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Abstract 

 

 While most motile bacteria propel themselves with flagella, other mechanisms have 

been described including retraction of surface-attached pili, secretion of polysaccharides, or 

movement of motors along surface protein tracks.  These have been referred to collectively 

as forms of "gliding" motility.  Despite being simultaneously one of the smallest and simplest 

of all known cells, Mycoplasma pneumoniae builds a surprisingly large and complex cell 

extension known as the attachment organelle that enables it to glide.  Here, three-dimensional 

images of the attachment organelle were produced with unprecedented clarity and 

authenticity using state-of-the-art electron cryotomography.  The attachment organelle was 

seen to contain a multi-subunit, jointed, dynamic motor much larger than a flagellar basal 

body and comparable in complexity.  A new model for its function is proposed wherein 

inchworm-like conformational changes of its electron-dense core are leveraged against a 

cytoplasmic anchor and transmitted to the surface through layered adhesion proteins. 
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Introduction 

 The mycoplasmas are simultaneously the smallest and simplest of known cells.  

Volumes can be ~ 25 times smaller than Escherichia coli (Biberfeld and Biberfeld, 1970), 

and their genomes can be limited to only several hundred genes (Fraser et al., 1995; 

Himmelreich et al., 1996).   Despite the pressures that drove them to such minimization, 

amazingly, some construct a complex structure at their tips called the attachment organelle 

whose predicted mass is greater than that of a vertebrate nuclear pore complex!  In M. 

pneumoniae this attachment organelle is essential for cytadherence (Baseman et al., 1982; 

Morrison-Plummer et al., 1986) and motility (Balish et al., 2003; Hasselbring et al., 2005; 

Seto et al., 2005a), but the mechanisms are unknown.  

Various types of motility have been described in prokaryotes.  While the most 

common type is flagellar, a number of non-flagellar, so-called “gliding” forms of movement 

also exist.  The “twitching” motility of Pseudomonas aeruginosa and the “social” motility of 

Myxococcus xanthus are effected by cells extending and retracting surface-attached type IV 

pili (Mattick, 2002).  Filamentous cyanobacteria and the “adventurous” motility of M. 

xanthus rely on the secretion of polysaccharide slime (McBride, 2001).  Flavobacterium 

johnsoniae is thought to move by a treadmilling mechanism involving surface protein that 

move along tracks on the cell surface (McBride, 2001).  Even among the motile 

mycoplasmas, various forms of motility appear to exist.  Mycoplasma mobile relies on three 

large surface proteins (Seto et al., 2005b; Uenoyama et al., 2004; Uenoyama and Miyata, 

2005), but these proteins lack clear homologs in other motile mycoplasma species such as 

Mycoplasma genitalium and M. pneumoniae (Miyata, 2005).  Instead, these organisms' 
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motility appears to depend on the attachment organelle, which therefore probably underlies 

an entirely unique and interesting form of gliding motility. 

 M. pneumoniae causes bronchitis and atypical pneumoniae in humans by binding to 

the respiratory epithelium using surface proteins localized by the attachment organelle.  

Adhesion P1 (169 kDa) and accessory protein P30 (30 kDa) are necessary for this adhesion 

(Morrison-Plummer et al., 1986) and for cell motility (Hasselbring et al., 2005; Seto et al., 

2005a).  Specifically P30 has been proposed to serve as a link between the force generation 

mechanism and the surface adhesion proteins (Hasselbring et al., 2005).  Other surface 

proteins include protein B (90 kDa) and protein C (40 kDa), which help to localize P1 

(Baseman et al., 1982).  Proteins P65 and the HMWs1-3 are associated with the organelle, 

but their spatial arrangements and functions are unknown (Krause and Balish, 2004).  A 

massive protein assembly over 220 nm long and 50 nm thick known as the "electron-dense 

core" occupies the center of the attachment organelle (Biberfeld and Biberfeld, 1970; Wilson 

and Collier, 1976).  Current characterizations of the core describe it as two uniform, striated 

rods separated by a thin gap (Hegermann et al., 2002; Meng and Pfister, 1980).  A distal 

enlargement of the core has been referred to as the terminal button.  The proximal end of the 

electron-dense core has been proposed to connect to a so-called “wheel-like complex” 

thought to be composed of two rings of proteins that connect to radial spokes connecting to 

the membrane (Hegermann et al., 2002).  In both the attachment organelle and the cytoplasm, 

5 nm fibers have been reported (Gobel et al., 1981; Meng and Pfister, 1980).   

 Studying the macromolecular structures in M. pneumoniae has proven difficult.  

Methods for genetic manipulation are still developing.  Light microscopy is limited to 

resolving the relative positions of labeled proteins along the length of the cell.  While 
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electron microscopy has the resolving power to visualize large protein complexes, traditional 

plastic-embedding methods have obscured important details.  Electron cryotomography 

(ECT) is an emerging technique that can produce three-dimensional images of intact cells no 

thicker than about half a micron, in a life-like, "frozen-hydrated" state (Lucic et al., 2005).  

Here, we have used ECT to image the attachment organelle of M. pneumoniae with 

unprecedented clarity and authenticity.  It was seen to be composed of at least eleven distinct 

protein structures surrounded by a curious electron-lucent area and a membrane studded with 

organized surface proteins.  Based on these results, we propose a model for its role in a new 

form of gliding motility.  

 

 

Results 

Location of the electron-dense core within a cell.  Twelve imaged M. pneumoniae 

cells were reconstructed (Fig. II-1) containing a total of nineteen attachment organelles (Fig 

II-2).  The attachment organelles were marked by co-localization of an electron-dense core 

beneath the membrane, an electron-lucent area surrounding the core, and packed surface 

proteins.  As expected from previous work, we found cells where the electron-dense core 

protruded out away from the body of the cell within a membranous finger-like extension 

(Fig. II-2a-i).  With our population of cells, however, nearly half of the cells had the electron-

dense core fully internalized into the cell’s body, lying next to the cell membrane with only 

the head of the terminal button maintaining contact with the membrane (Fig. II-2j-n). 

Membrane proteins.  Surface proteins were found to form tightly packed rows ~ 5.5 

nm thick on the extracellular surface of the attachment organelle (component "A" of the 
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schematic in Fig. II-2 and highlighted in Fig. II-3).  These rows localized over the terminal 

button and extended down the attachment organelle over the electron-lucent areas.  Another 

layer of proteins was seen immediately adjacent to the membrane inside the cell (component 

"B," pointed to specifically in Fig. II-4a). 

Electron-dense core.  The distal end of the electron-dense core has been called the 

terminal button.  Here, the terminal button was seen to be composed of at least three parts.  

Most distally, there was an arched patch of discrete globular proteins (component "C," 

pointed to specifically in Fig. II-4a) that appeared to contact the inner layer of peripheral 

membrane proteins.  More proximally the terminal button contained two nodules 

(components "D" and "E") with a gap between them perpendicular to the axis of the core 

(Fig. II-4b).  The two nodules did not appear to be completely separated, but instead were 

probably connected at points around their edges.  The more proximal nodule (component 

"E") made contact with one of the rods of the electron-dense core.  Two parallel rods of 

different thicknesses and lengths made up the majority of the core, and these were both bent 

~ 150˚ just proximal to their midpoint (Fig. II-5a).  The outer rod (components "F" and "H") 

was thicker and varied in thickness from 13 to 31 nm.  It was also longer, and was the one 

that eventually made contact with the terminal button.  The thinner rod (components "G" and 

"I") appeared along the inner curvature and was ~ 8 nm in width.  Between these two rods 

was a gap of ~ 7 nm (Fig. II-5b).  The morphology of both the thick and thin rods changed 

after the bend.  After careful study of the structure in three dimensions, it was seen that distal 

to the bend both rods (components "F" and "G") were discretely segmented like a vertebral 

column with gaps perpendicular to the axis of the core; proximal to the bend (components "I" 

and "H"), the rods were continuous (Fig. II-5c).  There were about twelve segments plus one 
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or two additional segments in the thick rod that formed the connection with the terminal 

button.  While the core was clearly made of two rods with multiple segments each, extensive 

contacts were also apparent which presumably explain how the core maintains its integrity 

even through partial purification.  To investigate these contacts a computational "fill" tool 

was used to identify all the voxels with a density above a certain threshold that touched one 

another in the region of the core (Fig. II-5d).  When these voxels were rendered with a single 

surface (Fig. II-5e), numerous connections between individual segments and the two rods 

were seen.  In total, the cores (components "C"-"I") measured ~ 255 nm in length, and their 

volumes corresponded to a molecular weight of > 200 MDa. 

Bowl complex.  A shallow bowl-like complex was observed proximal to the core in 

some, but not all of the attachment organelles (component "K," highlighted in Fig. II-6).  

This bowl complex capped the core, but the distance and angle between the two varied (see 

also Fig. II-9 and its discussion below).  Contrary to an earlier report, which described it as 

"wheel-like" (Hegermann et al., 2002), no spokes radiating perpendicular to the core axis 

were observed.  A new density (component "J"), however, was seen connecting the bowl 

complex to the electron-dense core. 

Electron-lucent area.  Every core was surrounded by a curious electron-lucent area, 

irrespective of whether the attachment organelle protruded from the cell body or was 

internalized.  Even though no barrier such as a protein wall or membrane was visible, large 

complexes such as ribosomes were clearly excluded from this region, which extended from 

component "C" to components "H" and "I."  Again in contrast to an earlier report 

(Hegermann et al., 2002), no filamentous connections were found between the shaft of the 

electron-dense core and the membrane.  
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Replication of the attachment organelle.  Approximately half (five out of twelve) 

of the observed cells had two electron-dense cores (see for example Fig. II-7), and one cell 

had three.  The cores were found separated by various distances, including at opposite ends 

of the cell (Fig. II-1).  No structural connections were seen between electron-dense cores 

within the same cell.  In the cells where the attachment organelles protruded out away from 

the cell body and there were multiple cores, their proximal ends came nearest to each other, 

as this geometry requires.  In contrast and not seen before, in the cells where there were 

multiple and internalized cores, the terminal buttons sometimes came nearest to each other.  

In the cell with three cores, two of the cores were close and formed a “V” shape, abutting 

near the bowl complex and diverging towards the terminal button.  The third core was more 

distant, and its terminal button pointed towards the distal ends of the other two.  In the cells 

with multiple cores, bowl complexes were always seen with at least one but not necessarily 

all cores. 

 Cytoskeleton filaments.  Previous studies on M. pneumoniae have often looked at 

the structure that remains after solubilizing the cell membrane with the detergent Triton X-

100, and have repeatedly reported that 5 nm filaments were associated with the core (Gobel 

et al., 1981; Hegermann et al., 2002; Meng and Pfister, 1980).  Loose bundles of ~ 5 nm 

diameter filaments were also seen here in three cells (Fig. II-8), but were not visibly 

connected to the core.  Instead they were only seen where the cell body narrowed as it 

stretched across the supporting carbon film.  
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Discussion 

 Earlier preparative techniques of plastic-embedding and detergent removal of the 

membrane left the structural details of the attachment organelle uncertain because these 

methods disrupted native conditions and probably introduced artifacts.  Here, cells were 

plunge-frozen and imaged in an intact, frozen-hydrated and therefore near-native state.  The 

cells we imaged were mostly unattached to any surface and had been dislodged from the 

culture flask before they were applied to the EM grid.   This may explain why some of the 

cells were more pleomorphic than the rod-shapes seen before, and why some of the electron-

dense cores were internalized rather than protruding from the main cell body.  Nevertheless 

in all cases the electron-dense core was seen to be attached to the membrane by the terminal 

button, surrounded by an electron-lucent area, and accompanied by rows of surface proteins. 

 We found that the native attachment organelle is an enormous, complex, 

conformationally flexible molecular machine composed of at least eleven distinct regions.  

Previous observations of split electron-dense cores (Hegermann et al., 2002; Willby and 

Krause, 2002) led to the hypothesis that cores replicate through a semi-conservative 

mechanism, where the two rods of the core separate and each serves as a template to rebuild 

a partner (Krause and Balish, 2004).  Our observations did not specifically support this 

model, since the two rods of the core are not identical and no cores were observed with only 

one rod, even when the cores were in close proximity and had presumably just replicated. 

While some information is available about the localization of proteins P1, B, C, P65, 

P30, and HMW1-3, the structural clues gathered here were insufficient to assign them to 

specific components.  We can conclude, however, that the surface proteins are densely 

packed and must work as complexes, since the densities seen were too large to be individual 



II-10 

proteins.  The identity of the cytoskeletal filaments is particularly interesting.  Of the known 

bacterial cytoskeletal proteins, only FtsZ (MPN 317) has been recognized in M. pneumoniae.  

Other potential candidates include EF-Tu (MPN 665), which has been shown to form 

filaments in vitro (Beck et al., 1978); and DnaK (MPN 434, also known as Hsp70), which 

has been characterized as a protein chaperone but is structurally homologous to actin 

(Flaherty et al., 1991).  Interestingly, DnaK was also shown to be associated with P1 by 

chemical cross-linking (Layh-Schmitt et al., 2000).  Since each of these three candidate 

filament-forming proteins is near ubiquitous in prokaryotes, knowledge of their potentially 

filamentous nature and arrangement in vivo here could have widespread implications. 

 Why would one of the smallest and simplest of all cells construct an organelle with 

such a fantastic size and complexity? While the attachment organelle is known to be required 

for adhesion (Morrison-Plummer et al., 1986), this may only require localization of key 

surface proteins, and would by itself hardly require such a sophisticated structure.  We 

considered the possibility that the two-rod core could be like a harpoon or crossbow, where 

one rod advanced with respect to the other to press against or puncture host cells.   Nothing 

like this has ever been seen, however, in thin-section EM images of M. pneumoniae attached 

to tracheal epithelium (Wilson and Collier, 1976).  Metabolic functions such as substrate 

channeling or histone-like DNA-organizing functions also seem unlikely. 

 Building on (1) published evidence suggesting that the attachment organelle is where 

the motive force in these cells is generated (Hasselbring et al., 2005; Seto et al., 2005a), (2) 

mutational data showing that the core itself is required for motility (Balish et al., 2003; 

Balish and Krause, 2005), and (3) our observations here of the complexity and 

conformational flexibility of the core, we propose that the core itself is the molecular motor 
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that produces movement.  We suggest a model in which the electron-dense core undergoes 

inchworm-like conformational changes that push the tip of the cell forward in small steps.  

Starting with surface proteins at the tip bound to a substrate and the core fully extended, the 

core may cyclically contract by bending at its various joints and/or minimizing the gaps 

between its segments, and then spring back to full length.  When it springs back to full 

length, the bowl complex may provide leverage and resistance, like a paddle against water, 

especially if in fact the cytoplasmic filaments do indeed attach to it as suggested earlier (but 

not seen here, although if filaments bent rapidly they could have escaped our detection) and 

further gel the adjacent cytoplasm.   Extension of the core would then require new membrane 

to "roll" down from above in front of the terminal button, attracting a new plaque of surface 

adhesion proteins that might prevent regression.  As the cell advanced and earlier contacts 

moved towards the rear, they might weaken and release, perhaps through loss of the 

organization originally imposed on them by other elements of the attachment organelle like 

the layer of submembrane proteins seen here (component "B"). 

One attractive aspect of this model is that it could explain the otherwise mysterious 

electron-lucent area.   Patterned beating of the core could clear the area of large 

macromolecules leaving only smaller molecules and water, just as any shaking tends to 

separate objects with different properties.  This would be true regardless of whether the core 

was internalized within the cell body or protruding in a finger-like extension, just as we saw 

here.  Published pictures of M. penetrans, however, argue against this explanation.  M. 

penetrans is a relative of M. pneumoniae, which also apparently excludes large 

macromolecules from its tip, but it lacks an analogous core.  More specifically and in 

contrast to our results here, M. penetrans’ tip has been described as filled with densely 
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packed fine granules (Lo et al., 1992; Neyrolles et al., 1998).  Until this structure is also 

imaged in its native state by ECT, conclusive comparisons are probably premature.  In the 

absence of any membrane or protein boundary, an alternative explanation is that some sort of 

gel could actually be responsible for excluding large macromolecules in both species.  

The core motility model also offers an explanation for the size and complexity of the 

core, the solid bowl complex, and the organized rows of proteins both inside and outside the 

membrane.  The motility of the attachment organelle might be important for cell division.  

The attachment organelle has been seen to replicate, migrate to opposite sides of pre-

divisional cells, and then stay at the forefront of the daughter cells as they separate (Seto et 

al., 2001).  It may actually pull the daughter cells apart.  The bacterial genome may also 

attach to the organelle, perhaps via the bowl complex, to ensure chromosome segregation 

(Seto et al., 2001). 

In an effort to identify conformational flexibility within the attachment organelle in 

support of our model, we found three types of evidence: (1) the spacing between the 

segments of the electron-dense core and also the nodules of the terminal button were 

variable, like an accordion; (2) sometimes all the segments were straight, sometimes they 

were curved inwards, and sometimes they were curved outwards; and (3) the position and 

orientation of the bowl complex varied (Fig. II-9).  Because the cells were unattached to any 

surface when imaged, however, these conformational changes may not be associated with 

those that occur during gliding motility.  If our model is correct, we would also have 

expected larger variations as well.  Perhaps they exist, but are so short-lived that none were 

captured and imaged here.  
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Other models of motility were considered.  Current models for the motility of M. 

mobile propose that individual surface proteins cyclically stroke a surface, propelling the cell 

like the feet of a centipede (Uenoyama et al., 2004).  While these proteins are localized to an 

elongated extension of the cell similar to the attachment organelle of M. pneumoniae, they 

are excluded from its tip (Uenoyama and Miyata, 2005).  No homologs to these proteins have 

been found in M. pneumoniae (Miyata, 2005) and M. mobile does not appear to have either 

an electron-dense core or an electron-lucent area (Shimizu and Miyata, 2002).  If the 

mechanisms in the two organisms were nevertheless similar, one wonders what would justify 

the size and complexity of the electron-dense core and explain the electron-lucent area.  A 

conveyor-belt model for track-based motility (McBride, 2001) also seems discordant with 

our observations here because no array of structural links were seen between the shaft of the 

core and the rows of membrane proteins.  

Our proposed model makes testable predictions.  First, it predicts that the gliding 

motility in M. pneumoniae should be incremental with at least a roughly characteristic step 

size.  Second, unlike strictly structural proteins, some component of the core must consume 

energy.  Third, directed movement would require that the core contact a surface through 

adhesion proteins in a surrounding membrane (i.e., isolated cores might "twitch," but not 

move forward steadily, and isolated membranes with their surface proteins would be 

motionless).  Fourth, in contrast to individual surface proteins of current M. mobile models 

which would remain fixed relative to the tip, individual adhesion proteins labeled here would 

cycle from the tip of the attachment organelle towards the rear, then release the surface and 

diffuse back up to the front.  More work is needed to identify the proteins that form each 

component and to test these predictions. 
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Experimental Procedures 

Cultivation conditions.  Wild-type M. pneumoniae, cell strain M129 (Lipman et al., 1969), 

was cultured for 2-3 days in 10 mL SP-4 medium at 37° C in a plastic culture flask (25 cm2) 

(Tully et al., 1977).  Cells were then scraped off the culture flask and concentrated by 

centrifugation (10,000 x g for 3 min). 

 

Electron cryotomography.  Concentrated M. pneumoniae were applied to glow-discharged 

Quantifoil (SPI Supplies) or lacy carbon (Ted Pella, Inc.) grids previously treated with 10-nm 

gold fiducial markers.  Excess liquid was removed and the samples were plunge-frozen in 

liquid ethane using a Vitrobot (FEI).  Maintaining the samples at liquid nitrogen temperature 

throughout the experiment, the grids were loaded into "flip-flop" tilt rotation holders and 

loaded into a 300 kV, FEG, G2 Polara transmission EM (FEI).  Image series were acquired at 

half- to three-degree intervals, tilting the sample between roughly -62° to +62°, using the 

predictive UCSF tomography software package (Zheng et al., 2004).  All images were zero-

loss filtered with a slit-width of 20 eV.  For some cells the grid was rotated 90˚ between a 

first and second tilt-series (Iancu et al., 2005).  Images were acquired under low-dose 

conditions 10 to 30 μm underfocus and with a magnification such that after the energy filter, 

each pixel on the CCD represented between 0.56 and 0.82 nm on the specimen plane. 

 

Image analysis.  Images were aligned using gold fiducial markers.  Single-axis tilt-series 

were reconstructed by weighted back-projection and dual-axis tilt-series were merged using 

IMOD (Mastronarde, 1997).  Reconstructions were denoised using non-linear anisotropic 

diffusion (Frangakis and Hegerl, 2001), distributed across the network of lab workstations 
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with the Peach system (Leong et al., 2005).  Images were produced using IMOD or the 

Amira software package (Mercury Computer Systems, Inc.).  All the images shown were 

denoised except for those in Fig. II-1. 
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Figure II-1.  Electron micrograph and tomographic reconstruction of a dividing M. 

pneumoniae cell.  a) An example untilted projection image from the tilt-series of a single 

frozen-hydrated cell.  The cell appears about to divide and is stretched over the carbon film 

of the grid.  b) A 15 nm central slice through the three-dimensional reconstruction of the 

same cell perpendicular to the beam.  Individual macromolecular complexes are visible, 

including the cell’s two electron-dense cores.  (These cores appear again in Fig. II-2f and e).  

CF–carbon film, EDC–electron-dense core, ELA–electron-lucent area, GP–gold particle, M–

membrane, R–ribosome like particle, SP–surface proteins 
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Figure II-2.  Montage of attachment organelles and schematic.  Each image represents a 

10.7 to 22.4 nm thick slice through a tomogram oriented to expose the thick and thin rods of 

the electron-dense core.  (Five additional cores were considered in the analysis but are not 

shown here.)  a-i) Cores that protruded from the body of the cell within a membrane-

enclosed, finger-like extension.  j-n) Internalized cores.  o) Schematic of the attachment 

organelle with components labeled for subsequent reference 
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Figure II-3.  Extracellular surface proteins.  Two views of the attachment organelle 

pictured in Fig. II-2j are shown, tilted with respect to each other.  The extracellular surface 

proteins were automatically segmented with a simple density threshold and surface-rendered 

in yellow.  The membrane below was manually segmented and surface-rendered in purple.   

The electron-dense core was volume-rendered in orange.  Because the views are three-

dimensional with perspective, no scale bar is included. 
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Figure II-4.  Membrane proteins and terminal button.  Slices through two different 

attachment organelles are shown and marked to highlight the membrane protein layers "A" 

and "B" and the three components of the terminal button "C"–"E" (the organelles in (a) and 

(b) are the same as those shown in Figs. II-2a and e, respectively).  Capital letters–

components as labeled in Fig. II-2o 
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Figure II-5.  Electron-dense core.  a) Volume rendering of the electron-dense core and 

bowl complex shown in Fig. II-2a, with components labeled.  b) Cross-section of the core 

shown in Fig. II-2i perpendicular to the long axis of the rods at a point distal to the bend.  c) 

A thin section through the attachment organelle shown in Fig. II-2j, minimally denoised and 

volume rendered to highlight the fine structure of the core’s distinct segments (arrowheads).  

d)  Cross section of the same attachment organelle after further denoising and automatic 

segmentation with a “fill” tool to generate a surface.  e) Surface rendering, rotated and color-

coded as in Fig. II-2o to give a sense of the gross structure from different views.  Note that 

the structure will appear slightly elongated from the “top” and “bottom” views due to the 

missing wedge of data in electron tomography.  Mem–membrane 
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Figure II-6.  Bowl complex.  a) "Sagittal" section through the bowl complex and the 

proximal end of the electron-dense core shown in Fig. II-2e.  b-d) "Coronal" 1.6 nm sections 

(roughly perpendicular to the axis of the core) through the bowl complex at different 

positions, starting at the bottom of the bowl and moving up to its rim.  Arrows point to the 

bowl complex, while arrowheads point to the cell membrane. 
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Figure II-7.  Multiple electron-dense cores.  Two cells with multiple electron-dense cores 

are shown where the terminal buttons (highlighted with white dotted circles) are oriented 

either towards (a) or away (b) from each other.  The black arrows point from the bowl 

complex to the terminal button alongside the thin rods.  The organelles in (a) and (b) are the 

same as those shown in Fig. II-2l and m and Fig. II-2b and c, respectively. 
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Figure II-8.  Cytoskeleton filaments.  a-c) Serial sections through a tomogram of one cell 

showing a bundle of 5 nm filaments running through a point of cell narrowing.  Arrowheads 

point to the fiber bundle.  d) Selective, manual, three-dimensional segmentation of some of 

the fibers (yellow).  The membrane has been rendered purple.  CF–carbon film 
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Figure II-9.  Evidence of conformational changes.  The attachment organelles from Fig. II-

2k, f, and j are shown to the left of corresponding schematics highlighting conformational 

differences. The relative position of the first bowl complex is overlaid on the later two 

schematics as a grey shadow.  For clarity the bowl complex is shown moving relative to a 

stable core, though the opposite, a stable bowl complex and mobile core, may be more likely. 


