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Practically, we are not interested in exact transmission when we have
a continuous source, but only in transmission to within a certain tolerance.

—C. E. Shannon, Bell Syst. Tech. J., 27, pp. 379–423, 623–656 (1948).

We observe from Fig. 1.1 that
communication system architecture centers or pivots around the

communications channel ... Modeling the effects of the physical channel
on the propagating electromagnetic field in different frequency bands

and under various scenarios is a continuous and ongoing task.

—M. K. Simon, S. M. Hinedi and W. C. Lindsey Digital
Communication Techniques, Prentice Hall (Englewood Cliffs, NJ, 1995).
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Preface

The brevity of life does not allow us the luxury of spending time on problems which will lead to no
new results.

—–L. D. Landau, as quoted by E. M. Lifshitz in L. D. Landau and E. M. Lifshitz,
Mechanics, Vol. 1 of Course of Theoretical Physics, Pergamon Press (Oxford, 1976).

This thesis addresses two topics in lightwave communication systems—increasing the

bit rate of data transmission, and finding a way to temporarily store information-

carrying optical pulses in compact semiconductor devices. The former identifies a

way to utilize existing (nonlinear) transmission phenomena to advantage in sending

information across optical fiber, and the latter is a proposal for a class of devices that

are frontline components in packet-switched optical networks.

The fundamental format for carrying information is an optical pulse, a localized

packet of electromagnetic energy. The output light from a laser, at a particular carrier

optical frequency, is turned on and off at a particular rate (amplitude modulation1)

to create a train of pulses which represents the information in a sequence of bits. The

frequency (Fourier) spectrum of an amplitude modulated signal contains a narrow

band of frequency components around the carrier frequency; the faster the rate of

modulation, the greater the spectral width of this band.

It is necessary that this band of frequencies fits within the “transparency window”

of the transmission medium. Fibers made of high-purity silica have a very wide range

of frequencies available for carrying information, and therefore, the modulation rate

can be quite high. It is, in fact, other practical issues that place a lower limit on the

minimum pulse width—a few hundred femtoseconds in long-distance communications.

A minimum pulse width means that the maximum spread of the modulation band

1The overwhelming majority of practical schemes for optical communications use amplitude mod-
ulation (on-off keying), although other forms of modulation (frequency or phase) have been investi-
gated.
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around the center (carrier) frequency is restricted, and the available spectrum of the

optical fiber outside this band is not utilized.

For higher data-rate communications, a number of different lasers with different

center frequencies can be modulated simultaneously2, so that more of the available

transmission channel bandwidth is used efficiently. A simple picture of a digital

transmission format is the so-called wavelength-division multiplexing (WDM) over

time-division multiplexing (TDM): the presence of a pulse of light at a particular

frequency (wavelength) in a particular timeslot signifies a “one” and whose absence

then signifies a “zero.” The successful operation of a high-speed multichannel com-

munication system depends on the degree to which the noise of the system can be

compensated for, and the principal sources of noise in optical channels include the

dispersion of the fiber, effects of nonlinearities in the dielectric material that com-

prises the fiber, and the noise added by optical amplifiers. Conventional systems try

to minimize the effect of dispersion and of the nonlinearities; the recent development

of optical solitons makes it possible to design a system that utilizes dispersion and

nonlinearity constructively.

� Prof. Amnon Yariv has always made himself available for counsel, and has gener-

ously let me define my own thesis, based on topics I found promising and meaningful.

My experiences associated with his research group will be invaluable in the years

ahead. Profs. Don Cohen and Bruno Crosignani have been valuable collaborators

in aspects of this work, particularly deserving of acknowledgment in an environment

where effective scientific collaboration is difficult. Profs. Tom Tombrello, Don Cohen,

Dave Rutledge, and Axel Scherer graciously served on my thesis committee and have

been a source of continuing help and advice over many years.

At MIT, Prof. Vincent Chan supported my research on optical networks, a col-

laboration and friendship that extended even when I returned to Caltech. The en-

couragment of Profs. Hermann Haus and Erich Ippen was a source of inspiration. I’d

also like to take this opportunity to thank a few other outstanding teachers I’ve had

the privilege of learning from: Profs. Jim Fujimoto, Glen George, Jin Au Kong, Bob

McEliece, and Mark Wise.

2Or a number of designated wavelengths can be filtered from a single source of sufficient band-
width.
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� Historical outline: In January 2001, Yi Li, with whom I shared an office at the

time, told me of his conversations with Prof. Yariv on the frozen-light experiments

performed by the Harvard groups (Hau and Lukin), which led to my interpreting their

approach based on electromagnetically induced transparency as phenomenologically

very similar to holography (February 1, 2001, and in later conversations with Lene

Hau, June 6, 2002). At that time, we weren’t quite sure how to translate the slow-

light phenomenology to the optical domain. A month later (March 14, 2001), Yong

Xu told me about his idea of using defect states pulled outside a CROW band to trap

light propagating in the CROW band. Although this wasn’t in itself a solution to

our problem, it seemed plausible that combining the reduction in the group velocity

of light propagating in a CROW band with the photorefractive process would lead

to interesting new applications. But there were few studies of pulse propagation in

photonic crystal waveguides at that time beyond that of numerical simulations, and

none of nonlinear processes such as the photorefractive effect in such waveguides.

We are now able to characterize pulse propagation in CROWs not only in the

linear dispersion approximation—as is most practical for applications based on index

gratings, e.g., holography—but using the complete (nonlinear) dispersion relationship.

This led to our prediction and analyses of a class of super-resonant modes in CROWs

comprised of χ(3) material, which are essentialy Schrödinger solitons but with zero

group velocity—they remain spatially frozen to a finite section of the waveguide.

My work on solitons in optical fibers began soon after I joined Caltech (July

2000). There are interesting analogies between the diffraction of a Gaussian beam in

a rotationally symmetric quadratic index medium and the propagation of a Gaussian

pulse in the presence of the Kerr effect. Some of the analogies cannot be explained

algebraically, i.e., the ABCD matrix translation rules fail, but topological arguments

are very effective (January 2001, following a suggestion by Prof. D. S. Cohen). Inas-

much as conformal mappings have become an important tool in waveguide design,

geometric arguments may offer a new way to design nonlinear optical transmission

links.

We have analyzed the Hamiltonian approach to designing a nonlinearly multi-

plexed dispersion-managed soliton transmission communication system (June 2001).

Breathing pulse shapes traverse closed orbits in phase space, and therefore, we may

identify different trajectories with different codes to achieve higher channel capacity

than possible in linear channels.
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Abstract

Whether over micron-long or kilometer-long distances, periodic phenomena can strongly

affect both the propagation and the confinement of optical pulses. Periodicities can be

engineered through the structural design of optical waveguides, or they may manifest

self-consistently from induced nonlinear polarizations. In light of recent developments

in fabrication technologies for semiconductor waveguides, polymeric materials, and

optical fiber, we show that both strongly- and weakly-nonlinear channels are promis-

ing for new devices and systems in optical communications. This thesis proposes

and discusses applications of guided wave periodicities in the framework of photonic

crystals (coupled-resonator optical waveguides as well as transverse Bragg resonance

waveguides and amplifiers), nonlinear phenomena in photorefractive semiconductors,

and the nonlinear evolution of temporal solitons in dispersion-managed fibers.

Coupled-resonator optical waveguides (CROWs) are composed of a periodic array

of electromagnetic resonators, typically on the micron or sub-micron length scales. A

photon in such a waveguide sees a periodic potential, and according to the Floquet-

Bloch theorems, has a wavefunction that reflects this periodicity. CROWs have a

unique dispersion relationship compared to other semiconductor waveguides, and can

be used to slow down the speed of propagation, enhance nonlinear interactions such as

second-harmonic generation and four-wave mixing, and form frozen soliton-type field

distributions that use the optical Kerr nonlinearity to stabilize themselves against

decay via adjacent-resonator or waveguide-resonator coupling.

In optical fibers that possess the optical Kerr nonlinearity in addition to group-

velocity dispersion, it is possible to propagate pulses with envelopes that “breathe”

with distance, typically at kilometer or longer length scales. Such waveforms are

characterized by a set of parameters—e.g., amplitude, chirp, etc.—that vary in a

periodic manner as the pulse propagates. Borrowing an idea from field theory, e.g., of

classical pendulums, or quantum-mechanical elementary particles, the pulse envelope
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may be viewed as a particle traversing a trajectory in a phase space defined by

its characteristic parameters. Distinct, non-overlapping trajectories are assigned as

symbols of a multilevel communication code. Since it is the periodicity, arising from

the Kerr nonlinearity, that generates this diversity in phase-space, there is no analog

of this multiplexed system in linear optical transmission links. The overall bit-rate

can be improved several fold above the current limits.
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Chapter 1

Fundamentals

It is my experience that the direct derivation of many simple,
well-known formulae from first principles is not easy to find in print.

The original papers do not follow the easiest path, the authors of reviews
find the necessary exposition too difficult—or beneath their dignity—

and the treatises are too self-conscious about completeness and rigour.

—J. M. Ziman, Principles of the Theory of Solids (1998).

The distinction between the propagation of monochromatic CW waves and the

propagation of pulses is not a trivial one, particularly in many of the waveguide struc-

tures of recent interest. These include geometries that don’t satisfy space-translation

invariance symmetry, such as certain types of waveguides defined by the coupling of

defects in photonic crystals, and nonlinear waveguides, such as optical fibers in the

presence of chromatic dispersion and the Kerr effect.

In studies of linear propagation, which are nowadays a standard part of any un-

dergraduate or graduate optics curriculum, most textbooks don’t explicitly account

for a temporal dependency in the envelope of the eigenmodes of a waveguide1. For

example, we have the Ansatz of Eq. (8.2-7) in [154], which forms the basis for the re-

mainder of the chapter, and the assumption of Eqs. (9.9) and (9.10) in [50]. The study

of CW waves is certainly more venerable than that of pulses, and there are still a few

surprises that one uncovers in the analysis of pulses—superpositions of CW wave-

guide modes—that aren’t a trivial extension of the CW analysis. Further, whereas

CW wave propagation in periodic waveguides is becoming part of the common base

of knowledge at least at the professional level, evinced by the large number of recent

papers that use the terminology of “Bloch functions” and “periodically modulated

1Beyond that of invariance in the reference frame t − z/v, where v is a characteristic velocity of
energy transport of the pulse.

15



16 Fundamentals

plane waves” without apologia, we haven’t seen an application of this discussion at a

fundamental level to the study of pulse propagation in such structures.

In descriptions of time-dependent phenomena in electromagnetics and solid-state

physics, the focus is often limited to wave packets, in which the eigenfunctions depend

on time2 but the envelope is a function of only one variable. As an example, we have

the wave packets considered by Raimes [112, pp. 320-326],

Ψ(x, t) =

∫ ∞

−∞
A(k) ei(kx−ωt) dk. (1.1)

In certain cases, the envelope is taken to be a separable function as in Raimes [112,

pp. 334–335],

Ψ(r, t) =
∑
k

Ak(t) ψk(r) e−iE(k)t/� (1.2)

for the purposes of calculating transition probabilities in time-dependent perturbation

theory. We will use such an approach in Chapter 5. However, one can also come across

scenarios of pulse propagation in linear waveguides in which an ab initio derivation

is called for, as in Chapters 2 and 3.

In studies of nonlinear propagation, the need to account for pulses differently than

CW waves is self-evident. Solitons are, by definition, envelopes of the electromagnetic

field that are invariant in a moving reference frame. They represent a propagating con-

centration of electromagnetic energy with certain precisely defined properties. We’ve

applied a particular type of variational analysis to a class of optical communications

system of current interest. The “dispersion-managed soliton,” or “breather,” commu-

nication system discussed in Chapter 7 accounts the combined effects of third-order

dispersion and nonlinearity in optical fibers (in addition to group-velocity disper-

sion). Dispersion maps can be constructed analytically, if approximately, to guide

the evolution of pulse parameters such as width and quadratic chirp along specified

system design parameters. A new scheme of multiplexed communications, in addi-

tion to wavelength-division and time-division, is proposed that takes advantage of the

unique properties of nonlinear (soliton- or breather-based) communication formats.

A simple way of characterizing via two-by-two matrices the propagation of Gaus-

sian breathers in nonlinear fibers with second-order dispersion is presented. We’ll see

that this method offers a quick and accurate way to design simple dispersion maps,

2Usually in a simple way, such as exp(iωt).



1.1 Pulse propagation in a linear waveguide 17

without requiring intensive numerical simulations. This is based on the well-known

space-time analogies between (linear) beam diffraction and pulse dispersion, extended

to the nonlinear domain. In addition to such algebraic space-time translation rules,

there exist geometric correspondences, based on the algebraic topology of the spaces

of solutions to nonlinear evolution problems. These new rules can help understand

either nonlinear beam diffraction phenomena or nonlinear pulse propagation.

We’ll set the stage for the remainder of the thesis by briefly describing the state of

the art in the standard descriptions of pulse propagation [154, 152, 50, 57, 113, 126]

in linear and nonlinear media. Space-time analogies are introduced in Chapter 8.

1.1 Pulse propagation in a linear waveguide

Proceeding as in [152, pp. 642–644], we consider an input pulse

E(z = 0, t) = f(t) eiω0t = eiω0t

∫ ∞

−∞

dΩ

2π
F (Ω) eiΩt, (1.3)

where ω0 is the carrier optical angular frequency of the laser source modulated to

produce E and F (Ω) is the Fourier transform of the complex input pulse envelope,

F (Ω) =
∫∞
−∞ dt exp[−iΩt] f(t).

In the words of Yariv [152, pp. 643], “the field at a distance z is obtained by

multiplying each frequency component (ω0 +Ω)” in Eq. (1.3) “by exp[−iβ(ω0 +Ω)z],”

where β(ω) is the propagation constant at the optical frequency. This presentation

uses k(ω) in place of β(ω). Therefore,

E(z, t) = eiω0t

∫ ∞

−∞

dΩ

2π
F (Ω) eiΩte−ik(ω0+Ω)z. (1.4)

Expanding k(ω) in a Taylor series about ω0 (called a dispersion relationship),

k(ω0 + Ω) = k(ω0) +
dk

dω

∣∣∣∣
ω=ω0

Ω + . . . ≡ k0 +
1

v
Ω + . . . , (1.5)
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where v is the group velocity so that Eq. (1.4) becomes

E(z, t) = ei(ω0t−k0z)

∫ ∞

−∞

dΩ

2π
F (Ω) eiΩ(t−z/v)

= ei(ω0t−k0z)f(t − z/v). (1.6)

In words, Eq. (1.6) says that a pulse propagates unchanged in shape in a linearly

dispersive medium, apart from an overall phase factor. Moreover, the velocity of

propagation is given by the group velocity of the pulse3.

1.2 Field evolution in a linear structure

We can get the same result in a complementary way. We’ll write down an expres-

sion for the field distribution at t = 0,

E(z, t = 0) = g(z) e−ik0z = e−ik0z

∫ ∞

−∞

dK

2π
G(K) e−iKz, (1.7)

where k0 references the central wavenumber or propagation constant of the pulse, and

using the Fourier transform relationships, G(K) =
∫∞
−∞ dK exp[iKz] g(z).

The field at time t > 0 is obtained by multiplying each frequency component at

k0 + K by exp[iω(k0 + K)t],

E(z, t) = e−ik0z

∫ ∞

−∞

dK

2π
G(K) e−iKz eiω(k0+K)t. (1.8)

Writing the dispersion relationship in a Taylor series [57, pp. 323–324],

ω(k0 + K) = ω(k0) +
dω

dk

∣∣∣∣
k=k0

K + . . . ≡ ω0 + v K + . . . , (1.9)

3The sign convention in the exponents in Sections 1.1 and 1.2 and in Chapters 2 and 3 follows
that of Yariv [154, 152] rather than the one found in [57]. Rather curiously, in the same book,
Section 15.4 on self-induced transparency [152, pp. 358] uses the opposite sign convention, E(z, t) ∝
exp[i(k0z − ω0t)].
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where v once again represents the group velocity, we can simplify Eq. (1.8) to

E(z, t) = ei(ω0t−k0z)

∫ ∞

−∞

dK

2π
G(K) e−iK(z−vt)

= ei(ω0t−k0z)g(z − vt). (1.10)

It’s obvious that Eq. (1.10) has a completely equivalent (analogous) structure as

Eq. (1.6)4. But there are subtle implications in the two different approaches that are

important in certain types of waveguide structures.

1.3 Nonlinear pulse propagation: solitons

The theoretical prediction and experimental verifications of optical solitons have

revolutionized the field of optics [47]. Whereas in conventional (e.g., non-return to

zero, NRZ) communications, fiber nonlinearities are impediments that must be com-

pensated for, solitons explicitly rely on the existence of these nonlinear effects to

achieve the very same properties that are desirable in linear communications. In

particular, we look for bounded variations in the pulse parameters such as width

and chirp, and robustness to perturbations [63, 41]. As the understanding of soliton

properties has grown, researchers have developed promising applications in optical

communications, leading to the demonstration of new forms of (fiber) lasers [48, 49],

of repeaterless transmission [51], ultrashort pulse propagation, and all-optical switch-

ing and logic circuitry.

One of the most important features of soliton-based communication is the obser-

vation (see, e.g., [44, pp. 102–108]) that a soliton pulse moves with a velocity that is

different from that characterizing the propagation of a linear pulse. In short, a soliton

can separate itself from linear additive noise, opening a new realm of possibilities for

system design in communication theory. It’s no longer true that the traditional met-

ric for information transmission, the signal-to-noise ratio (SNR), necessarily worsens

when the signal is sent through a dissipative or amplifying media.

More recently, a slightly modified form of the fundamental “Schrödinger” soliton

has been shown to demonstrate many advantageous properties as the pulse shape

of choice in optical communications. This will be introduced in the next section.

4Compare Eq. (1.10) with [57, Eq. (7.84)].
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This section, closely following the presentation in [4], presents a derivation of the

equation governing the evolution of the Schrödinger soliton envelope in a fiber with

second- and third-order dispersion and the Kerr nonlinearity. In keeping with the

convention used in the majority of the literature, the sign and notation convention is

E(z, t) ∝ exp[i(βz − ωt)], where β is the propagation constant5.

From Maxwell’s equations,

∇2E − 1

c2

∂2E

∂t2
= −µ0

∂2P

∂t2
, (1.11)

where the complex field envelope E(r, t) satisfies the following Fourier transform

relationships

Ẽ(r, ω) =

∫ ∞

−∞
dtE(r, t) exp(iωt), (1.12)

E(r, t) =

∫ ∞

−∞

dω

2π
Ẽ(r, ω) exp(−iωt). (1.13)

We’ll write E(r, t) in terms of a rapidly varying exponent and a slowly varying

envelope, so that along a particular (implicit) polarization of the field,

E(r, t) =
1

2

[
Ē(r, t) e−iω0t + c.c.

]
. (1.14)

Using Eq. (1.13), we can formulate the Fourier transform of the envelope Ẽ(r, ω−
ω0), which is the solution to

∇2Ẽ + ε(ω)k2
0Ẽ = 0, (1.15)

where k0 = ω/c and ε(ω) is the dielectric constant. To solve this equation, let’s

assume that Ẽ can be written as a product of two functions: one will depend only on

the transverse coordinates x and y, and the other on the longitudinal coordinate z,

Ẽ(r, ω − ω0) = f(x, y) Ã(z, ω − ω0) exp(iβ0z). (1.16)

By substituting Eq. (1.16) into Eq. (1.15), we obtain the following pair of equa-

5For a presentation using the convention used in Sections 1.1 and 1.2, see [28].
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tions,

∇2f +
[
ε(ω)k0

2 − β̄2
]
F = 0 (1.17)

2iβ0
∂Ã

∂z
+ (β̄2 − β0

2)Ã = 0. (1.18)

The standard method of solving Eq. (1.17) uses first-order perturbation theory, writ-

ing ε in terms of the constant refractive index and a small deviation,

ε � n2 + 2n∆n = n2 + 2n

[
n2|E|2 + i

α

2k0

]
, (1.19)

so that ∆n accounts for the Kerr nonlinearity and fiber loss. At this level of ap-

proximation, ∆n does not affect F (x, y) but changes the mode constant β̄(ω) =

β(ω) + ∆β [4], where ∆β is given by

∆β = k0

∫∫
dx dy ∆n |F (x, y)|2∫∫

dx dy |F (x, y)|2
. (1.20)

Then, Eq. (1.18) becomes

∂Ã

∂z
= i [β(ω) + ∆β − β0] Ã. (1.21)

We can expand the mode propagation constant, which depends on the optical

angular frequency ω in a Taylor series around ω0,

β(ω) = β0 + (ω − ω0)β
′ +

1

2
(ω − ω0)

2β′′ +
1

6
(ω − ω0)

3β′′′ + . . . , (1.22)

where 1/β′ ≡ dβ/dω|ω=ω0 defines the group velocity, and higher derivatives of β

evaluated at ω0 give the higher-order dispersion coefficients [4, pp. 8–9].

Consequently, converting Eq. (1.21) to the time domain by taking the inverse

Fourier transform,

∂A

∂z
+ β′∂A

∂t
+ i

β′′

2

∂2A

∂t2
− β′′′

6

∂3A

∂t3
= i∆βA = −α

2
A + iκ|A|2A, (1.23)
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using the definition of δn from Eq (1.19). In this equation, κ = n2ω0/(cAeff) is the

nonlinearity coefficient defined in terms of an effective core area Aeff [4].

Now, we transform to moving coordinates, t − β′z �→ T and ignore the loss by

setting α = 0. To normalize the equation, we introduce [4, Chap. 5]

U =
A√
P0

, ξ =
z

LD

, τ =
T

T0

, (1.24)

where P0 is the peak power, T0 is the width of the input pulse, and LD is the dispersion

length, LD = T0
2/|β′′|. Next, using a parameter N =

√
γP0T0

2/|β′′|, let’s introduce

u = NU so that

i
∂u

∂ξ
+

1

2
sgn(β′′)

∂2u

∂τ 2
+ |u|2u − iγ

∂3u

∂τ 3
= 0, (1.25)

where γ = β′′′/(6|β′′|t0). We define σ = − sgn(β′′) and use the original symbols z and

t for ξ and τ , respectively,

i
∂u

∂z
+

σ

2

∂2u

∂t2
+ |u|2u − iγ

∂3u

∂t3
= 0. (1.26)

The case β′′ < 0, or σ = 1 is called “anomalous dispersion,” and corresponsingly, the

case β′′ > 0 or σ = −1 is known as “normal dispersion.”

Soliton solutions to Eq. (1.26) are known for the case of anomalous dispersion.

The family of soliton solutions, comprising of the fundamental Schrödinger soliton and

higher-order Schrödinger solitons, can be found analytically by the inverse scattering

method [160] and by method proposed by Hirota [53]. There’s a large literature on

the remarkable properties of these pulse shapes.

There are a number of partial differential equations in two or more dimensions

that have soliton solutions [55]. An example in optics, other than the propagating

Schrödinger soliton, which is a consequence of a third-order (cubic) nonlinearity, is the

family of quadratic solitons, which are a consequence of a second-order (quadratic)

nonlinearity. A review of optical spatial solitons is presented in [122], and a paper by

Snyder et al. is noteworthy [130].
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1.4 Quasi-solitons and breathers

In recent studies, the term “soliton” has broadened to include self-trapped solu-

tions of non-integrable systems [71]. In particular, we’ll consider the physical impli-

cations of allowing σ in Eq. (1.26) to vary with propagation distance z.

i
∂u

∂z
+

σ(z)

2

∂2u

∂t2
+ |u|2u − iγ

∂3u

∂t3
= 0. (1.27)

The variations in this group-velocity dispersion (GVD) parameter are chosen ac-

cording to some prescription (usually piecewise constant) over a length Z0, which

then defines a dispersion map, and the pulse propagates over several such periods.

Eq. (1.27) has been found to support soliton-like solutions, which have come to be

known as dispersion-managed solitons, referring to the management (i.e., design) of

the dispersion map that the pulseshape traverses with propagation distance [103].

The pulse amplitude, width, and certain other parameters describing the envelope

demonstrate periodic oscillations over the map period, and these pulses are conse-

quently also known as “breathers.” It’s useful to note that breathing solutions can

exist even without a dispersion map, as have been shown in one context in [68] and

will be seen in a different setting in Chapter 6.

Waveform distortion consequent of self-phase modulation and dispersion can be

reduced by decreasing the path-averaged dispersion. On the other hand, interchannel

crosstalk in a wavelength-division multiplexed (WDM) communication system arising

from four-wave mixing or cross-phase modulation becomes smaller as the magnitude

of the GVD parameter β′′ is increased [4]. To simultaneously achieve both these

properties, the dispersion map is designed to use sections of fiber with high local

GVD, but low path-averaged GVD [124], e.g., by using nonzero dispersion fibers to

achieve large local GVD and inserting dispersion compensators at regular intervals

to compensate for accumulated GVD [139], or by using reverse dispersion fiber in

conjuction with single-mode fiber [134].

Perhaps the most important analytical tool in the construction of dispersion maps,

i.e., in the specification of σ(z), is the formulation of equations of motion of the pulse

parameters describing the evolution of a dispersion-managed soliton [7, 68]. This is

based on a variational approach borrowed from classical mechanics, where the system

of interest is described by a Hamiltonian functional [39].
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Once the averaged GVD coefficient is made small, the effects of third-order disper-

sion (TOD) become significant. While one approach is to design dispersion compen-

sators that attempt to cancel both GVD and TOD (also called dispersion slope) [151],

another approach is to design the dispersion map to explicitly take into account the

effects of TOD [99]. This recent paper is based on numerical simulations, since no

analytical theory of TOD comparable to [68] has existed. This is the problem tackled

in Chapter 6.

1.5 Photonic crystals

Photonic crystals are periodic arrays of dielectric materials with different dielec-

tric constants. Alternating layers of two materials, e.g., GaAs and Al0.3Ga0.7As of

thickness ≈ 200 nm, creates a one-dimensional photonic crystal (1DPC), more com-

monly known as a dielectric multilayer, or a Bragg stack [159]. When we observe the

propagation of waves through such a Bragg stack, we see that for certain ranges of

wavelengths (λ = 1.15 µm ±200 nm), the incident light is completely reflected. These

bands of frequencies are called “forbidden” bands or gaps. The underlying physics is

that of Bragg reflection: at the center of each forbidden gap, the wavelength of light

is an integer multiple of the period of the Bragg stack. Successive reflections from

neighboring interfaces add up in phase with each other, leading to constructive super-

position at the plane of incidence to the stack. A concise derivation of the dispersion

relationship for such a 1DPC is given in [117].

A uniform photonic crystal is a periodic dielectric medium usually thought of as

the equivalent of a “nearly free electron” metal, in which electronic energy levels can

be calculated using the assumption of a weak periodic potential [129]. In a photonic

crystal, the potential is a consequence of the lattice of dielectric material rather than

a periodic array of atoms. We know that plane waves are solutions to the unperturbed

Schrödinger equation, and we assume that in such a medium, the “true” solution can

be expanded in this basis. From solid-state theory, a weak periodic potential strongly

affects those free electron levels whose wave vectors are close to ones at which Bragg

reflections can occur [9, pp. 152–159].

Photonic bands of eigenfrequencies and band gaps between these bands are anal-

ogous to their counterparts in solid-state physics: when an external field changes an

electron’s wave vector across a Bragg plane, the presence of an energy gap implies
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that the electron must be found in same branch of the energy level across the Bragg

plane. In terms of experimentally observed quantities, a bandgap refers to a gap in

the density of states of the propagating eigenmodes. A measurement of the trans-

mission characteristics of plane waves will reveal intervals of frequencies where the

transmission is very small. Photonic bandgaps in the optical regime can be used to

inhibit spontaneous emission, localize donor and acceptor modes, etc., and also lead

to the formation of stable solitary waves and a nonexponential decay of spontaneous

emission, and in the Anderson localization of light.

As an example of a two-dimensional photonic crystal (2DPC), consider a periodic

array of air columns drilled into a dielectric volume, or the converse. Assuming that

the columns are of infinite length (height), a cross-sectional slice is characterized by

a dielectric constant (rather, the dielectric “function” since it isn’t a constant) that

is periodic in two dimensions. The two most common patterns for the columns are

at the vertices of an equilateral triangle (or hexagon), and a square.

For a triangular lattice of GaAs cylinders (ε = 11.56) in air, the lowest-frequency

TE bandgap is widest when the ratio of the cylinder radius to the lattice constant

r/a = 0.376. This gap extends from f = 0.2875 to f = 0.3193 in units of c/a. In

order to position λvac = 1.55 µm at midgap, we determine the lattice spacing to be

a = 470 nm. This structure then has a TE bandgap from 1.472 µm to 1.635 µm, and

a TM bandgap from 1.087 µm to 1.279 µm.

A 2–D photonic crystal comprising of a square lattice of identical cylindrical rods

(of dielectric constant ε = 8.9) shows a bandgap in the TM polarization6 [58, 115]. A

triangular lattice of holes in a dielectric material (ε = 13) supports a bandgap for both

TM and TE polarizations, with a gap-midgap ratio ∆ω/ω0 of 18.6%, where ω0 is the

frequency at the middle of the gap [58, Fig. 5.10]. In Figs. 1.1 and 1.2, the height of

the contour corresponds to transmission, with ‘Frequency’ represented in units of c/a

and ‘K-vector’ normalized to the reciprocal lattice vector. (Fabry-Perot resonances

from the finite length of the simulated structure are visible in the passband.)

The extension to three-dimensional structures is simple conceptually, but presents

formidable difficulties in fabrication. Their most appealing attribute is that 3DPC’s

can possess a complete band gap, characterized by no propagating electromagnetic

modes of a given range of frequencies for all k-vectors over the entire 3–D Brillouin

6TM modes have E as a scalar normal to the x − y plane of the crystal and pointing in the ẑ
direction, so that E = E(ρ)ẑ and H(ρ) · ẑ = 0.
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Figure 1.1: Photonic band structure and transmission characterisitics for the TM
modes in the ΓM direction for a triangular array of air columns in a dielectric material
of ε = 13. Data generated by the software package Translight by Andrew L. Reynolds
at the Photonic Band Gap Materials Research Group, University of Glasgow.
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Figure 1.2: Photonic band structure and transmission characterisitics for the TE
modes in the ΓM direction for a triangular array of air columns in a dielectric material
of ε = 13. Data generated by the software package Translight by Andrew L. Reynolds
at the Photonic Band Gap Materials Research Group, University of Glasgow.
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zone. A well-studied example is the face-centered cubic (diamond) lattice of air

spheres in GaAs (ε = 13), where the radius r is related to the lattice constant a by

r/a = 0.325. (The diameter of the air spheres is larger than the distance between

spheres, a
√

3/2.)

Quasi-3–D structures such as photonic crystal slabs are similar to 2DPC’s in the

transverse profile of the dielectric function, but are of finite extent vertically. They

rely on index contrast with the surrounding material (e.g., air surrounding a slab of

GaAs) to confine modes to the slab vertically.

Many of the most interesting properties of photonic crystal structures arise when

the periodicity is intentionally interrupted, e.g., by filling in one of a periodic array

of air columns drilled into a GaAs slab. Borrowing once again from the terminology

of crystalline solids, this creates a “point defect” in the crystal. Point defects can

support localized high-Q modes [143], and line or surface defects can give rise to

propagating waveguide modes [108]. Much of the current understanding of photonic

crystal waveguides based on defects relies on numerical simulations, since the mode

structure of the individual defect modes is complicated. However, certain qualitative

features can be readily understood: as the translational symmetry of the structure

is destroyed, we can no longer use an in-plane wave vector to classify waveguide

modes, but mirror-reflection symmetry is still intact for in-plane propagation so that

TE and TM modes are still decoupled. If the eigenfrequency of the defect mode lies

in the photonic band gap, the defect-induced state must be evanescent, i.e., decay

exponentially away from the location of the defect in the plane of the structure.

We will examine the defect modes of a triangular lattice of air holes in GaAs

(ε = 11.4) in some detail, because these modes will be used as the basic con-

stituents of coupled-resonator optical waveguides (CROWs). The transverse vari-

ation of the dielectric function over the computational unit cell is shown in Fig. 1.3.

The TE band structure of the uninterrupted periodic crystal shows a bandgap from

ωa/(2πc) = 0.307 to ωa/(2πc) = 0.495. Since the uninterrupted crystal exhibits

the C6v spatial symmetry, each localized eigenmode of the defect may be attributed

to one of its irreducible representations. There are four “one-dimensional” repre-

sentations (non-degenerate eigenvalues) and two “two-dimensional representations”

(doubly degenerate eigenvalues) [117, Ch. 6].

The defect mode field distributions may be calculated using either frequency-

domain or time-domain methods; here, we use a freely available software package
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defect
air holes a

2r

dielectric function

Figure 1.3: Geometrical structure and the assumed variation of the dielectric function,
for computational purposes, across a 5× 5 unit cell of air holes in GaAs with a defect
in the center. The dark regions correspond to GaAs, and r/a = 0.45.

based on the former method [60]. The H-field distributions (TE polarization) for two

one-dimensional and the two two-dimensional modes are shown in Figs. 1.4 and 1.5.

The fields are clearly localized around the defect cavity, and show charateristic spa-

tial symmetries. The A1 mode is particularly simple, and will be the archetypical

resonator field in the study of coupled-resonator waveguides.

A different form of waveguide, not based on point defects, is formed by altering

every element along one row of holes, either increasing or decreasing the radius [61].

These are called “line-defect” waveguides; in particular, increasing the radius of air

holes creates a reduced-index waveguide, and correspondingly, the other case forms an

increased-index waveguide. We will not discuss line-defect waveguides here. Altering

the amount of dielectric in the waveguide by changing the hole size may make it

more difficult to realize a single mode waveguide, as the number of defect states in

the band gap is altered. Calculations for a multilayer slab waveguide structure with

external coupling are somewhat complicated [146]: the band structure is solved in

each transverse layer to find a set of modes that propagate in the vertical direction as

plane waves. These are used as the basis states to construct the fields in each layer,

with appropriate continuity conditions at the boundaries. Further, the waveguide

modes of a slab waveguide can occur at eigenfrequencies out of the photonic band

gap of the photonic crystal [2].

The important phenomenon of the reduction of the group-velocity in 2–D and
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0.420 0.458

A1 B2

Figure 1.4: Field distributions for two one-dimensional fields: the A1 mode with
ωa/(2πc) = 0.420 and the B2 mode with ωa/(2πc) = 0.458. The colorbar is the same
as in the next figure.

3–D photonic crystals in discussed by Sakoda [116]. Not only does this lead to the

enhancement of nonlinear optical processes as discussed in other parts of this report,

the stimulated emission from active defects is also enhanced [34] as a consequence of

the long interaction time between the radiation field and the emitting atoms

Photonic crystals have been fabricated in GaAs/AlGaAs structures [23, 105], in

silicon [78], in photopolymerizable resins by using laser beam interference [127], as

alumina rods in the microwave (gigahertz) regime [84, 13]. Chow et al. have reported

measurements of transmission at 1550 nm in a (vertically asymmetric) photonic crys-

tal GaAs slab coupled to ridge waveguides [23]. Photonic crystal waveguides fabri-

cated in a silicon slab (with an undercut air region for symmetry) for both triangular

and square lattice have demonstrated low scattering-loss transmission around bends

at 1550 nm [78].

Recently, Busch and John [19] have proposed a tunable bandgap structure—a

microscopic lattice of air spheres in silicon, the “inverse opal” structure, infiltrated

with a birefringent nematic liquid crystal that can be made to control the transmission

properties via an external electric field.
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Figure 1.5: Field distributions for the two two-dimensional fields: the E1 modes with
ωa/(2πc) = 0.313 and the E2 modes with ωa/(2πc) = 0.396. Both eigenfunctions of
the doubly-degenerate modes are shown.



32 Fundamentals



Chapter 2

Linear propagation in the tight-binding approximation

Operator techniques, functional techniques, renormalization
group methods, etc., are all available to take on any problem.

What is left open and is simply outside the scope of any of these methods
is the choice of “Equation (1)”, namely the starting point.

No solution technique, no matter how powerful, can derive a result
that is not already implicit in the starting equation.

—John R. Klauder, Beyond Conventional Quantization, Cambridge (2000).

The development of integrated optoelectronic devices depends, in part, on the un-

derstanding of electromagnetic propagation in microstructure waveguides. Since this

electromagnetic radiation, for applications in communications, consists of pulses of

light, it’s important to explicitly account for temporal variations in the envelopes of

the fields. Mathematically, we discuss linear pulse propagation in one-dimensional

waveguides which do not exhibit spatial translation invariance symmetry, i.e., the

modes are not plane waves. Physical realizations of such structures include modu-

lated gratings in optical fibers or semiconductor materials, a linear array of defects

in a two-dimensional photonic crystal slab, and a chain of polystyrene microspheres.

2.1 Eigenmodes and “coupled mode theory”

Coupled-mode theory is a well-known formalism applicable to the problem of

propagation in an optical waveguide [154, Ch. 13]. It is a method of analysis of the

wave equation [154, 126, 57],

∇× [∇× E] +
ε(r)

c2

∂2E

∂t2
= − 1

c2

∂2

∂t2
Ppert(r, t), (2.1)

33
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where Ppert(r, t) is a perturbation polarization that represents any deviation from the

unperturbed waveguide.

In the paraxial approximation, the total field in the waveguide is written as a

superposition of confined modes1; for TE modes propagating in a slab waveguide

along the z direction, the electric field,

Ey(r, t) =
1

2

∑
m

Am(z) E (m)
y (x) ei(ωt−kmz) + c.c., (2.2)

is a sum of m discrete confined eigenmodes E (m)
y (x), with propagation constants km

arising from an eigenvalue equation, modulated by an envelope Am(z).

Substituting the Ansatz Eq. (2.2) into Eq. (2.1) and assuming that derivatives of

second order of Am(z) can be ignored, we can obtain an ordinary differential equation

for Am(z) in terms of Ppert(r, t) and E (m)
y (x) [154, Eq. (13.3-9)]. This approximation

in neglecting |d2Am/dz2| compared to km|dAm/dz| is known as the slowly varying

envelope approximation (SVEA).

This approach is useful in the description of wave propagation in gratings and other

periodic optical systems where the strength of the perturbation (relative to the free-

space equations) is weak. Not surprisingly, the same formalism has been applied in

solid state physics to the description of electrons in a weak periodic potential [129, 9].

The structure is viewed as a gas of nearly free conduction electrons, each of which

obeys the Schrödinger equation with a weak perturbation—the periodic potential of

the ions. When the periodic potential is exactly zero, the solutions to the Schrödinger

equation are plane waves [25], and these functions form a complete orthonormal

basis (over a finite interval) as in the well-known Fourier series expansion of periodic

functions2. The perturbative solution to the problem of a weak periodic potential is

then written as a superposition of these plane waves, with coefficients whose values

depend on the expansion of Ppert(r, t) in this basis.

Complementary to this weakly perturbative theory of coupled modes (which, con-

fusingly, is itself often called coupled-mode theory) is the tight-binding approxmation,

also known as the linear combination of atomic orbitals (LCAO) [62]. This approach

1Any coupling to radiation modes, which do not decay exponentially away from the waveguide,
is ignored [154, pp. 492–494].

2Periodic functions can be thought of as the periodic extension of functions defined over a finite
interval. For example, sin(x) over the entire real axis comprises replicas of the function f(x) =
sin(x), |x| ≤ π, and which is identically zero for |x| > π.
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describes electrons in a crystalline solid with a strong periodic potential due to the lat-

tice structure of localized atoms, characterized by a weak overlap between the atomic

wave functions [129, 9]. By analogy, the optical structures that can be described

using the tight-binding approximation are those that consist of isolated structural

elements (e.g., high-Q resonators such as defect modes in photonic crystals) weakly

coupled to one another. The propagating eigenmodes of the overall system are then

closely related to the eigenmodes of the individual elements, rather than the free-space

eigenmodes.

The wave function for a free electron wave is given by exp(−ik · r), where k is the

wave vector 3. This eigenmode is trivially of the Bloch form [129, pp. 156–160], since

free space can be thought of as periodic medium with an arbitrary small (or large)

period. In the tight-binding approximation, plane waves are not eigenmodes, but the

eigenmodes can still be written in the Bloch form. Lehmann and Ziesche point out

the differences between these two approaches quite early in their text [76, pp. 20–28],

as “the approximation starting from free electrons” and “the approximation starting

from free atoms.” In the words of Raimes [112, pp. 133],

One cannot say that either method is correct, but one or the other will give

better results in given circumstances and will be the more convenient as a basis

for more accurate calculations.

The energy of the wavefunction E is a function of the wave vector k. In terms

of the effective mass d2E/dk2 associated with electron levels, as the overlap between

the atomic energy levels decreases, the effective mass becomes very large, so that

electrons are indeed “tightly bound” to their atoms. For completely isolated atoms,

the group velocity dE/dk is zero, since the energies of all atoms are the same. But

once a band of energies is formed, an electron can move through the crystal, although

its group velocity may be small and its effective mass large.

Lehmann and Ziesche state in their text [76, pp. 36] that the tight-binding

expansion of the wave function of the crystal in terms of atomic orbital wavefuctions

φat
n (r − R) is overcomplete since the latter form a complete system for each single

R. On the other hand, Ziman points out [161, pp. 95] that this set is incomplete

as “it lacks all the scattered-wave eigenstates of the Schrödinger equation in the

3In the terminology of solid-state physics, such functions when properly normalized are the eigen-
functions of the Hartree equation describing a free-electron gas, and of the Hartree-Fock equation
for a monovalent metal, but with different eigenvalues in the two cases [112].
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continuum,” i.e., above the zero-energy level of the individual atomic wavefunction

potential (see Figs. 54 and 55 in [161].)

As pointed out, among other, by Jones [62, pp. 228–229], a significant criticism

of the tight-binding description, or perhaps of the independent electron approxi-

mation that is implicitly assumed in this description of electron levels in metals is

that it ignores positional correlations between electrons with antiparallel spins. In

the description of photons, this is not relevant as bands formed by different po-

larizations can be shown to be decoupled [150]. Further, every component of the

electromagnetic four-vector potential obeys the massless Klein-Gordon equation (in

the Lorentz gauge), without the need for anti-commutation relationships as are nec-

essary to describe spinor (Dirac) fields such as electrons [110]. In this way, we avoid

the overcounting of the states of a half-filled band in the case of electrons in a crystal

of widely separated monovalent atoms described by Jones.

The formalism is independent of the material in which the CROW geometry is

realized. Stefanou and Modinos have used the tight-binding method to analyze impu-

rity photonic bands in photonic insulators which can be described by a real negative

dielectric function ε(ω) [131]. The impurity cells are formed by introducing nonab-

sorbing dielectric spheres in a chain, and the resonances of the individual spheres

widen into a band of frequencies because of nearest-neighbor interactions. In this

chapter, we’ll focus on a particular case of the analysis in which the pulse envelope

propagates undistorted; these solutions may be thought of as the time-dependent

eigensolutions in the tight-binding approximation.

2.2 The tight-binding approximation

Assume that the resonators comprising the waveguide are identical and lie along

the z axis separated by a distance R as shown in Fig. 2.1. The total length of the

waveguide is taken to be L so that the number of resonators is N = L/R. A waveguide

mode—an eigenmode of a time-independent Hamiltonian—φk(z) with wavevector k

and propagation constant k = |k| is written as a linear combination of the individual

modes ψl(r) of the resonators that comprise the structure [9],

φk(r) =
∑

n

exp(−inRk · ẑ)
∑

l

ψl(r − nRẑ) (2.3)
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z

Figure 2.1: Schematic of a 1–D coupled-resonator optical waveguide, formed by cou-
pled microdisk resonators of radius a separated by distance R along the z direction.

where the summation over n runs over the N resonators and the summation over

l (with implicit coefficients absorbed into ψl(z)) refers to the bound states in each

individual element. In a CROW, for instance, the individual resonator modes at a

particular frequency may be doubly degenerate as discussed in Section 1.5, so that

the waveguide modes may require l = ±1, whereas in an SSG, it’s usually sufficient

to consider a single l [32].

In the description of a periodic waveguide of finite length, the propagation constant

k is restricted according to the Born—von Karman periodic boundary condition [9]

km = m

(
2π

L

)
, (2.4)

where m is an integer; km then ranges over the Brillouin zones and because φk(z) is of

the Bloch form [9], we may only consider the first Brillouin zone m = 0, 1, . . . , N − 1

to characterize the dispersion relationship in the structure [156]. From Eq. (2.4),

∆k ≡ km+1−km = 2π/L so that in the theoretical limit of an infinitely long structure,

the discrete distribution of eigenmodes goes over to a continuous spectrum.

2.2.1 Dispersion relationship

From Maxwell’s equations and the definition of the eigenmodes as in Eq. (2.3), the

dispersion relationship, sometimes called the characteristic equation, can be derived.

In Gaussian units, Ek(z, t) ≡ exp(iωkt) φk(r) satisfies

∇× (∇× Ek) = ε(r)
ωk

2

c2
Ek, (2.5)
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where ε(r) is the location-dependent dielectric coefficient of the waveguide and ωk is

the eigenfrequency of the waveguide mode. Replacing φk with ψl in Eq. (2.5) and ωk

with Ωl, the eigenfrequency of the l-th mode of a single resonator, we get a similar

equation that describes the eigenmode of a single resonator,

∇× (∇× ψl) = ε0(r)
Ωl

2

c2
ψl. (2.6)

To derive the dispersion relationship, we substitute Eq. (2.3) into Eq. (2.5), mul-

tiply both sides from the left by ψl(r)
∗, and integrate over a unit cell, using the

normalization condition4

∫
dr ε0(r) ψl(r)

∗ · ψm(r) = δlm, (2.7)

where ε0(r) is the dielectric coefficient of a single resonator in isolation, e.g., as shown

in Fig. 1.3.

After some algebra, the coefficient bl is found to satisfy a transcendental equa-

tion [150, Eq. (5)] which can be simplified under the conditions of weak (nearest-

neighbor) coupling and from symmetry considerations. Further, based on the sym-

metry of the individual resonator modes5 and considering the lowest-order individual

resonator modes, the dispersion relationship can be further simplified. Although the

single defect cavity modes are actually doubly degenerate, the two resultant CROW

bands have opposite polarity and can’t couple to each other; therefore, the dispersion

relation of each band has the same form.

The dispersion relationship for a single CROW band (one particular, implicit,

value of l) around a central wave number k0 is

ωk0+K = Ω(1 − ∆α/2) + Ω κ cos(KR)

≡ ω0 + ∆ω cos(KR),
(2.8)

where Ω is the eigenfrequency of the individual resonators, and both ∆α and κ are

overlap integrals involving the individual resonator modes and the spatial variation

4A more general normalization condition will be used in Eq. (2.36).
5It’s assumed that each of the individual planar resonator eigenmodes possesses a mirror reflection

symmetry with repsect to a transverse plane. This leads to a classification of the single resonator
modes according to the even and odd parity of this discrete symmtery.
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of the dielectric constant,

∆α =

∫
d3r

[
εwg(r − Rez) − εres(r − Rez)

]|ψl(r)|2

κ =

∫
d3r

[
εres(r − Rez) − εwg(r − Rez)

]
ψl(r) · ψl(r − Rez),

(2.9)

where εres is the dielectric constant of the individual resonators, and εwg is the dieletric

constant of the waveguide. This is similar to an equivalent derivation in the electronic

levels of crystalline solids in the tight-binding approximation [129, pp. 200–212].

The formation, when the number of resonators is increased, of a continuous disper-

sion relationship such as Eq. (2.8) from a discrete spectrum by reduction of the mode

energy splitting of the individual resonators has been discussed elsewhere [12, 11].

In the limit of nearest-neighbor coupling, as applicable to waveguides formed by

coupling high-Q resonators, the parameter ∆ω in Eq. (2.8) is given in terms of the

spatial variation of the dielectric constant by ∆ω = Ωκ. For the 2–D photonic

crystal structures we discuss, finite-difference time-domain simulations indicate that

|∆ω/Ω| ∼ 10−3 − 10−4 [150], and similar numbers have been measured for CROWs

constructed of polystyrene microspheres and microcavities in lithographically pat-

terned in GaAs.

The k-dependent group velocity [154, p. 37] is given by

vg,l(k) =
dωk,l

dk
= −ΩR κl sin(kR), (2.10)

which clearly depends on the coupling factor κ, and therefore, on the physical struc-

ture of the device that was designed. A low coupling factor implies a substantial

reduction of the group velocity of the pulse, leading to pulse compression with re-

spect to free space in the structure. Based on numerical simulations, values of κ as

low as 10−4 have been predicted [150].

Particular realizations of waveguides that are appropriately described by the tight-

binding formalism include superstructure Bragg gratings in semiconductor materi-

als and in fibers, polystyrene microspheres, alumina rods (microwave), resonators in

GaAs without a photonic crystal structure, and defects in GaAs 2–D photonic crystal

slabs.



40 Linear propagation in the tight-binding approximation

1. The optical modes of a linear array of GaAs cavities, with InGaAs quantum

wells as the optically active material, were measured by angle-resolved photo-

luminescence spectroscopy, demonstrating the creation of a continuum of mode

energy distributions from a discrete family as the number of resonators in-

creases [11]. Narrowing the width of the GaAs channels connecting the cavities

resulted in a larger band gap at the Brillouin zone boundaries, in accordance

with the increased modulation of the dielectric function along the waveguide.

2. Coupling between whispering-gallery modes of two polystyrene microspheres

was demonstrated to follow the tight-binding theory [98]. An intersphere cou-

pling parameter between microspheres of diameter 2 to 5 µm was measured to

be in the range 2.8−3.5×10−3, and decreases as the size of the spheres increases

since the field is less confined in smaller structures.

3. Among the early demonstrations of the validity of the tight-binding description

of weakly coupled electromagnetic structures were the microwave experiments

of Bayindir et al. [13]. A multilayer photonic crystal based on square-shaped

alumina rods was found to exhibit a three-dimensional band gap from 10.6 to

12.8 GHz; removing rods from this periodic structure corresponds to introducing

localized defect modes, and the authors have measured the transmission through

the structure with a single, two, and three consecutive defects to show the

presence of one, two, and three resonance frequencies, respectively. Further,

the authors validate the nearest-neighbor approximation used in the derivation

of the dispersion relationship for a weakly coupled CROW since the second-

nearest neighbor coupling parameters are found to be an order of magnitude

smaller than their first-order counterparts. To demonstrate the formation of a

photonic band within the photonic band gap (11.47 to 12.62 GHz), Bayindir

et al. remove a single rod from ten consecutive unit cells, thereby forming a

ten-element CROW and show excellent agreement between the calculated and

measured dispersion relationship of the resulting waveguiding band (see Fig. 4

in [13]).

4. Olivier et al. [105] have measured the dispersion characteristics of a coupled-

resonator optical waveguide in the near infrared (1 µm.) One particular struc-

ture consists of a row of nine hexagonal cavities in a GaAs-based two-dimensional
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photonic crystal formed as a triangular array of holes perforating a monomode

heterostructure waveguide with index confinement along the axis out of the

plane (see Fig. 1a in [105]). The cavities consist of seven missing holes and are

separated by one row of holes for a total structure length of about 8 µm. The

experiment uses a few layers of InAs quantum dots in the planar waveguide of

the heterostructure as an internal source of photoluminescence to measure the

transmission characteristics.

Several transmission and stop bands (“minibands separated by minigaps”) are

observed within the photonic bandgap for TE modes, with transmission minima

about -20 dB of the maxima. Olivier et al. calculate the dispersion relations and

field patterns of an infinite CROW using a plane-wave expansion method [111]

to compare with measurements. Within the photonic bandgap, all the bands

observed must necessarily arise from the modes that are laterally localized in

the CROW cavities, and these bands can be indexed by the discrete modes of

the isolated cavity. The lowest-order (fundamental) CROW mode is calculated

to have a single lobe in the transverse direction, which may explain why it is

observed to persist as an index-guided mode below the photonic bandgap.

5. Another application of the tight-binding method is in the description of super-

structure Bragg gratings (SSGs, see Appendix A), also called optical superlat-

tices, which are fiber or semiconductor gratings with parameters that vary peri-

odically as a function of position [17]. Whereas shallow SSGs can be described

by the standard coupled-mode theory, deep SSGs require the complementary

approach of the tight-binding approximation [32].

In the context of photonic bandgaps and associated topics, it is useful to recall a

discussion by Lang and Yariv [75] about certain implicit assumptions in such theories

that may be especially relevant in waveguide and resonant waveguide problems.

When one solves for the eigenmodes of an isolated resonator, one usually makes

the assumption that all fields outside the resonator are outgoing. Consequently,

the eigenmodes lie in the discrete spectrum of the operator corresponding to wave

propagation in the resonator. These eigenmodes form a complete basis only for

outgoing fields.

In a coupled resonator structure, it must be the case that there exist incoming

fields in each cavity—or else the resonators simply cannot couple to one another.



42 Linear propagation in the tight-binding approximation

These fields cannot be described by the modes of an individual resonator, to which

must be added the modes corresponding to the continuous spectrum, corresponding

to fields incident on the cavity from the outside. If we drop this continuous part of

the spectrum, we conceptually introduce “black hole” modes, which in rate equations

act as sinks for energy from the discrete modes but never as sources to the discrete

modes. There is no mechanism for the scattering of energy back from the black hole

modes to the modes we do consider. As a result, calculations of threshold gains from

such a theory will be overestimated, and the fraction of overestimation depends on

the relative fraction of the coupled-cavity modes that is described by the black hole

modes.

For weakly coupled resonators, as in a CROW waveguide, this may be small, but

when the coupling becomes significant, as in a CROW laser, it may be significant.

Although the CROW laser is not discussed here, we point out that Lang and Yariv

have formulated local-field rate equations in terms of the amplitudes of traveling

waves at fixed points inside the composite cavity, rather than the amplitude of an

individual cavity mode [74, 75]. The central approximation made is that the optical

field adiabatically follows the characteristics of the resonator.

2.3 Pulse propagation

Based on our earlier analysis of the individual resonator modes, and the waveguide

modes, we can now analyze how a pulse propagates in a CROW. At a fixed time, taken

for simplicity to be t = 0, the field in the waveguide is given by a superposition of

eigenmodes,

E(r, t = 0) =

∫
dk

2π
ck φk(r), (2.11)

where φk(r) are the eigenmodes at wavevector (propagation constant) k as given by

Eq. (2.3) and ck are certain ‘weights’ to be determined from the boundary condition6.

For a structure of finite length, not all k’s are allowed, according to Eq. (2.4),

and the integral over k in Eq. (2.11) should be replaced by a sum over the allowed

k. Alternatively, we can redefine φk(z) for a 1D structure of finite length along the

6The geometry of the problem dictates that we adopt the methodology of Section 1.2 rather than
of Section 1.1.
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z-axis as

φk(r) =

[
|∆k|

∞∑
m=−∞

δ(k − m∆k)

]∑
n

exp(−inkR)
∑

l

ψl(r − nRez) (2.12)

to preserve the form of Eq. (2.11). The factor |∆k| inside the square brackets in

Eq. (2.12) follows from the usual definition of the Riemann-Stieltjes integral [8]: for

a long waveguide, as L → ∞ and ∆k → 0, the field E(z, t = 0) retains the same

form as given directly by Eq. (2.11) with φk(z) defined by Eq. (2.3), i.e., without the

impulse train (in square brackets) in Eq. (2.12).

Since the system is linear and time invariant, the field at time t is given by

E(z, t) =

∫
dk

2π
eiω(k)tckφk(z). (2.13)

Since the dispersion relationships of the waveguide modes are approximately linear in

the middle of the band gap (the group velocity goes to zero at the band edges) [156,

32], we can write the dispersion relationship around the central propagation constant

of the pulse k0 as

ω(k0 + K) = ω(k0) +
dω

dk

∣∣∣∣
k=k0

K + . . . ≈ ω0 + vgK, (2.14)

where vg is the group velocity of the pulse. Then,

E(r, t) = eiω0t

∫
dK

2π
eivgtKck0+K φk0+K(r). (2.15)

The boundary conditions specify a pulse shape at the z = 0 edge of the waveguide

and centered at the optical frequency ω0,

E(r = 0, t) = eiω0tE(z = 0, t)û, (2.16)

where û is a unit-magnitude vector that describes the vectorial nature of the field at

r = 0. The vectorial behavior of φk0+K(0) must follow û.

We’ll work with the scalar functions φk0+K(z) and ψl(z) in the remainder of this

section, and in the following section. From the equality of Eq. (2.15) evaluated at
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z = 0 and Eq. (2.16), it follows that

ck0+K =
1

φk0+K(0)

∫
d(|vg|t′) E(z = 0, t′)e−ivgt′K . (2.17)

Combining Eq. (2.15) and Eq. (2.17),

E(z, t) = eiω0t

∫
d(|vg|t′) E(z = 0, t′)

∫
dK

2π

φk0+K(z)

φk0+K(0)
eivg(t−t′)K . (2.18)

In free space, which can be thought of as a “linear space-invariant system,” the

eigenfunctions are φk(z) = exp(−ikz), instead of Eq. (2.3). Substituting this into

Eq. (2.18), we get

E(z, t) = eiω0t

∫
d(|vg|t′) E(z = 0, t′)

∫
dK

2π
e−i(k0+K)z eivg(t−t′)K

= ei(ω0t−k0z)E

(
z = 0, t − z

vg

)
. (2.19)

This is the well-known result (similar to Eq. (1.6) and Jackson [57, pp. 322–326]) that

a pulse propagates unchanged in shape in a weakly dispersive medium, apart from

an overall phase factor, and that the velocity of propagation is given by the group

velocity of the pulse vg defined from the dispersion relationship as in Eq. (2.14).

In Chapter 3, we’ll extend the above description to account for propagation in

waveguides that can amplify or attenuate the pulse, or otherwise transfer power be-

tween the various waveguide modes that comprise the pulse. The goal is to identify, if

possible, a component of that field description that is analogous to, e.g., the envelope

of a conventional waveguide mode, exp[i(ωt− kz)]. By identifying the envelope com-

ponent of the full field description, we may obtain equations that describe the change

in the envelope alone, and do not involve the variables describing the non-envelope

part of the field. It’s usually the case that the envelope usually varies on a longer

spatial scale than the remainder of the field.

CROWs and SSGs in the tight-binding approximation do not have plane-wave

eigenmodes of the form exp[i(ωt − kz)]. For a structure whose eigenmodes are given

by Eq. (2.3) or Eq. (2.12) with ψ(z) rapidly decaying in magnitude for distances

on the order of R, we can carry out further simplifications to the field expression

Eq. (2.18).
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The individual resonator eigenmodes are normalized as ψl(0) = 1 and are highly

localized around z = 0 so that |ψl(nR)| � 1 for all n = 0. We assume that these

eigenmodes are symmetric, so that ψl(−z) = ψl(z). Then,

φk0+K(0) =
∑

n

e−i(k0+K)nR
∑

l

ψ(−nR)

= 1 +
∑

l

ψl(R) 2 cos[(k0 + K)R] + . . . (2.20)

ignoring terms on the order of
∑

l ψ(2R) or smaller. Consequently, we can write

[φk0+K(0)]−1 ≈ 1 −
∑

l

ψl(R) 2 cos[(k0 + K)R], (2.21)

which can be used in Eq. (2.18).

The leading order contribution to E(z, t) is given by including the first term of

Eq. (2.21),

E(z, t) = eiω0t
∑

n

e−ik0nR
∑

l

ψl(z − nR)

∫
d(|vg|t′) E(z = 0, t′)

×
∫

dK

2π

[
|∆K|

∑
m

δ(K − m∆K)

]
eiTK , (2.22)

where T ≡ vg(t − nR/vg − t′), and the index m of the infinite summation can be

translated as desired. The expression on the second line of Eq. (2.22) is the inverse

Fourier transform (evaluated at T ) of an impulse train in the K domain, which

evaluates to an impulse train in the T domain [107],

|∆K|
∞∑

m=−∞
δ(K − m∆K) �

∞∑
m=−∞

δ(T − m∆T ), (2.23)

where ∆T = 2π/∆K = L. Carrying out the integrals over t′ for each m,

E(z, t) = eiω0t
∑

n

e−ik0nR
∑

l

ψl(z − nR)
∑
m

E

(
z = 0, t − nR + mL

vg

)
. (2.24)

This expression is the tight-binding approximation analog of Eq. (2.19). The vectorial

extension is written in Eq. (2.32).
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It will be shown in Section 2.5 that Eq. (2.24) is of the Bloch form, i.e., E(z, t)

can be written as the product of a plane wave exp[i(ωt − kz)] and a function u(z, t)

with the periodicity of the “lattice” that defines the CROW. It’s important to note,

however, that this does not imply that plane waves of the form exp[i(ωt − kz)] are

eigenfunctions of the CROW as the function u(z, t) is not necessarily slowly varying

(and in fact, varies as “rapidly” as exp[−ikz] does).

The contribution of the first-order corrections to Eq. (2.24) based on Eq. (2.21)

can be evaluated in the same way,

∆E(z, t) = −
∑

l′
ψl′(R)eiω0t

{∑
n

e−ik0(n−1)R
∑

l

ψl(z − nR) ×
∑
m

E

(
z = 0, t − (n − 1)R + mL

vg

)
+
∑

n

e−ik0(n+1)R ×

∑
l

ψl(z − nR)
∑
m

E

(
z = 0, t − (n + 1)R + mL

vg

)}
. (2.25)

Fig. 2.2 shows an annotated frame from an MPEG animation of Gaussian pulse

propagation in a structure described by the tight-binding approximation to the leading

order, using the approximations that the structure is of infinite length and that it’s

sufficient to consider a single l in Eq. (2.24).

Although Eq. (2.15) is a good approximation to the dispersion relationship in a

CROW [156, 150], it may be necessary for wideband pulses to consider higher-order

terms in Eq. (2.15). The resulting Eq. (2.17) is then obtained from the solution of a

Fredholm integral equation, and Eqs. (2.18) and (2.24) will in general involve envelope

distortion (as for free space propagation [154]).

2.4 Frequency, space, and time sampling

As we’ve already noted, the allowed k vectors are quantized in a structure of

finite length, and using Eq. (2.14), the allowed ω = ω0 + Ω values are quantized. To

prevent aliasing [107], the temporal interval between two samples 2π/∆Ω must be

greater than twice the temporal extent of the pulse envelope T , where ∆Ω = vg∆K
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Figure 2.2: Pulse propagation in a structure described by the tight-binding approx-
imation. The envelope of the eigenmode of the structure is shown in red, and the
Gaussian pulse envelope in blue, propagating from left to right, indexed by an arbi-
trary time coordinate at the upper-right corner.

according to Eq. (2.14)7. Therefore,

2π

(2π/L)vg

= 2Tmax, which implies Tmax =
1

2

L

vg

. (2.26)

In addition to the consequences of the dispersion relationship, the geometrical

structure of the waveguide is also important. The eigenmode φk(z) represents a

spatial sampling function for the propagating pulse envelope, especially in the limit

that the individual structural eigenmodes ψl(z) are tightly confined (see Fig. 2.2).

Again, to prevent aliasing, it’s necessary that the spectral content in k-space be no

7A physical rationalization of this may be helpful: the spectrum of the field envelope in the
waveguide is represented by a discrete set of complex exponentials with frequencies ω0 + m∆Ω
according to Eq. (2.4) and the dispersion relationship, Eq. (2.14). To successfully characterize the
continuous free-space spectral envelope by this discrete set, we require that within the time interval
Tmax, the frequency change between succesive exponentials is “small,” i.e., Tmax∆Ω < π. The pulse
envelope in the waveguide then consists of replicas of the free-space envelope, analogous to the
spectral replicas formed by reconstruction of time-sampled signals [107].
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greater than Kmax,

2π

R
= 2Kmax which implies Kmax =

1

2

(
2π

R

)
. (2.27)

But the free-space pulse envelope is invariant in the frame z−vgt, and this maximum

K-space extent translates into a minimum pulse width Tmin,
8

1

2
vgTmin = R which implies Tmin =

2R

vg

. (2.28)

In a structure of finite length described by the tight-binding approximation, therefore,

there exists both a maximum and a minimum allowed pulse duration; the former arises

because of the finite length of the structure, and the latter because of the sampling

train-like eigenmodes of the waveguide.

Eq. (2.28) limits the bandwidth (where most of the energy of the pulse is concen-

trated) in the Fourier K-space associated with the propagation distance z, and since

the pulse is propagating with group velocity vg, also in the Fourier Ω-space associated

with the temporal coordinate t. The dimension of the space of finite-energy signals

(pulse envelopes) that are identically zero outside the time interval [−T0/2, T0/2] and

have most of their energy concentrated in the bandwidth [−Ω0/2, Ω0/2] is approxi-

mately D = Ω0T0 + 1 [147],

D =

(
1

R
vg

)(
1

2

L

vg

)
+ 1 =

N

2
+ 1, (2.29)

where N = L/R is the number of individual structural elements in the waveguide.

These pulse envelopes can be represented in the mean-square sense by a superposition

of the prolate spheroidal wave functions within the interval [−Tmax/2, Tmax/2].

2.4.1 K-space representation of Eq. (2.24)

It’s often convenient in certain problems (e.g., four-wave mixing processes [91])

to have a description of the spatial Fourier transform of Eq. (2.24) in terms of plane

8As a guideline, it’s useful to recall that the Fourier transform of a rectangular pulse between
±vgT in the vgt frame is a sinc function with first nulls at ±π/(vgT ) in K-space [107].
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waves,

Ẽ(K, t) ≡
∫

E(z, t)e−iKzdz

= eiω0t
∑

n

e−i(k0+K)nR
∑
m

E

[
z = 0, t − nR + mL

vg

]∑
l

ψ̃l(K), (2.30)

where ψ̃l(K) =
∫

ψl(z) exp(−iKz) dz is the spatial Fourier transform of ψl(z).

Eqs. (2.24) and (2.30) describe the propagation of a pulse in a medium described

by the tight-binding approximation. They can be used, for example, to describe the

index grating formed by the interference pattern of two counterpropagating pulses

(at the same optical frequency for simplicity),

δn(z) ∝
∫

dK1

2π

∫
dK2

2π
δn̂(K1, K2) ei(K1−K2)zẼ(K1, t)Ẽ(K2, t)

∗
, (2.31)

where δn̂(K1, K2) is the coupling coefficient between two plane waves defined by K1

and K2 and depends on the material properties, the orientation of the medium and

the polarization of the waves [123].

We’ve formed equations describing the evolution of optical pulses in

the tight-binding approximation, which is of increasing importance in

the description of a variety of recently developed structures such as cou-

pled resonator optical waveguides in photonic crystals and superstructure

Bragg gratings in both semicondutors and in optical fiber. These equa-

tions form a useful starting point for the analysis of linear and nonlinear

pulsed phenomena in such structures.

2.5 Linear pulse propagation: Bloch waves

In this section, we’ll modify Eq. (2.24) in three ways. Firstly, we limit our attention

to the limiting case of an infinitely long waveguide and drop the summation over m.

Secondly, we’ll account for the vectorial nature of the individual resonator modes ψ(r)

but we’ll continue to look at pulse propagation along the z-axis. For simplicity, we’ll

also omit the summation over the multiple modes of individual resonators, indexed
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by l: their re-introduction is straightforward. The electric field distribution Ek(r, t)

describing a pulse at the frequency ω and wave vector K is

Ek(r, t) = eiω0t
∑

n

e−iknR ψ(r − nRez)E
[
z = 0, t − nR

v

]
(2.32)

where ψ(r) is the individual resonator eigenmode, E(z = 0, t) is the input pulse

envelope9 and v is the group velocity at K = |K|.
For an infinitely long CROW, where the summation over n in Eq. (2.32) can be

relabeled to n ± 1, EK(r, t) satisfies the (3+1)D Bloch theorem [154, 9],

Ek(r + Rez, t + R/v) = eiωR/ve−ikREk(r, t). (2.33)

Consequently, the waveguide field distribution can be written in the Bloch form,

Ek(r, t) = eiωte−ik(ω)z uk(ω)(r, t), (2.34)

where uk(ω)(r, t) is a vector-valued function with the periodicity of the CROW “lat-

tice” and can be written out explicitly as

uk(ω)(r, t) =
∑

n

eik(z−nR) ψ(r − nRez) E
[
z = 0, t − nR

v

]
. (2.35)

The notation emphasises that the propagation constant k and the Bloch wave func-

tion depend on the frequency ω (we’ll sometimes write kω in place of k(ω) so that

the mathematical structure of certain equations is not obscured). Nevertheless, our

writing the electromagnetic field distribution in the Bloch form, Eq. (2.34), is mainly

for notational convenience in Section 3.3.

The Bloch wave function is normalized according to the following inner product

definition between the vector space of the Bloch wave function and its dual space,

∫
dt

T

∫
dr ε(r)

[
uk(ω)(r, t)

]∗ · uk(ω)(r, t) = 1, (2.36)

9The terminology “input pulse envelope” shouldn’t be taken too literally since the structures we
consider are infintely long: it merely means that we focus on the field evolution along a section of
an infinite waveguide, and the “input” refers to the field distribution at one edge of this structure,
i.e., a boundary condition, as discussed in Chapter 2. The precise mathematical meaning of this
assumption is rather technical and is discussed at the end of Appendix C.
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where the spatial integration extends over a unit cell and the temporal integration

over the extent of the pulse envelope, with a characteristic time constant T . This

ensures that Eq. (2.36) still represents an electromagnetic energy conservation rela-

tionship [57], and can be interpreted as yielding a time-averaged energy stored in a

unit cell volume [113, pp. 404–405]. We’ll abbreviate the notation in Eq. (2.36) to an

integration over the 4-vector r.

Based on Maxwell’s equation, the waveguide field distribution satisfies the follow-

ing equation: [154, 57]

∇× [∇× E] +
ε(r)

c2

∂2E

∂t2
= 0. (2.37)

Substituting Eq. (2.34) for E(r, t), we can write Eq. (2.37) as an eigenvalue prob-

lem [96] for the Bloch wavefunction uk(ω)(r, t),

Hkuk(ω) ≡ −kω
2ez × [ez × uk(ω)] + ∇× [∇× uk(ω)]

− ikω

[
ez× [∇× uk(ω)] + ∇× [ez × uk(ω)]

]
+

ε(r)

c2

[
∂2uk(ω)

∂t2
+ i 2ω

∂uk(ω)

∂t

]

=
ω2

c2
ε(r)uk(ω).

(2.38)

It can be shown that the operator H is Hermitian (see Appendix C for an outline

of the proof.) As a consequence of the dispersion relationship in the waveguide [57],

the eigenvalue ω2/c2 is parametrized by K and we can use the Hellman-Feynman10

theorem [52, 37, 25, 119],

d(w/c)2

dk
=

∫
d4r

[
uk(ω)

]∗ · [− 2kωez × [ezuk(ω)]

− iez × [∇× uk(ω)] − i∇× [ez × uk(ω)]
]

+ i
2

c2

dω

dk

∫
d4r ε(r)

[
uk(ω)

]∗ · ∂uk(ω)

∂t
.

(2.39)

Recognizing that dω/dk defines the group velocity v [154], Eq. (2.39) can be re-

10R. P. Feynman was an undergraduate at MIT at the time of writing this paper (1939).
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written as

v

[
2ω

c2
− i

2

c2

∫
d4r ε(r)

[
uk(ω)

]∗ · ∂uk(ω)

∂t

]
=

∫
d4r

[
uk(ω)

]∗ · [− 2kωez × [ezuk(ω)]

− iez × [∇× uk(ω)] − i∇× [ez × uk(ω)]
]
. (2.40)

This equation will be of considerable use in Chapter 3, where we discuss nonlinear

optical phenomena in CROWs.

2.6 Using the full dispersion relationship

From Eq. (2.16), the coefficients ck0+K are derived from

E(z = 0, t) =

∫ π/R

−π/R

dK

2π
ei∆ωt cos(KR)ck0+K φk0+K(0). (2.41)

This is easily inverted in the limit of a linear dispersion relationship in place of

Eq. (2.8)—the integral operator reduces to the well-known Fourier transform, and this

is the analysis we have discussed earlier. In considering higher-order dispersion terms

in the Taylor series expansion of the dispersion relationship, the integral equation,

Eq. (2.41), can’t in general be inverted to obtain the c’s in closed form. This is

clearly evident when, for example, the exponent involves terms of quadratic or higher

polynomial powers of K. Therefore, rather than work with the successive terms in a

Taylor-series expansion of the dispersion relationship, we’ll work with the full form

of Eq. (2.8).

Note that the dispersion relationship is symmetric about K = 0. We’ll assume that

E(z = 0, t) is a symmetric envelope. Consequently, ck0+K φk0+K(0) = ck0−K φk0−K(0)

for all K within the first Brillouin zone. This is not a critical assumption, and relates

to the choice of cosines rather than sines a subsequent step [Eq. (2.44)].

We introduce changes of variables to highlight the mathematical structure of
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Eq. (2.41),

ϕ ≡ KR,

x ≡ ∆ωt,

h(φ) ≡ ck0+K φk0+K(0),

f(x) ≡ 2R E(z = 0, x/∆ω),

(2.42)

so that Eq. (2.41) becomes

πf(x) =

∫ π

−π

dϕ eix cos ϕh(ϕ), (2.43)

where f(x) is a known function, in terms of which we want to find h(ϕ). For the

majority of cases of practical interest, we can instead find the coefficients in the

expansion of h(ϕ) as a Fourier cosine series,

h(ϕ) =
∞∑

n=0

cn cos(nϕ). (2.44)

Using the identity [154, Eq. (9.4-5)],

eix cos ϕ =
∞∑

m=0

bm Jm(x) cos(mϕ),

where bm =

{
1, m = 0

2im, m ≥ 1

(2.45)

and the orthogonality of the cosines over the interval (−π, π), we can simplify Eq. (2.43)

to

f(x) =
∞∑

n=0

(bncn) Jn(x) ≡
∞∑

n=0

anJn(x). (2.46)

Therefore, if we can expand f(x) [which describes the envelope at the z = 0 cross

section—see Eq. (2.42)] in a Neumann series [145, Chap. IX], we can find the co-

efficients cn, and by subsequently using Eq. (2.44) and Eq. (2.42), the coefficients

ck0±K .

The envelopes of practical interest are usually analytic (more specifically, the

complex signal description of the envelope—e.g., the Fourier transform—has no sin-
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gularities) in some circle (of radius c) around the origin (if it’s not entire), and a

general way of obtaining the an’s is

an =
1

2πi

∫
|z|=c′

dz f(z) On(z), for 0 < c′ < c, (2.47)

where

O2n(z) =
n

2

n∑
m=0

(n + m − 1)!

(n − m)!

(z

2

)−2m−1

,

O2n+1(z) =
n + 1/2

2

n∑
m=0

(n + m)!

(n − m)!

(z

2

)−2m−2

,

(2.48)

are the Neumann polynomials [145, Chap. IX]

Since the temporal envelope is a real function, we can use a simpler representation

that does not require integration in the complex plane, and is readily implementable

numerically. The following identity [36, pp. 64–65]

∫ ∞

0

dt

t
Jν+2n+1(t)Jν+2m+1(t) = (4n + 2ν + 2)−1δmn (2.49)

holds for ν > −1 and implies that a real function g(x) of a real variable x defined on

the interval (0,∞) can be written as

g(x) =
∞∑

n=0

Jν+2n+1(x)
[
(2ν + 2 + 4n)

∫ ∞

0

dt

t
g(t)Jν+2n+1(t)

]
, ν > −1.

(2.50)

The derivation of this representation (for the special case ν = 0) is known as the

Webb-Kapteyn theory of the Neumann series.

Adding the series that results from Eq. (2.50) using ν = 0 and ν = 1, and

assuming that the terms can be rearranged, we can write the coefficients an that

appear in Eq. (2.46) as

an =




0, n = 0,

n

∫ ∞

0

dt

t
g(t)Jn(t), n ≥ 1.

(2.51)
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It’s obvious that the function g(t) should have no “d.c. value” since Jn(z) ∼ zn near

the origin. Referring back to Eq. (2.42), the function that we expand in the Neumann

series is g(t) ≡ f(t) − f(0).

An important, but technical, point relevant to the validity of this simpler repre-

sentation of the Neumann coefficients is discussed in Appendix B for the particular

case of Gaussian envelopes,

E(z = 0, t) = exp

(
− t2

T 2

)
, (2.52)

with a pulse width indicated by T . In this case, the coefficients evaluate to [1, 11.4.28]

an = 2R

{[
∆ωT

2

]n
Γ(n/2)

2 Γ(n)
1F1

[
n

2
; n + 1;−

(
∆ωT

2

)2
]
− 1

}
, (2.53)

in terms of the confluent hypergeometric function.

Returning to the original notation, we’ve shown that as a consequence of the

dispersion relationship Eq. (2.8), the field describing the propagation of a pulse in a

CROW can be written as

E(z, t) =eiω0t

∫ π/R

−π/R

dK

2π
ei∆ωt cos(KR)φk0+K(z)

φk0+K(0)

{ ∞∑
n=1

2nR

bn

(∫ ∞

0

dt′

t′

[
E(z = 0, t′/∆ω)

− E(0, 0)
]

Jn(t′)

)
cos(nKR) + ck0φk0(0)

}
,

(2.54)

where the bn’s are given by Eq. (2.45), and the integral can be evaluated for a specific

case as in Eqs. (2.52)–(2.53). It’s assumed in this analysis that the waveguide modes

are known, i.e., φk0+K(z) is given by Eq. (2.3) and φk0+K(0) evaluates to a known

number.

There’s one extraneous degree of freedom in Eq. (2.54), physically representing an

overall scale factor and represented by ck0 , which can be accounted for by Parseval’s

relationship,

∫ ∞

−∞
dt |E(z = 0, t)|2 =

∫ π/R

−π/R

dK

2π

(
2

R

)
|ck0+K |2|φk0+K(0)|2. (2.55)
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The integral over K in Eq. (2.54) can be carried out by writing the exponential

in the form of Eq. (2.45), and using Eq. (2.21). We define the coefficients

βn =




1

2R
ck0 , n = 0

n

in

∫ ∞

0

dt′

t′

[
E(0, t′) − E(0, 0)

]
Jn(∆ωt′), n ≥ 1

(2.56)

A few pages of straightforward algebra based on the orthogonality of the cosines

leads to the expression,

E(z, t) =eiω0t

∞∑
m=0

bm Jm(∆ωt)
∞∑

n=0

βn{
1

4
e−i(±m±n)+k0R

∑
l

ψl[z − (±m ± n)+R]

} (2.57)

where the coefficients bm are defined as

bm =

{
1, m = 0

2im, m ≥ 1
. (2.58)

We’ve used the symbol ‘()+’ in Eq. (2.57) as a compact notation for the sum over

both choices of sign of ‘±’ that yield a non-negative number for the expression inside

the brackets.

Fig. 2.3 shows the temporal profiles of an input Gaussian envelope as would be

detected along such a waveguide. The crest of the envelope travels with a group

velocity ∆z/∆t � ∆ωR. The dispersion relationship is nonlinear, and there’s no

single number for the group velocity valid to all propagation distances, but the error

in assuming an equality is less than 0.5% for much of the regime shown in Fig. 2.

Higher-order dispersion develops an oscillatory structure at the trailing edge of the

pulse (see, e.g., Agrawal [4, Fig. 3.7]).

We ask what temporal waveform would be measured by an observer sitting at

one of the resonators, i.e., E(z, t) as a function of t with the spatial coordinate z

set to the location of one of the resonators (so that z/R is an integer). In the

practically important limit of high-Q resonators, ψl(z) is narrowly peaked around

z = 0, |ψl(z = ±R)| � |ψ(z = 0)| and we can simplify the double summations over
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Figure 2.3: Temporal evolution of a Gaussian envelope at specific distances inside
a CROW, showing the effects of dispersive propagation. ‘Distance’ is normalized
to R, the inter-resonator spacing, ‘Time’ is normalized to 1/∆ω. The vertical axis
represents |E(z, t = 0)| normalized to its maximum value. At greater depths, the
peak of the envelope arrives at a later time, and ripples in the trailing edge indicate
higher-order distortion.
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m and n in Eq. (2.57) by representing this condition as a Kronecker delta function.

After some algebra, we may write an expression for the envelope E(z, t) defined by

the usual relationship, |E(r, t)| ≡ exp[i(ω0t − k0z)]E(z, t), as the sum of two terms,

E(z, t) =
1

4

z/R∑
n=−∞

b̃n Jn(∆ωt) βz/R−n

∑
l

ψl(z = 0)

+
1

4

∞∑
n=z/R

bn Jn(∆ωt) βn−z/R

∑
l

ψl(z = 0),

(2.59)

where

b̃n =

{
2b0, n = 0

bn, n = 0.
(2.60)

Note that this equates the magnitudes of the b̃’s, as a consequence of the original

definition, Eq. (2.58).

As functions of t, the first term on the right-hand side of Eq. (2.59) represents

a backward propagating pulse and the second term gives the forward-propagating

pulse. One way to see this is by using the fact that for small t, Jn(t) ∼ tn, so that as

we increase n, Jn(t) “rises from zero” at larger t. As z increases (and consequently

so does the integer, z/R), a larger n is required to maintain the same argument

of β in the second term of Eq. (2.59). Through its corresponding Bessel function,

this term will contribute significantly at larger t than a term involving a smaller n.

Physically, this describes a point on the envelope reaching greater values of z at later

t, i.e., a forward-propagating pulse. A similar argument shows that the first term in

Eq. (2.59), with the modified coefficients b̃n, describes a backward-propagating pulse.

A pulse envelope, as a function of t, is therefore described by a contiguous set

of Bessel functions: the field at z is written as a superposition of an appropriately

translated set of these functions {Jz/R(t), Jz/R+1(t), . . .}, multiplied by the coeffi-

cients {β0, β1, . . .}. Distortion accumulates with distance as a consequence of the

changing inter-relations between neighboring Bessel functions, e.g., the difference be-

tween the set {J0(t), J1(t), . . . , Jp(t)} and the set {J5(t), J6(t), . . . , J5+p(t)} for a given

{β0, β1, . . .}. Note that the Bessel functions are replaced by sinusoids in the limit of

a linear dispersion relationship in place of Eq. (2.8): these basis functions maintain

the same relationships between neighbors irrespective of the origin of the set, which

is why distortionless propagation may be achieved in this limit.
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One additional simplification is illuminatory and may also considerably speed up

numerical computations. The normalizations in the identity [145]

n

∫ ∞

0

dx

x
Jn(bx) = 1, (2.61)

may be used in the definition of βn in Eq. (2.56). For slowly varying envelopes E(z =

0, t′), the asymptotic limit of the Bessel function is a cosine that, when multiplied by

a slowly varying function and integrated over several periods, averages out to zero.

We replace n/t′Jn(∆ωt′) with δ(t′ − n/∆ω) so that

βn = i−nE(z = 0, n/∆ω), n ≥ 1, (2.62)

i.e., the β’s represent temporal samples of the input pulse envelope along the ∆ωt axis.

The infinite summations in Eq. (2.59) may thereby be restricted to a finite number,

based on the temporal extent of the pulse, without significant loss of accuracy.

Further details may be found in [95, 87].

This analytical formulation allows waveguides to be designed to achieve

desired propagation characteristics. In a waveguide of a given length, the

inter-resonator spacing, which determines the parameters in Eq. (2.8),

may be chosen to limit the distortion, and achieve a certain (effective)

group velocity of propagation. Even though the dispersion relationship

is non-polynomial and nonlinear, this analysis yields a closed-form result

for arbitrary input pulse shapes, and to all orders of dispersion.

Waveguides constructed in electro-optically tunable material will allow the wave-

guide modes to be altered in realtime, through ψ(r) in Eq. (2.3), and consequently, the

eigenmode overlap integrals that appear in Eq. (2.8). Similar effects may be achieved

in MEMS waveguides constructed out of a patterned membrane with piezoelectric

actuators that cause a mechanical deformation; in this case, the physical geometry

of the resonators is altered rather than the refractive index difference between the

resonators and their surroundings. This leads to the development of microscale tun-

able all-optical delay lines and signal processing devices, such as interleavers and

multiplexers.
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Chapter 3

Two-pulse nonlinear interactions

...the powerful unified approach of coupled mode theory makes
the earlier analyses almost obsolete, and ... provides a

straighforward logical approach to the understanding of the
phenomena and to the design of structures. In exchange for the

fascination and adventure of the historical approach to a new art,
it provides the beauty and unity of a natural logical mathematical approach.

—C.C. Cutler, preface to W.H. Louisell, Coupled Mode and
Parametric Electronics, John Wiley & Sons (1960).

Among the most interesting applications of the framework of linear propagation of

pulses in the tight-binding method is a description of the basic nonlinear phenomena

in CROWs, such as second harmonic generation. Once we have a successful descrip-

tion of the “free” propagation of a CW field (a waveguide mode) or of a pulse (a

superposition of waveguide modes), it’s appropriate to attempt a description of the

effects of a nonlinear polarization generated in the waveguide, e.g., describing the

generation of a second harmonic field in a nonlinear CROW in the CW regime [150]

or using pulses [93]. The formalism presented here, based on [93], is central to the de-

scription of more complicated nonlinear phenomena, and is most generally described

as a coupled mode formalism of the time-dependent waveguide field distributions as

derived in Chapter 2. As in the previous chapter, we’ll consider the uniaxial propaga-

tion of pulses—along the z axis, to be specific. We do not discuss here any particular

features in the transverse geometry of the waveguide. As in the previous chapter,

we’ll restrict our discussion to modes of a particular parity.

There are certain general aspects of this investigation [93] that are important in

the discussion of any pulsed nonlinear phenomenon in the tight-binding analysis of

CROWs. A nonlinear polarization generated in the waveguide drives the evolution of

61
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the amplitude (envelope) of the waveguide mode, typically under the slowly-varying

envelope approximation (SVEA, which we maintain) [152]. The CW waveguide modes

which comprise a pulse [92] may each be assumed to be multiplied by an envelope

function, which complicates the analysis somewhat compared to the CW case. Fur-

thermore, an analysis of CW second harmonic generation in CROWs [150] that is not

prohibitively complicated relies on isolating the envelope of the waveguide mode from

the remainder of the field; the latter can be shown to follow the Bloch theorem [156].

Can such an approach be applied to the analysis of pulse propagation in the presence

of a nonlinear polarization? We’ll show that it can, although it requires a Bloch

function that depends both on spatial and temporal coordinates, in contrast with the

usual approach of a spatial Bloch function [94].

The efficiency of (unsaturated) second harmonic generation in a CROW with

CW waves is enhanced relative to that in bulk crystals by the inverse ratio of the

group velocities at the second harmonic frequency in the two waveguides [150], which

can approach 103 or 104 for weakly coupled CROWs [156]. It’s known that the

efficiency of second harmonic generation is enhanced at the band-edge of photonic

crystals, for exactly similar reasons of a reduction in the group velocity. Second

harmonic generation in a CROW combines this advantage with the enhancement

of the optical field found, e.g., in defect cavities in photonic crystals [143, 108]. A

numerical simulation of second harmonic generation with pulses in related structures

is presented in [120] and shows many features that are predicted by our analytical

formulation for this general class of structures.

The equations describing second harmonic generation in a CROW using pulses

rather than CW waves are formulated, allowing for a spatial and temporal variation

in the description of the rapidly varying part of the waveguide field distributions and

their envelopes.

3.1 Description of a pulse with an envelope in a CROW

A pulse is written as a superposition of waveguide modes, Eq. (2.32), with their

respective time evolution propagators,

E(z, t) =
∑

allowed k’s

[coefficients]k eiω(k)tφk(z), (3.1)
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Figure 3.1: Schematic of an infinitely long 1–D CROW with periodicity R consisting
of defect cavities embedded in a 2–D photonic crystal.

where the summation reflects the Born—von Karman boundary conditions in a struc-

ture of finite length L, so that ∆k = 2π/L as discussed in [92]. Since we take L � R,

we may replace the summation by an integral, either by accounting for the “density

of states”, i.e., of allowed k-vectors, or by the impulse train arguments employed in

Chapter 2. Then, we may write

E(z, t) =

∫
dk

2π
bk eiω(k)tφk(z), (3.2)

where the bk’s are appropriately normalized.

We’ll account for the change in power carried by the modes due to a driving

polarization by including a z-dependency in the coefficients bk0+K . These coefficients

will account for not only the effect of the driving polarization, but also the initial

superposition of k’s that comprise the pulse at the z = 0 edge of the waveguide. It’s

convenient to separate these two components of bk0+K(z), and we write bk0+K(z) →
ck0+KÃk(z), where ck0+K is independent of z and Ãk(z = 0) = 1. The field thus

described may be written as

Ê(z, t) = eiω0t

∫
dK

2π
ck0+KÃk0+K(z) eivgtK φk0+K(z). (3.3)
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As in Eq. (2.17), the coefficients ck0+K arise from a specified pulse shape at the

z = 0 edge of the waveguide and centered at the optical frequency ω0,

Ê(z = 0, t) = eiω0tE(z = 0, t), (3.4)

so that from the equality of Eq. (3.3) evaluated at z = 0 and Eq. (3.4), it follows that

ck0+K =
1

φk0+K(0)

∫
d(|vg|t′) E(z = 0, t′)e−ivgt′K . (3.5)

Combining Eq. (3.5) with Eq. (3.3), we may write

Ê(z, t) = eiω0t

∫
d(|vg|t′) E(z = 0, t′)

∫
dK

2π

φk0+K(z)

φk0+K(0)
Ãk0+K(z) eivg(t−t′)K . (3.6)

Eq. (3.6) may be simplified, based on the properties of a CROW. As represented

by Eq. (2.21), to leading order, 1/φ(0) ≈ 1, and using the explicit form for φk(z) in

Eq. (2.3),

Ê(z, t) =eiω0t
∑

n

e−ik0nR
∑

l

ψl(z − nR)

∫
d(|vg|t′) E(z = 0, t′)

×
∫

dK

2π
Ãk0+K(z)eiTK ,

(3.7)

where T ≡ vg(t−nR/vg − t′). Using the following notation for the Fourier transform

relationship, ∫
dK

2π
Ãk0+K(z)eiTK = AT (z) ≡ A(z; T ), (3.8)

we can rewrite Eq. (3.7) as

Ê(z, t) =eiω0t
∑

n

e−ik0nR
∑

l

ψl(z − nR)

[
∫

d(|vg|t′) E(z = 0, t′) A

(
z; vg

[
t − nR

vg

]
− vgt

′
)]

.

(3.9)
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3.2 Representation in the Bloch form

We see that the dispersion relationship, Eq. (2.14), dictates a temporal dependency

of the envelope A; however, if A were independent of K, then such would not be the

case. (As an aside, this shows that an assumption in Eq. (3.3) of an envelope of the

form Ãk(z, t) would lead to overspecification.) The CROW dispersion relationship,

Eq. (2.14), doesn’t include group-velocity dispersion or higher-order dispersion terms,

and in many problems, the polarization term driving the evolution of the field may

be assumed to be constant over the relatively narrow range of propagation constants

k0 ± K that comprise the pulse in the center of the waveguide band. In such cases,

we would not expect a change in the temporal description of the envelope of the

pulse, since pulse envelopes of any shape (within certain parametric ranges related to

the sampling theorems (see Section 2.4) can propagate undistorted. It would seem

reasonable, therefore, to assume that the envelope A is indeed independent of the

propagation constant.

We can state these arguments and their consequences in the mathematical frame-

work of the previous section, assuming that the envelope is separable, A(z, t) =

α(z) ζ(t). Then, we may write

Ê(z, t) = α(z) eiω0t
∑

n

e−ik0nR
∑

l

ψl(z − nR)

{∫
dτ E(z = 0, τ/vg)

× ζ

[
vg

(
t − nR

vg

)
− τ

]}
,

(3.10)

or, in a more convenient form,

Ê(z, t) = α(z) ei(ω0t−k0z) uk0(z, t), (3.11)

where we define

uk0(z, t) ≡
∑

n

eik0(z−nR)
∑

l

ψl(z − nR)

∫
dτ E(z = 0, τ/vg) ζ

[
vg

(
t − nR

vg

)
− τ

]
.

(3.12)

Since the structure is infinitely long, the summation over n in Eq. (3.12) may

be translated as desired. We see that uk0(z + R, t + R/v) = uk0(z, t), and therefore

exp[i(ω0t − k0z)]uk0(z, t) is of the Bloch form (in spatial and temporal coordinates),
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i.e., a plane wave multiplying a function with an inherent periodicity reflecting that

of a lattice structure [9]. Consequently, Ê(z, t) may be viewed as an amplitude α(z)

modulating a Bloch wavefunction, uk0(z, t). This observation leads to a powerful and

general way to analyze nonlinear phenomena with pulses in CROWs [93], similar to

the analysis of cw phenomena [150].

Note that the spatial periodicity of the Bloch wavefunction is exactly that of the

CROW structure. The temporal periodicity is the time taken by the pulse envelope

to travel the distance defining the spatial periodicity. This is similar to the invariance

in the reference frame t − z/vg of the field envelope in weakly dispersive fibers and

semiconductor waveguides.

Further, since we’ve assumed Ãk(0) = 1, we may use Eq. (3.8) and the consequent

observation α(z = 0) = 1 to write

ζ(T ) =

∫
dK

2π
eiTK = δ(T ), (3.13)

using the Dirac delta function. Therefore, the convolution integral in Eq. (3.12) can

be evaluated, and

uk0(z, t) =
∑

n

eik0(z−nR)
∑

l

ψl(z − nR) E

(
z = 0, t − nR

vg

)
. (3.14)

An extension of Eq. (3.14) to three spatial dimensions (with pulse propagation

along the z axis) is straightforward, since the only vectorial functions are the modes

of the individual resonators, ψl(r). We’ll also generalize the notation from ω0 to ω,

since the description is equally valid at any carrier optical frequency, and from k0 to

k(ω), as the dispersion relationship dictates the propagation constant corresponding

to ω. (We’ll sometimes write kω in place of k(ω) so that the mathematical structure

of certain equations is not obscured.) In place of Eq. (3.14), we write

uk(ω)(r, t) =
∑

n

eikω(z−nR)
∑

l

ψl(r − nRez) E

(
z = 0, t − nR

vg

)
. (3.15)

We can write the polarization in terms of this representation of the field describing

a pulse—an envelope modulating a spatio-temporal Bloch wavefunction—and thereby

obtain an evolution equation for the envelope.
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In characterizing the effects on pulse propagation of a polarization in a

coupled resonator optical waveguide (CROW), we’ve introduced a slowly

varying envelope for each of the waveguide modes comprising the pulse.

We’ve shown that the Ansatz of the envelope is strongly dictated by

the geometry of the waveguide. Under relatively mild assumptions, the

field distribution describing the pulse can be written as the product of a

spatial envelope function (which may in subsequent analyses be assumed

to be slowly varying if desired) and a wavefunction of the Bloch form,

i.e., a plane wave multiplying a periodic function. The periodicity of the

Bloch function depends both on spatial and temporal coordinates.

3.3 Second harmonic generation: formulation

The standard approach to second harmonic generation (SHG) in bulk crystals

accounts for the generation of the envelope of the second harmonic field as a con-

sequence of the nonlinear polarization in the medium using a formalism commonly

known as coupled-wave theory [126, 154]. The definition of the eigenmodes is from

the linear tight-binding equations, i.e., we don’t consider second harmonic generation

of intrinsically nonlinear pulseshapes such as solitons in this analysis. In bulk crys-

tals, the eigenmodes are usually of a simple form—exp[i(ωt−kz)]—and the resultant

equations for both CW waves and slowly varying envelope pulses are derived in [126,

Chap. 6–7]. In a CROW, the eigenmodes are more complicated as in Eq. (2.32), but

we’ve seenn that the analysis may be carried out on similar lines.

Based on the discussion in Section 3.2, we assume the following ansatz for the

second harmonic field distribution

E2(r, t) = E2(z) ei 2ωte−ik2ωzuk(2ω)(r, t), (3.16)
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so that the equation analogous to Eq. (2.40) is

v2

[
4ω

c2
− i

2

c2

∫
d4r ε(r)

[
uk(2ω)

]∗ · ∂uk(2ω)

∂t

]

=

∫
d4r

[
uk(2ω)

]∗ · [− 2k2ωez × [ezuk(2ω)]

− iez × [∇× uk(2ω)] − i∇× [ez × uk(2ω)]
]
, (3.17)

where v2 ≡ d(2ω)/dk.

The nonlinear polarization PNL(r, t) generates the second harmonic field E2(r, t)

according to [154, 126, 57]

∇× [∇× E2] +
ε(r)

c2

∂2E2

∂t2
= − 1

c2

∂2

∂t2
PNL(r, t). (3.18)

In Eq. (3.16), the exponential evolution factors and the Bloch wave function are all

explicitly dependent on spatial and temporal coordinates. Consequently, the algebra

is somewhat complicated and a table of vector identities is useful in simplifying the

component terms on the left-hand side of Eq. (3.18). We use the slowly varying

approximation [154, 126] to neglect the second-order derivatives of the envelope,

∣∣∣∣d2E2

dz2

∣∣∣∣� k2ω

∣∣∣∣dE2

dz

∣∣∣∣ , k2ω
2 |E2| . (3.19)

The spatial derivatives can be written as

∇× [∇× E2] =ei 2ωte−ik(2ω)z

[
i
∂E2

∂z

{
− 2k2ωez × [ez × uk(2ω)]

− iez × [∇× uk(2ω)] − i∇× [ez × uk(2ω)]
}

+ E2

{
− k2ω

2ez × [ez × uk(2ω)] + ∇× [∇× uk(2ω)]

− ik2ω

[
ez × [∇× uk(2ω)] − i∇× [ez × uk(2ω)]

] }]
,

(3.20)
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and the temporal derivatives can be written as

∂2E2

∂t2
= ei 2ωte−iK(2ω)z

{
E2

[∂2uk(2ω)

∂t2
+ i2(2ω)

∂uk(2ω)

∂t
− (2ω)2uk(2ω)

]}
. (3.21)

We use Eq. (3.20) and Eq. (3.21) in Eq. (3.18) and use the eigenvalue equation for

uk(2ω) [analogous to Eq. (2.38)] to cancel certain terms. The result can be written as

i
dE2

dz

[
− 2K2ωez × [ez × uk(2ω)] − iez × [∇× uk(2ω)] − i∇× [ez × uk(2ω)]

]
= eiK(2ω)ze−i 2ωt

[
− 1

c2

]
∂2

∂t2
PNL(r, t).

(3.22)

Next, we form the inner product of both sides of Eq. (3.22) with u∗
k(2ω) and

integrate over t and r as in Eq. (2.36). Using Eq. (2.40) at the second harmonic

frequency, the left-hand side of Eq. (3.22), which we write as L, becomes

L = i
dE2

dz
v2

[
4ω

c2
− i

2

c2

∫
d4r ε(r)

[
uk(2ω)

]∗ · ∂uk(2ω)

∂t

]
. (3.23)

We simplify the right-hand side of Eq. (3.22) using Eq. (D.8) if we may assume

an undepleted fundamental, or using Eq. (D.9) otherwise. The differences between

the two cases are mostly notational and we’ll consider the former first. With the

following definitions,

∆kn ≡ k1(ω) + k2(ω) − k(2ω) + n
2π

R
,

p(r, t) ≡ uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1)
(3.24)

forming the abovementioned inner product of the right-hand side of Eq. (3.22), which

we write as R, yields

R = − 1

c2
E1

2

∫
d4r e−i∆knzein 2π

R
z
[
uk(2ω)(r, t)

]∗ · d̃(r)
[∂2p

∂t2
+ 2i(2ω)

∂p

∂t
+ (i 2ω)2p

]
.

(3.25)

From Eqs. (3.23) and (3.25), it’s clear that E2 will remain small unless there exists

an integer n such that ∆kn is very small. Then, exp(−i∆knz) is essentially constant
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over one unit cell and can be pulled out of the integral. Therefore,

R =
4ω2

c2
E1

2 e−i∆knz

[
D(0)

n − i
1

ω
D(1)

n − 1

4ω2
D(2)

n

]
, (3.26)

where

D(0)
n ≡

∫
d4r ein 2π

R
z
[
uk2(2ω)(r, t)

]∗ · d̃(r)uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1), (3.27)

D(1)
n ≡

∫
d4r ein 2π

R
z
[
uk2(2ω)(r, t)

]∗ · d̃(r)
∂

∂t

[
uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1)

]
,

(3.28)

D(2)
n ≡

∫
d4r ein 2π

R
z
[
uk2(2ω)(r, t)

]∗ · d̃(r)
∂2

∂t2
[
uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1)

]
.

(3.29)

As discussed in Appendix D, we can extend the above analysis to allow for vari-

ations in the envelope of the fundamental, E1(r, t). We drop the factor of E1
2 in

Eq. (3.26) and instead define

p(r, t) ≡ E1(z)2uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1). (3.30)

We write down the equation that describes the evolution of the envelope of the sec-

ond harmonic mode at the frequency 2ω in its complete form for convenient reference

in subsequent analyses,

dE2

dz
=

[
i
4ω

c2
+

2

c2

∫
d4r ε(r)

[
uk(2ω)(r, t)

]∗ · ∂

∂t
uk(2ω)(r, t)

]−1
4ω2

v2 c2

× e−i[k1(ω)+k2(ω)−k(2ω)+n 2π
R ]z

{∫
d4r ein 2π

R
z
[
uk2(2ω)(r, t)

]∗ · d̃(r)

E1(z)2

[
uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1) − i

ω

∫
d4r ein 2π

R
z
[
uk2(2ω)(r, t)

]∗·
d̃(r)

∂

∂t

[
uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1)

]− 1

4ω2

∫
d4r ein 2π

R
z

[
uk2(2ω)(r, t)

]∗ · d̃(r)
∂2

∂t2
[
uk1(ω)(r, t − z/v1)uk2(ω)(r, t − z/v1)

] ]}
.

(3.31)
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3.4 Solutions to the SHG equations

A closed form solution of Eq. (3.31) under general conditions is not known. In

this section, we’ll discuss certain simplifications which can lead to simple closed form

solutions that highlight the physics behind their formulation. These solutions demon-

strate a correspondence with known results in the theory of second-harmonic gener-

ation with CW waves [150].

As expected, dropping the time dependence and setting all time derivatives to

zero in Eq. (3.31) yields the equation for second harmonic generation with CW fields.

This is an ordinary differential equation for E2(z) and can be solved quite easily with

the assumption of an undepleted constant envelope fundamental. Cumulative growth

of the second harmonic field amplitude requires the phase matching condition,

k(2ω) = k1(ω)+k2(ω) + n
2π

R

n = 0,±1,±2, . . .
(3.32)

which explicitly involves the Bloch wave ‘vector’ n 2π/R.

Analytical time-dependent solutions may also be obtained under certain approx-

imations. We’ll continue to assume that E1 is constant (undepleted constant funda-

mental) and introduce the parameter p ≡ 1/(i 2ω). Using Eqs. (3.27)–(3.29), we can

write Eq. (3.31) as

v2
dE2

dz
= − E1

2

2p v2

[
1 + p

∫
d4r ε(r)

[
uk(2ω)

]∗ · ∂

∂t
uk(2ω)

]−1

× e−i∆knz
[
D(0)

n + 2pD(1)
n + p2D(2)

n

]
.

(3.33)

For reasonably well-behaved picosecond pulses at the second harmonic [see Eq. (2.35)],

we may assume ∣∣∣∣p
∫

d4r ε(r)
[
uk(2ω)

]∗ · ∂

∂t
uk(2ω)

∣∣∣∣� 1. (3.34)

To see this, we refer to Eq. (2.35) and consider a Gaussian pulse at a second harmonic

frequency of 532 nm in a CROW, E2(z = 0, t) = exp(−t2/τ 2), where the pulse width

τ is 1 ps. Then, the left-hand side of Eq. (3.34) can be written as

1.8 × 10−15 s

(1 × 10−12)2 s2

∫
dt

T
2t

∫
dr ε(r)

[
uk(2ω)

]∗ · uk(2ω) ≤ 1.8 × 10−15 s

(1 × 10−12)2 s2
2T (3.35)
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since the range of t integration in Eq. (2.36) is over a time scale T . For picosecond

pulses, T is on the order of picoseconds, and therefore, the above number is on the

order of 10−2 or smaller.

The dominant contribution to second harmonic generation then follows the equa-

tion
dE

(0)
2

dz
= − E1

2

2p v2

e−i∆knz
[
D(0)

n + 2pD(1)
n + p2D(2)

n

]
. (3.36)

Eq. (3.36) can be integrated to yield

E
(0)
2 (z)

∣∣∣z
0

= −i
E1

2ω

2v2

[
D(0)

n + 2pD(1)
n + p2D(2)

n

] [ 1

−i∆kn/2
e−i∆knz

]∣∣∣∣
z

0

. (3.37)

If we assume the usual boundary condition E
(0)
2 (z = 0) = 0, the envelope of the

second harmonic field distribution is

E
(0)
2 (z) = −i

[
sin[∆knz/2]

∆knz/2

]
e−i∆knz/2 z E1

2 ω

v2

[
D(0)

n − i
1

ω
D(1)

n − 1

4ω2
D(2)

n

]
. (3.38)

The phase-matching sinc function in Eq. (3.38) is exactly analogous to the results

of CW second harmonic generation in bulk crystals, but with the definition of ∆kn

following Eq. (3.32). The condition ∆kn = 0 (for some n) is known as quasi-phase

matching [154, pp. 319–322] and reflects the important role of the waveguide geometry

on the efficiency of nonlinear processes.

Eq. (3.38) also shows that at the phase-matched condition, the intensity of the

second harmonic |E2|2 grows quadratically with distance z, the intensity of the fund-

mental |E1|2 and, in regions where it’s a constant, the nonlinearity coefficient d̃; these

are features in common with the analysis of second harmonic generation in bulk me-

dia [126]. As expected for an undepleted fundamental and linear propagation, the

boundary input propagates unchanged in shape, but delayed in time by z/v2 where z

is the length of the region under consideration and v2 is the group velocity of a pulse

at the second harmonic wavelength.

The linear growth of E
(0)
2 with z can’t persist indefinitely; saturation may be

accounted for by explicitly including the loss coefficient in the expression exp(−Γ2ω +

i 2ωt) in place of exp(i 2ωt) in Eq. (3.16). It may be seen that Eq. (3.38) is valid in

the regime z � v2/Γ2ω [150].

In this regime, we can compute the efficiency of second-harmonic generation by
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comparing the intensity at the second harmonic obtained from Eq. (3.38) to the power

flux of the fundamental. The electromagnetic energy density for the fundamental as

written in Eq. (D.2) is |E1|2ε(r)uk(ω)
∗ · uk(ω). The group velocity v1 (the velocity of

energy flow) is intuitively defined as the ratio of the average power flow Pω to the

time-averaged energy stored per unit length, so that

Pω = v1

∫
d4r ε

[
uk(ω)

]∗ · uk(ω) =
v1

R
|E1|2 . (3.39)

Using Eq. (3.38), and assuming that the process is phase-matched and E2(z = 0, t)

is negligible,

P2ω(z) =
v2

R

∣∣∣∣∣E1
2 1

v1 v2

ω R Pω z
[
D(0)

n − i
1

ω
D(1)

n − 1

4ω2
D(2)

n

]∣∣∣∣∣
2

. (3.40)

From Eqs. (3.39)and (3.40), the second harmonic generation efficiency at z = L is

η(L) =
P2ω

Pω

=
1

v1
2 v2

ω2 RPω L2
∣∣∣D(0)

n − i
1

ω
D(1)

n − 1

4ω2
D(2)

n

∣∣∣2. (3.41)

The factors of 1/v1
2 and 1/v2 show that the efficiency of second harmonic generation

is greatly increased by slowing down the propagation of pulses in the waveguide.

The equations describing sum-frequency generation in photonic crystal waveguides

with time-independent envelopes have been formulated by Sakoda et al. and solved

using a Green’s function [119, 118]. There are similarities between their analysis and

those in [150], and with the time-independent limit of this formulation. The expression

derived by Sakoda et al. for an “effective nonlinear susceptibility” in Eq. (19) of [119]

is similar to Eq. (3.27) and their final result Eq. (24) of [119] is similar to Eq. (3.38).

In particular, the enhancement of the field intensity by a factor 1/v2 as in Eq. (3.41)

and the conservation of crystal momentum ∆kn(z) = 0 are similar. We point out

that in contrast with Appendix A of [119], plane waves are not eigenfunctions of a

CROW and evaluation of the integrals in a Green’s function approach to the problem

may not be possible.

A numerical study of pulsed second harmonic generation in certain one-dimensional

periodic structures (dielectric stacks) was presented by Scalora et al. [120]. The prin-

ciple difference in their structure from a CROW lies in location of the dispersion
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curve in the band diagram: in the structure of Scalora et al., pulses are tuned to

the band edge, whereas in the case of the CROW, the defect cavity modes lie within

the bandgap, and pulse propagation results from the weak overlap of the spatial

distributions of these eigenmodes [150].

Although the physics behind the observations is different, there are several com-

mon phenomena such as a large reduction in the group velocity of pulse propagation

(when tuned to the appropriate part of the spectrum) and increased intensity in-

side the waveguide relative to free space. The plots of the ‘pump field eigenmode

distribution’ as numerically obtained by Scalora et al. [120, Fig. 4] from numerical

simulations also correspond closely to our theoretical formulation. This is a direct

consequence of the similarities in the geometrical structure of deep-grating photonic

bandgap structures [32] and a one-dimensional CROW.

Scalora et al. show that in the context of the slowly varying envelope approx-

imation as used here, the assumption of an undepleted fundamental is valid (i.e.,

negligible absorption is observed) and in this regime, the efficiency of second har-

monic is increased by orders of magnitude as predicted in Eq. (3.41). For certain

aspects of the problem, numerical simulations offer insight not yet available from

a theoretical investigation. As we have mentioned in Appendix C, the problem of

coupling a pulse into or out of such a strucure cannot be described as a Hermitian

eigenvalue problem. Scalora et al. demonstrate via simulations the importance of

the pulse width in coupling into such a structure—pulses with a spectral width larger

than that of the transmission resonance at the band-edge experience little field in-

tensity enhancement. It’s not clear at present if the bandwidth limitations that arise

from the discrete geometry of a CROW [92] are related to this phenomena.

The propagation and generation of a pulse as a consquence of a nonlinear

(second harmonic) polarization induced in a CROW is studied. We’ve

derived an approximate but analytical expression for the efficiency of

unsaturated second harmonic generation and have also shown how the

characteristics of the second harmonic pulse envelope in a CROW has

certain features in common with the well-known results in the generation

of second harmonic via CW waves in bulk crystals.



Chapter 4

Holography and four-pulse mixing

If one were running across the room in fast sixteenth notes
and wanted to reduce them to eighths or quarters,

something would have to happen between the first and second of the slower notes ...
or on the momentum generated by the fast notes, one would go flying through the wall ...

—Ralph Kirkpatrick, Interpreting Bach’s Well-Tempered Clavier, Yale (1984).

The interference pattern of two co-incident pulses in a nonlinear CROW creates an

index grating that may cause power transfer from one waveform to another—this is

known as two-beam coupling. Phenomena such as four-wave mixing and holography

involve a third waveform which is Bragg-scattered from this grating, resulting in the

generation of a fourth field that is related to the waveforms of the other fields. This

relationship is governed by energy and wavevector conversation, and by the material

properties of the medium.

The analysis of four-wave mixing is exactly analogous to that of holography, except

for the time coordinates—we’ll use the terminology interchangeably. We’ve obtained

the spatial Fourier transform (in K-space) of E(z, t) in Eq. (2.30). We will use the

symbols t′ and t to denote the temporal coordinates at the time of writing the holo-

gram and at the time of reconstruction, respectively. In general, t = t′ − T for

some time interval T . (As before, we’ll ignore the multiplicity of l values, assuming

that only a single mode from each of the individual resonators contributes to the

waveguide mode under consideration.) A typical geometry involves a grating writ-

ten by two counterpropagating pulses. We assume that two pulses E1(z = 0, t′) and

E2(z = L, t′) are input at the two opposite ends of a CROW. The pulses propagate

in opposite directions with wavevectors k1 and −k2 and group velocities v1 and v2,

respectively. The total field E(z, t′) is given by the sum of the fields due to these two

75
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pulses, and in K-space, can be written as

Ẽ(K, t′) =

eiω1t′
∑

n

e−i(k1+K)nRψ̃(K)E1

(
z = 0, t′ − nR

v1

)

+eiω2t′
∑
m

e−i(−k2+K)mRψ̃(K)E2

(
z = L, t′ − mR

v2

) (4.1)

analogous to the K-space representation of a single pulse.

The interference pattern of the spectral components of this field (for example,

considering the component at K1 from the forward-propagating pulse and the com-

ponent at K2 of the backward-propagating pulse) is weighted by a complex coupling

coefficient δn(K1, K2) which depends on the material properties, the orientation of

the medium and the polarization of the waves [154, 123]. Therefore, we may write

the grating as

δn(z, t′) =
1

F0

ei(ω1−ω2)t′
∑
n,m

∫
dK1

2π

dK2

2π
e−i(K1−K2)z e−i(k1+K1)nRe−i(−k2+K2)mR

× δn̂(K1, K2) E1

(
z = 0, t′ − nR

v1

)
E∗

2

(
z = L, t′ − mR

v1

)

× ψ̃(K1)ψ̃
∗(K2) + c.c.,

(4.2)

where F0 is the total optical power.

We assume that this grating persists for a certain amount of time, so that at a

later time t, δn(z, t) = δn(z, t′) and we can relabel the temporal coordinate t′ to t

in Eq. (4.2) to describe the reconstruction process. We will only focus on the term

in Eq. (4.2) written out in full, with the remark that analogous results hold for the

complex conjugate term (written in Eq. (4.2) as c.c.)1

We then use a backward-propagating reference pulse Er(z, t) to illuminate the

grating, and preserve its distinction from the reference pulse at the time of grating

formation E2(z, t) to maintain the generality of this discussion. At a later stage,

we’ll assume that these two pulses are in fact identical, and simplify the expressions

1This term will ultimately give rise to a field propagating in the direction opposite to that of E1,
and is not of interest in this discussion.
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appropriately. We can write Er(z, t) in the Fourier domain using Eq. (2.30),

Ẽr(Kr, t) =

∫
dKr

2π
eiωrt

∑
p

e−i(−kr+Kr)pRψ̃(Kr)Er

(
z = L, t − pR

vr

)
. (4.3)

Upon illumination by Er(z, t), the polarization driving the propagation equa-

tion [154] for the reconstructed field Ec(z, t) is given in the instantaneous response

approximation by

Pc(z, t) = δn(z, t) Er(z, t). (4.4)

The evolution of the reconstructed field Ec(z, t) will follow that of the original signal

field E1(z, t) if this polarization Eq. (4.4) can be shown to be proportional to E1(z, t).

The multiplicative constant in this relationship includes the third-order susceptibil-

ity χ(3) rather than the linear susceptibility χ(1) since the grating δn(z, t) given by

Eq. (4.2) is proportional to the product of two optical fields [154].

We can multiply both sides of Eq. (4.4) by exp(−iKcz) and integrate over z

to write Eq. (4.4) in Fourier-transformed K-space. In doing so, we use Eqs. (4.2)

and (4.3) which describe the grating and the reference pulse, to obtain

P̃c(Kc, t) =
1

F0

ei(ω1−ω2+ωr)t
∑
n,m,p

∫
dK1

2π

dK2

2π

dKr

2π
δn̂(K1, K2)

{∫
dz ei(K1−K2+Kr−Kc)z

}

× e−i(k1+K1)nRe−i(−kr+Kr)pRei(−k2+K2)mRψ̃(K1) ψ̃(Kr) ψ̃∗(K2)

× E1

(
z = 0, t − nR

v1

)
Er

(
z = L, t − pR

vr

)
E∗

2

(
z = L, t − mR

v2

)
.

(4.5)

The phase-matching integral over z can be approximated by 2π δ(K1−Kc)δ(K2−
Kr) and we can carry out the integrals over K2 and K1. We write Kr ≡ K ′ and

Kc ≡ K to generalize the notation. In order to focus the discussion on holographic

reconstruction of the signal pulse, we now assume that Er(z = L, t) = E2(z =

L, t′)|t′=t, kr = k2, ωr = ω2 and vr = v2, i.e., we use a replica of the reference write-in

pulse E2 (in the original temporal coordinate t′) as the reference reconstruction pulse.
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Then, Eq. (4.5) becomes

P̃c(Kc, t) =eiω1t
∑

n

e−i(k1+K1)nRψ̃(K1) E1

(
z = 0, t − nR

v1

)[
1

2πF0

∫
dK ′

2π

δn̂(K,K ′)
∑
m,p

e−i(−k2+K′)pRei(−k2+K′)mR ψ̃(K ′) ψ̃∗(K ′)

× E2

(
z = L, t − pR

v2

)
E∗

2

(
z = L, t − mR

v2

)]
.

(4.6)

The term in square brackets in Eq. (4.6) can be written as

[· · · ] =
1

2πF0

∫
dK ′

2π
δn̂(K,K ′) G(K ′, t)G∗(K ′, t), (4.7)

where

G(K ′, t) =
∑

p

e−i(−k2+K′)pRψ̃(K ′)E2

(
z = L, t − pR

v2

)
. (4.8)

Clearly, we can multiply G(K ′, t) by exp(iω2t) without changing Eq. (4.7).

Then, using the relationship established in Eq. (2.30),

P̃c(K, t) = Ẽ1(K, t) × h(K, t), (4.9)

where

h(K, t) =
1

2πF0

∫
dK ′

2π
δn̂(K,K ′) |Ẽ2(K

′, t)|2. (4.10)

We assume that the photorefractive properties of the CROW characterized by δn̂

are spectrally nonselective, i.e.,

δn̂(K,K ′) ≡ δn̂ δ(K − K ′) for all K and K ′. (4.11)

Further, we assume that the (backward-propagating) reference pulses are narrow,

so that a fair mathematical approximation to the input free-space reference pulse

E2(z = L, t) is

E2(z = L, t) = eiω2tE0 δ (t − t0) . (4.12)
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The corresponding field in the CROW is given by Eq. (2.30),

Ẽ2(K
′, t) = E0e

iω2t
∑
m

ei(−k2+K′)mRψ̃(K ′) δ

(
t − t0 − mR

v2

)
. (4.13)

Next, if the individual resonator modes are highly localized, ψ(z) = ψ̂ δ(z − z0), we

can write
Ẽ2(K

′, t)Ẽ∗
2 (K ′, t) = |E0|2 |ψ̂|2

∑
m,m′

e−i(−k2+K′)(m−m′)R

×
[
δ

(
t − t0 − mR

v2

)
δ

(
t − t0 − m′R

v2

)]
.

(4.14)

In order that power transfer over a significant time interval is cumulative, as given

by integrating the above expression over a region of t comparable to or greater than

R/v2, the term in square brackets in Eq. (4.14) can be replaced by the Kronecker

delta δmm′ , and the result is

Ẽ2(K
′, t)Ẽ∗

2 (K ′, t) = |E0|2 |ψ̂|2M, (4.15)

where M is the number of resonators.

Using the normalization relationship M
∫

dz |ψ(z)|2 = 1, we can simplify Eq. (4.10),

h(K, t) =
1

(2π)2F0

δn̂ |E0|2, (4.16)

which is a constant ≡ ĥ, and therefore,

P̃c(K, t) = ĥ Ẽ1(K, t). (4.17)

This shows that the polarization term driving the evolution of the reconstructed

pulse is indeed proportional to the input signal pulse, as it would be for the input

signal pulse itself. Note that the scaling constant is dependent on the intensity of the

reference pulse, but for weak signal pulses, the total field intensity is dominated by

the reference and F0 ≈ |E0|2 so that the two factors cancel each other.

Photorefractive holography of single pulses has been difficult because of the low

efficiency of the process, and usually, multiple write-in procedures of thousands of

repeated pulses are necessary to obtain a sufficiently strong quasi-steady state grating.

In a CROW, the highly concentrated optical field can also enhance this aspect of the
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photorefractive effect. The propagating power flux P in a CROW is proportional to

the group velocity of the CROW band [156],

P =
1

8πR
vgE

2
0 , (4.18)

and therefore, we can obtain a higher optical field for a given power flux because of

the reduction in group velocity. Consequently, the time constant which determines

the photorefractive response time (and which varies linearly with the intensity [154])

is reduced by a factor vg ≈ 10−3 compared to the group velocity in a medium with

spatially uniform dielectric properties and refractive index n2. The quasi-steady state

equilibrium is reached with orders of magnitude lower intensities in a photorefractive

CROW as compared to a photorefractive bulk medium. As was pointed out by

Yeh [158], the fundamental limit on the speed of the photorefractive effect depends

on the intensity rather than phenomenological parameters induced by doping or heat

treatment.

We have analyzed optical pulse propagation in a coupled-resonator opti-

cal waveguide (CROW), and propose a new method for the storage and

reconstruction of optical pulses using photorefractive holography in a

CROW. The advantages of this method include a substantial reduction

in the group velocity leading to spatial compression of the signal pulse so

that it may be contained in a relatively short waveguide compared to the

spatial extent of the pulse in free space. The highly localized field dis-

tribution enhances the photorefractive effect, and we have examined in

detail the process of the formation of the grating and the reconstruction

of the signal pulse by holography. There are many possible applications

of such room-temperature, compact, nondestructive and low-intensity

pulse storage mechanisms; two important ones are buffers for optical

switches and correlators for optical measurement devices.

4.1 Applications: Nonlinear Delay Lines

In a 2–D periodic medium, such as a 2–D photonic crystal ‘slab,’ there are two

main types of waveguides: line defect waveguides, where a row of holes is filled in
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to create a guiding channel [78, 61], and via the coupling of resonator eigenmodes

of adjacent points defects which have been introduced in the desired geometry, e.g.,

the CROW. Although the physics behind waveguiding is quite different in these two

cases, they share the same spectrum of linear and nonlinear optics applications, e.g.,

guide light around sharp bends, highly selective spectral filtering, slowing down the

group velocity of light, efficient second harmonic generation, low-threshold lasing, etc.

In addition to these applications, which attempt to improve on existing methods of

carrying out the same functions in different geometries, these waveguides may realize

the proposals for new types of optical devices, with new functionalities in optical

communications. In particular, these structures offer the first practical possibility

to realize the proposal of ‘nonlinear optical delay lines’ (NLDL’s) [106], a class of

all-optical information processing devices at the mesoscopic and microscopic scale.

NLDL’s operate on the principle of the nonlinear interactions giving rise to power

transfer between several temporally encoded optical fields within a nonlinear medium.

Many of the important applications can be realized in two-wave or four-wave mixing

coupling processes, which we have investigated in the earlier sections. Photorefrac-

tive index gratings are an effective way to realize such effects with moderate intensity

levels, as would be necessary in practical applications. There are many applications

of NLDL’s in all-optical signal processing, including temporal multiplication, corre-

lation, and convolution, envelope time reversal, and space-to-time coding [106].

We will focus on photorefractive effects [154], but other grating mechanisms at a

variety of different timescales are also of potential interest, including free-carrier in-

dex gratings, acousto-optic standing waves, or arrays of nonlinear waveguides written

by spatial solitons. Such effects have been predicted to be particularly prominent in

coupled-defect waveguides, where the field intensity is highly localized to the individ-

ual resonators, and thereby locally enhancing the conversion to second-harmonic [150],

or reducing the build-up time of photorefractive gratings [91]. The effect of the spatial

localization of the field in such waveguides is related to the sampling theorems in com-

munications, and doesn’t invalidate the use of these waveguides if they’re designed

for the appropriate range of waveform parameters (temporal width of the envelope

and its spectral bandwidth) [92].

The second important requirement for the practical realization of NLDL’s is slow

group velocity, so that the grating written by the pulse envelopes can be completely

contained in the physical extent of the waveguide. In linear defect waveguides in
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photonic crystals, this can be achieved near the band edge [34], but at the cost

of distortion arising from higher-order dispersion terms in the the rapidly varying

dispersion relationship in this regime. In coupled-resonator waveguides (whether in

photonic crystals or not), slow group velocity can always be achieved more simply

as a natural consequence of the weak overlap between individual high-Q resonator

modes [150].

While so far, either class of waveguides can be considered as candidates for realiz-

ing NLDL’s, the fundamental physics of the grating dynamics preferentially indicates

the choice of coupled-resonator waveguides. We investigate the nonlinear coupling

processes between two pulses, rather than two cw beams, and the propagating en-

velopes in an infinitely long coupled-resonator waveguides have two length scales: an

overall envelope and a faster variation of the field distribution due to the quasi-discrete

nature of the physical structure. Temporal waveforms with two time scales incident

on a thin sample offer a closely related picture, with the advantage of being able

to monitor the dynamics of the grating on the shorter time scale using pump-probe

techniques. The material must be able to respond to the variations of the envelope on

the time-scale required for use in, e.g., a typical 10 Gbit/s communications system.

Considering at the physical aspects of such an experiment, the chosen material

may have a defect state at the wavelengths of interest, which we may or may not

want to use depending on the practical application. We have investigated a particular

geometry and used a material that permits both approaches, but these results refer

to a ‘direct’ two-photon process without an intermediate stage.

The theoretical formulation follows [26]. We consider the interaction of a two-

level system with a pulse, E(r, t) = êE(t) cos ω0t, where ê describes the state of the

polarization, ω0 is the optical carrier frequency, and E(t) is the envelope. A two-level

atom (levels a and b) located at r = 0 interacts with this pulse.

We establish two times, t1 and t2, such that the envelope E(t) of width T is

contained in the interval (t1, t2). We’ll assume that the turn-on and turn-off time

intervals for E(t) are large compared to 1/ω0. We’ll also assume that T is large

enough for the validity of the S-matrix approach, i.e., longer than the lifetime of level

b.

The quantity we’re interested in is the S-matrix element

S = lim
t1→−∞, t2→+∞

< b | eiH0t2/�U(t2, t1)e
−iH0t1/� | a > (4.19)
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where U is the evolution operator for the a → b transition, and H0 describes the free

evolution of the atom outside (t1, t2) and is the atomic Hamiltonian in the absence of

an incident field.

Recall that the interaction Hamiltonian for a particle with charge q and mass m

in the presence of an external field described by potentials (A(r, t), U(r, t)) is [26,

p. 267],

H(I) = − q

m
p · A(r, t) +

q2

2m
A2(r, t) + qU(r, t). (4.20)

The last term is absent in this case. We assume that the levels a and b can’t be

connected via a one-photon transition (we’ll see shortly how this was realized exper-

imentally). We keep terms to order q2 in our calculation.

The second term of Eq. (4.20) doesn’t contribute, since it gives a term proportional

to <b | a>. The expansion of the first term of Eq. (4.20) to order q2 gives

S =
( q

� m

)2
∫∫

dτ dτ ′ θ(τ − τ ′) eiωbτ
∑

r

< b | p · A(0, τ) | r>

× e−iωr(τ−τ ′) <r | p · A(0, τ ′) | a > e−iωaτ ′
.

(4.21)

The sum over r labels all possible intermediate levels—in our case, we will focus on

one particular value of r.

Dropping the nonresonant terms, and using the identity

e−i(ωra−ω)(τ−τ ′)θ(τ − τ ′) = − 1

2πi

∫ ∞

−∞
dΩ

e−iΩ(τ−τ ′)

(Ω − ωra + ω0) + iε
(4.22)

where ε → 0+, we can write

S =
( q

� m

)2pbrpra

i

∫ ∞

∞

Ẽ(Ω)Ẽ(ωba − 2ω0 − Ω)

4[(Ω − ωra + ω0) + iε]
, (4.23)

where Ẽ(Ω) ≡ 1/
√

2π
∫

E(t) exp(iΩt) dt is the Fourier transform of the envelope.

Since we’ve assumed that a one-photon transition is not resonant, and |ω0−ωra| �
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1/θ where θ is the width of Ẽ(Ω), we can write

S =
1

i�

( q

m

)2 pbrpra

�(ω0 − ωra)

∫ ∞

∞
dΩ

Ẽ(Ω)Ẽ(ωba − 2ω0 − Ω)

4

=
1

i�

[( q

m

)2 pbrpra

�(ω0 − ωra)

] ∫ ∞

∞
dτ

[
E(τ)

2

]2

ei(ωba−2ω0)τ .

(4.24)

The expression in square brackets outside the integral in Eq. (4.24) defines M , an

effective matrix element, so that we can simplify the notation:

S =
1

i�
M

∫ ∞

−∞
dτ

[
E(τ)

2

]2

ei(ωba−2ω0)τ . (4.25)

This is the same expression we would’ve obtained for a one-photon transition, with

the change to [E(τ)/2]2 exp(−i2ω0t) for the field.

The transition amplitude depends on the square of the envelope rather than the

correlation at different times (or convolution for counterpropagating fields), since

there is no intermediate level for a one-photon process to occur. A classical treatment

of the formation of photorefractive gratings, with particular reference to coupled-

resonator waveguides, leads to similar conclusions with regard to the temporal de-

pendency [91].

4.2 Picosecond dynamics of photorefractive gratings in GaAs

But, while we can be certain that parasitic parameters do exist,
their magnitude is usually not known, and even less do we know their ratios.

—A. A. Andronov, A. A. Witt, and S. E. Khaikin, Theory of Oscillators, Dover (1987).

We use 100 ps actively-mode-locked Gaussian pulses within a 270 ns Q-switched

envelope from a Nd:YAG laser emitting at 1.06 microns, as shown in Fig. 4.1. As

the photodiode had a bandwidth of a few gigahertz, an individual mode-locked pulse

cannot be resolved directly, but standard interferometry techniques can be used. The

setup is shown in Fig. 4.2. The pump and probe beam average powers were 1.5 W

and 15 mW, respectively. In light of Eq. (4.25), instead of the usual sample cut with

incident-face normal along [1̄10] in the four-wave mixing geometry, we use a sample

with the surface-normal along [100]. The grating formed between the two co-polarized

pump beams will not transfer energy in the direction of the incident probe.
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Figure 4.1: Photodiode output of the Q-switched envelope, with cursors (dotted lines)
separated by 200 ns, corresponding to 20 mode-locked pulses.

The quantity ∆T/T0 is defined as the change in the probe transmission in the

presence of the pump divided by the probe transmission without the pump, with

positive values indicating gain. Experimental and fitted results as a function of the

probe delay are shown in Fig. 4.3. We have optimized for the photorefractive ef-

fect by rotating the sample about the surface normal for maximum probe gain, and

have doubled the yield (without broadening the two-photon response) by using two

temporally coincident pump-probe interactions.

The probe gain shows, initially, the signature of a two-photon process, i.e., the

peak is well fitted by the theory, Eq. (4.25) with a minimum-squared-deviation width

of 98 ps. This agrees with both the nominal width of 100 ps, and the value determined

from Michelson interferometry, 95± 5 ps. As the delay increases, the efficiency of the

interaction between the probe and the pump in the sample is decreased, leading to a

fall-off in the response.

At these time scales, we also see the effects of a single-pole response of the material,

which results in an exponential tail (for positive time) to be appended to the two-

photon process signature. The fitted decay time constant translates to a diffusion

length of 5.8 microns, using the mobility of the electrons in semi-insulating GaAs [141].

This results in strong constraints on the waveguide geometry for single-mode

waveguiding. These experiments were carried out in bulk semiconductor, so that
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Figure 4.2: Schematic showing the interaction of pump P1 and P2 pulses with a probe
pulse. The sample is oriented so that two mutually independent and temporally
coincident pathways to probe gain are realized. M: mirror, L: λ/2 waveplate to
rotate the state of polarization of the probe, BS: nonpolarizing beam-splitter, PBS:
polarizing beam splitter, S: sample.
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Figure 4.3: The normalized change in transmittance ∆T/T0 as a function of probe
delay over a nanosecond window with an arbitrary origin. The experimental points
are fitted by a functional form obtained from the idealized theory convolved with a
single-pole response, yielding an exponentially decaying tail.
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geometry-induced distortions to the write-read processes can be ignored 2. The finite

width of a waveguide—be it a line-defect waveguide in a photonic crystal slab or a

CROW—needs to be large compared to the diffusion length, otherwise the diffusing

carriers will be affected by the edges and the hologram will not faithfully reflect the

field envelope. A waveguide width of 6 µm is not single-moded at typical commu-

nications wavelengths (λ = 1.55 µm) for typical values of the dielectric constant in

semiconductor materials (GaAs, InGaAsP, etc.).

For these applications, a more suitable semiconductor would have a smaller dif-

fusion length, which would require a slower mobility for the electrons. At the same

time, we require that the photorefractive grating be established on the time-scales

of typical pulse envelopes as in this experiment. Of course, the material should be

optically transparent, and photorefractive, at these wavelengths. We don’t know of

a better choice than the GaAs family at the present time, but their limitations are

evident.

In light of these results, it’s unlikely that photorefractive holography is a practical

approach to realizing all-optical memory elements in CROWs at the bit rates of mod-

ern communication systems. The development of materials with faster reponses and

slower drift velocities may change this assessment. More promising is the approach

we’ll discuss in the next chapter: we can excite a localized envelope—a super-resonant

mode—in the CROW, which decays only with the time constant of the individual res-

onators. This stationary field distribution, rather than the propagating pulse, can be

used to form the hologram as discussed in this chapter: the advantage is that the

time constraints on the material response are considerably relaxed.

2Such perturbations can be considered, as in the analysis of noisy communication channels,
as distorting filters so that the overall input-to-output response is the convolution of the transfer
functions of the undistorted holography and the nonidealities.



Chapter 5

The Kerr effect and super-resonant modes

Our basic dynamic variables shall be the vielbein and the connection.
These superfields contain a large number of component fields.

Some will be eliminated through covariant constraint
conditions. Others will be gauged away with (14.2).

In this way we shall arrive at a theory with the minimum number of component fields.

—J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton (1992).

As we’ve seen in Section 2.6, the dispersion relationship in CROWs is intrinsically

non-polynomial, but the propagation of localized excitations, i.e., optical pulses can be

characterized non-perturbatively to all orders of dispersion [95]. This is a somewhat

surprising result, and it leads to a description of the distortion that results from the

nonlinear dispersion relationship. Weighted sums of Bessel functions take the role of

cosines in the Fourier-series decomposition of the propagating field [87].

In optical fibers and similar waveguides, the effects of (anomalous) group-velocity

dispersion can be exactly balanced by the self-phase modulation induced by the Kerr

effect, an intensity-dependent change in the refractive index of the material. This is

the basis for the formation of the (fundamental) Schrödinger soliton in optical fibers,

for instance. Here, we investigate the Kerr effect in coupled-resonator waveguides,

with particular emphasis on determining whether self-phase modulation can com-

pensate for the distortion consequent of the nonlinear dispersion relationship. Such

solutions would lead to the existence of envelopes that can exist or propagate without

distortion in CROWs as eigensolutions of a nonlinear propagation equation (solitary

waves and solitons).

In considering the various choices of basis functions in which to expand the field,

we choose the propagating Bloch wave solutions of the CROWs without optical non-

linearities, which were derived using the tight-binding method in Chapter 2. We take

89
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the field to be a superposition of such waves with slowly (time-) varying coefficients.

This expansion has the merit that in the absence of nonlinearities, each field in this

expansion is an eigenmode.

5.1 Formulation of the nonlinear propagation problem

In our treatment of linear pulse propgation in CROWs, we wrote the field describ-

ing a pulse E(r, t) as a superposition of waveguide modes φk(r) within the Brillouin

zone, and using Eq. (2.8),

E(r, t) ≈
∫

dk

2π
e−iωktckφk(r)

= e−iω0t

∫ π/R

−π/R

dK

2π
e−i∆ωt cos[(k0+K)R]ck0+K φk0+K(r).

(5.1)

Since nonlinear phenomena such as the Kerr effect change the relative weights of

the eigenmodes Eq. (2.3) as the waveform evolves with time, it’s necessary to introduce

a time-dependency in the superposition coefficients ck appearing in Eq. (5.1). We

write

E(r, t) = e−iω0t

∫ π/R

−π/R

dK

2π

[
e−i∆ωt cos[(k0+K)R]ck0+K(t) φk0+K(r)

]
. (5.2)

We substitute Eq. (5.2) which describes the field in the waveguide in terms of the

time-varying coefficients ck0+K(t) into Maxwell’s equations written with an explicit

nonlinear polarization term describing the Kerr effect,

∇×∇× E(r, t) − µεwg(r)
∂2

∂t2
E(r, t) = µ

∂2

∂t2
PNL(r, t) (5.3)

where

PNL(r, t) =
3

4
ε0χ

(3)|E(r, t)|2E(r, t). (5.4)

in the instantaneous response approximation.

In simplifying the terms, we use the normalization [91]

M
∑
m

∫
dr εwg(r) |Eres(r − mRez)|2 = 1 (5.5)
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where the CROW waveguide comprises M resonators.

If we assume that ck0+K(t) varies slowly over time intervals ∼ O(2π/ω0), as is

usually the case, then we obtain

dck0+K(t)

dt
= iγ

π/R∫∫
−π/R

dK1

2π

dK2

2π
exp

[
− iκΩt

{
− cos[(k0 + K1)R] + cos[(k0 + K2)R]

+ cos[(k0 + K3)R] − cos[(k0 + K)R]
}]

ck0+K1(t)
∗ck0+K2(t)ck0+K3(t) (5.6)

where K1+K = K2+K3 and γ is the nonlinearity coefficient in the CROW geometry,

defined as

γ = 2n0n2 ε0 ω0

∫
dr
∑
m

|Eres(r − mRez)|4, (5.7)

using the relationship 3χ(3)/8 = n0n2 [4], and we have ignored the dispersion (varia-

tion in ω) of γ.

As an aside, Eq. (5.6) is equivalent to the differential equation

i
dan

dt
+

∆α

2
Ωan − κ

2
Ω (an+1 + an−1) + γ|an|2an = 0, (5.8)

obtained by Christodoulides and Efremidis [24] for a related set of coefficients, an(t),

where

an(t) =

∫ π/R

−π/R

dK

2π
ck0+K(t) exp [in(k0 + K)R]

× exp

[
i

{
∆α

2
Ω − κΩ cos[(k0 + K)R]

}
t

]
.

(5.9)

The notational correspondence from our paper to theirs is (∆α/2)Ω �→ ∆ω and

−(κ/2)Ω �→ c. The an’s are the coefficients that appear in the expansion of the field

in terms of individual resonator modes, rather than the waveguide modes. It’s easily

verified that substituting the plane-wave ansatz, an = exp{i[(Ω − ωk0+K)t − (k0 +

K)nR]} in Eq. (5.8) with n2 = 0 leads to the dispersion relationship, Eq. (2.8).

Returning our attention to Eq. (5.6), it’s useful to separate the amplitude and

phase of ck0+K(t),

ck0+K(t) = Ak0+K(t) exp[iφk0+K(t)]. (5.10)
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We’ll look for solutions that retain their shape, i.e., dA/dt = 0. Substituting Eq. (5.10)

into Eq. (5.6) and separating the real and imaginary parts, we obtain a pair of equa-

tions,

dAk0+K

dt
= −γ

∫∫
dK1

2π

dK2

2π
Ak0+K1Ak0+K2Ak0+K3 sin Φ, (5.11)

dφk0+K

dt
=

γ

Ak0+K

∫∫
dK1

2π

dK2

2π
Ak0+K1Ak0+K2Ak0+K3 cos Φ, (5.12)

where Φ is defined as

Φ ≡− {φk0+K1 − κ Ω t cos[(k0 + K1)R]} + {φk0+K2 − κ Ω t cos[(k0 + K2)R]}
+ {φk0+K3 − κ Ω t cos[(k0 + K3)R]} − {φk0+K − κ Ω t cos[(k0 + K)R]}

(5.13)

Based on Eq. (5.11), the A’s will be independent of t if sin Φ ≡ 0 for all t. This

implies that cos Φ = 1, and based on Eq. (5.12), we take φk0+K to be a linear function

of t,

φk0+K(t) = a + b t + κ Ω t cos[(k0 + K)R], (5.14)

where a and b are constants independent of t and K. We drop the constant a which

represents a fixed phase that can be absorbed into the initial conditions. Substituting

this form for φk0+K(t) into Eq. (5.12), we get

b + κΩ cos[(k0 + K)R] =
γ

Ak0+K

π/R∫∫
−π/R

dK1

2π

dK2

2π
Ak0+K1Ak0+K2Ak0+K3 . (5.15)

We’ll now discuss a particular regime in which there exist stationary (i.e., non-

propagating) solutions of Eq. (5.15). Such solutions utilize the optical Kerr effect to

exist stably in a confined section of the waveguide, isolated from the edges of the

structure.

5.2 The stationary super-resonant mode

In this section, we investigate in what regime the nonlinear CROW admits solu-

tions of the Schrödinger soliton form, i.e., the hyperbolic secant. The basic physics

reflects a balance between the phase modulation effects of the Kerr effect and (anoma-
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lous) group-velocity dispersion (GVD). The GVD term in the nonlinear Schrödinger

equation appears as the coefficient of a second derivative term, which in the Fourier

domain with the Fourier (frequency) variable K, translates to multiplication by (iK)2.

In Eq. (5.15), if we assume that k0R is a multiple of 2π and |KR| � 1, then

we may write cos[(k0 + K)R] ≈ 1 − (KR)2/2, which is the desired effective GVD

term. Observe from the dispersion relationship, Eq. (2.8), that ωk0+K is a quadratic

function of K only at the edges of the Brillouin zone, where dωk0+K/dK vanishes, i.e.,

the group velocity is zero. We expect, therefore, that the solutions of Eq. (5.15) in

this regime will be stationary , describing a localized state that is frozen in its initial

(t = 0) spatial distribution and does not propagate along the waveguide.

Using this approxmation, Eq. (5.15) becomes

b + κΩ = κΩ
(KR)2

2
+

γ

Ak0+K

π/R∫∫
−π/R

dK1

2π

dK2

2π
Ak0+K1Ak0+K2Ak0+K3 . (5.16)

We’ll assume that the A’s are defined to be zero outside the regions of integration

−π/R and π/R so that the limits of integration can be taken as −∞ to ∞. Eq. (5.16)

may then be solved [109],

Ak0+K = A
(0)
k0+K sech(K/K̄), (5.17)

where K̄ is a spectral width parameter whose relevance will become clear in the

following discussion. Substituting Eq. (5.17) into Eq. (5.16), we get

b + κΩ = κΩ
(KR)2

2
+ 2

[
A

(0)
k0+K

]2 γ

(2πR)2

[
(KR)2 +

(
πK̄R

2

)2
]

. (5.18)

If b is to be independent of K, then we need

A
(0)
k0+K =

√
−(2πR)2κΩ

4γ
. (5.19)

Since the left-hand side represents a real and positive number, we require that κ as

defined in Eq. (2.9) be a negative number (as is physically expected from the meaning

of εwg and εres). This is equivalent to anomalous dispersion in optical fibers and similar
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waveguides.

Using Eq. (5.14) and Eq. (5.19) in Eq. (5.10), we write the final expression for

ck0+K(t),

ck0+K(t) = ck0+K(0) exp
{
− iκΩt

[
1 + π2(K̄R)2/8 − cos(KR)

]}
, (5.20)

where

ck0+K(0) ≡ 2πR

√
−κΩ

4γ
sech(K/K̄), |KR| ≤ π. (5.21)

The field described by these coefficients is

E(r, t) = e−iω0te−iκΩt[1+π2(K̄R)2/8]
∫ π/R

−π/R

dK

2π
ck0+K(0) φk0+K(r). (5.22)

In light of Eq. (5.21), the integral on the second line of Eq. (5.22) is not expressible in

a simpler form. However, if K̄R � 1, the hyperbolic secant function decays rapidly,

and the limits of integration may be changed to (−∞,∞). The integral then can be

evaluated easily—the Fourier transform of a hyperbolic secant is itself a hyperbolic

secant function. We derive the approximation,

E(r, t) ≈ e−iω0te−iκΩt[1+π2(K̄R)2/8]

√
−κΩ

4γ
πK̄R

∑
n

sech

(
πK̄

2
nR

)
Eres(r − nRẑ).

(5.23)

The modulus of the amplitude |E(z, t = 0)| normalized to its maximum value (in

this approximation) is plotted in Fig. 5.1. Values of the hyperbolic secant function

in Eq. (5.23) at nR (which has the dimensions of length) are the weights of the

individual resonator eigenmodes. In this approximation, the envelope of these weights

is a hyperbolic secant function whose width is inversely proportional to K̄.

As we had expected from physical arguments, the envelope of E(r, t) is a station-

ary state that is independent of time: its spatial distribution at t = 0 is of finite

extent and is maintained for all subsequent t. This is consistent with the observation

that although the group velocity dispersion coefficient is nonzero, the group velocity

itself is zero. We call the stationary state a super-resonant field since it is formed

in a waveguide that itself comprises the coupling of individual (stationary) resonator

modes. There are two requirements for such a solution: (1) the slowly varying as-
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Figure 5.1: An approximate super-resonant field distribution, assuming that the in-
dividual resonator eigenmodes are Gaussians. ‘Position’ is normalized to R, the
inter-resonator spacing and the ordinate represents |E(z, t = 0)| normalized to its
maximum value. The dotted line is an envelope—a hyperbolic secant—connecting
the excitation coeffcients multiplying the individual resonator eigenmodes. We have
used πK̄/2 = π/(4R).
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sumption, which simplifies Eq. (5.22) to Eq. (5.23) and (2) the necessary condition

that k0R is an integer multiple of 2π.

Using Eq. (5.9), Eq. (5.23) may be rephrased as an expression for the individual-

resonator coefficients an(t),

an(zn) =

[√
−κΩ

4γ
πK̄R

]
e−iµt sech

(
πK̄

2
zn

)
, (5.24)

where µ ≡ κΩ
[
1 + π2(K̄R)2/8

]
is a constant frequency detuning and zn ≡ nR is a

discretization of the spatial axis.

Christodoulides and Efremedis [24] have analyzed this problem using the an coef-

ficients, and have derived the expression (in our notation),

an(zn, t) =

[√
−κΩ

4γ
πK̄R

√
cos q

]
e−iµt cos q sech

[
πK̄

2
(zn − v t)

]
, (5.25)

which described an envelope that propagates with the group velocity v ≡ −κΩR sin q

defined in terms of an undetermined parameter q in their analysis. The solution

Eq. (5.25) for nonzero v is derived from a nonlinear Schrödinger equation, which

involves linear dispersion and quadratic terms only. There’s no such point on the dis-

persion relationship, Eq. (2.8) and the validity of this approximation is questionable.

In fact, the dispersion relationship is quadratic only at the edges of the Brillouin

zone where the group velocity goes to zero. A quadratic dispersion relationship is

what is needed to have exact hyperbolic-secant solutions of the nonlinear Schrödinger

equation: the presence of higher-order dispersion doesn’t lead to this form [4].

We’ve investigated the effects of the optical Kerr nonlinearity in coupled-

resonator optical waveguides (CROWs) with regard to the propagation of

optical pulses. In particular, there exists a stationary field distribution of

the hyperbolic secant form which balances the effects of group velocity

dispersion and the Kerr self-phase modulation. This field distribution

remains frozen in space with zero group velocity.

The super-resonant mode in a CROW composed of high-Q resonators can have a

long lifetime, since it decays with the time constant associated with the quality factor
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of the isolated individual resonators [150] rather than the time constant associated

with the coupling between high-Q resonators and external waveguides. In addition,

an optical pulse (with nonzero group velocity) traveling down the waveguide can be

made to interact with such a static distribution; their interaction can be enhanced

using quasi-phase-matching (grating) techniques, [91]. This leads to the possibility

of the application of these localized states as memory elements in optical switches,

particularly in conjunction with the photorefractive holography processes discussed

in Chapter 4.

The general phenomenon of the localization of light is not necessarily a conse-

quence of defects in a uniform photonic crystal. In the presence of optical (electromag-

netic) nonlinearities, intrinsic localized modes or discrete breathers can be formed [86].

This has has been proven mathematically for using a class of time-periodic, spatially

localized solutions to a Hamiltonian coupled-oscillator nonlinear lattice [80]. Discrete

breathers have been predicted for 2–D and 3–D photonic crystals with Kerr (cubic)

nonlinearity [59], at nonlinear interfaces with quadratic nonlinearity [132] and along

dielectric waveguide structures with a nonlinear Kerr-type response [85].

A waveguide that, unlike a CROW, exhibits continuous translational symmetry

in the longitudinal z direction, and in the transverse plane, consists of an array

of thin quadratically nonlinear layers embedded in a linear slab waveguide, can

inhibit light propagation along the transverse x axis under certain conditions [133].

“Two-color” spatially localized nonlinear modes can be formed as a consequence of

parametric coupling of the fundamental and second-harmonic fields excited at the

nonlinear interfaces. Such modes are related to spatial quadratic solitons that are

localized in homogeneous media by two-wave parametric mixing of the fundamental

and the second-harmonic waves [64].

A related structure is a one-dimensional grating consisting of χ(2) material.

Forward- and backward-propagating waves of the fundamental frequency and the

second-harmonic interact via terms reminiscent of the cubic Kerr effect. This gives

rise to localized slowly moving two-color envelopes, on picosecond timescales for

fundamental beam intensities of approximately 10 GW/cm2 in LiNbO3 [27]. What

is especially interesting is that the second-harmonic beam is locally generated in the

backward direction, but its envelope is locked to the forward-propagating fundamen-

tal frequency component—it also travels forward.

The interface between two semi-infinite bulk optical media with inversion sym-

metry breaks the inversion symmetry, and consequently possesses a nonzero surface
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quadratic response. Recent experiments on second-harmonic generation in periodic

photonic bandgap structures with embedded nonlinear defect layers have observed

enhanced parametric interaction in the vicinity of these defects [138]. This suggests

that second-harmonic generation occurs in localized modes, but is suppressed for

propagating modes [133].



Chapter 6

Dispersion-managed solitons and breathers

... the variational principle is generally useful in unifying
a subject and consolidating a theory rather than in breaking ground

for a new advance ... This is not to minimize the importance of finding
the Lagrange density L, for ... the form of the variational equations

often suggests fruitful analogies and generalizations.

—P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.

Nonlinear pulses, such as solitons [44, 51], are intuitively the pulse envelopes of

choice in high bit-rate optical communications, since they are solutions to the enve-

lope propagation equation accounting for both the dispersion and the nonlinearity of

optical fibers. Some of the principal objections (conceptual and practical) to the pro-

posals of repeaterless long-haul soliton communication systems have been addressed

by the introduction and development of dispersion-managed (DM) solitons [128, 134],

and it is expected that such systems will be used as the primary means of optical

transport beyond 40 Gbit/s per wavelength-division multiplexing (WDM) channel

(recent review papers on the theory and experiments of solitons and DM solitons

include [43] and [103]).

The slowly varying normalized envelope u(z, t) of an optical pulse in a lossless

single-mode fiber with dispersion management in the group-velocity dispersion pa-

rameter and third-order dispersion follows the nonlinear Schrödinger equation derived

in Eq. (1.27),

i
∂u

∂z
+

σ(z)

2

∂2u

∂t2
+ |u|2u − iγ

∂3u

∂t3
= 0, (6.1)

where t is the temporal coordinate in the moving reference frame, and is defined with

respect to the laboratory space and time coordinates z and T by the equation t =

T − z/vg, where vg is the group velocity of the pulse. As discussed in Section 1.4, the

99
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parameters σ and γ are functions of the propagation distance z; in a later section, we

will focus on pulse propagation characteristics in a piecewise constant (step-function)

dispersion map σ(z) = σ±, with σ+ > 0 > σ−, and periodicity σ(z) = σ(z + zT ).

Recent studies on the use of solitons in dispersion-managed optical communica-

tions systems have shown that the effect of third-order dispersion, which arises from

d3β/dω3 where β(ω) is the mode propagation constant at optical frequency ω, may

be significant since the average group-velocity dispersion can be much lower than the

local group-velocity dispersion.

We derive explicit analytical expressions for the dynamic behavior of soliton-like

pulses (breathers) in such a system. Nonperturbative Lagrangian and Hamiltonian

formulations have been useful in understanding the physical behavior of propaga-

tion in systems characterized by second-order dispersion alone [68]. This work forms

a counterpart to the perturbative analysis of Lakoba and Agrawal [72] based on a

Hermite-Gaussian expansion of the pulse shape. The analysis presented here should

also help understand the physical origins of certain features found in numerical sim-

ulations of the effects of third-order dispersion [38]. Since the nonlinear (noninte-

grable [71]) partial differential (wave) equation is now of a higher order, it may be

useful to show the applicability of a mathematical technique that is easily understood

and widely used in a different problem.

We limit our attention to the steady-state (asymptotic) behavior of such pulses,

and therefore neglect the effect of continuum radiation on the dispersion-managed

breather [72]. A soliton losing energy to linear dispersive waves in the normal disper-

sion regime “recoils” further into the anomalous regime of the spectrum [6]. This

lowers the radiation amplitude, which arises as a consequence of the tail of the

soliton spectrum in the normal dispersion regime. It can then be expected that a

quasi-stationary state is reached where the radiation rate is so small that the soliton

recoil is negligible, and we can ignore further radiation losses. Further, a practical

communication system using dispersion management is likely to use optical filters

and band-limited amplifiers, which can suppress out-of-band dispersive radiation and

frequency shifts due to spectral recoil [140].

Consequently, we are justified in assuming a symmetrical pulse shape. Given

that we do not predict the generation of any new harmonics in this approximation,

we would not expect any associated frequency shift; indeed this will be shown to

be a conserved quantity (as a generalized momentum canonically conjugate to a
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cyclic coordinate). It is interesting to note that the perturbative approach used

by Lakoba and Agrawal [72] also does not predict any frequency shift for the lossless

case considered here.

We quantify our results in terms of a representative hyperbolic secant pulse shape,

but the method can be generalized to a number of different (localized) pulse shapes,

e.g., Gaussian, triangular, etc. An appropriate Lagrangian is constructed for the

nonlinear Schrödinger equation, and the condition of its extremality with respect to

our pulse Ansatz forms variational equations of motion for the pulse parameters [7].

Identifying generalized coordinates and their conjugate momenta leads to the Hamil-

tonian and a phase-plane analysis in terms of the acyclic coordinates. We highlight

the modifications brought about by third-order dispersion to the well-known results

of second-order dispersion-managed propagation.

6.1 Lagrangian and Hamiltonian formulation

The partial differential equation (6.1) and its conjugate can be reduced to a system

of ordinary differential equations using the averaged variational method, first intro-

duced in the context of the evolution of solitons by Anderson [7]. The motivation

for this approach is well known and we shall only point out that in the presence of

third-order dispersion, the final term in (6.1) modifies the Euler-Lagrange equation,

δL
δu

≡ ∂L
∂u

− ∂

∂t

∂L
∂(∂u/∂t)

− ∂

∂z

∂L
∂(∂u/∂z)

+
∂2

∂t2
∂L

∂(∂2u/∂t2)
= 0 (6.2)

and similarly for u∗ in place of u.

It may be easily verified, e.g., by direct substitution, that the following Lagrangian

density (assumed to be at least C1 in u and its derivatives, except possibly on a set

of measure zero) satisfies this condition,

L(u, u∗) = i

(
u
∂u∗

∂z
− u∗∂u

∂z

)
+ σ(z)

∣∣∣∣∂u

∂t

∣∣∣∣
2

− |u|4 − iγ

(
∂2u

∂t2
∂u∗

∂t
− ∂2u∗

∂t2
∂u

∂t

)
, (6.3)

where a piecewise continuous σ(z) satisfies the condition in parentheses.

The pulse shape we choose to base our analysis on should be capable of predicting

pulse evolution, and therefore, in view of the term in (6.3) that contributes to third-
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order dispersion, we have to choose a pulse shape (envelope) somewhat more involved

than for second-order dispersion alone [68]. We take

u(z, t) = A
√

η sech [η(t − c)] exp

[
i

(
Ω(t − c) + β(t − c)2 +

φ

2

)]
, (6.4)

where η, β, Ω, c and φ are free parameters that depend on z and represent the

amplitude (and width), quadratic chirp, frequency shift from the carrier frequency

(or velocity), pulse center in the moving reference frame (or group-velocity variation

in laboratory coordinates) and phase, respectively. In the interests of legibility, we

will not write out this dependence explicitly. The pulse energy is then evaluated to

∫ ∞

−∞
dt u(z, t)∗.u(z, t) = 2A2. (6.5)

Similar forms of the envelope Ansatz have been used elsewhere [56] for analyzing

pulse interactions in second-order dispersion-managed systems, and reflect the fact

that the equations under consideration need more degrees of freedom than offered by

simpler assumptions.

We now write down the Lagrangian using (6.3) and (6.4). A fair amount of algebra

leads to the following expressions for the four terms on the right-hand side of (6.3),

where we use the shorthand β′ ≡ dβ/dz, etc.

i

(
u
∂u∗

∂z
− u∗∂u

∂z

)
→ 2

[
(t − c)2β′ + (t − c)(Ω′ − 2βc′) + (φ′ − Ωc′)

]
u∗u,

σ

∣∣∣∣∂u

∂t

∣∣∣∣
2

→ σ
[
4(t − c)2β2 + η2tanh[η(t − c)]2

+4(t − c)βΩ + Ω2
]
u∗u,

−|u|4 → −A2η sech[η(t − c)]2u∗u,

−iγ

(
∂2u

∂t2
∂u∗

∂t
− ∂2u∗

∂t2
∂u

∂t

)
→ γ

[
16(t − c)3β3 + 24(t − c)2β2Ω + 2Ω(η2 + Ω2)

−2β
[
η tanh[η(t − c)] − (t − c)(η2 + 3Ω2)

]]
u∗u.

(6.6)

In each of the above expressions, we can drop those terms that are odd in t as

such terms do not contribute when multiplied by u∗u and integrated over t. These
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include terms that are proportional to odd powers of (t − c) and those that vary as

tanh(t − c). After some simplification, we can write the Lagrangian as

L = A2

{
π2

3η2

dβ

dz
+ 4

(
dφ

dz
− Ω

dc

dz

)
− 4A2η

3
+ 2σ

[
Ω2 +

1

3

(
π2β2

η2
+ η2

)]

+4γΩ

[
π2β2

η2
+ Ω2 + η2

]}
. (6.7)

with a clearly nontrivial role for γ. The Lagrangian function (6.7) has no explicit z

dependence, and so the Hamiltonian is a constant of the motion. This will be the

starting point of our discussion in the following section.

We note in passing that it is possible to construct a Lagrangian for pulse shapes

other than the hyperbolic secant reminiscent of the Schrödinger soliton, generalizing

to any localized Ansatz for which the amplitude and pulse width are related in the

same way as above.

We apply the Legendre transformation [121] to the Lagrangian (6.7) to generate

the Hamiltonian. We take our canonical coordinates as β and c with conjugate

momenta

pβ =
∂

∂β′L =
π2A2

3η2
,

pc =
∂

∂c′
L = −4A2Ω (6.8)

and express the Lagrangian in terms of these variables, substituting pβ for η and pc

for Ω,

L = A2

{
γpc

(
p2

c

16A6
+

π2

3pβ

+
3pββ2

A4

)
+ σ

(
2π2A2

9pβ

+
p2

c

8A4
+

2pββ2

A2

)

− 4πA3

3
√

3pβ

+ 4
dφ

dz

}
+ pββ′ + pcc

′. (6.9)

(It can be verified after extensive algebra (symbolic manipulation tools such as Math-

ematica are useful) that det(∂2L/∂pi∂pj) = 0.)
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The Hamiltonian is

H(β, c; η, Ω; z) = pββ′ + pcc
′ − L

= 2A2

{
− (2γΩ +

σ

3
)

(
π2β2

η2
+ η2 + Ω2

)

+
2

3

[
A2η − Ω2σ

]− 2
dφ

dz

}
, (6.10)

where we need not explicitly consider the phase dependence φ(z) and its canonical

momentum in the equations of motion as these terms drop out (indicating that the

phase depends on the other parameters and plays no role in the dynamics [54]). For

a conserved Hamiltonian, dH/dz = 0 or H = constant, so that we can construct level

sets of H. We shall return to this in the next section. Although such an analysis

(similar to that carried out elsewhere for second-order dispersion [68]) can lead to a

closed-form expression for η(z), the results are extremely unwieldy and unlikely to be

of much practical use.

Instead, we obtain the equations of motion from (6.10),

dβ

dz
= − 2

π2
A2η3 − 2[σ + 6γΩ]

[
β2 − η4

π2

]
,

dη

dz
= −2βη[σ + 6γΩ], (6.11)

dc

dz
= σΩ + γ

(
π2β2

η2
+ η2 + 3Ω2

)
,

dΩ

dz
= 0, (6.12)

where we have used the fact that σ(z) is piecewise-constant with derivative zero on

the entire domain of z except for a set of measure zero. The last equation of the

above set follows from the observation that L does not contain the cyclic coordinate

c explicity—its associated momentum is then a constant of the motion.

The modification brought about by the third-order nonlinearity in the first two of

the above set of equations is to alter the strength of the dispersion map. The third

equation describes the drift in the center of the pulse (in the moving reference frame).

Clearly there are terms in these equations that are explicity dependent on the third-

order dispersion coefficient γ, and describe effects predicted only when third-order
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Figure 6.1: Position of pulse center c(t), normalized to the input pulse-width, versus
propagation distance z, normalized to the single-soliton period. The data points are
from a split-step Fourier simulation, and the solid line is from numerical integration
of equation (6.12.1), which was derived from theoretical considerations.

dispersion is taken into account. In Fig. 6.1 we show a comparison between our theory

(Eq. (6.12a)) and direct numerical simulation of the drift in pulse center brought about

by third-order dispersion. The close agreement for the higher ranges of z (recall that

our analysis is an asymptotic one) shows the robustness of the Hamiltonian approach,

withstanding the presence of dispersive waves in the numerical simulation that we

have to neglect in a Hamiltonian approach. We note that the peak amplitude does

indeed move more or less linearly towards the positive time axis, associated with a

change in the group velocity of the pulse as was predicted from a purely numerical

simulation in Ghafouri-Shiraz et al. [38].
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6.1.1 Existence of breathing solutions for third-order dispersion

It may be useful to show mathematically that breathing solutions can exist even

with third-order dispersion. We carry out a linearized stability analysis, and begin

by determining the fixed points of the system by setting the left-hand sides of (6.11)

to zero. There are two solutions:

(I.) β = 0, η = 0,

(II.) β = 0, η =
A2

σ + 6γΩ
≡ η0.

(6.13)

The first fixed point is (triply) degenerate, and cannot be used in linear stability

theory. We can say, however, that the origin cannot be a center in the phase plane:

orbits aproaching a center point tend to oscillate around it, and negative amplitudes

are not physically meaningful. The solutions that involve this fixed point are homo-

clinic orbits, i.e., they approach one and the same fixed point as z → ±∞.

With regard to the second fixed point, we take small perturbations (∆η, ∆β)

around the fixed point, and linearizing the equations, after some algebra,

∆η′ = −2A2∆β,

∆β′ =
2

π2
A2η2

0 ∆η, (6.14)

which leads to the eigenvalues

λ± = ±i
2

π
η2

0 [σ + 6γΩ] = ±i
2

π

A4

σ + 6γΩ
, (6.15)

and eigenvectors

v± =

(
±i

π

η + 0
, 1

)
. (6.16)

Since both the eigenvalues are purely imaginary, the point (η0, 0) is a center in the

phase plane [142], which is physically satisfying for a model without dissipation.

Furthermore, for constant σ(z) = σ±, since from (6.11)

∇ · (dη/dz, dβ/dz) = −6β(σ± + 6γΩ) (6.17)

changes in sign in the range of β that we consider, we expect that the above (au-
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tonomous) system of equations can have periodic solutions according to the Bendix-

son criterion [142]. Moreover, for the case of anomalous dispersion, these periodic

solutions can be physically interpreted as breathers similar to the case of the model

without third order dispersion [68].

6.2 Phase-plane analysis

We use a phase-plane analysis similar to Kutz et al. [68] to further understand

the behavior of the system. Since c is a cyclic coordinate, its conjugate momentum

is a conserved quantity and we plot the level sets of the Hamiltonian from (6.10) in

the (η, β) plane. Since (6.1) is autonomous (the independent variables do not appear

explicitly), trajectories in phase space do not intersect. We take σ(z) to be constant

= σ when we plot the analytical results, and consider normal (σ < 0) and anomalous

(σ > 0) dispersion separately. This corresponds to propagation in fibers of uniform

second-order dispersion and dispersion maps can be constructed by adding together

such sections of appropriate length. We will return to this important point later. As

in the case of the model without third-order dispersion, the dynamics are markedly

different in the two cases.

The phase-plane plots for normal and anomalous dispersion are shown in Figs. 6.2

and 6.3. The mirror symmetry of both plots about the axes β = 0 implies invariance

of the solutions to (6.11.1) and (6.11.2) under the transformations t → −t and (η →
η, β → −β). For normal dispersion (σ < 0), the phase flow is clockwise, and all orbits

limit at the origin as z → ±∞. In contrast, for anomalous dispersion (σ > 0), the

counterclockwise phase flow indicates not only homoclinic orbits to the origin, as in

the previous case, but also periodic solutions inside the separatrix.

The separatrix defines the boundary between solutions that are periodic and those

that flow into the origin. Its equation for dispersion-managed systems with third-

order dispersion can be obtained from (6.10) by setting β = 0 and solving for the

Hamiltonian value H0 such that the origin is part of the solution. The result is

β = ±η

π

(
2

3

A2η

σ/3 + 2γΩ
− η2

)1/2

. (6.18)

Further, we note that for the case of anomalous dispersion, the width (in β) of the
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Figure 6.2: Phase portraits for normal dispersion: level sets of the Hamiltonian in
the (η, β) plane with σ = −1. Note that all trajectories start and end at the origin.



6.2 Phase-plane analysis 109

separatrix at its widest in the (η, β) space is given by

δβ =
2π√

3

(
A2

2π(σ/3 + 2γΩ)

)2

, (6.19)

which shows that third-order dispersion quadratically lowers the phase-space do-

main over which periodic solutions exist. The corresponding maximum swing in

the quadratic chirp is, of course, smaller. This analytical result is of importance in

designing communication systems and protocols that must have avaliable estimates

for the effects of third-order dispersion in the evolution of the pulse width/chirp with

propagation distance. We can, in principle, compensate for the increase of the de-

nominator for γ = 0 by increasing A. Viewed from a different perspective, breathers

with third-order dispersion that maintain the same width in phase space as defined

by (6.19) have greater energy leading to lower error rates in typical communications

systems.

We can use Figs. 6.2 and 6.3 to construct a dispersion map, similar to the pro-

cedure carried out in Kutz et al. [68]. Fig. 6.4 shows a superposition of phase-space

orbits from propagation along uniform normal dispersion (ND) and anomalous disper-

sion (AD) fibers, with two of the many possible dispersion-mapped orbits identified,

each starting, for example, with an unchirped pulse at the β = 0 line. First we en-

counter (clockwise) propagation along a certain length z1/2 of ND fiber followed by

(counterclockwise) propagation along a length z2 of AD fiber. Finally, to symmetrize

the map, we require propagation along length z1/2 of the same normal dispersive fiber

as before. The breather traverses this map in the direction of the arrows. The tran-

sitions between ND and AD fiber are marked with circles: we clearly are free to pick

contours, e.g., so that the pulse amplitude (width) satisfies certain limits imposed

by a systems design criterion. More complicated dispersion maps can be very easily

constructed simply by tracing out the trajectory of the breather, and ensuring that

we return to the initial point after some distance that then defines the period. As

mentioned earlier, orbits in phase space do not intersect one another, so the evolution

of a breather along a trajectory we construct is necessarily deterministic and unique.

Propagation along such a symmetric map comprised of two types of fiber with

lengths L1 and L2 and group-velocity dispersion coefficients β′′
1 and β′′

2 , respectively,
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Figure 6.3: Phase portraits for anomalous dispersion: level sets of the Hamiltonian in
the (η, β) plane with σ = 1. Trajectories within the separatrix, shown by the dotted
line, are periodic.
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Figure 6.4: Construction of dispersion maps based on Figs. 6.2 and 6.3. Transitions
between the two types of fiber are indicated with circles. Two possible trajectories
traversed by a breather are indicated by arrows.
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Figure 6.5: Numerical simulation of pulse propagation over several periods along a
dispersion map constructed using Fig 6.4.

is shown in Fig. 6.5. The map is defined by the following normalized relationships,

β′′
2 (z)

β′′
1 (z)

=
−5.5

+1
,

L2

L1 + L2

=
0.2

0.8 + 0.2
. (6.20)

The slight asymmetry and dispersive tails are ignored in the above Hamiltonian anal-

ysis and could conceivably be compensated for to a certain extent by optical filter-

ing [67]. Nevertheless, the breathing nature of the pulse is clearly visible.
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We have analyzed the nonlinear Schrödinger equation accounting for

third-order dispersion using a nonperturbative variational approach. A

Lagrangian was constructed from the modified Euler-Lagrange equation,

and identification of appropriate generalized coordinates and their conju-

gate momenta leads to a Hamiltonian formulation of the pulse dynamics.

Using a hyperbolic secant Ansatz and allowing for quadratic chirp as well

as shifts in the group velocity, we have formed equations of motion of the

principal pulse parameters, and have shown via a phase-plane analysis

that breathers can be formed in the anomalous dispersion regime. The

presence of third-order dispersion reduces the relevant (η, β) parameter

space over which such periodic solutions exist; conversely, breathers with

third-order dispersion have enhanced energy which can be of benefit in

optical communications. We have shown how to compute dispersion

maps for systems that include third-order dispersion, and have indicated

their agreement with numerical simulations. The results are particularly

useful in the design of dispersion-managed communication systems, with

low average second-order dispersion.

6.3 Dispersion maps including third-order dispersion

We extend the analysis of the previous sections to now discuss dispersion maps

constructed in the third-order dispersion coefficient. This is analyzed by coonsidering

piecewise constant γ(z) rather than constant γ and we will analyze the construction

and properties of dispersion maps by highlighting in particular the differences from

pure second-order dispersion management, as signified by a nonzero γ in the phase-

plane separatrix.

These differences are shown clearly in a plot of η versus β as functions of z in the

“phase-plane” as shown in Fig. 6.6 for certain values of H corresponding to particular

initial conditions for the launch of the soliton and for both normal and anomalous

dispersion fiber. (Since c is a cyclic coordinate, its conjugate momentum is a conserved

quantity; trajectories in phase space corresponding to a particular type of fiber do

not intersect since Eq. (6.1) is autonomous.) We see that just as for second-order

dispersion alone, breathing solutions are possible for anomalous dispersion fiber, but
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the countours are scaled nonlinearly in the phase plane. In this regime, the separatrix

defines the boundary between solutions that are periodic and those that flow into the

origin.

1 2
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δη

Figure 6.6: Change in the trajectory of a breather from second-order dispersion alone
(dotted line) to combined second- and third-order dispersion (solid line). Normal
dispersion (ND) fibers are traversed clockwise and anomalous dispersion (AD) fibers
anticlockwise. The δβ and δη in this figure do not refer to the separatrix but to a
generic trajectory as shown.

From the separatrix Eq. (6.18), we can derive certain phase-space widths of inter-

est. At its widest along the β coordinate, the separatrix width is obtained by solving
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dβ/dη = 0 for η = η̂ and then finding δβ = 2β(η̂), which yields

δβ =
2π√

3

(
A2

2π(σ/3 + 2γΩ)

)2

, (6.21)

where η̂ = A2/[2(σ/3 + 2γΩ)]. Similarly, stipulating that dβ/dη becomes infinite for

finite η leads to the maximum value of η, since (η, β) = (0, 0) is trivially part of the

separatrix Eq. (6.18),

δη =
2π√

3

A2

σ/3 + 2γΩ
. (6.22)

We see that the effects of nonzero γ are different along the two coordinates. Con-

sider the case where σ and γ have the same sign: whereas the separatrix contracts

linearly along the η-axis, it contracts quadratically along the β axis. The role of TOD

is therefore nontrivial and cannot be simply “cancelled” by chosing an appropriately

scaled-up contour relative to the separatrix for second-order dispersion alone. While

this conclusion is intuitive, the precise argument is most meaningful and precise when

approached from the Hamiltonian formalism described here.

Since we know a Hamiltonian describing the evolution of a breather along sections

of normal or anomalous dispersive fiber, we can ask if the effect of TOD in shrinking

the contours can be compensated for by varying the TOD coefficient γ in sign between

the two sections of fiber that comprise a dispersion map in the second-order dispersion

coefficient σ. We note that TOD also results in a translation of the contours, i.e., of

the linearized center in the phase plane [90] but that is of less importance in this

context, since a dispersion map may always be constructed in theory by selecting

sufficiently outlying contours.

Contours in phase space aside from the separatrix are parametrized by a particular

value H∗ of the Hamiltonian (6.10). For any given H∗, we can find the greatest extent

of the contour along the η axis (with β = 0). Since the equation of motion (6.11) for

β is symmetric in β → −β, this point can be found by determining that η ≡ ζ for

which dβ/dη goes to infinity at finite η. Alternatively, we can set β(η) = 0 and solve

for the greatest η. The results are identical and we obtain after some algebra that
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the maximum value of η is

ζ =
A2

σ + 6γΩ


1 ∓

√
1 −

(
σ + 6γΩ

A2

)2 [
3H∗

2A2(σ + 6γΩ)
+ Ω2

(
1 + 2

σ

σ + 6γΩ

)] ,

(6.23)

where the minus sign corresponds to a section of fiber with normal dispersion (σ < 0)

and the plus sign for anomalous dispersion (σ > 0).

The simplest dispersion maps involve two sections of fiber with σ taking on op-

posite signs, i.e., σ(z) = ∓σ for normal and anomalous dispersion fiber, respectively.

We now ask if it is possible to design a dispersion map with TOD to maintain the

same separation between the two contours in phase space along the η axis. We use

a subscript N or A on ζ to indicate normal or anomalous dispersion fiber, and a

superscript ζ(0) for second-order dispersion alone and ζ(1) for a dispersion map that

includes TOD. Stated mathematically, we seek the conditions under which

∆ζN ≡ ζ
(0)
N − ζ

(1)
N = ζ

(0)
A − ζ

(1)
A ≡ ∆ζA, (6.24)

where the normal dispersion contour is selected by a Hamiltonian value H∗
N and the

anomalous dispersion contour by H∗
A.

From (6.23), we have

ζ
(0)
N =

A2

−σ

[
1 −

√
1 −

( σ

A2

)2
[

3H∗
N

2A2(−σ)
+ 3Ω2

]]
, (6.25)

ζ
(1)
N =

A2

−σ + 6γNΩ

[
1 −

√
1 −

(−σ + 6γNΩ

A2

)2 [
3H∗

N

2A2(−σ + 6γNΩ)
+ Ω2

(
1 + 2

−σ

−σ + 6γNΩ

)]]
,

and similarly for ζ
(0)
A and ζ

(1)
A with the replacements γN → γA, −σ → σ and the

appropriate sign from (6.23).
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Therefore,

∆ζN =

[
A2

−σ
− A2

−σ + 6γNΩ

]
+

{
A2

σ

√
1 −

( σ

A2

)2
[−3H∗

N

2A2σ
+ 3Ω2

]
(6.26)

− A2

σ − 6γNΩ

√
1 −

(
σ − 6γNΩ

A2

)2 [ −3H∗
N

2A2(σ − 6γNΩ)
+ Ω2

(
1 +

2σ

σ − 6γNΩ

)]


∆ζA =

[
A2

σ
− A2

σ + 6γAΩ

]
+

{
A2

σ

√
1 −

( σ

A2

)2
[

3H∗
A

2A2σ
+ 3Ω2

]
(6.27)

− A2

σ + 6γAΩ

√
1 −

(
σ + 6γAΩ

A2

)2 [
3H∗

A

2A2(σ + 6γAΩ)
+ Ω2

(
1 +

2σ

σ + 6γAΩ

)]
 .

Substituting the above expressions into (6.24) yields a complicated equation,

which can be simplified by noting that if for four rationals x +
√

y = a +
√

b, then

x = a and y = b unless y and b are the squares of rationals. Inspection of (6.26)

and (6.27) shows that the general condition holds, except possibly for one particular

set of values of H∗, which is unlikely to be the exact H∗ that constructs a satisfactory

dispersion map. In any case, it is not practical to impose the Hamiltonian energy to

exactly equal a particular irrational number. Consequently, we can split the condition

∆ζN = ∆ζA into a pair of simultaneous equations, one for the rational part free from

radicals (in this case, the square root) and the other involving (only) radicals (also

known as a “surd”). The first equation of this pair [see (6.26) and (6.27)] then leads

to the requirement
1

−σ
− 1

−σ + 6γNΩ
=

1

σ
− 1

σ + 6γAΩ
, (6.28)

which after a little algebra simplifies to

1

6Ω

(
1

γN

− 1

γA

)
=

2

σ
. (6.29)

Next, the second terms of (6.26) and (6.27) (involving the radical) can be seen to be

identical for both ∆ζN and ∆ζA if

γN = −γA (6.30)
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and we choose contours (i.e., H∗) appropriately. Combining (6.29) and (6.30) yields

the simple condition

σ = 6γΩ, (6.31)

where γN = −γA ≡ γ just as σA = −σN ≡ σ. But σN + 6γNΩ = 0, which sets the

denominator of (6.23) to zero—therefore, the result (6.31) is not a physically mean-

ingful one. This shows that third-order dispersion fundamentally modifies even the

the swing in pulse amplitude and since this is a typical design criterion in dispersion-

managed systems, it is important to design dispersion maps explicitly taking the

effects of γ into account. An example of such a map was discussed elsewhere [90].

This analysis of dispersion-mapped TOD solitons can considerably help the search

for effective ways to compensate for dispersion-slope [3] mismatch in dispersion-

mapped systems [148]. In systems that use nonlinear breathing pulse shapes (en-

velopes), we can explicitly use the dispersion-slope mismatch between different sec-

tions of nonlinear fiber to pick appropriate contours in the phase space. The periodic

dispersion map thereby constructed has breathing solutions that inherently utilize the

different third-order dispersion coefficients encountered along the propagation chan-

nel and the residual mismatch is then of fourth order in chromatic dispersion and

consequently much weaker. The emphasis is now on utilizing third-order dispersion

constructively rather than trying to completely get rid of the effect. Of course, the

Hamiltonian analysis is valid only within certain regimes, and TOD dispersion maps

can be used to utilize the residual dispersion-slope mismatch after reasonably simple

dispersion-slope mismatch compensation schemes have been applied—this will ease

the burden on the latter functionality.

We have shown that the presence of third-order dispersion (TOD)

scales the representative periodic orbit in phase-space—the separatrix—

differently along the two coordinates η and β. For both normal dis-

persion and anomalous dispersion fiber, we have quantified the changes

in the variations of the amplitude (or pulse width) and the quadratic

chirp of the pulse envelope. It is clear that TOD modifies the orbits

in phase-space nontrivially; we have also shown that it is necessary to

explicitly consider TOD even with simpler design constraints, such as

the maximum periodic change in pulse amplitude.



Chapter 7

Multilevel communications in nonlinear fibers

Oh.
We have reached the crux of the matter.

The argument that the location of the pole in the quark propagator is an
observable quantity rests upon the assumption that there is no confinement.

Those who look for confinement in the singularities of the quark
propagator are like the man who settled in Casablanca for the waters.

They have been misinformed.

—S. Coleman, Aspects of Symmetry, Cambridge, 1985.

As we have seen in Chapter 6, a physically intuitive framework for understanding

and predicting the nonlinear evolution of optical pulses (applicable to non-integrable

systems) is the variational characterization of breather dynamics [100, 7] based on

a Lagrangian functional and an appropriate Ansatz for the pulse envelope. The

resulting equations of motion of the pulse parameters, Eqs. (6.11) and (6.12), can be

represented in the phase-plane, simplifying the construction of appropriate dispersion

maps of the group-velocity dispersion (GVD) coefficient [68].

We have proposed a multilevel optical communications scheme using nonlinear

pulses that can substantially increase the bitrate of current signalling formats, since

the advantages are essentially independent of wavelength- and time-division multi-

plexing. This scheme is simply not possible with conventional linear transmission

formats that ignore the Kerr effect in optical fibers, and it relies extensively on un-

derstanding the implications of the equations of motion of the pulse parameters. The

context of this proposal is introduced in Section 7.1, and an overview is presented in

Section 7.3. The remainder of this chapter is mainly concerned with the technical

details of implementing a practical system in the presence of amplifier noise. Quan-

titative estimates of the benefit of this scheme using realistic estimates of the various

119
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system parameters are also presented.

7.1 Formulation

As we have seen in Eq. (6.1), the slowly-varying normalized envelope Q(Z, T ) of an

optical pulse in a single-mode fiber with dispersion-management in the group-velocity

dispersion (GVD) parameter σ follows the nonlinear Schrödinger equation,

i
∂Q

∂Z
+

σ

2

∂2Q

∂T 2
+ a2|Q|2Q = εR, (7.1)

using the terminology of Table 7.1 (in which numerical values are quoted in physi-

cal units, rather than normalized quantities), where Q is the electric field envelope

normalized by the peak field power and further divided by a(Z), Z is the physical

distance normalized by the dispersion length [4], and T is related to the physical time

t, distance z, and the group velocity vg according to the relationship T = t − z/vg,

and is further normalized by the 1/e width of the pulse envelope.

Dispersion maps are constructed using sections of fiber with piecewise-constant

dispersion coefficients [83, 125]: the particular dispersion map we consider here is

composed of SMF-28 and SMF-LS (non-zero dispersion-shifted) fiber. R(Z, T ) is a

complex-valued white noise process characterizing the amplified spontaneous emission

(ASE) noise added by the amplifiers along the transmission channel, and is further

discussed later.

In Eq. (6.1), a(Z) represents the effects of the background loss in the fiber and

the gain provided by optical amplifiers. We consider two particular cases: (1) the

gain is provided by distributed amplitication (e.g., Raman amplifiers) and is only a

weak perturbation to the pulse dynamics, and (2) the gain is provided by lumped

amplifiers (e.g., EDFA’s) so that the gain-loss variations in the amplitude are O(1) or

larger. In the former case, we can simply take a(Z) = 1, and, if necessary, treat the

effect of the gain-loss variations as an additional term in the definition of R. In the

latter case, the exponential path-integrated gain-loss variation, a(Z), is defined as

a(Z) = a(0) exp

{∫ Z

0

dZ ′
[
G

N∑
n=1

δ(Z ′ − nZa) − α

]}
, (7.2)
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where G is the gain due to one of the N amplifiers spaced uniformly by Za (physical

distance normalized by the dispersion length) along the total source-receiver length, L,

and α is the background loss per unit distance multiplied by the dispersion length [44,

pp. 111-112]. In Eq. (7.2), a(Z) is usually defined with an average value of unity [44,

pp. 114–116]. While the analysis for the lumped-gain case is more complicated, the

results are qualitatively similar to those for the distributed-gain case, and we will

mostly work in the distributed-gain approximation.

λ carrier wavelength 1.55 µm
γ nonlinearity coefficient 2 km−1W−1

D+ GVD for anomalous dispersion fiber 17.45 ps/km-nm
D− GVD for normal dispersion fiber −2.1 ps/km-nm
Z+ length of anomalous dispersion fiber 6 km
Z− length of normal dispersion fiber 22.5 km
L source-receiver length 4080 km
Za inter-amplifier spacing 51 km
N number of amplifiers 80 (= L/Za)
T0 pulse width (1/e-intensity point) 9.0 ps
α fiber loss 0.2 dB/km

Nsp spontaneous emission factor 2
G amplifier gain 10.2 dB

Table 7.1: Definitions of symbols and numerical values of parameters (in physical
units)

7.2 Analytical framework

The nonlinear breathing of dispersion-managed solitons is clearly visible in the

direct numerical simulations of Eq. (7.1) using the split-step Fourier method [4].

Such data is shown, for a train of breathing pulses in Fig. 7.1. A clear and simple

framework for analyzing and predicting this behavior is the Lagrangian formalism,

which represents the field amplitude using a finite number of parameters, each with a

direct physical meaning, e.g., width of the envelope, or chirp [7, 20, 21]. In exchange

for limiting our attention to a finite number of degrees of freedom, the resultant

equations of motion for the parameters become ordinary differential equations [39,

121].

In the presence of noise perturbations, the solution to the stochastic PDE, Eq. (6.1),
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Figure 7.1: Propagation of a pulsetrain of breathing dispersion-managed solitons,
numerically calculated directly from the nonlinear Schrödinger equation with ε = 0,
over two dispersion map periods, with the map specified as in Table 7.1. Four time-
slots are shown with different initial pulseshapes and, therefore, different breathing
patterns. Eq. (7.3) is used to specify the pulseshapes that are transmitted.
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is written as Q(Z, T ) = Q0(Z, T ) + εQ1(Z, T ) + . . . . For the zeroth-order term, we

use a Gaussian ansatz [68]

Q0(Z, T ) = Ab
√

η exp

{
−[κη(T − C)]2+iΩ (T−C)+i

[
βκ2(T − C)2 +

φ

2

]}
, (7.3)

where η, β, Ω, C and φ depend solely on Z and represent the amplitude (and width),

quadratic chirp, frequency shift from the carrier frequency (or velocity), pulse center

position in the moving reference frame (or group-velocity variation in laboratory

coordinates) and phase respectively. κ is a pulsewidth scaling constant, taken as

equal to 1.18/1.76 so that Eq. (7.3) has the same FWHM as the first-order hyperbolic

secant soliton, b is an energy scaling constant determined by b2 = 2κ
√

2/π so that

the energy of the Gaussian pulse is the same as that of the hyperbolic secant soliton.

The dispersion map is symmetric and comprises a section of anomalous dispersion

(AD) fiber, of dispersion coefficient D+ and length Z+, between two sections of normal

dispersion fiber (ND) of dispersion coefficient D− and length Z−/2 (for each of the

two sections). The amplitude enhancement factor A is then defined as

A =

[
1 + ξ

{
λ0

2

2πcT0
2

[
(D+ − D̄)Z+ − (D− − D̄)Z−

]}]1/2

(7.4)

in terms of the path-averaged dispersion coefficient D̄, and a ‘free’ parameter ξ which

will play an important role in the following discussion.

The variational principle is characterized by

δL0

δQ∗ = iε2R, (7.5)

where L0 is the Lagrange density functional for the unperturbed problem,

L0(Q,Q∗) = i

[
Q

∂Q∗

∂Z
− Q∗∂Q

∂Z

]
+ σ(Z)

∣∣∣∣∂Q

∂T

∣∣∣∣
2

− a2|Q|4. (7.6)

In terms of the solution Q0 to the unperturbed problem, Eq. (7.5) can be re-written

as
δL0

δQ0
∗ = iε2R − εL1(Q0, Q0

∗; Q1, Q1
∗), (7.7)
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where L1 is given by [44, pp. 80–82]

L1(Q0, Q
∗
0; Q1, Q

∗
1) = lim

ε→0

1

ε

{
δL0

δQ∗ [Q0 + εQ1, Q
∗
0 + εQ∗

1] −
δL0

δQ∗ [Q0, Q0]

}
. (7.8)

The derivatives ∂Q0/∂ζ and ∂Q∗
0/∂ζ, where ζ = {η, β, . . .} stands for any of the

canonical coordinates, give a solution of the linearized equation. This is given by

setting L1(Q0, Q
∗
0, ∂Q0/∂ζ, ∂Q∗

0/∂ζ) = 0.

Also, from the chain rule, the partial derivatives of the Lagrangian functional

in terms of a canonical coordinate ζ = {η, β, . . .} can be expressed in terms of the

variations of the Lagrangian density with respect to the pulse ansatz,

∂L0

∂ζ
=

∫
dT

(
δL0

δQ0

∂Q0

∂ζ
+

δL0

δQ0
∗
∂Q0

∗

∂ζ

)
. (7.9)

Thus, in the presence of the perturbation R, the equations of motion for the

envelope parameters η and β (which is the conjugate momentum to the canonical

coordinate η) are

dη

dZ
= −2κ2σβη + ε κ2 η3

A2

∫
dT (T − C)2 2 Im[RQ0

∗], (7.10)

dβ

dZ
= − 2 κ√

π
a2 A2 η3 + 2κ2σ

(
η4 − β2

)
− ε

η3

A2

∫
dT

[
1

2η
− 2κ2(T − C)2η

]
2 Re[RQ0

∗].
(7.11)

The solutions to Eqs. (7.10) and (7.11) with ε = 0, representing the noiseless dy-

namics of pulse evolution, may be plotted against each other as contours (orbits), as

shown in Fig. 7.2 for different initial conditions. The curved trajectories are charac-

teristic of the evolution of many nonlinear dynamical systems in the phase plane [121].

In fibers of constant GVD (constant σ), contours are parametrized by the value of

the Hamiltonian and they do not intersect one another [54]. In anomalous dispersion

fiber, there exist closed non-degenerate orbits [evolution along which does not end up

at the origin, (η, β) = (0, 0)] that represent breathing evolution of pulse shapes, i.e.,

the pulse width and chirp are periodic functions of Z.

Dispersion maps can be constructed from sections of fiber of opposite GVD signs.



7.2 Analytical framework 125

0.25 0.5 0.75 1 1.25 1.5

-0.75

-0.5

-0.25

0.25

0.5

0.75

ND

AD

β η

Figure 7.2: Trajectories in phase space (η-width, β-chirp) for the evolution of
breathers in the direction shown along normal (ND) and anomalous (AD) disper-
sion fiber. The latter is capable of supporting closed orbits that do not evolve into
the origin. Changing the value of the Hamiltonian leads to a nonlinear scaling of the
orbits as indicated by the arrows. The solid line shows the evolution of η and β over
one dispersion map period.
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With reference to Fig. 7.2, the pulse traverses a section of a particular contour for

ND fiber (clockwise), and a complementary section of a particular AD fiber (anti-

clockwise). The two lengths of fibers are chosen so that, taken together, they form a

closed (connected and piecewise smooth) orbit in the η-β plane. The transition from

ND to AD fiber (and vice-versa) at the splice locations is indicated by small circles

in Fig. 7.2.

Here, we highlight an interesting and important feature of solitary wave propa-

gation in dispersion maps, which we will discuss in the context of the data shown in

Fig. 7.1. Assume that a pulse is launched into a dispersion map, whose periodicity

(length) is Zmap, with parameters ηinitial and βinitial. As shown in Fig. 7.3, we can plot

the (η, β) parameters in the phase plane for propagation through integer multiples

of the distance Zmap. For N concatenated dispersion maps spanning the distance L

between the source and the receiver, so that N = L/Zmap, there are N such points

in the phase plane. This trajectory defines the Poincaré section of the phase plane

diagram [54]. For special choices of ηinitial and βinitial, all of these points may exactly

coincide, but in general they do not. It is the latter cases which we will focus on,

when the Poincaré sections for different launch conditions form distinct trajectories

in the phase plane.

7.3 Multiple orbits and multiplexing

From the data shown in Fig. 7.1, the η and β parameters for the second and

fourth ‘1’ bits at the end of each dispersion map period are plotted against each other

in Fig. 7.4. (Successive points are connected by lines for clarity.) In this example,

the ξ parameters for these pulses are 1.2 and 1.7, respectively, and we have taken

(ηinitial, βinitial) as (0.4, 0) and (0.9, 0). Note that between successive points in Fig. 7.4,

the pulses trace out a trajectory on their respective phase planes. In Fig. 7.4, the η and

β parameters are obtained from a fitting algorithm between the numerically computed

pulse envelope and the ansatz, Eq. (7.3) which minimizes the sum of squared residuals.

Further, we have verified that over the propagation distance considered here, the

pulses do not drift significantly from their initial position. In WDM applications, the

gain deviation among different channels and the spectral characterization of ASE [33]

are further perturbative effects that need to be accounted for separately, e.g., by using

equalization filters [144].
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Figure 7.3: The correspondence between the numerically calculated temporal profile
and the fitted paramters in the phase-plane, emphasizing that points in the phase
plane are plotted at the end of each dispersion map period. Three such points are
highlighted in this representation. Each of the points shown in Fig. 7.4 is obtained
in this manner.

As Fig. 7.4 shows, there can exist more than one closed orbit in the phase-plane

(for clarity, we have shown only two). The multiplexing scheme works as follows: the

source (laser+modulator) launches a pulse with a particular combination of amplitude

(width), η, and chirp, β to place a particular pulse onto a selected trajectory, i.e.,

by choosing an initial value for η = ηinitial and for β = βinitial, we select the unique

contour that the pulse follows as it propagates. Small unpredicted variations in the

initial parameters will select an adjacent contour, but this is not of much concern if

the separation between the contours assigned to different codes is chosen to be large

enough.

Different contours are assigned to the various alphabets of a multi-level code. The

cardinality of the alphabet depends on the complexity of the receivers. For current

receiver technology, it is practical to require an unchirped pulse be received at the

detector. In this case, there are two allowed pairs, (ηfinal, 0), for each orbit, and the

two orbits shown in Fig. 7.4implement a four-symbol multiplexing scheme. The single

channel bit rate (1/inter-pulse separation) is multiplied by four.

Components of the technology needed to implement such a multiplexing scheme

have already been demonstrated. For the transmitter, a simple and practical way of
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Figure 7.4: Numerically calculated from the nonlinear Schrödinger equation over
4000 km and using a minimum squared residuals fitting algorithm, the η and β
parameters for the second and fourth non-zero bits (from the left) are plotted against
each other, and form closed orbits in the phase plane. The dispersion map is specified
in Table 7.1.

generating solitons of specific widths in the picosecond regime has been demonstrated

recently by utilizing adiabatic compression in Raman amplifiers [114, 31, 101]. At

the receiver, simple techniques to distinguish between different envelope widths have

been demonstrated [46], using the soliton self-frequency shift [40]. [This approach

has the advantage of being highly sensitive to the pulsewidth, as the frequency shift

is (inversely) proportional to the fourth power of the pulsewidth.]

A communication scheme that uses multiple orbits operates on the basis of a table

of (ηinitial, βinitial) and ξ values for each orbit, calculated using the (fixed) distance, L,

between source and receiver and the period of each orbit, Zmap. In the noise-free case,

the number of such orbits is essentially infinite, since contours in phase-plane need

not intersect. But noise broadens the contours [69] and may cause near-lying orbits

to overlap. The dominant noise source is amplified spontaneous emission (ASE) noise

from optical amplifiers.

For example, Fig. 7.5 shows the breathing evolution of pulses for a different set

of parameters: dispersion map constructed of fiber with a stronger nonlinearity coef-

ficient, γ = 20 km−1W−1, and with fiber lengths Z+ = 6.5 km, Z− = 24.5 km, pulse

width (1/e-intensity point) T0 = 7.5 ps. The ξ parameters for these pulses (two dif-
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ferent kinds are considered in this example) are 0.3 and 0.5, respectively, and we have

taken (ηinitial, βinitial) as (0.35, 0) and (0.65, 0). In this case, the orbits in the phase

plane are quite close to each other as shown in Fig. 7.6, and the broadening effect

of noise perturbations will cause the orbits to overlap. The goal is to select orbits

that are sufficiently apart in phase space that they do not overlap when broadened

by noise. Hence, the design of Fig. 7.4 is better than that of Fig. 7.6.

Next, we will include the effects of ASE noise in the direct numerical simulations

and show the constraints thereby imposed. Then, we will evaluate an important

figure-of-merit—the effective noise radius thickness in the phase plane—which allows

for a fairly accurate closed-form estimate of these observations and comment on op-

timization of the various parameters.

In the presence of ASE (or other) noise perturbations, the contours shown in

Fig. 7.4 broaden, which may cause adjacent contours to overlap, thereby leading to

errors in converting the sequence of optical pulses to a digital bitstream. The physical

basis for this broadening is clear: each of the points in Fig. 7.4 represents η and β at

the end of a dispersion map, at which point a noise-source (ASE noise from a spatially-

localized amplifier) is encountered. These two parameters experience a noise ‘kick’—a

perturbation in two dimensions—with zero mean and finite variance, resulting in the

contour being smeared out when viewed over many iterations. Using an adiabatic

variational approach [15, 69], we can define an effective root-mean-square distance

(radius) reff for each orbit that represents how ‘thick’ the contours become, on the

average, when η and β are perturbed by the stochastic noise kicks at the optical

amplifiers.

We select orbits that are sufficiently far apart in the phase plane so that they do

not overlap to the required probability of error, i.e., pick contours in the phase plane

so that their reff-broadened orbits do not intersect, as shown in Fig. 7.7. Assuming

for practical purposes that we require unchirped envelopes at the receiver (βfinal = 0),

there are four multiplexing levels allowed as indicated by the circles of radius reff

around the points on the phase plane that define the four levels of the code. The

greater density of points at one unchirped extremum of the orbits compared to the

other is not a problem, since a short section of fiber (of length less than a dispersion

map period) can be inserted in front of the receiver to ensure that (on the average)

an unchirped envelope is received.

In analyzing Eqs. (7.10) and (7.11), we substitute η(Z) = η0(Z) + ε ∆η(Z) and
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β(Z) = β0(Z) + ε ∆β(Z) and β0 are the solutions to the unperturbed equations of

motion. The explicit forms of η0 and β0 are not important in this analysis. Matching

terms of like powers in ε yields equations in d∆η/dZ and d∆β/dZ.

The noise perturbation is assumed to be of the form,

R(Z, T ) =
∑
m

S(T ) δ(Z − mZa), m = 1, 2, . . . , (7.12)

i.e., a spatially-localized noise “kick” that is encountered once per period. If the ran-

dom process S(T ) is wide-sense stationary, we may define its spectral representation

(the Fourier transform)

S̃(Ω) =

∫
dT eiΩT S(T ), (7.13)

which, in general, defines a nonstationary white noise process in the frequency domain

where the frequency components of the process corresponding to distinct frequencies

are uncorrelated [30]. We will assume that the ASE noise of the optical amplifiers

can be characterized using such a model for S(T ), with the following expectation

values [82],

E[S̃(Ω), S̃(Ω′)] = 0,

E[S̃(Ω), S̃(Ω′)
∗
] =

N
2π

δ(Ω − Ω′). (7.14)

where N is the power spectral density (PSD) of ASE noise normalized by a(0) as

defined by Eq. (7.2). Note that since we account for gain-loss fluctuations in a way

that defines the path-averaged a(Z) to be unity, the value of a at the amplifiers (noise

sources) is greater than unity [44, Fig. 7.1], leading to a reduction in the effective PSD

of the noise.

The terms that govern the evolution of ∆η(Z) and ∆β(Z) involve integrals over

T or equivalently, over τ ≡ T − C. Now, Q0(Z, T ) in Eq. (7.3) can be written as

Q0 = q exp(iΩτ). Therefore we can write,

d∆η

dZ
= −κ2η3

A2
2 Im I1(Ω) (7.15)
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Figure 7.5: Propagation of a pulsetrain of breathing dispersion-managed solitons,
numerically calculated directly from the nonlinear Schrödinger equation with ε = 0
as for Fig. 7.1, using a different dispersion map and a set of parameters as described
in the text.

where I1(Ω) is the Fourier transform of Rτ 2q∗,

I1(Ω) ≡
∫

dτ e−iΩτRτ 2q∗. (7.16)

Similarly, we obtain,
d∆β

dZ
= − η3

A2
2 Im I2(Ω) (7.17)

where

I2(Ω) ≡
∫

dτ e−iΩτR

[
1

2η
− 2κ2ητ 2

]
q∗. (7.18)



132 Multilevel communications in nonlinear fibers

We will represent the spectral representation of various functions (i.e., Fourier-

transformed with respect to τ) by a tilde over the original symbol, e.g., R̃(Z, Ω) is

obtained from R(Z, T ) as follows

R̃(Z, Ω) =

∫
dτ e−iΩτR(Z, τ) (7.19)

and similarly for other functions.

We define

ψ(Z, τ) ≡



τ 2q(Z, τ), κ = η,[
1

2η0

− 2κ2η0τ
2

]
q(Z, τ), κ = β.

(7.20)

Then, Eqs. (7.15) and (7.17) have similar forms,

∆κ ∼
∫

dτ eiΩτ [S(T )ψ(Z, T )∗ ± S(T )∗ψ(Z, T )] , (7.21)

We can therefore obtain the expectations for the spectral density of the variances,

E [∆η(Z, Ω) ∆η(Z, Ω)∗] =

[
3

8

√
π

2

b2

A2κ

]
N η0

2, (7.22)

E [∆β(Z, Ω) ∆β(Z, Ω)∗] =

[
1

2

√
π

2

b2

A2κ

]
N η0

4. (7.23)

7.3.1 RMS radius of the random walk in the phase plane

We assume that the noise terms ∆η and ∆β added by successive amplifiers are

independent. If the orbit is traversed a large number of times, each of the points in

Fig. 7.4 undergoes a random walk around its unperturbed value. More concisely, the

stochastic Poincaré section is characterized by 2D Brownian motion, the variance of

which is given by Eqs. (7.22) and (7.23). Connecting the Poincaré section between

the k-th and (k + 1)-th periods,

ηk+1 = ηk(1 − r1),

βk+1 = βk − ηk
2r2, (7.24)
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Figure 7.6: The η and β parameters for the second and third bits (from the left) in
Fig. 7.5 are plotted against each other, and form closed orbits in the phase plane as
before, but the orbits are closer to each other, and are likely to overlap when the
effects of ASE noise are accounted for.
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where r1 and r2 are Gaussian random variables with mean zero and variances ση
2 and

σβ
2 defined as the right-hand sides of Eqs. (7.22) and (7.23), respectively. A similar

picture in the Argand diagram (amplitude-phase representation) is useful to under-

stand the effect of spontaneous emission on the field of a laser above threshold [79,

Fig. (7.10)].

The mean-square radius of this random walk is defined as

E[Rk
2] ≡ E

[
(ηk − η0)

2 + (βk − β0)
2
]

(7.25)

in terms of the unperturbed location in the phase plane (η0, β0). This can be calcu-

lated explicitly,

√
E[Rk

2] =η0
2
[(

1 + ση
2
)k − 1

]
+ η0

4 σβ
2

3ση
2

× 1 + 6ση
2 + 3ση

4

2 + ση
2

[(
1 + 6ση

2 + 3ση
4
)k − 1

] (7.26)

and since N � 1, √
E[Rk

2] ≈ η0

√
k
√

ση
2 + η0

2σβ
2. (7.27)

We may approximate the “effective” RMS radius of an orbit as the average of the

RMS radii for each of the η values between the minimum and maximum η values of

that particular orbit,

reff ≡ Υ E
η∈(ηmin,ηmax)

[√
E[Rk

2]

]
. (7.28)

The multiplicative factor of Υ may need some explanation: assuming that the receiver

effectively uses the maximum-likelihood (ML) criterion for distinguishing between

received pulse widths, the probability of error in distinguishing between η1 and η2 is

given by the probability of the following event,

η1 + Υσ1 ≥ η2 − Υσ2, (7.29)

where σi is the standard deviation of ηi, for i = 1, 2 (which is given by Eq. (7.28)

without the factor of Υ). For example, since each of the two events in Eq. (7.29) is

independent of the other, to achieve an error probability of [erfc(1/
√

2)]2 ≈ 10%, we

may set Υ = 1, but this is usually too high an error rate for communications. We
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choose Υ so that the probability of the above event, Eq. (7.29), is less than 10−9,

i.e., Υ = 4.161. Each point on the orbit is then assumed to be “broadened” by the

effective RMS radii reff as defined in Eq. (7.28).

Using Table 7.1 for definitions and numerical values of the elementary physical

parameters, we find that 2reff is approximately 0.17 for the orbits shown in Fig. 7.4,

as shown in Fig. 7.7. With the parameters we have chosen, propagation over sub-

stantially longer distances would be unacceptable as the the circles would overlap.

7.4 Gordon-Haus timing jitter

A phenomenon that does not play a role in the η-β dynamics, but is nevertheless

important in the design of the communication scheme is the noise-induced frequency

shift, and its conversion into a jitter in the center position of the pulse through the

dispersion. The analysis in this section parallels the discussion of the Gordon-Haus

effect [42, 82] in dispersion-managed soliton transmission [66, 104].

The differential equation for the evolution of Ω is obtained, in the absence of noise

[ε = 0 in Eq. (6.1)], from the following equation

δL0

δC
=

∂L0

∂C
− d

dZ

∂L0

∂

(
dC

dZ

) = 0, (7.30)

which shows that

−4A2dΩ

dZ
= 0, (7.31)

i.e., Ω is a conserved quantity when ε = 0. However, in the presence of ASE noise,

we obtain the equation

dΩ

dZ
= − ε

1

A2

∫
dτ κ2η2τ 2 Re[RQ0

∗]

+ ε
1

4A2

∫
dτ (Ω + 2βκ2τ) 2 Im[RQ0

∗].
(7.32)

The same procedure as outlined earlier is followed: we substitute Ω(Z) = Ω0(Z)+

ε ∆Ω(Z) where Ω0 is a solution to the unperturbed equation of motion, Eq. (7.31).

In the right-hand side of Eq. (7.32), we replace η, β, and Ω with η0, β0, and Ω0



136 Multilevel communications in nonlinear fibers

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1.5

-1

-0.5

0

0.5

1

1.5

η

β

Figure 7.7: Noise-induced broadening of the two contours in the phase-plane shown
in Fig. 7.1. The circles drawn around the points representing the received envelope
η and β values indicate the effective noise radius for a 10−9 probability of error of
overlap. The non-uniform density of the points is not of concern, as it indicates only
the velocity of the pulse in traversing different parts of the phase plane.
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which are the leading-order terms in the respective variables. Eq. (7.12) specifies the

perturbation R(Z, T ), and the spectral properties of S are given by Eq. (7.14).

In a similar fashion to the earlier analysis, we obtain the expectation for spectral

density of the variance of ∆Ω,

E [∆Ω ∆Ω∗] =
κ2

A2

(
η0

2 +
1

4

β0
2

η0
2

+
1

4

Ω0
2

κ2

)
N . (7.33)

Similar to Eqs. (7.22) and (7.23), Eq. (7.33) characterizes the effect of a single

noise source. As evident from Fig. 7.7, the (η, β) locations of the amplifiers are

positioned randomly along the orbit. To obtain approximate analytical expressions,

we assume that the coordinates for the n-th amplifier (noise source) ηn and βn are

uniformly distributed and mutually independent random variables,

ηn ∼ U [ηmin, ηmax],

βn ∼ U [−βmax, βmax]
n = 1, 2, . . . , N. (7.34)

where ηmin, ηmax, and βmax can be obtained from the results of simulations as shown

in Fig. 7.4.

The variance in the frequency Ω leads to a jitter in the temporal position of the

pulse: since the group delay is directly proportional to β′ ≡ dβ/dω [4], a change in the

group delay will be caused by a nonzero β′′∆ω [42, 82], or σ(z)∆Ω in our notation. If

we assume that the noise contributions of successive amplifiers are independent, the

overall jitter is given by [66]

E
[
∆T 2

]
=
∑

n

E [∆Ωn ∆Ωn
∗]
[∫ NZa

nZa

dZ σ(Z)

]2

, (7.35)

where Za is the spacing between amplifiers, and N such amplifiers span the distance

between the source and the receiver (see Table 7.1).

Based on the discussion in the previous paragraph, we treat ηn
2 etc. in the argu-

ment of the summation in the above equation as functions of uniformly distributed

random variables, and replace them with their expected values. We assume Ω0 = 0

corresponding to the ansatz used in Fig. 7.1. Since in this paper we only consider

fibers of uniform GVD, σ(Z) ≡ D̄, and assume equal spacing between amplifiers, the
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expression can be evaluated in closed-form,

E
[
∆T 2

]
=D̄2N κ2

A2

{
ηmin

2 + ηminηmax + ηmax
2

3

+
βmax

2

12 ηmin ηmax

}
N(N + 1)(2N + 1)

6
Za

2.

(7.36)

For large N , the last term in Eq. (7.36) is approximately (NZa)
3/3Za, which iden-

tifies with the well-known cubic dependence of the Gordon-Haus jitter on the total

transmission length [42, Eq. (16)].

Kumar and Lederer [66] have commented that in dispersion-managed soliton sys-

tems that use several amplifiers within a period (i.e., noise sources are encountered

at different locations in the phase plane as in this analysis), a path-averaged inter-

pretation of the Gordon-Haus jitter is a good approximation to the actual dynamics.

This would be especially true here, since the period of the orbit is not the same as

the distance between two successive amplifiers.

To account for the normalizations implicit in Eq. (7.36), we multiply the expression

for E
[
∆T 2

]
by the factor [1.665λ2/(2πc TFWHM)]2 [104]; the dimensions of this factor

are nm2 which account for the nm−2 from D̄2 in Eq. (7.36). Using numerical values

from Table 7.1, we evaluate the RMS timing jitter for the pulses described in Fig. 7.4:

κ = 1.18/1.76, A = 1.827, P0 = 1.57 mW,

LD =
2πc

λ2D̄

(
TFWHM

1.665

)2

= 318 km,

a(0) =

[
2αZa

1 − exp(−2αZa)

]1/2

= 2.177

ηmin = 0.80, ηmax = 1.50 (7.37)

which leads to the RMS timing jitter,

∆TRMS ≡
√

E
[
∆T 2

] ≈ 1.63 ps. (7.38)

For comparison, we have carried out 256 numerical simulations of pulse propaga-

tion similar to Fig. 7.7, and using a minimum squared residuals fitting algorithm, we

evaluate that E [∆T ] = 0.066 ps ≈ 0, i.e., zero mean, and ∆TRMS ≈ 2.38 ps. The
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difference (0.75 ps) between the numerically evaluated RMS timing jitter and the

theoretical prediction is less than 0.5% of the inter-pulse time interval and less than

5% of the pulse width, which is very good agreement in light of the approximations

made in this analysis (Gaussian statistics, etc.)

A rule of thumb [82] is to allow a detection window of approximately six times the

RMS timing jitter for a bit-error-rate of 10−9. In the present case, this fits well within

the inter-pulse delay shown in Fig. 7.4, and additional filtering is not needed. The

Gordon-Haus jitter is not the dominant limitation with these parameters, but may

become more important if we use shorter pulses, or propagate over longer distances.

7.5 Comments

Our analysis so far has focused on the dynamics of pulse propagation in the

distributed amplifier approximation. In the case of lumped amplifiers, the pulse

amplitude experiences significant variations on a short length scale, and therefore, it

is convenient to factor out these variations using a(Z) as described in Section 7.1, and

in particular, by using Eq. (7.2). Since a(Z) also appears in Eq. (7.11), the phase-

plane dynamics are altered. Fig. 7.8 shows the change in the contour corresponding

to one of the orbits that was shown in Fig. 7.4. It is evident that the geometrical

structure of the phase plane is not altered and therefore the main conclusions of this

paper are equally valid, although the quantitative estimates must of course be re-

calculated. Further aspects of the differences will be discussed in a separate paper.

The goal of constellation design is simply to pick contours in the phase plane so

that their reff-widened orbits do not intersect, as shown by non-overlapping circles in

Fig. 7.7. In the language of nonlinear dynamic systems, we divide the space of orbits

S ∈ R
2 into subsets Si each of which is invariant (stochastically, with 10−9 probability

of error) with respect to the flow of the initial value problem (IVP) vector field, i.e.,

for x = (η, β)T ,

If x(Z = 0) ≡ x0 ∈ Sk for a particular k

then Pr{x(Z) /∈ Sk} ≤ 10−9 for all Z. (7.39)

In the example that we have used for illustrative purposes in this paper, there are
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Figure 7.8: As a consequence of strong gain-loss variations (O(1) changes in a(Z)
over a period), the contours may change quantitatively, although their geometrical
structure is unchanged (isomorphism). Data plotted with squares was shown earlier
in Fig. 7.4, and is transformed to the data plotted with triangles as a consequence
the strong gain-loss variations.
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four multiplexing levels defined by the four circles in Fig. 7.7. These additional levels

of multiplexing arise from the nonlinear evolution of the pulse in the phase-plane;

critical to their existence is the fact that the Kerr nonlinearity acts in a deterministic

manner, and is not merely one of the noise terms as in conventional wavelength-

division multiplexing (WDM) transmission formats.

Such a multiplexing scheme is best utilized if receivers can reliably detect the

quadratic chirp of the received pulse in real time and with milliwatt pulse powers [137].

Then more than four multiplexing levels can be allowed by selecting non-overlapping

neighborhoods for the parameters at the output of the channel. These neighborhoods

are isomorphic to circles in R
2 or n-balls in R

n. The ultimate limits of such multi-

plexing are directly related to sphere (or ellipsoid) packing problems in n-dimensions,

where n is the number of statistically significant parameters. For shorter distances,

more levels may be defined since the noise radii are smaller.

7.5.1 Optimum amplifier gain for fixed total distance

For a fixed distance L between source and receiver, the number of amplifier stages

is L/Za which can be re-written in terms of the amplifier gain G as αL/ log G, where

α is the attenuation per unit length of the fiber. Clearly, the number of noise sources

encountered by the pulse is inversely proportional to the gain of the amplifiers, G.

On the other hand, the noise radius increases with G, since higher gain amplifiers

add more ASE noise to the signal [154].

From Eq. (7.27), we can write, as a function of G,

reff(G) ∼
[
G − 1

log G

]1/2

r̂eff, G ≥ 1. (7.40)

where r̂eff is independent of G. Note that the noise radius increases, and therefore

fewer levels of multiplexing are allowed, if high gain amplifiers are used. Further,

lim
G→1

reff(G) = r̂eff, (7.41)

which is the minimum noise radius that can be achieved, i.e., in the limit of a lossless

channel. It is interesting that the figure-of-merit for a prototypical linear optical

transmission shows a similar behavior [153].
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In contrast with the proposal by Hasegawa and Nyu [45] for a different nonlinear

multiplexing scheme using (non dispersion-managed) solitons, this scheme does not

require that the information-carrying parameters (η and β) are unchanged during

the course of transmission, but merely that a receiver can clearly distinguish, at its

specific location, between their values corresponding to different codes. In addition,

this scheme explicitly accounts for dispersion-managed fiber links; this is significant

in light of the considerable spans of normal-dispersion fiber already installed in com-

mercial networks.

Higher-dimensional generalizations are richer analytically, but with greater com-

plications in the dynamical evolution. The behavior in the vicinity of non-hyperbolic

critical points (such as the center in the phase plane for the AD fibers) requires a

more sophisticated analysis of the behavior on the central manifold, using normal

form theory, and may result in chaotic behaviour in certain circumstances. If the

section of the phase plane in which we define the channel contains several compound

separatrix cycles (graphics), with the separatrixes homoclinic to the origin (e.g., the

topology of the n-bouquet), this would allow zones of multiplexing, with a reduced

probability of crossing zones. The physical (design) implications of such topologies

are a current research topic.

Each particular implementation has particular features that deserve special atten-

tion. In optical transmission, for example, interactions between nonlinearly-multiplexed

pulses have been suppressed, since we have taken the nonlinear multiplexing to be

super-imposed on top of a WDM and TDM specification. This scheme precludes

strong interactions between two pulses with the same carrier frequency and in the

same time slot. But multiaccess channels do not typically maximize capacity by or-

thogonal multiplexing techniques. Optimizing the design of systems in the presence of

multiaccess interference in nonlinear channels is an open problem. Optical filtering

will probably be implemented in the transmission channel to suppress out-of-band

radiation and the accumulation of dispersive waves, and to guide the evolution of the

nonlinear pulseshapes along desired trajectories.



7.5 Comments 143

We have introduced a new format for multiplexed signal transmis-

sion dispersion-managed optical fiber communication systems which

constructively utilizes the group-velocity dispersion and Kerr nonlin-

earity present in commonly-used optical fibers. This scheme, called

PulseWidth and Chirp Division Multiplexing (PWCDM), is based on the

evolution of the chirp and amplitude (width) parameters describing the

pulse envelope in the phase plane, most conveniently characterized us-

ing a variational approach. Amplified spontaneous emission (ASE) noise

from optical amplifiers results in amplitude and chirp jitter, and deter-

mines the selection of appropriate multiplexing levels and the design of

the signalling constellation. In addition, ASE also results in the Gordon-

Haus timing jitter, and if this effect is not compensated, an additional

constraint may be imposed on the interpulse temporal separation.
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Chapter 8

Space-time analogies in pulse propagation

With the successes of the Glashow-Weinberg-Salam theory of electroweak
interactions, the renormalizability proof of gauge theories by t’Hooft,

and the developments of QCD, it is now universally accepted that all interactions
are based on the gauge principle. I had coined the phrase

Symmetry Dictates Interactions to describe this view about the role that
symmetry plays in the conceptual structure of nature’s fundamental forces,

a view that is a dominant theme of contemporary physics.

—C. N. Yang, Gauge Fields I, Proc. 20th Int. School
Subnuclear Phys. (Ettore Majorana), Erice (1982).

This chapter is an ab initio study of pulse propagation phenomena analogous to

spatial CW diffraction behavior. We address both linear dispersive evolution as well

the self-phase modulation effects of the nonlinear index of refraction [29]. The latter

is responsible for much of the current interest in nonlinear optical communications,

since pulse shapes such as solitons and dispersion-managed solitons display much more

attractive transmission properties than linear transmission formats (e.g., NRZ) [22].

Such nonlinear pulses are usually self-consistent eigensolutions of a wave equa-

tion, which is the primary reason for their robustness to uncompensated spectral

broadening and resultant dissipation into the continuum. The conventional hyper-

bolic secant soliton is an exact solution of the nonlinear Schrödinger equation [4], and

propagates indefinitely in a lossless medium without losing its shape. Lossless media

can be realized in practice quite effectively by using lumped amplification stages, and

erbium-doped fiber amplifiers offer excellent characteristics in this regard.

Breathers, sometimes called dispersion-managed solitons [135, 128], are also self-

consistent eigensolutions of the wave equation that propagate with periodic pulse

width, chirp, etc., but do not require that the governing system of equations is in-

tegrable. While not strictly unchanging in shape, breathers are self-trapped—evolve

145
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back to their initial configuration, essentially traversing a closed, nondegenerate orbit

in phase space [68]. Unlike pulse shapes designed for linear transmission channels,

these pulses do not require periodic dispersion compensation along the transmission

channel, and so offer an attractive alternative to the strong control requirements of

the nonlinear Schrödinger soliton.

Characterizing the solutions of the nonlinear wave equation is often simplest via

direct numerical simulation, and this has been particularly true for dispersion mapped

solitons [81]. In order to understand, capture, and then predict and utilize the es-

sential physics that guides this behavior, a more conceptually accessible framework is

sometimes preferable, such as the variational approach with a pulse shape Ansatz [7].

The pulse shape is described as a dynamical system; we write the Hamiltonian based

on the action principle and seek solutions to the Euler-Lagrange equations of mo-

tion [100, 39]. This approach is not always applicable, however, especially when the

Ansatz is incapable of capturing some essential physical behavior. Also, it is some-

what more of an analytical tool for probing the dynamics of systems that we already

know something about, or can predict at least partially, and it may be convenient to

have other approaches that can offer quick insight into constructive aspects of nonlin-

ear propagation, so that different geometries can be analyzed and compared quickly

and easily.

The parallels between dispersive pulse propagation in optical fibers and paraxial

CW Gaussian beam diffraction in free space have been identified for some time [5, 157,

14]. More recently, the analogies have been extended to include temporal lenses as a

way to translate the imaging properties of spatial lenses into the temporal domain [65].

In this way, pulse correlation and convolution devices may also be constructed [77].

Still more recently, it was shown that temporal lenses can characterize nonlinear

effects in the wave equation, leading for example, to the formation of a class of

steady-state repeating pulses [155]. This is perhaps the most potentially useful of

the space-time analogies, and in this chapter, we will discuss a further extension of

this formalism to describe still more powerful applications such as Gaussian pulse

propagation in dispersion-managed optical fiber systems, including the effects of the

nonlinear index of refraction.
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8.1 Gaussian beam diffraction and pulse propagation

Consider the diffraction of an electromagnetic field E(x, z, t) of carrier frequency

ω and scalar complex amplitude u(x, z), which obeys the Helmholtz equation

∇2u + k2u = 0, k2 = ω2µε =

(
2πn

λ

)2

. (8.1)

In the paraxial approximation, we consider only those optical beams whose plane

wave components propagate at small angles to the z axis [154],

u(z, t) =

√
ik

2πz

∫
u0(x

′) exp

[
− ik

2z
(x − x′)2

]
dx′, (8.2)

where u0(x) is the envelope of the field at z = 0.

The propagation of CW Gaussian beams in free space and rotationally symmetric

quadratic graded-index media is conveniently described by assuming that the envelope

has the form [154]

u = exp

{
−i

[
P (z) +

k

2q(z)
r2

]}
(8.3)

where we find by substitution into the wave equation (8.1) that dP/dz = −i/q(z) for

such media. The q-parameter describes the Gaussian beam completely,

1

q(z)
=

1

R(z)
− i

λ

πnw2(z)
. (8.4)

In the above definition, R(z) describes the radius of curvature of the beam and w(z)

describes the beam spot size.

The usefulness of the q parameter lies in the bilinear transformation (ABCD law)

that characterizes how this parameter evolves with propagation. For an optical system

described by a real (or complex) 2 × 2 ABCD matrix, the output q parameter qo is

given by

qo =
Aqi + B

Cqi + D
, (8.5)

in terms of the input q parameter qi. The real and imaginary parts of qo describe

the radius of curvature and spot size of the Gaussian beam at the output of the

optical system. Many practically important optical systems and their corresponding
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Spatial frequency (Fourier variable) kx Ω frequency (Fourier variable)
Transverse distance x t − z

vg
time (moving ref. frame)

Propagation distance z z propagation distance
Wave vector (inverse) k−1 −β′′ GVD coefficient (negative)

Table 8.1: Space-time translation rules.

phenomena can be described by simple ABCD matrices, such as propagation in a

uniform medium, focusing via a thin lens, beam transformation at a dielectric inter-

face, propagation through a curved dielectric interface and thick lens, propagation in

a medium with a quadratic index variation, etc. [154, Table 2-1].

In the temporal case, a single mode in an optical fiber (usually the lowest-order

fundamental mode) can be written in terms of the wavenumber β0,

E(z, t) = u(z, t) exp[i(ω0t − β0z)], (8.6)

assuming that the optical field is quasi-monochromatic centered at ω0. The differential

equation satisifed by u is, to second order of derivatives with respect to the optical

frequency ω of the mode propagation constant β(ω) [4],

∂u

∂z
+ β′∂u

∂t
+

1

2
β′′∂

2u

∂t2
= 0. (8.7)

The solution to the above equation is [156]

u(z, t) =

√
1

i2πβ′′z

∫
u0(t

′) exp

[
i

2β′′z
(T − t′)2

]
dt′, (8.8)

where T = t−β′z = t−z/vg is the time coordinate in the frame of reference comoving

with the pulse envelope at the group velocity vg = 1/β′, and u0(t) is the envelope at

z = 0. Group-velocity dispersion (GVD) is represented by the parameter β′′.

The formal similarity between Eqs. (8.2) and (8.8) is the principal motivation for

this analysis. We can write down a set of space-time translation rules (see Table 8.1)

to apply results from spatial diffraction to temporal dispersion and vice versa. One

family of results that can be derived from this space-time analogy corresponds to

spatial imaging, e.g., the 2-f and 4-f optical systems. These can be applied to pulse

compression or expansion experiments, etc. [65].
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But we will see in later sections that many linear and nonlinear pulse propagation

systems can be described by cascading simple ABCD matrices, and this can result

in substantially simpler calculations and more direct physical understanding of the

physical processes involved in nonlinear pulse propagation. We will first need to

develop some additional facility in characterizing optical systems associated with the

pulse propagation equations.

The spatial q-parameter has a temporal equivalent qt in accordance with the space-

time translation rules of Table 8.1 defined by

1

qt(z)
=

1

Rt(z)
+ i

2β′′

τ 2(z)
, (8.9)

where τ(z) represents the pulse width (scaled in the T frame by
√

2) and Rt(z) is

its chirp. A Gaussian pulse in linearly dispersive fibers is then represented by the

envelope [156]

u(z, t) = u0
τ0

τ(z)
exp

[
i tan−1 z

ζ0

+ i
t2

2β′′Rt(z)
+

β′′

|β′′|
t2

τ 2(z)

]
, (8.10)

where the pulse width and chirp satisfy evolution equations in linear dispersive fibers

exactly analogous to their spatial counterparts, beam spot size and radius of curva-

ture, in free space [155]

τ 2(z) = τ 2
0

(
1 +

z2

ζ2
0

)
,

Rt(z) = z

(
1 +

ζ2
0

z2

)
, (8.11)

with ζ0 = τ 2
0 /2|β′′| defining the dispersion length [4].

8.2 The ABCD formalism for Gaussian pulses

As a simple example of the application of the above translation rules, we consider

the propagation of a Gaussian input pulse with envelope

U(0, T ) = exp

(
− T 2

2 T0
2

)
. (8.12)
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The transmission medium comprises two concatenated sections of fiber with lengths

z1 and z2 and with GVD coefficients β′′
1 and β′′

2 respectively. We ignore any nonlinear

effects in this simple problem and assume that the medium is lossless. We will de-

termine the pulse characteristics at the output of the second medium, i.e., the pulse

width at z = z1 + z2.

One way of solving this problem is by recourse to the wave equation solution

Eq. (8.8) by the Fourier transform technique. We have

Ũ(z2, Ω) = Ũ(z1, Ω) exp

(
i

2
β′′

2z1Ω
2

)

= Ũ(z0, Ω) exp

[
i

2
(β′′

1z1 + β′′
2z2) Ω2

]
. (8.13)

Taking the inverse Fourier transform,

U(z1 + z2, T ) =
1

2π

∫ ∞

−∞
Ũ(0, Ω) exp

[
i

2
(β′′

1z1 + β′′
2z2) Ω2 − iΩT

]
dΩ

=

[
T0

2

T0
2 − i(β′′

1z1 + β′′
2z2)

]1/2

exp

[
− T 2

2(T0
2 − i(β′′

1z1 + β′′
2z2)

]
,

(8.14)

from which we see that the ratio of the output to input pulse width is

T1

T0

=

[
1 +

(
β′′

1z1 + β′′
2z2

T0
2

)2
]1/2

. (8.15)

We will now verify Eq. (8.15) using the ABCD matrix approach. The system is

described very simply by the product of three matrices,

M =

(
1 z2

0 1

)(
1 0

0
β′′
2

β′′
1

)(
1 z1

0 1

)

=

(
1 z1 +

β′′
2

β′′
1
z2

0
β′′
2

β′′
1

)
(8.16)

so that

q2 =
Aq1 + B

Cq1 + D
=

β′′
1

β′′
2

q1 +
β′′

1

β′′
2

z1 + z2. (8.17)
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Using the shorthand notation

R2 ≡ R(z1 + z2), R1 ≡ R(0),

τ2 ≡ τ(z1 + z2), τ1 ≡ τ(0),
(8.18)

we have
1

R2
− i

2β′′
2

τ2
2(

1
R2

)2

+
(

2β′′
2

τ2
2

)2 =
β′′

1

β′′
2

1
R1

− i
2β′′

1

τ2
1(

1
R1

)2

+
(

2β′′
1

τ2
1

)2 +
β′′

1

β′′
2

z1 + z2. (8.19)

The real and imaginary parts of both sides of the above equation have to be equal,

leading to a pair of simultaneous equations. For an unchirped input pulse, R1 = 0 so

that equality of the imaginary parts leads to

(
1

R2

)2

+

(
2β′′

2

τ 2
2

)2

=

(
2β′′

2

τ2τ1

)2

.

Substituting this expression into the equation of equality of the real parts of Eq. (8.19)

and some algebraic manipulation leads to

τ(z1 + z2)

τ(0)
=

τ2

τ1

=

[
1 +

(
β′′

1z1 + β′′
2z2

τ 2
1 /2

)2
]1/2

, (8.20)

which is the same as Eq. (8.15), since τ =
√

2 ∆T .

In the above calculation, we have carried out some algebraic simplifications by

hand in order to show that the result obtained by the ABCD matrix approach is the

same as that obtained by the Fourier transform approach. Nevertheless, the former

is computationally much simpler, and separating the real and imaginary parts of

Eq. (8.19) as part of a numerical algorithm can be carried out without the notational

complexity of, for example, rationalizing the denominator.

Our ABCD formalism would be of limited interest if the only phenomena it could

capture were that of dispersive propgation.The time-lens formalism lets us describe

nonlinear mechanisms as well. By analogy to spatial lenses that are characterized by

a lens factor exp(ikr2/2f) which multiplies an incoming optical beam, we define a

temporal lens as a device that multiplies the pulse envelope by a factor [155, 65]

Lens Factor = exp

[
−i

t2

2β′′ft

]
≡ exp

[−ibt2
]
. (8.21)
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The ABCD matrix representing a temporal lens has the same form as that of a

spatial lens,

M =

(
1 0

− 1
ft

0

)
, (8.22)

where ft represents the temporal “focal length.”

A comparison of spatial and temporal lensing is shown in Fig. 8.1. In the spatial

case, the lens compensates for the spreading of the beam waist and “flips” the phase

fronts to convert a diverging beam into a converging one. Similarly, a temporal lens

reverses the sign of the chirp, so that further propagation in a β′′ < 0 dispersive

fiber will compensate for the chirp (phase modulation) caused this far. This is also

an interesting and physically illuminating approach to discussing the physics of the

formation of solitons [154, Chap. 19].

One possible implementation, as proposed in [155], is to achieve temporal lensing

by self-phase modulation during the passage of the pulse through a section of nonlinear

fiber (β′′ ≈ 0, n2 > 0). For short distances, z � πτ0
2/|β′′| and when β′′/τ0

2 �
(2πn2/λ)Ip for peak intensity Ip, a pulse with input electric field envelope u(0, T )

emerges from a length z of nonlinear fiber with phase modulation

u(z, T ) = u(0, T ) exp

[
−i

ω0n2z

2cη
|u(0, T )|2

]
(8.23)

where η =
√

µ/ε defines the impedance of free space. We write the pulse intensity as

I =
|u|2
2η

= Ip exp

[
−2

(
T

τ0

)2
]

, (8.24)

and keep the first two terms in the Taylor expansion of the exponential in Eq. (8.23),

u(z, T ) = u(0, T ) exp

[
i
2ω0n2Ipz

cτ0
2

T 2

]
, (8.25)

modulo a phase term linear in z that is independent of T . The effect of propagation

through length L of nonlinear fiber is to impart a quadratic chirp to the pulse, which

we represent by the multiplicative term exp(−ibt2) so that

b =
1

2β′′ft

= −2ω0n2IpL

cτ0
2

. (8.26)
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Figure 8.1: (a) Spatial lens and (b) temporal lens showing the parallels between
diffraction and dispersion, and techniques for their compensation.
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Another method of obtaining time lensing is based on the principle of electro-

optic modulation [65]. An electro-optic phase modulator driven by a sinusoidal bias

voltage of angular frequency ωm results in a phase modulation that is approximately

quadratic under either extremum of the sinusoid. The phase shift can be written as

exp[iφ(t)] = exp

[
−iK

(
1 − ω2

mt2

2

)]
, (8.27)

where K is the modulation index [154, Sec. 9.4]. In this case,

b =
2

Kω2
m

. (8.28)

We have described our temporal lens by a section of nonlinear fiber of β′′ ≈ 0,

analogous to a spatial thin lens, which is assumed to have no thickness. Just as

practical lenses do have some thickness, practical fibers have nonzero β′′. For those

situations in which this cannot be ignored, or may even be utilized constructively, we

derive the corresponding equivalent of a spatial “thick lens.”

Our first step is to characterize the temporal equivalent of a curved dielectric in-

terface: a spatial lens consists of two such interfaces separated by a length of material

of enhanced refractive index. At a planar dielectric interface between two media of

refractive indices n1 and n2, a Gaussian beam undergoes a change in the radius of

curvature, but is unchanged in beam width, [16]

R2 =
n2

n1

R1, w1 = w2. (8.29)

By analogy, a chirped Gaussian pulse at the interface between two fibers of GVD

coefficients β′′
1 and β′′

2 transforms to a different chirp, but with unchanged pulse

width,
1

β′′
2R2

=
1

β′′
1R1

, τ1 = τ2. (8.30)

Of course, the pulse width evolves differently in the two sections of the fiber,

τ 2
i (z) = τ 2

0i

(
1 +

z2

ζ2
0i

)
, i = 1, 2, (8.31)

where ζ0i is the dispersion length in fiber i.
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The ABCD matrices for a (spatial) spherical dielectric interface and its temporal

translation are

M :

(
1 0

n2−n1

n2R
n1

n2

)
�→
(

1 0
1−β′′

2 /β′′
1

Rl

β′′
2

β′′
1

)
. (8.32)

To see what this matrix represents, we use the ABCD bilinear transformation,

q2 = q1

/[
1

Rl

(
1 − β′′

2

β′′
1

)
q1 +

β′′
2

β′′
1

]
, (8.33)

which implies that

1

q2

=

(
1

R2

+ i
2β′′

2

τ 2
2

)

=
1

Rl

(
1 − β′′

2

β′′
1

)
+

(
1

R1

+ i
2β′′

1

τ 2
1

)
β′′

2

β′′
1

. (8.34)

After some algebraic manipulation, we can write the above as

β′′
1

(
1

Rl

− 1

R2

)
= β′′

2

(
1

Rl

− 1

R1

)
, (8.35)

showing explicitly how the chirp transforms at this interface.

The ABCD matrix for a temporal lens of “thickness” d is written as the product

of three ABCD matrices representing, when read from right to left, a transition from

the input fiber to the fiber that defines the thin temporal lens, propagation in the

second fiber, and a transition back to the input fiber,

M = (
1 0

1−β′′
1 /β′′

2

R2

β′′
1

β′′
2

)(
1 d

0 1

)(
1 0

1−β′′
2 /β′′

1

R1

β′′
2

β′′
1

)
.

Multiplying the matrices together, we get a single ABCD matrix that defines the

output qt parameter via the usual bilinear transformation (Aqt + B)/(Cqt + D),

M =


 1 + d

R1

(
1 − β′′

2

β′′
1

)
d

β′′
2

β′′
1

d
R1(−R2)

(
β′′
2

β′′
1
− 1

)(
1 − β′′

1

β′′
2

)
−
(

1
R1

+ 1
−R2

)(
1 − β′′

1

β′′
2

)
1 + d

−R2

(
1 − β′′

2

β′′
1

)

 .

(8.36)
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The temporal focal length f̂t is analogous to the spatial focal length and is given by

−A/C,

f̂t =

[
1 +

d

R1

(
1 − β′′

2

β′′
1

)]/[(
1

R1

+
1

−R2

)(
1 − β′′

1

β′′
2

)

− d

R1(−R2)

(
β′′

2

β′′
1

− 1

)(
1 − β′′

1

β′′
2

)]
. (8.37)

The temporal focal length defines the time from the output plane at which an initially

unchirped pulse becomes unchirped again.

We can write the above in slightly simpler notation, for the specific case R1 =

−R2 = R, and let κ = d/R, ∆β′′ = β′′
2 − β′′

1 ,

f̂t =




1 − κ
∆β′′

β′′
1

1 − κ

2

∆β′′

β′′
1

β′′
2

∆β′′


 R

2
, (8.38)

where the term in parentheses represents an enhancement factor over the “thin lens”

formula.

For κ � 1, we can simplify the above expression keeping terms of O(κ),

1

ft

≈
(

1 − κ

2

∆β′′

β′′
1

)(
1 + κ

∆β′′

β′′
1

)
2∆β′′

R β′′
2

≈
(

1 +
κ

2

∆β′′

β′′
1

)
2∆β′′

R β′′
2

. (8.39)

The above relation confirms our physical intuition that if β′′
2 − β′′

1 = ∆β′′ < 0, then

we have reduced ft, the distance to the point of zero chirp from the output plane, for

an initially unchirped input pulse.

We now have the tools we need to analyze a reasonably complicated practical prob-

lem: designing the length of a dispersion map so as to get self-consistent eigenpulses

with periodic pulse width and chirp.
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8.3 DM soliton transmission experiment

It has been recently found that a stable, self-consistent pulse solution exists in

a dispersion-managed fiber transmission system [128]. While these are not solitons

in the strict mathematical sense, they have been called dispersion-managed solitons

or perhaps more appropriately, breathers. They demonstrate periodic behavior: the

pulse width and chirp of Gaussian breathers, for instance, are periodic functions of the

propagation distance. Breathers share a property in common with solitons, in that

they can propagate indefinitely without losing shape; even though the pulse shape

undergoes changes within a dispersion map period, the pulse does not disperse away

to infinity or tend to self-focus to a point, either of which invalidate the applicability

of the nonlinear Schrödinger equation after a certain distance.

A dispersion-managed (DM) soliton is closer to a Gaussian shape than the hy-

perbolic secant of the nonlinear Schrödinger equation [73], and it is interesting to

ask whether our analysis is capable of capturing the essential aspects of its evolution

along a dispersion-managed transmission channel.

We consider, as our example, the paper by Mu et al. [97] who have simulated

DM soliton dynamics in a recirculating fiber loop. Their dispersion map consists

of 100 km of dispersion shifted fiber (SMF-LS) with normal dispersion D1 equal to

-1.10 ps/nm-km at 1551 nm, followed by an “approximately 7 km span” of standard

single-mode fiber (SMF-28) with an anomalous dispersion D2 equal to 16.6 ps/nm-km

at 1551 nm. The results of the paper indicate that Gaussian shaped pulses of pulse

duration 5.67 ps and peak power 9 dBm were used. We will derive the result that,

for these parameters and given the length of SMF-LS fiber, the length of SMF-28

fiber that needs to be used is indeed “approximately 7 km.” In other words, we

will show that this given dispersion map can support lowest-order chirped Gaussian

self-consistent solutions, i.e., breathers.

The dispersion map, shown schematically in Fig. 8.2, consists of three fiber seg-

ments: a length z1/2 equal to 50 km of SMF-LS fiber, followed by a length z2 of

SMF-28 fiber whose numerical value is to be determined, and then the remainder

z1/2 of SMF-LS fiber. Each segment of fiber has nonlinear characteristics, which we

model via a time lens situated for simplicity at the individual midpoints of the re-

spective segments. Consequently, each segment is described by the cascaded product

of three ABCD matrices, with two additional matrices representing the transitions
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between fibers of different β′′. For simplicity, we will assume that the nonlinear

properties of the fibers are identical.

The overall ABCD matrix for the system can be written as the product of the

following eleven matrices,

M =

(
1 z1/4

0 1

)(
1 0

−1/ft 1

)(
1 z1/4

0 1

)(
1 0

0 β′′
1/β′′

2

)
(

1 z2/2

0 1

)(
1 0

−1/ft 1

)(
1 z2/2

0 1

)(
1 0

0 β′′
2/β′′

1

)
(

1 z1/4

0 1

)(
1 0

−1/ft 1

)(
1 z1/4

0 1

)
, (8.40)

which after some algebra can be written as a single 2 × 2 ABCD matrix with the

following elements,

A =

[(
1 − z1

4f

)(
1 − z2

2f

)
− z1

4f

β′′
1

β′′
2

(
2 − z1

4f

)](
1 − z1

4f

)
(8.41)

−
[
β′′

2

β′′
1

(
1 − z1

4f

)(
2 − z2

2f

)
z2

2f
+

(
2 − z1

4f

)(
1 − z2

2f

)
z1

4f

]
,

B =

[(
1 − z1

4f

)(
1 − z2

2f

)
− z1

4f

β′′
1

β′′
2

(
2 − z1

4f

)]
z1

4

(
2 − z1

4f

)
(8.42)

+

[
β′′

2

β′′
1

(
1 − z1

4f

)(
2 − z2

2f

)
z2

2
+

(
2 − z1

4f

)(
1 − z2

2f

)
z1

4

](
1 − z1

4f

)
,

C = − 1

f

[(
1 − z2

2f

)
+

β′′
1

β′′
2

(
1 − z1

4f

)](
1 − z1

4f

)
(8.43)

− 1

f

[
−β′′

2

β′′
1

z2

2f

(
2 − z2

2f

)
+

(
1 − z2

2f

)(
1 − z1

4f

)]
.

D = − z1

4f

[(
1 − z2

2f

)
+

β′′
1

β′′
2

(
1 − z1

4f

)](
2 − z1

4f

)
(8.44)

−
[
β′′

2

β′′
1

z2

2f

(
2 − z2

2f

)
−
(

1 − z2

2f

)(
1 − z1

4f

)](
1 − z1

4f

)
,

The algebraic complexity of writing out the expressions explicitly should not mask the

simplicity of multiplying 2×2 matrices, usually numerically. Note that the expression

Eq. (8.44) for D is algebraically identical to that for A, Eq. (8.41), and it may be

verified that AD − BC = 1.
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The q parameter (we have dropped the t subscript in this section for notational

elegance) evolves according to the bilinear transformation law and we require that

the pulse repeat itself after propagation through one such ABCD matrix,

1

q
=

A + B/q

C + D/q
, (8.45)

which has the solution

1

q
=

D − A

2B
± i

√
1 −

(
D + A

2

)2

B
. (8.46)

Since D = A in our above analysis, we already see that q is purely imaginary at

z = 0, i.e., the pulse has zero chirp at the midplanes as we would expect a breather

to have.

At this stage, we can substitute numerical values for the various parameters (ex-

cept z2, which is what we seek) into the expressions for the A, B, C, and D elements

Eqs. (8.41–8.44) and solve Eq. (8.46) numerically for z2. While this is not difficult

and already yields a quick solution to the problem at hand, we can get further insight

via a well-justified simplification as follows.

The q parameter at the midplanes, where it is purely imaginary, is given by

1

q0

=
2|β′′

1 |
τ 2
0

, (8.47)

where β′′
1 = 1.40×10−27 s2/m and input pulse width τ0 = 5.67×10−12 s. Consequently,

for such pulses 1/q ≈ 0 and since A = D this implies that A = 1 in Eq. (8.46).

With the notational substitutions

x =
z2

2f
, y =

z1

4f
, β′′

r =
β′′

1

β′′
2

(8.48)

we get the necessary condition

[(1 − y)2 − (2 − y)y] (1 − x) − β′′
r y(2 − y)(1 − y)

− 1

β′′
r

(1 − y)(2 − x)x = 1.
(8.49)
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The solution of this equation is given by

x = β′′
r

y(2 − y)

1 − y
, (8.50)

or, in terms of the initial variables,

z2 =

∣∣∣∣β′′
1

β′′
2

∣∣∣∣
z1

2

(
2 − z1

4f

)
(

1 − z1

4f

) , (8.51)

which is the necessary condition in order to have a stable self-consistent Gaussian

eigenpulse (breather) solution to the dispersion-map problem.

All that remains is for us to interpret the variables in terms of the original problem

and numerically evaluate this expression to get the desired length z2 of SMF-28 fiber

in this dispersion map. The various numerical values are as follows:

β′′
1 = 1.40 × 10−27 s2/m,

β′′
2 = −2.12 × 10−26 s2/m,

τ0 = 5.67 × 10−12 s,

z1 = 105 m.

Given the nature of the problem, we realize our time lens with the nonlinear fiber as

described earlier (Eq. 8.26), so that

1

f
= −4β′′

NL

(
2π

λ

)
n2IpLNL

τ 2
(8.52)

and take β′′
NL = β′′

2 , Ip = 3.62× 106 W/m2 so that with fiber core area Aeff = 47 µm,

we get P = 8 mW = 9 dBm. Also, we take LNL = z2 consistent with our choice of

β′′
NL.

The numerical solution (of the quadratic equation) for z2 is equal to 7.00 km,

which is indeed the value “approximately 7 km” stated in the paper [97]. In spite of

apparent exact agreement, we should be careful to appreciate that this analysis is a

characterization of only the most important processes in this experiment. Possible

sources for approximation include the fact that a DM soliton is only approximately
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SMF-LS SMF-LSSMF-28

z1 2 z1 2z2

time lens GVD transition propagation

(a)

(b)

Figure 8.2: (a) Analytical schematic of dispersion map from [97] and (b) its repre-
sentation to express in terms of ABCD matrix elements.

Gaussian, and that we have represented the combined dispersive and nonlinear prop-

erties of the fiber segments by a single temporal lens. A better approximation may be

to include several temporal lenses for each segment of the fiber; this would make the

algebraic expressions in this paper quite cumbersome to write down explicitly, but the

numerical computation would not be much more difficult since the matrices are only

2 × 2 in size and comprise of purely real elements. The experimental configuration

of [97] also includes several other elements that can affect the pulse shape such as

filters, fiber amplifiers, and polarization controllers.
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8.4 Hermite-Gaussian basis

Our ABCD matrix formalism for pulse propagation applies to chirped Gaussian

pulses. To analyze more complicated shapes, we can expand the given pulse shape in

a basis of chirped Hermite-Gaussian functions, which form a complete orthonormal

basis [50, 73]. The Hermite-Gaussian function (we consider only unchirped Gaussians

here for simplicity) of order n is defined as the product of the Hermite polynomial of

order n with a Gaussian function,

ψn(t) ≡ Hn(t) exp(−t2/2), (8.53)

where, for example,

H0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2. (8.54)

We can expand an arbitrary input amplitude u0(t) in this basis, analogous to

expanding a field in terms of plane wave components, as in solution techniques of the

standard parabolic diffraction equation by means of the Fourier transform,

u0(t) =
∑
n=0

cnHn(t) exp(−t2/2), (8.55)

where because of orthogonality of the Hermite-Gaussian functions, the expansion

coefficients are given by

cn =
1√

π 2nn!

∫ ∞

−∞
u0(t)Hn(t) exp(−t2/2). (8.56)

The propagation equation (8.8) defines the output pulse shape as the convolu-

tion of the input shape with a Gaussian kernel. Hermite-Gaussian functions, when

convolved with a Gaussian, yield the product of a Hermite polynomial and a Gaus-

sian [50], ∫ ∞

−∞
dt0ψn(t0) exp

[
−a

2
(t − t0)

2
]

=√
2π

a + 1

(
a − 1

a + 1

)n/2

exp

[
a t2

2(a2 − 1)

]
ψn

[
a√

a2 − 1
t

]
.

(8.57)

Taking as input the nth Hermite-Gaussian mode u0 = ψn(t) (which has width
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τ0 =
√

2), the amplitude of this mode after propagation through distance z is

un(z, T ) =

√
1

1 + iβ′′z

[
−1 + i

β′′z

1 − i
β′′z

]n/2

× exp

[
i

2β′′z
T 2

1 + 1
(β′′z)2

]
ψn

[
T√

1 + (β′′z)2

]
,

(8.58)

which can be seen to agree with (8.11).

A Hermite-Gaussian function therefore maintains its shape during propagation,

but adds a chirp (which is the same for all modes) and a scaling of the width according

to Eq. (8.11). Power conservation implies that the amplitude correspondingly scales

down. The only term that is dependent on the order of the Hermite-Gaussian function

is a phase term; higher-order modes have greater phase advances, since their spectral

content is higher. The important observation is that the orthogonality of the Hermite-

Gaussian expansion is preserved, and so this expansion may be used to predict the

pulse shape obtained by propagating an input pulse. Our formalism remains valid

as long as the differential equation describing the propagation of a particular order

Hermite-Gaussian function is of the form Eq. (8.7), i.e., the slowly varying envelope

approximation is valid. Therefore, we can expect that the lower-order expansions are

usually valid; the results of applying our analysis to higher-order expansion terms

generate the residual field corrections to the lower-order results [136].

We have developed a 2 × 2 ABCD matrix formalism for pulse propaga-

tion in media described by Maxwell’s equations, accounting for disper-

sion, nonlinear, and gain/loss mechanisms. The method is analogous to

techniques used in CW beam diffraction analysis, and correspondingly

similar phenomena can be predicted, such as chirp transformation, fo-

cusing, periodic pulse width expansion and narrowing, etc. The spatial

q parameter has a temporal equivalent qt in accordance with the given

space-time translation rules. The real and imaginary parts of q−1
t repre-

sent the chirp and the width of the pulse as a function of propagation

distance z.
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The propagation of various input pulse shapes can be described by expanding the

given pulse in a basis of Hermite-Gaussian functions; the ABCD formalism applies to

each Gaussian wave function separately. Propagation through a complicated system

of optical elements is simple to calculate in terms of ABCD matrices: the resultant

matrix is the cascaded product of the ABCD matrices of each of the individual ele-

ments with the appropriate ordering. The overall qt parameter is given by a bilinear

transformation in terms of the ABCD elements of the overall product matrix, exactly

analogous to the spatial case.

8.5 Geometric analogies

As we have seen in the previous sections, analogies between spatial Gaussian beam

diffraction and temporal Gaussian pulse dispersion have been well established [5]

and extended more recently to introduce the concept of a time lens as a quadratic

phase modulator, applied in temporal imaging configurations, for temporal filtering

and transforms [65, 77] and in nonlinear dispersive optical communications [155, 89].

Now, we investigate Gaussian optical pulse propagation with periodically varying

pulse width and chirp (“breathers”) in a nonlinear dispersive fiber in the context of

such space-time analogies, but from a topological perspective rather than the alge-

braic correspondence of variables. This method, illustrated in this section for the

simplest of cases, can lead to a deeper understanding of pulse propagation based on

the geometrical structure of the topological space of solutions and their classifications

in terms of homotopy groups [88].

The problem of pulse propagation in a dispersive nonlinear medium has some

basic features which are strongly suggestive of steady-state optical beam propagation

in a medium with a quadratic radial index dependence. This can be seen for instance

in Fig. 8.3 which shows the results of numerical simulations of (a) Gaussian pulse

evolution in a hypothetical optical fiber described such that the propagation equations

are exactly analogous to those describing Gaussian beam evolution in a rotationally

symmetric quadratic graded-index medium and (b) Gaussian pulse evolution in an

optical fiber with the Kerr effect. Since, as will be discussed, closed-form spatially

periodic solutions to the earlier problem (a) are known, it is intriguing to inquire

if the same form of the solution can be applied to the second problem (b) which is

of practical interest, and if not, where the analogy fails in spite of the easily visible
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Figure 8.3: Temporal evolution of a Gaussian breather pulse: (a) in a hypothetical
medium described by Eq. (8.65), and exactly analogous to Gaussian beam propagation
in a RSQ-GRIN fiber and (b) in a realistic fiber with the Kerr effect, and described
by Eq. (8.68).

affinity shown in Fig. 8.3.

We study this problem in the context of space-time dualities by first looking at the

spatial beam diffraction problem. For plane waves with a Gaussian envelope A(r, z)

propagating with a complex propagation constant k(r) in a rotationally-symmetric

quadratic graded-index (RSQ-GRIN) media characterized by a quadratic constant

k2 [154], Maxwell’s equations and the slowly varying envelope approximation lead to

a parabolic partial differential equation for A(r, z),

∇2
⊥A − 2ik

∂A

∂z
− kk2r

2A = 0 (8.59)

where ∇2
⊥ is the transverse Laplacian operator and r is the distance from the cylin-

drical axis of symmetry. We typically use the following form for the envelope [154]

A(r, z) = exp

[
i

(
P (z) +

k

2q(z)
r2

)]
, (8.60)
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with the q-parameter
1

q(z)
≡ 1

R(z)
− i

2λ

kw2(z)
(8.61)

defined in terms of the the beam spot size w(z) and the radius of curvature of the

beam R(z). The solution q(z) for a given unchirped (R(0) = 0) input characterized

by q(0) = q0 is expressed in closed form by an ABCD bilinear transformation [154],

q(z) =
A(z)q0 + B(z)

C(z)q0 + D(z)
, (8.62)

where

A(z) = cos

(√
k2

k
z

)
, B(z) =

√
k

k2

sin

(√
k2

k
z

)
,

C(z) = −
√

k2

k
sin

(√
k2

k
z

)
, D(z) = cos

(√
k2

k
z

)
. (8.63)

This form of the solution clearly shows the breathing nature of the wave envelope,

i.e., periodic in width and in radius of curvature.

Next, in discussing temporal Gaussian pulse propagation, we know that group-

velocity dispersion (GVD) leads to broadening or narrowing of the temporal envelope

depending on the signs of the GVD parameter β′′ and chirp, although the shape

remains Gaussian. We may counteract this effect by utilizing self-phase modulation

(SPM) caused by a nonzero nonlinear-index coefficient n2. Breathers can be formed

when spectral broadening from a positive n2 balances anomalous dispersion (β′′ < 0)

in fibers. Similarly, negative n2 as found in AlGaAs waveguides [70] can compensate

the effect of normal dispersion, and breathers can be created in this case as well.

Self-consistent Gaussian breathers differ from conventional solitons [154] in that the

pulse parameters vary periodically in such a way that the pulse envelope can, by

assumption, always be described by a Gaussian function.

If SPM were to result in a (temporal) term analogous to the kk2r
2 term in (8.59),

the solution would be temporally breathing Gaussian pulses similar to the spatial case

of breathing Gaussian beams, and this would satisfactorily explain the similarities of

Fig. 8.3: the solution would be given in closed form by the temporal equivalent of
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Eq. (8.62), using the space-time translation rules tabulated in Table 8.1,

z �→ z, r �→ T, ∇2
⊥ �→ ∇2

T , k �→ −1/β′′, k2 �→ 4γ, (8.64)

where T = t− z/vg is the temporal coordinate in the reference frame co-moving with

the pulse at the group velocity and γ = n2ω0/(cAeff) is the nonlinearity coefficient

defined in terms of the optical frequency ω0 and effective core area Aeff.

It is easily seen, however, that this is not the case. Applying the translation

rules (8.64) to Eq. (8.59) yields

−i
∂A

∂z
+

β′′

2

∂2A

∂T 2
+

b2

2
T 2A = 0, (8.65)

which we will refer to in this paper as the temporal RSQ-GRIN problem, whose

solution in obtainable in closed form using the ABCD form. But the wave equation

governing the propagation of the envelope of a Gaussian pulse in a nonlinear dispersive

fiber is [154]

−i
∂A

∂z
+

β′′

2

∂2A

∂T 2
− γ

∆n

n2

A = 0, (8.66)

where n2 is the (constant) nonlinear index of refraction and ∆n(z, T ) is the Kerr

effect field-induced change in the refractive index. For a Gaussian pulse envelope of

width τ(z), ∆n can be approximated as

∆n(z, T ) = n2 exp

[
−2

T 2

τ 2(z)

]
≈ n2

[
1 − 2T 2

τ 2(z)

]
, (8.67)

where we assume that the nonlinearity responds instantaneously. Eq. (8.66) becomes

−i
∂A

∂z
+

β′′

2

∂2A

∂T 2
− γ

[
1 − 2T 2

τ 2(z)

]
A = 0. (8.68)

and clearly, Eqs. (8.68) and (8.65) are not identical. Therefore, the ABCD form of

the solution cannot apply to Eq. (8.68).

In order to explain the similarity shown in Fig. 8.3, we seek a different approach.

To identify analogies with the analysis of the spatial RSQ-GRIN problem Eq. (8.60),
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we write the temporal pulse Ansatz as

A(z, T ) = exp

[
i

(
P (z) +

T 2

2β′′q(z)

)]
, (8.69)

with a temporal q parameter,

1

q(z)
≡ 1

R(z)
+ i

2β′′

τ 2(z)

≡ r(z)[cos θ(z) + i sin θ(z)], (8.70)

where R(z) describes the chirp of the pulse and τ(z) its width. (We will use the

polar representation in our analysis later.) The chirped Gaussian envelope that this

formalism describes may, for instance, be one member of a complete orthonormal

basis of Hermite-Gaussian functions.

We can simplify each of the partial differential equations Eqs. (8.65) and (8.68) into

a pair of ordinary differential equations for P (z) and q(z) by substituting in for the

Ansatz given by Eq. (8.69) and then equating the coefficients of different powers of T .

We know from Gaussian beam diffraction analysis [154] that the equation with terms

quadratic in T involves only the initial-value problem for q(z). As q(z) is complex,

it is simplest to carry out a phase-plane analysis in each of the two systems in polar

(r, θ) co-ordinates using the definition presented in Eq. (8.70). In polar coordinates,

we can graph and compare the evolution of the solutions in the r − θ “phase” plane,

with z as the implicit variable driving the evolution of the instantaneous solution

along one of the contours in the phase plane.

The temporal RSQ-GRIN problem Eq. (8.65) in polar coordinates can be written

as
dr/dz = r2 cos θ + 2γ cos θ,

dθ/dz =
1

r

[
r2 sin θ − 2γ sin θ

]
,

r(0) ≡ r0, θ(0) ≡ θ0 = π/2,

(8.71)

and for the equations describing pulse propagation in a nonlinear dispersive fiber

Eq. (8.68),

dr/dz = r2 cos θ + 2γ cos θ (r sin θ),

dθ/dz =
1

r

[
r2 sin θ − 2γ sin θ (r sin θ)

]
,

r(0) ≡ r0, θ(0) ≡ θ0 = π/2.

(8.72)
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Figure 8.4: Temporal evolution of a Gaussian breather in the (hypothetical) temporal
RSQ-GRIN medium: phase-plane analysis of Eq. (8.71).

The phase-plane analysis, shown in Fig. 8.4 and Fig. 8.5 for a particular set of or-

bits with the same initial conditions, shows the essential difference between Eq. (8.71)

and Eq. (8.72): note that in the regime of interest, the multiplicative term r sin θ,

which appears in Eq. (8.72) but not in Eq. (8.71), is always positive. The evolution

of the temporal RSQ-GRIN solution to Eq. (8.71) (for which we have a closed form

ABCD expression) is symmetric in the phase plane about θ = π/2. So, the term

that changes in dr/dz for Eq. (8.72) results in scaling the contours outwards from the

nonlinear center in the phase plane without affecting the symmetry about θ = π/2.

Consequently, closed orbits which are the solutions of one remain closed for the other,

although the fixed points for the two problems are different.

Along similar lines, the difference in the dθ/dz equations maintains the same sign

for that term in both equations. If r sin θ < 1, the rate of change of θ is decreased, and

the period of the breathing solutions increases, which has been verified by numerically

solving Eqs. (8.71) and (8.72).

The orbits in phase space are scaled nonlinearly around the fixed point in such a

way as to preserve the structure of the solution space. Consider the sets of solutions of

Eq. (8.71), X1 = {S1(r0, θ0)} and of Eq. (8.72), X2 = {S2(r0, θ0)}. We take θ0 ≡ π/2
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Figure 8.5: Temporal evolution of a Gaussian breather in the presence of the Kerr
effect: phase-plane analysis of Eq. (8.72).

for simplicity. The collection of subsets of X1 and X2 defined as

τi = {Si(r0) | a < r0 < b}, ∀ a, b ≥ 0 (8.73)

define a topology on X1 and X2. The orbits of the sets of solutions X1 and X2 are

homotopic, which is an equivalence relation on the set of topological spaces [102].

In fact, the fundamental groups (first homotopy groups) are isomorphic to Z, the

fundamental group of the circle,

π1(X1) ∼= π1(X2) ∼= π1(S
1) ∼= Z. (8.74)

This isomorphism between the first homotopy groups explains the very close similarity

of breathing Gaussian pulses in the case of the Kerr effect and Gaussian beams in a

graded-index medium, even though the equations for one are not a direct translation

of the other.

We mention that if there was a closed-form solution to the problem of Gaussian

beam propagation in a rotationally-symmetric graded index medium described by

a more general relationship than was assumed in Eq. (8.59)—for example, involving
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higher powers of r2—then we could retain further terms in the Taylor series expansion

in Eq. (8.67) and apply the same topological arguments to justify the similarities of

the two families of solutions. The practical usefulness of such arguments depends,

however, on the existence of closed-form solutions in at least one of the two cases—

spatial or temporal—so that the solutions in the other case can be demonstrated to

be topologically equivalent or related. We expect that more such examples will be

identified in the future, leading to a deeper understanding of space-time analogies in

optical propagation.
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Epilogue

śreyān dravyamayād yajñāj jñānayajñāh. paraṁtapa
sarvaṁ karmā ’khilaṁ pārtha jñāne parisamāpyate

tad viddhi pran. ipatena paripraśnena sevayā
upadeks.yanti te jñānaṁ jñāninas tattvadarśinah.

—The Bhagavadḡıtā IV (33–34), S. Radhakrishnan ed., Blackie (1976).
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Appendix A

Superstructure gratings

A grating in a semiconductor or an optical fiber is characterized by a periodic vari-

ation in the refractive index of the medium, typically in one dimension, e.g., n(z) =

n0 + ∆n(z) cos(2πz/d) where n0 is the average (“background”) refractive index, d is

the period of the grating and ∆n(z) is the amplitude of the index variation. The

simplest gratings are those for which ∆n(z) is a constant, e.g., ∆n(z) = ∆n0 for all z.

Superstructure gratings, (SSGs, or superstructure Bragg gratings, SBGs) are gratings

whose parameters in the description of ∆n(z) vary periodically along the length of

the grating [17, 35, 32], e.g., ∆n(z) = ∆n0 cos(2πz/Λ). Typically, the SSG period Λ

is much longer than d, the period of the underlying uniform grating, which is on the

scale of the wavelength of light. The reflection spectrum of weak gratings consists of a

peak at the Bragg frequency f = c/(2n0d) where n0 is the average refractive index in

the grating, surrounded by a comb of peaks at fk = c/2n0(1/d+k/Λ), k = ±1,±2, . . .

which are called Rowland ghosts. SSGs in semiconductor have been used in tunable

DFB lasers, and in optical fibers for dispersion compensation of WDM systems [17].

Using a coupled-mode theory with slowly varying envelopes, Broderick and de Sterke

have formulated equations describing propagation through a nonlinear SSG [17]. The

ansatz for the field envelope is

E(z, t) = a(z, t)Ψnk(z) e−iv∆nkt, (A.1)

where Ψnk is a Bloch function of the superstructure and ∆nk is the detuning from its
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corresponding eigenfrequency. The envelope1 a(z, t) is assumed to be slowly varying2

and if we consider only one band (i.e., only one Bloch function and its corresponding

envelope), it satisfies a nonlinear Schrödinger equation which has soliton solutions.

When two Bloch functions (and two envelopes) are considered in Eq. (A.1), the

single equation for a(z, t) becomes a pair of coupled mode equations for a1(z, t) and

a2(z, t) or equivalently, for a±(z, t) ≡ a1(z, t) ± a2(z, t), which are called “supercou-

pled mode equations” (SCMEs) by Broderick and de Sterke [17]3. For frequencies

sufficiently close to a Rowland ghost gap, these equations reduce to those describing

a shallow uniform nonlinear grating and therefore have soliton solutions (gap soli-

tons for a uniform grating, Rowland ghost solitons for an SSG in this regime) which

have been verified by numerical simulations [18] and experiments in optical fiber [35].

In addition to these bright soliton solutions, dark solitons and bright solitons on a

pedestal are also known [17].

A deep SSG is more appropriately described by the tight-binding method, as

was pointed out by de Sterke [32]. Such a grating can be though of as a periodic

array of regions with evanescent and propagating wave behavior, which is also seen in

the solutions to the simple quantum-mechanical problem of a periodic (square well)

potential [25]. In the weakly coupled regime, the eigenfield (waveguide mode) for an

SSG is written as a superposition of the eigenmodes of the individual wells, exactly

as in the description of a CROW [156]. It follows that our description of pulse

propagation in Chapter 2 and of second-harmonic generation in Chapter 3 can be

carried over to a deep SSG. It may easily be seen that the formulation of linear pulse

propagation in [92, MPEG movie] has many features in similar with the numerical

simulation of Rowland ghost solitons in a nonlinear SSG in [18, Fig. 4].

1Broderick and de Sterke refer to this as the “superenvelope” but since there is no other “enve-
lope” in this formalism, we may simply refer to a(z, t) as the envelope (of the waveguide eigenmode).

2In space with respect to Γ, and in time with respect to (vκ0)−1 where κ0 is the lowest order
Fourier component of κ(z) = π∆n(z)/λ.

3Again, there is nothing particularly “super” about this coupling, as physically the equations
simply describe the coupling of (eigen-) modes defined in a specific way; the particular form of the
equations is dictated by the choice of the Ansatz.
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Watson’s criterion and Gaussian envelopes

As discussed by Watson [145, pp. 533–535], there are three criteria that need to be

satisfied by an odd function f(x) in order for the expansion Eq. (2.50) to be valid.

In our case, f(x) is related (by a linear transformation) to the envelope of the pulse

at the z = 0 cross-section of the CROW, and it is entirely reasonable to assume that

1.
∫∞

0
f(x)dx exits and is absolutely convergent.

In our analysis, the most important class of functions that represent pulse envelopes

are Gaussians (of real arguments) and we may assume that

2. f(x′) has a continuous differential coefficient for all positive values of x′ <

x, where x refers to the particular value of x chosen in the left hand side of

Eq. (2.50).

Watson’s third criterion is in the form of an integral equation,

3. For all t < x,

2f ′(t) =

∫ ∞

0

dv

v
J1(v) [f(v + t) + f(v − t)] . (B.1)

We do not need to rigorously analyze this condition, and will appeal instead to

physical arguments. We assume that the envelopes we consider [such as taking the

form of Eq. (2.52)] are sufficiently well behaved so that, using the definition of a

derivative,

f ′(t) =
1

2
lim
v→0

[
f(t + v) − f(t)

v
+

f(t) − f(t − v)

v

]
, (B.2)

and since f(t) is odd,

2f ′(t) = lim
v→0

f(v + t) + f(v − t)

v
. (B.3)
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It is now evident that one simple way of approximately satisfying Eq. (B.1) is to

stipulate f(t + v) ≈ f(t − v), and in the limit of equality of the last relationship,

the former is satisfied exactly (and trivially). In the context of Eq. (2.52), broader

Gaussian envelopes, with larger T , are “better” represented by the Webb-Kapteyn-

Neumann series. This is easily verified numerically.

More detailed investigations of Eq. (B.1) in the context of Eq. (2.52) are un-

likely, we believe, to reveal much more useful information. A criterion established by

Bateman [10] for the validity of Eq. (2.50) is

∫ ∞

0

dt f(t) J0(tx) =

{
ψ(x), if x < 1,

0, otherwise,
(B.4)

where ψ(x) is a function that takes nonzero values only on the interval 0 < x < 1.

Using Eq. (2.52) for f(t),

∫ ∞

0

dt e−
t2

T2 J0(tx) =

√
π T

2
e−T 2x2/8I0

(
T 2x2

8

)

∼ 1

x
as x → ∞,

(B.5)

and Eq. (B.4) is clearly not satisfied for any value of T . Nevertheless, Gaussian en-

velopes [and others with a property similar to Eq. (B.5)] are of considerable interest

practically. In this context, the approach we have taken in the previous paragraph

circumvents the assumptions underlying Eq. (B.4) and Bateman’s subsequent conclu-

sions.



Appendix C

Outline of the proof of the Hermiticity of H

Using the two vector identities,

∇ · (a × b) = b · (∇× a) − a · (∇× b),

a · (b × c) = −(b × a) · c, (C.1)

it is easy to show that the the operator H defined in Eq. (2.38) is Hermitian, provided

that the boundary conditions are of the appropriate form [96]. To show this explicitly

for each of the 6 component terms of H as written in Eq. (2.38) is needlessly tedious,

as all the neccessary operations can be demonstrated by considering terms 3 and 4 of

H. We will therefore show that the operator H ′, which is defined by

H ′uk(ω) ≡ −ik
[∇× [ez × uk(ω)] + ez × [∇× uk(ω)]

]
, (C.2)

is Hermitian, i.e., satisfies the following equality among inner products,

(uk(ω), H
′uk(ω)) = (H ′uk(ω),uk(ω)), (C.3)

with the inner product definition following Eq. (2.36). The full operator H can be

checked in a similar way.

If the following boundary condition holds,

∫
dt

T

∫
dr ε(r)∇ · [(∇× uk(ω)) × u∗

k(ω)

]
= 0, (C.4)

where the region of r integration is over a unit cell and the region of t integration is
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over the temporal extent of the envelope, then using Eq. (C.1),

(uk(ω), H
′uk(ω)) =

∫
dt

T

∫
dr [−ik ε(r)]

[
(∇ · uk(ω))

∗ · [ez × uk(ω)]

−(ez × uk(ω))
∗ · (∇× uk(ω))

]
=

∫
dt

T

∫
dr [−ik ε(r)]

[
− (

ez × [∇× uk(ω)]
)∗ · uk(ω)

− (∇× [ez × uk(ω)]
)∗ · uk(ω)

= (H ′uk(ω),uk(ω)). (C.5)

For terms 5 and 6 of H as given by Eq. (2.38), the following boundary condition

is needed: ∫
dr ε(r)

[[
uk(ω)

]∗ · (ε(r)

c2

∂uk(ω)

∂t

)∣∣∣∣
t+

t−

]
= 0. (C.6)

Eqs. (C.4) and (C.6) are satisfied physically since the CROW is a spatially periodic

structure and the pulse envelope goes to zero at both ends of the t integration.

Such boundary conditions are a mathematical statement of the assumption that

the problem of interest is physically completely contained in the CROW. Problems

of coupling a pulse into or out of a CROW of finite length cannot be described by

Hermitian eigenvalue equations as the bilinear concommitant between the original

differential equation and its Hermitian adjoint is no longer periodic [96]. In such

circumstances, one can resort to direct numerical methods of analysis [149].

The imposition of closed boundary conditions in the temporal domain is for sim-

plicity. A more correct approach would allow the positive temporal boundary to

go to infinity and impose appropriate Cauchy boundary conditions (value and slope

specified) on the wave equation. Whereas Cauchy boundary conditions overspecify a

closed boundary hyperbolic differential equation, they provide for a unique and stable

solution to the open boundary problem [96].
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Nonlinear polarization for SHG

Based on the discussion of the waveguide modes of a CROW in Chapters 2 and 3, we

assume the following forms for two eigenfields at the fundamental frequency ω with

amplitudes E1,

Ea(r, t) = E1 eiωte−ik1(ω)zuk1(ω)(r, t), (D.1)

Eb(r, t) = E1 eiωte−ik2(ω)zuk2(ω)(r, t). (D.2)

For each field, the frequency-domain (temporal Fourier transformed) field can be

written as

Ẽ(r, Ω) ≡ E1

∫
dt e−iΩtE(r, t)

= E1 e−ik1(ω)zũk1(r, Ω), (D.3)

where we use the tilde to represent Fourier transformed fields.

The frequency-domain nonlinear polarization for second harmonic generation at

ω2 is given by [154, 126]

P̃NL(r, ω2) = d̃(r)

∫ ∞

−∞
dΩ Ẽa(r, ω2 − Ω)Ẽb(r, Ω), (D.4)

where d̃ is the effective second-order nonlinearity coefficient of the medium. Using
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Eq. (D.3), Eq. (D.4) can be written as

P̃NL(r, ω2) = d̃(r)E2
1

∫ ∞

−∞
dΩ e−i[k1(ω2−Ω)+k2(Ω)]z

× ũk1(r, ω2 − Ω − ω) ũk2(r, Ω − ω).

(D.5)

The dispersion relationship between k and ω implies that we can expand k(ω) in

a Taylor series about the central frequency of each pulse [154]. We retain terms upto

the linear in ω to write

k1(ω2 − Ω) = k1 +
dk

dω

∣∣∣∣
ω

(ω2 − Ω − ω),

k2(Ω) = k2 +
dk

dω

∣∣∣∣
ω

(Ω − ω). (D.6)

The group velocity at ω1 is defined by the relation 1/v1 = (dk/dω)|ω1 . The assumption

of a linear dispersion relationship in a CROW is not as restrictive as one might expect

based on ω-K curves for conventional waveguides. From the tight-binding analysis,

the dispersion relationship for a weakly coupled CROW can be written as

ω(k) = Ω

[
1 − ∆α

2
+ κ cos(kR)

]
(D.7)

where Ω is the mode frequency of the individual resonators, ∆α is an overlap integral

and κ is a coupling coefficient. The group velocity dω/dk goes to zero at the edges of

the Brillouin zone k = 0,±π/R1, but is approximately constant in the central portion

of the zone, where the dispersion relationship is linear.

We can use Eq. (D.6) in Eq. (D.5) and take the inverse Fourier transform to write

the nonlinear polarization in the time domain,

PNL(r, t) =

∫
dω2

2π
eiω2t P̃NL(r, ω2)

1Consequently, there are no linear propagating eigenmodes at these points, and referring to the
various waveguide modes as “states,” we can say that the density of states is zero. In the solid-state
physics of electron levels, these points are known as van Hove singularities [9].
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or when written out completely,

PNL(r, t) = d̃(r) E1
2e−i(k1−ω/v1)ze−i(k2−ω/v1)z

×
∫

dω2

2π
eiω2(t−z/v1)

∫ ∞

−∞
dΩ

[
ũk1(r, ω2 − Ω − ω) ũk2(r, Ω − ω)

]

= d̃(r) E1
2
[
ei(ωt−k1z)uk1(ω)(r, t − z/v1)

][
ei(ωt−k2z)uk2(ω)(r, t − z/v1)

]
.

(D.8)

This can be easily generalized to include a spatial and temporal dependency in

the envelope E1. We can simply include the non-constant part of E1 with the spatial

and temporally varying function uk(ω)(r, t) as the physical interpretation of uk(ω) as

a Bloch wavefunction is irrelevant here. The result is

PNL(r, t) =d̃(r)
[
Ea(z) ei(ωt−k1z)uk1(ω)(r, t − z/v1)

]
[
Eb(z)ei(ωt−k2z)uk2(ω)(r, t − z/v1)

]
.

(D.9)

For simplicity, we will usually assume that the envelopes Ea and Eb are constant

= E1, signifying an undepleted eigenmode at the fundamental carrier frequency ω.
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Appendix E

Period of orbits in the phase plane

Rather than work with the direct form of the Hamiltonian, Eq. (6.10), we introduce

the following change of variables: β = β̄/π, Z = Z̄(π/2), and then drop the bars for

notational simplicity. Writing H ′ = −2/3 H and assuming that a(Z) ≡ 1 we obtain

H ′ = (σ + 6γΩ)

[
β2

η2
+ η2 + Ω2

]
− 2(η − Ω2σ) (E.1)

and Eq. (6.12) becomes

dη

dz
= −(σ + 6γΩ)βη, (E.2)

dβ

dz
= (σ + 6γΩ)(η4 − β2) − η3. (E.3)

For a given level set of this redefined Hamiltonian, parametrized by H ′, Eq. (E.1)

is of quadratic order in β, so that

β = ±η

√
H ′ + 2(η − Ω2σ)

σ + 6γΩ
− (η2 + Ω2). (E.4)

Since dΩ/dz = 0, and both σ and γ are assumed to be piecewise constant, we can

use Eq. (E.2) to find the distance Z2 − Z1 between the points η = η2 and η1 on the

H ′ contour,

∫ η2

η1

dη

{
±η2

√
H ′ + 2(η − Ω2σ)

σ + 6γΩ
− (η2 + Ω2)

}−1

= −(Z2 − Z1)(σ + 6γΩ). (E.5)
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Identifying a = (H ′ − 2Ω2σ)/(σ + 6γΩ) − Ω2, b = 2/(σ + 6γΩ), and c = −1, we

can use the following identity to evaluate the integral,

∫
dx

x2
√

a + bx + cx2
= −

√
a + bx + cx2

ax
+

b

2a3/2
log

[
− 2

bx

(
2a3/2 +

√
a b x

+ 2a
√

a + bx + cx2
)]

.

(E.6)

We now take η1 and η2 to correspond to the minimum and maximum extents of

the orbit along the η axis (see Fig. 1). These two points are given by the solutions of

the following algebraic equation,

η2 − 2

σ + 6γΩ
+

(
Ω2 − H ′ − 2Ω2σ

σ + 6γΩ

)
= 0. (E.7)

The round-trip period of the H ′ orbit is given by the value of 2(Z2 − Z1), obtained

from Eq. (E.5).

Based on Eq. (E.4), we can solve dβ/dη = 0 to find the η value corresponding

that point on the orbit where β is maximum,

η|βmax
=

3

4(σ + 6γΩ)
+

1

2

√
9

4(σ + 6γΩ)2
+

2(E − 3σΩ2 − 6γΩ3)

σ + 6γΩ
. (E.8)

Using this value for η in Eq. (E.4) leads to a value for βmax.
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