWEl/ CPT,PT,KT 

* /GASPA/ CPG,PTZ,PTR,MG,P~S.UGS,UM 
* /HEATT/ OHSG,OHTS,OHTG,BGS,BSG,BTS,BTG,BWG.BWS 

/OPCON/ SCH,,SCO.SCOZ,SHZ,SHZO,PTI,PTI,STB,STW 
• /REACt/ OHJA,DHlB,OH2A,OH2B,KB,KBP 
* /OIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,OEl, 
* OE2.Sil,Sl2.SI3.PHJ2,PH13,PHl,PHZ,PH3 
* /RADIAl Wlllfl,\IPI9,2l,OETAI21,RR 

/COMAT/ A12S,251,8125,2Sl,RI25l,N 
/REAC2/ KCIB,KPIA,KP\B,KC28,KP2A,KP2B,KZP,K3P,EA1,EA2 

• /LINEA/ AAI 75,751,88175,81,001751 ,UI8l 
• /LALGB/ SI •. 4J,HI2S .• Bl,RII2B,4l,All7l 
* /EIGEN/ EVRI75l,EVI175l,SRI75,75l,SII75.7SJ,SIRI75,751, 
• Sll175,75l 

/ANLVT/ A1175,75l,EXI75,75l,ETI75,75l,CCI76l 

ElCTERNAL FN3 

C READ IN DATA AND CALCULATE CONSTANTS 

CALL SETUPS IOT,TMAX,OL,N,RR,EP,IFLAG,NFLAG,NP,IF> 
DT•DT*NP 

C CALCULATE THE DIMENSIONLESS PARAMETERS 

CALL OIMLES 

C CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL 

CALL RADIAL 

C CALCULATE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL 
C COLLOCATION MATRICIES A AND B. 

CALL COLLOC 

C SOLVE FOR THE STEADY STATE PROFILES 

CALL INTLSSIVS,U,IFLAG,NFLAG,L,UGS,PHI,N,EP> 

C CALCULATE THE COEFFICIENTS fOR THE LINEARIZED REACTION RATES 

CALL LREACIVS,RL1,RL2l 
CALL ASETUPIVS,RLI,RLZ> 

C SPECIFY THE PROFILE AT T•• 

T••.D• 
CALL INSIMIV,VS,U,N,JFLAGl 
I"RINT 1 
CALL OUTCALCIU,V,VSIN*6+,),ALG> 

Table A4-3 
Computer Program ANAIIOD 
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CALL OUT,UTIY,U,T,L,U,S,,Hl,ll 

C CALCULATE THE ANALYTIC CONSTANTS 

LL•8' 
IN•S' 

212 CALL ANALYTIDT,N,INI 

C SOLVE THE 5N O.D.E.'S FROM T TO T+DT 

z•g DO z•3 l•l,&*N 
YOOT!Il•CC!Il 
DO 2.1J3 J•l,S*N 

2.3 VDOTIIl•YOOTIIl+EXti,J)*YIJI 
T•T+OT 
DO ZJJ! l•l,S*N 

211 Ylli•YDUTill 

C ~RINT RESULTS AND CONTINUE IF T < TMAX 

IF!Ll.EQ.8' .AND. T.GE.DLl GO TO 3 •• 
CALL OUTCALCIU,V,YSIN*6+4l,ALGl 
CALL OUTPUTIV,U,T,L,UGS,PHl,ll 
!FIT .GE. TMAXl GO TO 41.1J 
GO TO 2/11 

C ADJUST FOR END OF IMPULSE 

31. LL•l 
DO 3.1 1•2,8 

3.1 Ulll•l.OS' 
Ul I l•PH3 
PRINT 2, IT*L/UGSI 
IN•Z 
GO TO 28'2 

C CALCULATE FINAL STEADY STATE 

U8' IFILL .EQ. 1 .OR. JFLAG .EO. liSTOP 
PRINT 1 
CALL NSES115*N,Y,EP*1.D-1,111,1,FN3) 
CALL OUTCALCIU,Y,VSIN*6+4l,ALGl 
CALL OUTPUTIY,U,I.DS',L,UGS,PH1,21 
CALL ACTLSS!U,Y,EP,Nl 
CALL OUTPUT IY,U, •. D.,L,UGS,PHI,3l 
STOP 

1 FORMATIIHII 
2 FORMATI/1//////,ZX,'ACTUAL TIME OF IM,ULSE END •',FI.4///////) 

END 

Table A4-3 Continued 



SUJ~OUTINE ANALYT <OT,N,INl 

C THIS SUBROUTINE CALCULATES THE CONSTANTS NECESSARY ,Ok TM£ 
C ANALYTICAL SOLUTION. 

IMPLICIT REAL•8 CA-H,O-Zl 
DIMENSION 1HDC75>,QI75> 
COMMON /LINEA/ AAI75,75>,11175,8l,DDC75l,Utll 

/El~EN/ EVRI75l,EVlC75l,SRI75,75l,Sl175,751,SIR<7S,11), 
Sl I 175,751 

/AN~VT/ Al175,7S>.EXt75,75J,ETC75,75l,CCt75l 

lFI!H .EO. 11 GO TO z•• 
l~l!N .EO. 21 GO TO 3S6 

C CAlCULATE THE EIGENPROPERTIES 

CALL Z£ROMISR,75,75J 
CALL ZEROMI$!,75,75> 
CALL 2EROVCEVR,75> 
CALL ZEROVIEVI,75> 
CALL MATCPVIAA,Al,75,75,75,?5,75,75l 
CALL El~EHPI5*N,?S,Al,EVR,EVI,SR,SZ,lNDl 

C CALCULATE S INVERSE AND A INVERSE 

CALL ZEROMISIR,7S,7S> 
CALL 2EROMISII,75,7Sl 
CALL MATCPYIAA,Al,7S,75,75,75,75,751 
00 11616 I•1.N*5 

11.1 S 1 R I I , 1 l • I • Dl 
CALL CINVSE!SR.SI,SIR.Sl1.7S,S*Hl 
CALL 8NOINVIA!,S*N,lTEST> 

C CALCULATE EXP!LAMBOA*DT> 

ZIB 00 261 I•t,S•H 
CC{I>•D,XP!EVACl)*DT>•DC0$1EVICll*DT> 

211 Oll>•OEXPIEVRII>*DT>*DSlHIEVllli"'DTI 
DO 263 1•1,5*11 
00 2113 J•I,S"'N 
STR•16.016 
STI•16.016 
DO 2162 K•I,S*N 
ST1•16.0ll' 
ST2•16. 016 
CALL CMULTICC/KI,OIK!,SlRIK,Jl,S111K,J),STl,ST21 

zgz CALL CMULT!SR/l,K>,Slll,Kl,STI,STZ,STR,STll 
213 EXIl,Jl•STR 

C CALCULATE ADDITIONAl CONSTANTS 

DO 2164 l .. l,S*H 
DO Z.IU J•I,S*N 
ETtl.Jl•JI.OI 
DO 2S.t K•l,S•N 
ALP•EXIK,Jl 
IFIK .EO. JIALP•ALP•I.OJI 

214 ETil,Jl•ETII,JI•Alii,Kl*ALP 

3BB DO 3161 l•t,S•N 
01 I l•Dtll I l 
00 361 J•l,8 

311 Olll•OIII~BB/l,J>*UIJ> 
DO 362 I•t,S•II 
CC(f , .... 0. 
00 3.2 J•t,S•III 

l•z CCIII•CClii•Ei([,JJ•QCJJ 

RETURN 
END 
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C THIS PRQ;RAM MODELS A NONISOTHERMAL, NONAOIAIATIC FIXED lEO REACTOa 
C WITH lOTH A COOLIN; JACKET AND A THERMAL WELL. TM£ ANALYSIS IS 
C PERFORMED FOR A METMANATION OF CO SYSTEM. 

C THIS PRQ;RAM PERFORMS THE SIMULATIONS FOR THE REDUCED LINEAR MODEL 
C USIN; THE ANALYTIC SOLUTION. THE ASSUMPTION OF NEGLIGIBLE ENERGY 
C ACCUMULATION IN THE GAS AND QUASI SS FOR CONCENTRATION ARE US£0 
C FOR THE MODEL REDUCTION. 

C LINK TO MLIB,LLII.ELIB 

IMPLICIT REAL•& IA-H,O-Zl 
R£AL"8 L,KT,HG,K.,K.P,KPIA,KPII,KCI.,KPZA,KPZI.KC2 •• K2P,K~P 
DIMENSION YSI "" ,RL I I 15,91 ,RL21 15,91, VI 1 •• ,, VOOTI 1••1 
COMMON /REACP/ EPS,L,R •• RI 

/CATLS/ CPS,PS,TC,OC 
/THVEL/ CPT,PT,KT 

• /GASPA/ CPG.PTZ,PTR,MG,PGS,UGS.UM 
• /HEATT/ OHSG,OHTS,OHTG,BGS,ISG,BTS,ITG,IVG,IVS 

/OPCONf 5CH4.SCO~SCOZ.$~l,SHZO.,T._tTl.IT •• 3TW 
/REACI/ DHIA,DHIB,DH2A,DHZB,~,K·P 
/DIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,OE!, 

DEZ,SII,SIZ,SI3,PHI2,PHI3,PHI,PHZ,PH3 
/RADIAl IIII.>,VPI9,21,DETAI21,RR 
/COMAT/ Al25,25l,BI25,ZSI,RI251,N 
/REACZ/ KCI •• KPIA,KPIB,KC2.,KPZA,KP21,K2P,K3P.EAI,lAZ 
/LINEA/ AAI75,75l,BBI75,8l,D01751,U181 
/LALGB/ 514,4 I ,HI z• .4.1 ,R I I z•.4 I ,AL!7 I 
/EI,EN/ EVRI7SI,EVII75l,SRI7&,751,SI(75,751,S1Rt76,711, 

Sli!75,7SI 
/ANLYT/ AI175,75>,EX175,751,ET175,7SI,CCI7&1 
/REDLN/ ACI 75,75 I ,API 75,75 I ,QPI 75 l ,CI I 75,75 I ,C2!75,11, 

AC H 75,76 l 

EXTERNAL FN3 

C READ IN DATA AND CALCULATE CONSTANTS 

CALL SETUPS !OT,TMAX,OL,N,RR,EP,IFLA;,NFLAG,NP,Ifl 
l.H•OT•NP 

C CALCULATE THE DIMENSIONLESS PARAMETERS 

CALL DIMLES 

C CALCULATE CONSTANTS FOR THE RADIAL LUMPED NODEL 

CALL RADIAL 

C CALCULATE ZEROS OF THE ORTHQ;ONAL POLYNOMIAL AND SET UP AXIAL 
C COLLOCATION MATRICIES A AND 8. 

CALL COLLOC 

C SOLVE FOR THE STEADY STATE PROFILES 

CALL INTLSSIYS,U,IFLAG,NFLAG,L,UGS,PHI,N,EPI 

CALCULATE THE COEFFICIENTS FOR THE LINEARIZED REACTION RATES 

CALL LREACIYS,RLI,RLZI 
CALL ASETUPIYS,RLI,RL2l 

C SPECIFY THE PROFILE AT T•l 

r-•.o• 
CALL INSIMIY,YS,U,N,~FLAGl 
PRINT I 
CALL OUTCALCIU,Y,YSIN•6+4l,ALGI 
CALL OUTPUT!Y,U,T,L,UGS,PHI,.I 

C CALCULATE THE ANALYTIC CONSTANTS 

LL•• 
IN•• 

212 CALL REDUCEIN,INI 
CALL ANALYTIDT,N,INl 

C SOLVE THE &N O.D.£.'S FROM T TO T+DT 

z•• DO 2•3 I•I,N 
YDOn 1 >•ccc 11 
YDOTII+Nl•CCIN+ll 
DO 21!'3 J•I,N 
YOOTIN•II•VOOTIN+II+EXII+N,Jl•YI~I+EXII+N,J+Nl•Yt2*N+~) 

t•3 YOOTtl}•VOOTCl>•EKtl,J>*V(J)+EX<19J•N>•Vt2*M•J) 
T•T•DT 
DO 2•1 1•1. N 
V!Z"N•II•YDOTIN+Il 

Zll YIII•YDOTIIl 

C PRINT RESULTS AND CONTINUE IF T < TMAX 

IFILL.EO ••• AND. T.GE.DLl GO TO ~· 
CALL OUTRAIY,NI 
CALL OUTCALC!U,Y,YSIN*I+41,ALCl 
CALL OUTPUTIY,U,T,L,U;S,PHI,II 
IF!T .;E. TMAXI GO TO 4 •• 
C:O TO 211 
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C ADJUST YO. END OF IMPULSE 

.,.. LL•I 
DO 3.1 1•2,8 

3.1 Ullla!.D. 
Ull!•PH3 
PRINT I, IT 0 L/UC:Sl 
IN•2 
1:0 TO UZ 

C CALCULATE FINAL STEADY STATE 

••• 

1 
2 

HILL ,!Q. I ,Ofl, ~fLAG ,fQ, llliTOP 
PRINT I 
CALL NSESIIS•N,Y,EP•t.D-2.1 •••• ,FN3l 
CALL OVTCALCIU,Y,YSIN*&+4l,ALGl 
CALL OVTRAIV,Nl 
CALL OUTPUTIY,U, •. D.,L,UGS,PHI,Zl 
CALL ACTLSSIU,Y,EP,Nl 
~;~~ OUTPUT tY,U, •. O.~L•U~S,PH1,3l 

FORMAT I IHI l 
~~HATIIIIIIIII,ZX,'ACTUAL TIME OF IMPULSE END •',FI.4/////f/l 

SUIROUTINE ANALYT IDT,N,IIl 

C THIS SUBROUTINE CALCULATES THE CONSTANTS NECESSARY ,Ga TKE 
C ANALYTICAL SOLUTION. 

IMPLICIT REAL*8 IA-H,O-Zl 
DIMENSION INDI751,0175l 
COMMON /LINEA/ AA175,75l,l8175,8l,DDI7Sl,UI8l 

tEIGEN/ EVRI75l,EVI175l,SRI75,75l,SII75,75l,SIRI71,71l, 
SIII7S, 75l 

/ANLYT/ AII75,7Sl,EX175,75l,ET175,7Sl,CCI75l 
/RtDLN/ ACC 75, 7Sl .Ar ( 7S, 7$) ,QPI ?& > tCl ( 7&, 75) ,C2C'71.,1). 

AC1175, 751 

!FilM .EO. I l GO TO Uf 
IFIIN .EQ, 2> GO TO 311 

C CALCULATE THE EIGENPROPERTIES 

CALL ZEROMISR,75,7Sl 
CALL ZEROMISI,75,7Sl 
CALL ZEROVIEVR, 75l 
CALL ZEROVIEVI,75l 
CALL MATCPYIAP.AI,7S,7S,75,71,71,75l 
CALL EIGENPI2*N,7S,AI,EVR,EVI,SR,SI,INDl 

C CALCULATE S INVERSE AND A INVERSE 

CALL ZEROMIS!R,75,75l 
CALl ZEROM!SI1,75,75l 
CALL MATCPYIAP,A1,75,75,7S,75,75,75l 
DO 1•.11 I•I~N•l 

llJlJ SIRI!,I)•l.DI 
CALL ClNVSEISR.SI,$1R,SII,75,Z*Nl 
CALL BNOINVIAI,Z*N.ITESTl 

C CALCULATE EXPILAMBDA*DTl 

z•• DO Zll l•192*N 
CCIIl•DEXPIEVRill*DTl*DCOSIEVIIIl 0 DTl 

ZlJI Ql l l •DEXP I EVR I I l*DTl*DS INI EVIl I >•DT> 
DO ZlJ3 1•1,2*N 
DO ZlJ3 J•I,2*N 
STR•lJ.DlJ 
STl•lJ.DI 
00 ZlfZ K•l,Z*N 
STI•lJ. DB 
STZ•I.DI 
CALL CMULTICCIKl,OIKl,SIRIK,Jl,SIIIK,Jl,STl,STZl 

ZlJ2 CALL CMULTISRII,Kl,SIII,Kl,STI,ST2,STR,STil 
213 EXII,Jl•STR 

C CALCULATE ADDITIONAL CONSTANTS 

DO 214 1•1.2"N 
DO ZB4 J•I,2*N 
ETII,Jl•I.DlJ 
DO ZlJA K•I.Z*N 
ALP•rX(K,.l} 
IF!K .EO. JlALP•ALP-l.DlJ 

2lJ4 ET!I,Jl•ETII,Jl+AIIl,Kl*ALP 

31lJ DO 3lJ2 I•I,Z*N 
CCII l•lJ.OlJ 
DO 3lJZ J•I,Z*N 

JlJZ CC!l!•CC!Il•!T!I,~l*QPI~l 

~ETUIIN 
END 
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c 
C THIS SUB~OUTINE PE~FORMS THE PHYSICAL MODEL REDUCTION FOR 
C USE VITH THE ANALYTIC SOLUTION. 
c 

, .. 

IMPLICIT REAL"8 IA-H,O-Zl 
DIMENSION TliSS,SSl,T215.,5Sl 
COMMON /LINEA/ AA175,75l,88175,8!,00175l,UI8l 

/REDLN/ ACI75,75l,AP!75,7&l,QPI7Sl,CII75,75!,C2175,1), 
ACI 175, 75! 

IFIIN .EQ. Zl ;o TO z•• 
"l:•l*M 
H3•3*N 
N4•.t•N 
DO 1•11 I•l,N 
DOIII•J•l.N 
ACII.Jl•AAIN+I,N+Jl 
ACII,N•Jl•AAIN+I,N3+Jl 
AC I I ,NZ+J l•AAI N+I,NA+J l 
ACIN+I,Jl•AAIN3+1,N+Jl 
ACIN+I,N+Jl•AAIN3+1,N3+Jl 
ACIN+I,NZ•Jl•AAINJ+I,N~+Jl 
ACIN2•l.Jl•AAIN4•1,N+Jl 
AC<N2•1,N+Jl•AAIN~+I,N3+Jl 
ACfN1+1.N2+Jl•AAIH,+t.N,+J) 
Tl!l,Jl•AA!I,N+Jl 
T1 I I,N•J l•AA< I,N3+J l 
Tl I I,NZ+Jl•AA< I,N4+Jl 
Til N+l ,J l•AAI NZ+I, N+J l 
T1 IN+l,N+J l•AAINZ+I,N3+Jl 
T I I N•1, NZ+J l•AAI NZ+I, U+J) 
T2(l,.J)•AAtN•I.J) 
TZI I,N+J l•AAIN+I,NZ+Jl 
TZ I N+1 ,J l•AAI N3+1 ,J l 
TZIN+I,N+Jl•AAIN3+1,NZ+J) 
TZ!NZ+I,J l•AAIU+l,J l 
TZ I N2•1, N+J) •AAI U+l, N2+J l 
CALL MATCPVIT2,C1,5 •• 5/6,75,75,N3,N2l 
CALL BNOINVCAC,Nl.JTtST) 
CALL HATCPVIAC.ACI,75,75,75,75,N3,N3l 
CALL MATMULTIAC,C1,75,7S,7S,75,N3,N2,N3l 
CALL MATMULTIT1,AC,SS,SB,75,7S,N2,N3,N3l 
CALL MATMULTIAC,T2,75,7S,S •• S •• NZ,NZ,N3l 

DO 1•1 I•I.N 
OU 181 J*l,Pt 
API I,J l•AA! I,J l·TZI I,Jl 
APII,N+Jl•AA<I,NZ+Jl-T211,N+J) 
AP!N+I,Jl•AA!NZ+I,Jl•TZIN+I,Jl 
APIN+I,N+Jl•AA!N2+l,NZ+Jl·T21N+I,N+Jl 

~~~~~f,!ob!=·l> 
TZIN+I,Il•DDIN3+1l 
TZINZ+l ,1 l•DDIN4+1 l 
Tl I I, ll•DDI ll 
Tl!N+I,Il•DDIMZ+Il 
DO 1•2 J•l,l 
T2tl.ll•T2rt.ll+aRt••I.~l*UIJ) 

TZIN+l,ll•TZIN•l,ll+BBIN3+1,Jl*U1Jl 
TZINZ+I,Il•TZINZ+I,Il+IIIN~+I,Jl*UI~l 
T1 I I , I l •T Ill, I l +181 I, J l •u I J l 
TI!N+I,Il•TICN+I,Il+IICN2+1,Jl*UCJI 

CALL MATCPYITZ,C2,S.,S.,75,l,N3,Jl 
CALL HAiHULT(ACI,CZ.75,75,75.1,H3,1.H3) 
CALL MATMULTIAC,TZ,75,75,S/6,5S,NZ,I,N3l 
DO 1•3 I•I,NZ 
QP! I l •TI I I, I l -TZ I I, I l 

RETURN 
END 

SUBROUTINE OUTRAIY,Nl 
IMPLICIT REAL•B IA-H,O-ZI 
DIMENSION Yll •• l 
COMMON /REOLN/ ACI75,75l,APC75,7Sl,QPI75l,Cll75,75l,CZI71,11, 

.I.C1!7li. 76! 

NZ•Z*N 
N3•3"N 
N.4•4*M 
DO t•• l•I,N 
VI I+Nl•-CZI 1,1 l 
Vtl+N3l•-C:(H+J,1) 
VII+N4l•-CZINZ+I,ll 
DO 1 .. J•I,N 
YIN+Il•YIN+ll·CIII,Jl*YIJl•Clii,N+Jl*YINZ+J) 
YIN3+1>•YIM3+Il•CIIN+l,Jl*YIJl•CICM+I,M+Jl*YIM2+Jl t•• VUA+l >•YI N4•1 l•CII NZ•I,J I*YIJ) •CIIN2+ I, N+J l*Y! IIZ+J l 
IETUU 
£NO 
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C TMIS PROGRAM ~OELS A MOMISOTHERMAL, MONAOIAIATIC FIXED 1£0 REACTOR 
C VITH lOTH A COOLING ~ACKET AND A THERMAL WEll. THE ANALYSIS IS 
C PERFORMED FOR A METMAMATION OF CO SYSTEM. 

C THIS PRO;RAM PERFORM$ THE SIMULATIONS FOR THE REDUCED LINEAR MODEL 
C USIN~ THE ANALYTIC SOLUTION. THE ASSUMPTION OF QUASI SS FOR 
C CONCENTRATION IS USED FOR THE MODEL REDUCTION. 

C LINK TO MLIB,LLII,iLIB 

IMPLICIT REAL*B IA-H,O-Zl 
REAL*8 L,~T,MG,KW,KIP,~PIA,KPIB,KCI.,KPZA,KPZB.KCZ•.KZP,KJP 
DIMENSION VS I 1661 ,RLI I 15, 9l,RLZ I 15,9 J, VI 1••>, YDOTI 1••1 
COMMON fREACPf EPS,L,R.,RI 

fCATLSf CPS,PS,TC,DC 
tTHWEL/ CPT,PT,KT 
fGASPAf CP;,PTZ,PTR,M;,p;s,u;S,UM 
fHEATTf OHS;,OHTS,OHTG.B;S,BSG,BTS,ITC,I~.IWS 
/OPCONf SCH4,SCO,SCOZ,SHZ,SHZO,PT6,PT!,ST •• STV 
/REACI/ OHIA,DHIB,OHZA,DHZB,K.f,KIP 
fDIMLEf ALS,ALG.ALT.BES.BEG,GAS,GAC,CTS,CTC,D£1, 
/RADIAl 8f~-~~~P~i~z~~~i~~~~j~:~ 3 ,PHI,PHZ,PH3 

/COHAT/ A125,251,81ZS,2SJ,RI25l,N 
• /REACZf KCI6,KP1A,KPIB,KCZ6,KP2A,KP21,KZP,~3P,£Al,IA2 
• /LINEAl AA175,7Sl,88175,8l,ODI75l,UI8l 

fLAl~B/ Sl 4,4) ,HI 26 ,46l,R I I 26,4 l ,ALI7l 
fEIGENf EVR17Sl,EV1175J,SRI75,7SJ,SII75,75J,Sial71,75l, 

Sll I 75,75) 
/ANLYT/ AI175,7Sl,EX175,75J,ET176,75l,CCI76l 
/REDLN/ ACI75,7SJ,AP175,75l,QPI75l,C1175,75l,C2171,1l, 

ACII75,7SJ 

EXTERNAL FN3 

C READ IN DATA AMO CALCUL•T• CONSTANTS 

CALL SETUPS IDT,TMAX,DL,N,RR,EP,IFLAG,NFLAG,MP,IFl 
DT•OT•NP 

C CALCULATE THE DIMENSIONLESS PARAMETERS 

C CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL 

CALL RADIAL 

C CALCULATE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL 
C COLLOCATION ~TkiCI'S A AHO 8. 

CALL COLLOC 

C SOLVE FOR THE STEADY STATE PROFILES 

CALL INTLSSIYS,U,IFLAG,NFLAG,l,UGS,PHI,N,EPJ 

C CALCULATE THE COEFFICIENTS FOR THE LINEARIZED REACTION RATES 

CALL LREACIVS,RL!,RLZl 
CALL ASETUPIYS,RLI,RlZJ 

C SPECIFY THE PROFILE AT T•• 

T••.o• 
CALL INSIHIV,YS,U,N,JFLAGJ 
PltlNT I 
CALL OUTCALCIU,Y,YSIN*6+4l,ALGJ 
CALL OUTPVTIY,U,T,L,UGS,PHl,.l 

C CALCULATE THE ANALYTIC CONSTANTS 

LL•6 
IN•6 z•z CALL REDUCEIN.!Nl 
CALL ANALVTIDT,N,lNl 

C SOLVE THE SN O.O.E.'S FROM T TO T+DT 

z•g 00 263 1•1,3*N 
VOOTIIl•CCIIJ 
DO 2.1J3 J•1,3"N 

z•l VOOTIIl•VOOTIIl+EXII,Jl*YIJJ 
T•T•DT 
DO 261 1•1,3*N z•t VI ll•VOOTIIl 

C PRINT RESULTS AND CONTINUE IF T < TMAX 

lrtLL.EQ .•• AND. T.QE.OLl QO TO a.• 
CALL OUTRAIY,Nl 
CALL OUTCALCIU,Y,VSIN*'+4l,ALGl 
CALl OUTPUTIV,V,T,L,UGS,PHl,.l 
!FIT .GE. TMAXl CO TO 4 •• 
GO TO 2 .. 
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C ADJUST FOR END OF IMPULSE 

,.. Ll•l 
DO 3.1 1•2,1 

s•1 U!ll•I.D. 
Ulll•PH3 
PRI N1 2, IT•LJUCSI 
IN•2 
~:o TO z•2 

C CALCULATE FINAL STEADY STATE ... 

I 
2 

IFILL .EO. I .OR. JFLAI: ,£Q. IISTOP 
PRINT I 
CALL NSESII&*N,Y,EP*I.O•Z,I •• , •• FN31 
CALL OUTCALCIU,Y,YSIN*6+4l,ALGI 
CALL OUTRAIY,NI 
CALL OUTPUTIY,U, •. O.,L,UGS,PHI,2l 
CALl ACTLSS(U.Y,EP,") 
CALL OUTPUT IY,U ••• D •• L.UQS,PH1,3l 
STOP 

FORMAT I IHI l 
~~MATI////////,2X,'ACTUAL TIME OF IMPULSE END •',FI.&///////1 

SUI.OUTINE ~YT IDT,N,INl 

C THIS SUBROUTINE CALCULATES THE COWSTANTS NECESSAAY FOR THE 
C ANALYTICAL SOLUTION. 

IMPLICIT REAL*8 IA-H,O-Zl 
DIMENSION IND175l,QI76l 
COMMON /LINEA/ AAI75,75l,8817S,BI,DDI7SI,UIIl 

/EIGEN/ EVR!751,EVI1751,SRI75,7SI,SI17S,751,SIRI71,711 
$llt7S,76J 

• /ANLYT/ AI175,7SI,EX175,7Sl,ET175,7Sl,CCI751 
/REOLN/ AC! 75,75 I ,API 75,75 I ,QPI751 ,Cll15, 761 ,t2111,1 I, 

ACJ( 75,75 I 

IFI IN .EO. I l GO TO 2•• 
IFIIN .EQ. 21 GO TO 3.B 

C CALCULATE THE EIGENPROPERTIES 

CALL ZEROHISR,75,751 
CALL ZEROHI$!,75,751 
CALL ZEROVIEVR,7SI 
CALL ZEROVIEVI,75l 
CALL HATCPVIAP,AI,75,75,7~,76,75,7tl 
CALL £1;ENPI3*N,75,A!,EVR.EVI,SR,SI,INDI 

C CALCULATE S INVERSE AND A INVERSE 

CALL ZEROHISIR,75,751 
CALL 7rROHLS1!.75.751 
CALL HATCPV(AP,AI,76,75,7S,76,76.751 
00 IBB I•I,N*3 

1.. SIR(!,! 1•1.0. 
CALL CINVSEISR,SI,SIR,Sli,75,3*Nl 
CALL 8HDINVIAl,3*N,ITESTl 

C CALCULATE EMP!LAHIDA*DTI 

z•• DO Zlll l•J,3*N 
CCIII•OEXPIEVRIII*DTI*DCOSIEV!!II*DTI 

Zll QIII•OEXPIEVRIII*DTl*DSINIEVI!Il*DTl 
DO z•3 1•1.3*N 
DO 2B3 J•1,3*N 
lSTlt•ll. D• 
STI•I.OB 
DO zn K•I,3*N 
sn••· o• 
ST2•B.DI 
CALL CHULTICC!Kl,QIKl,SlRIK,Jl,SIIIK,JI,STI,STZl 

2•2 CALL CMUlTISR!I,Kl,Sl!I,Kl,STI,STZ,STR,STil 
z•J EX!I,Jl•STK 

C CALCULATE ADDITIONAL CONSTANTS 

DO z•4 1•1,3*N 
oo u• J•I.3*N 
£T! I.J I•B.Dll 
DO z•A K•1,3*N 
ALP•EM!K,J I 
IFIK .EQ. JIALP•ALP•J,Oll 

284 ET!I,Jl•ET!I,Jl+AIII,Kl*ALP 

31B DO 3ll2 1•1,3*N 
C:C< I l•ll.o• 
DO 312 J•1.3*N 

3.2 CCIIl•CCIIl+ETII,Jl*QPIJl 

UTUU 
END 
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SUIROUTINE REDUCEIN,INl 

C THIS SUBROUTINE ,ERFORMS THE PHYSICAL ~DEL lEDUCTION FOR 
C U~E WITH THE ANAlYTIC SOLUTION. 

c: 

IMPLICIT REAL"8 (A-H,O-Zl 
DIMENSION Tli56,Sil,T2151,51l 
COMMON /LINEA/ AAI75,7Sl,88175,8l,DDI7Sl,U18l 

IREOLN/ AC175,7Sl,AP!75.751,QP175l,Cll7&,7&l,CZI71,11, 
ACI!75,75l 

IFIIN .EO. 21 G:O TO 216 
HZ•Z•H 
N3•3*N 
N••4•N 
00 liB l•l,N 
00 1 (fB ._1• 1 , H 
ACI!,Jl•AAIN3+1,N3+Jl 
AC!l,N•Jl•AA(N3+l,N4+Jl 
ACIN+I,Jl•AAIN4•l,N3+Jl 
ACI N•l ,N+J l•AAI N4+1 ,U+J) 
T! I I , J l •AA I I, N3+J l 
Tlli,N+Jl•AAII,N4+J) 
Tl ( N+l.J )•M( N+l,Nl+J) 
Tl(N+l.N+J)•AA<N•I.N4+J) 
Tl!NZ•I,Jl•AAINZ+I,Nl+Jl 
Tl ( NZ+ I .N+J) •A.A( N2+1 ,N4+J > 
T2 I I , J ) •AA I N 3 +I , J l 
TZ! l,N+J l•AA!Nl+l ,N+Jl 
T211.N2+Jl•AAIN3+1,N2+Jl 
TZCN~t.J)•AA("•~J.J) 
TZIN+l ,N+Jl•AAIN4+1 ,N+Jl 

lll T21N•l,NZ+Jl•AAIN4+l,NZ+Jl 
CALL MATCPVITZ,Cl,S1,56.75,71,N2,N3l 
CALL BNOINVIAC,NZ,lTESTl 
CALL MATCPV!AC,ACI,7S,75,75,75,NZ,NZl 
CALL MATHULT!AC,C1,75,75,7S,7S,N2,N3,N2l 
CALL MATMULTITl,AC,56.56,75,75,NJ,NZ,N2l 
CALL MATMULTIAC,T2,75,75,51,51,N3,N3,N2l 

DO 1*1 l•l,Nl 
00 l.fl J•l,N3 

Ill APII,Jl•AA!I,Jl·TZ!I,Jl 

Zll DO liZ l•l.N 
TZI 1,1 l•DDIN3+1 l 
TZIN+l,ll•DDIN4•ll 
Tl I l.ll•DD!I l 
Tl IN+ I , 1 l •DO ( N+l l 
T!INZ•I,ll•ODINZ+Il 
DO Hl2 ,J•t ,9 
TZI 1,1 l•TZI 1.1 1+1111 MJ+l ,JI*U(J l 
T21N•l,ll•T21N+I,Il•BBIM4+I,Jl*UIJI 
T! I l • I l • T 1 I I ,! l +88 I I , J l * U I J ) 
Tl IN+!, I l•Tl IN• I, I l+BBI N•l ,Jl*UIJl 

t•z T!IMZ+I,li•Tl!NZ•I,ll+IBINZ+I,Jl*U!Jl 

CALL MA~CPV<T2.C2,S.,, •• 7&,1,N2,1) 
CALL MATMULTIACI,CZ,75,75,75.l.NZ.I,MZl 
CAL~ MATHULTIAC,TZ,75,75,$1,51,N3,l,MZl 
DO 113 1•1. N3 

113 QP!Il•T! I I. I l-TZII, I l 

RETURN 
£NO 

SUBROUTINE OUTRAIV,Ml 
IMPliCIT REAL*B IA-H,O-Zl 
DIMENSION Y!111l 

* COMMON t•EDLN/ :~li~s~~~jAP!?I,?Il,OPI?Il,CII7$,1Sl,CZI7S,Il, 

N2•2*N 
M3•3*N 
NA• .. •N 

. e?z!!:,!:~i~t.ll 
VII+M41•-C21M+I,II 
00 1•1 J•l ,N3 
YIN3+1l•YIN3•11-CIII,Jl*V!Jl 

11• YIN4+1l•YIM4+1l•CIIN+I,Jl*V!Jl 
RETU~N 
ENO 

Table A4-5 Continued 



INPUT DATA• 

REACTOR rARAMETERS 

EPS • 1.5711£+11 
L 1.3BBBE+I2 
Rl 1.1581£+11 
R1 1.1194£+11 
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CATALYST rARAMETERS 

CPS • 1.2511£+11 
PS I. 1141£+11 
TC • 1.5111£•13 

THERMAl VEll rARAMETERS 

CPT 
PT 
KT 

l.lZII£+11 
1.8JJ21E+II 
1.3911E-II 

HEAT TRANSFER PARAMETERS REACTOR rARAMETERS 

OHS<: • 
OHTS • 
OHT<: • 
Bl:S 
BSG 
BTS 
8TG 
PTZ 
PTR 

1.17 .. 21::+12 
1.1795£-11 
1.143&£+11 
I.&ISI£+S3 
1.1319E+S2 
S.7Jfi3E+Bl 
6.1 ZIS.IJ£•'1 
I.ZSSBE+BI 
I.&BII£+11 

PROGRAM CONDITIONS• 

TIME STEP • 1.11151 
MAXIMUM TIME • 5.1111 

DHIA • -I.U.U£+11 
DHI8 • -1.4835£+15 
DH2A • -1.2441£+11 
DH2B • 1.1176£+15 
Kl . 1.1111£+12 
KIP . 1.7524£-11 

DISTURBANCE LENCTH • 1119191.1111 
RADIAL COLLOCATION POINT • 1.5111 
NO. AXIAL COLLOC. POINTS 8 
ACCURACY OF CONVERGENCE • 1.111£-18 
INPUT FLAG • I 
NSES FLAG 1 
MAX VALUE OF DT • 1.1861 

STEADY STATE CONDITIONS• 

XCH4 • 
XCO 
XC02 • 
XH2 
XH20 • 
UG.IJ 

1.&111£+11 
I. 611111£-111 
1.15111£-.8'1 
1.19JJll'£+ll'll' 
1.261.8'£-11 
1.75118£+12 

AXIAL COLLOCATION POINTS• 

Tl • 1.5131£+13 
TW • 1.57311£+13 
PTI • 1.1.8'111£+12 
PTI l.lll'll'll'£+11 
MG 1.1593£+12 
CPG • 1.6572£+11 

I.IBIIE~III 1.1986£-11 1.1117£+11 I.Z312E+II 
1.4183£+11 1.5917£+11 1.7628£+11 1.8983£+11 
1.9811£+11 1.1111£+11 

Table A4-6 

KPIA • -1.29.UE+I2 
KP18 • 1.2634£•15 
KP2A • 1.4385£+11 
KP28 • -1.4615£+14 
K2 I .1471£+11 
K3 I. 1348£+11 
EAl • .iJ,ti!lb.8'E+f4 
EAZ ll.l89BE+IS 

Sample Output From Program NLN1IOD 



INITIAL ;uESSESt 

IOAS TEMPERATURE 

R • 11.11 II. • II.R 
1 .IIBII/111 1 • 1111111111 
I ,1!1161111 1 .1!1!111111 
1 .1111/IIIB I .BBIIS/1 
1.8/IBIIB 1 .BBiiiiiB 
1 .lilllli!lllil 1 .lil/6111111 
1 .lllillil/111 1 .lllllillilll 
1 .lllillil/111 I .IISIIIIII 
1 .1111111111 1 • lllilllllll 
1 .IIB/11611 1 .1111111111 
1 ,/1/1111111 I .1111111111 

\IELL TEMP. 

I .1111111111 
I .1111111111 
1 .1111161116 
1 • 1616161111 
I . 1111111611 
1 ./11/1/lfl/1 
l.!illii1Jli116 
1 • BIIIJBIJ 
1.111JIIBB 
1.1111111111 

STEADY STATE SOLUTION• 

II: AS TEMPERATURE 

II. • Rll R • RR 
1.16l1'1511 1.BBIIJB 
1 •. &"11635 I.JJ/16111 
1.112313 1 • .8'21116 
1 .114569 1 • .8'4-163 
t.llll272 1.857118 
1.117254 1 .B661JS 
1.117361 I ,116697 
1.117227 t.IJ6578 
1.8'7811 1.8'6365 
1.8'6!191 1 .11634 7 

\IELL TEMP, 

I .11118'1111 
I .JJJJ5A9 
1.8'2324 
I . .f458Z 
I .1163/19 
I .8'7288 
1. 1174.1JB 
1.87265 
1.1171193 
1.8'7.8'75 

INITIAL CONTROL VECTOR• 

Til • 
X C02• 
UM 

l.IUII 
•• 25118' 
1 .• 152 

UIOI • 
l<H20• 
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SOLID TEMPERATURE 

R • Itt II. • 11.11 II. • 11.11. 
1.11Bflllll t.llllfi!IB 1 .flflllflll 
1 .1111111111 1 • 1111111JI1 1 .IIIIIJIIB 
I.IIIIBBII 1 ,11/IS/111 1 .11/111111 
1 .lllil/61116 1 .lllllillillil 1.1illillillil/6 
1 .lllil/11111 1 • 111111Biil 1 .Biil/11111 
1 .1111111111 1 .lllllllilll 1 .fllllilll/1 
1 .llli1111111 1 . lli1111111 1 .llllli11i11i1 
I .lllilllllll I .lllil/11111 I .lllillllilll 
1 .1111111111 1 .llllli1111il I .lllllllilll 
l • Sll/11111 I .111111/IB 1 • Bllllllll 

CO CONC. C02 CONC. VELOCITY 

11.11&1611111111 11.11151lflllll 1.1116111111 
11.1161i11Jiilllll II .111511111111 1.1111199 
16 .116/61i11i11111 11.16151illl116 1.1111127 
II.BGII/1/IBII II .Ill 516111111 1.11'24311 
B • 1161611/IIIB 16 .lll5111116B 1 .114257 
B.IIG/1111111111111 11./115111111/111 1 .116289 
IJ.IIGIJIJIJIJII /I./1151JIIIIII I .118258 
II.BGIJIJiiiiJII 11.111511/IBII 1 .1198711 
B.B61JIIBIJII 11.111516BIIIJ 1.111867 
11.1161JIIBIIII 1.11151111111 1.11111 

SOLID TEMPERATURE 

R • Rl R • 11.11 II. • RR 
t.B.IJ1511 1.n111 1.8'11283 
l.BBUZ 1.11f18Z8 I.JJ1156 
1./11496 1.112626 1 .S:Z654 
I. 12958 1.1149711 I .1147/16 
I .ll.ui'S§ l.llll7:U I .11&21JIJ 
1 .114693 1.117731 1 .B7.8'AZ 
1.114757 1 .1178'2Z 1 .117/163 
1.8'4673 1,117662 I.B69.1J5 
1.8'4518 1.117449 1./166611 
I .. U5.1J5 1.8'7326 1.116377 

CO CONC. COZ CONC. VELOCITY 

8'.116111111111 1.115111111 1.1111111 
11.8'5!16588 II.IIISIIZII 1 • 111162 I 
II .8'573679 ••• 151151 1.8'2955 
11.11543335 ll • .f15Z437 l • .IJ6U4 
B • .IJ49H.IJII 8'.8'154779 1 .8'9995 
8'.J'A55J'38' ••• 156721 1.131196 
B.IIA!!BSJ' 8'.11159.8'25 1.15287 
.IJ • .IJ38948/I .IJ • .IJ161245 1.16875 
.8'.113711699 .IJ.I1613117 l. 17699 
.8'.11368712 11.11161421 1.17939 

~. .... 
1.3333 

Tl • 
l<H2 • 

l<CO • 1.1118' 
XCH4• 111.11111 

Table A4-6 Continued 

It • RI 
l.llllllflll 
1 ,/IBIIBB 
1.11118/1 
1 .!illil161111 
1.BIIIilfiB 
t .llflllllll 
1.fllilllllfl 
1 .1111111111 
1.111i11i1111 
l • 811111111 

II.. u 
Lnttl 
1 • .8'11U2 
1.1111868 
I.B15.1U 
I -1119&2 
1.8'2219 
1./IZZlB 
1.8'2167 
1.1128'114 
LBI97A 
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TIME • 
•••••• SEC lOA$ TEMI'EilATUilE SOLJD TEMI'EilATUilE 

It • It· It • RR It • Ill It • It· It • llR It • Ill 
1 •• 285lJ 1.62376 1.111623 1.63254 1.62226 1 ••• 613 
1 •• 6635 1.lJlJ61lJ 1.lJ.U2 1.lJB828 1 .61156 1.••u2 
l.lJ2313 1.1121116 1.111496 1.BZ626 I .lJ2654 1 ... 868 
I .lJ4569 l.lJ4163 1 .62958 l.lJ49711 1.114766 1 •• 1564 
t.AJ6272 1 • .8'67ll'8 1.B4.8'55 1.BH34 1.B62Bll' 1 .B1962 
I .lJ7254 1.116U5 1.114693 1.117731 I .1171142 1.112219 
1. lJ7361 I .B6697 1.lJ4757 1.117922 1.1171163 1.112218 
1.117227 I.S6578 1.114673 I .117662 1.1169.8'5 I • .8'2167 
!.1171111 1.116365 1.114518 1.117449 I .1166U 1 •• 21184 
1 .1171128 1 • .8'6377 1 • .8'4525 1 • .8'73711 1..8'6U7 1.111992 

IIELL TEMP. CO CONC. C02 CONC. VELOCITY 

1 • .8'349.8' .8' . .8'6 ..... .8'.1115.8'11 .. 1.11BBIIII 
1 ... 549 11 • .8'596589 ••• 1561211 11.98479 
1.112324 ll.lJ573679 ••• 151151 1 .11.8'76.8' 
l.lJ45BZ ••• 543331i ••• 152437 I .AJ4Z34 
1.8'63.8'9 .8'.1149471111 11.11154779 1.117639 
I .117288 11.11455.8'3.8' 11.11156721 1.1S7B8 
1 • .8'74118 •• 114118511 11 • .8'159.8'25 1. 128.8'6 
1 .8'7265 11 • .8'399488' 8'.8'16lJ245 !.lUll 
1 • .8'7.8'93 11.8'3711699 • • 111613117 1. 15173 
1 • .8'71 23 ••• 368712 .8' • .f16U21 1.15459 

TIME • S.U.CI'II SEC 

GAS TEMPERATURE SOLID TEMPERATURE 

R • R8' R • Rlt R • Ill R • Rll R • RR It • Ill 
1.113833 1.113619 l..f26116 t..f3838' l.lJ3696 1..1189 
I .113576 1.63837 I • .8'2883 1 •• 311411 1.8'4325 1 •• 1548 
1.113913 1.1141161 1 .1131119 I .113439 1 .114346 I .111514 
l.AJ4915 t.AJ45B7 t.nzn 1.65112 l.AJ4994 1.61614 
1 •• 6281 I .1157211 1.lJ41165 1 .8'6731 1.116199 1 • .8'1961 
1.117227 I .B657.8' 1 • .f4666 l • .f7714 1 • .f6999 l • .f22.f2 
I. 8'7325 I ,116555 l • .f4724 l.lJ7799 l..f7lJ19 1 • .8'2262 
I .1171911 I .116532 1 .. 14637 1.117641 I .lJ6855 1.62147 
I .1169711 1.116317 l • .fUU 1 • .f7422 1.11661lJ I • .fZII65 
t • .llli955 t • .II6Z99 1.lJU66 1 •• 731Z l.lJ63Z!I 1 •• 19115 

IIELL TEMP. CO CONC. C02 CONC. VELOCITY 

1 .113491 1.161.8'1.8'1 ••• 15.8'1111 1 .11/11/11 
1..8'1973 •.• 5953!1.f •• 11151'172 I • .8'1141 2 
I .12545 .f.IIS689.f3 ••• 15137.8' 1 • .fl461 
I .114625 •.• 536.8'98 .8'.111527911 1 • .8'34119 
I • .8'63.8'6 ••• 486592 ••• 155188 1 • .f6394 
1.117297 ll.lJUU33 ••• 157174 1.119344 
1 • .8'7411.8' ••• 4.8'3.8'22 ••• 159516 1.11454 
1.•nu JJ .JJ38JJ!iSB ••• I&JJ755 1.129U 
1 •• 7.8'83 ••• 361758 ••• 1618311 I .13779 
1.n.a3 ••• 359769 ••• 161945 l.U•I• 

Table A4-6 Continued 
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STEADY STATE SOLUT!Oih 

!;AS TEMPERATURE SOLID TEMPEII.ATUII.E 

II. • 11.1 II. • RR R • Rl II. • RS It • lUI. It • 11.1 
1 .13858 I .13651 1 .12631 1.13U9 1 .13746 I.IIU9 
I .. IU3.1Jl I • .IJ3991 l.ll'2866 1 •• 4&14 1 •• 41116 1 .• ls•• 
1 .8"5655 1 .s51•'J 1 .13658 1.16133 I .15762 1.11836 
1 • .9'7361 1 • .9'6714 1.BA764 I. 1789.& I. 17296 I. 1231'7 
I .S'8336 I .17595 1 .85398 1.19998 1 .S'B.S4 1.12546 
1.88652 1 • .9'7878 1 .15597 1 ,lJ9183 1 • .883.81 1.12618 
1 .182.84 I .17463 L85381 1.18693 1. 179.9'4 1.1ZU6 
I .11775'J 1 ,IJ71f63 1 .11511 a 1.18216 1 • .173&2 1 •• 23111> 
1 • .9'7375 1.86698 1.14145 1.17831 I .16956 1.12171 
1 • .9'7341 1.16656 1. 84721 1.117784 I..IJ6693 1.12166 

YELL TEMP. CO CONC. C02 CONC. VELOC lTV 

1.13491 ••• 61111111 ••• l!;lJ.IJlJlJ t •••••• 
1.1.112 8.1595285 1 • .1151176 1.U531 
1.85688 8.8567781 1.115H24 1.82493 
I .117397 1.153.1768 . f.8153B43 1.1'5451 
I .18387 1.1476671 1.1155718 1.18211 
1.18692 1.1433679 1.1151911 1.1162& 
1.18261 1.1389593 1.1161331 I.IZZ38 
1.118.11 1.1367156 l.lllilU& 1.13487 
1.17484 1 • .9'348715 1.1162672 1.UI15 
1 .74!\' •.• 'UI;771 •. IIU,71t7 I.U:'l:'l' 

Table A4-6 Continued 
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SUBROUTINE DIMLES 

THIS SUBROUTINE CALCULATES THE DIMENSIONLESS PARAMETERS 

IMPLICIT REAL*& <A-H,O-Zl 
REAL*& L,KT,MG,K6,KBP,KC20,KP2A,KP2B,K!P,K2P 
COMMON /REACP/ EPS.L,RB,Rl 

/CATLS/ CPS,PS,TC,OC 
/THWEL/ CPT,PT,KT 
t;ASPA/ CPG,PTz,PTR,MG,PGS,U;S,VM 
/HEATT/ OHSG,OHTS,OHTG,BGS,8SG,8TS,BTG,B~.BVS 
/OPCON/ SCHI,SCO,SC02,SH2,SHZO,PTB,PTI,STB,STW 
/REACI/ DHIA.OHIB,DH2A.OH2B.KB,KBP 
/OIMLF/ ALS.ALG.ALT,BES.BEG.GAS.GAG.GTS,;T~.OEl, 

OE2,Sil,SIZ.SI3,PH12,PH13,PH1,PHZ,PH3 
/REAC2/ EXPA,EXPB.EXPC,KC2B,KP2A,KP28,KIP,K2P,EAI,EA2 

DATA PI /3.1415926S40B/ 

VT•Pt•Ft.f**Z*L 
VB•P1*L*tkl**2·~••*2} 
u•L/DC 
AR•RI/OC 
AO•L/P.I 
EMI•I.BO.f-EPS 
ALS•TC/tPS*CPS*EMI*L*UQSJ 
ALG•I.DB/tPTZ*EPS*azl 
ALT•KT/{PT*CPT*L*U~$) 
8ES•ALS*l**2/R1**2 
BEG•AO/PTRIEPS/AR 
GAS•OHSG*l/(VB*PS*CPS*EMl*UGSl 
GAG•OHSG*L/\VB*PGS*CPG*EPS*UGSJ 
GTS•OHTS*L/\VT*PT*CPT*VGSJ 
QTG•OHTG*L/tVT*PT*CPT*UGSl 
OEl•~LwDH10•<PTS•SCO>••(£XPA•EXPB>•KeP/CUGS•C~S•ST•> 
DEZ•-L•OH2B*SCO*•Z*KB/tUGS*CPS*STBl 
SII•MG*PS*EMI*\PTB*SCOl**\EXPA+EXPBl*K.fP*L/(£PS*UGS*PGS*SCOI 
SIZ•MG*PS*EMI*SCO*K.f*l/lEPS•u;s•PCOSJ 
513•512 
PHI2•DHIA*STB/OHIB 
PHI3•0H2A*STB/OH28 
8\114•BTG 
BVS•BTS 
PHI•RB/RI 
PHZ•PTI /PT.f 
PH3•STW/STB 
RETURN 
END 

SUBROUTINE INITIAL (Y,U,IFLAG) 

C THIS ROUTINE INITIA,IZES THE SYSTEM 

IMPLICIT REAL*B IA-H,O·Z> 
REAl*8 MCO 
DIMENSION Y!l.f.fi,U181 
COMMON /OPCON/ SCH.,SCO,SCOZ,SMZ,SMZO,PTB,PTI,STB,STW 

IGASPA/ CPG,PTZ,PTR,MQ,P;S,VGS,UM 
/COHAT/ At26,25),.(26,2,),R(Z,),H 

DO l.flf 1•2,4 
3.fB Ul I l•l.DB 

UtI l •STVISU 
UISI•SC02/SCO 
Ul6l•SH20/SCO 
U(7J•SHZ/SCO 
U! B l•SCHHSCO 
UM•l. DB 
IF!IFLAG .EQ. IJCOO TO 2BB 

READ<S.ll TCO,TS,TT,Xl,X2,VEL 
DO !BB l•l,N 
Yt3•N+l)•XlfSCO 
Y! 4*N+I l•X2/SCO 
Y!S*N•I>•VEL*PTB!IIPTI·PTBI*R(I+li+PT.f!/UGS 
Vt!J•TS/SU 
Y!N+IJ•TCO/STll' 
Y12*N•Il•TT/STB 

1BB CONTINUE 
Y!6•N•l>•VEL*PTI/PT1/UGS 
Yt6*N+Z>•TS/ST.0' 
VI 6*N+3 J•TS/STB 
V!6°N+4J•TG/STB 
YI6*N+Sl•TIO/STB 
Yl6*N•6l•XIISCO 
RETURN 

2.fB DO 2.fl l•I,N 
READ\5,1) V\N+ll,Ylll,YIZ*N+Il.XI.X2,YIS*N+I) 
E•tSCO+SC02-Xl-XZJ/II.DB·2.0.f*Xl-2.DB*X2J 
D•tSCOZ-X2+2.0.0'*1SCO•xz • Xl*SC02JI/II.O.f•2.0B*XI•Z.DB*X2) 
YI3*N•I>•<SCO-E•Dl/SCO 
Vt~•N+l)•(SC02-0l/SCO 

Ul CONTINUE 
READIS,II Vl6*N•21,YI6*N+3l,Y16*M+4l,Y16*N+S),YI6*N+Il 

UTURN 
FORMAT!9F8.2J 
UD 

Table A4-7 

library Program UJB 
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SuBROUTINE SETUPS IOT.,TMAX.Ol,N,RR,£P,IFLAG,NFLAe,NP,IFI 

t THIS SUBROUTINE READS IN THE INPUT DATA AND MAKES PREliMINARY 
C CAlCULATIONS. 

IMPLICIT REAL•G IA-H,0-%1 
REAL•a L,KT,MG.KI,K.P,KP2A,KP28,KCZI,KIP,KZP,K2,K3 
COMMON /REACP/ EPS.L,RB,RI 

/CATLS/ CPS,PS,TC,DC 
/THWEl/ CPT.PT,KT 
/~ASPA/ CPG.PTZ.PTR,MG,PGS.UGS,VM 
/HEATT/ OHSG,OHTS,OHTG,BGS.BSG.8TS,BTG,8WG,8WS 
/OPCON/ SCH4,SC0.3COt,SHZ,SH20.PT6.PTltSTM,STW 
IREACI/ DHIA,OHIB,DH2A,DH28.KB.KBP 
!REAC2/ EXPA.EXP8,EXPC,KC2B.KP2A.KP28,KIP,KZP,EAI,EAZ 

DATA RG.RGP,Pl /82.BS~~OB,I.987DB,3.1~1592654DB/ 

READIS,II EPS,l,RB.RI 
REAO!S,Il CPS,PS,TC,OC 
REAOIS,II CPI,Pl,n 
READIS,ll PTZ.PTR,UGS 
READIS,ll OHSG.OHTS,OHT~,8GS,8S •• BTS,ITG 
lEAOIS.Il SCH~,SCO,SC02,$H2,SH20,PT.,PT!,ST.,STW 
lEAOIS,Il OHIA,OHI8,0H2A,DH2B,KB,KBP 
READIS.Il EXPA,EXPB,EXPC,KP2A,KP2B,K2,K3,£AI,EA2 
REAOtS,Z> DT#,THA~.RR.D~oTS,NtHP,N£P,JflAC,JF,HFLAe 

CALL CPCALCISH2,SCO,SCOZ,SHZO,SCH4,ST •• MG,CPG,CPG!,CPG21 
PGS•MG•PTI/RG/ST• 
KIP•KZ•PTB 0 SCO 
UP•K3°PTB*SCO 
KCU•I.DB 
EP•lJJ.D.If••"EP 
KBP•KBP•Ts••!-.31 

PRINT 3,EPS.CPS,CPT,L.PS,PT,RB.TC,KT,Rl,OHSG,OMIA,EXPA, 
OHTS,DH!B.EXPB,OHTG,OHZA,EXPC,BGS.OHZS.KPZA,BSG,KB, 
KPZ8.BTS,KBP,KZ,BTG,K3.PTZ,EAI,PTR,EA2 

PRINT •• OTB,TMAX,OL,RR.TS,N,EP.IFLAG.NFLAG,OTB•~.OB••ttF-11 
PRINT S,SCHA,STB4~CO,S1W,S~UZ,PI.,SHZ,PTJ,SHZO,"W,UW$,C,G 

OTJJ•OTB•VGS/L 
TMAX•TMAX*UGS/L 
DL•OL•VGS/L 
RR•ll.OB-RB/Rli*RR+R./RI 
EAI•EAI/RGP 
EAZ•EA21RGP 

RETURN 
I FORMATI908.21 
2 FORMATISF8.2,/618l 
3 FORMATllHI,////,3X,'INPVT DATAr',///9X,'REACTOR PARAMETERS',eX, 

'CATALYST PARAMETERS',6X.'THERMAL WELL PARAMETERS',!/ 
9X, 'EPS •' ,EIZ.~.9X. 'CPS •' ,EI2.~.9X,'CPT •' ,£12.4/ 
9X,'L •',El2.4,9X,'PS •',EIZ.4,9X,'PT •',E12.4,/ 
9X,'RB •',E12.4,9X,'TC •',EI2.4,9X,'KT •',EIZ.4/ 
9X, 'RI •',EIZ.H////6X, 
'HEAT TRANSFER PARAMETERS',I9X, 'REACTOR PARAMETERS'// 
9X, 'OHSG •' ,EIZ.~.9X, 'OHIA •' ,EI2.~,9X, 'EXPA •' ,£12.4,/ 
'X, 'OHTS •' ,£:12 • .& ,IX, "OWl I •' ,£12. 4. 9)(, '£)(PJJ: •', £12. of. .I 
9X, 'OHTG •',EI2.4.9X,'OH2A •',EI2.4,9X, 'EXPC •' ,E!2.~,/ 
9X, '&GS •' .EIZ. 4, 9X, 'OHZB •' ,EI2. 4, 9X, 'KP2A •' ,EIZ. 4,/ 
9X, 'BSG •',EIZ.~.9X,'K.f •',El2.4,9X, 'KPZB •',El2.~,/ 
9X,'8TS •',E1Z.4,9X,'k6P •',El2.4,9X,'K2 •',E12 .• ,/ 
9X,'BTG •',El2.4,36X,'K3 •',Et2 •• / 
9X,'PTZ •',El2.~,36X,'EAI •',ElZ.V 
!x,•PTR •".E1Z .• t36X-"EAZ •".E1Z •• ) 

4 fORMATl////,3X,'PROGRAM CONOITIONS•'//,9X. 
'TIME STEP •',F8.4,/9X,'MAXIMUM TIME •',F8.4,/9X, 
'DISTURBANCE LENGTH •',Fl5.4,19X, 
'RADIAL COLLOCATION POINT •',F8.4,/9X, 
'START TIME lHRSl •',FIS.4,/9X, 
'NO. AXIAL COLLOC. POINTS •',I~,/9X, 
'ACCURACY OF CONVERGENCE •',ElB.J,/~X,'INPUT FLA~ •',14 
/9X,'NSES FLAG •',!4,/9X,'MAX VALUE OF DT •',F8.4) 

S FORMATI////,3X,'STEADY STATE CONDITIONSo',///,9X,'XCH4 •', 

uo 

El2. 4, 9X, 'T.f •' ,E!Z.4, /9X, 'XCO •' ,El2. 4, 9X, 'TW •', 
E12.4,/9X,'XC02 •',E12.4,9X,'PTB •',EI2.4./9X,'XH2 •', 
El2.4,9X, 'PTl •' .EJ2: • .4,/9X, 'XHZO •',El2:.A,9X, 'HG •' 
£12.4,/!X,'UG. •'.ElZ.4,,X,'CP; •',EIZ.4l 
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SUIROUTINE OUTPUT IY,U,T,L,u;S,PHI,""l 

C THIS ROUTINE OUTPUTS THE CALCULATED RESULTS. 

s 
• 7 
I 

IMPLICIT REAL"I IA-H,O-ZI 
1lE,t,L•8 l 
DIMENSION Yltffl,UIII 
COMMON /COMAT/ AIZS,251,8125,25l,RtZSI.N 

/OPCON/ SCHA,SCO,SC02,SHZ,SHZO,PTIJ,PTI,STIJ,S~ 
/RADIAl \It llJl ,\/PI 9,2 I ,OETAt 2 l ,RR 

DATA RG /82.f544Df/ 

lr<MM ,£Q, ll P~INT I 
IFtMM .EQ. 21 PRINT 6 
IFtMM .EQ. 31 PRINT 8 
PHZ•PTI /PTf 
N2•2*N 
M3•3*N 
N••••N 
"5•5""" 
M6•6*N 
NP2•N+2 
TA•T*L/UIOS 
IFtMM .EQ. fiPRINT 7,TA 

CALL ENOPTS ITTIJ,VIlJ,YlNPl,YZf,YZNPI,TTNP!,Y,UGfl 

PRINT Z 
PR !NT 3, T1UYI N6+Al, TTIJ, Z, PHIl, Yt N6+Al, TR tYt N&+A I, TTf, 2 .1. DlJl, 

TR tYt N6+ZI, TTIJ, !,PHIl, Vt N6+2 I, TRt YtN6+2 l, TTf,!, t .Of> 
DO If! I•I,N 
PRINT 3, TR tVt N+l l, Vt NZ+I l .z ,PHIl, Vt N+l), TRIYt N+l l, Vt N2+1 I ,2, 

I.DlJl .TRtYt ll,VtNZ•l ),!,PHIl ,Vt I l ,TRtYt I l ,YtNZ+I l ,I, l.Dfl 
PRINT 3,TR!YtN6+5l,TTNPI.Z.PHll,Y!N6+51,TRtVtN6+5l,TTNP!,Z,I.DlJI 

,TR!VtN6+3l,TTNP!,I,PHli,YtN6+3l,TRtYtN6+31,TTNP!,I,I.OlJI 

PRINT 
PRINT 5, TTf,Yif"SCO,Y2f"SCO,UGB 
00 IIJZ l•I,N 
T~l•l Og-,_n«•c~~O*tU(£)-V{N3+l)+U(Sl-V(N,+1))) 
PRINT 5,Y!NZ+li,YIN3+11*SCO/THI.YIN4+11•SCO/THI,YIN5+11 
THl•I.OlJ·2.0lJ*lSCO•IUI41·YINPI+Ut51·YZNPlll 
PRINT S,TTNPI,YINPt•SCO/THI,VZNPI"SCO/THI,YtN6+tl 
RETURN ' 

FORHATIIHI,//ZX,'INITIAL GUESSES• ',Ill 
FORHAT!I&X,'QAS TiMPiRATURE',2SX, 

'SOLID TEMPERATURE',//8X,'R • R.',7X,'R • RR',7X, 
'R • R I ' , 9X, 'R • 11.6' , 7X, 'R • RR' , 7X, 'II. • II. I ' I 

FORM,t,TISX,3tF9.5,4Xl,2X,31F9.5,4Xll 
FORMAT<tl9X.'IIElL TEMP.',SX,'CO CONC,',5X,'C02 CONC.',AX, 

'VELOCITY' ll 
FORMAT( l9X. F9.5 ,SX ,Ftf. 7 ,3X ,F 16.7, 3X ,F9.5,3X ,F9,S I 
FORHAT(//Z><,•srtADV STATE: SOLVTION1 '•//) 
FORMAT!//,2X,'TIME •',fll.4,' SEC'/) 
FORMAT!//,2X,'ACTUAL STEADY STATE SOLUTION• ',//1 
END 

SU8ROUTI"E ~ADIAL 

C THIS SUBROUTINE CALCULATES THE CONSTANTS FOR THE RADIALLY LUMPED 
C MODEL. 

IMPLICIT REAL•& lA-H,O-Zl 
COMMON /DIMLE/ ALS,AL,,ALT,BES.BEG,~AS,GA,,GTS,GT!O,D£1, 

OEZ,Sll,SlZ,SI3,PHlZ,PHI3,PHl,PHZ.PH3 
/II.AOIAI \It 11Jl,IIP<9,2l ,DETAI21 .RR 
/HEATT/ OHSG,OHTS,OHT;,BGS,BSG,BTS,8T;.8WG,8\IS 

vc,••.o• 
\It IBl•lJ.DB 
l•l 
S!•BTS 
SZ•B\IS 
S3•tOAS 
S.•BES 
SS•!OTS 

DtTAlll•lPMI•PH1°*2*lRR-l.D.l+RR••z•ti.O··PHII·II.II.)•SI 0 $2 
+ tZ.DlJ*{PHI·RRl+RR*"2-PHl*"21•St 
+ 1-I.DIJ•RR""2•2.Df"IPHI·PHI*RR1l*S2+Z.Of•PHI·Z.Df 

liP l t, I I• t PHI*Sl·l. D•l • I S2+2 .OBI •($2+1. 0f)•IPHI .. 2*S 1-2. o••PMI I 
11Pt2,ll•St•tS2•1.Dfi"RR**2·SI"RR*IS2+2.Dfl 
IIP13,ll•tS2*RR*IPHI*"2"S1·2.D••PHil•S2*1PHl*SI·I.OlJl•RR""2) 
WP(4,I••S2•(PHt**2*S1-2.D.*PHl>•Sl*(S2•2.0.) 
IIPIS,ll•St•tS2•2.0Sl-St•SZ*RR••z 
IIP16,1l•tSI"S2•RR*"2-S2"1PHl**2"SI•2.06"PHill 
IIP17,11•Sl•ISZ+I.D·l-SZ*IPHI"Sl-I.Ofl 
11Pt8.1l•RR"SI*$2•SI*IS2+l.DBl 
\IPI9,11•l$2•tPHI*SI·I.DBl·RR•SI*SZl 
Ill 1•1"3-3 l• 14. OIJ*IIPI 7, 1 l+IIP 14, l l /RR l"U/OETAl l l-S3 
W( l-tl '*3•3 )•\., OB'"''w'P (8 • 1 }+\JP ( '$ ~ t > /AR )•$<4/0ETA( l l 
lll3+1"3·3l•t4.01J"IIP!9,!1+\IPI6.1l/RRI*S4/DETACII 
II( Hl·l ) •SS• I liP ( I , I l +liP! 4, l l •P HI +liP 17, I l •p H tnz l /DETAt I I 
111,•111 9l+S5*!\IPI 2,1 )+1/PIS,I l*PHl•IIPl8,1 l*PHI"*21/DETAI I l-SS 
II ( llJ l •Ill IJ!'l +SS• I liP l 3, I l +1/P t & , I I *PH 1•1/P! 9, I I *PH I ""2 liD ETA( I l 
IF!I .EO. ZIRETURN 
1•2 
S I•BTG 
SZ•BIIG 
S3•GAG 
S4•8EG 
SS•GTG 
;o TO lfB 
ENO 
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SUBROUTINE rMI !Y,Vl 

C THIS SUBROUTINE DEFINES THE ALGEIRAIC EQUATIONS FOR USE IV NSESl 

I"PL!CIT REAL*B !A-H,O-ll 
DIMENSION Y!l.&'.fi,V<IJ 
COMMON /COMAT/ A!ZS,25J,II2S,ZSI,~I251,N 

"'2•N+2 
N2•N•2 
trt3•N•3 
fUi•H*4 
N5•N*5 

/OIMLE/ ALS,AL;.ALT,BES.BEG.GAS,GAG,;TS,GT;,DE!, 
OEZ.Sil.SIZ.Sll,PHIZ,PH!3,PHI,PH2,PH3 

/RADIAl IJ!l.lll ,lo'PI9, 2 l ,OETA!2 l .RR 
/HEATTI OHS;.OHTS.OHT;,BGS.BSG,BTS.&T;,B~,8VS 

"'"""*' TAU•PHZ·!.O.f 

CALL EN OPTS !TTl, VII, YlH,I, YU, V2NP I, TnPI, Y ,UUI 

00 In I•l.H 
l¥1•1+1 
~T•TAU•~tlPl>•l.,l 

CALL REAC tYIN3•1J,VIN4+!1,V!IJ,YIN+IJ,PT,RIP,R2PJ 
Sl•SUM<V,.f,8,VIN6+ZI,V!H6+3J,I,HI 
SZ•SUM(Y,N,A,Y!N6•4l,YIN6•5J,l,NI 
SJ•SUM<Y,N,B,VIN&•41,V!H6+5J,I,NJ 
S4•SUM!Y,H3,A,VI.f,VINPI,I,Hl 
S&•SUM!V,N4,A,YZI,VZHPJ,l,Nl 
S8•SUM! V ,N2 ,B,l.IO.f, TTNP l,I,Nl 

VCJ> • ALS*Sl • Wlll*V<JJ • W(2l*Y<N2+J) + GAS*Y(N+l) 
+ DEI*RJP*II.O.f+PH!Z*Y!IJJ + OEZ*RZ,*II.O.f•PH13*Yilll 
+ W(3l*PK3 

VCJ+N) • -VtNS+I)*$2 • tALQ*$3 + W(.}*Y<N•I> + WtS)*YlNZ+J) 
+ GAG*Y!IJ + \1<6l*PH31/PT*YIN•IJ 

V41+H2l ALT*U + 'olt7l*YIIl + IIC81"Y!N•ll + 1119l*YIN2+1J 
\/( lii*PH3 

V!I•N3l • -V!NS•Il*S4 + SIZ*V(H•Il*kZPIPT- SII*V!N+IJ*k!P/PT 
Vli+N4l • •YINS+IJ*S6 - SI3*Y!N•I J*R2PIPT 

ll.f CONTINUE 

V!H6+2l•SUMIV,.f,A.YIN6•2l,YIN6+3),.f,Nl+IGS*!VIN6+•1-YIN6+21) 
V!N6+3J•SUMIY,.f,A,YIN6•2l,YIN6•3l,N•l,Nl+8;S*!YIN6+3J•YIN6+1JI 
VIN6+4l•SU~!Y,N,A.Y!N6•4l,VIN6•SJ,I,Nl+BS'*(Y!N6•21-YIN6+4l) 

•ti.O.f-J.OI/YlN6+4Jl/Al~ 
V!N6•5l•SUM!Y,N,A.YIN6+(J,VIN6•5J,N+I,Nl+ISG*IYIN6+51·YIN6+3ll 
pt.•ph2 

CAll REACIYINPI,YZNPI,YIN6+31,Y!N6+5l,PT,RIP,RZPI 
VIH6•6J••VIN6•ll*SUM(V,N3,A,YII,YINPI,N+I,NI 

+SI2*V!N6+SI*RZP/PT - Sll*Y!H6•SI*kiP/'T 

DO Ill K•I.N 
ll.f VINS+Kl•YIN+KJ*SU"IY,H5,A,UG.f,VIN6+1J,K,NJ•YIH5+KI*SUM!Y,N,A, 

Y("6+,),Y("6~,t,K,~~~Y!H5•K>•Yt~•K>•TAU/fTAU~RfK•ll+l.0.) 

V!H6+ll•VIN6•51*SUMlV,N5,A,UGI,Y!N6+1 >.~•I,Nl•V!N&+IJ"SU~!Y,N,A 
, VI N6•4 J. YIH6+51. N+ I,N l•Y( N6•1 I*YIH6•5 J*TAU/ (TAU+I,O.f) 

RETURN 
END 

SUBROUTINE FNZIKK,Y,VI 

C THIS SUB~OUTINE DEFINES THE AL;EBRAIC EQUATIONS FOR USE BY NSES2 

IMPLICIT ~EAL"8 !A·H,O-Zl 
DIMENSION Y!ll.fl 
COMMON /AlGEB/ Al!6.fl,A214l 

/COMAT/ Al25.25l,BIZ5,25>,R<25J,N,I8 
/DIMlE/ ALS,AlG,ALT,BES.BEG.~AS,,A,,GTS,GT;,OEI, 

DE2.Sll.SlZ,Sl3,PHIZ.PH13,PHI,PH2,PHJ 
/RADIAl \l!l.fJ.\/Pt9,Zl,OETAIZI,RR 
/HEATTI UH~~,OHTS,OHTG.IGS,I$G,ITS.ITQ.8WG,8W$ 

NP2•H+2 
N2•N*Z 
trt3•N*3 
"4•N*' 
NS•S•N 
fii6•N*6 
TAU•PH2-l.DI 
CALL EHOPTS tTTI,Ylf,VINPI,YZI,YZN'l·TT"Pl,Y,UG.fl 
V•/6,01 
IF IKK .GT. N51~0 TO Z.f.f 
If IKK .;T. IUJ>;O TO 111 
I' !KK .~T. N3lCO Tn 1211 
IF IKK .GT. N2l~O TO 13/6 
IF !KK .GT. N>;o TO IU 

I•KK 
I Pl•l+l 
PT•TAU*RI!Pll+l,O.f 
CALL REAC tVtN3~t).YtN,+l).V(J).VCM•l),PT.~1P.l2'> 
SI•SUMIY,I.B,V!N6•21,VIH6•31.1,NI 
V• AL.S•Sl • Wll>*Vtl) + \/t2J*Y<N2+1) • (i;AS*VOf+J) 

• + OE!*RIP*II.D.f+PHIZ*Yilll + OEZ*RZP*II.O.f+PH!3*YIIJJ 
tt + Wt3)*ftH3 

RETURN 
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!U I•KK•N 
IPI•l+l 
PT•TAU•R!IP!l+!.Df 
S2•SUMIY,N,A,YIN6+4l,YIN6+5l,I,Nl 
S3•SUMIV,N,B,YIN6+4l,YIN6+5l,I.Nl 
V• -YINS+ll*SZ + IALG*SJ + Wl4l*YIN+Il + W15l"YINZ+Il 

+ ;A,*Yill + Wl6l"PHJI/PT"YIN+Il 
I F'TUIN 

131 I •KK•N2 
S8•SUMtY ,N2 .B.I.fOI, TTNPI, I, Nl 
V• ALT*SB + W171*YIIl + W181*YIN+Il + W19l"YIN2+ll 

+ WI lfl*PHJ 
RETURN 

121 I•KK•N3 
IPI•l+l 
PT•TAU*RIIPil+l.Of 
CALL REAC IVIN3•Jl,VIN4+Jl,YIIl,YIN+Il,PT,RIP,RZPl 
S4•SUMIY,NI,A,Ylf,YINP!.I,Nl 
V• •YIN5+ll"S4 + SIZ*YIN+!J•R2P/PT • SII*YIN+ll*RIP/PT 
llETUilN 

lllJ l•KK•U 
IPI•I+l 
PT•TAU*RIIP!l•l.OlJ 
CALL REAC IYIN3+ll,YIN4+1l,Yill,YIN+!l,,T,RIP,l2Pl 
S6•SUMIV,N4,A,Y2f,VZNP!,l,Nl 
RETURN 

ZflJ K•KK•IIS 
KPI•K+l 
!FIK .LE. N+ll GO TO Iff 
L•K·N·l 
IF IL .EQ. ll V•SUMIY.f.A.YIN6+Zl.YIN6+3),f,Nl+B~S*IYIII6+4l 

-YIN6+2ll 
IF IL .Ea. Zl V•SUMIY,f,A,VIN6•Zl,YIN6+3l,N+l,Nl+B'S"IYIII6+3l 

-VIN6+Sll 
IF (L .Ea. 3l V•SUMIY,N,A,VIN6•4l,VIN6+Sl,lJ,Nl+BSG*IYIN6+Zl 

·YIN6+411-Il.Df-I.Df/VIN6+4ll/AL; 
IF IL .Ea. 4l V•SUMIV,N,A,VIN6+4l,VIN6+SI,N+l,Nl+BS;•!YIN6+5l 

-VlN6+3)) 
RETURN 

Iff IF IK .Ea. N+ll V•YINS+Kl"VIN6+5l*TAU/ITAU+l.Dfl+VIN6+SJ• 
SUMIY,NS,A,UGf,VIN6+1l,K,Nl·YINS+Kl* 
SUMIV,N,A,VIN6+4l,YIN6+5l,K,Nl 

IF IK .NE. N•l l V•YINS•Kl*YIN•KI*TAU/IRIKPI l*TAU+l.Dfl+YIN+KI• 
SUH(V,NS,A,UQS,V<HG•1J,K,H)-V(H5+K)* 
SUMIY,N,A,YIN6+4l,YIN6+Sl,K,Nl 

RETURN 
END 

SUBROUTINE FN3 IY,Vl 

IMPLICIT REAL*S IA-H,O-Zl 
DIMENSION Vllf.IP,VCil 
COMMON /LINEA/ AAI7S,75l,BBI7S,Bl,ODI75l,UI8l 

/LAL<:SI SC 4,4 l ,HI Zf ,Ul ,R l IZI,4 l ,ALI 7l 
/COMAT/ ACZS,ZSl,BIZS,ZSl,RIZSl,N 

DO 18. l•l.N•ti 
VI I 1•00! I l 
DO Ill J•l,N"5 

Ill Vlll•VIIl+AAII,Jl•Y!Jl 
00 lfZ J•l,S 

112 Vll>•VIll+BBII.Jl•U!Jl 
1•1 CONTINUE 

RETURN 
END 
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~URROUTIN£ LREAC!YS.RLI.RLZI 

C THIS $UBROUTIN£ CALCULATES TME COEFF!C!EWTS FOR TNt 
C LINEARIZED RATES. 

IMPLICIT REAL*8 CA•H,O-ll 
REAL*8 KPZA,KPZB,KCZB.KIP,K2P,KPZ 
OlMENStO,. Dltftr;,ql,tl'1'tt§.q).VStl••> 
COMMON /OPCON/ SCH~.SCO.SCOZ,SHZ.SHZO,PTJ.PTI.STJ,STV 

/~EACZ/ EXPA.EXPB,EXPC.~CZI.KP2A,KP28,KIP,KZP,EAI,EAZ 
/COMAT/ AC25,25l,8125,2SI,RC251.N 
/LINEAl AAI 75,75 I .89175,8 I ,DOC 75 I ,Ul 81 

DATA fi,FZ /J.8301,J.I70B/ 

DO 1611 f .. l,K 
YI•YSI3°N+ll 
V2•VS14"N+Il 
TS•YSC I) 
T'•YSIN+I I 
PT•CPTJ/PTJ•I.OBI*R!l+\l+\,DJ 

"ti•$i.•TS•T$ 
KPZ•OEXPCKP2A+KP2B/T$/STJI 
THI•SCO*IUI41+UCSI-YI•Y21 
THZ•SCO*CUCSI-VZI 
TH3•1.01-2.0B*THI 
VH2•1SHZ-J.OI*THI-TMZI/SCO 
VHZO•ISHZO•THI•THZI/SCO 
YCH••!SCH4+THll/SCO 
PA•Pi•TH3 
AAA•l.DI+KIP*PT"Yl+KZP*PT*YHZ 

RLII!,II•OEXP!-EAI/STJ/TSI"PT**CEXPA+EXPBI*YHZ**EXPS*Yl**EXPA 
tAAA•*EXPC 

RLlll.Zl•RLICI.Il*EAI/TT 
RL1ti.3)•RLlCJ~l)*(J•EXPB/YHZ+EXPAtYl-Ex'c•,r•{~l,+J•~zPJrAAA> 
RLICI,~I•RLICI,II*C4*EXPB/VH2•4*EXPC*K2P*PTIAAAl 
RLJ!I,Sl•RLIII,Il*C-l*EXP8/VHZ+3*EXPC•~zP•PT/AAAl 
RLJII,6l•RLI!l,li*C·A*EXPB/VH2•A*EXPC*KZP*PT/AAAI 
RLI I I. 7l•B. DB 
RLICI,Bl•RLICI,II*CEXP8/YH2·£XPC*K2P*PT/AAAl 
R lt ( t • g) ·•. o• 
AM•F 1 +f:'2•PA*PT.f 
CC•AAA*OEXP I -EAZISU/TS I!TH3/TH3 
DOD•J.og•vz•~CZB*Yl/KPZ 
£E•4.og•VZ+Z.OI*KC21*Vl/KP2 
RL2CI,li•IYI*YHI-KCZI/KPZ*VI*YH201*CC 
8BB•\2.Dg•rz•~TM•PiJAAA•4.DS!TM,>*RL2(!.l)*~CO 
RLZII,Zl•RLZII,Il*EA2/TT-KC2B*Yl*VH20*KPZ8*CC/KP2/TT 
RL211,3l•BBB•CC*IDOO·KCZI*YHZO/KPZl 
RLZII,Al•BBB•CC*CEE+VH2l 
RlZII,Sl••BBB-CC*OOO 
RLZII,6l•·BBB·CC*EE 
Rl211,71•·CC*KCZB*YI/KP2 
RLZ(l.I>•YZ•tC 
Rl211,91•1.101 

Ill CONTINUE 

II.ETUIIN 
EMO 
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IUI~OUTINE .SETU,!Y,lLI,lL%1 

C TMIS SUBROUTINE SETS UP THE STATE MATRIX 'A', CONTROL MATRIX 'I' AND 'D'. 

IMPLICIT REAL*8 IA-H,O-ZI 
llEAL•e MG 
DIMENSION VI l.l'.e'l ,RL 11 15,9 l ,RLZI l S, 9), F 121, Z.l'l ,QIC, 2.1', 2.1') ,P!Ul 
COMMON /LINEA/ AAI75,75l,BBI75,8l,00!7Sl,U!Bl 

/LAL;S/ SI4,41.HI2.1',4.1'1,RI!Z.I',41,AL!71 
/OIHLE/ ALS,AL~.ALT,BES,BEG,GAS,;A~.GTS,GTG,OEl, 

DEZ,Sil.SIZ,SJ3,PHIZ,PHI3,PH1,PHZ,PH3 
/RADIAl Ill llJI,\oiP!9,2l,DETAIZI,RR 
/COMA'f/ AIZ~.Z~I,81Z5,Z51,RIZ5l,N 
/GASPA/ CPG,PTZ,PTR.HG,PGS,UGS,VH 
/OPCON/ SCH4.SCO,SC02,SHZ,SHZO,PTIJ,PTl,STIJ,STII 
/HEATT/ OHSG,OHTS,OHTG,BGS,8SG,8TS,8TG,811;,8\IS 

NPI•N+I 
NPZ•N+Z 
HZ•H*Z 
N3•N*3 
N4•N*4 
NS•N•S 
H6•N*6 
TAU•PHZ·I.DIJ 
SCOZB•SC021SCO 
SCHH•SCH4/SCO 
SHZB•SH2/SCO 
SHZOB•SHZO/SCO 
CALL CPCALCISHZ,SCO,SCOZ,SHZO,SCH4,STJ,M;,CPG,CPGI,CPGZI 

C CALCULATE THE S MATRIX 

Ml 1,1 I•BGS-AI 1,1 l 
MII,ZI•·Ail,NPZI 
AAI !,3l•·8GS 
AAil,4l•lJ.DlJ 
AAIZ,Il••AIHPZ,Il 
AAIZ,ZI•-AINPZ,HP21·BGS 
MCZ,3)•1.DI 
MIZ,4 l•BGS 
AAIJ,Il•·BSG 
AA13,2l•.I'.DIJ 
AA(3,3l•I.DIJ/ALG/YIN6+41""2+8SG•AII,Il 
AAI3,4l•·At I,NPZl 
AA!4,1 l•.I'.D.I' 
AAI4,ZI•DSG 
AA14,3l•·A!NP2,ll 
AAI4,4l•·AINP2,NP2l-8SG 
CALL BNOINV IAA,4,1TESTl 
CALL HATCPV IAA,S,75,75,4,4,4,4l 

C CALCULATE THE F AND H MATRICES, ALONG WITH MATRIX Q 

DO 2.1'1J l•l,NPI 
Ul PI I l•TAU"RI 1+1 l+t,l)• 

ALL•TAU/P!NPll"YIN6+1l+SUH<V,NS,A,UGIJ,Y!N6+1l,NPl,Nl 

DO lflJ J•I,N 
JPI•J+l 

=~==:~::::::}:~=:::=:~::::::~:::3=:: 
S3•SI3,3l 0 AII,JPil+S(3.4)•A(NPZ,JPll 
S~•SI4,3l•A<l,JPI)+SI~,Il*AINP2,JP1l 
DO 1.1'1 l•l,N 
lPI•I•l 
HII.Jl•ISI*AIIPI.ll+SZ*A!J,I.NP2ll•VtNS+Il 
HI!, N+J l •I AI IP I,JP I l+S3*AI IP I ,I l+U 0 AI lP 1 ,NP2 l l*YINS+l! 
Ql I,I,Jl•ALG/PI I l 0 III!PI,l l*Sl+IIIP1,NP2>*S2l 
QIZ,l,Jl•·AI !P1,1 l*Sl•A( lPI,NPZl 0 SZ 
Ql 3, l , J l •ALI:/P I I l • I 8 I I PI ,JP I l •B I I PI, I l 0 $3+8 I l PI, NPZ l *S4l 
Ql 4, l , J l •·All PI • JP 1 l ·AI I P 1 , I l *S3·A< I PI , HPZ l *$4 

Ill AAil.Jl•YIN+ll*AIIPI,JPil 
4AtMPt.J>•VfN6+S)•A(NP2.J,l) 
AAIJ,Jl•AAIJ,Jl+TAU/P!Jl*YIN+Jl•SUHIY,N,A,VIN6+4l,YIN6+5l,J,Nl 
H IJ, N+J l •H I J, N+J l -TAU/PI J) *VI NS+J !·SUM! Y, NS ,A, UG.I', VI N6+ 1) ,J, Nl 
HINP I,J l•ISI•AI NPZ ,I l•SZ*AI NPZ ,NPZ l l"YI N6+ I l·ALL"SZ 
HINPl,N+Jl•IAINP2,JP1l+S3*AINPZ,Il+S4*AINP2,NPZll 0 YIN6+1l•ALL*S4 
AAIJ,NP1l•YIN+Jl•AIJPl,NPZl 

11• CONTINUE 
AA<NPl,NPl>•V(HG+S)•(AtNPZ,N,2>•TAU/P(NP1))-SUH(V,H.A,V("S+4), 

YIN6•5l ,NPI ,Nl 

CALL 8NDINV IAA,NPI,ITESTI 
CALL HATCPY IAA,F,75,75,Z.I',2.,NPI,NPll 
CALL HATMULT(F,H,2 •• 2 •• Z.,4.,NP1,N2,NP1l 
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C CAlCUlATE THE I MATRIX 

ST•IYIN6+4l-I.D.8'l/AL;/VIM6+4l 
DO 11.8' 1•1, N 
I P 1., I +1 
S T l .. VI N $ • I ) • 'A ( I P 1 • \ > •$ ( 3 , 3) •A ( I P l • MP 2) •s ( .. , 1) ) 
R I I I , 1 l • • Y I N5 •I l *SUM I Y. N ,A, VI N6+4 l, Yl N6+5 l, l , N) 

+VIN+Il*SUMIV,N5,A,UG.8',VIN6+ll,I,Nl+TAU/P!Il* 
YINS+ll*YIN+ll+STI*ST 

Rll 1,2>•-AI !Pl.! l*VIN+I l-STI*ST 
RIII,Jl•-STI•ST 
Rlll,4l•STI/ALG/YIN6+4l 

116 CONTINUE 
STI•YIN6+1l*IAINPZ.ll 0 SI3,3l+AINPZ,NPZl"SI4,3ll-ALl*SI4,3) 
Rl<NPl,l>•-Y<N6+1J*SUMtY.N.A,Y<N6+,),Y{H6+5),NPl,N)+V(N6+5)• 

SUHIY,N5,A,UG.8',VIN6+ll,NP1,Nl+TAU/PINP1l*YIN6+ll 0 

VI N6+5 l •ST1°ST 
RIINPI.2l•-AINP2.1l*VIN6+5l-STI*ST 
R11NPI.3l•-ST1•ST 
Ri\~P1,41•STlfALG/V(N0+.) 

CAI.L MATHULTIF,Rl,Z.IJ,Z6,2.8',4,NP1,4,NP1l 

C FINAI.LV SET UP THE STATE MATRIX 'A'. 

CALl. ZEROMIAA, 75,751 
CALL ZEROMIBB,7S,Bl 
CALL ZEROVIDD,l~J 
AB•I2.D.8'•VIN6+4ll/ALG/YIN6+4l 

DO 25.8' l•l,N 
I l• I+ 1 
STT••AB•ISI3,3l*Aill,ll+SI4,3l*Aill,NPZll 
ST l•A I 11 , 1 l -A I NP2, I l •AI 11, NP 2 l I A I NPZ, NP2 l 
ST2•STl•SC02B 
ST3•.8'. DB 
DO 199 K•I,N 
STT•STT+QIZ,I.Kl*VIKl+QI4,l,kl*VIN+Kl 
ST1•STI•IAII1,K•ll-A1li.NPZl"AINP2,K+Il/AINP2,NPZll"YIN3+kl 
ST2•STZ+IA1li,K+ll-AII1,NP2l•AINPZ,K+ll/AINPZ,NP2ll*VIN4+Kl t•• ST3•ST3+Qil.l.Kl*V(Kl+QIJ,I,Kl"V(H+Kl 

DO Ul J•I,N 
Jl•J+l 
AA\ I,J>•A~S*I8( li,JI l+BI ll,ll*ISI 1,1 l 0 AI I ,JI )+$1 1,2l*AINP2,JI ll 

+81li,NP2l*l$(2,1l*AII,Jll+SI2,Zl*AINPZ,Jilll 
AAC I ,J•Nl•A~S*I8( II, I l*l$1 1,3l*AI I,Jl >•SI I, A l*AINP2 ,JIll 

•8CI1~NPZJ*<St2.3l*A(l,Jl>•S<Z~4>*A(NP2,J1JJ) 
AA I N+l, J l •Q I 1 , I , J l •v I N+l l +QI 2, I, J l •v I HS•I l •H I I , J l •STT 
AAI N+! ,N+J l•QI J ,I ,J l*VIN•l )+QI 4, I,J l*VI NS+I l+HI l ,N•J l*STT 
AAIN2+1,N2+Jl•ALT*IBII1,Jil-BII1,NPZl*AINPZ,Jil/AINP2,NPZll 
AAIN3•I.Jl•-HII,Jl*STI 
AACN3+l,N+J>•-H(I,J+N)•ST1 
AAI N3•1, NJ+J l •-VI NS+I )• IAI II,Jl I-AI NPZ ,J I l*AI 11 ,NPZ l /AI NPZ, NPZl) 
AAlN4+l,JJ••Hti.J)*STZ 
AAIN4+I,N+Jl•-HII,N+Jl*ST2 
AAIN4+I,N4+Jl•AAIN3+1,NJ+J) 

2.8'1 CONTI HUE 

S1•1.0.8'+PHIZ*Yill 
S2•l.DB+PHI3*VIll 
S3 •B Ill • I l •s I 1 • 3 J +8 I II,"' Z l •$ I Z, J l 
S4•8111,1l*SI3,31•BII1,NP21*SI4,Jl 
SS•AIII,ll*S(3,3l+A(I1.NP2l*SI4,31 
S6•VIN+ll/PII l 
AAI I, I l•AAI I,l !+Ill 1 l+OEI*Ikll I I,2l*SI+PHI2*RLlll, 1 l l+DEZ* 

IRL211,2l*SZ+PH13*RL21l,lll 
AAI l,N+I l•AAII,N•I l+QAS 
AAI I,NZ+I l•lll2l 
AA1l,N3+ll•DE1*RLIII,3>*SI+DEZ*RI.211,3l*S2 
AAI1,N4•Il•DEI"RL11!,4l*Sl+DEZ•RLZI!,4l*SZ 
AAIN+I,Il•AAIN+I,Il+GAG•$6 
AAIN+I,N+Il•AAIN+I,N+ll+ST3+(($(3,31*81li,Il+SI4,3l*SIII,NP2ll 

*AB*ALG+Il16l*PH3•GAG*YIIl+ll1Sl*VIN2•Il•2.0••Ill4l*YIN+lll/PIIl 
AAIN+I.HZ+Il•ll15l*S6 
AAINZ+I,I !•Ill 71 
AAIN2+l,N+Il•WI8l 
AAI N2• I, NZ+I) •AAI NZ•I, NZ+l l +Ill 9 l 
AA I N3+1 , I l •AA I Nl+ I • I l +IS I Z*RL 2 I I, 2 l •S II*U 1l I, 2 l l *S6 
AAI NJ •l , N <I l •AA I N3 +I , H+l l +IS I2*RLZ I I , 1 l -S II •RL 1 I I, I l l /PI I) 
AAINJ•I,N3+ll•AAIN3•l.N3+1l+ISI2*RI.ZII,3l-SII*RL111,3li*S6 
Ul N3+l ,NHII•!SI2*Rl2! l. 4l-Sli*RI.1 { I.4 l l*$6 
AAI N4+I ,I l •AAI N4+I, I l -S IJ"IUZI I ,2 l*$6 
AAI Nhi,N•I l•M! U+I,N+I l-SI3*RLZI 1,1 l,l I l 
AAIN~•I,N3+ll•-SI3*~LZII,3l*S6 
AAIN4+I,N4+ll•AAIN4+l,N4+Il-SI3*RL21!,4)•$6 
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IBCI,Il••ST*ALS"$3 
IB! I ,Zl•U! I, I l 
88!!,3l•ALS*S3/ALG/YCN6+4J 
DO 31611 J•4,8 
BBCI.Jl•DEI*RLICI,J+ll*SI+OEZ*RLZ!I,J+ll*SZ 
98{ N3+ I ,V }•( SI:Z:.,.RlZt I ,\1+ 1 > ··Sll ~1\L 1 (I ,V+l) ).,..$6 

3.11 BBCN4+l,Jl•·SI3*RLZ<I.J•ll*S6 
BBCN+I,Il•-VCN+Il*ST3·CV!4l*Y!N+Il+VC5l*Y!NI+Il•GAQ*V!II+VC&l* 

PH3•<AB•STI*ALG*S4l*S6+ST*YCN5+ll"S5•RI!I,3l*STT 
BB!N•l.Zl•R!Cl.21*STT·ST*S6*AL~*S4•ST•YCN5•li*S5 
B8CN+l,31•CS4*S6·Y<NS+II*SS/ALGI/Y!N6+41+RI!l,4l*STT 
BB<N2•!.3J•ALT*CBC!1,11•8(11,NPZI*ACNP2,1J/ACNPZ,NPZII 
BB~NJ+l.lJ•-Rltl.:JJ•~tl 

88CN3+1,Zl•·R!CI,21*STI 
BB<N3+1,3J•·RICI,4l*STI 
BB!N3+1,4l•B8CN3+1,4J-Y!NS+II*(ACI!,II-A!NP2,11*A!Il,NPZJ/ 

A<NPZ.NPill 
881 N4+1,1 l•·R I< I, 3l*ST2 
88! N4•1, 2) •·R I (I, Z l *ST2 
88!N4+1.31•·~1<!,4l*STZ 
88!N4+1,5J•BBCN4+1,SI·YCN5+1l*CACII,ll•ACNPZ,Il*A!II,NP2l/ 

AINP2,NP2l I 

ALIII•!•CPGI*M;*ST.+!.77570•3J*ST.+&.775l/MG/CPG 
AL(2l•CP~I•ST./CP~ 
AL13l•SCO*IST11*!.4Z430-3l-.1750111/MG/CPG 
Al!41•SCO*ISTI6*!3.441630-31•l.Z76Z60161/MG/CPG 
Al!51•SCO*ISTII*!6.39430-31+4,4250161/MG/CPG 
AL!61•SCO*!STI6*!,163430-31·.155016J/MG/CPG 
AL!7l•SCO*<STII*!11.65Z50·31·1.57420111/MG/CPG 

$T4•Rll{I.z>•Vtil+RLlfl.3>•V(H3+ll•RLl(l,,>•Y(M,•l>•RL1(1~1> 

+RLl!1,61*SCOZB+RLl!l,71*SH20B+RL1CI,81*SHZB•RLlll,,: 
*SCH.S 

ST5•RLZ!l,ZI*VIII•RLZI!,31*Y!N3+ll+RL211,4l*Y!N4•li+RLZ1l,51 
+RL2!l,61*SCOZB•RL211,7l*SHZOB•RL211,81•SH28 

DDt I l•DEI*Sl*IRLI I I ,I l·SH I·OE I*RLI I 1,1 l*PHI2*V! I I 
+OE2*SI*!RL21l,ll-STSI·OEZ*RL21l,ll*PHI3*YIIJ+ST•ALS*S3 
+ALllJ•t8<I,l> 

DOIN+Il•STT*!RIIl,ll·VINS+III+ST•tAL;•s&*S4·SS*Y!NS+Ill 
+AL!ll*BBIN+I,IJ 

DDINZ+IJ•S.DS 
DDINJ+IJ•<VINS•II-RIII,Ill*STI+Sil*S6*ST4·SI2"S6•ST5+ 

•AL!II*BB!N3+1,11 
OD<H4+li•IV(NS•II·RIII,lli*STZ+SI3*S6*STS+AL!ll*BBIN4+1,1) 

2516 CONTINUE 

DO 3516 I•I,HS 
DO 3516 J•3,8 

35• BB<l,Jl•BB!I,Jl+ALIJ·ll*BBII,II 
()O •1111 I•I.N 
BB!1,ll•V13l 
8B!N+!,II•V16l*YIN+Il/PIII 
BBINZ+l,ll•VIl.l 
IB!N3+1, 1 1• •• 016 

••• sa<N4•I,tl••.o• 

ltETUitN 
END 
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SUI~O~!ME ACTl$$(U,V.E,,.l 

C THIS SUBROUTINE CALCULATES THE FINAL STEADY STAT£ 

IMPLICIT RElL"B !A-H.O·Zl 
REAL 0 8 HG.KCZB,KPZA.KP2B.KlP,KZP 
DIMENSION U18l,Y125J,VIlBBJ 
COMMON /GASPA/ CPG,PTZ,PTR,~,PQS,UeS,UM 

/OPCON/ SCH4,SCO,SCOZ,SH2,SH20,PTI,PT!,STB,STV 
/REACZ/ EXPA.EXPB.EXPC,KCZB,KPZA,KPZB,KlP,KZP,EAI,EAt 

EXTERNAL FNl 

ST•HG 
VI IBJ•STV 
ST'W'•U( 1 >•ST6 
UGS•U!Zl"UGS 
ST.IJ•V13l 0 STB 
SCO•UI 'l 0 SCO 
SC02•Ut5l"SCO 
SH20•Ut6J 0 SCO 
SH2•U!?J•sco 
scH••uteJ•sco 
CALL CPCALCtSH2,SCO,SC02,SH20,SCH4,STB,H;,cpG,CP;I,CP;zJ 
PGS•PGS'MGISTIUC3J 
KJP•KlP 0 UI4l 
1<2P•K2P•U{41 

DO !U 1•1.8 
VI l J•UI l l 

IBB UIIJ•I.DB 
U I I J •STII /STJ 
UISJ•SCOZ/SCO 
Ut6J•SH2C/SCO 
Ut7J•SHZ/SCO 
U I 8 l •SCHVSCO 
Vl9l•UM 
UH•l.OB 
CALL DIHLES 
CALL RADIAL 

CALL NSES116°N+5,Y,EP,1 •• ,g,FNll 

DO lBI 1•1,8 
1Bl VI I l•Vt I J 

UH•VI9J 
DO 112 1•1. N 
VI I J•YI I l"Ut3J 
Y(N•I )•VtM•I>*U(3l 
V(2*N•J )•VC:t•N•!)•Ufl) 
V<3*N+J)•V<l•N+t)•UC4) 
V(4•N•l)•V(4•N•ll*U(4) 

1•2 YI5"N•ll•VI5"N+ll 0 UI2l 
VO.i'*N+1l•V<6*N+l >•UtZ> 
YI6•N•Z)•Vt6•N•t>•Ut3> 
Vt6•N+J)•V<6*M+3)•Ut3> 
V(G•N•~)•V(6*N+4>*U(3) 

VI6*N•SJ•Vt6*H•5l"Ut3J 
ST•Ht; 
ST\l•V( lBJ 
UCS•UGS/UtZl 
STJ•STB/U( 3l 
SCO•SCO/UI41 
$COZ•$COIU<5l 
SH20•SCO/Ut 5J 
SHZ•SCO/Ut7l 
SCH4•SCOIU18l 
CALL CPC4LCt$H2,SCO,SCOt,SMZO,SCHI,ST •• MC.C,C,C'Gt,C,G21 
P'S•P;S•"(i!ST 0 Ut3l 
KlP•KlPIUC•l 
KZP•KZP/Ul"J 
CALL DIHLES 
CALL -ADIAL 
RETURN 
UD 
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SU&~OUTINE INSIMIY,YS,U,N,~FLA;) 

C THIS SUBROUTINE INITIALIZES THE SIMULATION. 

IMPLICIT REAL*& IA•H,O-Zl 
REAL•& HC,MGB 
DIMENSION UtB>,VtJBBl,YS(IBBl 
COMMON /CASPA/ CPC,PTZ,PTR,MC,PGS.UGS,UM 

/OPCON/ SCH4,SCO,SCOt,SH2.SHZO,PT.,PT1.3T.,STW 
/LALCB/ St~,4l,Ht2B,4Bl,Rit2B,4>,ALI7l 

llEAOtS,!l JFLAG 
IFIJFLAG .EO. I >CALL INITIALIY,U,Bl 
JFtJFLAC .EO. llRETURN 
DO IBB I•I,S"N 

lBB Ytll•YSIII 

READ 15,2> UCB,TB,XCO,XC02,XH20,XH2,XCH4,TV 

UtI >•TV/STB 
UIZI•UGB/UCS 
Ut3l•TB/STB 
U t 'l •XCO/SCO 
Ut5>•XCOZ/SCO 
UI&>•XHZO/SCO 
Ut7l•XHZISCO 
Ut8l•XCHHSCO 
UM•ALtll+ALIZl*U13l+Alt3)•Ut4l+ALI4)*U(5l+ALISl*Ut6l+AL16) 

*UC7)+Alf7l•U!9l 
PRINT 3, !UtI> ,1•1,8> ,UM 
~ETURN 

1 FORMATtl2> 
Z FORMATI9F8.21 
3 FORMATI/1/,ZX,'INITIAL CONTROL VECTORo',//SX,'TV •',F8.4,1X, 

'UGB •',F8.4,SX,'TB •',F8.4,5X,'XCO •',F8.4,5X,/5X, 
•)((';02•'. Fl. 4, SX. 'XW20•' ,Fa. 4, SX, 'XH2 • •. ~8. 4, SX. 'XCM4••. 
F8.~/5X,'UM •',F8.4> 

END 

SUBROUTINE OUTCALC!U,Y,VS,ALG) 

C THIS SUBROUTINE CALCULATES THE VELOCITIES AND ENOPT TEMPEilATURES 

IMPLICIT REAL*& IA·H,Q-Z> 
REAL•a M; 
DIMENSION YI1BB>,SAI4l,Ut8> 
COMMON /LALWB/ S< 4. 4) .H( Z6.4•> .Rl ( Z6,4) ,ALt'tl 

/COMAT/ AIZS.ZSI ,BtZ5,Z5> ,RtZ5l ,N 
t;ASPA/ CP;,PTZ,PTR,MG,P;s,u;S,UM 

NP2•N+2 
MS•N*S 
N6l•N*6+1 
CALL ENDPTS (TTB,Yl.,YlNPl,YZ.,YZMPl,TTNPl,Y.UV.) 
DO IBB I•I,N+I 
VI NS+I ) •R Ill ; 1 I +RIll , Zl*U~B+R I I I , 3 > *UH+R I! I, 4> *U t 3 l 
DO ll!l J•l.N 

IB1 YCNS+ll•Y!NS+I)+Htl,Jl*YtJl+Hil,J+Nl*Y(N+J) 
IB6 CONTINUE 

CALL ZEROVt$A,4l 
DO In J•I,N 
JI•J+I 
SA< I >•SAtll+A!I,J1l*YI~) 
SAtZl•SAIZl+AtNPZ,Jil*Y<Jl 
SAt3)•$A13l•AII,Jil*YtN+Jl 

1•z SA14)•SA<~l•ACNP~.~1)*V(H+J} 
ST•IYS·I.OBl/ALG/YS 
SAt3l•ST-ST•UM-ST•u;B•UI3l/AL;/YS+SAI3l 

DO IB3 1•1,4 
Y!N61+1 >•B.Ol! 
DO U3 J•l. ~ 

l.J Y< nti 1•1 >•Yt N61•l )•S( 1 ,V >*SAC.,) 

RETURN 
END 

Table A4-7 Continued 
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SUI~OUTINE CPCALC!SH2,SCO,SC02,SH20,SCH4,ST.,MG.CPG,CPGI,CPG2l 

C THIS SUBROUTINE CALC$ THE HEAT CAPACITY 

IMPLICIT R£AL*8<A~H.O•Zl 
REAL*S M~ 
SNZ•l.DB·SH2·SCO·SC02·SH20-SCH4 
MG•SCH4*16.B43DB+SC0*28.1114DB+SC02*44.1.98DI+SH2*2 •• 16DI 

+SH20*!8.B154DB•SN2*28.1!3401 
CP~I•!SH2*.810·3•SN2*.77570·3+SC0*1.20-3+SC02*4.Zl60·3 

~SH20•?.l?0-3+SCH•*12.42B20-3}/HC 

cP;2•<SH2•6.&2og•sH2*6.77So••sco•s.&o••scoz•e • .stzso• 
+SH20*11.20B+SCH4*S.ZII801l/MG 

CPG•CP;t•STI+CPGZ 
RETURN 
END 

SUBROUTINE ENDPTS <TTI,Yl.,Y1NPl,YZI,Y2NP!,TTNP1,Y,UGil 

C THIS ROUTINE CALCULATES THE ENDPOINT CONDITIONS. 

IMPLICIT REAL*8 <A·H,O-Zl 
DIMENSION V\ l8'JI'l 
COMMON /COMAT/ A!25,25l,8(25,25l,R!25l,N 

ll !NEA/ AA! 75.75 l .UI75, 8l. 00! 75 l ,U! 8l 
/D!MLE/ ALS,ALG,ALT,BES,BEG,GAS,;AG,GTS,GTG,OE!, 

D£2,SI!,SI2,Sl3,PH!2,PHI3,PHI,PHZ,PH3 

NP2•N+2 
NZ•Z•N 
N3•3*N 
N.(•.t•N 
UGB•UCZ>•Y{N•6•4J/Ut3> 
V11•U!4l 
V28'•U!Sl 
VlNP1•VtN•6+6) 
Y2NPl•·A!NP2,1l/A!NP2,NPZl*U!5l 
TTNPI•B.OI 
TTI•U!Jl 

00 liB I•I,N 
I P 1•1 • l 
V2NPl•V2NPI•AtNP2.1Pll/AtNP2.NPZl*Y!N4+1l 
TTHP!•TTNP!+A!HP2.1Pil*Y!N2+ll 

1•1 CONTI HUE 
TTNPl•-ITTNPI+AINPZ,Il*TTBl/A{NP2,NP2l 

RETURN 
END 

FUNCTION SUM!Y,NN.AA,XI,XZ,I,Nl 
IMPLICIT REAL*8 !A-H,O-Zl 
DIMENSION Yl liB) ,AA<ZS,ZSl 

SUM•g,.og 
l p 1•1 +! 
00 !U J•I.N 
JPI•J•I t•• SUM•SUM+AAtiPI,JPil*Y(J+NNl 
SUM•SUM+AAI IP 1,! )*X I+AA( IP l,N+Z l*XZ 
~ETURN 

£NO 

SUBROUTINE REAC (VI, YZ, TS, TG,PT ,RIP ,ltZP l 

C THIS SUBROUTINE CALCULATES THE DIMENSIONLESS RATES 

IMP.ICIT REAL*8 (A·H,O-Zl 
REAL*8 MG,KPZA.KP28.KC21,K!P,K2P,KP2 
COMMON /OPCON/ SCH4,SCO,SC02,SH2,SH20,PTI,PTI,STB,STV 

/REAC2/ EXPA.EXP8,EXPC,KC21,KP2A.KP28,KIP,K2P,EAI,EA2 
/LINEA/ AA<75,7Sl,8Bt75,8l,00<7Sl,UI8l 

GA•B.D8' 
TT•STI*TS 
KP2•DEXP<KP2A•KP28/TTl 
TH!•SCO*!U!4l·Y1+U(5l•Y2l 
TH2•SCO*IU!Sl•Y2l 
TH3•l.DI·2.D••TH! 
VH2•1SCO*U!7l·3.0B*THI·TH2l/SCO/TH3 
VHZO•!SCO*UI6l+TH!+TH2l/SCO/TH3 
YCH4•1SCO•U!8l+TH!l/$CO/TH3 
VCO•YI/TH3 
VC02•V2/TH3 
PA•PT*TH3 
!f!yh2 . H. ••• dllyh2•1.d·11 
!ftyco .lt. B.dllyco•l.d-11 
k1P•OEXP(-£A1/TT>•PA*•texp••expb)*VHZ••expb*YCO**expa/ 

(l.OB+KtF•PA•VCO+KZP•PA*YHZ)*•e~~c 
R2P•DEXP<·EA2/TTl*!.8301+.!7D••PA*PT•>•<VC02*YH2-VCO*VHZO/ 

KP2*KC21l 

llETURN 
END 

Table A4-7 Continued 
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FU~CT!O~ r.cT,TT,L,Rl 
IMP~lCIT R£AL•9 (•-w.0-71 
COMMON /RADIAl V!llJl,VPt9,Zl,D£TAIZJ,RR 

/LINEA/ AA<?5,7Sl,I8175,81,0017Sl,Uiel 

TR• I !VP { t,l )+VP!., L l*R•VP I 7 ,L l 0 R**2 l*T 
• !VP 12 .l 1+1/P I 5, L l*R+IIP I 8,l J•R••z l*TT 
+VP < 3,LJ•U! I 1 •VP I 6,li*U! II•R•VP! 9,L J*UI I l*R .. %1/0ETAI L 1 

UTU~N 
END 

FUNCTION RFN IAA,NNl 
IMPLICIT REAL*8 !A-H,O-Zl 
OIMENS ION AAI llJlJ) 
ST•lJ. 0.111 
00 I.U I•!,NN 

llJlJ IF' DA8S I AA I I )) . fOE. STI ST•AA!I l 
RFN•-DLO;!lJ!DABSISTll 
RETURN 
END 

SUBROUTINE COLLOC 

C THIS ~OUT!NE CALCULATES THE ZEROS OF THE ORTHO;ONAL POLYNOMIAl AND 
C S£TS UP THE AXIAL COLLOCATION MAT~!C£S A ANO 8 

IMPLICIT REAL*8 IA-H,O-Zl 
DIMENSION OI!Z5J,OZ!Z51.03!Z5l,V1!25l,VZ!251 
COMMON tCOMAT/ A!ZS,251,8!25.251,R<Z5l,N 

CALL JCOBIIZ5,N,I,t,lJ.DlJ,lJ.DlJ,Ol,OZ,D3,Rl 
PRI~T 1 1 <k{J>.J•l,N~Z> 
00 U! l•I,N+Z 
CALL OFOPR<.S,N,l,l,l,l.DI,DZ.DJ.R,VIl 
CALl DFOPRIZS, N,l,!,l,Z ,OI,OZ.D3,R, VZ l 
DO U2 J•!,N+Z 
A!I.JJ•VltJJ 
BII,JJ•VZIJJ 

llJZ CONTINUE 
llJI CONTINUE 

UTURN 
FORMATI/////,3X,'AXIAL COLLOCATION ,OINTSt',//,3!1~,41EIZ.41/)) 
END 

SUBROUTINE tHTLSSIV,U,IFLA,,HFLA~,L,U;S,PHI,N.EPl 

C TMIS kOUTINE CALCULATES TME INITIAL STEADY STATE P~OFILE 

lHPLICIT REAL•S !A~H,O-Zl 
r••1•8 1 
DIMEHSION VlllJlJJ,U(Sl 
EXTERNAL FNI,FHZ 

CALL INITIAL IV,U,!FLA~J 
CALL OUTPCTIV,U,lJ.OlJ,L,U~S.PHl,IJ 
IFINFLA' .EO. IJCALL NSES1!6•N•6.V,EP,ZlJlJlJ,lJ,FNI) 
IYINFLAG .!0. ZlCALL N3ESZ!6°N+5,V,EP,5BlJ,!T,FN2J 
!FliT .EO. SlJ.IJJ PRINT I 
CALL OUTPUT!V,U, •. DlJ,l,U;S,PHI,Zl 
RETURN 
FORMATI//I,ZX,'REACHED MAXIT IN WSESZ'//1 
I liD 

Table A4-7 Continued 
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APPENDIX5 

ORTIIOGONAL COlLOCATION ON F'INITE ElEMENTS 110DEL 

The technique and application of orthogonal collocation on finite elements 

is described in detail in Section 3.5. This appendix presents a summary of the 

final coupled system of algebraic and differential equations. Computer pro

grams for solution of the packed bed reactor model using orthogonal collocation 

on finite elements are presented in Tables AB-1 and A5-2 and are stored in direc-

tory [RRK.OCFE]. These are very similar in structure and operation to those in 

Appendix 4. 

Arter applying orthogonal collocation on finite elements, the packed bed 

reactor model becomes 

Catalyst Energy Balance 

For elements 1c :;: 1. ... , NE, 

within each element 1c for the interior collocation points I :;: 2, ... , NA:+ 1. For ele-

ments k :;: 2, ... , NE, 

and for the first (k :;:1) and last (k :;:NE) elements: 
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Gas Energy Balance 

For elements k = 1, ... , NE, 

within each element k for the interior collocation points I= 2, ... , N,~:+l. For ele-

ments k = 2, ... , NE, 

and for the first (k =1) and last (k =NE) elements: 
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.Mass Balances 

For elements k = 1, ... , NE, 

+ 4yl/ [ !! l2] + 
(1-2o)2 v .. 

where 

within each element k for the interior collocation points I= 2, ... , NA:+1. For ele-

ments k = 2, ... , NE, 

and for the first (k = 1) and last (k =NE) elements: 
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Thermal Well Energy Balance 

For elements k = 1, ... , NE, 

within each element k for the interior collocation points 

I = 2, ... , N.t + 1. F'or elements k = 2, ... , NE, 

and for the first (k =1) and last (k =NE) elements: 

Overall Continuity 

atl = 6to 

II 

~ Av.NE·" et1 = 0 
./=1 

For J = 2, ... , N-"+1 for each element k = 1. ... , NE-1 and for J = 2, ... , NNE+2 

fork = NE: 

For elements k = 2, ... , NE, 

= [ -h
1 ~ Auv&J] 

lc: .1=1 ~lc: 

and fork = 1 
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C THIS PROGRAM MODELS A NONISOTHERMAL. NONADIABATIC FIXED BED REACTOR 
C WITH BOTH A COOLING JACKET AND A THERMAL WELL. THE ANALYSIS IS 
C PERFORMED FOR A HETHANATION OF CO SYSTEM. 
C THIS PROGRAM USES THE ORTHOGONAL COLLOCATION OF FINITE ELEMENTS METHOD 

C LINK TO MLIB,OCFELIB 

C THIS PROGRAMS SOLVES THE FULL NONLINEAR HODEL WITH THE CONCENTRATIONS 
C NONDIMENSIONAL W.R.T. THE STEADY-STATE INLET CONC. OF CO 

IMPLICIT REAL*B <A-H,O-Z> 
REAL*B L,KT,HG,KS,KSP,KPlA,KPlB,KC1S,KPZA,KPZB,KCZS,KZP,K3P 

COMMON /REACP/ EPS,L,RS,Rl 
• /CATLS/ CPS,PS,TC,DC 
* ITHWEL/ CPT,PT,KT 
* /GASP A/ CPG,PTZ,PTR,HG,PGS,UGS,UM 
* /HEATT/ OHSG,OHTS,OHTG,BGS,BSG,BTS,BTG,BWG,BWS 
* /OPCON/ SCH4,SCO,SC02,SH2,SH20,PTS,PTl,STS,ST~ 
* /REACl/ DH1A,DH1B,DH2A,DH2B,KS,KSP 
* /DIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,DEl, 
* DE2,Sil,SI2,Sl3,PHI2,PHI3,PHl,PH2,PH3 
* /RADIAl WI1S>,WP19,2>,DETA!2>,RR 
* /COMAT/ NE,N<S>,H<5>,ZII6>,NSI6>,Z<S,ZS>,AI5,25,25), 
* 8!5,25,25> 
* llNDEX/ NSE,NTS,NTT,NTG,NCO,NCZ,NUG,NNE,HEl 
* /HISCl/ UU< US> 
* /REACZ/ KC1S,KP1A,KP1B,KC2B,KPZA,KPZB,KZP,K3P,EA1,EAZ 
* /LINEA/ AA!75,7S>,BBI7S,B>,DD!7S>,U<8> 
* /STATE/ V!lSS>,YDOT!lBS>,ST,DT 

EXTERNAL DERIV,FN 

C READ IN DATA AND CALCULATE CONSTANTS 

CALL SETUPS <DTS,TMAX,DL,RR,EP,NP,IF,IFLAG> 

C CALCULATE THE DIMENSIONLESS PARAMETERS 

CALL DIMLES 

C CA~CULATE COHST~HTS FOR THE ~AD!AL LUMPED MO~EL 

CALL RADIAL 

C CALCULATE ZF.ROS OF THE ORTHOGON~L POLYNOMIAL AND SET UP AXIAL 
C COLLOCATIO~ MATRICIES A AND B. 

CALL C~!.lOC 

C SOLVE FOR THE STEADY STATE PROriLE 

CALL INTLSS!V,U.FP.IF~A~l 

Table A5-1 
Computer Program cx.:.f'E 
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SUBROUTINE DIMLES 

C THIS SUBROUTINE CALCULATES THE DIMENSIONLESS ,ARAMETERS 

IMPLICIT REAL*8 IA-H,O-Zl 

• 
* 
* 
* • 
* • 
• 
* 

REAL*B L,KT,MG,KS,KBP,KCZO,KP2A,KP28,K1,,K2P 
COMMON /REACP/ EPS,L,RB,RI 

/CATLS/ CPS,PS,TC,OC 
/THWEL/ CPT,PT,KT 
/GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM 
/HEATT/ OHSC,OHTS,OHTC,8CS,8SC,8TS,BTC,8WC,IVS 
/OPCON/ SCH4,SCO,SC02,SHZ,SH20,PTB,PTI,STB,STW 
/REACt/ DHIA,DHIB,OHZA,OH2B,KB,KBP 
/OIMLE/ ALS.ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,DEI, 

DEZ,Sll,SI2,SJJ,PHIZ,PHI3,PHI,PH2,PH3 
/REACZ/ EXPA,EXPB,EXPC,KC2B,KP2A,KPZB,KIP,KZP,EA1,EA2 

DATA PI /3.1415!Z654DB/ 

VT•Pl*RB**Z*L 
VB•PI*L*IR1**2-RB**2l 
AZ•LIDC 
AR•Rl/DC 
AO•L/Rl 
EMl•l . .B'OB-EPS 
ALS•TC/IPS*CPS*EMl*L*UGS> 
ALG•l.DB/IPTZ*EPS*AZl 
ALT•KT/IPT*CPT*L*UGSl 
BES•ALS*L**Z/Rl**Z 
BEG•AO/PTR/EPS/AR 
GAS•OHSG*L/IVB*PS*CPS*EMl*UGSl 
GAG•OHSG*L/IVB*PGS*CPG*EPS*UGSl 
GTS•OHTS*L/IVT*PT*CPT*UGSl 
GTG•OHTG*L/IVT*PT*CPT*UGSl 
DEI•-L*OHIB*IPTB*SCOl**IEXPA•EXPBl*KBP/IUGS*CPS*STBl 
DE2•-L*OH2B*SC0**2*KB/IUGS*CPS*STBl 
SII•MG*PS*EMI*IPT.B'*SCOl**IEXPA•EXPBl*KBP*L/IEPS*UGS*PGS*SCOl 
SIZ•MG*PS*EMI*SCO*KB*L/IEPS*UGS*PGSl 
SI3•SI2 
PHt2•0HIA*ST.8'/DHIB 
PHI3•0H2A*STB/DH2B 
8\JG•BTG 
B\.IS•BTS 
PH I•R.B'/R I 
PH2•PT1/PTIJ 
PHJ•STW/STB 
RETURN 
END 

Table A5-2 
Computer Program ocm..IB 
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SUBROUTINE INITIAL IY,Ul 

C THIS ROUTINE INITIALIZES THE SYSTEM 

IMPLICIT REAL*B IA-H,O-ZI 
II.EAL*B MG 
DIMENSION Ylllllll,UIB) 
COMMON /OPCON/ SCH4,SCO,SCOZ,SHZ,SH20,PTJI,PT1,ST6,STW 

* /GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM 
* /COMAT/ NE,NISI,H15l,Zll6l,NSI6l,ZIS,ZSI,AI5,25,25l, 
• 815,25,25) 

/INDEX/ NSE,NTS,NTT,NTG,NCO,NCZ,NUG,NNE,NEI 

DO 366 1•2,4 3.. Ulli•I.D. 
U I I l •ST\USU 
U!Sl•SCOZISCO 
Ul6l•SH20/SCO 
Ul 71•SH2/SCO 
Ul8l•SCH4/SCO 
UM•1. 011 

II.EADI5,11 TC,TS,TT,Xl,XZ,VEL 
DO IJJII K•l, NE 
CALL INDICESIK,NK,NI,NZ,N3,N4,N5,N6l 
DO !JIB l•l,NK 
YINI+I>•TS/STJI 
VIHZ+II•TT/STJJ 
YIN3+ll•TG/STJI 
VIN.t+II•XI/SCO 
YINS+Il•X21SCO 
YIN6+ll•VEL/PRESil,Kl/UGS 

1•11 CONTINUE 

DO ZBII J•I,HEl 
VINTS+JI•TS/STJJ 
YINTT+JI•TT/STJJ 
VINTG+Jl•TG/STB 
YIHCO+JI•Xl/SCO 
Y<NC2+Jl•X2/SCO 
IFIJ .HE. NEllVINUG+JI•VEL/PRESIII,JI/UGS 
IFIJ .EQ. NEIIYINUG+JI•VEL•PT6/PT1/UGS 

2611 CONTINUE , 

RETURN 
F'ORMATI9F'8,U 
END 

Table A5-2 Continued 
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SUBROUTINE SETU,S IDT.,TMAX,DL,RR,E,,N,,IF> 

C THIS SUBROUTINE READS IN THE INPUT DATA AND MAKES PRELIMINARY 
C CALCULATIONS. 

l 
2 
3 

.a 

5 

' 

IMPLICIT REAL*B IA-H,O-Zl 
REAL*B L,KT,MG,KB,KBP,KP2A,KP2B,KC2B,KIP,K2P,K2,K3 
COMMON /REACP/ EPS,L,RB,RI 

* /CATLS/ CPS,PS,TC,DC 
/THVEL/ CPT,PT,KT 

* /GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM 
* /HEATT/ OHSG,OHTS,OHTG,BGS,8SG,BTS,8TG,8WG,BWS 
* /OPCON/ SCH4,SCO,SC02,SH2,SH20,PTB,PT1,STB,STW 

/REACI/ DHIA,DHIB,OH2A,DH2B,KB,KBP 
* /REACZ/ EXPA,EXPB,EXPC,KC2B,KP2A,KP2B,K!P,K2P,EA1,EA2 
* /COMAT/ NE,N15l,HI5l,ZI16l,NS<61,ZI5,Z5l,A15,Z5,251, 
* 815,25,251 

DATA RG,RGP,PI /82.BS~~DB,t.987DB,3.1~15!12654DB/ 

kEADIS,Il EPS,L,RB,kl 
AEAOIS,ll CPS.PS.TC,DC 
READIS,Il CPT,PT,KT 
READIS,Il PTl,PTR,UGS 
READIS,ll OHSG,OHTS,OHTG,BGS,BSG,BTS,BTG 
READ<S,ll SCH4,SCO,SC02,SHZ,SH20,PTB,PT1,ST.,STW 
READIS,ll OHIA,DHIB,DH2A,OH2B,KB,KBP 
READIS,ll EXPA,EXPB,EXPC,KP2A,KP28,K2,K3,EAI,EA2 
READI5,2l DTB,TMAX,RR,DL,TS,NE,NP,NEP,IFLAG,IF 
REA015,6l INIJl,J•l,Sl,CHIJl,J•l,Sl 

CALL CPCALCISH2,SCO,SC02,SH20,SCH,,ST.,MG,CPG,CPGI,C,G21 
PGS•MG*PTB/RG/ST.IJ 
K1P•K2*PTB*SCO 
K2P•K3*PT."SCO 
KCZ.IJ•l.DB 
EP•IB.OB,..NEP 
KBP•KBP*TS**I-.31 

PRINT 3,EPS,CPS,CPT,L,PS,PT,RB,TC,KT,Rl,OHSG,DHIA,EXPA, 
* OHTS,OHIB,EXPB,OHTG,DH2A,EXPC,BGS,DH2B,KP2A,BSG,Kr, 
* KP2B,8TS,KBP,K2,8TG,K3,PTl,EAt,PTk,EA2 

* 

* 
* 
* 
* 
* • 

* • 
* 
* 

* 

* 

• 
* 
* 
* 

PRINT 4,DTB,TMAX,DL,RR,TS,EP,OTB*4.0B**IIF-11 
PRINT 5,SCH4,STB.SCO.STW.SC02.PTB.SH2,PTI,SH20,MG,UGS,CPG 

OT.IJ•DTB*UGS/L 
TMAX•TMAX*UGS/L 
DL•DL*UGS/L 
RR•Il.DB-RB/Rll*RR+R.IJ/RI 
EAI•EAI/RGP 
EA2•EA2/RGP 

RETURN 
FORMATI!ID8.21 
FORMATI5F8.2,/6IBl 
FORMATIIH1,////,3X,'INPUT DATAI',///!IX,'REACTOR PARAMETERS',IX, 

'CATALYST PARAMETERS',6X,'THERMAL WELL PARAMETERS',// 
!IX, 'EPS •' ,E12.4,!1X, 'CPS •' ,E12.4,9X, 'CPT •' ,E12.4/ 
!IX, 'l •',E12.4,9X, 'PS •' ,EIZ.4,9X, 'PT •' ,E12.4,/ 
!IX,'R• •',E12.4,9X,'TC •',E12.4,9X,'KT •',El2.4/ 
!IX, 'RI •' ,E12.4/////6X, 
'HEAT TRANSFER PARAMETERS',l9X,'REACTOR PARAMETERS'// 
!IX,'OHSG •',ElZ.4,!1X,'OHlA •',El2.4,!1X,'EXPA •',E12.4,/ 
9X,'OHTS •',Et2.4,!1X,'OHIB •',EIZ.4,!1X,'EXPB •',El2.4,/ 
!IX,'OHTG •',E12.4,9X,'OH2A •',E12.4,9X,'EXPC •',ElZ.4,/ 
!IX,'BGS •',E12.4,9X,'DH28 •',EI2.4,9X,'KP2A •',£12.4,/ 
9X,'BSG •',ElZ.4,9X,'K6 •',!!Z.4,9X,'KPZ8 •',ElZ.4,/ 
!IX,'BTS •',E12.4,!1X,'KBP •',EIZ.4,9X,'K2 •',E12.4,/ 
!IX,'BTG •',E12.4,36X,'K3 •',E12.4/ 
!IX,'PTZ •',E12.4,36X,'EA1 •',E1Z.4/ 
9X,'PTR •',E12.4,36X,'EA2 •',El2.41 

FORMAT 11111, 3)(, 'PROGRAM CONDITIONS 1 • II. 9X, 
'TIME STEP •',FB.4,/9X,'MAXIMUM TIME •',F8,,,/9X, 
'DISTURBANCE LENGTH •',F15.4,/9X, 
'RADIAL COLLOCATION POINT •',F8.4,/9X, 
'START TIME tHRSl •',F15.4,/9X, 
'ACCURACY OF CONVERGENCE •',E1 •• 3,/9X, 
'HAX VALUE OF DT •',F8.4l 

FORMATI////,3X,'STEADY STATE CONDITIONSa',/I/,9X,'XCH4 •', 
El2.A,9X,'T• •',El2.4,/9X,'XCO •',E12~4,9X,'TW •', 
E12.4,/9X,'XC02 •',El2.4,9X,'PT. •',E12.~,/9X,'XHZ •', 
E12.4,9X,'PT1 •',£12.4,/9X,'XH20 •',E12.4,9X,'MG •' 
EIZ.4,/!IX,'UG. •',E12.4,9X,'CPG •',E12.4l 

FORMATC514/5F8.2) 
END 

Table A5·2 Continued 
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SUBROUTINE OUT~UT (V,U,T,MMJ 

C THIS ROUTINE OUTPUTS THE CALCULATED RESULTS. 

.. .. .. 
* .. 
• 

IMPLICIT REAL*& IA-H,O-Zl 
REAL•& L,MG 
DIMENSION VllBBJ,UI8l · 
COMMON /COMAT/ NE,N!5l,H!5l,ZII6l,NSI6l,Zt5,2Sl,AI5,ZS,2Sl, 

815,25,25) 
/OPCON/ SCH4,SCO,SC02,SHZ,SH20,PT.,PTl,STg,srv 
/RADIAl WIIBI,WPI9,2l,OETAI2l,RR 
/GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM 
/REACP/ EPS,L,RB.RI 
/INDEX/ NSE,NTS,NTT,NTG,NCO,NC2,NUG,NNE,NE1 

DATA RG /B2 .• 544Dg/ 

IFIMM .EQ, 11 PRINT I 
IFIMM .EO. 2l PRINT 6 
IFIMM .EO. 3l PRINT 8 
PH2•PT1/PTg 
PHI•U/Ill 
TA•T*L/UGS 
IF!MM .EO. •>PRINT 7,TA 

PRINT Z 
DO IBB K•l,NE 
CALL INDICESIK,NK,Nl,N2,N3,N4,N5,N6l 
PRINT 3, TRIV!NTG+Kl,VINTT•KI,2,PHll,VIMTG+Kl, 

* TRIVINTG+KI,VtMTT+Kl,2,1.DBl,TiltVINTS+Kl,VtNTT+KJ,l,PHil, 
* VINTS+Kl,TRIVINTS+Kl,VINTT+Kl,l,l.DBJ 

DO lBB l•l,NK t•• PRINT 3, TRIYIN3+!J,VIN2+1l,2,PHIJ,VIN3+1l,TRIVIN3+1l,VIN2+Il,Z, 
* l.DIIl,TRIVINI+Il,VINZ+Il,l,PHll,YINI+Il,TRIVINl+Il,YIN2+Il, 
* 1.1.0•> 

PRINT 3, TRtVIHTG+NEil,VIHTT+NEll,2,PH!l,YINTG+NEll, 
TlttVINTG+NEil,VINTT+NEll,Z,I.DBl,TRIVINTS+NEil,VINTT+NEll, 

* l,PHil,YINTS+NEll,TRIVINTS+NEil,YINTT+NEII,I,l.DBl 

PRINT 4 
DO zgg K•l,NE 
CALL IHDICESIK,NK,NI,N2,N3,N4,NS,N6l 
CALL ACTCONCIYINCO+Kl,VINC2+Kl,Xl,X2l 
PRINT 5, VINTT+Kl,XI,XZ,VIHUG+Kl 
DO 'ZB/11 I•I,NK 
CALL ACTCONCIYIN4+ll,VINS+Il,Xl,X2l 

zr• PRINT 5,VIN2+I),XI,X2,YtH6+Il 

1 
2 

3 
4 

5 

' 7 • 

• 
* 

• 

CALL ACTCOHCtVtMCO+NEil,VINCZ+NEll,Xl,X2l 
PRINT S,VINTT+NEll,XI,XZ,VINUG+NEil 
RETURN 

FORMATIIHI,//ZX,'IMITIAL GUESSES• ',//) 
FORMAT116X,'GAS TEMPERATURE',ZSX, 

'SOLID TEMPERATURE',//8X,'R • Rg',7X,'It • RR',7X, 
'It • R1'.9X,'R • Rg',7X,'R • RR',7X,'R • Rl'l 

FORMAT15X,31F9.5,4Xl,ZX,31F9.5,4Xll 
FORHATI/19X,'WELL TEMP.',SX,'CO CONC.',5X,'C02 COMC.',4X, 

'VELOC lTV' /l 
FORMAT<19X,F9.5,5X,F1B.7,3X,F1 •• 7,3X,F9.&,3K,F9.Sl 
FORMATI//2X,'STEADV STATE SOLUTION• ',//) 
FORMATI//,2X,'TIH£ M 0 ,F11.4,' SEC'/) 
FORHATI//,2X,'ACTUAL STEADY STATE SOLUTION• ',//l 
END 

Table A5-2 Continued 
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SUBROUTINE RADIAL 

C THIS SUBROUTINE CALCULATES THE CONSTANTS ~OR THE RAOIALLV lUMP£0 
C MODEL. 

IMPLICIT REAL*B tA-H,O-Zl 
COMMON /DIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,DEI, 

* OE2,Sll,Sl2,SI3,PHI2,PHI3,PH1,PH2,PH3 
/RADIAl WllBl,WPI,,Zl,DETAIZl,RR 

• /HEATT/ OHSQ,OHTS,OHT,,BGS,BSQ,BTS,BTG,BWG.BWS 

Vt!ll••. D• 

Wti•>••.D• 
1•1 
SI•8TS 
S2•81JS 
S3•GAS 
S.t•BES 
SS•GTS 

t•• DETAtll•tPHI+PH1**2*tRR-1.D.l+RR**2*11.D.-PHll-RRl*Sl*S2 
* + t2.DB*IPHI-RRI+RR**2-PHI**2l*SI 
* + t-l.OB+RR**2+2.DB*tPHl-PHI*RRll*S2+2,DB*PHl-2.DB 

WPtl,ll•tPHl*SI-l.DBl*IS2+2.0Bl-lS2+1.DBl*tPH1**2*Sl-2.D.*PHll 
WPt2,ll•SI*tS2+1.DBl*RR**2-SI*RR*tS2+2.DBl 
WPt3,Il•IS2*RR*tPH1**2*SI~2.DB*PHll-S2*1PH1*SI-I.D.l*RR**2l 
WPI4,ll•S2*1PHI**2*SI-2.DB*PHil-Sl*IS2+2.DBl 
WPIS,ll•Sl*IS2+2.0Bl-SI*S2*RR**2 
WP16,1l•IS!*S2*RR**2-S2*1PHI**2*SI-2.DB*PHill 
WP17,ll•SI*IS2+1.DB>-S2*1PHI*SI-1.06l 
WPI8,ll•RR*SI*S2-SI*IS2+1.0Bl 
WPI9,ll•IS2*1PHI*SI-l.DBl-RR*SI*S2l 
W!1+1*3-31•14.DB*WPt7,ll+WP!4,ll/RRl*S4/DETA!ll-S3 
Wt2+I*3-3l•I4.DB*WPI8,ll+WPIS,ll/RRl*S4/DETAtil 
W(3+1*3-3l•!4.DB*WP19,ll+WPt6,ll/RRl*S4/DETA!Il 
W17+l-li•S5"1WPII,li+WP14,li"PHI+WP17,11*PHI••zl/OETA11l 
Wl9l•W!9l+SS*!WPI2,ll+WPIS,ll*PHI+VPt8,ll*PHI**21/DETA!Il-SS 
WIIBl•WIIBl+SS*IVPt3,ll+WPt6,ll*PHI+VPt9,Il*PHI**2l/DETAIIl 
IF! l .EO. 2lRETURN 
1•2 
!:1 •8TC: 
S2•BWG 
S3•GAG 
S4•BEG 
SS•I;:TG 
100 TO 1 .. 
END 

Table A5-2 Continued 
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SUBROUTINE FNI IY,Vl 

C THIS SUBROUTINE DEFINES THE ALQEBRAIC EQUATIONS FOR USE BY NSES! 

IMPLICIT REAL*B IA-H,O-Zl 
REAL *8 MG 
DIMENSION VllBBl,VIll 
COMMON /COMAT/ NE,N15l,HI5l,ZII6l,NS16l,ZI5,Z5l,AI5,Z5,Z5l, 

* 815,25,25) 
/OIHLE/ ALS,ALG,ALT,BES,BEG,CAS,GAG,GTS,GTG.DEl. 

* DE2,Sil,Sl2,SI3,PH12,PHI3,PH1,PHZ,PH3 
* /LINEA/ AAI75,75l,B8175,Bl,DDI75l,UI8l 
* /RAOIA/ WI1Bl,WPI9,2l,DETA12l,RR 
* /HEATT/ OHSG,OHTS,OHTG,BGS,BSG,BTS,BTG,BWG,BVS 
* /INDEX/ NSE,NTS,NTT,NTG,NCO,NC2,NUG,NNE,NE1 

/iASPA/ C~G.PTZ,PTR,MG,PGS,UGS,UH 

• 
* 

* 

* 
* 

* 

DO !BAr K•l,NE 
CALL INDICESIK,NK,Nl,N2,N3,N4,N5,N6> 
DO lAJI I•I,NK 
PT•PRESII,Kl 

CALL REAC IVIN4+Il,VIN5+1l,VINI+Il,VIN2+1l,PT,R1P,R2Pl 

VII+Nll 

Vll+NZl 

VII+N3l 

VII•N4l 

VII+N5l 
VII+N6l 

• ALS*SUMIV,I,K,1,2l + Wlll*VINl+Il + Wl2l*VINZ+l) 
+ GAS*V!N3+1l + DEI*RIP*Il.OAJ+PHIZ*VINI+Ill 
+ DE2*R2P*I!.OB+PHI3*VINI+Ill + W13l*PH3 
• ALT*SUMIV,I,K,2,2l + W17l*VIN1+1l + Wl8l*VIN3+Il 
+ W!9l*VIN2+Il + W!1Bl*PH3 
• -VIN6+ll*SUMIV,I,K,3,1l + IALG*SUMIV,I,K,3,2l 
+ W14l*VIH3+1l + W!5l*VIN2+Il + GAG*V!Nl+Il 
+ W16l*PH3l/PT*YIN3+Il 
• -VIN6+ll*SUHIV,I,K,4,1l + SI2*VIN3+ll*R2P/PT 
- Sll*VIN3+ll*RIP/PT 
• -VIN6+Il*SUMIV,I,K,5,1l - SI3*VIN3+Il*RZP/PT 
• VIN3+Il*SUMIV,I,K,6,1l + VIN3+ll*VIN6+Il* 

* IPH2-1.0Bl/PT- VIN6+1l*SUMIY,I,K,3,1l 
1•• CONTINUE 

00 3BAJ L•1,6 
N7•6*NSE+IL-ll*NE1 
DO 3BII K•Z,NE 

3gg VIN7+Kl • SUMIY,NIK-Il+l,K-t,L,tl - SUMIY •• ,K,L,tl 

• 
• 

VINTS+ll 
VINTS+NEll 
VINTT+Il 
V<NTT+NEll 
VIHTG+ll 

VINTG+NEll 
VIHCO+Il 
VINCO+NEll 
VINC2+1l 
VINCZ+NEll 
VINUG+ll 
VINUG+NEll 

RETURN 
END 

• SUMIY,.,I,l,ll - BGS*IVINTS+ll-YINTG+Ill 
• SUMIV,NNE,NE,l,l~- BGS*IYINTG+NEil-YINTS+NEill 
• VINTT+Il • Ul3l 
• SUMIY,NNE,NE,2,1l 
• SUMIV,.,1,3,1l + BSG*IVINTS+ll•YINTC+lll 

-11.011-1.011/YINTG+lll/ALG 

• SUMIY,NNE,NE,3,1l- BSG*IV!NTS+NEll•VINTG+NElll 
• YIHCO+ll-UI4l 
• SUMIY,NNE,NE,4,1l 
• YINCZ+Il-UI5l 
• SUMIY,NNE,NE,5,1l 
• VINUG+ll-UI2l 
• YINTG+NE1l*SUMIV,NNE,NE,6,1l + YINUG+NEtl• 

VINTG+NEll*IPH2-l.DgltPH2- YINUG+NEll* 
SUMIY,NNE.NE,3,1l 

Table A5~2 Continued 
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SUBROUTINE CPCALCISHZ,SCO,SCOZ,SHZO,SCH.,ST.,MG,CPG,CPG1,CPG2l 

C THIS SUBROUTINE CALCS THE HEAT CAPACITY 

IMPLICIT REAL*BIA-H,O-Zl 
REAL*S MG 
SH2•l.DB-SH2-SCO-SC02-SH20-SCH4 
MG•SCH4*16 •• 430B+SC0*28.BlB40B+SCOZ*44.BS98D.+SH2*2 •• 16D• 

* +SH20*18.BI54DB+SN2*2B.B134DB 
CPGl•ISHZ*.BID-3+SNZ*.77570-3+SC0*1.2D-3+SCOZ*4.216D-3 

• +SH20*7.17D-3+SCH4*12.4282D-3l/MG 
CPG2•1SHZ*6.6ZDS+SN2*6.77SOB+SC0*6.60B+SC02*8 •• 5126D. 

+SHZO*ll.ZDB•SCH4*S.ZBB8DBI/HG 
CPG•CPGl*STS+CPGZ 
RETURN 
END 

FUNCTION SUMIY,I,K,L,Ml 
IMPLICIT REAL*B IA-H,O-Zl 
DIMENSION YIIBBl 
COMMON /COHAT/ NE,NISl,HISl,Zil6l,NSI6l,ZIS,Z5l,AI5,25,251, 

• 815,25,25) 

SUH•B.BDB 
IPl•I+l 
NN•(L-Il*NSINE+ll+NSIKl 
N7•6*NSINE+II+IL-II*INE+ll 
IFIM .EQ, Zl GO TO z•• 
DO IBB ll•l,NIIO 
JPl•J+l t•• SUH•SUM+AIK,IPl,JPll*YIJ+NNl 
SUH•SUM+AIK,IPl,ll*YIN7+Kl+AIK,IPl,NIKl+Zl*YIN7+K+ll 
SUM•SUM/HIKl 
RETURN 

z•s DO ZBl J•I,NIKl 
JPI•J+l 

z•t SUM•SUH+BtK,IPI,JPll*YIJ+NNI 
SUH•SUM+BIK,IPl,ll*VtN7+Kl+81K,IPl,NIKl+Zl*YIN7+K+ll 
SUH•$UM/HIKI/H!Kl 
RETURN 
END 

SUBROUTINE AEAC tY1,Y2,TS,TG,PT,RlP,R2Pl 

C THIS SUBROUTINE CALCULATES THE DIMENSIONLESS RATES 

IMPLICIT REAL*B IA-H,O-Zl 

• 
• 

• 
• 

REAL*B MG,KPZA,KPZB,KCZB,KlP,KZP,KPZ 
COMMON /OPCON/ SCH4,SCO,SCOZ,SHZ,SH20,PTB,PTl,STB,STW 

/REACZ/. EXPA,EXPB,EXPC,KCZB,KPZA,KPZB,KIP,KZP,EAI,EAZ 
/LINEA/ AAI75,75l,88175,8l,DDI75l,UI8l 

GA•B.DB 
TT•STB*TS 
KP2•0EXPIKP2A+KP28/TTI 
TH1•SCO*IUI41-Yl+Ut5l-Y2l 
THZ•SCO*!UI5l-YZl 
THJ•l.DS-Z.OB*THl 
YHZ•tSCO*UI7l-3.0B*TH1-TH2l/SCO/TH3 
YHZO•ISCO*UI6l+THl+TH2l/SCO/TH3 
YCH4•1SCO*UIII•THll/SCO/TH3 
YCO•Vl/TH3 
YC02•Y21TH3 
I'A•PT*TH3 
lFIYHZ .LT. B.DBl YH2•1.D-t• 
lf(yco .tt. B.d6l yco•l.d•16 
RlP•DEXP!-EAl/TTl*PA**Iexpa+expbl*YH2**expb*YCO**expa/ 

(I.OS+K1P*PA*YCO+KZP*PA*YH2l**expc 
RZP•DEXPI-EA2/TTl*(.830B+.170B*PA•PT•>*IYC02*YH2-YCO*YH20/ 

KPZ•KCZSl 

liE TURN 
£110 

Table A5-2 Continued 



-464-

FUNCTION TRIT.TT,L,Rl 
IMPLICIT REAL*8 IA·H,O-Zl 
COMMON /RADIAl WIIBl,WPt9,2l,OETAI2l,RR 

* /LINEA/ AAI75,751,8Bt75,81,0Dt75l,U18l 

TR•IIWPII,Ll•WP14,Ll*R+WPI7,Ll*R**2)*T 
* •IWPI2,L)+WPI5,Ll*R+WPI8,Ll*R**Zl*TT 
* +WPI3,LI*UIIl•WPI6,LI*Uill*R+WP19,LI*Uil)*R**Zl/DETAILI 

RETURN 
END 

FUNCTION RFN IAA,NIIl 
IMPLICIT REAL*8 IA-H,O-ZI 
DIMENSION AAII88l 
ST•B.DB 
DO lBJJ I•l,NN 

188 IFIDABSIAAII)) .COE. ST> ST•AAtll 
RFN•·DLOCOIBIDABSISTII 
RETURN 
END 

SUBROUTINE ACTCONCIYI,Y2,Xl,X21 
IMPLICIT REAL*9 IA-H,0-21 
COMMON /OPCON/ SCH4,SCO,SC02,SH2,SH20,PTB,PT!,STB,STW 

* /LINEA/ AAI75,751,8Bt76,81,DDI751,UI81 

THI•l.DB·2.D8*1SCO*IUI,l•VI+UI5l•Y211 
l<l•Vl*SCO/THI 
l<Z•VZ*SCO/THI 
RETURN 
END 

FUNCTION PRESII,kl 
IMPLICIT REAL*B IA-H,O-Zl 
COMMON /OPCON/ SCH4,SCO,SC02,SHZ,SH20,PTI,PT1,STB,STW 

/COHAT/ NE,NI6l,HI5l,ZI16l,NSI61,ZIS.251,AIS.Z5.2SI, 
815,25,251 

PRES•IIPTI-PTBl*IZIIKl+HIKl*ZIK,I+lll+PTil/PTI 
RETURN 
END 

SUBROUTINE INDICES tk,NK,Nl,N2,N3,N4,NS,N61 
IMPLICIT REAL*B IA·H,O·ZI 
COMMON /COMAT/ NE,NISl,HISI,ZII61,NSI6l,ZIS,251,AIS,Z5,251, 

.. 815,25,251 

IISE•NSIII£+11 
IIK•NIKI 
111•NSIKI 
112•NSE+NS!Kl 
113•2*NSE<NSIKI 
N4•3*NSE•NSIKI 
NS•4"NSE•NSIKI 
N6•S*NSE+NS!Kl 
RETURN 
END 

Table A5·2 Continued 
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SUBROUTINE COLLOC 

C THIS ROUTINE CALCULATES THE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND 
C SETS UP THE AXIAL COLLOCATION MATRICES A AND I 

IMPLICIT REAL*8 IA-H,O-Zl 
DIMENSION DIIZ5l,D21Z5l,D3125l,V11ZSI,V2125l,R1261 
COMMON /COMAT/ NE,NISl,HCSl,ZII6l,NSI6l,ZIS,2SI,AI6,25,26l, 

• 815,25,25) 
/INDEX/ NSE,NTS,NTT,NTG,NCO,NC2,NUG,NNE.NEI 

PRINT 1 
DO Ul/1 K•l, NE 
NK•N!Kl 
CALL JCOBII25,NK,1,1,11.D/I,/I.DII,DI,DZ,D3,RI 
PRI"T z, K,H!Kl,(~!Jl,J•I,NK+Zl 
DO IIIII l•l,NK+2 
CALL DFOPRIZS,NK,I,I,I,I,Dl,D2,D3,R,Vll 
CALL DFOPRI2S,NK,!,l,I,2,DI,D2,03,R,V21 
DO 1112 J•I,NK+2 
AIK.l.JI•Vl!Jl 
BIK,I,Jl•V21Jl 

1112 CONTINUE 
ZCK, I l•RI I l 

1.. CONTINUE 

NS!ll•/1 
Zllll•/I.D/1 
DO 21111 K•I,NE 
NSIK+ll•NSIKl+NIKl 

2111 ZIIK+Il•ZIIKl+HCKI 
PRINT 3,111ZIIKl+HIKl*ZIK,JII,J•l,NIKI+11,K•l,NEI,l.DII 

NEI•NE+l 
NSE•NSINEll 
NNE•NINEl+l 
NTS•6*NSE 
NTT•6*NSE+NE1 
NTG•6*NSE+Z"NEI 
NC0•6*NSE+3*NEI 
NC2•6*NSE+ .. *NEI 
NUG•6*NSE+S*NEI 

RETURN 
I FORHATIIH1,/,3X,'ORTHOGONAL COLLOCATION OF FINITE ELEMENT$') 
2 FORMATI///2X,'ELEHENT ~',13,5X,'LENGTH • ',FS.3,//,7X, 

" 'COLLOCATION POINTS•',//31111X,6FB.4/Il 
3 FORMATI//1//ZX,'COLLOCATION POINT SUHHARYI',//,6116X,6F8.4/ll 

END 

SUBROUTINE INTLSS!Y,U,EPI 

C THIS ROUTINE CALCULATES THE INITIAL STEADY STATE PROFILE 

IMPLICIT REAL*8 IA-H,O-Zl 
DIMENSION Yll/llll,UI81 
COMMON /INDEX/ NSE,NTS,NTT,NTG,NCO,NC2,NUG,NNE,NE1 
EXTERNAL FN I 

CALL INITIAL IY,Ul 
CALL OUTPUTIY,U,/1.0/1,11 
CALL NSESII6*1NSE+NE1l,Y,EP,211/I/I,II,FN1l 
CALL OUTPUTIY,U,/1,0/1,21 
RETURN 

END 

Table A5-2 Continued 
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APPENDIX6 

I..IN1!J\R PACKED BED REACTOR IIODEL 

linearization of Reaction Rates 

Methanation 

If we neglect the second and higher order terms in a Taylor series expansion, the 

linearized rate is of the form 

where 

R = [8Ry l 
:U. oz .. 

After performing the di.trerentiation 
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R = [-1-+ _£_[_1 -+ _1 -+ _1_+ JL_l + 1.5 
»yeo Yeo 1-D YH2o YCH4 Yeo ~ YH2 
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Steam-Shift 

Kcs ] YCOeYH2 - Kps YcoYHaO 

where 

If we neglect the second and higher order terms in a Taylor series expansion, the 

linearized rate is of the form 

where 

Rs. = [ aa; J.. 

Then after differentiation 
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4x2o l 1-26 Rs. 



-470-

linearization of Algebraic Equations 

The boundary conditions for the mass balances and for the energy equation 

for the thermal well can be solved explicitly for the concentrations and thermal 

well temperatures at the axial boundary points as linear expressions of the con-

ditions at the interior collocation points. However. the set of four boundary 

conditions for the gas and catalyst temperatures are coupled and are nonlinear 

as a result of the convective term in the inlet boundary condition for the gas. 

After a Taylor series linearization of this term around the steady state inlet gas 

temperature, gas velocity, and inlet concentrations, the system of four equa-

tions is solved for the gas and catalyst temperatures at the boundary points: 

with 

and 

(Ao.c-'Aga) 

AN+l.O s = Aug 
0 

t AoJ9•J 
i=l 

tAN+tJe•1 j r:l 

= s tAo.;esi + r 
i=l 

f: AN+lJe~t 
=1 

Ao.N+l Xgu 
(AN+l.N+l +l.gu) 0 

0 (Ao.o-~-G) 

-A.zs ~+1,0 

0 -1 

-A,z. 
Ac.N+l 

(AN +1.N +1 + A.ze) 
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Linearization and solution of the continuity equation for the velocities at 

the interior collocation points and at the end of the reactor are somewhat more 

complex. Atter linearization as described in Section 3.6 and after substitution 

of the linearized equations above for the endpoint temperatures, the continuity 

equation was solved for the velocities: 

where 

The matrices E, F', and G have the following elements1 

fori,j = 1. ... , N+l 

For i,j =1, ... , N: 

1. Note that ~ are the elements of the above S matrix. 



• 472-

Fori= N+l, j = 1, .... N: 

linearization of the Ditferential Equations 

The linear reaction rate expressions and the linear expressions for the velo-

cities and for the concentrations and temperatures at the axial boundary points 

are then substitu~ed into the differential equations. Due to extreme coupling 

between the state variables, lengthy manipulation is necessary to linearize the 

resulting equations. The linearization is completely analytic and the resulting 
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model is2 

i=Ax+lhr 

where 

The elements of the state and control matrices A and Bare as follows.3 

Elements of the State Matrix 

For i,j = 1, ... , N (i ¢j) 

2. In terms of deviation variables. 
3. Note that the At.j and Btj terms on the left of the equalities correspond to the elements of the 

state and control matrices A and B, whereas those on the right of the equalities correspond to 
Lag.r~~git~.n derivatives a::~ given by Equation (3.3-43). The tcrma JL..j correspond to clcmenta of 
the above H matrix. 
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A.:.2N+j = 0 A.:.2N+i = ~ 

A.:.3N+j = 0 

~.4N+j = 0 

AN'+i.2N+j = 0 

AN+i,BN+.i = AN+i.::JN+i = ~+i.4N+j = ~H.4N+i = 0 
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~N+iJ = 0 Ac!N+i,\ = Co>? 

~N+t:,N+j = 0 

A_ [o. ~.N+l~+l.j ] 
.M.2Nt1,2N+j : lXt J.J\j -

AN+l.N+l 

~+t:.3N+i : ~N+\.3N+i = ~N+i.4N+j = ~N+i.4Nt1 = 0 

A_ _ u. [~[A. AN+u:~.NH ]- +A. AN+1.oAi.N+t 
.n.:~N+i,j - -•.iiJ 2.,; .nor;,t - Yeo '"""·o -

k"'l AN+l.N+l ., AN+l.N+l 

A_ - u [ J1, [A. ~+t..t:At.NH ]- +A. ANH.ol\.Ntt l 
.n.:~N+t:,t - -·"'·" 2.,; '"""..t - Yeo nf.,O -

Al=l AN+l.N+l ., AN+l.N+l 

,._ . . = -H· ·[ JY, [A _ AN+I.tAt..N+l ]- +A. _ AN'+t.oAt..N+l ] 
.n.:~N+i,N+J l.N+J 1... ""'.t A.. Yeo., ""'·o A 

~=1 r>.N+l.N+l N+l.N+l 

A- - H [ Jl. [A. AN+l..AI~.N+l ]- + A. AN+t.oAi.N+l l .n.:~N+i.N+i - - \.N+i ~ '""".A: - Yeo .n.t.o -
A:=l AN+l.N+l ., AN+l.N+l 

AaN+i,2N+j : AsN+i,2N+i : 0 
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_ [ AN+t.;At.N+l l 
AsN+i.,3N+j ::: -Vi( t\J - A •• 

.nt'4 +l.N + 1 

AsN+i..4N+i ::: 0 

A _ H [ Ji. [A. AN+t..e.A.t.N+I ]- + A. yo ~+l.OAt.N+l -o ] 
E>4N+i.,j - - i,j ~ "".A: - 11.. Yco2 0>\,0 C02 - A Y~ 

.t=l r>fll+l.N+l i: N+t.N+l 

A _ l-L lr ~ [A AN+t . .tAt .N+l ]- + A. -o ~+1.oAt..N+t -o ] 
C>4N+i..-,; - -·'1- . ..: ~ n..t..e - Y~ n..t.oYcaa - Yeo 

k=l AN+l.N+l lc AN+l.N+l 2 

A _ H [ Ji. [A. AN+t.A:At.N+t ]- + A. -o AN+1.oAt..N+t -o ] 
"'lN+i.,N+; - - !..N+i ~ ""'L.k - A... Yco2 ""'.oYco2 - A... Ycaa 

k=l .nt'4+l.N+l lc .nt'4+1.N+l 

[ 
~ [ ~ ... uAt..N+l ]- -~ AN+t,oAt.N+l ] ~N+i.,N+i. = -l-4.N+i. ~ At...e - Y~ + At.oY~AJe - Y8aa 

.t=t ~+l.N+l 1: AN+I.N+l 

~N+i.,2N+j ::: ~N+i.,2N+1. ::: 0 

-ei( 
A.,N+i. 3N+i. = --aS -R.... ' PT --.,c~ 
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A - - !A. ~+lj~,N+l l A4N+\,4N+j - - V&( r>i,j - --'---=--''---
AN+I.N+l 

where 

Elements of Ccmtrol Matri:z: 

To define the clements of the matrix ~ the following definitions are needed. For 

the methanation system. 

where after substituting for the concentration of nitrogen in terms of the other 

chemical species . 
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Based on readily available data for the beat capacities of the gases, 

ale 0.000776 IX20 6.775 

ala 0.000034 IX2~ -0.155 
2 

a teo 0.000424 IX:! co -0.175 

a leo 0.003440 1X2eos 1.276 
I! 

alaeo 0.006394 1X2~o 4.425 

alCB O.Ol16b3 ~CB -1.574 
4 4 

Then let us define 
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XCo(ToCltHaO + ael\!0) 

a.= ~Cp. 

Then if we define 

the original definition for the constant r becomes 

The matrix I can then be partitioned using the definition of vector E 

where fori = 1, ... , N 
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and fori = N+l 

Thus we get 

Also if we define 
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Then the elements of the control matrix B are 



-482-

'B:aN+i.2 = 0 
1:1_ _ 1:1. a.,B,;.N+l~+UJ 
.I.J"lN+i,3 - a.,..L.I\,0 -

ANH.N+l 

'B:aN+i,4 = :&.!N+i,5 = B2N+i,6 = 'B:aN+i,7 = 'B:aN+i,B = B3N+i,l = 0 

BsN+t.2 = -l~[At.o - ~+l,oA,,N+1 + t (A,J: - A,,N+l~+lJ: )Yco
11

] 

AN+l.Nt 1 A:=l AN+t.N+l 
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- a.,, e... A.N 1AN a 
T::L A. ... R + ... R """"· + +1. - + z .u;jN+\.4 = --"'i.ovii - a1 P,. u:

10 
a2-p s - A.. vi( CXe 1( 

co, T Y&, rl.N+l.N+l 

B4N+i.l = 0 

B - I [A. -0 ~+t.oAi.N+l .9 + ~ (A. At.N+lAN+l):: )- I 
4N+\.2 - - 2 -"'i.OYCOa - Yeo l.J -"'i,A: - Yeo 

' AN+I.N+l 2 ~=I AN+l,N+l eA: 

B _ 1 lr A_ -o AN+1.o~.N+1 uo + Jl. (A_ ~.N+l~+l.A: )- I + z 
4N+\.3 - - 40 -"'i.oYco11 - 4 .. JC02 l.J .t"1.\.A: - A.. Yeo"'· a1 2, 

•>-N+l.N+l A:=l l"l.N+l.N+l "' 
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B _ A;. - + At.N+lAN+l.O _ -o EJ8( R + Z 
4N"'-"" - - ·oVa, V8,yrn_ - CJ3 -p S CX3 2, T..... . ... A.. • ""'1: !L • 

~+l.N+l T Yw~ 
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