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Abstract

Stress corrosion cracking (SCC) is a very common failure mechanism characterized by a

slow, environmentally induced crack propagation in structural components. Time-to-failure

tests and crack-growth-rate tests are widespread practices for studying the response of var-

ious materials undergoing SCC. However, due to the large amount of factors affecting the

phenomenon and the scattered data, they do not provide enough information for quanti-

fying the effects of main SCC mechanisms. This thesis is concerned with the development

of a novel 3-dimensional, multiphysics model for understanding the intergranular SCC of

polycrystalline materials under the effect of impurity-enhanced decohesion. This new model

is based upon: (i) a robust algorithm capable of generating the geometry of polycrystals

for objects of arbitrary shape; (ii) a continuum finite element model of the crystals includ-

ing crystal plasticity; (iii) a grain boundary diffusion model informed with first-principles

computations of diffusion coefficients; and (iv) an intergranular cohesive model described

by concentration-dependent constitutive relations also derived from first-principles. Results

are validated and compared against crack-growth-rate and initiation time tests.
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Chapter 1

Introduction

1.1 Stress corrosion cracking fundamentals

Stress corrosion cracking (SCC) is a very common failure mechanism characterized by a slow,

environmentally induced crack propagation in structural components [9]. As a consequence

of SCC, cracks develop in otherwise non-cracking systems conveying a macroscopic loss

of mechanical properties, which may affect the performance of structures and mechanical

systems [10] or even cause a catastrophic failure [11].

For SCC to occur the simultaneous presence of tensile stress, corrosive environment

and a susceptible material is required (figure 1.1). The stress corrosion cracking behavior

of a given system largely depends on the applied stress, the geometry of the mechanical

component or structural element, the presence of impurities or alloying elements in the

material, as well as its strength and microstructure.

Stress corrosion cracking is a phenomenon that has an impact on several technological

applications ranging multiple length scales. It may affect large structures such as bridges

and nuclear reactors as well as sub-milimeter thick gun barrel coatings.

The mechanisms of SCC in metals can be classified as (i) anodic mechanisms, e.g., active

dissolution and removal of material from the crack tip; and (ii) cathodic mechanisms, e.g.,
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Figure 1.1: Stress corrosion cracking factors.

hydrogen evolution, adsorption, diffusion and embrittlement. The present work is focused

on the latter group, particularly on the study of stress corrosion cracking by impurity-

enhanced decohesion.

It is widely known that impurity segregation on grain boundaries of polycrystalline

metals can induce intergranular embrittlement. This phenomenon is usually referred to as

impurity-enhanced decohesion, and is of great importance in technological applications.

Several research efforts have attempted to explain and understand the underlying mech-

anisms of intergranular embrittlement. A representative example of this effort is the work

by Yamaguchi et al. [12], where they try to address why and how sulfur weakens the grain

boundaries of nickel by means of first principles computations. The authors found that

a short-range overlap repulsion among densely segregated and neighboring sulfur atoms

causes a large grain boundary expansion. They claim that this expansion facilitates the

grain boundary decohesion process by reducing the grain boundary tensile strength by one

order of magnitude. Their results are in good agreement with the experimental findings of

Heuer et al. [13].

In a recent article, Yamaguchi [14] extended his work to study the decohesion of ferro-
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magnetic BCC iron grain boundaries by sulfur or phosphorous segregation. As a result, he

found two main embrittlement mechanisms where the predominance of one of them over

the other depends on the impurity being segregated. The main mechanism for the sulfur-

induced decohesion was found to be fracture surface stabilization with reference to the grain

boundary by the segregated solute atoms without interaction between them. In the case of

phosphorous-induced embrittlement, the predominant mechanism was claimed to be due to

grain boundary destabilization by a repulsive interaction among the segregated and neigh-

boring solute atoms. They conclude that this difference in the predominant decohesion

mechanism makes sulfur a much stronger embrittling element than phosphorous.

Another interesting work is the one performed by Krupp et al. [15] on oxygen-induced

intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high tem-

peratures. This nickel-based superalloy, commonly used in high-temperature high-strength

components in gas turbines, exhibits a change in the failure mechanism when loaded slowly

at temperatures above 600o C. It has been observed that the cycle-dependent fatigue fail-

ure produces a time-dependent intergranular brittle fracture [16] [17] [18] [19] [20]. Even

though several authors have attributed this transition to grain boundary oxidation, one of

the principal findings of their experimental study is that oxygen-induced intergranular frac-

ture does not necessarily requires the formation of oxides. Furthermore, their work suggest

that oxygen-enhanced decohesion might be the predominant mechanism of intergranular

fracture at high temperature.

Krupp’s hypothesis is supported by first-principles calculations performed by Yamaguchi

and Kaburaki [21]. They found that the formation energy of NiO per oxygen atom is larger

than or comparable to the grain boundary segregation energy of oxygen. In addition, their

findings show that oxygen has a strong embrittlement effect when segregated to the grain
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boundary.

Despite the nature of the predominant decohesion mechanism for a given system, it is

clear that the presence of impurities may have a strong embrittlement effect on the grain

boundary cohesive energy and this is precisely the effect we intend to capture through our

model.

1.2 Motivation

Even though gun barrel erosion is unlikely to cause catastrophic failure of artillery systems,

its effect on eroded bores largely affects the gun system performance, including range and

accuracy loss, directional stability loss (with its consequent dispersion), excessive torsional

impulse and a reduction in the barrel fatigue life [10]. Consequently, the operational effec-

tiveness of a gun system may be considerably affected by erosion, making evident the need

to develop models able to understand and predict it.

Over the last decade, a number of efforts have been made to model and simulate several

mechanisms present in gun barrel erosion. A salient example of these efforts is the recently

work published by Sopok and coworkers [23] [24]. They developed a series of thermal-

chemical-mechanical gun bore erosion models for advanced artillery systems. Although

these models have achieved some degree of success, they require several experimental inputs

for calibration purposes. As a consequence, a strictly predictive model capable of replacing

experiments and aid gun system design does not exist yet.

As pointed out by Sopok and coworkers, gun barrel erosion is mainly dominated by the

development of stress corrosion cracks. Both anodic and cathodic mechanisms are associated

with gun barrel erosion. The former mechanism is mainly observed on the substrate at

points where the coating may present cracks. The latter mechanism is observed at the
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coating-substrate interface as well as on deeper levels within the substrate. Figure 1.2

shows a schematic representation of gun barrel erosion and its main mechanisms.

Figure 1.2: Schematics of gun barrel erosion.

The problem of gun barrel erosion is therefore a complex phenomenon which encom-

passes different regions where different damage mechanisms are present. Thus, it is a logical

approach to divide those mechanisms and study them separately.

In a recent work, Bjerken and coworkers [25] studied the stress-driven material disso-

lution where the loss of atoms to the environment may lead to crack growth (i.e., anodic

SCC). They showed that the interaction of the dissolution process and the mechanical loads

render local irregularities that develop into pits and notches and eventually into cracks. Fur-

thermore, they found that these cracks resemble the type of pits encountered on gun barrel

substrates right at the points where pre-cracks due to manufacturing processes are present

on the coating (see figure 1.3).

The goal of this thesis it to contribute to a deeper understanding of the gun barrel

erosion phenomenon by focusing on modeling the effects of impurity enhanced decohesion

on the substrate (i.e., cathodic SCC). This constitutes a fundamental step to developing

a model of wear for gun barrels accounting for the coupling between chemistry, mechanics
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Figure 1.3: Simulated gun barrel pit.

and thermal analysis capable of predicting wear rates and mechanisms for advanced artillery

systems.

1.3 Model fundamentals

The proposed model for intergranular stress corrosion cracking is based upon: (i) a robust

algorithm capable of generating the geometry of polycrystals for objects of arbitrary shape;

(ii) a continuum finite element model of the crystals including crystal plasticity; (iii) a

grain boundary diffusion model informed with first-principles computations of diffusion

coefficients; and (iv) an intergranular cohesive model described by concentration-dependent

constitutive relations also derived from first-principles.

A brief description of each aspect of the model is presented in the following subsections.

1.3.1 Generation of polycrystalline geometries

A systematic methodology for generating 2 and 3-dimensional polycrystal geometries was

developed as follows. At first, a given initial coarse mesh representing the object to be

modeled is refined by means of the longest edge bisection algorithm originally proposed by

Rivara and Levin [26]. Then, a barycentric subdivision of the resulting mesh is performed
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from which a barycentric dual is defined [27]. The grains defined in this way may have very

non convex shapes making necessary the implementation of a final step to correct this issue.

To this end, the grain boundaries are relaxed by means of a minimization of the total grain

boundary area.

The details of this methodology are discussed in chapter 2.

1.3.2 Grain boundary diffusion model

In order to account for the effect of impurity diffusion across the grain boundaries, Fisher’s

grain boundary diffusion model [28] was adopted and specialized for the case of Harrison’s

type C kinetic regime [29]. The only input required for this continuum model is the grain

boundary diffusion coefficient which may be obtained from first principles computations or

experimental data.

The implemented grain boundary diffusion model is developed in chapter 3.

1.3.3 Polycrystal model

Once the polycrystalline geometry is defined, one random lattice rotation R is assigned to

each grain in the model. For a single grain, its elastic response is modeled by a cubic elastic

behavior whereas the plastic response is captured by means of a crystal plasticity model,

which accounts for the different slip systems present in the material as well as the different

critical resolved shear stress for each system.

The polycrystal model is described in depth in chapter 4.
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1.3.4 Intergranular cohesive fracture model

The intergranular cohesive fracture model is one of the principal components of the present

approach. Cohesive elements, as originally developed by Ortiz and Pandolfi [30], are placed

at every grain boundary. In order to account for the embrittlement due to the presence of

impurities, a cohesive response depending on the concentration of impurities [22] is adopted.

This impurity-dependent cohesive response is informed by first-principles calculations.

The details of the intergranular cohesive fracture model are discussed in chapter 4.

1.3.5 Solution procedure

All the aspects of the model where integrated through a single C++ program. The multi-

physics aspects of the model were addressed by means of a staggered procedure described

in detail in chapter 5.
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Chapter 2

Generation of polycrystalline
geometries

2.1 Introduction

The intergranular stress corrosion cracking model proposed in the present thesis accounts

for the effect of the microstructure on the mechanical response of the material by explicitly

considering the geometry of each grain. This approach is usually referred to as direct

numerical simulation (DNS) of polycrystals.

Generating an adequate geometric representation of the grain size distribution and three-

dimensional grain shapes is usually an intricate aspect of the DNS approach. To this end,

several strategies have been proposed ranging from phase field models of grain growth [31]

to level sets methods for modeling the evolution of faceted crystals [32]. Nevertheless, these

approaches constitute a research area by themselves and their use is not straightforward to

implement in current finite element programs.

A simpler approach consists of assuming isotropic and uniform grain growth during

solidification. The resulting grains can be identified as the Voronoi cells corresponding to a

given initial distribution of 0-cells or nucleation points. As a drawback of this approach, it

is difficult to generate a Voronoi diagram for arbitrary geometries. Consequently, the shape
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of the element being modeled is highly restricted. In addition, the resulting grains can be

difficult to triangulate by means of a tetragonal mesh.

To address the pitfalls of the previous approach, it is common to adopt a structured

mesh to represent the grain geometries. In this approach, each grain is represented by a

tetrakaidecahedron [33] [34]. This method allows us to easily generate finite element meshes.

Unfortunately, this approach is also restrictive regarding the shape of the element being

modeled making it very difficult, if not impossible, to model objects other than cuboids.

This chapter deals with the development of a new method for generating geometric repre-

sentations of objects made of polycrystalline materials. The proposed method can naturally

be applied to model objects of any shape given their initial triangulation. Furthermore, a

finite element mesh is produced as a standard outcome of the method.

In the following sections a brief overview of the method is presented followed by a more

detailed explanation of each aspect of it. We conclude the chapter with some examples

showing the capabilities of the method.

2.2 Overview of the method

The method developed in this thesis for generating geometric representations of polycrys-

talline objects can be conceptually divided into two stages. The first one consists of a series

of purely geometric algorithms, which lead to a first definition of the domain for each grain.

This representation usually results in very non-convex grains. Thus, a second stage is re-

quired in which the grain boundaries are relaxed so that the resulting grains have a more

convex shape.

The first stage, which we refer to as geometric stage, requires the input of an initial

mesh which might be just a coarse representation of the geometry of the object under
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Figure 2.1: Schematic representation of the geometric stage of polycrystal generation.

consideration. Given the initial mesh, the following tasks are performed:

1. Refinement of the initial mesh.

2. Barycentric subdivision of the refined mesh.

3. Definition of the domain for each grain (barycentric dual).

A schematic representation of the geometric stage is depicted in figure 2.1. The figure shows

the procedure for the two-dimensional case for illustration purposes.

As mentioned before, the procedure depicted above may lead to very non-convex grain

geometries. To deal with this issue, the second stage of our method consists on the ap-

plication of a grain boundary relaxation algorithm. Figure 2.2 shows the evolution of two

typical grains as a result of this relaxation.

2.3 Geometric step

For the first task of the geometric stage, i.e., the mesh refinement, a well established longest

edge bisection algorithm [26] was implemented. More generally, the refined mesh can be

generated by any commercial mesh generation package. Consequently, in this section the

focus is placed on the generation of the barycentric subdivision mesh and the definition of the

corresponding subdivision dual. Some background information on simplicial complexes is

presented in the next subsection to facilitate the understanding of the developed algorithms.
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Figure 2.2: Evolution of two typical grains with constant grain boundary energy.

2.3.1 Brief background on simplicial complexes

A cell complex is a collection of objects, or cells, to which a precise dimension can be as-

signed. At its fundamental level, a 3-dimensional object can be represented by a collection

of 0-cells (vertices), 1-cells (edges), 2-cells (faces) and 3-cells (volumes). In the subsequent

paragraphs, p-dimensional cells are denoted as ep. In addition, Ep(S) represents the collec-

tion of p-dimensional cells in a complex S. The dimension dimS of the cell complex S is

the largest dimension of any of its cells. Special classes of cell complexes are obtained when

the cells are restricted to be of a certain type.

Particularly, if the cells are required to be simplices we obtain simplicial complexes.

This type of complexes arises in practice when bodies are discretely represented by means

of triangulations. In order to introduce the concept of simplicial complexes a definition of

simplices must be first introduced.

Let v0, ..., vp be a geometrically independent set in Rn. The simplex σ spanned by
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(a) (c)(b) (d)

Figure 2.3: Examples of collection of simplices (after [1]).

v0, ..., vp is defined as

σ =

{
x ∈ Rn :

p∑
i=0

λi = 1,
p∑
i=0

λivi = x, λi ≥ 0 ∀i = 0, 1, ..., p

}
(2.1)

where the numbers λi are called the barycentric coordinates of x with respect to v0, ..., vp.

The barycentric coordinates of a point are uniquely determined by it. The points v0, ..., vp

can be geometrically interpreted as the vertices of the simplex σ and p as its dimension.

Any simplex generated by a subset of v0, ..., vp is a proper face of σ and the union of all

proper faces is defined as the boundary of the simplex. The notation eβ ≺ eα signifies that

eβ is a face of eα.

A simplicial complex S in Rn is a collection of simplices in Rn such that

1. Every face of a simplex of S is in S.

2. The intersection of any two simplices of S is a face of each of them.

Figure 2.3 shows several examples of collections of simplices. It is clear from the defi-

nition of a simplicial complex that (a), (b) and (d) are simplicial complexes whereas (c) is

not a simplicial complex.
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2.3.2 Barycentric subdivision

Generally speaking, a subdivision complex is obtained by subdividing the cells of a given

cell complex into finer cells. Let S be a cell complex. A complex B is said to be a subdivision

of S if:

1. Every cell of Y is contained in a cell of X.

2. Every cell of X is the union of finitely many cells of Y.

These conditions particularly imply that the union of the cells of B equals the union

of the cells of S and, hence, |B| = |S| as sets. The way in which a subdivision complex

B is nested within the supercomplex S may be described by means of an inclusion map

f : B → S. This map assigns to every cell eβ of B the cell eα of S that contains it. The so

called barycentric subdivision generates a particular class of subdivision complexes.

The barycentric subdivision of a simplicial complex is obtained by means of a uniform

refinement. If σp = [v0, ..., vp] is a p-simplex of a simplicial complex S, its barycenter is the

point

σ̂p =
p∑
i=0

1
p+ 1

vi (2.2)

i.e., the barycenter is the point in the interior of σp that has equal barycentric coordinates.

Given a simplicial complex S its barycentric subdivision B consists of all simplices

[σ̂0, ..., σ̂p] such that σ̂0 � ... � σ̂p. As an example, figure 2.4 shows the barycentric subdi-

vision of a triangle.

The algorithm implemented to perform the barycentric subdivision of an arbitrary sim-

plicial complex is detailed in algorithm 1.
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Figure 2.4: Barycentric subdivision of a triangle.

Algorithm 1: Barycentric subdivision.
Input: simplicial complex S, n = dimS.
Output: barycentric complex B.
/* Initialize barycentric complex B and inclusion map f */
for (p = 0, ..., n) do1

for (ep ∈ Ep(S)) do2

insert v in E0(B);3

insert (ep, v) in f ;4

/* Compute connectivity table CT (S) */
for (en ∈ En(S)) do5

insert [en] in CT (S);6

for (p = n, ..., 1) do7

for ([en, ..., ep] ∈ CT (S)) do8

for (ep−1 ≺ ep) do9

append ep−1 to [en, ..., ep];10

/* Compute connectivity table CT (B) */
for ([en, ..., e0] ∈ CT (S)) do11

insert [f(en), ..., f(e0)] in CT (B);12

construct the simplicial complex B from CT (B);13

return B14
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2.3.3 Dual definition

The barycentric subdivision alone does not define the region corresponding to each grain

in the model. To achieve this goal, the concept of dual mesh has to be introduced. An in-

depth discussion of the concepts of duality can be found in [1] and [27]. For a more intuitive

approach see [2] and [35]. For computational aspects and implementation of duality concepts

on computer codes see [36].

The main idea underlying the notion of dual mesh is to associate to each primal k-

simplex of the n-dimensional cell complex S a dual (n− k)-cell of the dual complex B. For

example, for each 0-cell in a 2-dimensional cell complex a dual 2-cell can be defined. Each

1-cell will have associated a 1-cell in the dual mesh and each primal 2-cell can be associated

to a dual 0-cell. Figure 2.5 shows a 2-dimensional example of primal and dual cells.

To determine the domain corresponding to each grain in the polycrystal, we adopt the

concept of dual cells. Grains are then defined as dual cells on the barycentric complex B

corresponding to primal 0-cells on the refined mesh represented by the simplicial complex

S.

Let e0 be a 0-cell in the n-dimensional cell complex S and ê0 = f(e0) the corresponding

0-cell on B given by the inclusion map f . The n-dimensional grain associated to e0 is given

by the set of n-cells belonging to B incident to ê0, i.e., In = {en � f(e0)}. To complete

the construction of the simplicial complex (mesh) associated to a given grain, the set of

(0, ..., n− 1)-cells incident to each element of In must be inserted into the complex without

repetition.

The corresponding computational implementation of grain domain definition is pre-

sented in detail in algorithm 2.
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0-cell 1-cell 2-cell

dual 2-cell dual 1-cell dual 0-cell

Figure 2.5: 2-dimensional example of primal and dual cells (after [2]).

Algorithm 2: Grain domain definition.
Input: simplicial complex S, n = dimS, barycentric complex B, inclusion map f .
Output: map form cell to grain subcomplex PC.
initialize map form cell to grain subcomplex PC;1

for e0 ∈ E0(S) do2

initialize subcomplex G with dimension n;3

insert In = {en � f(e0)} in En(G);4

for (p = n, ..., 1) do5

for (ep ∈ Ep(G)) do6

insert, without repetition, Ip−1 = {ep−1 ≺ ep} in Ep−1(G);7

insert (e0,G) in PC;8

return PC9
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2.4 Grain boundary relaxation step

The grains generated with the algorithms described in the previous section are usually very

non-convex in opposition to experimental observations. Thus, a convexification algorithm

had to be implemented. Basically, it consists of two steps:

1. Extraction of grain boundaries from the original polycrystal mesh.

2. Minimization of the total grain boundary area with respect to the nodal positions.

Once the grain boundary area is expressed in terms of nodal coordinates, the process

of numerically attaining its minimum is not trivial. Two algorithms were implemented,

namely a gradient flow algorithm (algorithm 3) and a non-linear version of the conjugate

gradient algorithm (algorithm 4).

When the conjugate gradient algorithm was employed, convergence was eventually

achieved but at a rate too slow to be of practical use for problems involving more than

1,000 grains. On the other hand, when the minimization was pursued by means of the

non-linear conjugate gradient algorithm, the problem diverged in the first few steps.

In our experience, the best approach was to start the minimization with a gradient flow

algorithm so that the solution gets closer to the minimum. After a few steps, the algorithm

is interrupted and the conjugate gradient solver takes over the process. In this way, a

minimum is usually attained after less than 50 iterations even for problems involving more

than thousands of grains.

Figure 2.6 shows the evolution of a polycrystal mesh undergoing grain boundary area

minimization. It is clearly observed that the resulting grains are much more convex than

those on the starting mesh.
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Figure 2.6: Relaxation of a polycrystal with constant grain boundary energy.

Algorithm 3: Gradient flow.
Input: field x, force function DE(·), maximum iterations N , tolerance T , small

number ε.
for (k = 0, ..., N) do1

u← −DE(x) · ε;2

x← x+ u;3

Error ← ‖u‖;4

if (Error < T ) then5

update local state;6

return SUCCESS;7

return FAIL;8
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Algorithm 4: Non-linear conjugate gradient.
Input: field x, force function DE(·), maximum iterations N , tolerance T , small

number ε.
α← β ← dr ← 0;1

r ← DE(x);2

rn ← r;3

d← r;4

for (k = 0, ..., N) do5

x← x+ ε · d;6

dr ← (DE(x)−r)·d
ε ;7

α← α− r·d
dr − ε;8

x← x+ α · d;9

rn ← DE(x);10

Error ← ‖rn‖;11

if (Error < T ) then12

update local state;13

return SUCCESS;14

β ← rn(rn−r)
r2

;15

if (β < 0) then16

β = 0;17

d← rn + β · d;18

r ← rn;19

return FAIL;20
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Figure 2.7: Polycrystalline sphere.

Figure 2.8: Polycrystalline rod.

2.5 Examples

In this section, a few examples demonstrating the capabilities of the method developed

in the present chapter are presented. Figures 2.7 and 2.8 show the ability of the method

to generate polycrystalline structures for complex geometries. Figure 2.9 shows how the

method can produce meshes with grains of different sizes. Finally, figure 2.10 shows an

example where the mesh produced by the method was refined after the grain geometry was

generated.
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Figure 2.9: Polycrystal with grain size variation according to a power law.

Figure 2.10: Polycrystalline cuboid. Its grain were refined after the geometry generation
algorithm was completed.
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Chapter 3

Grain boundary diffusion model

3.1 Introduction

Grain boundaries are the interfaces between two grains in a polycrystalline material. They

are highly disordered almost two dimensional regions (only a few atoms in thickness) that

provide, in general, less resistance to atomic movements than the adjacent grains. Within

this context, grain boundary diffusion may be defined [37] as the process of atomic transport

due to random motion of atoms along the grain boundaries in crystalline materials.

Understanding grain boundary diffusion is fundamental for comprehending the more

complex phenomenon of stress corrosion cracking by impurity-enhanced decohesion. Grain

boundary diffusion is the driving mechanism that facilitates the transport of impurities from

the corrosive environment to the core of the material.

The present chapter will start by stating Fick’s [38] laws of diffusion; later, Fisher’s [28]

widely accepted theory of grain boundary diffusion will be presented, followed by the stan-

dard classification of grain boundary diffusion regimes originally introduced by Harrison [29].

A relationship between first principles computations and phenomenological diffusion coef-

ficients will be established. To conclude, the methods and algorithms necessary to address

the grain boundary diffusion phenomenon will be presented: finite elements discretization
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and discrete time integration.

3.2 Fick’s laws of diffusion

In 1855 German physiologist Adolf Eugen Fick [38] recognized the analogy between diffusion

and heat transfer by conduction and established Fick’s laws of diffusion. The first law

states that the diffusant flux q is proportional to the diffusant concentration gradient. In

mathematical terms this can be expressed as

q = −D∇c (3.1)

where c is the diffusant concentration, D is the diffusion coefficient and ∇ is the gradient

operator defined (using Einstein’s notation) as

∇ = ei
∂

∂xi

Fick’s second law relates the diffusant flux q at a given point to its concentration rate

of change by means of the equation

∂c

∂t
= −∇q (3.2)

Under the assumption of independence of D on position, we can substitute 3.1 into 3.2

obtaining

∂c

∂t
= D∇2c (3.3)
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Figure 3.1: Grain boundary schematics: grains shown in yellow, grain boundary of thickness
δ in light blue.

where ∇2 is the Laplacian operator of the form

∇ =
∂2

∂xixi

Equation 3.3 is usually called the diffusion equation.

3.3 Fisher’s grain boundary diffusion model

Let us consider an isolated grain boundary as schematically shown in figure 3.1. Grains

(with diffusion coefficient Dg) are shown in yellow whereas the grain boundary zone (with

diffusion coefficient Dgb) of thickness δ is shown in light blue.

In 1950 Fisher [28] developed the first model of grain boundary diffusion for this kind of

system. Even though there were other attempts to model this phenomenon (e.g., [39], [40]

and [41]), recent literature reviews (e.g., [42], [43]) indicate that Fisher’s model is still the

only one used for the analysis of the experimentally determined penetration profiles of the
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isotope diffusing along the grain boundaries.

Fisher’s model is based on four fundamental assumptions that can be summarized as

follows:

1. Fick’s laws of diffusion are obeyed both at the grains and at the grain boundary.

2. Both the diffusant concentration and the flux are continuous across the grain/grain

boundary interface.

3. The grain boundary is so thin that concentration variation along its width (i.e., along

the x-axis direction) is negligible.

4. The diffusion coefficients Dg and Dgb are isotropic and independent of concentration,

position and time.

In mathematical terms, assumption (1) can be expressed by means of two diffusion

equations:

∂cg
∂t

= Dg

(
∂2cg
∂x2

+
∂2cg
∂y2

+
∂2cg
∂z2

)
if |x| > δ

2
(3.4a)

∂cgb
∂t

= Dgb

(
∂2cgb
∂x2

+
∂2cgb
∂y2

+
∂2cgb
∂z2

)
if |x| ≤ δ

2
(3.4b)

In addition, assumption (2) allows us to couple equations 3.4a and 3.4b. Mathematically,

this can be expressed as the boundary conditions

cg(x, y, z, t) = cgb(x, y, z, t) if |x| = δ

2
(3.4c)

qg(x, y, z, t) = qgb(x, y, z, t) if |x| = δ

2
(3.4d)

To simplify the former expressions, cgb can be expanded in Taylor-series around x = 0
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obtaining

cgb = cgb

∣∣∣
x=0

+ x
∂cgb
∂x

∣∣∣
x=0

+
x2

2
∂2cgb
∂x2

∣∣∣
x=0

+ ...

Under assumption (3), higher order terms can be neglected, and assuming symmetry of

cgb with respect to the yz plane its expansion becomes

cgb = cgb

∣∣∣
x=0

+
x2

2
∂2cgb
∂x2

∣∣∣
x=0

(3.5)

Replacing the previous approximation for cgb in equation 3.4b, evaluating it at x = ± δ
2 ,

and neglecting terms of order δ2 the following expression is obtained:

∂

∂t

(
cgb

∣∣∣
x=0

)
= Dgb

∂2cgb
∂x2

∣∣∣
x=0

+Dgb

(
∂2

∂y2

(
cgb

∣∣∣
x=0

)
+

∂2

∂z2

(
cgb

∣∣∣
x=0

))
(3.6)

Finally, plugging 3.5 into 3.4d results in the equation

Dgb
∂2cgb
∂x2

∣∣∣
x=0

=
2Dg

δ

∂cg
∂x

(3.7)

By replacing the previous equation in 3.6 and considering 3.8a, Fisher’s representation

of the grain boundary diffusion problem is obtained:

∂cg
∂t

= Dg

(
∂2cg
∂x2

+
∂2cg
∂y2

+
∂2cg
∂z2

)
if |x| > δ

2
(3.8a)

∂cgb
∂t

= Dgb

(
∂2cgb
∂y2

+
∂2cgb
∂z2

)
+

2Dg

δ

∂cg
∂x

if |x| ≤ δ

2
(3.8b)

Both equations are still coupled by the condition

cg(x, y, z, t) = cgb(x, y, z, t) if |x| = δ

2
(3.8c)
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Equations 3.8a and 3.8b are known as Fisher’s equations of grain boundary diffusion.

It can be observed that 3.8b became a two dimensional diffusion equation in the grain

boundary area. The first term in the right hand side represents the diffusion within the

grain boundary whereas the second term accounts for the leakage of diffusant to the adjacent

grains.

3.4 Grain boundary diffusion regimes

Typically, the grain boundary diffusion phenomenon involves more than plain transport

of atoms along the grain boundaries; it is a complex combination of several elementary

processes among which the most important ones are:

1. Pure diffusion along the grain boundaries.

2. Leakage of impurity atoms from the grain boundaries to the bulk.

3. Diffusion through the bulk.

The relative importance of each elementary process usually varies for different mate-

rial/impurity systems, and within the same system for different grain sizes and tempera-

tures. This variation determines the global behavior of the system under consideration,

resulting in different kinetic regimes.

The first analysis of grain boundary diffusion kinetics was performed by Harrison [29]

in 1961. In his work, Harrison introduced three kinetic regimes which he called types A, B

and C (figure 3.2).

Even though other classifications were proposed in the subsequent years (e.g., [37],

[41] for general grain boundary diffusion or [44] for mobile grain boundaries), Harrison’s
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Figure 3.2: Schematic representation of types A, B and C diffusion kinetics following Har-
rison’s classification.

categorization of diffusion kinetics for polycrystals still is the most widely adopted by the

scientific community.

3.4.1 Type A kinetics

The A regime is observed in the limiting case of high temperatures and/or very long anneal

time and/or small grain sizes, and/or bulk diffusion coefficient not much smaller than the

grain boundary diffusion coefficient.

In this regime, the diffusant is not only confined to the grain boundary: during the

diffusion anneal, a migrating atom may pass from a grain boundary to the crystal lattice

and it may then diffuse through the grain until it reaches another grain boundary.

If the anneal time is long enough, the atom may visit several grains as well as several

grain boundaries. Thus, the macroscopic behavior under regime A conditions appears to

obey Fick’s law for a homogeneous medium with some effective diffusion coefficient Deff

(figure 3.2a). Following Hart [45], the effective diffusion coefficient in the A regime can be

estimated as

Deff = gDg + (1− g)Dgb (3.9)

where g is the volume fraction of the grains in the polycrystal.
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3.4.2 Type B kinetics

The B regime is observed at lower temperatures, and/or shorter anneal time and/or larger

grain sizes than those that favor the occurrence of regime A kinetics.

Even though the diffusant is not only confined to the grain boundary as in regime

A, the typical bulk diffusion constant is smaller in this case when compared to the grain

boundary diffusion constant than in the previous regime. As a result, the diffusant is not

homogeneously distributed across the polycrystal: high concentrations are encountered at

the grain boundaries, rapidly decreasing into the grains (figure 3.2b).

Under type B kinetic conditions, the polycrystal cannot be thought of as a homogeneous

medium anymore, and a full solution of Fisher’s model (equations 3.8a and 3.8b) is needed

to fully capture the phenomenon.

3.4.3 Type C kinetics

The C regime generally is observed in the other limiting case of low temperatures and/or

short anneal time and/or large grain sizes, and/or bulk diffusion coefficient much smaller

than the grain boundary diffusion coefficient.

In this regime, the bulk diffusion is almost locked and diffusion takes place almost

exclusively at the grain boundaries without any essential leakage to the neighboring grains

(figure 3.2c).

When type C kinetics is present, the transport of the diffusant is governed by only one

diffusion coefficient: the grain boundary diffusion coefficient Dgb. Thus, Fisher’s system

can be reduced to one single differential equation:

∂cgb
∂t

= Dgb

(
∂2cgb
∂y2

+
∂2cgb
∂z2

)
if |x| ≤ δ

2
(3.10)
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3.5 Determination of the grain boundary diffusion coefficient

Let us consider the first principle computations commonly performed to estimate the values

of diffusion coefficients. Such simulations usually place impurity atoms into a matrix and

measure the mean square distance they travel as a function of time. At a constant temper-

ature T , the mean square distance 〈d2〉T scales linearly with time. Thus, it is possible to

perform a linear fit of the first-principles computations results. That is,

〈d2〉T = mT t (3.11)

where mT is the slope of the linear fit and t the time. It is also known that the mean square

distance relates to the diffusion coefficient DT at temperature T as follows

〈d2〉T = 2DT t (3.12)

Consequently, it is possible to eliminate the time from the equations and obtain a relation

between the slope and the diffusion coefficient obtaining

mT = 2DT (3.13)

By assuming that the dependence of the diffusion coefficient on time is given by an

Arrhenius equation, the following relations can be expressed for two different temperatures

T1 and T2

mT1 = 2D0e
− Ea
RT1 (3.14)

mT2 = 2D0e
− Ea
RT2 (3.15)
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where D0 is the pre-exponential factor, Ea the activation energy and R the gas constant.

It is possible, then, to identify the unknowns by performing first-principles computations

of the mean square distance at two given temperatures. Thus, by solving the previous

equations a final expression for the diffusion coefficient can be expressed as

D(T ) = D0e
− Ea
RT (3.16)

with D0 and Ea given by

D0 =
mT2

2

(
mT2

mT1

) T1
T2−T1

(3.17)

Ea = R
T1T2

T2 − T1
ln
(
mT2

mT1

)
(3.18)

Utilizing data provided by Van Duin [8] (see table 3.1), making an average of the values

for different types of grain boundaries and following the procedure depicted above the

following estimation for the grain boundary diffusion coefficient for H in Fe (in m2/s) is

obtained:

Dfpgb(T ) = 2.44 · 10−7 exp
(
−1334.42

T

)
(3.19)

Table 3.1: First principles values of Dgb in [A2/ps] for H in Fe [8]
Type of GB Dgb at 500K Dgb at 1500K
Σ3[110][111] 2.82 16.18
Σ5[001][210] 1.13 6.73
Σ5[001][310] 1.61 9.57
Σ7[111][321] 2.01 12.40
Σ13[001][320] 1.53 9.08
Σ13[001][510] 1.34 7.98
Σ17[001][530] 1.39 8.25
Average 1.69 10.03

Analogously, following the same procedure for experimental values reported in the lit-
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Figure 3.3: Estimation of grain boundary diffusion coefficient for H in Fe. Experimental
values [3] (solid circles), experimental fit (solid line), first principles fit (dashed line) and
estimated value at room temperature (empty diamond).

erature [3], the following fit is obtained

Dexpgb(T ) = 2.75 · 10−8 exp
(
−705.46

T

)
(3.20)

As shown in figure 3.3, the fits for first principles computations and experiments show

a considerable disagreement. The values obtained form first principles computations are

considerably higher than those reported experimentally. This could be due to the fact that

all of the grain boundary simulated were pure tilt grain boundaries. This kind of boundary

provides an array of parallel dislocations which could facilitate pipe diffusion along the

grain boundaries. Nevertheless, their value is almost identical at room temperature, the

one selected for our validations.
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3.6 Finite element implementation

3.6.1 Spatial discretization

3.6.1.1 Strong form

In general, the diffusion problem in Rn can be described in a local, strong form by means

of a differential equation and appropriate boundary conditions.

As seen before, the diffusion equation on a domain Ω can be expressed as

∂c

∂t
+
∂qi

∂xi
= 0 in Ω (3.21)

where c is the impurity concentration and qi represent the components of the flux vec-

tor expressed in an orthonormal basis with coordinates xi. The corresponding boundary

conditions are given by

c = c̄ on ∂Ω1 qi = q̄i on ∂Ω2 (3.22)

where ∂Ω1 and ∂Ω2 must satisfy

∂Ω1 ∪ ∂Ω2 = ∂Ω, ∂Ω1 ∩ ∂Ω2 = ∅ (3.23)

3.6.1.2 Weak form

The same problem can also be described in an integral or weak form. In order to accomplish

that, let us consider the weighting functions w satisfying

w such that

∫
Ω

∂w

∂xi
dΩ <∞ and w = 0 on ∂Ω1 (3.24)
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Multiplying the diffusion equation by the weighting function and integrating over the

domain, it becomes ∫
Ω

(
w
∂c

∂t
+ w

∂qi

∂xi

)
dΩ = 0 (3.25)

Noting that

w
∂qi

∂xi
=

∂

∂xi
(
w qi

)
− ∂w

∂xi
qi (3.26)

it can be expressed as

∫
Ω

(
w
∂c

∂t
+

∂

∂xi
(
w qi

)
− ∂w

∂xi
qi
)
dΩ = 0 (3.27)

The previous expression can be now easily integrated by parts obtaining

∫
Ω

(
w
∂c

∂t
− ∂w

∂xi
qi
)
dΩ +

∫
∂Ω
w qi ni dS = 0 (3.28)

In addition, w = 0 on ∂Ω1 and qi = q̄i on ∂Ω2. Therefore, the weak form of the diffusion

problem in Rn can be expressed as

∫
Ω

(
w
∂c

∂t
− ∂w

∂xi
qi
)
dΩ +

∫
∂Ω2

w q̄i ni dS = 0 (3.29)

3.6.1.3 Constitutive relation

In order to establish a link between the concentration c and the flow q, a constitutive

relation must be assumed. As stated in previous sections of this chapter, the constitutive

relation is assumed to be of Fick’s type. It can be derived from the energy density

W (ψ) =
1
2
Djkψjψk (3.30)
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where ψi = ∂c
∂xi

and Djk is the diffusion coefficient. Within this context, the flux q is given

by

qi = −∂W (ψ)
∂ψi

(3.31)

The energy derivative can be computed as follows:

∂W (ψ)
∂ψi

=
1
2
Djk ∂ψj

∂ψi
ψk +

1
2
Djkψj

∂ψk
∂ψi

(3.32)

Considering that ∂ψj
∂ψi

= δji, ∂ψk
∂ψi

= δki it becomes

∂W (ψ)
∂ψi

=
1
2
Dikψk +

1
2
Djiψj (3.33)

The symmetry of the diffusion coefficient tensor D implies that

∂W (ψ)
∂ψi

= Dijψj (3.34)

As a result, the flux q can be expressed as

qi = −Dijψj = −Dij ∂c

∂xj
(3.35)

Finally, by plugging it into the weak form it becomes

∫
Ω

(
w
∂c

∂t
+
∂w

∂xi
Dij ∂c

∂xj

)
dΩ +

∫
∂Ω2

w q̄i ni dS = 0 (3.36)
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3.6.1.4 Discretization

The discretization of equation 3.36 will now be performed. In order to do that, c and w are

interpolated using the shape functions Ni and the nodal values ĉi and ŵi. That is,

w = Naŵa ; c = Nbĉb ; q̄i = Nb ˆ̄qib (3.37)

Thus, the respective derivatives can be expressed as

∂w

∂xi
=
∂Na

∂xi
ŵa ;

∂c

∂xj
=
∂Nb

∂xj
ĉb ;

∂c

∂t
= Nb

∂ĉb
∂t

(3.38)

Therefore, plugging the previous interpolations into 3.36 the following expression is

obtained:

∫
Ω

(
NaŵaNb

∂ĉb
∂t

+
∂Na

∂xi
ŵaD

ij ∂Nb

∂xj
ĉb

)
dΩ +

∫
∂Ω2

NaŵaNb ˆ̄qib ni dS = 0 (3.39)

Since the equation above must hold for all weighting functions w, the following identity

must hold

(∫
Ω
NaNbdΩ

)
∂ĉb
∂t

+
(∫

Ω

∂Na

∂xi
Dij ∂Nb

∂xj
dΩ
)
ĉb = −

∫
∂Ω2

NaNb ˆ̄qib ni dS (3.40)

In order to simplify the notation in previous equation, let us define

Mab =
∫

Ω
NaNbdΩ Kab =

∫
Ω

∂Na

∂xi
Dij ∂Nb

∂xj
dΩ (3.41)

where Mab and Kab are called the mass and and stiffness matrices respectively by analogy
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with solid mechanics problems. Let us also define the forcing term

Qa = −
∫
∂Ω2

NaNb ˆ̄qib ni dS (3.42)

Therefore, equation 3.40 becomes

Mab
∂ĉb
∂t

+Kabĉb = Qa (3.43)

Equation 3.43 is the discrete finite elements representation of the diffusion problem.

As it can be seen, it represents a system of ordinary differential equations. The standard

way of solving it is by numerical integration. In the next subsection, the general family of

trapezoidal integrators adopted in this study is described.

3.6.2 Temporal discretization: generalized trapezoidal methods

The finite element discretization of the diffusion problem 3.43 can be expressed in matrix

notation as

M · ċ + K · c = Q (3.44)

As it can be seen, equation (3.44) represents a discretization of the diffusion problem in

space. Therefore, a time-discretization is needed to solve the dynamic problem. The family

of generalized trapezoidal methods assume the following time-discretization:

M · ċn+1 + K · cn+1 = Qn+1 (3.45a)

cn+1 = cn + ∆tċn+α (3.45b)

ċn+α = (1− α)cn + αċn+1 (3.45c)
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where α is a parameter between 0 and 1. Plugging (3.45c) into (3.45b) and defining cpredn+1 =

cn + ∆t(1− α)ċn the following expressions are obtained

cn+1 = cpredn+1 + α∆tċn+1 (3.46a)

ċn+1 =
cn+1 − cpredn+1

α∆t
(3.46b)

Finally, plugging (3.46b) into (3.45a) the following expression is obtained

M ·
cn+1 − cpredn+1

α∆t
+ K · cn+1 = Qn+1 (3.47)

Equation (3.47) can be solved for cn+1 and the obtained value plugged in (3.46b) to

obtain ċn+1.
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Chapter 4

Mechanical model

4.1 Introduction

This chapter deals with the development of the mechanical models necessary to represent the

intergranular stress corrosion cracking phenomenon of polycrystalline materials undergoing

impurity-enhanced decohesion.

It begins by briefly introducing the balance equations that govern both the mechanical

behavior of the grains in the polycrystal as well as the cohesive response between them.

In section 4.3 the basic principles of thermodynamics which rule the existence of the

equation of state, the conservation of energy and the direction in which processes take

place are discussed. The obtained results in that section will be of crucial importance

in the development of the constitutive models for crystal plasticity and cohesive surfaces

performed in the subsequent sections.

In section 4.4 the mechanical response of the polycrystal is modeled, placing particular

emphasis on the presentation of the constitutive model for the elastic-plastic response of

single crystals.

To conclude the chapter, an intergranular cohesive fracture model that accounts for

impurity effects on the grain boundaries is presented.
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4.2 Balance equations

The present section introduces the balance equations that govern both the mechanical

behavior of the grains in the polycrystal as well as the cohesive response between them.

After a brief description of the kinematic considerations and the corresponding notation, the

equations of conservation of mass, linear momentum and angular momentum are developed.

For a complete discussion of the topics addressed here see references [46] and [47].

4.2.1 Kinematic considerations

Let us consider the deformation of a body occupying a domain B ∈ R3 in a certain reference

configuration. The material points P ∈ B are labeled by means of their coordinates X(P )

on some reference frame, which we call the material reference frame.

Furthermore, let us consider a one-to-one deformation mapping ϕ : B → R3. This

mapping completely defines the motion of the body, ruling out interpenetration of matter

and tearing. In this way, the coordinates x of a given material point at a given time are

expressed as

x(t) = ϕ(X, t), X ∈ B (4.1)

Consequently, the current configuration Ω at a given time t is defined as the mapping

of the entire reference configuration, that is,

Ω(t) = ϕ(B, t) (4.2)

The material velocity field is given by the material time derivative of the deformation
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map

v(t) =
∂ϕ

∂t

∣∣∣∣
X

(4.3)

Analogously, the material acceleration field is given by the second time derivative of the

deformation map

a(t) =
∂2ϕ

∂t2

∣∣∣∣
X

(4.4)

The action of the deformation mapping on an infinitesimal material vector dX at X is

completely determined by the deformation gradient F which, when expressed in components,

takes the form

F iJ =
∂ϕi

∂XJ
(4.5)

The deformed and undeformed oriented areas da and dA are related by the Piola trans-

formation

ni da = J F Ii
−1
NI dA (4.6)

where J = det(F) is the Jacobian of the deformation, ni the components of the unit normal

to the area in the deformed configuration and NI the components of the corresponding

vector in the reference configuration.

Finally, the deformed and undeformed volumes are related by J as follows

dv = JdV (4.7)

That is, the Jacobian is a direct measure of the volumetric deformation.
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4.2.2 Conservation of mass

Let ρ0 : B → R be the mass per unit undeformed volume and ρ : ϕ(B) → R the current

mass per unit deformed volume. The mass contained in an arbitrary sub-body S ∈ B can

be expressed as

m(S) =
∫
S
ρ0(X) dV =

∫
ϕ(S)

ρ(x) dv (4.8)

Using equation 4.7 to transform the integral over the deformed configuration it becomes

∫
S
ρ0(X) dV =

∫
S
J ρ(ϕ(X)) dV (4.9)

Since S is arbitrary, for the previous equation to hold it is necessary that

ρ0(X) = J ρ(ϕ(X)) in Ω = ϕ(X) (4.10)

4.2.3 Conservation of linear momentum

As in the previous section, let us consider an arbitrary sub-body S ∈ B. The conservation

of linear momentum can be expressed in the deformed configuration as

∫
∂ϕ(S)

t da+
∫

ϕ(S)
ρb dv =

d

dt

∫
ϕ(S)

ρv dv (4.11)

where t represents the traction, b the volumetric forces per unit mass and v the material

velocity as defined by equation 4.3.

The traction t on a plane defined by the normal n is related to the Cauchy’s stress
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tensor σ as indicated by Cauchy’s tetrahedron theorem:

t = σ · n (4.12)

Inserting equation 4.12 into the equation of conservation of linear momentum, consider-

ing Reynolds’ transport theorem (with mass conservation) to bring the time derivative into

the integral and applying the divergence theorem, equation 4.11 becomes

∫
ϕ(S)

div(σ) dv +
∫

ϕ(S)
ρb dv =

∫
ϕ(S)

ρa dv (4.13)

In the previous expression a represents the material acceleration as defined in equation

4.4. Collecting terms it becomes

∫
ϕ(S)

[div(σ) + ρb− ρa] dv = 0 (4.14)

Since the previous identity must hold for any sub-body S ∈ B it is a necessary condition

that

div(σ) + ρb = ρa in Ω = ϕ(X) (4.15)

Equation 4.15 is usually referred to as the local or strong form of the conservation of

linear momentum.
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4.2.4 Conservation of angular momentum

The integral statement of the conservation of angular momentum for a sub-body S ∈ B can

be expressed in spatial form as

∫
∂ϕ(S)

x× t da+
∫

ϕ(S)
x× ρb dv =

d

dt

∫
ϕ(S)

x× ρv dv (4.16)

As in the previous section, the application of Cauchy’s tetrahedron theorem, Reynolds

transport theorem (with mass conservation) and the divergence theorem results in

∫
ϕ(S)
{[ρai − ρbi − σij,j ] + eijkσjk} dv = 0 (4.17)

Finally, assuming conservation of linear momentum we can see that the terms between

brackets vanish. Thus, ∫
ϕ(S)

eijkσjk dv = 0 (4.18)

Since the previous identity must hold for any sub-body S ∈ B it is necessary that

eijkσjk = 0 in Ω = ϕ(X) (4.19)

Due to the anti-symmetry of the permutation symbol it is necessary for σ to be sym-

metric in order to make the previous equation hold. Mathematically, it is expressed as

σ = σT (4.20)

That is, the conservation of angular momentum implies the symmetry of Cauchy’s stress

tensor.
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4.3 Thermodynamic aspects

A complete analysis of any problem in continuum mechanics cannot be performed without

taking into account the principles of thermodynamics, which rule the existence of the equa-

tion of state, the conservation of energy and the direction in which processes take place.

Therefore, the results obtained in this section will be of crucial importance in the devel-

opment of the constitutive models for crystal plasticity and cohesive surfaces performed in

subsequent sections of this chapter. For a more detailed discussion of the topics presented in

this section as well as their application to constitutive theories see references [47], [46], [48]

and [49].

4.3.1 Energy dissipation

Let us consider a sub-body S ∈ B. The external power of the forces acting on S is given by

Pext =
∫
∂ϕ(S)

t · v da+
∫

ϕ(S)
ρb · v dv (4.21)

Applying Cauchy’s tetrahedron theorem and considering the symmetry of σ the previous

expression becomes:

Pext =
∫
∂ϕ(S)

(σ · v) · n da+
∫

ϕ(S)
ρb · v dv (4.22)

This equation can be further transformed by means of the divergence theorem so that

Pext =
∫

ϕ(S)
div(σ · v) dv +

∫
ϕ(S)

ρb · v dv (4.23)

Grouping terms and assuming conservation of linear momentum together with the sym-
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metry of Cauchy’s stress tensor σ the following expression is obtained

Pext =
∫

ϕ(S)
σ : sym(∇v) dv +

∫
ϕ(S)

d

dt

(
1
2
ρv · v

)
dv (4.24)

Moreover, the application of Reynolds’ transport theorem under the assumption of mass

conservation allows us to take the time derivative out of the second integral, obtaining in

this way

Pext =
∫

ϕ(S)
σ : sym(∇v) dv +

d

dt

∫
ϕ(S)

(
1
2
ρv · v

)
dv (4.25)

Finally, after introducing the definition of the kinetic energy K(t) of the sub-body S ∈ B

as

K(t) =
∫

ϕ(S)

(
1
2
ρv · v

)
dv (4.26)

the so called theorem of expended power [47] [50] is obtained:

Pext =
∫

ϕ(S)
σ : sym(∇v) dv +

d

dt
K(t) (4.27)

As it can be seen, equation 4.27 implies that the total external power applied to the

sub-body S ∈ B is expended in part in the stress power and the rest contributes to a change

in the kinetic energy of the sub-body.

The only assumptions during this derivation were the conservation of mass, linear and

angular momentum. That is, there is not a single thermodynamic assumption in the pre-

vious result. It is in the subsequent parts of this section when thermodynamics comes into

play with a decisive role.

Let us now consider the first law of thermodynamics for our sub-body S ∈ B which pos-

tulates the existence of a function of state that measures the energy stored in the material.
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The external power Pext must be equal to the rate of dissipated energy Pdis plus the

rate of stored internal energy Pint plus the rate of kinetic energy Pkin. That is,

Pext = Pkin + Pint + Pdis (4.28)

Considering the theorem of expended power given by equation 4.27 the previous expres-

sion becomes

Pdis =
∫

ϕ(S)
σ : sym(∇v) dv − dξ

dt
(4.29)

where ξ represents the energy stored in the material. Furthermore, in the spirit of the

continuum theory the rate of dissipated energy density per unit of reference volume D is

introduced as

Pdis =
∫
S
D dV (4.30)

Along the same lines, it is also assumed that the energy stored in the material can be

expressed in terms of a stored energy density per unit of reference volume e. That is,

ξ =
∫
S
e dV (4.31)

By introducing the two previous definitions into equation 4.29 it becomes

∫
S
D dV =

∫
ϕ(S)

σ : sym(∇v) dv −
∫
S
ė dV (4.32)

Expressing the first integral on the right hand side in terms of the reference configuration
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and collecting terms, the following expression is obtained

∫
S

[D − Jσ : sym(∇v) + ė] dV = 0 (4.33)

Since the previous equality must hold for any arbitrary sub-body S ∈ B the following

identity must necessarily hold

D = Jσ : sym(∇v)− ė (4.34)

To conclude, the second principle of thermodynamics establishes that the dissipation is

either zero or positive for any possible process. That is, D ≥ 0. This implies that

Jσ : sym(∇v)− ė ≥ 0 (4.35)

which is widely known as the Clausius-Duhem inequality. Recalling that τ = Jσ is the

Kirchhoff stress tensor and that D = sym(∇v) its work conjugate, inequality 4.35 can be

expressed in terms of other work conjugate pairs of stresses and strain rates. As an example,

it can be expressed in terms of the Lagrangian (or Green) strain tensor rate Ė and its work

conjugate, the second Piola-Kirchhoff stress tensor S

S : Ė− ė ≥ 0 (4.36)

It is important to mention that in the following sections only isothermal processes for

which the stored energy density e is the Helmholtz free energy will be considered. That is,
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the Clausius-Duhem inequality for isothermal processes can be expressed as

S : Ė− Ȧ ≥ 0 (4.37)

where A represents the Helmholtz free energy. The constraint to focus on isothermal pro-

cesses is not really a big limitation in multiphysics processes since the changes in tem-

perature (or other non-local processes) can be addressed by the application of staggered

procedures [51] [52] [53] [54] [55].

4.3.2 Coleman’s method

Let us consider a generic isothermal process for which the Helmholtz free energy depends

on the deformation of the material (some measure of it) and a given set of internal variables

q. Under these assumptions, Coleman’s method provides a systematic tool to impose con-

straints to our constitutive relations based on the thermodynamic considerations exposed

in the previous section.

For example, considering Green’s strain tensor as such measure of deformation the

following functional dependence for A is obtained

A = A(E,q) (4.38)

Thus, its time derivative becomes

Ȧ =
∂A

∂E
: Ė +

∂A

∂q
· q̇ (4.39)
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Inserting equation 4.39 into inequality 4.37 it becomes

S : Ė− ∂A

∂E
: Ė− ∂A

∂q
· q̇ ≥ 0 (4.40)

which, after grouping terms can be expressed as

(
S− ∂A

∂E

)
: Ė− ∂A

∂q
· q̇ ≥ 0 (4.41)

Coleman postulates that the term between parenthesis must vanish so that the inequality

remains valid for all strain rates Ė. That is,

S− ∂A

∂E
= 0 (4.42)

Under this condition, the expressions for the stress tensor as well as the dissipation can

be derived exclusively from the Helmoltz free energy. That is,

S =
∂A

∂E
, D = −∂A

∂q
· q̇ ≥ 0 (4.43)

where the equation on the right is often called reduced dissipation inequality.

4.4 Polycrystal model

Once the polycrystalline geometry has been generated by means of the procedure depicted

in chapter 2, the mechanical response of the polycrystal is modeled.

The motion of the polycrystal in general, and each grain in particular, is governed by

the equations of conservation of mass, linear and angular momentum. But these equations
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alone are not enough to completely describe the mechanical response of the system as a

constitutive response for the material must be adopted.

The step towards the creation of a model for the mechanical response of the polycrystal

is to assume that each grain is conformed by a single crystal with a given random lattice

orientation. Mathematically, each lattice orientation can be represented by means of a

rotation R applied to a reference (or standard) lattice orientation.

Based on the previous assumptions, the problem is reduced, at the grain level, to the

application of an elastic-plastic constitutive response. The details of the adopted crystal

plasticity model as well as its numerical implementation are developed in the next subsec-

tion.

4.4.1 Single crystal plasticity model

In classical plasticity theory, the microscopic deformation mechanisms are not accounted

for explicitly: they are lumped into macroscopic variables such as the plastic strain and

shape of the yield surface. On the other hand, single crystal plasticity models move one

step forward from those models by accounting explicitly for the material microstructure

and mechanisms that lead to plastic deformation.

The origins of the theory date back to the pioneering work of Taylor [56] who was the

first one to develop a continuum model of slip. His model is based on the realization that

plastic deformation occurs in the form of smooth shearing on the slip planes and in the slip

directions, with all of them depending on the particular lattice geometry.

Taylor’s work was further extended to elastoplastic deformation with small elastic strains

by Hill [57], and to the more general case of finite elastic-plastic deformations by Rice [58],

Kratochvil [59], Hill and Rice [60], Havner [61], Asaro and Rice [62] and Hill and Havner [63]
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among others.

4.4.1.1 Constitutive framework

For the purpose of this work, let us assume linearized kinematics. Within this context, u

represents the displacement field the body under consideration. That is, the deformation

mapping takes the form

ϕ(X) = X + u(X), X ∈ B (4.44)

Under this assumption the linearized Green strain tensor becomes

E ≈ 1
2
(
∇u +∇uT

)
= ε (4.45)

whose conjugate stress is then the Cauchy stress tensor σ. Thus, considering a Helmoltz

free energy of the form A = A(ε, γ) where γ represents the set of active slips and applying

Coleman’s method the following expression is obtained:

σ =
∂A

∂ε
, D = −∂A

∂γ
· γ̇ ≥ 0 (4.46)

It is common in finite plasticity to assume a multiplicative decomposition of the defor-

mation gradient which can be expressed as

F = FeFp (4.47)

The linearization of the previous expression leads to the well known additive decompo-
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sition of the strain tensor ε given by

ε = εe + εp(γ) (4.48)

where ε, εe and εp are the linear parts of F, Fe and Fp respectively. Furthermore, consid-

ering that the plastic deformation occurs in the form of smooth shearing on the slip planes

and in the slip directions, the following kinematic constraint on the plastic strain tensor is

imposed

εp(γ) =
N∑
α=1

γαsym(sα ⊗mα) (4.49)

In the previous equation, sα and mα are orthogonal and define the slip direction and

slip normal of the slip system α.

The deformation process in crystal plasticity can be thought of as a superposition of a

long-range macroscopic field given by the elastic distortion of the lattice and a short-range

microscopic field given by the presence of dislocations. This assumption, oftentimes referred

to as structure-insensitive elastic response, allows a further simplification of the expression

of the free energy [58] [64], which takes the form

A(ε,γ) = W e(ε, εe(γ)) +W p(γ) (4.50)

Under these assumptions, the expression for the Cauchy stress tensor can be further

simplified:

∂A

∂ε
=
∂W e

∂ε
+

0︷ ︸︸ ︷
∂W p

∂ε
=
∂W e

∂εe
:

I︷︸︸︷
∂εe

∂ε
⇒ σ =

∂W e

∂εe
(4.51)
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Of particular interest are the forces conjugate to the plastic slips, which are given by

y = −∂A
∂γ

= −∂W
e

∂γ
− ∂W p

∂γ
(4.52)

For a given slip system α the following expression is obtained

∂W e

∂γα
=
∂W e

∂εe
:
∂εe

∂γα
= −σ : sym(sα ⊗mα) = −τα (4.53)

where τα is the resolved shear stress for the slip system α. As a consequence, the driving

force y can be expressed as

yα = τα − ∂W p

∂γα
(4.54)

As can be seen, this is as far as one can go under the given general assumptions. Both

the expressions for the stress and the force conjugate to the slip system α depend on the

structure of the elastic and plastic contributions to the free energy.

Modeling the elastic response of the crystal as Hookean it takes the form

W e = εe : Ce : εe (4.55)

where Ce is the fourth order tensor of elastic constants, which for the case of a cubic

lattice (valid for both FCC and BCC crystals) rotated by R with respect to the standard

orientation takes the form [65]

Ce = RT ·RT ·C0 ·R ·R (4.56)
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where C0 can be expressed using Voigt notation as

C0 =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



(4.57)

where the previous expressions, C11, C12 and C44 are material constants. Thus, for Hookean

materials, the expression for the Cauchy’s stress reduces to σ = Ce : εe.

On the other hand, one standard expression for the plastic contribution has the following

form

W p =
N∑
α=1

τα0 γ
α +

N∑
α=1

N∑
β=1

hαβγ
αγβ (4.58)

where N is the number of slip systems, τα0 is the initial critical resolved shear stress for the

system α, and hαβ is the hardening matrix of the crystal. Thus, the expression for the force

conjugate to the plastic slip γα reduces to

yα = τα − ταc (4.59)

where ταc is the critical resolved shear stress for the slip system α defined as

ταc = τα0 +
N∑
β=1

hαβγ
β (4.60)

Several models have been proposed for the determination of the hardening coefficients.
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The most widely accepted are those proposed by Hutchinson [66], Pierce, Asaro and Needle-

man [67], Bassani and Wu [68], and Cuitino and Ortiz [69]. Note that for the case of ideal

crystal plasticity the hardening coefficients hαβ vanish.

Within this context, the classical elements present in classical rate-independent plasticity

theory can be formulated [65] [70].

The elastic domain E can be defined as the space generated by the stresses and slips

such that the driving force is equal to zero or negative. Mathematically, it can be expressed

as

E = {(σ,γ) | τα − ταc ≤ 0} (4.61)

where we adopted the notation γ to denote the vector composed by the slips corresponding

to the different slip systems.

The collection of functions

fα(σ, ταc ) = τα − ταc (4.62)

determines what in classical plasticity theory is referred to as the yield surface. In addition,

the hardening law can be obtained by direct differentiation of equation 4.60

τ̇αc =
N∑
β=1

hαβ γ̇β (4.63)

The rate of plastic deformation, or plastic strain evolution, is constrained by the kine-

matic assumption expressed in equation 4.49. That is,

ε̇p =
N∑
α=1

γ̇αsym{sα ⊗mα}, γ̇α ≥ 0 (4.64)

As in any plasticity problem, the stress must be admissible, i.e., must lie within the
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elastic domain E . In addition, it is required for the rate of plastic slip to be nonnegative.

In particular, the plastic flow can only take place on the yield surface. These requirements

are known as the the Kuhn-Tucker loading conditions [71] and can be summarized as

γ̇α ≥ 0, fα(σ, ταc ) ≤ 0, γ̇αfα(σ, ταc ) = 0 (4.65)

4.4.1.2 Numerical implementation

As pointed out by Ortiz and Stainier [72], the internal-variable rates and flow rule for

general viscoelastic materials can be derived from a variational principle which represents

a generalization of the principle of maximum dissipation [70]. The discrete form of this

variational principle leads to the so called variational update. Therefore, as a consequence

of the potential structure of the update, the symmetry of the tangent stiffness matrix is

guaranteed.

When applied to the crystal plasticity model developed in the previous section, the

variational updates are equivalent to an optimal choice of active slip systems. Then, the

minimization problem to consider takes the form

min
γαn+1

F
(
γαn+1; εn+1, ε

p
n, γ

α
n

)
with γαn+1 ≥ γαn , α = 1, ..., N (4.66)

where F can be expressed as

F
(
γαn+1; εn+1, ε

p
n, γ

α
n

)
= W e(ε, εe(γαn+1)) +W p(γαn+1) (4.67)

This problem can be addressed by standard nonlinear optimization algorithms such as

the projected Newton method and sequential quadratic programming [73]. For the present
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study, the simpler method proposed by Cuitino and Ortiz [69] is adopted. Basically, it

resembles the projected Newton method for the case when the line search is avoided.

The procedure for determining the set of active slip systems L [69] is detailed in algo-

rithm 5.

Algorithm 5: Determination of active slip systems.
Input: maximum iterations N
initialize L = ∅;1

for (k = 0, ..., N) do2

compute ∆γα based on current L;3

if (∆γα < 0) then4

remove α from L;5

∆γα ← 0;6

if (ταn+1 ≤ ταc n+1 ∀α not in L) then7

return L;8

else9

L ← arg{max[ταn+1 − ταc n+1]};10

return FAIL;11

4.4.2 Calibration for AISI 4340 steel

Since the interest of this thesis relies on the behavior of polycrystalline materials rather than

single crystals, the calibration of the elastic-plastic material parameters was performed by

simulating an axial tension test for a polycrystalline sample and fitting its response to the

measured stress-strain curve for macroscopically tested AISI 4340 steels.

To avoid volumetric locking, grains have been discretized by means of tetragonal ele-

ments with enriched shape functions by inserting nodes on the faces, known as P2/P0loc

elements (see figure 4.1).

Figure 4.2 shows the calibration of AISI 4340 alloy steel stress-strain response for two

typical tensile curves obtained from [4].
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Figure 4.1: P2-P0loc element. The linear interpolation is enriched by inserting nodes on
the barycenter of each face of the tetrahedron.

(a) (b)

Figure 4.2: Calibration of AISI 4340 alloy steel stress-strain response for two typical tensile
curves. (a) Ftu=1800 MPa and (b) Ftu=1380 MPa. The solids dots denote the experimental
values [4] whereas the results obtained by direct numerical simulations of polycrystal are
shown with diamond markers.
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4.5 Intergranular cohesive fracture model

Having a model in place for the response of each grain in the polycrystal, it is now necessary

to address the interaction between crystals at places where the intergranular fracture takes

place. Thus, in order to achieve this goal, the classical cohesive theory of fracture is adopted.

The classical cohesive theory of fracture finds its origins in the pioneering works by

Dugdale [74], Barenblatt [75] and Rice [76]. In this approach, fracture is regarded as a

progressive phenomenon in which separation takes place across a cohesive zone ahead of

the crack tip and is resisted by cohesive tractions.

Two main approaches have been proposed to implement the cohesive theory of fracture

in finite element analysis: mixed boundary conditions [77] [78] [79] [80] [81] [82] [83] [84]

[85] [86] and cohesive finite elements [87] [88] [89] [90] [53] [30]. In this thesis the latter

approach is adopted, particularly the one proposed by Ortiz and Pandolfi [30].

Even though this approach would make possible to track the evolution of cracks in

the polycrystal, it is still necessary to modify the cohesive law to account for the effect of

impurity segregation. A typical behavior under the presence of impurities is captured in

the articles by Yamaguchi et al. [12] and Jiang and Carter [5]. In the present work, the

methodology introduced by Serebrinsky et al. [22] to include such effects in the cohesive

element formulation is adopted.

4.5.1 Cohesive law

As in previous sections, let us consider the deformation of a body occupying a domain B ∈ R3

in a certain reference configuration. The body undergoes a deformation determined by a

mapping ϕ. Furthermore, let us consider a sub-body S ∈ B containing a cohesive surface

C which divides S into S+ and S− (see figure 4.3). Let us identify the corresponding sides
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δ

Figure 4.3: Body with cohesive surface.

of C as C±. Let n be the field of vectors normal to C.

Following the notation previously used, the external power of the forces acting on S can

be expressed as

Pext =
∑
±

∫
∂ϕ(S±)

t · v da+
∑
±

∫
ϕ(S±)

ρb · v dv (4.68)

where ϕ(S±) are the two bodies generated due to the presence of the cohesive surface.

Analogously, the kinetic energy is given by

K =
∑
±

∫
ϕ(S±)

(
1
2
ρv · v

)
dv (4.69)

On the other hand, the equilibrium relations can be expressed as

div(σ) + ρb = ρa in S ∈ B (4.70)

t = σ · n on ∂S± (4.71)

JtK = t+ − t− = 0 on C± (4.72)
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By following a procedure similar to the one presented in section 4.3, applying Cauchy’s

tetrahedron theorem, considering the symmetry of σ, taking advantage of the divergence

theorem and considering conservation of linear momentum, the following expression for the

deformation power identity is obtained:

Pdef = Pext − K̇ =
∑
±

∫
ϕ(S±)

σ · sym(∇v) dv +
∫
ϕ(C)

t · JvK da (4.73)

As it can be seen on the previous equation, the presence of a cohesive surface results in

the addition of a new term to the deformation power identity. This term can be interpreted

as the work done by the tractions t on the displacement jumps δ = JϕK. According to

Ortiz and Pandolfi [30], this work-conjugacy suggests the framework for the development

of a general cohesive theory in solids where the opening displacements δ play the role of a

deformation measure and the tractions t play the role of conjugate stress measure.

Within this framework, Coleman’s method can be applied where we postulate the exis-

tence of a free energy density per unit undeformed area over C of the general form

A = A(δ, θ, c,q;∇Cϕ̄) (4.74)

where θ is the local temperature, c the impurity concentration on the cohesive surface, q

represents internal variables and ∇Cϕ̄ is a geometrical term representing the deformation

of the mid-surface ϕ̄ given by

ϕ̄ =
1
2

(ϕ+ +ϕ−) (4.75)

As in previous sections of this chapter, the multi-physics aspects of the problem are

addressed by recourse to a staggered procedure. Thus, the temperature θ and the concen-
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tration c (both non-local variables governed by a diffusion equation) are considered to hold

constant at known values. Under this assumption, the free energy can be further simplified:

A = A(δ,q;∇Cϕ̄) (4.76)

An even simpler expression for the free energy can be obtained by assuming that the

cohesive surface is isotropic and that the cohesive response is independent of the stretching

and shearing of the cohesive surface. If, in addition, the restrictions imposed by material

frame indifference are considered, the free energy density becomes

A = A(δn, δs,q) (4.77)

where δn and δs are the normal and tangential components of δ respectively. Furthermore,

with the introduction of the effective opening displacement

δ =
√
β2δ2

s + δ2
n (4.78)

where β is a weighting factor for the sliding and normal opening displacements, the potential

reduces to

A = A(δ,q) (4.79)

Under all these assumptions, following Coleman’s method, the cohesive law reduces to

t =
t

δ
(β2δs + δnn) (4.80)
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where

t =
∂A

∂δ
(δ,q) (4.81)

A commonly adopted expression for the free energy is the one corresponding to the

Smith and Ferrante’s universal binding law, which for the reversible case takes the form

A(δ) = eσcδc

[
1−

(
1 +

δ

δc

)
e−

δ
δc

]
(4.82)

where e ≈ 2.71828 is the e-number, δc is a characteristic open displacement and σc is the

maximum cohesive normal traction. The traction t obtained from differentiation of the

previous expression is, then

t = eσc
δ

δc
e−

δ
δc (4.83)

4.5.2 Cohesive elements

The implementation of the cohesive law into a finite element analysis is performed by embed-

ding it into surface-like finite elements, usually referred to as cohesive elements. Following

Ortiz and Pandolfi [30], the proposed elements consists of two triangular surfaces, which

coincide in space in the reference configuration. Each surface has n-nodes, depending on the

adopted interpolation scheme. Therefore, each cohesive element is composed by 2n-nodes.

Let us denote by pa(s1, s2), a = 1, ..., n the standard shape functions of the constituent

surface elements, where the (s1, s2) represent the natural coordinates of each surface in

some standard configuration.

For the model developed in the previous section, the cohesive tractions per unit reference

area are

t =
t

δ
[β2δ + (1− β2)(δ · n)n] (4.84)
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Figure 4.4: 4-node cohesive element.

Furthermore, the cohesive nodal forces follow from the tractions as

f±ia = ∓
∫
C
tipa dA (4.85)

The tangent stiffness matrix corresponding to the cohesive element can be obtained

by inserting equation 4.84 into 4.85 and linearizing the resulting expression. Thus, the

following expression is obtained

K±±iakb =
∫
C

∂f±ia
∂x±kb

dA = ∓∓
∫
C

∂ti
∂δk

papb dA∓
1
2

∫
C

∂ti
∂np

∂np
∂x̄kb

pa dA (4.86)

This study only considers linearized kinematics. Therefore, the geometric terms in

equation 4.86 vanish resulting in

K±±iakb = ∓∓
∫
C

∂ti
∂δk

papb dA (4.87)

For the purposes of the present work, triangular cohesive elements with a node in the

barycenter were adopted to ensure compatibility with the solid P2-P0loc elements (see figure

4.4).
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Table 4.1: Summary of studies that show impurity-enhanced decohesion
Authors System Technique
Heuer et al. [13] S in Ni Experimental
van der Ven and Ceder [91] H in Al; O in Al First principles
Jiang and Carter [5] H in Fe; H in Al First principles
Krupp et al. [15] O in Ni Experimental
Yamaguchi et al. [12] S in Ni First principles
Lu et al. [92] Na in Al; Ca in Al First principles & exp.
Zhang et al. [93] Ga in Al First principles
Yamaguchi et al. [14] S in Fe; P in Fe First principles
Yamaguchi and Kaburaki [21] O in Fe; O in Ni First principles
Zhang et al. [94] S in Al First principles

4.5.3 Effect of impurity concentration

As mentioned before, even though the previous approach would make possible to track the

evolution of cracks in the polycrystal, it is still necessary to modify the cohesive law in order

to account for the effect of impurity segregation on the grain boundaries.

It is widely known that impurity segregation on grain boundaries of polycrystalline

metals can induce intergranular embrittlement. This phenomenon is usually referred to as

impurity-enhanced decohesion, and as mentioned in the introductory chapter of this thesis,

it is of great importance in technological applications.

Several research efforts, some of which have been summarized in table 4.1, have at-

tempted to explain and understand the underlying mechanisms of this intergranular em-

brittlement.

A representative example of this effort is the work by Yamaguchi et al. [12], where they

try to address why and how sulfur weakens the grain boundaries of nickel by means of first

principles computations. The authors found that a short-range overlap repulsion among

densely segregated and neighboring sulfur atoms causes a large grain boundary expansion,

and that this expansion facilitates the grain boundary decohesion. As a result, the grain
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boundary tensile strength is reduced by one order of magnitude. Their results are in good

agreement with the experimental findings of Heuer et al. [13].

In a recent article, Yamaguchi [14] extended his work to study the decohesion of ferro-

magnetic BCC iron grain boundaries by sulfur or phosphorous segregation. As a result, the

authors found two main embrittlement mechanisms which prevail at different extents for dif-

ferent impurity elements. The main mechanism for the sulfur-induced decohesion is fracture

surface stabilization with reference to the grain boundary by the segregated solute atoms

without interaction between them. In the case of phosphorous-induced embrittlement, the

predominant mechanism is grain boundary destabilization by a repulsive interaction among

the segregated and neighboring solute atoms. This difference in the predominant decohesion

mechanism makes sulfur a much stronger embrittling element than phosphorous.

Another interesting work is the one performed by Krupp et al. [15] on oxygen-induced

intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high tem-

peratures. This nickel-based superalloy, commonly used in high-temperature high-strength

components in gas turbines, exhibits a change in the failure mechanism when loaded slowly

at temperatures above 600o C. It has been observed that the cycle-dependent fatigue failure

gives place to a time-dependent intergranular brittle fracture [16] [17] [18] [19] [20]. Even

though several authors have attributed this transition to grain boundary oxidation, one of

the principal findings of their experimental study is that oxygen-induced intergranular frac-

ture does not necessarily requires the formation of oxides. Furthermore, their work suggest

that oxygen-enhanced decohesion might be the predominant mechanism of intergranular

fracture at high temperature.

Krupp’s hypothesis is supported by first-principles calculations performed by Yamaguchi

and Kaburaki [21]. They found that the formation energy of NiO per oxygen atom is larger
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than or comparable to the grain boundary segregation energy of oxygen. Furthermore, their

findings show that oxygen has a strong embrittlement effect when segregated to the grain

boundary.

Despite the nature of the predominant decohesion mechanism for a given system, it is

clear that the presence of impurities may have a strong embrittlement effect on the grain

boundary cohesive energy. This is precisely the effect our model intends to capture. Towards

this end, the methodology introduced by Serebrinsky et al. [22] for modeling hydrogen

embrittlement is followed.

Let us define the impurity coverage θ in terms of the impurity concentration at the grain

boundary c as

θ =
c

c+ exp
(
−∆g0b
RT

) (4.88)

where ∆g0
b is the free energy difference between the adsorbed and bulk standard states, R

the gas constant and T the temperature. As seen before, the cohesive free energy depends

on two parameters namely δc and σc. Therefore, a change in the cohesive energy as a

function of the impurity coverage θ could be achieved through a dependence of δc or σc on

θ.

The calculations of van der Ven and Ceder [91] show that δc is insensitive to the coverage

for hydrogen in aluminum. Thus, in order to simplify the approach presented in this thesis,

it is assumed that the embrittlement effect is a result of a dependence of σc on θ. That is,

the cohesive energy for the embrittled material can be expressed as

2γ(θ) =
∫ ∞

0
eσc(θ)

δ

δc
e−

δ
δc dδ = eδcσc(θ) (4.89)

On the other hand, it is possible to obtain the dependence of the cohesive energy on
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impurity coverage from first principles computations [5]. Then, let us assume that the ratio

γ(θ)/γref is given, where γref is the reference value for null coverage. Therefore, from

equation 4.89 the following expression is obtained

σc(θ) =
(
γ(θ)
γref

)
σref (4.90)

where σref is the maximum cohesive traction under absence of impurities. Consequently,

the traction-separation law takes the form

t(δ, θ) = e
δ

δc

(
γ(θ)
γref

)
σrefe

− δ
δc (4.91)

Equation 4.91 provides a coupling between the grain boundary diffusion model developed

in chapter 3 and the mechanical models elaborated in the present chapter.

Figure 4.5 shows the hydrogen embrittlement effect on iron as reported in [5]. Figure

4.6 shows the cohesive law for several values of impurity coverage, taking the dependence

on θ from [22].



72

Figure 4.5: Effect of hydrogen on cohesive energy of bcc Fe(1 1 0). First principles compu-
tations [5] (solid circles) and quadratic fit (line).

Figure 4.6: Traction-reparation law for different values of impurity coverage for H in Fe:
θ = 0.0 (solid), θ = 0.2 (dot), θ = 0.4 (dash), θ = 0.6 (dash-dot) and θ = 0.8 (long dash)
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Chapter 5

Validation and results

5.1 Introduction

At this point, all the features of the model for intergranular impurity-enhanced decohesion

on polycrystals have been stated. The first section of this chapter will describe the salient

features of the computer implementation of the model into a single computer program and

discuss the adopted solution procedure. On the following section the focus will shift to

the validation of the model by comparing simulation results against initiation time and

crack-growth-rate tests for hydrogen embrittlement of AISI 4340 steel.

5.2 Computer implementation and solution procedure

All the models described in this work have been programmed into a computer code imple-

mented in C++. The code was designed by having in mind the type of tests required to

validate the model: crack nucleation (initiation time) and crack-growth-rate tests performed

on compact specimens.

The compact test specimens are usually machined from plates which are cut from hot

rolled round bars. Then, all specimens are generally electropolished and their surfaces

(except the notch region) are coated with paint to avoid hydrogen diffusion from places
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other than the notch roots.

In initiation time tests, the specimen is loaded and the crack nucleation time is usually

measured by the electrical potential method. A constant current is usually applied to the

specimen and the voltage difference through the notch mouth is measured. The tests are

interrupted and the time is recorded when an increase in the potential due to the presence

of the crack is observed.

In crack-growth-rate tests, the specimen is loaded and the crack length is measured

by a traveling microscope. In addition, a clip gage is sometimes mounted to detect the

macroscopic growth behavior with higher sensitivity. The crack-growth-rate (velocity) is

then computed numerically from the crack length history.

The computer code was devised in such a way that one simulation can be employed

to measure both the initiation time and the crack-growth-rate as a function of the applied

stress intensity factor.

Conceptually, the program execution can be divided in two main stages: (i) test ini-

tialization and (ii) temporal evolution. During the initialization stage, the geometry is

generated and the boundary conditions for the diffusion problem are imposed. Afterwards,

the cohesive law is updated to reflect the given impurity concentration distribution across

the specimen. Finally, the mechanical pre-load is imposed incrementally until the desired

stress intensity factor is reached.

The temporal evolution stage addresses the multiphysics aspects of the model by adopt-

ing a staggered procedure [95]. After computing the diffusion step, the impurity concentra-

tion is interpolated from the nodal values at the diffusion elements to the quadrature points

of the cohesive elements. At those points, the cohesive law is then updated accordingly with

the procedure described in chapter 4. Afterwards, the mechanical step solves the quasistatic
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Figure 5.1: Staggered solution procedure.

equilibrium problem by means of the Newton-Raphson algorithm. Just before a discontin-

uous crack propagation occurs, the stiffness matrix becomes singular making necessary to

use an alternative solver. When this is the case, the program searches for the static solution

by means of dynamic relaxation, which is a much slower algorithm but very robust.

A schematic representation of the solution procedure and program organization is shown

in figure 5.1.

5.3 Validation: hydrogen embrittlement of AISI 4340 steel

Stress corrosion cracking of high strength steels in aqueous solutions is generally recog-

nized as hydrogen assisted cracking [96]. To validate our model, simulations of hydrogen

embrittlement of AISI 4340 steel were performed and the obtained results compared to

experimental data obtained from initiation time tests [6] and crack-growth-rate tests [7].

The complexity of the problem being addressed and its associated high computational
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2.5 mm

0.625 mm

1.25 mm

0.3125 mm

Figure 5.2: Geometry of the specimen considered in our simulations.

cost prevent us from simulating a specimen of identical dimensions to the specimens em-

ployed for the experiments. The geometry and dimensions of the modeled specimen are

shown in figure 5.2.

In addition to modeling a specimen of small dimensions, the mesh was optimized in such

a way that the grains have the desired size in the crack-propagating region but maintaining

a coarser mesh away from the crack. Furthermore, different mesh regions were defined

as shown in figure 5.3. Hookean isotropic material without plasticity requires much less

computational power than its cubic symmetry counterpart, and the latter without plasticity

is very light when compared to the case when crystal plasticity is present.

Due to all these optimizations, it was possible to simulate a model with 600 grains in the

region of interest: 300 with cubic symmetry and no plasticity and 300 contemplating the

crystal plasticity effect. The mechanical model has over 80,000 tetrahedral elements and

300,000 degrees of freedom. The diffusion model has only 12,000 degrees of freedom and

the computational time required by it is negligible when compared to the cost of finding

the mechanical equilibrium.
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Figure 5.3: Mesh regions.
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Figure 5.4: Mechanical boundary conditions.

To obtain a more stable simulation from the numerical point of view, the loading was

implemented through the application of a controlled displacement to the upper and lower

faces of the specimen. The applied boundary conditions for the mechanical problem are

shown on figure 5.4. For the diffusion problem, a constant hydrogen coverage was prescribed

on the pre-cracked region starting from the crack tip until 200 µm from it.

In order to compare the simulation results with the experiments, the stress intensity

factor and the crack length had to be measured. The computational measurement of the

stress intensity factor is not straightforward for the case being considered. For instance, the
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well known J-integral cannot be evaluated due to the following factors:

1. The crack does not remain planar due to its intergranular nature.

2. The constitutive response of the material is highly nonlinear due to the presence of

crystal plasticity.

3. The material presents cubic symmetry (anisotropic).

4. The sample is highly heterogeneous due to the random grain orientations.

Thus, a simplified approach was adopted. A specimen with mesh and dimensions iden-

tical to those of the one employed in the simulations but with isotropic Hookean material

response without plasticity was loaded and the corresponding strain energy W measured.

Then, the crack length was slightly changed in increments ds repeating the same procedure

until four measurements W1,W2,W3 and W4 were obtained. Let b be the specimen width.

The energy release rate is then given by

G = −1
b

dW

ds
(5.1)

Its value was estimated employing the numerical derivative

dW

ds
=

1
12 · ds

(−W4 + 8W3 − 8W2 +W1) (5.2)

Assuming plane strain conditions the applied stress intensity factor is given by

KI =
G · E
1− ν2

(5.3)

where E and ν are the homogeneous material properties. Assuming proportionality between



79

KI and the applied displacement, the proportionality constant was computed and employed

in the simulations for estimating the applied stress intensity factor.

On the other hand, the crack length was estimated as follows. First, the surface for

which the cohesive opening is larger than the cohesive parameter δc was extracted for a

given time tn. Second, its area An was computed. Therefore, the crack length Ln was

estimated as

Ln =
An
b

(5.4)

The same procedure was performed for all recorded time steps obtaining in this way the

crack length evolution as a function of time. The crack-growth rate was then obtained as

the slope of the linear fit for the computed time history.

The elastic and plastic material properties were obtained by fitting their value to the

uniaxial traction test as depicted in figure 4.2 (a) and the grain boundary diffusion constant

was obtained following the procedure described in chapter 3. The average grain size was

adopted in agreement with the experimental measures for hydrogen embrittlement of AISI

4340 steel reported in [97].

The material properties employed in the simulations are summarized in table 5.1. The

main results gathered from our simulations, namely, crack growth, initiation time and crack-

growth-rate, are summarized and discussed in the following sub sections.

5.3.1 Crack growth results

The obtained crack length as a function of time is plotted in figure 5.5 for applied stress

intensity factors ranging from 13.7 to 41.2 MPa
√
m. It can be observed that the crack-

growth-rate increases as the applied stress intensity factor gets larger. It is difficult though

to appreciate other features of the simulations when plotting all of the results together as
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Table 5.1: Material properties
Property Value
Crystal structure BCC
Slip planes {321}
Slip directions < 1̄11 >
# of slip systems 24
Grain size ≈100µm
C11 208.9 GPa
C12 126.4 GPa
C14 97.7 GPa
τc 570.0 MPa
C 171.0 MPa
r0 0.01
m 0.80
KIc 58.4 MPa

√
m

Dgb 2.53 · 10−9 m2/sec

the time scale involved varies considerably for each of them.

Figure 5.6 shows, in different time scales, the results for applied stress intensity factors

of 13.7 (a), 17.2 (b) and 37.8 (c) MPa
√
m. Each of the cases exhibit different features.

For KI = 13.7MPa
√
m (figure 5.6a) the crack growth is mostly continuous and it is

impossible just from analyzing the figure to tell apart crack initiation from crack propaga-

tion.

For the next computed loading level, the applied stress intensity factor takes the value

13.7 MPa
√
m (figure 5.6b). In this case, the crack exhibits a continuous growth as well

but a clear distinction between crack initiation and growth is evidenced by the presence of

two regimes with different slopes.

For the remaining computed loading levels (20.6, 24.0, 27.5, 30.1, 34.3, 37.8 and 41.2

MPa
√
m) the observed behavior is identical to the one shown in figure 5.6c. First of all,

there is a clear distinction between crack nucleation and crack propagation. The time for

which the transition from one regime to the other occurs is what we refer to as initiation
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Figure 5.5: Crack length evolution for applied stress intensity factors ranging from 13.7 to
41.2 MPa

√
m.
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time. It is observed that for all of these cases the transition occurs when the estimated

crack length reaches 200 µm approximately. This value is roughly twice the average grain

size for the simulation. Remarkably, the crack propagation stage is characterized by an

intermittent crack growth indicated by jumps in the crack length in agreement with ex-

perimental observations [7]. These jumps have approximately the same magnitude within

a given stress intensity factor. Nevertheless, the first jump, which indicates the transition

from one regime to another, is considerably larger than the following ones.

Computations for loading levels above 41.2 MPa
√
m were not possible to perform since

the initiation jump length exceeded the size of the zone where cohesive elements were placed

rendering the results invalid.

Figure 5.7 shows the temporal evolution of hydrogen coverage across the grain bound-

aries. Figure 5.8 and 5.9 show the temporal evolution of the crack in the specimen. In

figure 5.8 the crack surface is shown in light blue whereas the contour levels represent the

hydrogen coverage on the grain boundaries. Figure 5.9 shows the effective plastic strain in

the regions surrounding the crack. All figures were computed for applied stress intensity

factor KI = 41.2MPa
√
m.

5.3.2 Initiation time results

The initiation time was identified for almost all of the loading levels as the time when the

transition from the nucleation stage to the crack propagation stage occurs. As previously

stated, this point occurs for most of the cases (stress intensity factors 20.6, 24.0, 27.5,

30.1, 34.3, 37.8 and 41.2 MPa
√
m) when the estimated crack length reaches 200 µm

approximately. For the case when KI = 17.7 it was adopted as the time for which a change

in the growth slope was evidenced. Finally, for the lowest loading level where KI = 13.7
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a)

b)

c)

Figure 5.6: Crack length evolution for applied stress intensity factors 13.7 (a), 17.2 (b) and
37.8 (c) MPa

√
m.
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Figure 5.7: Temporal evolution of hydrogen coverage across the grain boundaries.
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Figure 5.8: Temporal evolution of crack surface. Colored contour levels represent the hy-
drogen coverage whereas the fracture surface is shown in light blue.
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Figure 5.9: Temporal evolution of crack. Color codes denote effective plastic strain.
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there was no evident initiation point. Therefore, it was assumed to be the time for which

the estimated crack length reaches 200 µm in consistency with all other cases. For levels

below this last one crack propagation was not observed after 1,000,000 seconds.

Figure 5.10 shows the computed initiation times vs. the applied stress intensity factor.

This plot also depicts the experimental values reported in [6] for validation purposes. As

it can be observed, the model predicts the right behavior and the computed values have a

good agreement with the reported results. The match is not perfect but a direct comparison

cannot be done since the experiments were performed with notched specimens and our

model has a singular crack tip. The ability of the model to predict initiation times within

a reasonable range is remarkable.

Similar simulations were performed for Dgb = 1.00 · 10−9m2/sec to explore the effect

of the grain boundary diffusion coefficient on the model. The results are summarized in

figures 5.11 and 5.12.

From figure 5.11 it is possible to conclude that a decrease in the diffusion coefficient

results in an increase of the initiation times as expected. Nevertheless, a trend could not

be inferred from figure 5.12.

5.3.3 Crack-growth-rate results

As mentioned before, the crack-growth rate was obtained as the slope of the linear fit for

the computed crack length time history. Figure 5.13 shows the computed crack-growth-rate

as a function of the applied stress intensity factor. Computations for loading levels above

41.2 MPa
√
m were not possible to perform since the initiation jump length exceeded the

size of the zone where cohesive elements were placed rendering the results invalid.

The experimental values reported in [7] are also depicted in figure 5.13 for validation
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Figure 5.10: Initiation time validation for hydrogen embrittlement of AISI 4340 steel. The
computed values (green circles) show a good agreement with the experimental findings of
Hirose and Mura [6]. The experimental curves correspond to notch radius 2.5 mm (blue
diamonds), 1.0 mm (red squares), 0.5 mm (black solid circles) and 0.25 mm (corsses).
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Figure 5.11: Effect of grain boundary diffusion coefficient on initiation time. Green circles
correspond to Dgb = 2.53 · 10−9m2/sec whereas blue diamonds correspond to Dgb = 1.0 ·
10−9m2/sec. A decrease in the diffusion coefficient results in an increase of the initiation
times.

Figure 5.12: Effect of grain boundary diffusion coefficient on initiation time. The ratio
ti1
ti2

is plotted for several loading levels where ti1 and ti2 are the initiation times for Dgb =
1.00 · 10−9m2/sec and Dgb = 2.53 · 10−9m2/sec respectively.
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purposes. As it can be observed, the model predicts qualitatively the right behavior reported

by experiments including:

1. The presence of a threshold intensity factor KIscc below which there is no crack

propagation.

2. The existence of a plateau region for which the crack-growth-rate variation as a func-

tion of the applied stress intensity factor is not significant.

3. The occurrence of crack arrest when the stress intensity factor reaches a critical value

KIc.

In addition to capturing the right qualitative behavior, the model was able to make

excellent quantitative predictions as well. Computed values have an extraordinary agree-

ment with the results reported in the literature. Thus, we conclude that the model shows

excellent potential to predict crack-growth-rates for hydrogen embrittlement and probably

for other types of impurity-enhanced decohesion.

To conclude this analysis, similar simulations were performed forDgb = 1.00·10−9m2/sec

to explore the effect of the grain boundary diffusion coefficient on the model. The results

are summarized in figures 5.14 and 5.15.

From figure 5.15 it is possible to conclude that a decrease in the diffusion coefficient

results in a decrease of the crack growth rate as expected. Nevertheless, a trend could not

be inferred from figure 5.15.



91

Figure 5.13: Crack growth rate validation for hydrogen embrittlement of AISI 4340 steel.
The computed values (green circles) are in excellent agreement with the experimental find-
ings of Hirose and Mura [7].
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Figure 5.14: Effect of diffusion coefficient on crack growth rate. Green circles correspond to
Dgb = 2.53 · 10−9m2/sec whereas blue diamonds correspond to Dgb = 2.53 · 10−9m2/sec. A
decrease in the diffusion coefficient is accompanied by an increment on the initiation times.

Figure 5.15: Effect of diffusion coefficient on crack growth rate. Green circles correspond to
Dgb = 2.53 · 10−9m2/sec whereas blue diamonds correspond to Dgb = 2.53 · 10−9m2/sec. A
decrease in the diffusion coefficient is accompanied by an increment on the initiation times.
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Chapter 6

Conclusions, current work and
future directions

6.1 Summary and conclusions

In the present work, a novel 3-dimensional multiphysics model for understanding the inter-

granular SCC of polycrystalline materials under the effect of impurity-enhanced decohesion

was developed. This new model is based upon: (i) a robust algorithm capable of generating

the geometry of polycrystals for objects of arbitrary shape; (ii) a continuum finite element

model of the crystals including crystal plasticity; (iii) a grain boundary diffusion model in-

formed with first-principles computations of diffusion coefficients; and (iv) an intergranular

cohesive model described by concentration-dependent constitutive relations derived from

first-principles.

The method developed for generating polycrystalline geometries consists of two main

stages: a purely geometric stage where a barycentric dual mesh is generated and the grain

domains are defined, and a relaxation stage where the grain boundaries are relaxed to obtain

more convex grains.

Besides being very robust, the proposed method showed to be practical for generating

polycrystalline structures for complex geometries using as a unique input the mesh repre-
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senting the geometry of the object being modeled. The only requirement on the input mesh

is that it has to be a simplicial complex of any dimension. In addition, the method showed

to be very flexible allowing for the generation of polycrystals with arbitrary distribution of

grain sizes.

The predictive capabilities of the intergranular stress corrosion model were assessed by

performing simulations of hydrogen embrittlement of AISI 4340 steel in aqueous solution

and comparing the obtained results against experimental data available for initiation time

and crack-growth-rate tests.

As shown, the model predicts the right behavior for crack nucleation tests. The com-

puted values showed a good agreement with the reported results. The match was not

perfect but a direct comparison could not be done since the experiments were performed

with notched specimens and our model had a singular crack tip. The ability of the model

to predict initiation times within a reasonable range is remarkable.

The model also qualitatively predicts the right behavior reported by crack-growth-rate

experiments including:

1. The presence of a threshold intensity factor KIscc below which there is no crack

propagation.

2. The existence of a plateau region for which the crack-growth-rate variation as a func-

tion of the applied stress intensity factor is not significant.

3. The occurrence of crack arrest when the stress intensity factor reaches a critical value

KIc.

In addition to capturing the right qualitative behavior, the model was able to make

excellent quantitative predictions as well. Computed values had an extraordinary agreement



95

with the results reported in the literature showing the ability of the model to predict crack-

growth-rates for hydrogen embrittlement and probably for other types of impurity-enhanced

decohesion.

6.2 Current work and future directions

A logical extension of the work presented in this thesis is the analysis of the effect of grain

size on the stress intensity threshold KIscc and on the crack-growth-rate.

Lessar and Gerberich [97] studied experimentally the grain size effect in hydrogen-

assisted cracking. They performed measurements on AISI 4340 steel samples with average

grain sizes of 20, 50, 90 and 140 µm. Their investigation shows that increased grain size

improved stress corrosion resistance for those cases where the grain diameter was signif-

icantly larger than the plastic zone. This increase in the stress corrosion resistance was

evidenced by a slight increase in threshold stress intensity KIscc and an inverse grain-size

squared dependence of crack-growth-rate.

As the time of this thesis being submitted, one simulation of hydrogen embrittlement

of AISI 4340 steel with the same properties adopted in chapter 5 but average grain size

of 50 µm was performed to assess the feasibility of such a study. This simulation took 2

months to conclude and represents just one point for both the initiation time and and crack-

growth-rate tests. In order to be able to extract conclusions from this kind of study, at least

6 points would be necessary for 50 µm grain size and another 6 points for 25 µm. With

adequate computational resources, we estimate that these simulations could be performed

within half a year.

Another interesting direction of future work would be to explore the effects of differ-

ent models of grain boundary energy on the relaxation stage of the geometry generation



96

method. The area minimization performed in chapter 2 could be thought of as a grain

boundary energy optimization where the energy is kept constant (and independent of grains

misorientation and grain boundary orientation) throughout the sample.

Given a physics-based grain boundary energy, it could be added to the polycrystal

generation algorithm with a minimum effort. We have been working on this direction

lately, more precisely in the formulation of a 5-parameter grain boundary energy.
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