
 
Laboratory Studies of Atmospherically Important Gas-

Phase Peroxy Radical Reactions 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis by 

Lance E. Christensen 

 

 

In partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

 

 

 

 

 

California Institute of Technology 

2002 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2002 
 

Lance Christensen 
 

All Rights Reserved 
 



 i

Abstract 

  

Peroxy radicals (HO2, RO2) are important intermediates in Earth�s atmosphere.  

They are intermediates in the oxidation of alkanes and CO in combustion and 

atmospheric chemical processes.  In earth�s atmosphere, the rates of their self and cross 

reactions are often the dominant loss processes when NOx concentrations fall below tens 

of pptv.  These reactions have proven difficult to study in laboratory experiments, due to 

complex secondary chemistry and ambiguities in radical detection. 

 This thesis describes a new laser-photolysis apparatus to measure the rates of 

peroxy radical reactions under atmospheric conditions that employs simultaneous UV 

direct absorption and IR wavelength-modulation spectroscopy to detect the peroxy 

radicals.  Prior kinetic measurements of gas-phase peroxy radical reactions have typically 

employed flash-photolysis methods coupled with detection of the radicals only by UV 

absorption spectroscopy.  However, uncertainties can arise because several different 

species often contribute to the absorption signal.  The IR channel provides an 

independent means of monitoring HO2 radicals by detection of specific rovibrational 

transitions. 

With this apparatus, the rates of the reactions HO2 + NO2, HO2 + CH3O2, CH3O2 

+ CH3O2, and HO2 + HO2 were studied at temperatures from 219 K to 300 K.  Our 

measurements have, in some cases, led to significant revision of previously accepted rate 

constants, mechanisms, or product yields, especially at conditions relevant to the upper 

atmosphere.  The new rate coefficients for the HO2 + HO2 reaction are shown to account 
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for a long-standing discrepancy in modeled vs. observed hydrogen peroxide in the 

stratosphere. 

A key finding has been the observation that many previous measurements of HO2 

reactions at low temperatures have suffered from problems due to complexation between 

HO2 and methanol, a precursor used to generate HO2.  Direct kinetic evidence is 

presented for the formation of the HO2·CH3OH complex; the rate coefficients, 

equilibrium constant, and enthalpy of reaction for HO2 + CH3OH, ↔ HO2·CH3OH were 

measured.  These results are the first direct study of the chaperone effect proposed to 

explain the enhancement of the observed rates of the HO2 self-reaction by hydrogen-

bonding species. 

 The effects of methanol enhancement on the HO2 + NO2, HO2 + CH3O2, CH3O2 + 

CH3O2, and HO2 + HO2 reaction rates were measured.  For the HO2 + NO2 reaction, 

overlapping, time-dependent signals in the UV due to the equilibrium between NO2 and 

N2O4 were observed that may not have been properly accounted for in previous 

measurements.  Other studies of NO2 reactions conducted at temperatures below 250 K 

may be subject to similar errors. In the CH3O2 + CH3O2 reaction, detection of HO2 

products has raised questions concerning the product yields and reaction mechanisms.    
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Chapter 1: Measurements of the Rate Constant for HO2 

+ NO2 + N2 →→→→ HO2NO2 + N2 Using Infrared 

Wavelength-Modulation Spectroscopy and UV-Visible 

Absorption Spectroscopy 

 

 

1.1 Introduction 

 The reaction between HO2 and NO2 has been the subject of numerous laboratory 

studies1-10 and proceeds as 

 

 M
2 2 2 2HO  + NO  HO NO →  (1) 

 

From the upper troposphere through the middle stratosphere, the thermal lifetime of 

HO2NO2 is sufficiently long that reaction with OH is a significant loss process for 

HO2NO2. This establishes a NO2 driven catalytic cycle that is an important sink for 

HOx.11 

 

  M
2 2 2 2HO  + NO  HO NO →  (1) 

  2 2 2 2 2OH + HO NO H O + NO  + O →  (2) 

    

  2 2 2OH + HO   H O + O →  (3) 
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Measurements of HO2NO2 from space12 and balloon-borne13 platforms have enabled 

researchers to test our understanding of atmospheric processes involving HO2NO2. 

Accurate measurements of k1 are thus necessary to correctly describe the chemistry of 

this region of the atmosphere. 

 The most comprehensive studies of reaction (1) measured the time dependence of 

[HO2] with UV spectroscopy and utilized CH3OH as a precursor for HO2.8-10 These 

studies have had the greatest influence on current recommendations.14,15 In these previous 

studies, the rate of reaction (1) was measured under conditions where an appreciable 

fraction of HO2 would be hydrogen-bonded to CH3OH, namely low temperatures (< 

273 K) and/or high [CH3OH]. It has been shown16,17 that CH3OH can significantly 

enhance the observed rate of the reaction 

 

 bi-molecular
2 2 2 2 2ter-molecularHO + HO  H O  + O →  (4) 

 

under these conditions. A similar enhancement for reaction (1) might also be expected. 

This would suggest that the NASA recommended rates are too high at low temperatures. 

 This paper details kinetic studies of reaction (1) using simultaneous UV and IR 

detection. The effect of CH3OH on reaction (1) was measured. Detection of HO2 in the 

IR provided a method of measuring k1 that avoided overlapping absorptions from several 

species, a problem associated with measurements in the UV. In addition, the use of 

heterodyne detection for the IR channel resulted in considerably improved signal-to-noise 

compared with the UV channel. 
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1.2 Experimental 

1.2.1 Apparatus 

 Figure 1.1 is a schematic diagram of the experimental apparatus. A XeCl pulsed 

excimer laser (308 nm) was used to photolyze either F2 or Cl2, which reacted with other 

reagents to form the species of interest. The concentrations of the species of interest were 

monitored with simultaneous IR heterodyne and UV-visible direct absorption 

spectroscopy. 

 The reaction cell was a 175 cm long, 5 cm diameter Pyrex cylinder supported at 

each end by aluminum chambers. An insulated jacket surrounded the reaction cell 

through which flowed methanol chilled by a liquid-nitrogen cooled heat exchanger. 

Thermocouples located inside the reaction cell allowed the temperature to be measured to 

within ± 1 K. Reagent gases were cooled in a meter-long mixing tube prior to entering 

the main reaction cell. They entered from the middle of the main reaction cell and flowed 

towards the outlet ports. N2 confinement gas flowing from both aluminum chambers 

restricted the reactants to a region 135 ± 1 cm long between the outlet ports. Tests were 

performed to ensure the extent of confinement by flowing gas mixtures containing known 

amounts of Cl2 and NO2 through the reagent entrance port. In these tests, the Cl2 

absorbance at 330 nm and NO2 absorbance at 369.50 nm was measured. The effective 

path length was calculated using a Beer�s Law analysis and tabulated absorption cross 

sections.18 These tests were conducted over the range of pressures and flow rates utilized 

in the experiment. They confirmed that the reagent gases were contained between the two 
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exit ports with an effective path length matching the separation between the middle of the 

two ports to within 1 cm. 

 The excimer photolysis pulse entered the cell through a CaF2 window on one of 

the aluminum chambers. The 20 ns pulses had a 2 cm by 1 cm rectangular cross section. 

The pulse energy ranged from 60 mJ to 150 mJ. The pulses passed through the middle of 

the cell, creating a 2 cm by 1 cm by 138 cm photolysis region. An unstable optical 

resonator configuration was used in the excimer laser to ensure good collimation of the 

photolysis beam. 

 Light from a deuterium (D2) lamp and an IR diode laser entered the apparatus 

through a 30′ wedged CaF2 window on the other aluminum chamber. Light from the D2 

lamp made one pass through the photolysis volume and was focused onto the entrance slit 

of a monochromater (Acton SpectraPro 300i). A PMT was mounted at the exit slit. 

Baffles in both aluminum chambers ensured that only UV light that had sampled the 

photolysis volume entered the monochromater. 

 For the present experiment, several species were formed which absorb in the UV. 

The detectable species were HO2, NO2, N2O4, H2O2, HO2NO2, ClNO2, and ClONO. Their 

cross sections at various wavelengths are given in Table 1.1. The monochromater was set 

to 369.50 nm for experiments conducted at temperatures of 230 K and higher and 

381.875 nm for experiments at 219 K. The 369.50 nm NO2 cross section at 298 K was 

5.23 × 10-19 cm2 with a temperature dependence of -1.1 × 10-22 cm2 K-1.19,20 The 

381.875 nm NO2 cross section at 298 K was taken to be 5.62 × 10-19 cm2 with a 

temperature dependence of -8.7 × 10-23 cm2 K-1.19,20 The reason for the change in UV 

wavelengths was to minimize absorbance by N2O4 at low temperature. 
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 The IR source was a 3 mW distributed-feedback (DFB), continuous wave tunable 

diode laser manufactured by the JPL Microdevices Laboratory. The laser current was 

modulated at 6.80 MHz through an external bias tee. The beam passed through a small 

opening in a gold-coated mirror with a 2032 mm radius of curvature located in one 

aluminum chamber and impinged on a similar mirror in the other chamber positioned 

1820 mm from the input mirror. These two mirrors formed a Herriott cell21,22 that folded 

the IR beam, resulting in 30 passes through the photolysis volume. The beam was inside 

the photolysis volume for approximately 1/2 the length of a single pass between mirrors. 

The effective path length of the IR beam was approximately 2000 cm as determined by 

visual inspection of where overlap occurred. This was maximized by placing the Herriott 

mirrors as close to the path of the excimer beam as possible. The signal from the InGaAs 

photodiode detector was demodulated at 13.6 MHz (2f detection) and low-pass filtered. 

The filter frequency was determined by the timescale of the reaction. Typically, 

bandwidths greater than a factor of 5 over the pseudo-first-order HO2 loss rate were 

employed. Minor adjustments of the amplitude of modulation were required to optimize 

the signal when the pressure and temperature of the cell was varied. 

 The diode laser emitted light in the region between 6620 cm-1 and 6645 cm-1, 

depending on the injection current and temperature of the diode laser. The lower 

frequency limit was determined by the maximum temperature the diode laser chip could 

be held at. For emission at 6620 cm-1, the temperature had to be set at around 60 ºC. At 

these temperatures, the lifetime of the laser is drastically reduced. Further, 

d(Power)/d(Current) becomes appreciably non-linear, introducing a significant amount of 

noise into the IR detection channel. The upper limit of the laser emission frequency was 
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to prevent condensation of ambient water when the diode laser was cooled below 5 ºC. 

The linewidth of the laser was approximately 20 MHz.23 This was verified by 

deconvolving H2O transitions at low pressure (< 200 mTorr). For the present study, an 

HO2 transition at 6638.2 cm-1 was probed. This line is assigned to the qQ2 transition (a 

band head) of the first overtone of the O-H stretch.24 Another diode laser that emitted 

near 7000 cm-1 (JPL Microdevices Laboratory) was also employed in the experiment but 

only for a limited number of experiments at room temperature. This diode laser probed 

transitions to the low-lying electronic state of HO2 (2A′ ← 2A″). No differences in the 

measured kinetic parameters were observed between the two lasers. For HO2, direct 

absorption measurements have suggested that the integrated band strength of the overtone 

transitions absorb are stronger than the electronic transitions.25 The cross-section of the 

qQ2 line at 100 Torr, 298 K was estimated to be (5 ± 3) × 10-20 cm2. This was determined 

by observing that its signal was similar in strength to several of the strongest lines near 

6627 cm-1, which have been assigned to the P-branch of the K″ = 0 stack.24 These lines 

have been observed to have cross sections between (1 �10) × 10-20 cm-2 near 60 Torr.26 

The highest concentrations of HO2 employed in the present experiment were around 1 × 

1014 molecules cm-3. The absorbance for a pathlength of 2000 cm is approximately 0.01. 

The difference between Beer�s law analysis and simply correlating the IR signal with 

[HO2] is less than 1% at the maximum [HO2]. 

 The IR and UV beams have different geometric paths, and consequently probe 

different regions of the photolysis volume. The IR beam probes the central half of the 

photolysis volume.  The UV beam probes the whole length of the photolysis volume.  A 

method of testing the agreement between the two probes was devised based on 
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simultaneous measurements of the HO2 + HO2 reaction under conditions where the 

concentrations of species that can hydrogen-bond with HO2 is negligible. The formula 

 

  
( )

-1

o

1( ) - 2S t b a t
S b

 
= + + ⋅ ⋅  + 

 (5) 

 

was employed to study second-order reaction kinetics.  S(t) is the signal at either detector 

as a function of time, So represents the signal extrapolated to time = 0, b represents a 

constant baseline offset, and a represents the second-order rate constant in units of S(t)-1 

s-1.  For UV measurements, S(t) was in units of absorbance. For IR measurements, S(t) 

was in units of V.  The product a·So for the UV and IR should be equivalent for each 

experiment and is units of s-1.   The value of a obtained from UV measurements was 

corrected for the contribution of H2O2 by multiplying its value by 2 2

2

H O

HO

σ
1-

2 σ⋅
, following 

the procedure outlined by Kircher and Sander.27 

 Simultaneous IR and UV rate measurements of reaction (4) were used to calibrate 

the IR signal. For rate measurements with the IR probe, calibration of the probe signal 

was necessary. This was accomplished by simultaneously measuring the time decay of 

HO2 for HO2 + HO2 with the IR and UV probes, employing F2-photolysis. The path 

length of the beam was 135 cm. Because the cross section and the path length were 

known, the UV measurement provided a second-order rate constant in units of cm3 

molecule-1 s-1. The IR probe measured a second-order rate constant in units of V-1 s-1. The 

ratio of the rate constants gave the scaling factor used to translate the IR signal from 
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Volts to units of molecules cm-3. This value ranged between (1 - 6) × 1017 molecules V-1 

at the RF port of the demodulation mixer. 

  The photolysis volume was centrally located and wall reactions were not a 

concern. However, transport of reactive species from the photolysis volume into the 

surrounding gas by turbulent mixing was an important consideration. The reactions 

C2H5O2 + C2H5O2 (kEtO2), and HO2 + HO2 were studied at [C2H5O2] < 1×1013 molecules 

cm-3 and [HO2] < 5 × 1011 molecules cm-3
, respectively. At these concentrations, 

2·kEtO2·[C2H5O2] and 2·k4·[HO2] < 2 s-1, and other loss processes, such as turbulent 

mixing, can compete with loss due to chemical reaction. The measured rates for these 

reactions were dependent on the residence time of the precursor gases, indicating that 

turbulent mixing affected measured kinetics. As the residence time was increased, the 

measured rates approached the predicted rates asymptotically. The measured first-order 

loss due to turbulent mixing was between (2 - 5) s-1 for a residence time of 15 s at 298 K. 

Turbulent mixing affects decreased with decreasing temperature. The residence time was 

adjusted so turbulent mixing had less than a 5% effect on measured rates. The effect of 

diffusion was found to be negligible compared to turbulent mixing. 

 Calibrated flows of reagent gases were mixed prior to entering the cell. Flow 

conditions were adjusted so that the cell residence time was 3-10 s, approximately equal 

to the interval between photolysis laser pulses. HO2 was formed from the reaction 

sequence 

 

  2Cl  2 Clhv →  (6) 

  3 2Cl + CH OH  HCl + CH OH →  (7)  
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  2 2 2 2CH OH + O   HO  + CH O →  (8) 

 

The concentrations (molecules cm-3) of the reagents were Cl2: (2 - 6) × 1015; He: (2 - 5) × 

1016; CH3OH: (1 - 3) × 1014; O2: (2 - 7) × 1017; NO2: (6 - 50) × 1014.  The buffer gas was 

N2 for all experiments.  The Cl2 and He came from a mixed cylinder of 10.0% Cl2 (99.5% 

purity) in He (99.999%). N2 (99.9993%) was bubbled through CH3OH (A. C. S. Reagent 

Grade) in a temperature-controlled saturator to obtain the desired [CH3OH]. NO2 was 

prepared by mixing NO (99% purity) with a large excess of O2 (99.996%) and allowing 

the mixture to stand for a day. All gases were acquired from Air Products and Chemicals, 

Inc. except NO, which was acquired from Matheson Tri-Gas, Inc. The maximum [HO2] 

formed in an individual experiment, denoted [HO2]max, was (5 - 8) × 1013 molecules cm-3. 

 The reaction between HO2 and NO2 was studied under pseudo-first-order 

conditions with the value of 2 o

2 max

[NO ]
[HO ]

 between 60 and 500. The reaction was studied 

between 40 Torr and 200 Torr and 219 K to 295 K. Contributions to measured NO2 

absorbance at 369.50 nm and 381.875 nm from HO2, H2O2, HO2NO2, and Cl2 were less 

than 2% at all temperatures. At temperatures below 240 K for the concentrations of NO2 

employed in the present experiment, a significant fraction of NO2 dimerized to N2O4. At 

219 K, 2 4

2

[N O ]
[NO ]

 reached values as high as 0.8. In order to maintain 2 4 2 4

2 2

σN O [N O ]
σNO [NO ]

⋅
⋅

 < 

0.05, NO2 was monitored at 381.875 nm for experiments at 219 K. 

 The excimer laser photolyzed a fraction of NO2 to produce NO + O. The fraction 

was determined to be 0.0028 ± 0.0002. This was measured by photolyzing NO2 in the 

presence of O2 and observing O3 formation. Davidson et al.20 has shown that at 219 K, 
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the NO2 cross-section at 308 nm is only 2% higher than at room temperature, indicating 

that the fraction of NO2 dissociated by photolysis was approximately the same at all 

temperatures. Knowledge of [NO] produced by photolysis of NO2 was important because 

the reaction 

 

  2 2HO  + NO  OH + NO →  (9) 

 

can affect the measured rate of decay of HO2. The effect of reaction (9) was ascertained 

by employing the kinetics modeling program FACSIMILE28 and the NASA 

recommended18 values for the rate constants of reactions listed Table 1.2. At 50 Torr and 

295 K, the ratio of the observed rate constant to the actual rate constant was calculated to 

be 1.06. As pressure increases and temperature decreases, the effect of reaction (9) 

diminishes, influencing the observed rate less than 1% at pressures greater than 100 Torr 

at 298 K. The observed rate was influenced by less than 3% at all other temperatures and 

pressures examined in the present experiment. All reported k1 values have taken this 

correction into account. 

 

1.2.2 Effect of reaction (4) on IR and UV signals 

 Because 2 o

2 max

[NO ]
[HO ]

 > 60, the loss of HO2 via reaction (1) was treated as first-

order. To analyze the decay of IR and UV signals, the equation 

 

  os( ) exp(- )t A k t b= ⋅ ′ ⋅ +  (10) 



 11

 

was used to fit the data, where s(t) was the absorbance signal (unitless) for the UV 

channel, and demodulated voltage signal (in V) for the IR channel. Reactions (1) and (4) 

are the major loss processes for HO2. Since the loss by reaction (4) was second-order, fits 

to the data using equation 10 resulted in values of k′ that were dependent on 2 o

2 max

[NO ]
[HO ]

, 

the time span in which the fitting procedure was employed, and k1([M],T). The effect of 

reaction (4) on measured k1 was ascertained three different ways. First, as has been done 

in prior examinations9 of k1, kinetic modeling using FACSIMILE was used to determine 

the effect reaction (4) on the overall rate measurement of k1. The largest correction to k1 

was a 5% decrease in the value observed at 50 Torr and 298 K. At 100 Torr, the 

correction was less than 3% for all temperatures. Second, measured k1 values did not 

differ by more than 5% when 2 o

2 max

[NO ]
[HO ]

 was changed by an order of magnitude. Third, no 

significant difference in the value k1 was observed when fits were conducted over 

differing time intervals. This procedure was adopted because as time proceeds, the 

influence of reaction (4) decreases. 

 A positive residual baseline signal was observed in many experiments. The 

magnitude of this residual was typically less than 2% of the maximum HO2 signal. This 

residual showed negligible temporal dependence and was thus assumed to be constant for 

fitting purposes. The source of this residual was uncertain. 
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1.2.3 Effect of overlapping absorptions on UV signal 

 Table 1.1 lists several species and their cross sections at various UV wavelengths.  

Figure 1.2 shows the contribution of these species to the UV signal at 220 nm using the 

FACSIMILE kinetic modeling program and the kinetic model described in Table 1.2. The 

model was computed at 231 K, 100 Torr total pressure of N2, [NO2] = 2 × 1015 molecules 

cm-3, [CH3OH] = 3 × 1015 molecules cm-3. H2O2 absorbance was negligible. Combined 

absorbances for ClONO and ClNO2 are shown. The cross section of ClONO at 220 nm is 

not known and was assigned the value of 2.15 × 10-18 cm2, a value measured by Molina 

and Molina29 at 235 nm. This value was chosen because the cross section of ClONO 

appears to increase as wavelength decreases near 235 nm and thus would appear to be a 

lower limit to the actual value at 220 nm. These figures demonstrate that the acquired UV 

signal contains significant contributions from several species.  

 Despite overlapping absorptions, the HO2 rate of decay is equivalent to the first-

order rate of decay of the total UV signal if equation 10 is used to fit the data and if the 

concentration of all species that contribute to the signal are solely dependent on reaction 

(1) or are constant during the time of analysis.30 

 

1.2.4 Secondary chemistry involving Cl + NO2 recombination 

 Possible complications arising from the formation of ClONO and ClNO2 were 

considered as part of the data analysis. In the present experiments, these species are 

formed by the reactions 

 

  M
2Cl + NO   ClONO →  (11) 



 13

  M
2 2Cl + NO   ClNO →  (12) 

 

Buildup of these species can be significant depending on the relative concentrations of  

CH3OH and NO2. For example, with  [CH3OH] = 2 × 1015 molecules cm-3 and [NO2] = 4 

× 1015 molecules cm-3, the fraction of Cl that reacts with NO2 is 0.23 at 231 K and 100 

Torr total pressure of N2. At 298 K, the corresponding fraction is 0.13. These calculations 

are based on the rate constant recommendations of DeMore et al.18 and assume that 

reactions (10), (11) and (12) are the only loss processes for Cl. 

 ClONO and ClNO2 can affect the measured rate of k1 by reacting with other 

species or by undergoing unimolecular processes such as decay or isomerization. Both 

species absorb strongly in the UV. In the present experiment, k1 was measured in the IR 

for [Cl]max 20% of typical values. Poor signal-to-noise prevented similar measurements in 

the UV. No noticeable difference between these low [Cl]max and normal [Cl]max 

experiments was observed at 231 K and 298 K, indicating that the influence of Cl + NO2 

on measured kinetics was negligible. 

 

1.2.5 Sources of uncertainty 

 The statistical uncertainty (1σ) in the measurement of k′ due to noise in the IR 

signal was approximately 2%. For the UV signal, it was approximately 5%. Error in the 

photometric measurement of [NO2] due to changes in the flux of the NO2 gas mixture 

from the NO2 bulb, which was due to the chance in pressure of the bulb over the course 

of an experiment, was approximately 3%. Uncertainty in [CH3OH], which in turn was 

due to the fluctuations in measured gas flows and temperature of the bath surrounding the 
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methanol, was 3%. The uncertainty in the measured pressure was approximately 1% and 

in measured temperature was ± 1 K. The total uncertainty in the precision of the 

measurements of k1(T) ranged from approximately 5% to 10%. The observed fluctuations 

in measured k1(T) at 230 K and 219 K were observed to be somewhat higher, 8% to 15%, 

most likely due to the errors caused by imprecision in determining [CH3OH]. The 

systematic uncertainty in the cross section of NO2 at room temperature is approximately 

10% at room temperature. The uncertainty in the accuracy of the vapor pressure of 

methanol was 5%. These systematic uncertainties are not reported in the uncertainties 

given for the measurements of any rate coefficients in the present work. 

 

1.3 Results 

 It is demonstrated in Chapter 2 the Cl2-CH3OH-O2 source of HO2 can result in 

kinetic complications arising from reactions of the HO2·CH3OH complex. Studies of 

reaction (1) were therefore carried out to determine both the pressure and temperature 

dependences of k1 and to examine the possibility that complex formation enhances the 

observed reaction rate. 

 

1.3.1 Effect of CH3OH on reaction (1) 

  

 The effect of CH3OH on the rate of reaction (1) was studied at 100 Torr for six 

different temperatures ranging from 231 K to 298 K. In addition, at 231 K, the reaction 

was studied at 50 Torr and 200 Torr. The observed first-order rate constant, k′, for the 

decay of HO2 was measured at each temperature at 16 to 25 different combinations of 
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[NO2] and [CH3OH]. Plots of [HO2] versus time at 100 Torr, 231 K, and [NO2] = 2.80 × 

1015 molecules cm-3 are shown in Figure 1.3 for different [CH3OH]. 

 These experiments showed that there is a significant dependence on the apparent 

rate of reaction (1) with [CH3OH].  The dependence of k′ on [CH3OH] for various [NO2] 

is shown in Figure 1.4 at 100 Torr and 231 K. The dependence of k′ on [CH3OH] was 

well described by the equation 

 

 o 3[CH OH]k k k ′′′ = ′ + ⋅  (13) 

 

Both ko′ and k″ were both observed to be dependent on [NO2]. The value of ko′ 

represented the first-order rate constant at zero [CH3OH]. The value of k″ represented the 

dependence of the measured first-order rate constant on  [CH3OH]. 

 The trend of ko′ versus [NO2] was observed to be linear at all temperatures and 

was analyzed with the equation 

 

  
2 2o HO +HO 1 2[NO ]k k k′ = + ⋅  (14) 

 

where kHO2+HO2 represents the contribution of the HO2 + HO2 reaction to the measurement 

of k′o. The slope, k1, is the rate constant for HO2 + NO2 in the limit of zero methanol.  

Figure 1.5 is a plot of k′o versus [NO2] at 100 Torr for 231 K, 250 K, and 298 K. The 

temperature dependence of k1 at 100 Torr is shown in Figure 1.6. The values of k1 are 

tabulated in Table 1.3. The measured values of k1 in the present study were within 3% of 
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the NASA values at 298 K and 288 K and were approximately 14% lower than the 

NASA values at 231 K, as indicated by the last column of Table 1.3. 

 The trend of k″ versus [NO2] was more difficult to discern. Plots of k″ versus 

[NO2] are shown in Figure 1.7 for 100 Torr and the temperatures, 231 K, 250 K, and 

298 K. In general, the trend appeared linear and was thus described by the equation 

 

 �
o 2[NO ]k k k′′ ′′= + ⋅  (15) 

 

where k� and ko″ and represent the enhancement of k′ of enhancement of reaction (1) and 

reaction (4) by CH3OH respectively. The values of k� and ko″ are listed in Table 1.3. At 

288 K and 298 K, the uncertainty in the fitted value for ko″ was greater than the value 

itself. The temperature dependences of k� and ko″ were analyzed with the Arrhenius 

equation k(T) = Ao⋅exp[(Ea/R)/T]. Plots of k� and ko″ versus T -1 are shown in Figure 1.8. 

For k�, Ao = (1.6 ± 0.9) × 10-36 cm6 molecule-2 s-1 and Ea/R = (-4360 ± 140) K. For ko″, 

they were (1.9 ± 3.0) × 10-22 cm3 molecule-1 s-1 and (-4760 ± 370) K, respectively. 

 Using the above relations, k′ can be approximated at any [NO2] and [CH3OH] by 

the equation 

 

 
2 2

�
HO +HO (4.1) 2 o 3 2 3[NO ] [CH OH] [NO ] [CH OH]k k k k k′′′ = + ⋅ + ⋅ + ⋅ ⋅  (16) 

 

The effect of CH3OH on the study of the HO2 + NO2 reaction was not accounted for in 

previous studies. In previous studies, the rate constant of reaction (1) was equated to the 

change in k′ with respect to [NO2] 
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  �
1 3

2

[CH OH]
[NO ]
dk k k

d
′ = + ⋅  (17) 

 

A plot of 
2[NO ]

dk
d

′ versus temperature at [CH3OH] = 3 × 1015 molecules cm-3 and 

100 Torr is depicted in Figure 1.6. This [CH3OH] was chosen because it falls within the 

range used in previous experiments. As can be seen from Figure 1.6, at 231 K, 100 Torr, 

2[NO ]
dk

d
′  is a factor of 2.0 larger than k1 measured in the present experiment and a factor 

of 1.7 larger than the NASA recommended values. The significant differences between 

2[NO ]
dk

d
′  from this experiment and the NASA recommended values, which were based on 

experiments where [CH3OH] ranged from (2 to 8) × 1015 molecules cm-3 suggests that 

measurements of k1 in which HO2 is monitored in the UV and IR differ at low 

temperatures. 

At 231 K, the methanol enhancement of reaction (1) was investigated at 50 Torr, 

100 Torr, and 200 Torr. Measurements of k1 and k� at 100 Torr and 200 Torr for 231 K 

are listed in Table 1.3. Three separate attempts were made at measuring k1 and k� at 

50 Torr. For all three attempts, measured values of k′ as a function of [CH3OH] were 

highly scattered and not well described by equation (13).  It is unclear why this was so. 

The values measured at 50 Torr and 231 K are not included in our analysis. 

 The parameter governing the enhancement of reaction (1) by CH3OH, k�, was 

increased slightly with pressure, from (2.1 ± 1.4)×10-29 cm6 molecule-2 s-1 to (2.3 ± 1.9) 
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×10-29 cm6 molecule-2 s-1 but the difference was well within the error estimates. However, 

the uncertainties of the measurements make it unclear whether or not there is a pressure 

effect on k�. More studies over a larger range of pressures are needed. The increase in the 

value of k1/kJPL with pressure, noted in the last column of Table 1.4, suggests that k� may 

be pressure dependent. 

 

1.3.2 Comparison of IR and UV data  

 Comparisons of simultaneously acquired IR and UV signals at 100 Torr are 

shown in Figures 1.9.1 and 1.9.2 for 298 K and 231 K respectively. At 231 K, the IR 

signal indicates that HO2 is no longer present after 3 ms; however, the UV signal is non-

zero and time-dependent after 3 ms. This strongly suggests that the UV channel is 

sensitive to species which can interfere with the HO2 absorption signal. Measurement of 

k′ using 231 K UV data and equation (10) is complicated by the lack of a stable baseline 

UV signal after all the HO2 has reacted (denoted post-HO2 signal). Despite this, the data 

acquired at 231 K were analyzed with equation (10) over the time span of 3 ms. Plots of 

k′ versus [NO2] for both the IR and UV data are shown in Figure 1.10 for 298 K and 

231 K. At 298 K, IR and UV measurements agree. At 231 K, there is significant 

disagreement. 

 At 231 K, a rise (from a negative absorbance towards zero absorbance) in the 

400 nm post-HO2 signal occurred simultaneously with the decrease in the 220 nm post-

HO2 signal. This suggested that NO2 was generated from a temporary NO2 reservoir. The 

400 nm post-HO2 signal, which has a negative absorbance value due to the consumption 

of NO2 due to reaction (1), rose to a value between its most negative value and zero 
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absorbance and then became constant. The rate of increase in the 400 nm signal was 

similar to the rate of decrease in signal at 220 nm. These observations can be explained 

by the process 

 

  2 2 2 4 NO  + NO  N O →←  (18) 

  

Both N2O4, and NO2, 2NO
220nmσ = (4.7 ± 0.3) × 10-19 cm2 molecule-1,19 contribute to the 

observed absorbance At 220 nm, the cross section of N2O4 is larger than the cross section 

for NO2 (see Table 1.2) and the time-dependent signal is dominated by the loss of N2O2 

via reaction (-18). At 400 nm, NO2 absorbance dominates and the time-dependent signal 

is mainly due to the gain of NO2 from reaction (-18). 

 To illustrate the absorbance change at 400 nm, consider a typical experiment in 

which [NO2]eq = (1.9 ± 0.1) × 1015 molecules cm-3. Under these conditions, [N2O4]eq = 

(5.8 ± 0.4) × 1014 molecules cm-3.15 Each photolysis pulse removed (7.0 ± 0.5) × 1013 

molecules cm-3 of NO2, mainly due to reaction (1). In order for the system to reach 

equilibrium after the photolysis pulse, [NO2] increases by nearly 4 × 1013 molecules cm-3 

from dissociation of N2O4. The change in absorbance in the 400 nm post-HO2 signal is 

about 0.003 absorbance units, which is measurable in the present experiment. 

 The value of k-18 was measured to be (36 ± 10) s-1. This compares favorably with 

previous measurements31 of k-18 made at higher temperatures which predict values of k-18 

between 20 s-1 and 180 s-1 at 231 K and 100 Torr.  
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 Attempts were made to study reaction (1) in the absence of hydrogen-bonding 

species. A gas mixture of F2/H2/O2/N2 was flowed into the cell at concentrations 

(molecules cm-3) of F2:  5 × 1016; H2: 5 × 1016; O2: 5 × 1017 and balance N2 at 100 Torr 

and 231 K. When NO2 was added to the gas mixture, an unexpected explosion took place. 

This may have occurred as a result of a thermal, wall-catalyzed, reaction or from 

photolysis by ambient light. The reaction mixed was judged to be sufficiently unstable 

that no further studies were conducted using the F2-H2 system. 

 

1.3.3 Measurements of k1 at low [CH3OH] 

 A second set of measurements of the rate of reaction (1) was obtained with 

[CH3OH] = 2.0 × 1014 molecules cm-3. These measurements were done between 50 Torr 

and 200 Torr, and between 219 K and 295 K. As stated above, complications from Cl + 

NO2 were found to be insignificant. Results from the first set of experiments indicated 

that at 231 K, 200 Torr, and [CH3OH] = 2.0 × 1014 molecules cm-3, the calculated value 

of 
2[NO ]

dk
d

′  was approximately 5% greater than the measured value of k1. At 219 K, the 

observed rates were calculated to be nearly 15% higher than k1. The observed values 

from this second set of measurements, corrected for the presence of CH3OH, are shown 

in Figure 1.11. 

 

1.4 Discussion 

1.4.1 Quantifying the results 

 To describe k1([M],T), a simplified version of a termolecular rate equation 

developed by Troe (cite) was employed. This equation, defined below, 
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has been adopted by the NASA and IUPAC data evaluation panels to describe the falloff 

behavior of association and unimolecular decomposition reactions. The parameters ko(T) 

and k∞(T)  are  the low and high pressure limiting rate constants, respectively with their 

temperature dependences given by  

 

  ko(T) = ko(300K)⋅(T/300)-m (20) 

and  

  k∞(T) = k∞(300K)⋅(T/300)-n (21) 

 

The parameter Fc was assigned the value 0.6 in accordance with the procedure adopted 

by the NASA data evaluation panel (ref). The parameters that were acquired in the fitting 

process were ko(300K), k∞(300K), m, and n. Two fitting trials are tabulated in Table 1.4. 

Trial 1 employed both sets of data from the present experiment. Trial 2 employed all the 

data of Trial 1 and also that acquired at T ≥ 277 in experiments by Sander and Peterson8 

and Kurylo and Ouellette.9,10 Both trials were weighted by the stated uncertainties. As 

Table 1.4 shows, for each fitted value, the discrepancy between Trial 1 and Trial 2 is 

greater than the combined uncertainty. 
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 The lack of agreement between the trials may result from insufficient 

parameterization of equation (19). Since one of the principal aims of this paper is to 

provide a description of reaction (1) that is useful for atmospheric modeling, and since 

the adopted procedure by the NASA data evaluation panel has adopted the use of the 

equation (19), further parameterization was not adopted. 

 As stated in the introduction, impact of reaction (1) on atmospheric chemistry is 

greatest from the upper troposphere to the middle stratosphere. An assessment of how 

each of the trials describes reaction (1) in this region of the atmosphere can be quantified 

by comparing the calculated rate from each of the trials to the current NASA 

recommended value at 231 K and 100 Torr. This has been done in Table 1.5. Both Trials 

calculate rates that are about 10% lower than the current recommendation. The measured 

value from data set 1 was 10% lower than currently recommended. Data set 1 is 

highlighted because was a direct measurement of k1 at 231 K and 100 Torr. 

 The above analysis indicates that for modeling the chemistry of the upper 

troposphere to the middle stratosphere, there is little difference between Trial 1 and Trial 

2 though the parameters acquired from Trial 2 best describe reaction (1) over the widest 

range of pressures and temperatures. Figure 1.12 depicts the difference between Trial 2 

and the current recommended values. 

 

1.4.2 Enhancement by CH3OH 

 The observed enhancement of reaction (1) by CH3OH can be explained by the 

reaction sequence 
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  M
2 2 2 2HO  + NO  HO NO →  (1)  

  3 2 3 2CH OH + HO   CH OH HO → ⋅←  (22) 

  3 2 2CH OH HO  + NO   Products⋅  →  (23) 

 

If the steady-state approximation is used for [CH3OH⋅HO2], 

 

  
2[NO ]

dk
d

′ = k1 + 2⋅k23⋅K22⋅[CH3OH] (24) 

 

where 
2[NO ]

dk
d

′  is the observed rate constant discussed above and K22 describes the 

equilibrium between HO2, CH3OH, and CH3OH⋅HO2. From the present experiment, the 

rate enhancement of reaction (1), k�, was measured to be (1.6 ± 0.9) × 10-36 × exp((4360 ± 

140)/T) cm6 molecule-2 s-1. In a prior study, the enhancement of reaction (1) by CH3OH 

was described in a similar fashion and measured to be (2.5 ± 2.4) × 10-36 × exp(-4570 ± 

120) cm6 molecule-2 s-1.17 If it is assumed that the rate of reaction (23) depends very little 

on temperature, then the temperature dependence of the enhancement can be shown result 

from the enthalpy change of Keq. In the present study, the enthalpy change for reaction (1) 

was measured to be -(8.66 ± 0.28) kcal mol-1. For reaction (4), the enthalpy change was 

measured to be -(9.1 ± 0.2) kcal mol-1. Both these values correspond to strong hydrogen 

bonded complexes. 
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 The similarity in enhancement between reactions (1) and (4) suggests that the 

process HO2 + CH3OH⋅X → Products, where X = HO2 or NO2, may occur at near 

collision frequency as has been suggested by prior researchers.16 

 

1.4.5 Conclusion 

 The effect of methanol on the observed rate of HO2 + NO2 was measured. This 

information was used to measure the rate constant of HO2 + NO2 in limit of zero 

methanol k1. IR spectroscopy was employed, minimizing the influence of the equilibrium 

between NO2 and N2O4 in determining the rate, a process not taken into account in prior 

studies. The results indicated that at temperatures lower than 250 K, k1 was lower than 

the current NASA recommended values. At 231 K, 100 Torr, k1 was nearly 10% lower. 

Parameterizations of the rate of k1 using a simplified Troe termolecular equation was 

done using the present data in addition to that taken by prior researchers. Only data that 

in which the effect of CH3OH was minimal was included. It was found that the simplified 

equation did not adequately describe all the data. However, it did describe the rate of 

reaction (1) in the pressure and temperature regime of importance to atmospheric 

chemistry. 

 The methanol effect was analyzed and found to be remarkable similar to that for 

the enhancement of the HO2 + HO2 system. This suggests that current models discussed 

in the literature approximate the process well. 
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Table 1.1. Cross sections for various species. 
species σ220nm a σ225nm a σ230nm a σ400nm a ref. 

HO2 3.41 2.88 2.30  18 
NO2 0.47 0.39 0.28 0.60 19 
N2O4 6.68 4.11 2.55  19 

HO2NO2 1.18 0.94 0.79  18 
H2O2 0.26 0.22 0.18  18 
Cl2    0.02 18 

ClNO2 3.39 2.83 2.26  29 
a units are 10-18 cm2 
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Table 1.2. Relevant reactions. 
Reaction Reference 

Cl + CH3OH → HCl + CH2OH NASA 
CH2OH + O2 → HO2 + CH2O NASA 

HO2 + HO2 → H2O2 + O2 My GRL 
NO + HO2 → NO2 + OH NASA 

OH + NO2 → HNO3 NASA 
OH + HO2 → H2O + O2 NASA 
Cl + HO2 → HCl + O2 NASA 

HO2 + NO2 + M → HO2NO2 + M NASA 
Cl + NO2 + M → ClONO + M NASA 
Cl + NO2 + M → ClNO2 + M NASA 
Cl + ClONO → Cl2 + NO2 NASA 
Cl + ClNO2 → Cl2 + NO2 NASA 

NO2 + NO2 + M → N2O4 + M This expt. 
N2O4 + M → NO2 + NO2 + M This expt. 
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Table 1.3. Fitted values at different temperatures. 

T (K) P a k1 
b k� c ko″ d k1/kJPL 

298 100 4.0±0.1 0.24±0.06 too noisy 1.00 
288 100 4.4±0.1 0.58±0.09 0.9±2.0 0.98 
273 100 5.1±0.1 1.5±0.2 4.5±3.2 0.93 
250 100 6.7±0.1 6.3±0.2 41±2 0.92 
240 100 6.9±0.1 13.8±0.4 80±5 0.83 
231 100 8.5±0.3 20.7±1.4 160±10 0.90 
231 200 9.4±0.4 23.0±1.9 200±60 0.66 

a units are Torr 
b units are 10-13 cm3 molecule-1 s-1 
c units are 10-29 cm6 molecule-2 s-1 

d units are 10-15 cm3 molecule-1 s-1 
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Table 1.4. Fitted values for Troe equation. 

Trial ko a n k∞ b m fit/kNASA 

1 2.4 ± 0.1 2.1 ± 0.3 1.9 ± 0.1 4.2 ± 0.4 0.93 
2 1.9 ± 0.1 3.7 ± 0.2 2.9 ± 0.1 1.1 ± 0.3 0.89 

a units are 10-31 cm6  molecule-2 s-1 
b units are 10-12 cm3 molecule-1 s-1 
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Figure 1.1. Experimental apparatus. 
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Figure 1.2. Simulated UV absorbances at 369.50 nm using FACSIMILE. 
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Figure 1.3. Decay of [HO2] due to the HO2 + NO2 reaction at different [CH3OH] at 
231 K, 100 Torr. 
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Figure 1.4. k′ versus [CH3OH] for various [NO2] at 231 K, 100 Torr. 



 36

3500

3000

2500

2000

1500

1000

500

k'
o 

 (
s-1

)

6543210

[NO2]  (molecules cm
-3

)

231 K

250 K

298 K

 
 

Figure 1.5. k′o versus [NO2]. The slope of the line is k1, the rate coefficient for the HO2 + 
NO2 + M reaction in the absence of methanol. 
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Figure 1.6. k1 versus T compared with the NASA recommendation and expected rate if 
the HO2 + NO2 reaction were studied using [CH3OH] = 3 × 1015 molecules cm-3. 
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Figure 1.7. k″ versus [NO2]. k″ represents the enhancement in the observed first-order 
rate due to methanol. The slope of the above plots represent the enhancement of the HO2 

+ NO2 + M reaction due to methanol. The intercepts represent the enhancement of the 
HO2 + HO2 reaction due to methanol. 
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Figure 1.8. k″o and k� versus T -1. 
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Figure 1.9.1. Comparison of UV and IR signals at 298 K. The UV signal was acquired at 
220 nm. 
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Figure 1.9.2. Comparison of UV and IR signals at 231 K. The UV signal was acquired at 
220 nm. 
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Figure 1.10. k′ versus [NO2]. Comparisons of IR and UV signals at 231 K and 298 K. 
The UV signals were acquired at 220 nm. 
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Figure 1.11. Measured rates of k1 from the present work (individual points) using 
[CH3OH] = 4 × 1014 molecules cm-3 compared with the NASA recommended values 

(lines). 
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Figure 1.12. Comparison of NASA recommended k1 versus k1 from new 
parameterization employing the kinetic data from this work with previous studies in 
which only measurements in which the influence of methanol was insignificant were 

used. 
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Chapter 2: Kinetics of HO2 + HO2 →→→→ H2O2 + O2: 

Implications for Stratospheric H2O2 

 

2.1 Introduction 

 The principal source of upper tropospheric and stratospheric H2O2 is the reaction 

  

  2 2 2 2 2HO  + HO  H O  + O →  (1) 

 

Reaction (1) is an important sink for HOx in the troposphere because H2O2 is scavenged 

by aerosols and clouds. In the stratosphere, H2O2 serves as a temporary reservoir for HOx. 

 Remote measurements of stratospheric [H2O2] have indicated that our 

understanding of the H2O2 budget is incomplete. Measurements, shown below, by the 

balloon-borne MkIV and FIRS-2 spectrometers indicate that photochemical models 

employing recommended rate constants significantly over-estimate [H2O2] in the lower to 

middle stratosphere. This has prompted researchers to explore previously unrecognized 

loss processes for H2O2 such as the H2O2 + O3 reaction.1 So far, laboratory studies have 

been unable to explain the discrepancy. 

 Reaction (1) has been widely studied (see references in DeMore et al.2). However, 

there are comparatively few studies below 273 K. The NASA2 and IUPAC3 

recommendations at low temperatures have been influenced by studies that employed 
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CH3OH as a precursor for HO2. It has been demonstrated that the observed rate of 

reaction (1) is enhanced in the presence of CH3OH, H2O, and NH3 and that this rate 

enhancement is more pronounced at low temperatures4-6. The effect of methanol has been 

the subject of only one study, at 278 K and 299 K. 

 In the present study, the effect of methanol on reaction (1) was examined over the 

temperature range 222 K to 295 K. We defined k1 as the rate constant for reaction (1) in 

the limit of zero added methanol and derived k1(T) at 100 Torr of combined O2 (40%) and 

N2 (60%). The temperature dependence of the methanol enhancement effect was also 

measured. The new value of k1(T) was used to compare measured volume mixing ratio 

(VMR) profiles of stratospheric H2O2 with model calculations. 

2.2 Experimental Details  

 The experiments were performed in a pulsed laser photolysis kinetic spectroscopy 

apparatus described in detail in Chapters 1 and 5. Briefly, HO2 was generated in a 2-m 

long temperature-controlled flow cell by laser photolysis at 308 nm of either Cl2 or F2 in 

the gas mixtures CH3OH/O2/N2 and H2/O2/N2, respectively. The laser fluence was 120 mJ 

pulse-1. HO2 decay curves were monitored simultaneously by UV and near-IR diode laser 

spectroscopy. The measurements made in the UV are the subject of this paper. The near-

IR measurements of [HO2], which did not contain any spectral interference from other 

species and supported the UV measurements, are discussed in Chapter 3. The 

concentrations and specifications of the gases and methanol are listed in Table 2.1. 

 The photolysis beam traveled coaxially through the reaction cell (5-cm diameter) 

resulting in a photolysis volume with a cross section of 1 cm by 2 cm. Reagent gases 

were mixed and cooled prior to entering the middle of the reaction cell. N2 buffer gas was 
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flowed into both ends of the cell, constraining the reagent gases to an evenly mixed 

134 cm long region. This was verified from measurements of gases with flow-meter 

calibrated concentrations and known cross sections and further verified by examinations 

of second-order reactions involving CH3O2 and CH3CH2O2 which yielded results 

consistent with observations made by prior investigators. The residence time of the gas 

was 3 seconds, and a photolysis flash occurred every 3.5 seconds. Methanol was added to 

the cell by bubbling N2 through liquid methanol that was situated in a temperature-

controlled bath. 

 Light from a 150 W deuterium lamp was propagated collinearly with the 

photolysis beam and made a single pass of path length 134 cm.  HO2 was detected by UV 

absorbance at 220.00 nm. The rate of decay was corrected to account for the time-

dependent absorbance by H2O2, a product of reaction (1) 5. The value used for the cross-

sections of HO2 and H2O2 at 220.00 nm were 3.41 ⋅ 10-18 cm2 and 2.58 ⋅ 10-19 cm2, 

respectively.2,7 Both cross sections were assumed to be independent of temperature and 

pressure. 

 We defined kobs as the second-order rate constant, measured in the presence of 

methanol, and corrected for absorbance of H2O2. In each experiment, we measured the 

HO2 decay over 38 milliseconds. At a given temperature and methanol concentration, kobs 

was determined from the average of 3 individual experiments. At each temperature, kobs 

was measured at 5 to 10 different methanol concentrations. As shown below, kobs was 

linearly dependent on [CH3OH]. We expressed the enhancement due to methanol as 

 

  obs 1 3[CH OH]k k k= + ″⋅  (2) 
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where k1 is the rate constant of reaction (1) in the limit of zero methanol, k″ is the 

enhancement factor due to the presence of methanol. Equation (2) was fit to kobs vs. 

[CH3OH]. From the fit, k1 was determined from the y-intercept and k″ was determined 

from the slope. 

 The uncertainty (2σ) in kobs due to the statistical noise in the UV signal was 2% 

while the uncertainty in determining [CH3OH], which in turn was due to the fluctuations 

in measured gas flows and temperature of the bath surrounding the methanol, was 5%. 

The relationship between kobs and [CH3OH] was not well described by equation (2) at 

222 K. This was correlated with slight deviations from second-order rate behavior at high 

[CH3OH].  

 Seven different temperatures, from 222 K to 295 K, were investigated. The 

temperature dependences of k1 and k″ were fit to the Arrhenius expression k(T) = 

A ⋅ exp[-(Ea/R)/T] using weighted non-linear least-squares fitting. Weights were the 

uncertainties derived from the linear fitting of k1 and k″ and the uncertainty in 

temperature (±1 K). 

 The effects of secondary reactions were considered as a possible cause for the 

observed rate enhancement. At all temperatures, the maximum [HO2] did not change for 

[CH3OH] > 1 ⋅ 1015 molecules cm-3; at the lowest [CH3OH] employed, maximum [HO2] 

decreased by 10%. Competing secondary reactions such as Cl + O2 and Cl + HO2 would 

account for the decrease in maximum [HO2]. The kinetics modeling program 

FACSIMILE8 was employed to ascertain the effects of these secondary reactions. It was 

found that their effects were negligible. More than half of the experiments were done 
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with [CH3OH] > 1.0 ⋅ 1015 molecules cm-3. There was no discernable difference in the 

slope of kobs versus [CH3OH] above and below this methanol concentration. 

2.3 Laboratory Results and Discussion 

 The dramatic effect of methanol on the observed rate constant is demonstrated in 

Figure 2.1. At 295 K, there was very little change in kobs when [CH3OH] was varied over 

the range (1 to 5) ⋅ 1015 molecules cm-3. At 231 K, kobs more than doubled over the same 

range of [CH3OH]. 

 Figure 2.2 compares the temperature dependence of k1 with the JPL00-3 

recommended values at 100 Torr. At 295 K, our results are within 7% of the current 

recommended values, but at 231 K, we find that the rate constant is only 59% of the 

current recommended value. Our measured values (2σ) of A and Ea/R for k1 were 

(8.8 ± 0.9) ⋅ 10-13 cm3 molecule-1 s-1 and (-210 ± 26) K, respectively. 

 In order to validate the approach used in the derivation of k1, 308 nm photolysis of 

F2/H2/O2/N2 mixtures was used to produce HO2. These experiments were conducted at 

two temperatures, 231 K and 295 K. The results, plotted in Figure 2.2, show that k1 

values obtained by extrapolating to zero methanol were statistically consistent with k1 in 

the absence of methanol. Possible interferences from FO2 were determined to be 

negligible. 

 Our measured temperature dependence leads to a negative Ea that is half that 

reported by prior investigators. The study by Kircher and Sander5 (KS) is similar to the 

JPL and IUPAC recommendations and has influenced the recommendations for 

temperatures below 273 K. Their study was conducted between 240 K and 417 K and 
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employed [CH3OH] = (1 to 5) ⋅ 1015 molecules cm-3. The discrepancy between our results 

and those of KS can be explained by taking into account the enhancement in kobs by 

methanol. In Figure 2.2, we plot kobs(T), calculated for [CH3OH] = 3 ⋅ 1015 molecules 

cm-3, using the values for k1 and k″ measured in the present experiment. The plot 

demonstrates that we obtain the same observed reaction rate as KS under the same 

experimental conditions. The plot also shows that at temperatures below 240 K, the 

calculated rate constant begins to diverge from the recommended values. At 220 K, the 

calculated values are 2 times larger. 

 To date, there are five published experimental studies of reaction (1) at 

temperatures below 273 K. Studies conducted by KS, Lightfoot et al.9 and Takacs and 

Howard10 employed methanol. A study by Dobis and Benson11 inferred k1 indirectly from 

reactions initiated by Cl + C2H6 and has not influenced current recommendations. Maricq 

and Szente12 studied reaction (1) in the absence of methanol. They utilized F2/H2/O2/N2 

gas mixtures at 200 Torr and reported results similar to the current recommendations but 

in disagreement with our results at low temperatures. At 222 K, their results agree with 

the current recommendations, and are 40% higher than our value of k1 at zero-added 

methanol after extrapolating to 100 Torr using the JPL recommended pressure-

dependence. They analyzed HO2 decays over a shorter time period, when competing 

reactions are more important, and formed higher maximum [HO2] than in our experiment. 

 An Arrenhius plot for k″ is shown in Figure 2.3. The measured A and Ea/R values 

(2σ) for k″ were (2.5 ± 5.9) ⋅ 10-36 cm6 molecule-2 s-1 and (-4570 ± 240) K, respectively. 

Also plotted in Figure 2.3 are measurements of k″ by Andersson et al.6 which agree 

favorably with our results at the two temperatures they investigated, 278 K and 299 K. 
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 The rate enhancement due to methanol can be explained in terms of a hydrogen-

bonded complex. Prior investigators of the rate enhancement by CH3OH, H2O, and NH3 

on reaction (1) have postulated that the effect is due to a hydrogen-bonded complex that 

reacts with HO2 faster than HO2 reacts with itself.4-6 For methanol, the scheme can be 

described as 

 

  M
3 2 3 2CH OH + HO  CH OH HO → ⋅←   (3) 

  3 2 2 2 2 2 3CH OH HO  + HO  H O  + O  + CH OH⋅  →  (4) 

 

where k4 > k1. The temperature dependence of k″ can be shown to result from the 

enthalpy change due to equilibrium (3).13 The measured Ea/R for k″ in our experiment 

was equivalent to (-9.08 ± 0.48) kcal mol-1, which is consistent with the stabilization 

energy of a strongly hydrogen-bonded complex. This is discussed in Chapter 3. 

 Reaction (1) proceeds via a complex potential energy surface and displays 

pressure-dependent behavior. Both the NASA and IUPAC recommendations separate the 

expression for the overall rate constant into two terms, i.e., 

 

  1 o [M]k k k= + ′⋅  (0.5) 

 

where ko and k′ are the bimolecular and termolecular components, respectively. For the 

model calculations discussed below, we obtained ko from equation (0.5) using the JPL97-

4 recommended k′ = 1.7 ⋅ 10-33 ⋅ [M] ⋅ exp[1000/T], where the suggested uncertainty factor 

is 1.3 and 2 at 298 K and 220 K, respectively (see DeMore et al.2 for an explanation of 
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the uncertainty factor). The following best-fit Arrenhius parameters (2σ) were obtained 

for ko(T): A = (1.5 ± 0.2) ⋅ 10-12 cm3 molecule-1 s-1 and Ea/R = (-19 ± 31) K. 

2.4 Atmospheric Implications 

 Measurements of H2O2 from space using infrared spectroscopy are potentially a 

powerful way to ascertain [HOx] in the lower stratosphere and upper troposphere. In these 

regions of the atmosphere, loss of H2O2 by photolysis 

 

  2 2H O  2 OHhv →  (6) 

 

is nearly an order of magnitude greater than other combined gas phase loss processes.  

Assuming reaction (1) is the dominant source of H2O2, the relationship 

 

  { }2 6 2 2
2 24-hr ave

o

[H O ][HO ]
[M]

J
k k

⋅=
+ ′ ⋅

 (7) 

 

can be established between [HO2] and [H2O2], where J6 is the photolysis rate of H2O2. 

This relationship is sensitive to ko + k′ ⋅ [M], the rate coefficient of HO2 + HO2. 

 We tested our understanding of H2O2 � HOx photochemistry by comparing 

calculations using a constrained photochemical steady state model with observed profiles 

of H2O2. Profiles of H2O2, shown in Figure 2.4, were obtained by two balloon-borne 

Fourier transform spectrometers: the Harvard-Smithsonian FIRS-2 instrument that senses 

H2O2 thermal emission from 80 cm-1 to 170 cm-1 14 and the JPL MkIV instrument that 

uses mid-IR solar occultation.15 
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 Three sets of model calculations are shown in Figure 2.4 to illustrate the 

sensitivity of calculated H2O2 to certain kinetic parameters that govern HOx. The model 

calculations were constrained by measurements of temperature, O3, H2O, CH4, NOy, and 

Cly as well as profiles of sulfate aerosol surface area appropriate for the time of 

measurement15 (K. W. Jucks et al., manuscript in preparation, 2002). One calculation, 

denoted JPL00-3, used the current recommended rate constants.16 A second calculation, 

denoted Model A, used JPL00-3 rate coefficients and the rate of HO2 + HO2 from this 

study. A third calculation, denoted Model B, is identical to Model A except rate constants 

from the JPL97-4 evaluation were used for O3 + OH (denoted reaction (8)) and O3 + HO2 

(denoted reaction (9)). From the upper troposphere to the middle stratosphere, the 

partitioning of HOx is mainly controlled by reactions (8) and (9). These reactions affect 

calculated [HO2], and therefore [H2O2] via the HO2 + HO2 reaction. We include reactions 

(8) and (9) in our sensitivity study because the recommended rates have recently 

changed. We note that at low temperatures, JPL97-4 rates for these reactions lead to 

lower calculated [HO2] and better agreement with measured [HO2]/[OH] in the lower 

stratosphere.17 

 Use of the new rate for HO2 + HO2 (Models A and B) in the photochemical 

simulation leads to significantly better agreement with measured H2O2 than is found 

using JPL00-3 kinetics (Figure 2.4). Changes to the rates of reactions (8) and (9) have a 

smaller effect on calculated H2O2 than the effect due to using the new rate of HO2 + HO2. 

Nonetheless, use of JPL97-4 rates for reactions (8) and (9) together with the new rate for 

HO2 + HO2 leads to slightly better overall agreement with measured H2O2 than is found 

using JPL00-3 rates for reactions (8) and (9). Because our new rate for HO2 + HO2 differs 
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from the current recommendation mainly at low temperatures, the impact on model 

calculations will be small for both the middle troposphere and the upper stratosphere. The 

comparisons in Figure 2.4 suggest that, using the new rate coefficient for HO2 + HO2, the 

kinetics governing the production and loss of H2O2 are well understood and that remote 

measurements of [H2O2] can therefore be used to infer stratospheric [HOx] and place 

strong constraints on upper tropospheric [HOx]. 
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Table 2.1.  Experimental Conditions. 

HO2 Source 
[Cl2] 

 
1015 cm-3 

[F2] 
 

1016 cm-3 

[CH3OH] 
 

1014 cm-3 

[H2] 
 

1017 cm-3 

[O2] 
 

1018 cm-3 

[N2] 
 

1018 cm-3 

Cl + CH3OH → HCl + CH2OH 
CH2OH + O2 → HO2 + CH2O 9-11  2-130  1.2-1.4 1.8-2 

F + H2 → HF + H 
H + O2 + M → HO2 + M  7.5-8.5  3-20 0.3-2 0.5-1.5 

Purities 
(All gases from AirProducts) 99.5% 97.0% HPLC 

J.T. Baker 99.999% 99.996% 99.9993% 
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Figure 2.1. Plot of kobs as a function of [CH3OH] at 231 K (●) and 295 K (○). Error bars 
represent 2σ uncertainties in the measurement precision (see text). 
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Figure 2.2. Plot of the rate constant of reaction (1) as a function of inverse temperature at 
100 Torr. Filled circles are k1 values from experiments using Cl2/CH3OH/O2/N2 at 100 

Torr. The solid line is the fit to these values. Values of k1 obtained using F2/H2/O2/N2 are 
denoted by open circles. The dashed line is the JPL00-3 recommendation for k1 at 100 

Torr. Also shown are calculated kobs values using k1 and k″ measured in the present study 
and [CH3OH] = 3 ⋅ 1015 molecules cm-3 denoted by (×). The results of Kircher and Sander 
are represented by (∆). Error bars (2σ) for Kircher and Sander are capped. Error bars for 

the present study are not capped. 
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Figure 2.3. Plot of k″ as a function of inverse temperature from the present study at 
100 Torr (●) and from the Andersson et al. study at 760 Torr (□). Error bars are 2σ. 
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Figure 2.4. Measured and modeled profiles of H2O2 VMR for two seasons near Ft. 
Sumner, NM (34.5°N), as indicated at the top of each panel. Error bars represent 1σ 

uncertainty for the measured profiles. The solid lines show calculated [H2O2] profiles 
using JPL00-3 kinetics (Model JPL00-3). The long dashed lines show profiles found 

using the new rate coefficient for HO2 + HO2 and JPL00-3 kinetics for all other reactions 
(Model A). The short dashed lines show profiles using the new rate coefficient for HO2 + 
HO2, JPL97-4 coefficients for OH + O3 and HO2 + O3, and JPL00-3 kinetics for all other 

reactions (Model B). The left and right panels depict results for spring and fall, 
respectively. 
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Chapter 3: The Methanol Chaperone Effect on HO2 

Reactions 

 

 

3.1 Introduction 

 The HO2 + HO2 reaction plays an important role in combustion and atmospheric 

chemistry. HO2 is an intermediate in the oxidation of hydrocarbons, and its self-reaction 

is the primary source of H2O2 in the stratosphere and upper troposphere. 

 Laboratory experiments have demonstrated that the observed rates of the HO2 + 

HO2 and HO2 + NO2 + M reactions are enhanced in the presence of H2O, NH3, and 

CH3OH.1-6 This enhancement has been attributed to the formation of the hydrogen-

bonded complex HO2·X, where X = H2O, NH3, or CH3OH. It is assumed that the HO2·X 

complex is more reactive towards other species, such as HO2 and NO2, than uncomplexed 

HO2. Under typical laboratory conditions, the formation and dissociation of the complex 

is believed to be essentially instantaneous in comparison to the loss of HO2 due to 

chemical reaction; therefore, equilibrium is established between HO2, X, and HO2·X. If 

the equilibrium assumption is made, then the ratio of [HO2·X] to [HO2] increases linearly 

with the concentration of X. In effect, by the formation of a hydrogen-bonded complex, 

X �chaperones� HO2, making it more reactive towards other species. This is often termed 

the �chaperone effect.� 

 This chapter presents experimental evidence for the formation of the HO2·CH3OH 

complex. By measuring the time dependence of the HO2 signal in a laser-photolysis 
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experiment, we directly observed the establishment of equilibrium between CH3OH, HO2 

and HO2·CH3OH and determined the equilibrium constant at temperatures between 231 K 

and 261 K and at 50 and 100 Torr. We measured the rate coefficient for the HO2 + 

CH3OH + M reaction and inferred the dissociation rate of the HO2·CH3OH complex. The 

complex mechanism is further supported by comparisons of our experimental results with 

ab initio calculations for the binding energy and geometry of HO2·CH3OH made at the 

MP2 and CCSD(T) levels of theory. Furthermore, we measured the observed rate 

coefficient for the HO2 self-reaction as a function of methanol concentration 

simultaneously with UV an IR spectroscopy. From these measurements, we determined 

rate coefficients for the HO2 + HO2·CH3OH and HO2·CH3OH self-reaction. 

  

3.2 Experimental 

 The experimental apparatus is described in Chapters 1 and 5. Briefly, a 308 nm, 

100 mJ/pulse excimer laser was used to photolyze either Cl2 or F2, initiating chemical 

reactions in a temperature controlled reaction cell. IR and UV light sources probed the 

temporal dependence of species within the reaction cell. 

 An IR beam emitted from a distributed feedback diode laser monitored the 

temporal behavior of HO2 formed within the reaction cell. The diode laser probed a group 

of blended ro-vibrational HO2 transitions near 6638.2 cm-1 associated with the OH 

overtone stretch (2ν1) and nominally assigned to the qQ2 band head. The diode laser was 

wavelength modulated, and 2f-Heterodyne detection was employed for the IR 

measurements. The signal was calibrated by simultaneously measuring the second-order 

rate coefficient of the HO2 self-reaction with IR and UV probes, as described in Chapter 
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1. Briefly, photolysis of F2-H2-O2-N2 gas mixtures was used to generate HO2. Using this 

method of HO2 generation, problems from complex formation between HO2 and other 

species present in the reaction cell were minimized. The measurement of the time-

dependent UV signal at 220 nm, corrected to give the HO2 concentration, provided a rate 

coefficient in units of cm3 molecule-1 s-1 while the IR measurement determined a rate 

coefficient in units of V-1 s-1. The ratio of the rate constants provided the scaling factor 

that was used to convert the IR signal, in Volts, to molecules cm-3. 

 The IR signal was sensitive only to HO2. This was verified by studying the HO2 

self-reaction using three distinct ro-vibrational HO2 transitions between 6625 cm-1 and 

6638.2 cm-1. No significant discrepancies in the temporal dependence of the HO2 signal 

were observed. Also, direct measurements of HCl, H2O2, and CH2O ruled out their 

contributions in this spectral region. Methanol does absorb in this spectral region, but its 

2f signal was insignificant at 6632.8 cm-1. We found no evidence for absorption by 

HO2·CH3OH at 6638.2 cm-1, nor was it expected. Ab initio calculations of the 

HO2·CH3OH complex, indicated that most of the hydrogen-bonding occurred between the 

terminal H atom of HO2 and the O atom of CH3OH.7 The effect of hydrogen bonding on 

overtone transitions is typically to decrease the intensity and shift the transition to lower 

frequency.8 Ab initio calculations have indicated that for the HO2·H2O complex, a red 

shift of around 300 cm-1 is expected for the O-H stretch.9 Thus, the overtone band of the 

complex should be shifted completely out of the frequency range of the diode laser. 

 The UV beam from a D2 lamp measured the change in absorbance at 220 nm, 

which was mainly due to HO2 and H2O2. However, it is possible that the HO2·CH3OH 

complex would also absorb at this wavelength. The UV light excited the 2 2A″ ← X 2A″ 
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transition of HO2. Ab initio calculations have indicated that the analogous transition in 

the complex would be red-shifted by approximately 60 nm.10 To date, the UV spectrum 

of the complex has not been experimentally observed. In previous studies of the methanol 

enhancement of the HO2 self-reaction, it was noted that the dependence of the observed 

rate coefficient on methanol concentration was consistent with the assumption that HO2 

and the complex had similar UV cross sections at 220 nm. Similar arguments were made 

for the UV absorption of the HO2·NH3 and HO2·H2O complexes as well. However, these 

inferences are indirect, and no quantitative data yet exists on the relative magnitudes of 

the UV cross sections of HO2 and any HO2·X complex. 

 All kinetic modeling discussed in this paper utilized the FACSIMILE modeling 

program.11 The FACSIMILE program was used to evaluate the impact of possible 

secondary reactions on the data analysis, rather than to determine any experimental 

parameters. It was also used to verify the analytical expressions derived for the time 

dependence of the HO2 signal as well as the analytical expressions derived for the 

observed rate constant for the HO2 self reaction for the IR and UV channels. The 

chemical reactions used in the kinetic modeling are listed in Table 3.1. The sources for 

the values of the rate coefficients are also listed in the table. Most of the rate coefficient 

values were taken from the 1997 NASA compendium.12  

 For this work, two different methods of HO2 generation were employed. The 

methods differed in which halogen species was photolyzed and which reagents were 

employed for HO2 formation. 
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 In the first approach, photolysis of F2-H2-O2-N2 gas mixtures was used to 

calibrate the IR signal and to confirm the trend of the observed rate of HO2 + HO2 with 

methanol. The HO2 formation chemistry is as follows: 

   

  2F   2 Fhv →  (1) 

  2F + H   HF + H →  (2) 

  M
2 2H + O   HO →  (3) 

  

Table 3.2 lists the gas concentrations employed. The effect of secondary formation of 

FO2 via F + O2 + M on the UV signal was considered, because FO2 absorbs strongly in 

the UV and the dissociation of FO2 into F + O2 is thought to be in the range of 40 s-1 to 

80 s-1 at 300 K and 100 Torr.12 Thus, FO2 could contribute to a UV signal that decayed on 

the timescale of the HO2 self-reaction in the present experiment. However, the effect of 

FO2 could be neglected for three reasons. First, we found good agreement between the 

measured IR and UV rate coefficients for the HO2 self-reaction. If there were spectral 

interference in the UV channel, the IR and UV measurements would differ. Second, the 

residual absorption in the UV was constant after the self-reaction had completed and 

consistent with the formation of H2O2 product from the HO2 self-reaction. Finally, at the 

highest ratio of [O2]/[H2] employed, [O2]/[H2] = 3, the maximum fraction of F atoms 

predicted to react with O2 as opposed to H2 (based on the rate coefficients in the 1997 

NASA compendium for F + O2 + M and F + H2) at [O2]/[H2] = 3, was approximately 

0.2% at 300 K and 0.5% at 230 K. This amount of FO2 would not contribute significantly 
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to the UV absorption, nor would it affect the time dependence of [HO2] through 

secondary chemistry. 

 F and H atom concentrations were high at early times. However, kinetic modeling 

determined that under typical conditions used in the fluorine chemistry, reactions of these 

atoms with HO2 could be neglected. The time constant for HO2 formation was in the µs 

regime and the time constant for F disappearance was in the 100 ns regime. Because [H2] 

>> [HO2], possible complications arising from F + HO2 were determined to be minimal. 

During the first 20 µs, H atoms co-exist with HO2 due to the reaction F + H2 → HF + H. 

The pseudo-first-order rate of H consumption by O2 was approximately 2 × 105 s-1 at 

100 Torr. Kinetic modeling determined that the H + HO2 reaction was unimportant. 

 For most of the experiments discussed in the present work, the second method for 

HO2 generation, by photolysis of Cl2-CH3OH-O2-N2 gas mixtures, was employed. The 

reaction sequence is as follows: 

 

  2Cl   2 Clhv →  (4) 

  3 2Cl + CH OH  HCl + CH OH →  (5) 

  2 2 2 2CH OH + O   HO  + CH O →  (6)  

  M
3 2 3 2M

CH OH + HO   CH OH HO → ⋅←   (7,-7) 

  2 3 2HO  + CH OH HO   Products⋅  →  (8) 

  2 3 2 3HO CH OH + HO CH OH  Products⋅ ⋅  →  (9) 

  bi-molecular
2 2 2 2 2ter-molecularHO  + HO   H O  + O →  (10) 

HO2 
formation 

Complex 
formation/ 
dissociation 

HO2 and 
HO2·CH3OH 
chemical loss 
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Table 3.2 lists the gas concentrations employed. The values of the rate coefficients for the 

reactions listed above are given in Table 3.2. The values for reactions (1) through (6) 

were taken from the 1997 NASA compendium12 and the value for reaction (10) was taken 

from Chapter 2. The rate coefficient values for reactions (7) through (9) were measured 

in the present study. The concentrations of O2 and CH3OH were sufficiently high in 

comparison to other reactive species so that bi-molecular reactions involving either O2 or 

CH3OH could be considered as pseudo-first-order. 

 There are three main kinetic processes to consider in the above reaction scheme: 

HO2 formation via reactions (5) and (6); complex formation and dissociation via 

reactions (7) and (-7); and total HO2 and HO2·CH3OH loss via reactions (8), (9) and (10). 

 Complications from reactions not listed in the scheme above were considered 

insignificant. The effect of the Cl + HO2 reaction was negligible because of three reasons: 

first, most Cl atoms had reacted with CH3OH before HO2 concentrations became 

appreciable; second, [CH3OH] >> [HO2], so virtually all Cl atoms reacted with CH3OH; 

third, k5 is within an order of magnitude of the collision limit. Kinetic modeling 

demonstrated that the Cl + HO2 reaction accounted for less than 0.1% of the loss of Cl at 

[CH3OH] = 1 × 1016 molecules cm-3 at all temperatures when the NASA recommend 

values12 for the Cl + HO2 reaction were used. Kinetic modeling also showed that the 

reaction between HO2 + CH2OH was insignificant, because the O2 + CH2OH rate 

coefficient is large and also [O2] >> [HO2]. 

 For both photolysis schemes, secondary products are formed that can potentially 

form a hydrogen-bond with HO2. For F2-photolysis, every F atom produced results in one 
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HF molecule formed. For Cl2-photolysis, every Cl atom results in one CH3OH lost, and 

one HCl and CH2O gained. For both schemes, H2O2 is a product of the subsequent 

reactions of HO2. If it is assumed that HF, HCl, CH2O, and H2O2 have the same rate 

enhancing effect as CH3OH, then the calculated enhancement due to secondary product 

formation, at 231 K, 100 Torr, and [Cl]o = [F]o = 8 × 1013 atoms cm-3, is less than 8%, 

based on prior measurements of the rate enhancement due to methanol, explained in 

Chapter 2. This calculation assumed the value of [H2O2] from the completed HO2 + HO2 

reaction. No corrections were made to any measured parameters due to possible rate 

enhancement from secondary products in the present work. 

 This paper discusses three distinct sets of direct measurements: measurements of 

the equilibrium constant between HO2, CH3OH, and HO2·CH3OH, denoted Kc, where the 

subscript �c� refers to the fact that it is expressed in terms of concentration as opposed to 

pressure; measurements of k7; and measurements of the observed rate coefficient for the 

HO2 self-reaction as a function of methanol concentration, denoted kobs. The term  

�observed� refers to that fact that 2[HO ]d
dt

 and { }2 2 3[HO ] [HO CH OH]d
dt

+ ⋅
, the loss 

rates for the IR and UV probes, respectively, are the aggregate of reactions (7) through 

(10).  

 Values for Kc were obtained by measuring the change in the equilibrium [HO2] as 

a function of [CH3OH] using IR detection. These measurements were conducted within 

the first 50 µs after photolysis. Measurements of k7 were conducted at different 

temperatures and pressures using IR detection. These measurements were also conducted 

within the first 50 µs after photolysis. The values of k7 and Kc where used to derive k-7. 

The UV probe was not utilized for measurements of Kc and k7 due to scattered light from 
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the excimer pulse, which saturated the PMT. The PMT signal was adversely affected 

until 200 µs to 400 µs after the photolysis event. Measurements of kobs as a function of 

methanol concentration used simultaneous IR and UV spectroscopy. These measurements 

were conducted between 200 µs and 38 ms after photolysis. From these measurements, 

the rate coefficients k8 and k9 were indirectly obtained. 

 A SRS SR560 low-noise preamplifier with a low-pass filter was used to provide 

gain to the demodulated signal. The low-pass filters had maximum bandwidths of 1 MHz 

and were not utilized for measurements of Kc and k7. It was observed experimentally that 

for a gain of 1000, which was the setting utilized for all experiments discussed in this 

paper, the inherent low-pass bandwidth of the preamplifier circuitry was approximately 

2 MHz (3dB point). Further, there was a phase-shift that imposed a measured delay of 

approximately 500 ns upon the signal entering the preamplifier. For measurements of 

kobs, the low-pass filters were set at the sampling rate of the data acquisition card housed 

inside the computer. The trigger came from a voltage drop induced by the excimer light 

impinging on a photodiode. The cable from the photodiode to the trigger input of the data 

acquisition card was approximately 2 meters. It was assumed that the time between the 

photolysis event and when the data acquisition card received the trigger signal was less 

than 50 ns.  

 After passing through the preamplifier, the signal was digitized at 16 bits of 

precision by a Gage Compuscope 1602 data acquisition card. The bandwidth of the 

sample and hold amplifier on the card was 1.25 MHz.  For measurements of Kc and k7, 

data were sampled at the highest rate possible, 2.5 MS s-1
, or a sampling interval of 

400 ns. For measurements of kobs, data were sampled between 20 kHz and 100 kHz. 



 71

 

3.3 Measurements of Kc 

 Measurements of Kc employed the Cl2-CH3OH-O2-N2 system for HO2 generation. 

A typical example of the influence of methanol on the HO2 signal is shown in Figure 3.1 

for experiments conducted at 251 K at different CH3OH concentrations. The figure 

demonstrates that the average signal between 20 µs and 50 µs, was greater at low 

[CH3OH]. The decrease in the HO2 signal upon addition of CH3OH was due to a shift in 

the equilibrium concentrations of HO2 and HO2·CH3OH. Addition of CH3OH promotes 

the formation of HO2·CH3OH at the expense of HO2. 

 The change in [HO2] between 20 µs and 50 µs was observed to be less than 5% 

under all conditions. This indicated that the loss of [HO2] due to reactions (8), (9), and 

(10) was less than 5% during the first 50 µs after photolysis. Subsequent kinetic modeling 

of the system using the measured values for reactions (8) and (9), given below, verified 

that the loss of HO2 was less than 5% during this time period. By 20 µs, HO2 formation 

was observed to be complete under all experimental conditions. This was verified by 

calculating the time constant for HO2 formation at the lowest [CH3OH] employed. This 

calculation yielded {k5(3 × 1015 molecules cm-3)}-1 = 6 µs. HO2 was observed to be in 

equilibrium with CH3OH and HO2·CH3OH by 20 µs, based on the constant [HO2] 

between 20 µs and 50 µs. The assumption that equilibrium was established by 20 µs was 

verified by measuring the rate coefficient for HO2 + CH3OH + M. It will be shown below 

that the first order rate constant for the establishment of equilibrium is approximately {k7

·[CH3OH] + k-7}. The rate constant can be re-written as k7{[CH3OH] + Kc
-1}. From 

measurements of Kc and k7, discussed below, {[CH3OH] + Kc
-1} > 2 × 1016 molecules 
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cm-3 and k7 ~ 4 × 10-12 cm3 molecule-1 s-1. Therefore k7{[CH3OH] + Kc
-1}, the rate at 

which equilibrium is established, was greater than 8 × 104 s-1. This was equivaltent to a 

time constant of approximately 13 µs. 

 A simplified kinetic scheme can be written for the establishment of equilibrium 

during the first 50 µs after photolysis. Assuming the loss of {[HO2] + [HO2·CH3OH]} via 

reactions (8), (9), and (10) is negligible, the kinetics of HO2 formation and subsequent 

kinetics of the formation and dissociation of HO2·CH3OH can be simplified as follows: 

 

  ba
2 2 3-b

Cl  HO   HO CH OH → → ⋅←   (11) 

 

where ka ≈ k5·[CH3OH] for [CH3OH] < 0.1 × [O2], which was true for all experiments, kb 

= k7·[CH3OH], and k-b = k-7. In effect, Cl atoms are transformed into {[HO2] + 

[HO2·CH3OH]} and the partitioning of [HO2] and [HO2·CH3OH] is determined by Kc. 

The time dependence for [HO2] can be expressed as 

 

  a- t - t-b -b a a b
2 o

a a

[HO ] [Cl]
( )

kk k k k ke e
k k

λ

λ λ λ λ
 −= + + − − 

 (12) 

 

where λ = kb + k-b. The condition [HO2]/dt = 0 exists at t = ln[kb/(ka - k-b)]/(λ - ka). This 

implies that in order for there to be an observable maximum HO2 signal, [CH3OH] > k-7

/k5, that is, the concentration of methanol has to be sufficiently high. As can be seen in 

Figure 3.1, at sufficiently high [CH3OH], a non-equilibrium system was clearly 
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established within a few µs in which [HO2] > [HO2]eq. The system then �relaxed� 

towards equilibrium on the timescale of several µs. 

 At a given temperature, [HO2]eq was measured as a function of [CH3OH]. Let 

[HO2]eq,o represent [HO2]eq in the limit of zero added methanol. The following formula 

can used to relate [HO2]eq,o  to [CH3OH], enabling the determination of [HO2]o: 

 

  { } { } { }-1 -1 -1

2 eq eq 2 eq,o 3 2 eq,o[HO ] = [HO ] [CH OH]+ [HO ]K ⋅ ⋅  (13) 

 

From a linear fit, the value of [HO2]eq,o is obtained. Equation (13) can be re-written as 

 

  2 eq,o
eq 3

2 eq

[HO ]
= 1 + [CH OH]

[HO ]
K  (14) 

 

The slope of equation (14) gives Kc. Plots of [HO2]eq,o/[HO2]eq versus [CH3OH] are 

shown in Figure 3.2 for experiments done at 231 K and 261 K. The value of Kc was 

measured at 231 K, 240 K, 251 K, and 261 K. At each temperature, between 10 and 15 

observations were used to infer Kc. The measured values for Kc (T) are listed in Table 3.3. 

 The van�t Hoff equation was used to infer ∆H and ∆S from a weighted fit of Kp(T) 

versus T using the equation Kp(T) = A·exp(∆H/RT). Kp(T) = Kc(T)·(6.022×1020 molecules 

L mol-1 cm-3)·(RT)-1, where R = 0.0821 L atm mol-1 K-1.  From the fit, the obtained values 

were A = (1.0 ± 1.0) × 10-5 L mol-1 and ∆H = (-36 ± 3) kJ mol-1. The value of A translates 

to ∆S = (-96 ± 96) J mol-1 K-1. 
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 The uncertainty (1σ) in determining [HO2]o ranged from 3% at 231 K to 

approximately 20% at 261 K. Error due to inaccurate calibration of the IR signal was 

insignificant because the calibration factor is ratioed out of equations (13) and (14). The 

combined uncertainty in the knowledge of the vapor pressure of CH3OH, the flow of gas 

through the bubbler, and the temperature of the liquid bath in which the bubbler was 

placed was approximately 5% at all temperatures. The uncertainty in determining [HO2]eq 

due to noise in the IR signal was approximately 3-5% of [HO2]eq,o. Uncertainty in the 

accuracy of Kc due to temperature was 8% at 231 K, and 6% at 261 K. When added in 

quadrature, the final uncertainty for Kc(T) was between 10% and 20%. 

 

3.4 Measurements of k7 and k-7 

 The values of k7 and k-7 were derived from a subset of the experimental data used 

to determine Kc. Only experiments in which the decrease in the HO2 signal due to 

reaction (7) was more than five times greater than the standard deviation of [HO2]eq were 

analyzed. Of the 57 individual observations, only 15 met this criterion. 

 As stated in the Experimental section, the preamplifier introduced a delay in 

signal digitization relative to the photolysis event that resulted in uncertainty in the 

knowledge of when the photolysis event occurred. Also, the resolution of the signal with 

respect to time was 400 ns. The expected rise times of HO2 were on the order of 100 ns to 

several µs, which meant that attempts to fit the HO2 time dependence with a kinetic 

model were subject to an error due to a lack of time resolution. Further, the first 1.2 µs of 

data after photolysis was heavily affected by noise associated with the excimer laser. To 
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address of these concerns, a simplified kinetic scheme was used to describe the time 

dependence of [HO2] as follows: 

 

  7 3

-7

[CH OH]
2 2 3[HO ]  [HO CH OH]

k

k

⋅→ ⋅←   (15) 

 

For such a scheme, the time dependence for [HO2] can be expressed as 

 

  ( )( )7 3 -7[CH OH]7 3
2 2 o

7 3 -7

[CH OH][HO ] [HO ] 1
[CH OH]

k kk e
k k

− + 
= − + 

 (16) 

   

where [HO2]o represents [HO2] at time = 0. For equation (16) to be valid, loss of [HO2] 

and [HO2·CH3OH] by reactions (8), (9), and (10) has to be insignificant and production 

of HO2 via reactions (5) and (6) has to be complete before the signal was analyzed. The 

former condition was met by limiting the analysis to within 20 µs after photolysis. As 

discussed above for measurements of Kc, the decrease in the HO2 signal between 20 µs 

and 50 µs was less than 5%. This indicated that loss of [HO2] and [HO2·CH3OH] by 

reactions (8), (9), and (10) was insignificant. The time constant for HO2 formation was 

calculated to be less than 1 µs for all individual experiments that qualified for analysis by 

equation (16). Because the start of fitting was at (1.6 ± 0.2) µs, that latter condition for 

analysis by equation (16) was met. The uncertainty in the time of fitting was due to the 

resolution of the measurements. 

 The values of k7 and [HO2]o were allowed to vary. The measured values of 

[CH3OH] and [HO2]eq were held constant. The fitted value of Kc(T) was used to replace 
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k-7 with k7/Kc. This ensured that the fitting process was sensitive to k7. Use of equation 

(16) removed errors associated with the sampling intervals that were much longer than 

the time for HO2 formation. The value of [HO2]o was not a meaningful quantity since it 

was an extrapolation. Fits were done between 1.6 µs and 20 µs. An example of a fit is 

shown in Figure 3.4 for 240 K, 100 Torr, and [CH3OH] = 9.1 × 1016 molecules cm-3. 

Measured values for k7 at different pressures and temperatures are listed in Table 3.3. 

Errors due to uncertainty in the calibration of the IR signal were negligible because the 

calibration factor was ratioed out of equation (16). 

 

3.5 Kinetic Measurements of kobs as a Function of Methanol Concentration 

 In contrast to the measurements of Kc and k7, conducted within the first 50 µs 

after photolysis, measurements of kobs were done between 200 µs to 38 ms. In this time 

regime, HO2, CH3OH, and HO2·CH3OH can be assumed to be in equilibrium because the 

time constant for the establishment of equilibrium was on the order of µs, as discussed in 

section 3.3, and the timescale of the observed HO2 loss was on the order of milliseconds. 

Rate coefficients were obtained in both the UV and IR, and are denoted kobs,ir and kobs,uv 

respectively. Results for kobs,uv at 100 Torr and between 222 K and 298 K have been 

presented previously in Chapter 2. Comparisons between kobs,ir and kobs,ir are shown in 

Figure 3.5 for the temperatures 295 K and 241 K. Overall, it was observed that for T ≥ 

241 and [CH3OH] < 6 × 1015 molecules cm-3, kobs,ir ≈ kobs,uv. It was observed that kobs,ir and 

kobs,uv were second-order under these same conditions. The criteria for being second-order 

was that the measured value of the rate coefficient not change by more than 10% between 

fits that were conducted from 250 µs to 10 ms and fits that were conducted from 250 µs 
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to 20 ms. Typical examples of data collected at 231 K and 100 Torr for both the IR and 

UV channels are shown in Figures 3.6.1 and 3.6.2. To aid in ascertaining the signal-to-

noise, the span of the residual plots on the figures are 20% of the maximum signal 

acquired for each channel. 

 At 231 K, there were significant differences between the IR and UV 

measurements. As depicted in Figure 3.7, for [CH3OH] > 5 × 1015 molecules cm-3, the 

difference between kobs,uv and kobs,ir was greater than the scatter in the rate measurements, 

and kobs,ir > kobs,uv. It was observed that for [CH3OH] < 2 × 1016 molecules cm-3, kobs,ir met 

the criterion for second-order reactivity. However, at [CH3OH] ~ 5 × 1015 molecules 

cm-3, measurements of kobs,uv done over 10 ms were about 10% larger than those 

conducted over 20 ms. At [CH3OH] ~ 1 × 1016 molecules cm-3, measurements done over 

10 ms were between 20% and 50% larger than those conducted over 20 ms. Figure 3.7 

also indicates that 
2

obs,ir
2

3

0
[CH OH]
d k

d
>  and 

2
obs,uv

2
3

0
[CH OH]
d k

d
< . 

 As discussed in the above in the Experimental section, IR signal was assumed to 

measure only [HO2] while the UV measured {[HO2] + [HO2·CH3OH]}. Previous 

investigators of the enhancement of the HO2 self-reaction by NH3 and H2O have derived 

an expression for the dependence of kobs,uv on [NH3] and [H2O].13 Following their 

example, kobs,ir and kobs,uv can be expressed as 

 

  ( )
2 2

10 8 c 3 9 c 3
obs,ir

c 3

[CH OH] [CH OH]
1 [CH OH]

k k K k Kk
K

+ ⋅ ⋅ + ⋅ ⋅=
+ ⋅

 (17) 

  
( )

2 2
10 8 c 3 9 c 3

obs,uv 2
c 3

[CH OH] [CH OH]
1 [CH OH]

k k K k Kk
K

+ ⋅ ⋅ + ⋅ ⋅=
+ ⋅

 (18) 
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The only difference between equations (17) and (18) is the exponent on the denominator. 

Equations (17) and (18) indicate that at low [CH3OH], kobs,ir ≈ kobs,uv ≈ k10 + k8·Kc 

·[CH3OH]. From Chapter 2, k8·Kc at 231K was determined to be approximately 1 × 10-27 

cm6 molecule-2 s-1.14 In that chapter, k8·Kc was equivalent to k′. Using the value Kc(231 K) 

≈ 5 × 10-17 cm3 molecule-1, determined in the present study, k8 ≈ 2 × 10-11 cm3 molecule-1 

s-1. 

 From equation (17), it can be shown that the observation 
2

obs,ir
2

3

0
[CH OH]
d k

d
> , which 

is evident in Figure 3.7, implies that k9 > (k8 � k10) ≈ 1.8 × 10-11 cm3 molecule-1 s-1. This 

indicates that the self-reaction of the complex occurs at a significant rate. 

 The data shown in Figure 3.7 was fit using equations (17) and (18) to determine 

values for k8 and k9. As stated above, the data was acquired at 231 K and 100 Torr. The 

values used for k10 and Kc were 2.2 × 10-12 cm3 molecule-1 s-1 and 4.8 × 10-17 cm3 

molecule-1
, respectively. The value of k10 was taken from Chapter 2 and the value of Kc 

taken from this work. The values of k10 and Kc were held constant during the fitting 

process. The fitted parameters for the IR data using equation (17) were: k8 = (2.3 ± 0.2) × 

10-11 cm3 molecule-1 s-1 and k9 = (7.1 ± 0.4) × 10-11 cm3 molecule-1 s-1. The fitted 

parameters for the UV data using equation (18) were: k8 = (3.1 ± 0.5) × 10-11 cm3 

molecule-1 s-1 and k9 = (3.3 ± 2.2) × 10-11 cm3 molecule-1 s-1. 

 The values acquired from fitting the IR data were considered more accurate than 

the values acquired in the UV. This judgement was based on the high degree of 

uncertainty in the individual UV measured rate coefficients due to poor signal-to-noise as 
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well as the fact that the UV signal departed significantly from second-order at high 

concentrations of methanol. Further, the assumption that HO2 and HO2·CH3OH absorb 

identically has not yet been experimentally verified. 

   

3.6 Discussion 

 Aloisio et al.15 measured ∆H = (-36 ± 16) kJ mol-1 for HO2 + H2O M

M
  →←   

HO2·H2O. In the present study, ∆H = (-36 ± 3) kJ mol-1 for HO2 + CH3OH M

M
  →←   

HO2·CH3OH. However, Aloisio et al. measured ∆S to be (-85 ± 40) J mol-1 K-1 whereas 

we determined ∆S = (-96 ± 96) J mol-1 K-1. The values of equilibrium constants they 

measured for H2O M

M
  →←   HO2·H2O were a factor of 3.5 larger than Kc measured in the 

present study. 

 Our calculations indicated that ∆H = -37 kJ mol-1 which is very similar to what 

we measured from experiment. However, the experimental values for Kc were a factor of 

16 to 18 higher than what was calculated. 

 As stated above, k8 = (2.3 ± 0.2) × 10-11 cm3 molecule-1 s-1 and k9 = (7.1 ± 0.4) × 

10-11 cm3 molecule-1 s-1. The observation of a fast rate coefficient for reaction (8) is not 

unexpected. However, the observation of a fast rate coefficient for reaction (9) is an 

important finding. Hamilton and Lii13 argued, based on experimental evidence, that the 

rate coefficient for reaction (9) was negligibly small. Bloss et al.16 measured k9 to be (3.2 

± 0.5) × 10-11 cm3 molecule-1 s-1. 
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3.7 Conclusions 

 We measured the value of Kc for HO2 + CH3OH ↔ HO2·CH3OH and the rate 

coefficient for the forward process. From these measurements, we inferred the 

dissociation rate for HO2·CH3OH. We compared measured values of Kc to theoretical 

calculations. We also measured the observed rate of the HO2 self-reaction in the presence 

of methanol and determined, indirectly, the rate coefficients for HO2 + HO2·CH3OH and 

the HO2·CH3OH self-reaction. Our results confirm that the mechanism responsible for the 

observed rate enhancement is due to the formation of a hydrogen-bonded complex. 
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Table 3.1. Relevant reactions. 
# in 
text Reaction  Ref. 

2 F + H2 → HF + H 1.4·10-10·exp(-500/T) NASA 

3 H + O2 + M → HO2 + M ko=5.7×10-32·(T/300)-1.6, k∞=7.5×10-11 NASA 

5 Cl + CH3OH → HCl + CH2OH 5.4·10-11 NASA 

6 CH2OH + O2 → HO2 + CH2O 9.1×10-12 NASA 

7 HO2 + CH3OH + M → HO2⋅CH3OH + M 4.0 × 10-12 at 231 K, 100 Torr this 
work 

-7 HO2⋅CH3OH + M → HO2 + CH3OH + M 8.5 × 104 s-1 at 231 K, 100 Torr this 
work 

8 HO2 + HO2⋅CH3OH → Products 2.3 × 10-11 at 231 K, 100 Torr this 
work 

9 HO2⋅CH3OH + HO2⋅CH3OH → Products 7.1 × 10-11 at 231 K, 100 Torr this 
work 

10 HO2 + HO2 → H2O2 + O2 1.5·10-12exp(19/T)+1.7·10-33·[M]·exp(1000/T) Chap. 2 
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Table 3.2. Experimental conditions. 
Measurements of Keq, k7 and k-7 

Temp 
K 

[M] 
Torr 

[Cl2] 
1014 cm-3 

[O2] 
1018 cm-3 

[CH3OH] 
1016 cm-3 

[N2] 
1018 cm-3 

231 50 30 - 33 0.9 - 1.5 0.5-2.4 0.9 �1 .5 
231 100 5.4 - 7.1 1.6 0.3-2.2 1.6 
240 100 4.3 - 9.1 2.7 - 3.5 1.4-9.1 0 � 0.8 
251 100 6.1 - 9.6 2.2 - 3.4 5.1-28 0 � 1.2 
261 100 4.3 - 14 2.2 - 3.3 4.5-33 0 - 1.1 

Measurements of kobs at 100 Torr 
HO2 

source 
[F2] 
1016 

[Cl2] 
1015 cm-3 

[O2] 
1018 cm-3 

[CH3OH] 
1014 cm-3 

[H2] 
1017 cm-3 

[N2] 
1018 cm-3 

Cl2 + hν  5-11 1-2 2-200  1.8-2 
F2 + hν 2-8  0.3-1  3-10 0.5-1.5 

gas 
purity 97% 99.5% 99.996% HPLC 99.999% 99.9993% 
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Table 3.3. Values of Keq, k7, and k-7. 

T (K) P 
(Torr) Keq a SD a # of 

runs k7 b SD b (k7/Keq) = k-7 
c # of 

runs 
231 50 4.9×10-17 5×10-18 5 2.5 0.6 5.2×104 2 
231 100 4.9×10-17 5×10-18 10 4.0 0.8 8.5×104 2 
240 100 2.2×10-17 5×10-18 12 4.8 1.5 1.9×105 5 
251 100 1.1×10-17 2×10-18 15 3.2 1.8 2.8×105 4 
261 100 6.8×10-18 1×10-18 15 2.6 1.4 4.0×105 2 

a in units of cm3 molecule-1 

b in units of 10-12 cm3 molecule-1 s-1 

c in units of s-1 
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Figure 3.1. Time dependence of HO2 signal at different methanol concentrations at 
251 K, 100 Torr. As the figure shows, there is a fast rise then drop in the HO2 signal. The 
rise is due to the formation of HO2 via Cl + CH3OH consecutive CH2OH + O2 reactions. 

The decrease is due to HO2 + CH3OH M  →  HO2·CH3OH. 
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Figure 3.2. The dependence of [HO2]o/[HO2]eq on methanol concentration at 231 K and 
261 K. The slope of the line is equivalent to Keq. The vapor pressure concentration of 
CH3OH at 231 K is approximately 4.6 × 1016 molecules cm-3. All measurements were 

conducted at less than have the vapor pressure concentration at each temperature. 
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Figure 3.3. Comparisons of experimentally measured and theoretically calculated Kc. 
Between 231 K and 261 K, the experimentally measured Kc was between a factor of 16 

and 18 higher than the calculated values. 
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Figure 3.4. Decay of [HO2] from the reaction HO2 + CH3OH M  →  HO2·CH3OH at 

240 K, 100 Torr. 
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Figure 3.5. Comparisons of the observed rate coefficient for the HO2 self-reaction 
between the IR and UV detection channels at two different temperatures. The error bars 

are 1σ. 
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Figure 3.6.1. Typical example of the IR signal at 231 K, 100 Torr. The data was acquired 
at [CH3OH] = 1.3 × 1016 molecules cm-3. 
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Figure 3.6.2. Typical example of the UV signal at 231 K, 100 Torr. The data was 
acquired at [CH3OH] = 1.3 × 1016 molecules cm-3. 



 92

5

4

3

2

1

0

k o
bs

  (
10

-1
1  c

m
3  m

ol
ec

ul
e-1

 s
-1

)

20151050

[CH3OH]  (10
15

 molecules cm
-3

)

 IR Rate constants
 UV Rate constants 

 
 

Figure 3.7. kobs,ir and kobs,uv versus methanol concentration at 231 K, 100 Torr. The solid 
lines are fits to each spectral channel independently. The dotted line is what is expected 

for kobs,uv using the fitted parameters from the IR data. 
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Chapter 4: Kinetics of CH3O2 Reactions 

 

 

4.1 Introduction 

 Reactions between peroxy radicals are an important class of reactions in 

atmospheric and combustion chemistry. In the troposphere, peroxy radicals are 

intermediates in the oxidation of alkane. Under conditions of low NOx (< 30 ppt), which 

occur in the unpolluted troposphere, reactions between peroxy radicals are significant and 

are an important consideration when determining local ozone production rates. Overall, 

the reactions 

 

  CH3O2 + CH3O2 → CH3O + CH3O + O2 (1a) 

  → CH3OH + CH2O + O2 (1b) 

  → CH3OOCH3 + O2 (1c) 

 

  HO2 + CH3O2 → CH3OOH + O2 (2a) 

  → CH2O + H2O + O2 (2b) 

 

remove peroxy species that would otherwise react with NO to eventually form ozone. 

 Recently, field measurements of OH, HO2, H2O2, and CH3OOH in the upper 

troposphere have led researchers to propose that the rate of reaction (2) might be 

substantially faster than that suggested by the current NASA data evaluation at 

temperatures applicable to the upper troposphere, below 273 K.1 Field measurements of 
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ozone production rates in polluted air masses in the lower troposphere have suggested 

that near 298 K, the rate NASA recommended coefficient for reaction (2) may be nearly a 

factor of 10 too large.2 

 There is significant disagreement between previous measurements of the rate 

coefficients and product branching ratios for reactions (1) and (2). Separate studies of 

reaction (1) have measured significantly different temperature dependences for product 

branching ratios.3,4 Measured rate coefficients for reaction (2) differ substantially 

between studies that examined the reaction below 273 K.5,6 

 This chapter describes measurements of the rate coefficient of reaction (2) and the 

product branching ratio for reaction (1). Our measurements utilized IR heterodyne 

spectroscopy to monitor the time-dependence of HO2 and UV spectroscopy to monitor 

the time-dependence of CH3O2. The use of IR spectroscopy is a major experimental 

difference between our measurements and previous studies. We conducted our studies 

under conditions in which there were low levels of chemical species that could form 

hydrogen-bonded complexes with HO2 such as methanol. This differs from previous low 

temperature studies of reaction (2) that utilized CH3OH as a pre-cursor for HO2.5,6 

 

4.2 Experimental 

 Much of the experimental technique has been described in Chapter 1. Briefly, an 

excimer laser was used to photolyze F2 in gas-mixtures of H2-CH4-O2-N2. Subsequent 

reactions produced HO2 and CH3O2 via the reaction sequence 

 

  2F   2 Fhv →  (3) 
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  2F + H   HF + H →  (4) 

  M
2 2H + O   HO →  (5) 

  4 3F + CH   HF + CH →  (6) 

  M
3 2 3 2CH  + O   CH O →  (7) 

 

Gas concentrations and purities are listed in Table 4.1. Kinetic modeling using the rates 

listed in Table 4.2 indicated that CH3O2 and HO2 formation occurred between 5 µs and 

30 µs for both species. 

 It was important to consider the reaction 

 

  3 2 2 2CH O + O   HO + CH O →  (8) 

 

The rate coefficient at 298 K for reaction (8) is approximately 2 × 10-15 cm3 molecule-1 

s-1, according to the 1997 NASA evaluation.7 Since typical O2 concentrations were 

around 1 × 1018 molecules cm-3, the time constant for HO2 formation from the CH3O + 

O2 reaction was approximately 500 µs at 298 K. Because no measurements of the rate 

coefficient for reaction (8) have been done below 298 K, the recommended values are 

extrapolated for temperatures below 298 K. Thus, there is some uncertainty in k8 below 

298 K. The recommended value at 231 K is approximately 8 × 10-16 cm3 molecule-1 s-1 

and the time constant for HO2 formation from reaction (8) is expected to be around 

1.3 ms. Because this rate of HO2 formation is relatively slow in comparison to the 

timescale of measurements, the time dependence of the HO2 concentration is dependent 
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on the concentration of O2. Also, there is a high degree of uncertainty in the values of the 

rate coefficients of CH3O + HO2 and CH3O + CH3O2. In a literature review conducted by 

Tsang and Hampson,8 they suggested that the rate coefficients for these reactions was 

between (5 × 10-12 and 5 × 10-14) cm3 molecule-1 s-1. However, Pilling and Smith have 

suggested that the rate of CH3O + CH3O2 was on the order of 1 × 10-11 cm3 molecule-1 s-1 

at 298 K. If the rate coefficients for these reactions are greater than 5 × 10-12 cm3 

molecule-1 s-1, then the CH3O + HO2 and CH3O + CH3O2 reactions would provide 

another loss mechanism for CH3O other than reaction by O2. This would result in an 

incorrect interpretation of CH3O production from reaction (1).9 

 Photolysis of F2 was chosen over photolysis of Cl2 in CH3OH-CH4-O2-N2 gas-

mixtures because of two reasons. First, the Cl + CH4 reaction is relatively slow, resulting 

in a relatively long lifetime for Cl. The Cl + CH3O2 → HCl + CH3O reaction becomes a 

significant experimental concern. Subsequent HO2 production from the CH3O + O2 

reaction would complicate our kinetic analysis. Second, it has been shown in Chapters 1, 

2, and 3 that CH3OH can hydrogen-bond with HO2 and that this can lead to significant 

enhancements of the HO2 + HO2 and HO2 + NO2 + M reactions at low temperatures and 

high methanol concentrations.1014 A similar enhancement of the HO2 + CH3O2 reaction 

might also occur. The two previous low temperature studies of reaction (2) utilized 

CH3OH at temperatures below 273 K,5,6 which may have resulted in higher measured rate 

coefficients than applicable in the atmosphere. 
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4.3 Rate Coefficient for the CH3O2 + HO2 Reaction 

 Reaction (2) was studied between 296 K and 231 K at 100 Torr. Figures 4.1.1 and 

4.1.2 show IR and UV data taken at 231 K at various [H2]/[CH4] ratios. The ratio 

[HO2]o/[CH3O2]o is nearly equivalent to the ratio {k4[H2]}/{k6[CH4]}. The observed 

[HO2]o/[CH3O2]o ratio was consistent with the expected ratio using the measured values 

for [H2] and [CH4] and recommended values of k4 and k6. 

 We elected to determine k2 by subtracting out the [HO2] time dependence at 

[H2]/[CH4] = 0 from the [HO2] time dependence recorded at [H2]/[CH4] < 0.5. For 

examination of reaction (2), {[HO2]o + [CH3O2]o} was between (8 to 10) × 1013 

molecules cm-3. At [H2]/[CH4] = 0.5, the decrease in [CH3O2]o in comparison to its value 

at [H2]/[CH4] = 0 was between 10% and 15%. Despite this decrease in [CH3O2]o as 

[H2]/[CH4] increased, measurements of k2 were not adversely affected, as demonstrated 

below. 

 Fitting of the subtracted [HO2] time profiles utilized a first-order expression 

 

  -
o( ) ktS t B S e= +  (9) 

 

where S(t) is the signal at time = t, So is the signal at time = 0, and B accounts for a 

baseline offset. Fits to data were done over approximately 3 e-1 times, which was 10 ms at 

296 K and 5 ms at 231 K. 

 The manner of measuring k2 outlined above was selected because it separates the 

measurement of the branching ratio of the CH3O2 self-reaction from the measurement of 

k2. For describing the time dependence of [HO2], these two kinetic parameters are 
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strongly correlated. Moreover, the uncertainty in the rate coefficient of the CH3O + O2 

reaction at low temperatures, as well as complications from the possible CH3O + CH3O2 

and CH3O + HO2 reactions, results in significant uncertainty in determining kinetic 

parameters from the [HO2] time dependence. Further, it will be shown below that 

currently suggested products and the branching ratio of reaction (1), and perhaps k8, were 

not consistent with the present results at low temperatures. The abstraction of kinetic 

information regarding k2 and the branching ratio is thus highly subject to error if each fit 

was analyzed by fitting the time dependence of [HO2] by fitting k2, the branching ratio, 

and k8 all at once. 

 There are several problems associated with the measurement of k2 in the manner 

outlined above. First, the concentration of CH3O2 changes during the course of the fit. 

This means that the time dependence of [HO2] is not truly first-order. Second, as 

[H2]/[CH4] increases, the HO2 formed by the CH3O2 self-reaction decreases. This means 

that the decays have been “overly” corrected for HO2 produced by the CH3O2 self-

reaction. 

 Kinetic modeling was done using the rate coefficients listed in Table 4.2 and the 

FACSIMILE kinetic modeling program.15 The simulated signal at [H2]/[CH4] = 0 was 

subtracted from simulated signals where [H2]/[CH4] was varied between 0.05 and 0.5. 

First-order fits over 5 ms to 10 ms were performed after subtraction and rate coefficients 

were obtained. These rate-coefficients were then divided by [CH3O2]o. At 296 K, at 

[H2]/[CH4] = 0.5, the measured rate was 6% larger than the rate used in the model (ideal 

rate) and at [H2]/[CH4] = 0.05, the measured rate was 1% larger than the ideal rate. At 

231 K, at [H2]/[CH4] = 0.5, the measured rate was equal to the ideal rate and at 
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[H2]/[CH4] = 0.05, the measured rate was 4% lower than the ideal rate. Since the reported 

rates were averaged from data acquired at [H2]/[CH4] between 0.05 and 0.5, the overall 

systematic error was that the measured rate coefficient was 4% high at 296 K. Reported 

values have not been corrected for these systematic errors. Figure 4.2 shows natural log 

plots of data that had been adjusted in above manner. The linearity of the plots indicates 

that the approximation of first-order type behavior is valid. 

 The measured values of k2 versus T were fit to the equation k2(T) = 

A·exp(-Ea/(RT)). The fitted values were A = (7.6 ± 3.0) × 10-13 cm3 molecule-1 s-1 and 

Ea/R = (-560 ± 70) K. The latter value translates into (-4.7 ± 0.6) kJ mol-1. Figure 4.3 is 

an Arrhenius plot of the measured values of k2 versus T-1. The measured values from the 

present study were very similar the NASA recommended values at 298 K but were 

approximately 50% lower than the recommended values at 231 K. They are listed in 

Table 4.3. 

 

4.4 Product Branching Ratio for the CH3O2 + CH3O2 Reaction 

 The three reaction pathways that have been listed above for reaction (1) are based 

on FTIR16,3,17 and kinetic studies.4 

   

 CH3O2 + CH3O2 

 → CH3O + CH3O + O2 ∆H = (0 ± 13) kJ mol-1 (1a) 

  → CH3OH + CH2O + O2 ∆H = (-344 ± 12) kJ mol-1 (1b) 

  → CH3OOCH3 + O2 ∆H = (-159 ± 12) kJ mol-1 (1c) 
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The values for the change of enthalpy are from the 1997 NASA recommendation. Using 

the values of k2 determined from the procedure outlined above, the measurements of 

[HO2] and [CH3O2] time dependences at [H2]/[CH4] = 0, were used to fit the kinetic 

model using the rates listed in Table 4.2. The value of the branching ratio was allowed to 

vary and reaction (1c) was assumed not to occur. The fits were conducted over the first 

10 ms of data. 

 Over the course of 10 ms, the kinetic model reproduced the experimental [HO2] 

and [CH3O2] time dependences reasonably well at 296 K but poorly at 231 K. At 

temperatures in between, the fits became progressively worse as the temperature 

approached 231 K. Figures 4.4.1 and 4.4.2 are experimental data acquired at 296 K and 

231 K, respectively, and the fits from using FACSIMILE. Figure 4.4.3 depicts the [HO2] 

measurements at 296 K and 231 K. For the measurement at 296 K, [CH3O2]o was 

approximately 7.9 × 1013 molecules cm-3 and at 231 K, it was 8.4 × 1013 molecules cm-3. 

The values of k1a/(k1a+k1b), denoted α, are listed in Table 4.3. The value of k1c was 

assumed to be 0. 

 The rate coefficient for the observed rate of the CH3O2 self-reaction was 

measured as a function of temperature. The observed rate coefficient is assumed to be 

larger than k1 because CH3O from branching channel (1a) either reacts quickly with O2 to 

form HO2 which in turn reacts with CH3O2, or CH3O reacts directly with CH3O2. The 

measured values of the observed rate coefficient for the CH3O2 self-reaction are tabulated 

in Table 4.4. At 296 K, our measured values were approximately 25% lower than the 

NASA recommendations if the branching ratio for channel (1a) was 30%. At 231 K, our 

values were approximately 20% lower than the recommendations at a branching ratio of 
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10%, as suggested by FTIR studies of the CH3O2 self-reaction.3 The recommended error 

in the rate constant given by the recommendation was 50% at 296 K and 80% at 231 K. 

 

4.5 Results and Discussion 

 As Figure 4.4.3 indicates, the rise time in [HO2] is faster at 231 K than at 296 K. 

This is despite the fact that the values of [CH3O2]o and k1 at the two temperature are 

nearly equivalent. Moreover, there is no delay in HO2 formation as expected for the 

CH3O + O2 reaction. To date, the CH3O + O2 (8) reaction has only been studied above 

298 K. Work by Wantuck et al.18 revealed that the rate coefficient displayed non-

Arrhenius-type behavior above 500 K. The rate of reaction (8) would have to be greater 

than 10-13 cm3 molecule-1 s-1 at 231 K to explain the rapid rise in HO2 signal. This is a 

significant departure from expected temperature dependence and not likely to occur. 

 A more likely explanation is that another product is formed from reaction (1). 

Figure 4.5 shows a possible reaction pathway that accounts for the formation of CH3O, 

CH3OH, and CH2O products. One possible explanation for the quick formation of HO2 is 

depicted in Figure 4.6. 

 Our measurements of the rate coefficient for reaction (2) are lower than previous 

measurements. This can be partly explained by the use of methanol in previous 

experiments.  

 

4.5 Conclusions 

 The rate coefficient for HO2 + CH3O2 was measured at 100 Torr between 231 K 

and 296 K and was found to be lower than the NASA recommended rate. Branching ratio 
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studies of the CH3O2 + CH3O2 reaction indicated the possibility of a change in reaction 

products at low temperatures. 
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Table 4.1. Experimental conditions. 

Gas: 
[N2] 

 
1018 cm-3 

[H2] 
 

1018 cm-3 

[CH4] 
 

1017 cm-3 

[F2] 
 

1016 cm-3 

[O2] 
 

1018 cm-3 
concentration: 

(molecules cm-3) 0.8 - 2 0 - 1 4 - 7 3 - 4 0.9 – 1.2 

Gas purity: 
(AirProducts) 99.9993% 99.999%  97% 99.996% 
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Table 4.2. Reaction mechanism. 

Reaction Reference 
F + H2  → HF + H NASA 

CH3 + O2 → CH3O2 NASA 
CH3O2 + CH3O2 → Products a NASA 

HO2 + CH3O2 → CH3OOH + O2 This chapter 
HO2 + HO2 → H2O2 + O2 Chapter 2 

CH3O + HO2 → CH2O + H2O2 ref. b below 
H + O2 + M → HO2 + M NASA 

H + F2 → HF + F ref. c below 
HO2 + CH2O → HCO + H2O2 ref. b below 

HO2 + CH2O → HOCH2O2 NASA 
HO2 + HOCH2O2 → PRODUCTS IUPAC 

F + CH4 → HF + CH3 NASA 
F + O2 + M → FO2 + M NASA 
FO2 + M → F + O2 + M NASA 

FO2 + HO2 → PRODUCTS ref. d below 
CH3O + CH3O2 → PRODUCTS ref. b below 

a Total rate including the three branching channels listed in the text 
b Tsang and Hampson, J. Phys. Chem. Ref. Data, v.15, p.1087, 1986 

c Sung et al., J. Phys. Chem, v. 83, p.1007, 1979 
d Sehested et al., Int. J. Chem. Kin., v. 29, p.673, 1997 
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Table 4.3. Values of k2 and α. 
T (K) k2 

a sd a α sd 
296 5.0 0.5 0.16 0.03 
282 5.5 0.6 0.17 0.03 
267 5.6 0.6 0.16 0.03 
252 7.5 0.8 0.15 0.03 
239 7.7 0.8 0.13 0.03 
231 8.3 0.8 0.15 0.03 

a units in 10-12 cm3 molecule-1 s-1 
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Table 4.4. Measurements of k1. 
T (K) k1 a SD a 
296 4.5 0.5 
282 4.9 0.5 
267 5.0 0.5 
252 5.0 0.5 
239 4.8 0.5 
231 5.1 0.5 

a units are 10-13 cm3 molecule s-1 
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Figure 4.1.1. Time dependence of the [HO2] at different [H2]/[CH4] at 231 K, 100 Torr. 
Five separate experiments are shown above for various [H2]/[CH4]. As [H2]/[CH4]  

increases, [HO2]o increases. The main processes determining the [HO2] time dependence 
are the HO2 + CH3O2 reaction, which accounts for the loss of HO2, and the formation of 

HO2 due to the oxidation of products formed from the CH3O2 self-reaction. 
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Figure 4.1.2. Time dependence of [CH3O2] at different [H2]/[CH4] at 231 K, 100 Torr. 
The signals were acquired at 250 nm. Three separate experiments are shown above for 

various [H2]/[CH4]. As [H2]/[CH4] increases, [CH3O2]o decreases. Only three experiments 
are shown here, as opposed to five in Figure 1a, because of the poorer signal-to-noise of 

the UV data. The main processes determining the [CH3O2] time dependence are the 
CH3O2 self-reaction and the HO2 + CH3O2 reaction. 
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Figure 4.2. Natural log plots of data acquired at 252 K, 100 Torr in which the time 
dependence at [H2]/[CH4]=0 have been subtracted. The lines are fits to the data. The 
differences in slope are partially due to the differences in [CH3O2]o. For conversion 

purposes, the scalar for converting the signal in Volts to [HO2] is 2.0 × 1014 molecules 
cm-3 V-1. 
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Figure 4.3. Arrhenius Plot of k2 Versus T-1. The displayed uncertainties are 1σ. 
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Figure 4.4.1. Fits using FACSIMILE to the time dependences of [HO2] and [CH3O2] at 
296 K. 
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Figure 4.4.2. Fits using FACSIMILE to the time dependences of [HO2] and [CH3O2] at 
231 K. 
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Figure 4.4.3. Comparisons of [HO2] from the CH3O2 self-reaction at 296 K and 231 K. 
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Figure 4.5. Possible reaction pathways. 
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Figure 4.6. Possible pathway for formation of HO2. 
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Chapter 5:  Experimental Details 

 

 

5.1 Introduction 

 The infra-red kinetic spectroscopy apparatus (IRKS) consisted of a photolysis 

laser, temperature controlled reaction cell connected to the gas manifold, the IR spectral 

probe and the UV spectral probe. This chapter explains the experimental details of the 

IRKS apparatus. 

  

5.2 The Photolysis Laser 

 The photolysis laser was a XeCl Lambda Physik EMG-101 excimer laser that 

emitted at 308 nm and utilized an unstable resonator in order to decrease beam 

divergence. The pulse energy ranged between 50 mJ and 150 mJ. The specifications 

given by Lambda Physik were the following: typical power of 120 mJ, nominal pulse 

width of 20 ns, beam divergence of about 0.5 mrad for the unstable configuration. The 

excimer pulse passed through a 10 mm × 20 mm (vertical × horizontal) aperture before 

entering the reaction cell. At a distance of 200 cm away from the aperture, two 

overlapping rectangular profiles of the excimer pulse observed, a bright profile and a 

profile increased in size by approximately 2 mm in both directions as expected, given the 

specified divergence. However, the weak profile was much more divergent in the 

horizontal direction, approximately 2 mrad, and slightly more divergent in the vertical 

direction, approximately 0.8 mrad. The excimer pulse power was measured at different 

locations within the reaction cell. These measurements revealed that the effects of 
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divergence decreased the power by less than 5% the length of the reaction cell. This was 

assumed to have a negligible affect on experimental measurements of reaction rates. 

Bright regions were scattered throughout the excimer beam profile. This 

phenomenon was attributed to �whispering gallery� modes formed within the resonator 

cavity by reflections from the capacitors. These effects were considered insignificant for 

kinetic studies because they were evenly scattered throughout the excimer beam profile 

and because they made up less than 10% of the total cross-sectional area of the excimer 

pulse. 

The fan inside the laser cavity, which was intended to mix the gases, did not 

work. After consulting with workers at JPSA (Hollis, NH, ph: 603-595-7048), it was 

recommended that the fan not be fixed and the cooling water be removed from the pipes 

inside the laser to prevent corrosion problems. At the typical repetition rates employed 

for the kinetic experiments on the IRKS apparatus (0.3 Hz to 0.07 Hz), problems 

associated with the lack of gas mixing within the laser cavity were minimal � there was 

little change in the average power and the shot-to-shot variance in power when 

employing repetition rates slower than 0.3 Hz. 

Typically, the voltage across the capacitors was between 20 kV and 22 kV. The 

possibility of increasing the output power was discussed with workers at JPSA. They 

suggested an upper limit of 24 kV for voltages employed. At this voltage, the pressure 

inside the laser cavity would have to be raised to between 3000 mbarr and 3500 mbarr to 

maintain proper impedance across the capacitors. However, at such voltages, the lifetime 

of the capacitors decreases. 
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5.3 The Reaction Cell and Gas Flow Manifold 

 The reaction cell is shown in Figure 5.1. The reaction cell was made of pyrex. It 

was 165 cm long and had an inner diameter of approximately 5 cm. It was held in place 

by two aluminum blocks. The excimer pulse and the probe beams extended the length of 

the reaction cell. 

The two aluminum blocks that held it in place are shown in Figures 5.2 and 5.3. 

One end of the main cell was inserted into the �Probe input block.� The other side of the 

reaction cell was joined onto the �Excimer input block� by two aluminum parts depicted 

in Figure 5.4. 

 The second 1-inch diameter port, denoted port 2 on Figure 5.1 was connected to 

the pre-cooling side-arm. The pre-cooling side-arm is shown in Figure 5.5. A pressure 

gauge was connected to port 3. The other two ports lead to a Welch pump, model 1396 

(dual stage, 2000 L min-1 pumping speed). Gas from the pre-cooling side arm and the two 

aluminum blocks flowed towards these exit ports. 

 Dry nitrogen gas was flown into the two aluminum blocks through openings in 

conflat flanges on the side of the aluminum blocks. This purge gas was at room 

temperature. The purge gas served to protect the mirrors from caustic gases. The purge 

gas also confined the region in which there were reagent gases. The region where there 

was overlap between the photolysis pulse and reagent gas is denoted the photolysis 

volume. The photolysis volume and flow scheme are depicted in Figure 5.6. 

 To verify that the reagent gases were confined between the two exit ports, three 

different tests were employed. First, gas mixtures in which the concentration of Cl2 was 

determined by flow meters were flown into the reaction cell. The pathlength was 
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determined using the cross section for Cl2 given in the NASA 1997 data evaluation.1 

Second, NO2 gas mixtures were flown into the cell and visual inspection determined 

whether the reagent gases were confined between the two exit ports. Third, kinetic 

experiments of HO2 + NO2 + M (1) were performed in which reagent gases were flown 

through one of the purge ports and pumped away from the other purge port. The 

pathlength in this case was known because the reagent gas was confined, homogeneously, 

within the whole apparatus. In these studies, no purge gas was employed. Under 

conditions where [HO2]o >> [NO2], pseudo-first-order conditions are established in which 

k1 is proportional to [NO2]. NO2 absorbs in the UV and its cross section has been 

measured previously.2,3 Measurements of k1 using this gas flow configuration were 

compared to measurements of k1 using the gas flow configuration described above in 

which purge gas confined the region of the reaction cell in which there was reagent gas. 

The comparison indicated that the measurements of k1 were the same if the pathlength 

was equivalent to the spacing between the center of the two ports, 137 cm, when the 

purge flow was 15% of the main (reagent) flow. An estimated error of ± 1 cm was 

determined from visual inspection of NO2 absorbance and Cl2 absorbance measurements 

that correlated measured pathlength with the ratio of purge flow to main flow. It was 

observed that a purge flow 10% of the main flow resulted in measured pathlengths of 

140 cm. At a purge flow that was 20% of the main flow, the measured pathlength was 

about 130 cm. At 50 Torr total pressure, the purge flow needed to be between 2% and 4% 

of the main flow. 
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 When not conducting experiments, it was useful to maintain a small purge flow (~ 

10 sccm) of N2 gas through both aluminum blocks to prevent caustic chemicals adsorbed 

in the reaction cell from attacking the mirrors when they outgassed. 

Thermocouples were inserted through all four 1-inch diameter ports on the main 

cell. The inlets for these thermocouples were on the attachments to the main cell. The 

thermocouples were placed so that they did not block light from the diode laser, UV 

probe, or excimer laser. This forced the placement of the thermocouples towards the side 

of the reaction cell rather than in the middle where the probes and photolysis volume 

were located. 

 

5.4 Mass Transport within the Reaction Cell 

 The photolysis region was centrally located within the reaction cell. While this 

removed possibilities of wall reactions, transport of gas to and from the photolysis region 

during the course of a measurement was a concern. The diffusion constant of O2 in air at 

295 K, 100 Torr is approximately 1.3 cm2 s-1.4 Using this as an approximation for 

diffusion of HO2, the effects of diffusion can be calculated using Fick�s second law of 

diffusion 

 

  2i
i i

C D C
t

∂ = ∇
∂

 (2) 

 

where C represents the concentration of HO2 within the reaction cell after a photolysis 

event. The one-dimensional solution for the boundary conditions C(z,0) = Co for z < 0 

and C(z,0) = 0 for z > 0 is 
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 (3) 

 

From the above equation, the concentration profile, as time progresses, is depicted in 

Figure 5.7 for D = 1.3 cm2 s-1. Most measurements were conducted within 20 ms. For the 

measurements of the HO2 self-reaction, the effects of diffusion on measured second-

order-rate coefficients over the course of 40 ms were shown, by experiment, to be 

insignificant for sufficiently high initial HO2 concentrations. 

 Diffusion was not the major source of mass transport when residence times less 

than 15 s were employed. The observed second-order rate coefficient measurement of the 

HO2 self-reaction was dependent on the flow rate of the system as is shown in Figure 5.8 

for the HO2 self-reaction at sufficiently low concentrations of HO2. In the figure, kobs is 

the measured second-order rate coefficient for HO2 self-reaction as measured by the IR 

source over the course of 40 ms. The rate of HO2 loss by chemical reaction decreases as 

[HO2]o decreases, and loss by mass transit out of the probe region becomes the more 

predominant loss mechanism for HO2. Kinetic modeling using the FACSIMILE program5 

indicated that the loss due to mass transport could be approximated by a first-order loss 

process. The first-order rate of this loss process was a function of the flow rate (residence 

time) of the main flow. Because less than 1% of the reagent gas was removed by the 

pumping system over the course of 40 ms, it was believed that turbulent mixing was the 

cause. 

 To determine the effect of mass transport on the UV signal, the rate coefficient for 

the C2H5O2 self-reaction was measured. The rate coefficient for the C2H5O2 self-reaction 
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is relatively small at room temperature, approximately 1.1 × 10-13 cm3 molecule-1 s-1 for 

the overall observed rate (which includes the contribution from the radical branching 

channel). The results were similar to those obtained in the IR channel for the HO2 self-

reaction. 

 The flow characteristics of the reaction cell were analyzed. The Reynolds number 

(Re) is an indicator of the flow characteristics of a flowing liquid or gas system. The 

Reynolds equation is 

 

  Re = 4 Q
D

ρ
π
 
 
 

 (4) 

 

where ρ is the gas density (g cm-3), Q is the flow rate (cm3 s-1), D is the diameter of pipe 

(cm), and µ is the gas viscosity (g cm-1 s-1). µ  = µo(T/298)0.5. For the present system, the 

following values were used: µo = 1.8 g cm-1 s-1 (air), D = 5.66 cm. Table 1 lists Re versus 

Q at 100 Torr for various flow rates and two temperatures, 298 K and 231 K. As an 

approximation, the flow can be described as laminar when Re < 2000 and turbulent when 

Re > 3000. In between, it is mixed. 

 

Table 1. Calculated Reynolds number for kinetic experiments. 
flow (sccm) Q (cm3 s-1) residence time (s) a Re(298 K) Re(231 K) 

2000 250 14 50 70 
4000 510 6.8 100 150 
8000 1000 3.4 200 290 

a volume of reaction cell between the two exit ports is 3470 cm3 
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From the above calculations, it appeared that flow within the reaction cell was laminar. 

However, the above calculation was done for the gas once it was inside the main reaction 

cell and was flowing towards the exit ports. At the interfaces between the pre-cooling 

side-arm and main cell and the exit ports and the main cell, local mixing may occur. This 

was considered the most likely cause for the dependence of observed rate coefficients on 

the flow rate. 

 

5.5 IR Detection 

5.5.1 Herriott resonator 

 Figure 5.9 shows the Herriott mirrors. There were two different mirrors used in 

the cell, an input mirror and a back mirror. The input mirror had a 1/8-inch diameter input 

hole for the diode laser beam. The typical substrate was Pyrex. There was a bonding coat 

that allowed the gold coating to adhere adequately to the substrate that was applied onto 

the Pyrex substrate. Typically, it was either a mixture of chromium and silver or inconel. 

A protective layer was coated onto the gold. 

 Figure 5.10 shows the placement of the first three reflected spots from the diode 

laser beam with respect to the Herriott mirrors. The mirrors had a radius of curvature (R) 

of 2032 mm. The length (l) between the mirrors was approximately 1820 mm apart. This 

resulted in 30 passes back and forth through the photolysis region. For reference, to 

obtain 28 passes back and forth, the mirrors should be spaced 1786 mm apart. For 32 

passes, the spacing is 1844 mm. 

 For the two identical mirrors, the resonator g parameter is defined as6,7 
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  g = 1 l
R

−  (5) 

 

The cavity was considered a stable resonator because 0 ≤ g2 = 0.01 ≤ 1.6,7 The dashed 

lines on Figure 5.10 indicate where subsequent reflections were located on each mirror. 

Much of the consideration of the design of the Herriott resonator had to do with the 

distance between adjacent reflections. The beam diameter of the diode laser was 

approximately 2 mm. To prevent overlap between the input hole and the adjacent 

reflections on either side of the input hole, it was determined that a spacing larger than 

6 mm was necessary between adjacent reflections. The ellipse formed by subsequent 

reflections on each mirror had the following parameters: major axis radius a = 15 mm, 

minor axis radius b = 7.5 mm. The placement of the input hole was along the minor axis 

of the ellipse. In this configuration, the distance, d, between successive reflections was 

 

  2 2 2 2sin( ) (1 cos( ))d a bθ θ= + −  (6) 

 

where θ  was the angle between successive reflections on an individual mirror defined as 

 

  θ = cos-1(2g2 � 1) (7). 

 

The value of θ was calculated to be 24º and d was calculated to be ~ 6.1 mm using 

equations (5), (6), (7) and the values for l, R, a, and b given above. To obtain a condition 

in which reflection sizes remained constant for each reflection, the required beam 



 126

diameter on each of the mirrors needed to be approximately 1.5 mm, as calculated from 

the following equation6,7 

 

  beam diameter = 
1/ 41/ 2 12

1
l

g
λ
π

  
   −   

 (8) 

 

where λ is the wavelength of light (1.51 µm). The actual beam diameter was 

approximately 2 mm and slight periodic focusing and de-focusing was observed. 

However, none of the laser light fell off either of the mirrors. For the final transit back 

through the input hole, the beam diameter was nearly 2 mm. 

 

5.5.2 The Modulation and Detection Electronics for IR channel 

 The modulation and detection electronics are shown in Figure 5.11. The system 

was made up of discrete elements. The manufacturer of each element is listed in Figure 

5.11. Essentially, the system was a high-frequency lock-in detector operated on second-

harmonic mode. The detection was phase-sensitive. 

The system was designed to operate at a modulation frequency of 6.80 MHz 

because of several reasons. First, this was a frequency region where commercial phase 

shifters were available. Second, the de-modulated signal from the detector needed to be 

fully averaged by the low-pass bandwidth of the detection elements after the mixer so 

that the signal did not contain the initial modulation imposed on the diode laser. The SRS 

pre-amplifier had an inherent bandwidth of approximately 1.5 MHz at a gain of 1000, the 

value employed for most experiments. This was sufficient for full averaging of the de-

modulated signal. The third reason the system was operated at 6.80 MHz was because the 
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diode laser 1/f intensity noise was minimized by detecting signals at 13.6 MHz. Under 

conditions where the diode laser beam went straight into a detector without passing 

through the Herriott cell, the dominant noise at 13.6 MHz was the quadrature sum of the 

detector (Johnson noise) and shot noise of the diode laser, as measured by a spectrum 

analyzer. In an actual experiment, there were significant contributions to the total noise of 

the signal from etalon effects within the Herriott resonator. The etalons were equivalent 

to absorptions of approximately 10-4, approximately the same order of magnitude as the 

absorptions due to HO2. The absorptions due to etalons were frequency dependent, and 

because they were non-linear in nature, the etalons translated some of the 6.80 MHz 

modulation into 13.6 MHz modulation. Further, the diode laser intensity output (L-I 

characteristic) was highly non-linear with respect to input current. This non-linearity 

translated diode laser intensity noise into noise at 13.6 MHz. 

Pickup of electromagnetic field (EMF) noise was an issue for the diode laser 

channel. The shielded cable from the ILX current driver to the bias tee was observed to 

act as an antenna for EMF pickup. This was greatly reduced by properly grounding both 

ends. It was observed that the warning light outside the laboratory caused significant 

noise due to discharge of electricity from the brushes of the motor that turned the warning 

light. This problem was solved by not using the motor. A further source of noise was the 

charging up of the capacitor banks that provided charge to the capacitors in the excimer 

laser. After the excimer fired, the thyratron circuit immediately (within a tens of µs) 

began to re-charge the capacitor banks. This emitted an EMF with a frequency of around 

60 kHz that persisted for several milliseconds. The time it persisted was dependent on the 
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voltage setting of the thyratron. This problem was mitigated by using the inhibit circuit of 

the thyratron after the trigger pulse was sent to fire the laser. 

 

5.5.3 The HO2 signal at 6638.2 cm-1 

 A scan of the HO2 signal as a function of current was obtained for the HO2 

transition that was employed for most of the experiments. The diode laser temperature 

was held at about 297.5 K (11.0 kΩ thermistor resistance on the plate holding the diode 

laser inside the diode laser housing). The current was ramped from 43 mA to 63 mA 

using a sawtooth voltage function on the input to the current controller. The spectrum in 

Figure 5.12 was obtained. The negative slope of signal versus current was to the non-

linearity of the diode laser L-I characteristic as well as etalons in the diode laser beam 

path. The concentration of HO2 for the scan was approximately 3 × 1013 molecules cm-3. 

 To calibrate the spectral position of the HO2 signal near 6638.2 cm-1, spectral 

scans of water were conducted. Water was flown into the reaction cell at 295 K and 

10 Torr total pressure. The concentration of water in the cell was approximately 3 × 1016 

molecules cm-3. The pathlength of the IR beam through the region with water was 

approximately 137 cm × 30 passes = 4100 cm. As depicted in Figure 5.13, two water 

transitions were observed. Using the HITRAN database,8 the two water lines were 

positions were established. Line A was at 6636.85 cm-1 and Line B was at 6636.60 cm-1. 

The spectral distance between the peaks was 0.25 cm-1, and the current distance was 

11 mA. The current tuning was thus approximately -0.023 cm-1/mA. At 8.2 kΩ, the 

frequency of emission at 49.60 mA was estimated to be 6634.2 cm-1 (from measurements 

made the same day). The temperature tuning was approximately 1 cm-1/kΩ. Line A was 
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approximately at 49.60 mA. The line used for HO2 studies was at 33.80 mA, 11.7 kΩ. 

The combined temperature and current tuning places the HO2 line at ~ 6638.0 ± 0.5 cm-1. 

The uncertainty is based on the observation that diode laser current tuning was non-

linear. It was more efficient at lower currents (i.e., the frequency response was greater per 

unit current at). Also, the temperature tuning has been observed to be slightly non-linear, 

becoming more efficient at lower temperatures (higher values of thermistor resistance).   

 Through private conversation, I obtained an emission spectrum of HO2 between 

6570.0 cm-1 and 6700.0 cm-1. The work was done by E. Fink and D. Ramsay. To date, it 

has not been published. It was done at the same time work was done on the emission 

spectrum of the A2A′ → X2A″ band of HO2 which was published in 1997 by these same 

workers.9 I have not been authorized to publish this work so I will only document my 

observation based on their work. There is a strong emission line at 6638.20 ± 0.05 cm-1 

given an arbitrary strength of approximately 1.9. There are also an emission lines at 

6638.10 ± 0.05 cm-1 and 6638.35 ± 0.05 cm-1 with strengths of approximately 1. None of 

the lines are labeled and could be due to O2 emission. Tuckett et al.10 also studied the 

emission spectrum of HO2 in this spectral region and assigned many of the transitions. 

Based on the above considerations, the maximum HO2 signal has been associated with a 

frequency of 6638.2 cm-1 and the assignment qQ2. A supporting piece of evidence is that 

the observed HO2 transition strengths diminished as the frequency of the diode laser was 

increased from the HO2 transition at 6625.80 cm-1, a transition given the nominal 

assignment qP0(10).10 It was assumed that this was due to the decrease in the degeneracy 

as J → 0. Despite this trend, the line at 6638.2 cm-1 was observed to be stronger than all 
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the previous lines. These observations support the theory that the transition is a Q-branch 

band-head. 

 

5.5.4 Comparisons of linestrengths between Q1,2(12)0-1 A2A′ ←←←← X2A″ and qP0(10) 

2νννν1 transitions 

 For kinetic studies of the HO2 + NO2 + M reaction, described in Chapter 1, two 

lasers were used, one that emitted at 1.43 microns and one that emitted at 1.51 microns. 

The former investigated A2A′ ← X2A″ electronic transitions, the latter investigated ro-

vibrational transitions associated with the O-H overtone. The Q1,2(12)0-1 A2A′ ← X2A″ 

transition occurs9 at 6998.403 cm-1 and the qP0(10) O-H stretch overtone transition (2ν1) 

occurs10 at 6625.80 cm-1. Both assignments were made using emission measurements.9 

Linestrengths for A2A′ ← X2A″ transitions have not been published to date. Linestrength 

measurements for only one transition of 2ν1 has been published. This was for the qP0(10) 

line and its value was reported to be 2.4 × 10-21 cm2 molecule-1 cm-1.11 

 Daniel B. Oh and I conducted measurements in 1999 to compare linestrengths 

between the overtone and electronic transition. At that time, Dr. Oh was a researcher at 

Southwest Sciences Inc. in Santa Fe, NM. The apparatus used was a discharge flow 

apparatus. A microwave discharge dissociated O2 into O atoms that then reacted with 

allyl alcohol. 

 

  2 2 2 2 2CH =CH-CH OH + O  HO  + CH =CH-CH →  (9) 

 



 131

After mixing O atoms with allyl alcohol, the gas mixture (mostly He) flowed into an 

analysis region, which consisted of two diode laser beams folded by two Herriott mirrors, 

making 64 passes through the gas mixture. The pressure of the cell was approximately 

200 mTorr. The temperature was 293 K. 

 Figure 5.14 are the direct absorption signals acquired with the JPL diode laser and 

the SWS diode laser. To abstract a linestrength, proper accounting of the drift of JPL and 

SWS diode laser had to be taken account as well as the convolution of the linewidth of 

the lasers and the spectral transition. The measurements were conducted below 100 

mTorr where most of the broadening was due to Doppler broadening. The correction for 

convolution was approximate 5% (the JPL diode laser had a linewidth of approximately 

40 MHz). The correction for diode laser drift, which results in a lower cross-section at 

line center and a larger FWHM was determined from previous scans of water using the 

JPL diode laser. This correction was to enhance the overall linestrength by a factor of 

1.12. Using these corrections and the ratio of the strengths of the qP0(10) transition 

measured with the SWS laser, the linestrength of the Q1,2(12)0-1 A2A′ ← X2A″ was 

calculated to be (2.0 ± 0.5) × 10-21 cm2 molecule-1 cm-1. 

 

5.6 UV Measurements 

 Figure 5.15 shows the UV spectrum for HO2, CH3O2, C2H5O2. The HO2 transition 

near 202 nm and the CH3O2 transition centered near 238 nm have been determined, from 

ab initio calculations, to be due to 22A″ ← X2A″ electronic transitions,12,13 assuming a Cs 

symmetry for CH3O2.  For the C2H5O2 transition centered near 240 nm, a similar 

transition is excited. For the ground state, the unpaired e- is in an Π-type orbital. The 
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calculated dipole moment functions of X2A″ and 22A″ are a factor of 2 different, thus 

there should be a strong transition due to the accompanying charge transfer.12,13 
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Figure 5.1. Main reaction cell 
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Figure 5.2. Probe input and aluminum block 
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Figure 5.3. Excimer input and aluminum block. 
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Figure 5.4. Joiner for reaction cell and excimer input aluminum block. 
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Figure 5.5. Pre-cooling cell. 
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Figure 5.6. Photolysis volume. 
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Figure 5.7. Calculated HO2 concentration profiles at 100 Torr, 298 K at different times 
after the photolysis event. 
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Figure 5.8. Modeled mass transport rates. The filled-in symbols are rate measurements of 
the HO2 + HO2 reaction using the IR source at 100 Torr, 298 K. The open symbols are 
modeled rates for the HO2 + HO2 system with an added first-order loss process for HO2 

described by a kd. The figure demonstrates that at high residence times, the measured rate 
of HO2 + HO2 remains constant � i.e. other processes affecting the rate are diminished in 

comparison with the bimolecular loss by reaction. 
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Figure 5.9. Herriott mirrors. 
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Figure 5.10. Diode laser beam placement on Herriott mirrors. 
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Figure 5.11. Modulation and detection electronics. 
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Figure 5.12. HO2 spectrum near 6638.2 cm-1 as a function of input current to the diode 
laser. The signal is the 2f signal. The span of 10 mA corresponds to about 0.23 cm-1 in 

frequency. 
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Figure 5.13. Two water lines acquired by a DFB diode laser acquired from the 
Microdevices laboratory at JPL. Line A is at 6636.85 cm-1 and Line B is at 6636.60 cm-1. 

The scan was acquired by varying the current from 43 mA (0 on the x-axis) to 53 mA 
(0.1 on the x-axis) at a thermistor setting of 11.0 kΩ. The y-axis is in units of arbitrary 

signal in volts. 
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Figure 5.14. Comparison of HO2 12A′  ← X2A″ and O-H overtone transitions. 
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Figure 5.15. UV spectrum of HO2, CH3O2, and C2H5O2. 
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