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Abstract 

The dynamic interaction of mantle plumes with subducted slabs and plate-scale flow is 

studied in Part I. We found that plumes preferentially develop on the edge of slabs and that a 

substantial amount of hot mantle can be trapped beneath slabs over long periods of time, 

leading to “mega-plume” formation. We used the solver-coupling technique to study the 

deflection of plume conduits and compare our result with the parameterized approach. The 

stability of mantle superplumes in compressible thermo-chemical convection is studied in 

Part II. The depth-dependent chemical density profile, caused by composition-dependent 

compressibility, is the preferred mechanism to stabilize the superplumes. 
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Chapter 1  
 

Introduction 
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In this thesis, we use numerical models to explore the dynamics of mantle convection, 

especially plumes and superplumes. This thesis is composed of two parts. In Part I, the 

dynamics of thermal plumes and their interaction with large-scale flow and subducting slabs 

are explored. Part II focus on the largest-scale upwellings within the lower mantle 

(superplumes). Specifically, we develop a dynamic scenario to understand mantle 

superplumes consistent with seismological, geochemical and mineralogical constraints. Both 

parts of the thesis involve substantial developments in computer software, especially new 

methodologies that might have wide applicability within geophysics.  

In Part I, we study the dynamics of plumes at different length scales with models of 

thermal convection. Plumes may originate from the thermal boundary layer at the core-

mantle boundary (CMB). Small-scale instabilities, on the order of 10 km, grow within the 

thermal boundary layer and later erupt as plumes. On the other hand, plume formation is 

modulated by large-scale flow induced by subducted slabs. Cold and dense slabs descend 

through the mantle and induce a flow of 10
5
 km scale. The large-scale flow can locally 

thicken or thin the thermal boundary layer at the CMB, which promotes or inhibits plume 

formation. Once a plume erupts from the CMB, it has a large plume “head.” The plume head 

ascends through the mantle and rises to the surface. A narrow “tail,” or plume conduit, 

connects the plume head with the thermal boundary layer. Warm material from the thermal 

boundary layer rises through the conduit. The diameter of the conduit is likely around 100 

km. Like a plume of smoke rising from a chimney and deflected by the wind, a mantle plume 

conduit can be deflected by large-scale mantle flow as well.  Simulating the process of plume 

formation and plume conduit deflection requires a very fine grid resolution, while modeling 

the large-scale flow requires a large computation domain. A model with large computation 
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domain and fine grid resolution will demand massive computation resources and is presently 

impractical. We will use two different approaches to reconcile both requirements of fine-

scale and large-scale models in Chapter 2 and 3.  

In Chapter 2, we explore the large-scale flow and fine-scale flow with models separately 

at these scales. We first address the question, “Can subducted slabs reach the CMB?” using 

large-scale 2-D and 3-D models. We find that an increase in lower mantle viscosity, a phase 

transition at 660 km depth, depth-dependent coefficient of thermal expansion, and depth-

dependent thermal diffusivity do not preclude model slabs from reaching the CMB. Only a 

few continuous slab-like features from the surface to the CMB are observed in seismic 

tomography. This observation is often cited as evidence against slabs reaching the CMB and 

as evidence of mantle layering. With Lijie Han, we performed 3-D regional spherical models 

with actual plate reconstructions. We show that slabs are unlikely to be continuous from the 

upper mantle to the CMB, even for radially simple mantle structures. We argued that the 

discontinuous slab-like features in seismic tomography result from the details of plate 

convergence, not mantle layering. Later in Chapter 2, we explore the effect of slabs on plume 

formation using 2-D fine-scale models. We find that plumes preferentially develop on the 

edge of slabs. An important result is that a substantial amount of hot mantle can be trapped 

beneath slabs over long periods of time, leading to “mega-plume” formation. This model for 

mega-plume formation has important predictions for mantle geochemistry and structural 

seismology. 

In Chapter 3, using new development in computer science called “frameworks,” we 

developed a method of solver coupling and then applied the results to the deflection of a 

plume conduit. The coupled model has a fine resolution solver with a small computational 
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domain embedded within a coarse resolution solver with a large computational domain. 

Together with Eun-seo Choi, Pururav Thoutireddy and Michael Aivazis, we developed a 

general-purpose software package allowing multiple solvers to communicate and mutually 

coordinate their activity during a large parallel computation. The result is a dynamically 

consistent and computationally efficient method for simulating large domains with locally 

refined resolution. The method is dynamically consistent because the two solvers 

communicate with each other to ensure consistent dynamic variables, and is computational 

efficient because the coarse resolution solver is not invoked as frequently as the fine 

resolution solver. The deflection of the Hawaiian plume within large-scale mantle flow is 

modeled with the framework-coupled solvers and then compared against a simple 

parameterized model. The parameterized model is computationally efficient, but its predicted 

plume track differs from the coupled model by 20%. 

In Part II, we study the stability of mantle superplumes in the context of thermo-chemical 

convection. There are two superplumes, regions of low seismic velocity, at the base of the 

mantle, one beneath the southern Africa and the other beneath the southwestern Pacific. 

From various geophysical observations, the superplumes are expected to be warmer and have 

a distinct chemical composition than surrounding mantle. Although these chemical structures 

are called “superplumes,” whether they are stable (i.e. will remain at the base of the mantle at 

least for several hundred million years) or unstable (i.e. will rise to the upper mantle or mix 

with surrounding mantle in a few hundred million years) remains unresolved. Many 

geochemical observations require that some regions of the mantle (reservoir) remain isolated 

from the rest of the mantle for more than a billion years. Stable superplumes could be this 

geochemical reservoir. The stability of superplumes becomes an important issue in both 
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geophysics and geochemistry. In Chapter 4 to 7, we present observational constraints on the 

southern African superplume and develop a series of models to explain the morphology, 

seismic signature, and stability of the superplume. In the preferred model, the superplume is 

composed intrinsically denser material with a higher bulk modulus than ambient mantle. 

Such a superplume can remain at the base of the mantle for billion years and satisfies 

seismological, geochemical, and mineralogical constraints. 

In Chapter 4, we first present the work of Sidao Ni and Don Helmberger on the discovery 

of sharp boundary of the African superplume. The seismic observation shows that the 

African superplume is a large structure with a width of 1000 km, extending obliquely upward 

from the CMB by 1200 km. The boundary of the African superplume appears to be sharp, 

with a width less than 50 km, indicating the presence of a chemical boundary. Then, using an 

incompressible thermo-chemical convection model, we compute a series of dynamic models. 

We find that only unstable chemical structures can reproduce the observed morphology 

(shape and dimension) of the superplume and that models with constant coefficient of 

thermal expansion fit the morphology better than models with Earth-like depth-dependent 

coefficient of thermal expansion. The later result is puzzling and implies an important 

process is missing in our dynamic models. 

In Chapter 5, we resolve the puzzle in Chapter 4 by introducing composition-dependent 

compressibility. The African superplume has a bulk modulus higher than that of ambient 

mantle. Materials with different compressibility (the inverse of bulk modulus) have different 

density profiles. The density difference of materials with different bulk modulus will vary 

with depth. Such a depth-dependent variation in density difference can stabilize a thermo-

chemical structure. A new compressible thermo-chemical convection code is developed to 
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demonstrate the concept. The resultant chemical structure has a similar morphology to the 

African superplume. We call this type of chemical structure “metastable dome.” But can we 

exclude other models of mantle superplumes? In Chapter 6 and 7, we address the uniqueness 

of superplume models.  

In Chapter 6, we systematically explore the effect of composition-dependent 

compressibility (i.e., depth-dependent density difference) and depth-dependent thermal 

expansion. We find a wide range of morphologies for the chemical structures. Several 

models are morphologically similar to the superplume. These dynamic models are converted 

into seismic velocity anomalies and compared with seismic observation. The thermo-elastic 

parameters used in the conversion provide additional mineralogical constraints. We find that 

only metastable domes can simultaneously satisfy seismological, geochemical and 

mineralogical constraints on the superplumes. 

In Chapter 7, we explore the competing effects of composition-dependent rheology and 

depth-dependent thermal expansion on the stability of a thermo-chemical structure. The 

chemical structure has an intrinsic viscosity increase and convects slowly. Such a structure 

can be morphologically similar to the superplume and is stable. We demonstrate that the 

strong temperature gradient inside the chemical structure, caused by composition-dependent 

rheology, is the dominant factor in stabilizing the structure. Such a temperature gradient will 

generate a strong gradient in seismic velocity, which is not observed. Other mechanisms, 

including temperature-dependent rheology with negative activation enthalpy and radiative 

heat transfer, could potentially stabilize the chemical structure as well. However, the 

plausibility of these mechanisms has never been demonstrated. In contrast, composition-
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dependent compressibility should exist in the mantle and is the most plausible mechanism for 

stabilizing a chemical anomaly at the base of the mantle. 
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Abstract 

Numerical mantle convection models indicate that subducting slabs can reach the core-

mantle boundary (CMB) for a wide range of assumed material properties and plate tectonic 

histories. An increase in lower mantle viscosity, a phase transition at 660 km depth, depth-

dependent thermal expansivity, and depth-dependent thermal diffusivity do not preclude 

model slabs from reaching the CMB. We find that ancient slabs could be associated with 

lateral temperature anomalies ~500˚C cooler than ambient mantle. Plausible increases of 

thermal conductivity with depth will not cause slabs to diffuse away. Regional spherical 

models with actual plate evolutionary models show that slabs are unlikely to be continuous 

from the upper mantle to the CMB, even for radially simple mantle structures. The 

observation from tomography showing only a few continuous slab-like features from the 

surface to the CMB may be a result of complex plate kinematics, not mantle layering. There 

are important consequences of deeply penetrating slabs. Our models show that plumes 

preferentially develop on the edge of slabs. In areas on the CMB free of slabs, plume 

formation and eruption are expected to be frequent while the basal thermal boundary layer 

would be thin. However, in areas beneath slabs, the basal thermal boundary layer would be 

thicker and plume formation infrequent. Beneath slabs, a substantial amount of hot mantle 

can be trapped over long periods of time, leading to “mega-plume” formation. We predict 

that patches of low seismic velocity may be found beneath large-scale high-seismic-velocity 

structures at the core-mantle boundary. We find that the location, buoyancy, and 

geochemistry of mega-plumes will differ from those plumes forming at the edge of slabs. 

Various geophysical and geochemical implications of this finding are discussed. 



 11 

2.1 Introduction 

Several geophysical observations suggest that slabs penetrate the 660 km seismic 

discontinuity and descend into the lower mantle. Global tomography models show that some 

continuous high-seismic-velocity anomalies extend from active subduction zones to a depth 

of at least 2000 km [Grand et al., 1997; van der Hilst et al., 1997]. Beneath Japan (Figure 2-

1) and the Caribbean, high seismic-velocity anomalies extend nearly continuously from the 

upper mantle to the very base of the mantle. The spatial distribution of high-seismic-velocity 

anomalies in the deep mantle correlates with the position of past subduction [Richards and 

Engebretson, 1992]. However, seismic tomography generally shows that slab continuity from 

the upper mantle to the CMB is variable, with substantial down dip and along strike 

variations [Megnin and Romanowicz, 2000; Ritsema and van Heijst, 2000]. In addition to 

tomography, other arguments have been advanced suggesting that flow associated with plates 

penetrates deeply into the lower mantle [Richards and Engebretson, 1992] For example, the 

occurrence of positive geoid and gravity anomalies over subduction zones is most consistent 

with penetration of slabs into the lower mantle [Hager, 1984]. In addition, if the mantle were 

perfectly layered with a thermal boundary layer (TBL) at 660 km depth, robust buoyant 

upwellings would produce asymmetrical bathymetry at mid-ocean ridges, which are not 

observed [Davies, 1989]. 

Some geochemical arguments are also consistent with deeply penetrating slabs. Oceanic 

island basalts (OIBs) have a wide spectrum of isotopic heterogeneity. The origin of the 

heterogeneity is attributed to different reservoirs in the deep mantle [Hofmann, 1997]. One 

reservoir sampled by HIMU OIB (“high μ”; μ
238

U/
204

Pb) has the highest 
206

Pb/
204

Pb, 

207
Pb/

204
Pb, and

 208
Pb/

204
Pb and the lowest 

87
Sr/

86
Sr of any OIB. The high Pb ratios indicate 



 12 

enrichment in U and Th in the HIMU source, while the low Sr ratio indicates depletion in Rb. 

One potential source of the HIMU reservoir is oceanic crust that has been returned to the 

deep mantle during subduction [Hofmann and White, 1982]. The high Pb ratios and low Sr 

ratio of HIMU are inherited from the high U and low Rb in the oceanic crust. 

Although seismic tomography models provide evidence that some slabs penetrate into the 

lower mantle, it is not clear that they penetrate to the CMB. There are several factors that 

might hinder and delay slab descent, leading to substantial warming of slabs before reaching 

the CMB. In a mantle with a highly viscous lower mantle and a decreasing thermal 

expansivity with depth, slabs would take a longer time to descend through the lower mantle, 

-1.5 % 1.5 %

1

20

40

60 80

100

120

2

2

1

ΔVs  

Figure 2-1. Tomography model S20RTS across Japan subduction zone [Ritsema and 

van Heijst, 2000]. The continuous high seismic velocity anomaly extending from the 

subduction zone to the CMB is most consistent with subduction of oceanic 

lithosphere into the lower mantle, clear down to the core mantle boundary. 
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perhaps long enough for a slab to thermally dissipate. The radioactive heating in the mantle 

and slab, although small, might have some influence in the limit of long descent times. 

Furthermore, the thermal conductivity may increase with depth [Hofmeister, 1999] and 

potentially diminish the temperature anomaly in the slab [Hauck et al., 1999]. Applying these 

various effects in mantle convection models, we explore under what conditions a slab can 

survive as a distinct thermal and mechanical entity before reaching the CMB. 

On the other hand, assuming that slabs can indeed reach the CMB, they are likely to have 

a profound influence on the dynamics near the CMB. Regions, called ultra-low velocity 

zones (ULVZs), with reduction of P- and S-wave velocities over 10%, are observed at the 

CMB [Garnero and Helmberger, 1996; Vidale and Hedlin, 1998; Ni and Helmberger, 2001]. 

Plumes, presumably emanating from a TBL, are putatively rooted at the CMB. The 

interaction of slabs with ULVZs and plume roots might influence their geographical location.  

Three types of dynamic models are presented in this paper. First, large-scale two-

dimensional (2-D) cylindrical models with depth-dependent material properties, meant to 

simulate flow through the whole mantle, were formulated to show under what conditions 

slabs could reach the CMB. Second, 3-D spherical models with imposed plate evolution were 

formulated to explore the morphology of slabs in the presence of realistic evolution of 

surface plates. Last, high-resolution, fine-scale, 2-D Cartesian models were formulated to 

investigate the evolution of slabs near the CMB. Aspects of the formulation common to all of 

the models will first be described, followed by specified model characteristics and results. 

Various geophysical and geochemical implications are then considered. Since none of the 

models include chemical variation, when we refer to “slab,” we mean “cold anomaly.” 
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2.2 Methods 

The numerical calculations were performed by solving the non-dimensional conservation 

equations of mass, momentum, and energy under using the Boussinesq approximation. The 

continuity (mass conservation) equation is (except where indicated, all quantities are non-

dimensional)   

 u = 0  (4-1) 

where u is the velocity. The momentum equation for a fluid with an infinite Prandtl number 

is  

 (r,T) u( ) = p + (r)RaT Rb( )er = 0  (4-2)

where  is the dynamic viscosity, p is the dynamic pressure,  is the thermal expansivity, Ra 

is the thermal Rayleigh number, Rb is the Rayleigh number associated with the density jump 

across a phase change,  is the phase change function, T is the temperature, r is the radius, 

and er is the unit vector in the radial direction.  

The energy equation is  

 
T

t
= u T +  (r ) T ( ) +H  (4-3)

where  is the thermal diffusivity, H is the internal heating number, and t is time.  is defined 

as  

 =
1

2
1+ tanh

1 r dph (T Tph )

wph

 

 
 

 

 
 

 

 

 
 

 

 

 
  (4-4)

where dph and Tph are the ambient depth and temperature of a phase change,  is the 

Clapeyron slope of a phase change, and wph is the width of a phase transition. The non-

dimensional Rayleigh numbers, Ra and Rb, are defined in terms of dimensional quantities 
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 Ra = 0g 0 TR0
3

0 0

 (4-5)

 Rb =
phgR0

3

0 0

 (4-6)

where 0 is the reference density, g is the gravitational acceleration, 0 is the reference 

thermal expansivity, T is the temperature increase across the mantle, R0 is the scale height 

of the domain, 0 is the reference thermal diffusivity, 0 is the reference viscosity, and ph is 

the density jump across a phase change. The functional forms of material properties, ,  and 

, are different in the large-scale and fine-scale models, and will be given below along with 

the boundary and initial conditions. 

2.2.1 Large-scale Model (2-D) 

A series of 2-D models of thermal convection in a cylindrical geometry with imposed 

plate kinematics were computed to investigate the evolution of subduction from the surface 

to the CMB. We followed the finite element method of Sidorin and Gurnis [1998]. The 

values of all parameters in Equation (2-4)–(2-6) are listed in Table 2-1. In this set of models, 

the material properties, ,  and , are depth-dependent. 

At higher pressure, it requires more energy to expand or compress a mineral. So, thermal 

expansivity decreases with depth. This high-pressure behavior has been determined 

experimentally for perovskite and magnesiowüstite [Wang et al., 1994; Chopelas, 1996] and 

is well represented by the non-dimensional equation:  

 (r) = s

1+ a(1 r)b
 (4-7)

where s=2.93 is the non-dimensional thermal expansivity at the surface, and a=10.5 and 
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b=0.85 are fitting constants. This equation is an empirical fit to the theoretical values of 

thermal expansivity along a mantle adiabat [Sidorin and Gurnis, 1998]. The dimensional 

value of reference thermal expansivity, 0, is chosen so that the volume average (geometric 

mean) of  is equal to 1. 

Most radial viscosity profiles inverted from the geoid and postglacial rebound have a one 

to two orders of magnitude increase across the 660 km discontinuity [Hager et al., 1985; 

Mitrovica and Forte, 1997; Lambeck et al., 1998]. In order to include this effect, we used a 

modified Arrhenius law   

 (r ,T ) =  *exp(
c1

c2 +T

c1

c2 +Tm
)  (4-8)

where 
*
=0.18 in the upper mantle and 1.8 in the lower mantle, Tm=0.5 is the non-

dimensional temperature of ambient mantle, c1=17.22, and c2=0.64. A high viscosity cutoff 

of 10
3
 is used. These parameters give three orders of magnitude variation in viscosity across 

Table 2-1. Values of parameters used in large-scale models (2-D). 

Symbol Value 

0 4000 kg/m
3
 

g 10 m/s
2 

T 2900 K 

R0 6371 km 

0 1.53x10
-5

 K
-1 

0 10
-6

 m
2
/s 

0 5.57x10
21

 Pa·s 

ph 340 kg/m
3 

wph 5.49x10
-3

 

dph 0.895 

Tph 0.5 

 -0.0398 

Ra 7.239x10
7
 

Rb 1.383x10
8
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the top TBL, one order of magnitude viscosity jump across the 660 km discontinuity, and 

another two orders of magnitude variation across the bottom TBL. The dimensional value of 

reference viscosity, 0, is chosen so that the volume average (geometric mean) of  is equal 

to 1. 

The thermal diffusivity, proportional to the thermal conductivity, may increase with 

depth (decrease with r) [Hofmeister, 1999]. Because the precise relation between  and r is 

unknown, a simple implementation is used   

 (r) =1+ f (r) (4-9)

where  is a model parameter that controls the variation of thermal diffusivity across the 

mantle, and ƒ(r) is a stepwise decreasing function with value from 1 to 0. This formula 

represents a 10-layer mantle, with constant thermal diffusivity in each layer. The dimensional 

value of reference thermal diffusivity, 0, is chosen to be the surface thermal diffusivity. 

The phase change parameters are chosen to be consistent with seismological observations 

and high-pressure experiments. From the amplitudes of reflected seismic phases off the 660 

km discontinuity, the density jump across the discontinuity is estimated as ~4–6% [Shearer 

and Flanagan, 1999], substantially below the value of 9.3% in PREM [Dziewonski and 

Anderson, 1981]. The Clapeyron slope of spinel dissociation has been determined 

experimentally and falls between -2.8 MPa/K [Ito and Takahashi, 1989] to -3±1 MPa/K 

[Akaogi and Ito, 1993a]. To infer the minimum temperature anomalies of slabs when they 

reach the CMB, we overestimated the influence of the post-spinel phase change. We used 

phase change parameters corresponding to an ambient depth of 660 km with Clapeyron slope 

of -3.5 MPa/K and a density jump of 8.5%. 
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The computations were performed within a half annulus (Figure 2-2) in a cylindrical 

coordinate system (r, ), where the inner radius corresponds to the CMB and the outer radius 

corresponds to the surface of the Earth. This domain is divided into 400 elements in the  

direction and 100 elements in the r direction. The mesh was refined vertically and 

horizontally to increase the resolution in the TBLs and in the area of subduction, with a 

minimum grid spacing of 15 km. Reflecting boundary conditions were used for both 

sidewalls. At the bottom, free-slip velocity boundary conditions were used and temperature 

was kept constant at 1. At the top, plates were simulated by imposing piecewise constant 

velocity boundary conditions. There were three plates along the top. Each had different 

velocity and temperature boundary conditions. These plates were, from left to right, the 

Tm

r=0.5462
| |

r=1

O
ce

an
ic

 P

lat
e

Aoc
Overriding Plate

0.0 0.5 1.0

Temperature

Back-Arc Basin

 

Figure 2-2. Initial configuration of 2-D large-scale models. There are three tectonic 

plates at the top with different velocity and temperature boundary conditions. These 

plates are, from left to right, the oceanic plate (OC), a plate within the back-arc basin 

(overshooting plate, OS), and the overriding plate (OR). The velocities of these plates 

are VOR=-0.25 cm/yr, VOS=-5VOC, and VOC is a model parameter. The plate boundaries 

between OC and OS and that between OR and OS both have the same velocity as 

VOR. The temperature on the top surface is TOS=TOR=0.5 and TOC=0. The age of the 

oceanic plate at the trench, AOC, is another model parameter. On the bottom surface, 

free-slip velocity boundary conditions are used and temperature is 1. Reflection 

boundary conditions are used for both sidewalls. The mantle has an initial uniform 

temperature Tm=0.5. 
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oceanic plate, a plate within the back-arc basin, and the overriding plate. The back-arc basin 

was introduced to initiate subduction and to prevent the slab from being sucked up under the 

overriding plate [Christensen, 1996]. The thickness of the oceanic plate progressively 

increased from the ridge (left margin) to the trench (right margin) and was concordant with 

the plate age AOC. The mantle was initially isothermal, with Tm=0.5, except for the bottom 

TBL. These calculations were meant to model an oceanic plate descending through an 

initially isothermal mantle with a hot TBL at the CMB. In one model, a different initial 

condition is used; the slab descends through a mantle with preexisting convection. All 

models were integrated forward in time until slabs reached and spread along the top of the 

CMB. 

2.2.2 Large-scale Model (3-D) 

With a somewhat simpler mantle structure, we explored the influence of a realistic 

evolving plate boundary on slab morphology. Using CitcomS, a spherical finite element code 

[Moresi et al., 2000], we set up a regional model, which encompassed the evolution of the 

western boundary of North America from the Cretaceous to the present. 

The mantle was purely heated from below and was initially isothermal at Tm=1. This 

configuration only resulted in a small amount of basal heating such that no plumes formed. 

There was one phase change in the model, representing the 660 km discontinuity. The phase 

change parameters corresponded to an 8.5% density jump. The values of all parameters in 

Equation (2.4)–(2.6) are listed in Table 2-2. Both the thermal expansivity and thermal 

diffusivity were constant through the mantle, while the viscosity was temperature- and depth-

dependent. The temperature-dependent part of viscosity was expressed as Equation (2-8). 
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The mantle was divided into four layers with a different set of constants (
*
, c1, c2) in each 

layer (Table 2-3). The Clapeyron slopes and viscosity of lower mantle are varied in different 

models (Table 2-4). 

The model domain was 220° to 310°E and 0° to 45°N, extending from the surface to the 

CMB. On these four vertical boundaries, the shear stress was set to zero. The bottom surface 

had free-slip and isothermal boundary conditions, with temperature kept at Tm. The top 

surface, like the 2-D large-scale model just described, had imposed velocity boundary 

conditions. The top surface had a constant temperature T=0.  

Three different plate evolutionary models were used.  The coordinates of plate 

boundaries and poles of rotations are from Lithgow-Bertelloni and Richards [1998]. For the 

first evolutionary model (used for NA1–NA3), the calculations started at 119 Ma with an 

evolving set of plate motions. Since this model started with an isothermal mantle, subduction 

essentially initiated at the western boundary of the North American plate at 119 Ma. In a 

Table 2-2. Values of parameters used in large-scale models (3-D). 

Symbol Value 

0 3500 kg/m
3
 

g 10 m/s
2 

T 1500 K 

R0 6371 km 

0 2x10
-5

 K
-1 

0 10
-6

 m
2
/s 

0 2x10
21

 Pa·s 

ph 340 kg/m
3 

wph 5.8x10
-3

 

dph 0.875 

Tph 1 

Ra 1.357x10
7
 

Rb 3.846x10
8
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second evolutionary model (used only for NA4), the plate evolution from 119 Ma to the 

present was identical to that used for NA1–NA3. However, prior to 119 Ma, we continuously 

imposed the 119 Ma plate reconstruction for 70 Myrs; since the model started with an 

isothermal mantle, subduction essentially initiated at 189 Ma along the western boundary of 

the North American plate. Finally, in a third evolutionary model (used only for NA5), we 

incorporated evolving plate boundaries back to 150 Ma while also incorporating the 

distributed (non–plate tectonic) strain of western United States from 20 Ma to the present 

using the reconstructions in Atwater and Stock [1998]. 

2.2.3 Fine-scale Model 

Lastly, we formulated a series of fine-scale 2-D Cartesian models to investigate the 

interaction between a slab and the CMB using the finite element program ConMan [King et 

al., 1990]. The models had a dimension of 3000 km in width and 1500 km in height and were 

Table 2-3. Viscosity in each layer used in large-scale models (3-D). 

Depth (km) Viscosity (Pa·s) Viscosity Variation 

0–90 2x10
23

 100 

90–410 4x10
18

 200 

410–660 4x10
21

 10 

660–CMB varying 10 

 

Table 2-4. Large-scale (3-D) models. 

Model 
Clapeyron slope 

(MPa/K) 

Lower mantle 

viscosity (Pa·s) 

Plate evolutionary 

model (see text) 

NA1 3.5 2x10
22

 Model 1 

NA2 1.75 2x10
22

 Model 1 

NA3 1.75 4x10
22

 Model 1 

NA4 1.75 2x10
22

 Model 2 

NA5 1.75 2x10
22

 Model 3 
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computed on a mesh with 300 elements in the horizontal direction and 150 elements in the 

vertical direction. The grid size was uneven, with a minimum grid spacing of 5 km. For this 

study, the dynamics were determined by the initial conditions of a slab, which consisted of 

slab temperature, thickness, and viscosity. A slab with an initial length of 1250 km, but 

variable thickness, Ws, and temperature, Ts, laid horizontally 80 km above the CMB (Figure 

2-3).  

The models initially started with a TBL along the bottom with a uniform mantle 

temperature (Tm=0.5). Reflecting boundary conditions were used for both sidewalls. At the 

bottom, free-slip boundary conditions were used and the temperature was kept constant at 1. 

At the top, permeable boundary conditions were used. These boundary conditions allowed 

plumes to ascend and escape from the calculation domain while the continuity equation 

ensured that the total volume of the domain was conserved.  

_

_

| |1250 km _

_

1500 km

Tm

Ts

Ws

0.0 0.5 1.0

Temperature  

Figure 2-3. Initial configuration of fine-scale models. A slab with a constant length, 

1250 km, but variable thickness, Ws, and temperature, Ts, laid horizontally 80 km 

above the CMB. A TBL with a temperature profile as if developed for 100 Myrs was 

imposed along the bottom. The mantle was initially at a uniform temperature, Tm, of 

0.5. 
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The material properties used here are different from those used in the large-scale models. 

Because the depth variation is half of the value used in the large-scale models, we used a 

constant thermal expansivity and diffusivity. The viscosity is only temperature-dependent, 

and a two-step rheology is used   

 (T ) =
10-6(T-Tm )                 for T > Tm
10 (T Tm )/(Ts-Tm )      for T < Tm

 
 
 

 (4-10)

where  is a parameter controlling the viscosity variation in the slab. This relation allows the 

initial viscosity contrast between the slab and mantle to be held constant while changing the 

initial slab temperature. This allows us to deconvolve the influence of slab viscosity from its 

temperature during its subsequent evolution. The temperature dependence of viscosity gives 

 orders of magnitude variation in viscosity between the slab and mantle and 3 orders of 

magnitude variations between the mantle and CMB. We did not consider internal heating 

because basal heating dominates the dynamics of this problem. The values of all parameters 

in Equations (2-4)–(2-6) are listed in Table 2-5. 

Table 2-5. Values of parameters used in fine-scale models. 

Symbol Value 

0 5000 km/m
3 

g 10 m/s
2 

T 2900 K 

R0 1500 km 

0 10
5
 K

-1 

0 10
-6

 m
2
/s 

0 10
22

 Pa·s 

Ra 4.89x10
5 

Rb 0 
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2.3 Results 

2.3.1 Large-scale Model (2-D) 

For different models, we varied oceanic plate velocity and age (labeled V), thermal 

diffusivity (labeled K), internal heating (labeled H), and the presence of a 660 km phase 

change (labeled P). The parameters and results of models are listed in Table 2-6. 

For all the models explored, slabs consistently descend to the CMB with substantial 

temperature anomalies. The animation from model P2 demonstrates the typical history of a 

slab (Animation 2-1; Figure 2-4). In this model, the position of subduction rolls back to the 

left, governed by the boundary conditions, and the slab directly penetrates the 660 km phase 

change. The slab only thickens slightly as it enters the more viscous and dense lower mantle. 

Table 2-6. Results of large-scale models (2-D). 

Model V1 V2 V3 K2 K3 K4 K8 H1 P1 P2 

VOC (cm/yr) 5 10 2.5 5 5 5 5 5 5 5 

AOC (Myrs) 130 65 260 130 130 130 130 130 130 130 

 0 0 0 1 2 3 7 0 0 2 

H 0 0 0 0 0 0 0 18 0 18 

Phase change No No No No No No No No Yes Yes 

Ws (km) 498 459 546 543 543 543 543 467 645 546 

Ts 0.30 0.31 0.31 0.31 0.34 0.37 0.40 0.30 0.28 0.34 

Temp. anomaly 
(Tm-Ts) T  (˚C) 

580 551 551 551 464 377 290 580 638 464 

 

Animation 2-1. The evolution of Model P2. The white line marks the 660 km phase 

boundary. The solid gray line shows the plate velocities, with dashed gray line as the 

baseline. Portions inside the two red boxes are magnified within the insets. Color 

scheme: red is warm; blue is cool. 
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The near vertical dip of the slab and the simplicity of the initial and boundary conditions 

result in a continuous, unbroken slab. The slab, while descending through the lower mantle, 

induces a downwelling flow and depresses the thickness of the underlying TBL. This flow 

pushes hot mantle aside (left inset of Animation 2-1) so that the neighboring TBL thickens, 

even when the slab is hundreds of kilometers above the CMB (Figure 2-4a). The thickening 

TBL is prone to instability and new plumes form (right inset of Animation 2-1). As the tip of 

the slab reaches the CMB, the slab slides horizontally and sweeps hot mantle aside, including 

the plume root, until the slab comes to a rest on the CMB (Figure 2-4b). Therefore, in these 

2-D models, there is always a plume on the tip of the slab. Similar phenomena have been 

noticed by other studies [Weinstein et al., 1989; Lenardic and Kaula, 1994; Lowman and 

Jarvis, 1996; Zhong and Gurnis, 1997; Sidorin et al., 1999].  

(a)

0.0 0.5 1.0
Temperature

(b)

 

Figure 2-4. Temperature fields of Model P2. The green lines mark the 660 km phase 

boundary. (a) When the slab descends through the lower mantle, it induces a down 

welling flow. This flow depresses the thickness of the TBL directly beneath the slab 

and pushes hot materials aside, thus thickening the neighboring TBL, even when the 

slab is still relatively distant from the CMB. The thickened TBL is prone to instability 

and initiates the growth of a new plume. (b) As the tip of the slab reaches the CMB, 

the slab slides horizontally while sweeping hot material aside (including the plume 

root).  
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The slab also folds and buckles as it approaches the CMB. Even with trench rollback, 

slabs near the CMB can be found under both the overriding and subducting plates. It also 

appears that some hot mantle can become trapped beneath the cold slab. 

The temperature and thickness of the slab, Ts and Ws, are measured by taking a 

temperature profile (Figure 2-5) near the mid-point of the flat-lying slab, where the 

horizontal temperature variation is small. Ts is defined as the minimum temperature in the 

profile, and Ws is defined as the vertical extent of the slab (the region with T<Tm). The height 

of the slab above the CMB, h, is defined as the distance between the base of the slab (where 

T=Tm) and the CMB. The values of Ts and Ws for all models are given in Table 2-6. We find 

that slabs usually lie 50–80 km above the CMB and are associated with a temperature 

anomaly of 300˚ to 600˚C while having thicknesses of 450 to 650 km. 

The results show that Ts and Ws do not change substantially in spite of the variation in the 

plate age. According to the half-space cooling-plate model, the oceanic plate thickness is 
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Figure 2-5. The temperature profile across the slab in the final step of model P2. Ts 

and Ws are the temperature and thickness of the slab. h is the height of the slab above 

the CMB. 
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proportional to the square root of the plate age. Model V3 has an oceanic plate four times 

older than model V2, thus the plate is twice as thick on the surface, but the slab in V3 is only 

16% thicker and is as cold as the slab in V2. This result can be explained by the 

compensating effect of different plate velocities. When slabs reach the lower mantle, the 

vertical descent of slabs decrease and slabs thicken in response to the increase of viscous 

resistance. This advective thickening may have been observed in several subduction zones 

[Creager and Jordan, 1986; Fischer et al., 1991; Ding and Grand, 1994; Pankow and Lay, 

1999]. A fast-moving slab may experience more advective thickening, so it gets more 

insulated and heats less than a slow-moving slab. On the other hand, a slab attached to a fast-

moving plate spends less time in the mantle before reaching the CMB and heats less.  

Comparing model V1 and H1, we find that internal heating does not increase the 

temperature inside the slab, consistent with order of magnitude estimates. If the mantle has 

an internal heating number H=18, equivalent to a heat generation rate of 1.6x10
-12

 W/kg, the 

temperature of the slab will increase by 10˚C after 250 Myrs. If the chondritic value of heat 

generation rate (5.1x10
-12

 W/kg) is used instead, the temperature increase will be 32˚C. This 

temperature increase is negligible. Although we use a uniform H for the mantle and slab, this 

result suggests that using a larger H for the slab, representing a higher concentration of 

radioactive elements in the oceanic crust, would not change the slab temperature 

substantially.  

The effect of depth-dependent thermal diffusivity can be significant. From model V1, and 

K2 to K8, the variation of thermal diffusivity, , changes from 0 to 7, and the thermal 

anomalies of slabs decrease as a result. The temperature anomaly of the slab in model K8 is 

only half of that in model V1, but the slab in model K8 is still 280˚C cooler than surrounding 
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mantle. We conclude that an eightfold or more increase of thermal diffusivity with depth is 

required to diffusively dissipate the slab before reaching the CMB. The plausible value of  

in the mantle will be discussed in a later section. 

In our models, the 660 km phase change fails to halt the slab from sinking to the lower 

mantle, corroborating earlier work by others [Christensen, 1995; Zhong and Gurnis, 1995; 

van Keken and Ballentine, 1999]. We find that the slab is not obstructed by the phase change 

and directly penetrates into the lower mantle, possibly due to the near-vertical dip of the slab 

in our models. If the trench migrated faster, we would expect to get more time-dependent 

slab penetration. Although slabs are not halted by the phase change, hot plumes are 

obstructed from ascending to the upper mantle, at least temporarily [Davies, 1995]. Several 

secondary plumes may form in the upper mantle when the plumes from the CMB collide into 

the phase boundary and laterally spread out beneath it (Figure 2-4b). 

We found there is always a plume on the tip of the slab, independent of changes in plate 

kinematics, internal heating, and thermal diffusivity. To determine if this phenomenon is a 

result of our particular initial conditions, we ran another model with a different history. The 

model has the same material parameters as model P2, except that the plates are stationary for 

the first 470 Myrs, after which several plumes develop at the CMB and ascend to the surface. 

Then, the same kinematical history used in P2 is imposed for 250 Myrs. We found that the 

slab still sinks to the CMB. When the slab slides along the CMB, it sweeps plumes to the 

edge of the slab, so the slab still has a plume on the edge. This suggests that plume formation 

on the edge of a slab is not an artifact of our simple initial conditions. 
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2.3.2 Large-scale Model (3-D) 

The plate history in previous 2-D models was simplified considerably from typical 

subduction systems. In previous models, plate and margin velocities did not change over 

hundreds of Myrs. These time-invariant boundary conditions give continuous slabs extending 

from the top surface to the CMB (Animation 2-1; Figure 2-4). However, plate velocities and 

boundaries change with time [Atwater, 1970; Ben-Avraham and Uyeda, 1983]. It is possible 

that continuous slabs are not wound in every subduction zone. In dynamic models with 

realistic plate histories, it could turn out that continuous slabs are the exception, not the rule. 

Using a 3-D model with a realistic North America–Pacific plate history, we explore the 

influence of time-dependent plate velocities and plate boundaries on slab morphology in the 

lower mantle. We have not attempted to reproduce mantle structure as seen in the 

tomography by varying either plate history or mantle rheology. 

The evolution of model NA5 is shown in Figure 2-6 and Animation 2-2. Since the plate 

configuration is simple before 85 Ma (similar to the large-scale 2-D models), the slab 

continuously extends from the surface to mid-mantle (Figure 2-6a). Between 85 and 75 Ma, 

the convergence angle between the Farallon and North American plates becomes 

considerably oblique, so the rate of subduction decreases, resulting in a gap in the continuity 

of the slab in the mid-mantle at 30 Ma (Figure 2-6b). The slab is lying flat underneath the 

over-riding continental plate. This tendency to become flat lying beneath the continent is 

Animation 2-2. The evolution of Model NA5. Blue lines are plate boundaries. Black 

arrows are plate velocities. White lines are phase boundaries at 410 and 660 km. Two 

temperature cross-sections at 15˚ and 30˚N are shown. Color scheme: red is warm; 

blue is cool. 
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consistent with earlier 2-D calculations [Zhong and Gurnis, 1995] and is caused by the strong 

suction force. This shallowing of dip is partly a consequence of the trench migration to the 

west and partly a consequence of the decreasing age of the subducting Farallon plate, as the 

Farallon–Pacific ridge and Farallon–North American margin converge. Eventually, the ridge 

and trench coalesce [Atwater, 1970]. Since subduction terminates at 30˚N after 25 Ma while 

it continues south of 15˚N, slab structure becomes complex. This complexity is particularly 

evident along strike at 0 Ma (Figure 2-6c). At 30˚N, the slab is completely detached from the 

surface, and there is no slab in the upper mantle. However, at 20˚N, the slab is still attached 

to the surface. The slab thickness changes significantly at different depths and latitudes and 

has substantial gaps at mid-mantle depths. Other cases (NA1–NA4), with different variants 

of plate evolution, phase transition strengths, and lower mantle viscosity, all show complex 

slab structure. We conclude that slabs are not expected to be continuous between the upper 

and lower mantle, even in the context of whole mantle convection.  

2.3.3 Fine-scale Model 

Since slabs are associated with large temperature variations, and the viscosity of the hot 

TBL at the CMB is likely to be small, a model with a high spatial resolution is required to 

study the long-term evolution of slabs at the CMB. In order to minimize the computational 

expense, we used fine-scale models (Figure 2-3) of a small physical domain. These models 

have initial conditions (slab temperature and thickness) adapted from previous 2-D large-

scale models, while ignoring the effect of continuing subduction. 
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We start with Ts=0.275, corresponding to a temperature anomaly of 650˚C, and Ws=645 

km. In order to explore the parameter space, we independently vary Ts, Ws, and the viscosity 
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Figure 2-6. Regional spherical models with the evolution of the North American–

Pacific–Farallon plate boundary. The white line is the 660 km discontinuity. (a) Left 

panel shows the plate configuration at 90 Ma. Right panels are the temperature cross-

sections at 30˚N (above) and 15˚N (below).  (b–c). The same as (a), but at 30 and 0 

Ma, respectively. Plate abbreviation: CA: Caribbean; CO: Cocos; FA: Farallon; JU: 

Juan de Fuca; NA: North America; PA: Pacific; SA: South America. 
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contrast between the slab and mantle, . We define two auxiliary parameters, the initial 

negative buoyancy and the initial stiffness of the slab, Bs and S as 

 Bs = (T-Tm ) dV
slab

     at t = 0 (4-11)

 S = log( ) dV
slab

     at t = 0 (4-12) 

We find three model outcomes. 1) For thin and less stiff slabs, slabs will heat and 

dissipate quickly (Animation 2-3, Figure 2-7). 2) For thick and stiff slabs, mega-plumes, with 

unusually large buoyancies, form beneath slabs (Animation 2-4, Figure 2-8). 3) For 

moderately thick and less stiff slabs, plumes with normal buoyancy form beneath slabs. (This 

(c)

(b)

(a)

0.0 0.5 1.0
Temperature

 

Figure 2-7. Result of model with type-1 outcome (Model F3). (a) Initial condition. (b) 

As the slab warms, the slab tip sinks, pushing hot materials aside, and essentially 

blocking the only exit for hot material to escape from beneath the slab. The hot TBL 

adjacent to the slab thickens while a new plume initiates. The TBL beneath the slab is 

thicker than the TBL in the slab-free area. (c) The thin slab quickly heats, diffuses 

away, and fails to keep the TBL beneath from being drained. The TBL has uniform 

thickness after the slab disappears.  
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third type is essentially a transition between the first two.) We are able to distinguish these 

outcomes by measuring the eruption time, te (defined later), and the plume buoyancy at 

eruption, Be=B(te). The plume buoyancy is defined as  

 B( t) = (T-Tm )dV
T>Tm

 (4-13)

This integral is carried out within a small region near the center of the slab (i.e., left margin 

of the domain) to avoid contamination from the bottom TBL and plumes in the slab-free area. 

te is the time when the plume buoyancy reaches the maximum. Be, then, is the maximum 

plume buoyancy. The results of fine-scale models are listed in Table 2-7. 

The demarcation between these outcomes becomes evident when we look at Be and te in 

the space of Bs and S (Figure 2-9). The transition between type-1 and -2 outcomes is roughly 

delineated by a single line (dashed line in Figure 2-9). The buoyancy of the mega-plume, Be, 

and the eruption time of the mega-plume, te, are generally positively correlated, i.e., longer 

eruption times lead to larger plumes. The general trend is for slabs with larger Bs and S 

(resulting from colder and thicker slabs, and larger  and thicker slabs, respectively) to lead 

to larger plumes erupting after longer times. The initial slab stiffness, S, is the major limiting 

factor since this transition boundary is elongate along the Bs axis. An explanation will be 

provided below. When Bs and S are both small, the behavior is complex, and no clear 

Animation 2-3. The evolution of Model F3. The thin slab is heated by the surrounding 

mantle and diffuses away. Color scheme: red is warm; blue is cool.  

 

Animation 2-4. The evolution of Model F10. Upper panel: red line is the evolution of 

the plume buoyancy inside the black box, while blue line is the evolution of the 

negative slab buoyancy. Lower panel: the thick slab can trap a large amount of hot 

mantle beneath and lead to mega-plume formation. Color scheme: red is warm; blue 

is cool. 
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boundary can be delineated.  

The dynamics of models with type-1 outcomes are considered first. In these models, as a 

slab warms, its viscosity decreases, and it deforms more easily. The slab starts to spread out, 
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Figure 2-8. Result of model with type-2 outcome (Model F10). (a) Initial condition. 

(b–d) snapshots of temperature and velocity fields. (e) The buoyancy evolution of the 

slab and mega-plume. Blue line represents the negative buoyancy of the slab, while 

the red dashed line represents the positive buoyancy of the hot material. The time of 

frame (b), (c), and (d) is indicated. The eruption time, te, of the mega-plume is when 

the buoyancy of the hot material reaches its maximum, Be. 
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pushes the hot materials aside, and, essentially, its tip blocks the only exit for hot material to 

escape from beneath the slab. The importance of this blockage will soon become evident. 

The hot TBL adjacent to the slab is thickened and initiates a plume. For convenience, we will 

call it an ordinary plume. This plume head ascends through the mantle and is fed by a thin 

conduit, which continuously drains the hot mantle near the CMB. The TBL in the slab-free 

area thins as a result. The TBL beneath the slab is blocked and is not drained by the plume 

conduit, so it is thicker than the TBL in the slab-free area at this stage (Figure 2-7b). The thin 

slab quickly heats, diffuses away, and fails to keep the TBL beneath from being drained. The 

TBL has uniform thickness after the slab disappears (Figure 2-7c). 

We now consider the dynamics of models that have type-2 outcomes. During the early 

stage of these models, the dynamics are the same as type-1 outcomes (Figure 2-8a and 2-8b). 

However, the thicker slab survives longer so that a substantial amount of hot mantle has 

become trapped. With this trapped hot mantle, convection beneath the slab becomes vigorous 

(Figure 2-8c). When the trapped mantle accumulates enough buoyancy, it lifts, tilts, and 

finally breaks through the slab (Figure 2-8d). This plume can have a buoyancy three times 

larger than an ordinary plume, hence our term, mega-plume. The buoyancy evolution of the 

slab and mega-plume is plotted in Figure 2-8e. The buoyancy of the mega-plume increases 

with time at the expense of the negative buoyancy of the slab. We note here that most of the 

reheated slab material becomes incorporated into the mega-plume. The geochemical 

significance of this will be considered later. When the mega-plume erupts, Be is six times 

larger than the negative buoyancy of the remnant slab. This disproportionality suggests that 

the trapped mega-plume is the result of high slab viscosity, not of high slab density. The 

sudden increase of the plume’s vertical velocity when it escapes the domain, as clearly seen 
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in Animation 2-4, is an artifact of the boundary condition, because the plume encounters no 

viscous resistance as it reaches the top boundary. However, this phenomenon occurs after the 

plume has erupted and moved away from the slab, so there is no evidence that the permeable 

boundary condition interferes with pre-eruption plume growth. 

In models with type-3 outcomes, slabs also traps hot mantle beneath, but plumes breaking 

through slabs have similar buoyancies to ordinary plumes. These models have larger te than 

some models with type-2 outcomes, indicating that the smaller plumes are not resulting from 

Table 2-7. Results of fine-scale models. 

Model F1 F2 F3 F4 F5 F6 

Ws (km) 645 332 161 1000 645 645 

Ts 0.275 0.275 0.275 0.275 0.431 0.155 

 3 3 3 3 3 3 

Bs 0.031 0.015 0.011 0.048 0.009 0.048 

S 0.943 0.469 0.233 1.464 0.941 0.944 

Be 0.058 0.040 - 0.082 0.050 0.056 

te 0.0064 0.0033 - 0.0098 0.0068 0.0064 

 

Model F7 F8 F9 F10 F11 F12 

Ws (km) 332 161 322 645 332 161 

Ts 0.431 0.431 0.215 0.275 0.275 0.275 

 3 3 3 2 2 2 

Bs 0.005 0.002 0.019 0.031 0.015 0.011 

S 0.132 0.700 0.470 0.629 0.313 0.156 

Be 0.048 0.039 0.039 0.042 0.028 - 

te 0.0028 0.0033 0.0035 0.0037 0.0032 - 

 

Model F13 F14 F15 F16 F17 F18 

Ws (km) 1000 645 645 332 161 322 

Ts 0.275 0.431 0.155 0.431 0.431 0.215 

 2 2 2 2 2 2 

Bs 0.048 0.009 0.048 0.005 0.002 0.019 

S 1.976 0.626 0.629 0.085 0.047 0.314 

Be 0.050 0.056 0.028 0.038 0.044 - 

te 0.0047 0.0038 0.0038 0.0023 0.0024 - 
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insufficient time to develop, but from the inability of weaker slabs to hold large plume 

buoyancies down. We conclude that weak slabs cannot trap sufficient hot mantle before 

being drained by neighboring normal plumes. 

We offer an explanation as to why slab viscosity, or stiffness, is a major factor in 

determining the plume buoyancy. The small-scale convection beneath slabs is actually akin 

to stagnant-lid convection. Stagnant-lid convection has a cold, effectively stagnant lid on the 

top of the convection cell due to the very large viscosity contrast between the lid and 

convection cell. Numerical study using Newtonian viscosity shows that stagnant-lid 

convection occurs when the viscosity contrast, , exceeds 10
4
 [Solomatov, 1995], and  in 

our models is 10
5
–10

6
. In stagnant-lid convection, the non-dimensional temperature at the 

core of the convection cell is 1-1/ln( ) and is independent on the size of the cell. An 

examination of the temperature of the convection cells at different times in different models 

confirms this prediction. Since buoyancy is proportional to temperature and volume, and 

temperature is a constant, when the convection cell erupts, the plume buoyancy is solely 

determined by the size of the plume (essentially the plume head since the volume of the 

conduit is small). Davies [1993] used a simple calculation to estimate the radius of a plume 

head, a, when it rises from a low viscosity basal layer. He found that a=( a/ b)
1/3

h, where a 

is the viscosity of the ambient fluid, b is the viscosity of the basal layer, and h is the 

thickness of the basal layer. So the volume of the plume head is h
2
( a/ b)

2/3
 . In our models, 

h and b are the height and viscosity of the convection cell, which are more or less constant. 

So a, the viscosity of the overlying slab, controls the volume of the plume head, hence the 

plume buoyancy at eruption. Ordinary plumes are overlain by the mantle, which has a 

constant viscosity, and have constant buoyancy in all models as a result. The two models 
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with type-3 outcomes have slab viscosities comparable to ambient mantle when plumes erupt 

from beneath a slab, so the plume buoyancy is the same as ordinary plumes. 

We summarize three important features of the dynamics of fine-scale models: a) Plumes 

preferentially develop on the edge and center of the slab; b) The TBL in the slab-free area is 

thinner than that beneath the slab, as a result of frequent plume formation and eruption in the 

slab-free area; and c) In models with type-2 outcomes, substantial amounts of hot material 

can be trapped beneath the slab, leading to mega-plume formation over long periods of time. 

Slabs could also have a substantial influence on the heat flux between the mantle and 

core. For example, the CMB heat flux of model F10 as a function of time and space is shown 
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Figure 2-9. Summary of fine-scale models. Crosses denote models with type-1 

outcomes, unfilled circles denote type-2, while solid circles denote type-3. The radii 

of the circles are proportional to Be in the left panel and to te in the right panel. The 

transition between type-1 and -2 outcomes is delineated by the dashed line. The solid 

triangle indicates our best estimate for plausible slab conditions within the mantle, 

while the shaded ellipse indicates the uncertainty of our estimate. 
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in Figure 2-10. The dark red strip on the central right marks the root of an ordinary plume. 

Near the left margin, the transition from dark red to bright yellow as a function of time 

corresponds to the transition from pure conduction (Figure 2-8b) to small-scale convection 

(Figure 2-8c) beneath the slab. The small-scale convection is so vigorous that the cold 

material is entrained into the bottom of the convection cell and gives a very high heat flux. 

Just before te, the heat flux in this region reaches the maximum and is twice as high as 

compared with the heat flux in the slab-free area at any time. After te, the convection cell 

erupts as a mega-plume, and the heat flux suddenly returns to the normal value. This shows 

that the heat flux variation associated with a mega-plume eruption can be very localized in 

space and abrupt in time, and is substantially larger than those occurring at a normal TBL. 

All models with type-2 outcomes exhibited these same heat flow characteristics. 
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Figure 2-10. The non-dimensional heat flux at the CMB of model F10 as a function of 

time and horizontal dimension. The eruption time of a mega-plume is also indicated. 
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2.4 Discussion 

Using models with a high-viscosity lower mantle, a phase transition at 660 km depth, 

depth-dependent thermal expansivity, and depth-dependent thermal diffusivity, we have 

shown that slabs always descend to and then come to rest on the CMB. However, by 

incorporating viable models for evolving plate motions in regional spherical models, we find 

that although slabs are expected to reach the CMB, they will not necessarily be continuous 

between the upper and lower mantle. Large gaps in the continuity of slabs are expected as a 

function of both mantle depth and distance along plate margins because of the time-

dependence of plate velocities and plate boundaries. The interaction between slabs and the 

basal TBL was further investigated by using fine-scale models, and we found this interaction 

would result in two types of plumes. One, called an ordinary plume, develops on the edge of 

the slab, drains material from the TBL, and has relatively small buoyancy. The second, called 

a mega-plume, develops beneath the center of ancient slabs, drains material from recycled 

slabs, and has relatively large buoyancy. These two types of plumes are significantly 

different in their location, eruption buoyancy, and geochemical signatures.  

It has been suggested that enhanced thermal conductivity will cause slabs to rapidly 

disappear in the deep mantle. However, even in a model with thermal diffusivity increasing 

eightfold with depth, the slab still reaches the CMB with a significant temperature anomaly. 

Is a greater increase in thermal diffusivity with depth possible? To estimate the variation in 

thermal diffusivity, =k/ Cp, we need to determine the variation in thermal conductivity, k, 

density, , and specific heat at constant pressure, Cp, across the mantle. A model of thermal 

conductivity of the mantle is given by Hofmeister [1999], which varies from 2 to 6.7 W/m·K 

from the top to the bottom of the mantle. The density of the mantle increases from 3500 
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kg/m
3
 to 5500 kg/m

3
, according to PREM. Specific heat at constant pressure, Cp, is related to 

specific heat at constant volume, Cv, via Cp=Cv(1+ T), where  is Grüneisen ratio,  is 

thermal expansivity, and T is absolute temperature. When T is large, according to the rule of 

Dulong and Petit, Cv approaches to 3R/m, where R is the gas constant, and m is mean atomic 

weight of the mineral. Using  =1.2, T= ~1500 to ~4000 K, =2x10
-5

 K
-1

, and m=0.02 

kg/mol, we find Cp changes from 1.3 kJ/kg·K to 1.4 kJ/kg·K. The estimated Cp is compatible 

with the more rigorous approach of Akaogi and Ito [1993b], but they did not extend their 

calculation to lower mantle conditions. By combining these results,  has a range of 1.1–

2.2x10
-6

 m
2
/s. Although our estimate is subject to a large uncertainty, it does not seem 

possible to have  increasing by a factor of 8. So we conclude that thermal diffusion cannot 

dissipate slabs before they reach the CMB. 

At some subduction zones, high seismic velocity anomalies are only found in the upper 

mantle and deep mantle, but not in the mid-mantle (for example, southern Kuril and India). 

These gaps in the mid-mantle are often taken as evidence that slabs dissipate before reaching 

the CMB, disregarding the low resolution of tomography in the mid-mantle. However, we 

have demonstrated that slabs could be discontinuous when plate velocities are time-

dependent. These gaps of slabs in the mid-mantle might result from an abrupt change in plate 

velocities, i.e., a plate reorganization event [Fukao et al., 2001]. Moreover, changes in 

convergence history are also likely to play an important role. Examples include the 

interruption in plate convergence along the Pacific–North America boundary (Figure 2-6) or 

the post-Mesozoic reinitiation of subduction that occurred for the Tonga–Kermadec system 

[Gurnis et al., 2000]. 
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In our 2-D models, the subduction angles are always near vertical, and slabs penetrate the 

660 km discontinuity directly. A slab with a shallower subduction angle, resulting from more 

rapid trench rollback, might become temporarily trapped in the transition zone [Zhong and 

Gurnis, 1995; Christensen, 1996; Ita and King, 1998]. However, once a slab penetrates the 

660 km discontinuity, we find no compelling physical reason why it would not descend to the 

CMB. The possibility that slabs might be stopped by a change in chemistry or mineralogy 

cannot be excluded [Kesson et al., 1998; Kellogg et al., 1999].  

When slabs reach the CMB, they will have a substantial influence on the dynamics at the 

CMB. The most pronounced effect is for plumes to be swept onto the edges of slabs. One 

piece of evidence supporting this possibility is that hotspots correlate with the boundary 

between high and low seismic velocity regions as determined with tomography at the CMB 

[Thorne et al., 2001]. Furthermore, Ni and Helmberger [2001] and Luo et al. [2001] found 

ULVZs near sharp transitions between high and low seismic velocities beneath the South 

Atlantic and central Pacific. Taken together with a putative link between ULVZ and 

upwellings [Williams et al., 1998], we suggest that the ULVZs occurring near the high-to-

low seismic velocity transitions are a manifestation of ordinary plumes. Because plumes 

preferentially develop at the edge of slabs, and plumes may give rise to ULVZs, ULVZs are 

observed at the edge of slabs. However, we cannot overlook the possibility that, although 2-

D models always have plumes at slab edges, plumes are more likely to be irregularly 

distributed around the edges of slabs in 3-D. 

Another important effect of slabs at the CMB is their modulation of core-mantle heat 

flux. The thermal conditions at the CMB are likely to have an important influence on the 

geodynamo [Zhang and Gubbins, 1993; Glatzmaier et al., 1999; Gibbons and Gubbins, 
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2000], though a consensus of whether and how the heat flux variation would affect the 

geodynamo is not established. Larson and Olson [1991] proposed that nearly simultaneous 

eruptions of several very large plumes from the CMB were responsible for the decrease of 

magnetic reversal frequency during the Cretaceous. The dramatically enhanced heat flux at 

the CMB before the formation of mega-plumes provides a viable mechanism to change the 

magnetic reversal frequency. Additionally, the large buoyancy of mega-plumes in our models 

is consistent with a huge production of basaltic crust during the mid-Cretaceous. These seem 

to support Larson and Olson’s hypothesis. However, with our models, the onset of increased 

crustal production is likely to lag plume eruption by several tens of million years, due to the 

time it takes for plumes to rise through the mantle. 

The result of fine-scale models showed that those with type-2 outcomes (e.g., mega-

plume eruption) occupy a large part of the Bs-S domain (Figure 2-9). It is natural to ask 

where the Earth may lie in this space. To answer this question, we need to estimate the 

possible thickness and temperature anomalies associated with slabs at the CMB. Although 

we determined a range of thicknesses (~450 to ~650 km) and temperature anomalies (~300˚ 

to ~600˚C) from our models, we would like to ground our estimate with seismology. An 

estimate of temperature anomalies of slabs can be obtained from tomography models. 

Several recent tomography models have RMS-velocity variations lnVp=0.3% and 

lnVs=0.6% over most parts of lower mantle [Fukao et al., 2001]. Recent molecular 

dynamics simulation on MgSiO3 perovskite leads to ( lnVp/ T)p=-1.98x10
-5

 K
-1

 and 

( lnVs/ T)p=-3.78x10
-5

 K
-1

 at a depth of 2000 km [Oganov et al., 2001]. Therefore, such an 

RMS-velocity variation would correspond to an RMS-temperature variation of 150˚C. The 

temperature anomalies in the center of slabs would be much higher than the RMS value, so 
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150˚C gives a lower bound. The regional tomography model in the lowermost mantle 

beneath the southwestern Pacific from Wysession [1996] has a maximum lnVp=4%, which is 

a fairly large velocity variation among tomography models. If we attribute all of the variation 

to a thermal origin, we get a temperature anomaly of 1000˚C as an upper bound. The 

thickness of slabs cannot be inferred from seismology because tomography tends to smooth 

mantle structure. A rough estimate of 200–700 km is used here. Assuming an activation 

energy of 520 kJ/mol·K and an ambient temperature of 2000 K, the viscosity variation is 

estimated to be =1.1~13.6. We mark the range of our estimate as the shaded area in Figure 

2-9. Also plotted is the mid-point of our estimate (temperature anomaly 550˚C and thickness 

450 km). The shaded area lies almost entirely within the mega-plume regime, suggesting that 

mega-plumes are relevant to Earth. 

If mega-plumes had occurred in the past, what kind of signature would they have left? 

Because of their large buoyancies, mega-plumes are likely to penetrate the 660 km 

discontinuity, reach the surface, and produce hotspots. Since most recycled slab material is 

incorporated into mega-plumes, we suggest that mega-plumes could be the source of HIMU 

OIB. The slab would provide a crustal component to the mega-plume while being stiff 

enough to hold the buoyant plume at the CMB for a long interval of time. It is an efficient 

way to keep enriched crustal material from mixing with depleted mantle. We suggest that 

HIMU hotspots may be found above ancient slabs. This implication is difficult to test since 

slabs under HIMU hotspots might have been thermally dissipated after nucleating a mega-

plume. 
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On the other hand, if mega-plumes are developing on the CMB today, could we find their 

signatures? Using a thermal profile from a slab-free area as a reference, we convert thermal 

profiles to shear wave velocity at the center and edge of slabs of different ages (Figure 2-11). 

This conversion is based on temperatures variation only, without including the possible 

influence of partial melting and variations in chemistry. The thermal structures of slabs 

produce high seismic velocity anomalies capping low velocity anomalies The extent of low 

velocity anomaly changes substantially with slab location and age. The low velocity anomaly 

is more profound beneath the center of a slab than beneath a slab edge. An ancient slab is 

expected to cap a larger low velocity anomaly than a newly subducted slab. The signature of 

this low velocity anomaly is likely to be compensated by the surrounding high velocity 

anomalies. This structure is essentially two-dimensional and may be hidden in previous 1D 
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Figure 2-11. Shear wave velocity profiles above the CMB. Left panel shows profiles 

from a newly subducted slab (Figure 2-8b), while right panel shows profiles from an 

ancient slab (Figure 2-8c). Dashed lines indicate profiles taken at the center of slabs, 

while solid lines indicate profiles taken at the edge of slabs. The dotted line is PREM. 
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studies of D’’. Substantial low velocity anomalies are expected beneath the large volume, 

seismically fast structures at the CMB. The differential travel time of S and ScS at large 

epicenter distance (70° to 90°) might be used to detect these regions. 

Another possible signature of a developing mega-plume is a ULVZ within the geographic 

center of a slab. We show temperature profiles across slab and slab-free areas and a 

hypothetical solidus (Figure 2-12). If the solidus intersects the geotherm, following the 

suggestion that ULVZs result from presence of partial melting [Williams and Garnero, 

1996], our model predicts that a larger degree of partial melting could occur under ancient 

slabs, and by implication ULVZs could be larger under old slabs.  

The CMB regions beneath the Siberia and the Caribbean, which have strong high seismic 

velocity anomalies and a long subduction history, are the most likely places to find 

developing mega-plumes. The anomalous structure beneath Central America [Fisher and 
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Figure 2-12. Temperature profiles across the slab (thick line) and across the slab-free 

area (thin line) along with a hypothetical solidus (dashed line). 
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Wysession, 2001; Wysession et al., 2001] is a possible candidate in this regard. We suggest a 

detailed study on these regions to test our predictions.  
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Abstract 

Solver coupling can extend the capability of existing modeling software and provide a 

new venue to address previously intractable problems. A software package has been 

developed to couple geophysical solvers, demonstrating a method to accurately and 

efficiently solve multi-scale geophysical problems with reengineered software using a 

computational framework (Pyre). Pyre is a modeling framework capable of handling all 

aspects of the specification and launch of numerical investigations. We restructured and 

ported CitcomS, a finite element code for mantle convection, into the Pyre framework. Two 

CitcomS solvers are coupled to investigate the interaction of a plume at high resolution with 

global mantle flow at low resolution. A comparison of the coupled models with 

parameterized models demonstrates the accuracy and efficiency of the coupled models and 

illustrates the limitations and utility of parameterized models. 
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3.1 Introduction 

Geological processes encompass a broad spectrum of length and time scales, often with 

different physical processes dominating at either different locations or scales. Traditionally, a 

modeling code (a solver) is developed for a problem of specific length and time scale, but its 

utility beyond the original purpose is often limited. Modeling the dynamics of geophysical 

systems of all relevant scales is challenging with present-day tools. Writing a completely new 

solver covering such broad temporal and spatial scales is a substantial investment and may be 

undesirable. Leveraging existing, benchmarked, single-scale solvers and coupling them to 

solve multi-scale problem would be a more viable alternative. The GeoFramework software 

addresses this need through creating and maintaining a suite of reusable and combinable 

tools for solid Earth problems. 

GeoFramework extends Pyre, a Python-based modeling framework. Pyre is originally 

developed to link solid (Lagrangian) and fluid (Eulerian) solvers, as well as mesh generators, 

visualization packages, and databases, with one another for engineering applications 

[Cummings et al., 2002]. Within the Pyre framework, a solver is aware of the presence of 

other solvers, and they can all interact with each other via exchanging information across 

adjacent mesh boundaries. Such interaction is termed “solver coupling.” There are four 

advantages of solver coupling for multi-scale problems in geophysics:  

(1) Natural boundary conditions (BCs): Often BCs are set a priori on only one of 

the multi-boundaries available (such as sidewalls). Reflecting or periodic BCs 

can result in unrealistic deformation. However, if a regional solver is coupled 

with a solver of a larger domain (but of coarser resolution), the deformation 
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field of the later solver can be used as the BCs of the former solver, while the 

response of the former solver can be fed back to the later solver. Therefore, the 

regional solver can have more natural BCs. Alternatively, an uncoupled model 

with traditional mesh refinement, i.e., the study area in high resolution and a 

vast surrounding area in low resolution, can achieve similar goals.  

(2) Computational efficiency: The stable time step size is proportional to the 

smallest grid resolution, linear in hyperbolic equations and quadratic in 

parabolic equations. In an uncoupled model with mesh refinement, each step 

can advance in time only by a small amount, dictated by the finest grid. 

Computation on the coarser grid, which does not require such a small time step, 

must use the same small time step as the finest grid. In the case of a coupled, 

multi-resolution model, since different solvers can have time steps of different 

sizes, the coarser-resolution solver can have a larger time step, resulting in a 

substantial improvement in computational efficiency over traditional mesh 

refinement.  

(3) Multi-physics models: A geophysical process can involve the coupling of a wide 

suite of physical processes. For example, the mechanism of post-seismic 

deformation can be either elastic or plastic. A solver that can handle all aspects 

of the relevant physics may not be available, or if available, the code would be 

complicated and difficult to maintain and develop. On the other hand, the 

problem can be handled by multiple solvers coupled together, with each solver 

responsible for fewer physical processes, so that the code for each solver is 

simple and manageable.  
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(4) Data assimilation and prediction: Data output by one solver can be seamlessly 

passed as the input to another solver. For example, the result of a mantle 

convection model, when converted to seismic velocity with the aid of a mineral 

physics database, can be fed into a seismological code to generate synthetic 

seismograms, which can be compared with observation to further improve the 

convection model.   

In geodynamics, one can imagine several examples where solver coupling would have 

considerable utility. Solver coupling can simulate the interaction between large-scale and 

small-scale mantle convection, the viscous mantle and elastic crust, mantle flow and the 

thermodynamics of mineral phase relations, tectonic stress loading and earthquake rupture, 

and earthquake rupture and seismic wave propagation. In this paper, we approach the 

problem of mantle convection interacting at two different length scales. In a companion 

paper (Choi et al., manuscript in preparation), we will demonstrate the linkage between long-

term crustal deformation and mantle convection. 

A challenging mantle convection problem is the tilting of a plume conduit in large-scale 

mantle flow. Hot material rising from a hot thermal boundary layer forms a low viscosity 

plume conduit. The tilting of a plume conduit has a substantial influence on the location of a 

hotspot. Global flow models, in which the motions of plumes are parameterized, show that 

hotspot locations are influenced by large-scale flow [Steinberger and O'Connell, 1998]. 

However, the parameterized model assumes that the presence of plumes does not change the 

background mantle flow. It also assumes that the motion of a plume conduit can be 

parameterized by the vector sum of the ambient flow and the rising velocity of the plume 

conduit, which is inversely proportional to the ambient viscosity and not affected by the 
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presence of the top or bottom boundaries. The validity of these assumptions is unclear and 

unverified, because of several difficulties. Since the rising velocity of a plume conduit is not 

easy to measure, the effect of boundaries on the flow is difficult to quantify. On the other 

hand, numerical calculation of whole mantle flow with sufficient resolution to resolve a 

plume conduit remains beyond the capability of the most powerful computers, while 

numerical calculation of regional models is inadequate because of the missing large-scale 

flow. This motivates us to apply the Pyre framework to this geophysical problem. Here, we 

use the interaction of a plume at high resolution with global mantle flow (each computed by 

an instance of the finite element code, CitcomS) as a test case demonstrating the utility of the 

Pyre framework. 

In this paper, we describe the science-neutral Pyre framework and then introduce a new 

software package that has been developed for coupling geophysical solvers. We then present 

the results from the plume–global flow coupling. In the appendices, we demonstrate the 

numerical veracity of the methods. 

3.2 Overview of Pyre 

Pyre is a full-featured, object-oriented environment that is capable of handling all aspects 

of the specification and launch of numerical investigations. Pyre operates on massively 

parallel supercomputers including both shared memory computers and Beowulf clusters. 

Pyre is written in the Python programming language, an open-source, well-maintained and 

widely used interpretive environment.  
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Pyre leverages the extensibility of the Python interpreter to allow for the seamless 

integration of rather diverse computational facilities. The framework provides enough 

flexibility to allow the dynamic discovery of available facilities as part of simulation staging. 

There is a well-defined and well-documented method by which a new solver or a new 

material model can be made available to the framework, while the flexibility allows the user 

to specify solvers and algorithms in the simulation script, without the need for recompilation 

or relinking. The combination promotes experimentation with new algorithms by lowering 

the overall overhead associated with trying out new approaches. 

Each simulation model under Pyre is called an Application. An Application could contain 

one or more Solvers. An Application and its Solver(s) can run on multiple processors, but 

each processor has only one Application and one Solver on it (Figure 3-1). The role of the 

Application is to assign each processor a Solver and orchestrate the simulation staging of the 

Solver(s), such as initialization (including memory allocation and variable assignment), time 

marching, and output (Appendix C.l).  

3.3 CitcomS.py 

We restructured CitcomS, a finite element code for mantle convection in a 3-D full 

spherical shell [Zhong et al., 2000], and its regional variant (a cutout bounded by lines of 

constant latitude and longitude) [Tan et al., 2002; Conrad and Gurnis, 2003], ported to Pyre, 

and renamed the code to CitcomS.py (available under the GNU General Public License at 

http://geodynamics.org). The ported version can execute as a stand-alone program, like the 

old version, or as a Solver under a Pyre Application (Appendix C.2). The later case is a 
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prerequisite of coupled models. The restructuring involves a few top-level functions, leaving 

the numerical algorithm and internal data structure unchanged.  

3.4 Coupler and Exchanger  

To restrict the scope of this paper, we assume that two Solvers are coupled in a Pyre 

Application (Figure 3-1). The domain of one Solver is completely immersed within the 

domain of the other Solver (Figure 3-2A). The former is called the embedded Solver, and the 

later the containing Solver. The containing Solver has a ContainingCoupler, while the 

embedded Solver has an EmbeddedCoupler. The interactions between the Solvers are 

simulated by sharing physical quantities (such as velocity, temperature, or traction) on the 

interfaces, which has the form of sending and receiving information between Solvers. The 

Couplers drive the information exchange and synchronize the Solvers (Appendix C.3).  

The actual information exchange occurs in the Exchanger (Figure 3-1), which consists of 

a number of C++ classes. The Exchanger of a Solver can communicate with another 

Application

Solver 1

Containing
Coupler

Solver 2

Embedded
Coupler

Exchanger 1 Exchanger 2

Python 
bindings
Original 
solver

Python 
bindings
Original 
solver

 

Figure 3-1. The architecture of a coupled Application. The Application has two 

Solvers. The original code of the solver (in C/C++/Fortran) is complied into a library, 

which is called by the Pyre Solver via the Python bindings. Solver 1 is the containing 

solver and has a ContainingCoupler, Solver 2 is the embedded solver and has an 

EmbeddedCoupler. The Couplers communicate via the Exchangers, which are 

external to the Solvers. 
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Exchanger of a different Solver. An Exchanger is specific to its host Solver, but independent 

from the Solver that it is coupled to. The detail and complexity of the coupling mechanism is 

isolated inside the Coupler, leaving the Exchanger flexible and extensible. For example, 

although the Exchanger of CitcomS.py is developed to couple with another CitcomS.py, it can 

couple with an elastic Solver for crustal dynamics problems (Choi et al., manuscript in 

preparation). Since a goal is to leverage existing modeling code, the Exchanger is external to 

the Solver and not required for uncoupled applications.  

For simplicity, let us first consider the case of a single-processor Solver coupled with 

another single-processor Solver. Solver A, which is going to send a message, has an Outlet, 

while Solver B, which is going to receive, has an Inlet. First, Solver B has a BoundedMesh. 

The BoundedMesh contains a set of nodes at the interfaces of coupling Solvers and maintains 

containing 
mesh

embedded 
mesh

(A) (B) (C)

 

Figure 3-2. An example of a 2-D embedded mesh and a portion of the containing 

mesh. (A) The embedded grid is in dash line, and the containing grid in solid line. 

The embedded nodes are shown as dots, and the containing nodes as crosses. The 

meshes reside on separated Solvers but overlap in the modeling space. The embedded 

mesh is completely immersed within the containing mesh. The two meshes are not 

required to be parallel to each other. Two scenarios of BoundedMesh are presented. 

(B) The embedded Solver is Solver B. Its BoundedMesh consists of twelve boundary 

nodes (red). The coordinates of these nodes are sent to Solver A (the containing 

Solver) to find the corresponding elements (green, only one element is colored) and 

shape functions. (C) The containing Solver is Solver B. Its BoundedMesh is the three 

nodes (red) in the overlapping region. One corresponding element is shown in green. 
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a bounding box of those nodes, hence its name. Here we use “interface” in a loose sense. The 

set can be the whole collection of boundary nodes of an embedded Solver (Figure 3-2B), or 

only part of it, or the nodes in the overlapping region (Figure 3-2C). The Inlet sends the 

BoundedMesh to the Outlet. The Outlet uses the bounding box as an efficient check on 

whether the BoundedMesh overlaps with the domain of Solver A. The Outlet then assembles 

the requested data (usually by interpolation of a local field variable to the nodes in the 

BoundedMesh) and sends them to the Inlet. With finite-elements, the interpolation involves 

finding the corresponding element and computes the shape functions of each node in the 

BoundedMesh and is the most time-consuming procedure. If both meshes are static 

(Eulerian), this procedure is computed only once and the shape functions are stored for 

subsequent use. If one of the meshes changes with time (i.e., Lagrangian), this procedure 

repeats at every time step. The Inlet then imposes the data received to the interface nodes. 

Depending on the use of the data, the action of “impose” can have different meanings. If it is 

used as BCs, the BC arrays are updated; otherwise, it might simply replace the field variable. 

In the case of multi-processor coupling, the procedure becomes more complicated (see 

function initialize in Appendix C.3). Each processor still has an Inlet (for Solver B) or an 

Outlet (for Solver A). Additionally, each processor of Solver A has a Source, but only the 

leading processor of the Solver B has a Sink. Each processor of Solver B constructs a 

BoundedMesh according to its local mesh. Those local BoundedMeshes are broadcast out by 

the Sink to all Sources. Each Source passes the received BoundedMesh coordinates to the 

Outlet, which performs the same interpolation procedure as the single-processor case. The 

Outlet passes the interpolated results to the Source. The Sink collects the results from all 

Sources in Solver A and distributes the collected data to all Inlets. Inlets then impose these 
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data to the interface nodes. In general, Solvers have their own domain decomposition 

scheme, and the decomposition boundaries of two Solvers do not coincide. Therefore, nodes 

in a local BoundedMesh of an Inlet might be interpolated by different Outlets. The Sources 

and Sink maintain the bookkeeping of overlapping nodes.  

During different stages of a coupled computation, a Solver can act as Solver A or Solver 

B, i.e., either to send or receive data. One advantage of coupled computation is for the 

containing Solver sending the BCs to the embedded Solver. If data are sent from the 

containing Solver to the embedded Solver only, it is called one-way communication. If data 

are sent from the embedded Solver to the containing Solver as well, it is called two-way 

communication. For one-way communication, there is no feedback from the embedded 

Solver to the containing Solver, and the containing Solver nearly executes like a stand-alone 

computation, but providing BCs to the embedded Solver. Only for two-way communication 

is the response of the embedded Solver fed back to the containing Solver. 

Different Solvers, depending on their design, usually have different coordinate systems 

and units to represent the physical quantities internally. To facilitate information exchange, 

we require that any quantities be exchanged in Cartesian coordinates and SI units. 

Conversion from and to the native coordinate system and units is carefully handled within the 

Inlet and Outlet. An option of skipping conversion is available if the Solvers use the same 

coordinate system and units. 

During a coupled computation, the Coupler monitors the model times of both Solvers 

(see function clip_stable_time_step in Appendix C.3). If the model times of both Solvers are 

equal, they are synchronized. For example, in Figure 3-3, step M+3 and step N+1 are 
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synchronized, but step M+2 and step N+1 are not. Only when the times are synchronized, is 

the containing Solver allowed to march forward to the next time step. Generally, the 

containing Solver has a coarser mesh than the embedded Solver and has a larger stable time 

step. As a result, at the end of a time step, the containing Solver will be ahead of the 

embedded Solver (Figure 3-3A). The containing Solver must wait until the embedded Solver 

catches up (Figure 3-3B-C). The embedded Solver, if necessary, will clip the size of its stable 

time step so as to synchronize with the containing Solver (Figure 3-3D).  
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Figure 3-3. Synchronizing time steps of two Solvers. (A) After a synchronized step, 

the containing Solver will be ahead of the embedded Solver. (B) and (C) The 

embedded Solver keeps marching forward. The containing Solver waits until the 

embedded Solver catches up. (D) The embedded Solver clips the size of its stable 

time step so as to synchronize with the containing Solver. 
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3.5 CitcomS-CitcomS Coupling 

Having examined the coupling mechanism in general, we now describe the physical 

quantities exchanged for a specific application of CitcomS-CitcomS coupling. For the 

embedded solver, velocity or traction BCs are required to solve the continuity and 

momentum equations (see function solve_velocity in Appendix C.2). We found that imposing 

three components of velocity as BCs on all boundary nodes leads to poor convergence 

because of mesh locking [Hughes, 2000]. With normal velocity and shear traction imposed as 

BCs, the stiffness matrix is the same as those of uncoupled problems, and we can find 

convergent solutions. The embedded Solver also needs temperature BC to solve the energy 

equation. We impose temperature on every boundary node. For the two-way communication, 

we use the temperature field of the embedded Solver, which is more accurate, to override the 

temperature field of the containing Solver (see function new_time_step in Appendix C.2). 

The veracity of the coupling method has been extensively tested in a series of benchmarks. 

The results of the benchmarks are given in Appendix A and B. 

3.6 Model Setup 

We will show an example of two CitcomS.py Solvers coupled in two-way communication 

(Figure 3-4). The embedded Solver is a high-resolution regional CitcomS.py. The containing 

Solver is a global CitcomS.py. The resolution of the containing mesh is 180 km horizontally 

and 40–100 km vertically with mesh refinement near the bottom boundary. The embedded 

mesh has a resolution of 40 km in each direction and is centered near Hawaii. Both meshes 

have an inner radius 0.55 and an outer radius 1. The ambient viscosity, a, is 100 for the 

lithosphere (with the base at 90 km depth), 1 for the upper mantle, and 30 for the lower 
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mantle. The non-dimensional viscosity is temperature-dependent according to =0.1 a 

exp(1.74/(T+0.5)-1.74/1.5), where T is the temperature. The model has a Rayleigh number 

3x10
7
. The temperature BC at the core-mantle boundary (CMB) is T=0 except in a small 

region beneath Hawaii, where a circular region centered at 20°N, 155°W has elevated 

temperature T=exp(-s/s0), where s is the distance to the center, and s0=750/6371. The 

temperature BC at the surface is T=0. The mantle is isothermal (T=0) with a no-slip top 

surface initially. A plume develops from the heated region and rises vertically. After the 

plume impinges the surface, we impose plate motion from 80 Ma to the present using the 

plate motion model of Lithgrow-Bertelloni and Richards [1998]. The resultant mantle 

temperature is zero everywhere except the plume. Since two-way communication is used, the 

temperature fields are consistent across the meshes. 

We defined the hotspot position by locating the temperature maxima at 160 km depth, 

implicitly assuming that partial melting occurs at this depth and the melt rises and escapes to 

the surface through a vertical conduit. At shallower depth, the temperature anomaly tends to 

be attached to the lithosphere and translates with the plate, which is not representing the 

motion of the plume. 

The two-way communication model is compared with another two models. One model is 

similar to the two-way communication model, except using one-way communication. The 

containing mesh in the one-way communication model is driven purely by the plate motion 

and has no temperature heterogeneity. The comparison between the two-way and one-way 

communication models will address the influence of the plume buoyancy on the global 

mantle flow, which, in turn, affects the motion of the plume conduit. The plume only resides 

in the embedded mesh. Therefore, the temperature fields are inconsistent with one another.  



 67 

Another model is the parameterized model of plume ascent, following the method of 

Steinberger and O'Connell [1998]. The plume conduit starts from a fixed point at 20°N, 

155°W and 200 km above the CMB and ends at 180 km below the top surface. The conduit is 

advected according to the vector sum of the ambient flow and the rising velocity of a plume 

conduit, w=w0/ a, which is inversely proportional to the ambient viscosity. Since w0 is 

difficult to determine from a dynamic model, we use a range of w0 to find the best fitting 

model. The ambient flow is taken from an uncoupled global-scale dynamic model. This 

global flow model is identical to that in the one-way communication model. The comparison 

 

Figure 3-4. CitcomS-CitcomS coupling. The containing Solver (left) is a global model, 

with plate motion imposed on the top surface. The view is centered on the western 

Pacific. Red lines are plate boundaries. Yellow arrows are imposed plate motion. The 

orange sphere is the core. The small green box is the domain of the embedded Solver. 

The embedded Solver (right) is a high-resolution regional model, with boundary 

conditions retrieved from the containing Solver. The black line is the past hotspot 

location. The red segment is the assumed melt conduit, starting at 160 km depth. The 

velocity vector is in yellow. The temperature BC at the CMB is shown in color. The 

plume is visualized as an iso-surface (T=0.08). The numbers of grid points of both 

meshes are reduced for visualization purpose.  



 68 

between the one-way communication and parameterized models will address the validity of 

the parameterized plume motion.  

3.7 Results 

The evolution of the plume conduit in the two-way communication model is shown in 

Animation 3-1.  The initial plume conduit is vertical. When the plate motion is imposed at 80 

Ma, the plume is swept laterally by the mantle flow. The hotspot progresses to the northwest 

during 80–74 Ma, then, it progresses to the north until 65 Ma (thick solid line in Figure 3-5). 

At this stage, the movement of the hotspot is parallel to the plate motion, and the plume 

conduit is tilted towards the northwest too. Between 65–43 Ma, the plate motion is generally 

to the north, while the hotspot progresses to the northeast. The plume conduit, which was 

tilted to the northwest, becomes tilted to the north. This readjustment causes the apparent 

eastward hotspot motion. After 42 Ma, the plate motion changes to the northwest, but with 

reduced northward component. The readjustment of the plume conduit induces a southward 

movement to the hotspot. As a result, the hotspot motion becomes westward. At the end of 

simulation, the hotspot has been displaced 1000 km northwest away from its original 

location. 

The results of the one-way communication model (thin solid line in Figure 3-5) are close 

to the results of two-way communication model. The former model slightly overestimates the 

hotspot motion by about 110 km in the 80–74 Ma period, when the plume head has not yet 

Animation 3-1. The evolution of plume conduit in the two-way communication 

model. See the caption of Figure 3-4 for detailed description. 
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dissipated. After the period, both models agree well if the prior overestimate is removed. At 

the final step, the separation between the hotspots is about 110 km, and the azimuths to the 

original location are similar. This suggests that the global flow is not significantly altered by 

the presence of the plume conduit. The result is not surprising. When the temperature field is 

interpolated from the embedded mesh and fed back to the containing mesh, the plume 

conduit is not well-resolved by the containing mesh. As a consequence, the temperature 

anomaly of the plume is weak and perturbs the flow only slightly.  

Two parameterized models with different w0 are shown (dashed lines in Figure 3-5). The 

model with w0=0.75 cm/yr best fits with the one-way communication model. Both hotspot 

locations generally agree with each other during 80–40 Ma, with a separation of about 50 

164˚W 162˚W 160˚W 158˚W 156˚W 154˚W

20˚N

22˚N

24˚N

26˚N

28˚N

coupled, two-way

parameterized,
w0=0.75 cm/yr

coupled, one-way

parameterized,
w0=2.2 cm/yr

 

Figure 3-5. The hotspot locations from different models. Each line represents the 

motion of the hotspot, starting from the lower right corner, over 80 Myrs. A tick (+ 

symbol) is plotted at intervals of 10 Myrs. The zigzagged hotspot locations of the 

coupled models are artifacts from locating temperature maxima on a discrete grid. 
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km, but diverge after that. At the final step, the separation is about 270 km, and the azimuths 

are off by about 10°. If we use w0=2.2 cm/yr, which is used in Steinberger and O’Connell 

[1998] too, the final hotspot will be off by about 210 km and 10°. On the other hand, this 

model agrees better with the two-way communication model. We consider this agreement 

fortuitous, because the models are driven by different global flows. The hotspot separation 

between the parameterized and coupled models is a metric to the accuracy of the 

parameterized model. The relative error of the parameterized model, defined as the ratio 

between the separation to the total displacement of hotspots, is about 20%. We find the 

accuracy of the parameterized models acceptable, considering its small requirement in 

computational cost. 

From the comparisons, we conclude: 1) The plume conduit in our model does not change 

the plate-driven flow significantly; 2) the parameterized model can approximate the hotspot 

location with an appropriate w0. Nevertheless, the choice of w0 is not self-evident and should 

best be guided by the coupled model. 

The uncoupled global flow model required 40 hours of computation on a Beowulf 

cluster, while the coupled model requires 64 hours. With a 60% increase in computation 

time, we find a solution with a 4-fold increase in resolution in the plume region of the 

coupled model. To achieve the same resolution, an uncoupled model with mesh refinement 

would have required a time step size 1/4 the size of the coupled case and would have taken 

256 hours to compute. With such large savings in computational resources, problems that 

were too expensive can become manageable with solver coupling.  
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3.8 Conclusion 

As our understanding of Earth’s deformation improves, more sophisticated models are 

needed to explore the deformation process. However, the growing complexity of future 

models will exceed the capabilities of current generation solvers. Solver coupling can extend 

the capability of existing solvers with moderate investment. We have developed a software 

package to couple geophysical solvers and demonstrated the feasibility to solve a multi-scale 

problem efficiently via solver coupling. In a companion paper, we will demonstrate the 

feasibility to solve multi-scale, multi-physics problems using the same technique (Choi et al., 

manuscript in preparation). We believe that this new technique will provide a new venue to 

address problems that were too expensive or too complicated to solve before. The software is 

freely available to the community. 
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Abstract 

Beneath southern Africa is a large structure about 1200 km across and extending 

obliquely 1500 km upward from the core-mantle boundary with a shear velocity reduction of 

about 3%. Using a fortuitous set of SKS phases that travel along its eastern side, we show that 

the boundary of the anomaly appears to be sharp, with a width less than 50 km, and is tilted 

outward from its center. Dynamic models that fit the seismic constraints have a dense 

chemical layer within an upwardly flowing thermal structure. The tilt suggests that the layer 

is dynamically unstable on geological time scales.  
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4.1 Introduction 

The largest, low velocity structures in the lower mantle occur beneath southern Africa 

and the mid-Pacific. These low shear wave velocity structures are correlated with hot spots 

[Richards et al., 1988], suggesting that the decrease in velocity is associated with an increase 

in temperature. The positive geoid anomaly and high topography over Africa [Hager et al., 

1985; Lithgow-Bertelloni and Silver, 1998], and the broad scale Cenozoic uplift [Gurnis et 

al., 2000], are all consistent with warm, rising mantle beneath Africa. However, recent 

tomographic imaging of the whole mantle suggests that bulk sound velocity and shear 

velocity (Vs) are negatively correlated within the African and Pacific anomalies [Masters et 

al., 2000], suggesting that the anomalies are chemical in origin, not thermal. The chemical 

hypothesis is supported by an inversion of normal modes [Ishii and Tromp, 1999], which 

indicates that the density of the lower mantle may increase within the two low Vs anomalies. 

If over large scales (scale lengths of 1000 km), high density, chemical anomalies are 

embedded within thermal upwellings, as found in dynamic models [Gurnis, 1986; Hansen 

and Yuen, 1988; Tackley, 1998], then we predict that there should be sharp jumps in seismic 

velocity, either radially or laterally, within the broad scale low Vs structures delineated by 

seismic tomography. Here, we test this prediction with body wave seismology. 

4.2 Seismological Models 

We search for rapid variations in Vs along paths between Africa and South America 

because of an ideal combination of earthquakes and seismic arrays that sample the African 

anomaly [Ni et al., 2002]. Lowermost mantle structure can be distinguished from event 
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mislocation and upper mantle structure using differential travel times of the phases ScS and 

SKS relative to S (Figure 4-1A).  

Anomalous patterns in ScS-S, with delays as high as 10 seconds (s) at epicentral distances 

beyond 90° [Ni and Helmberger, 2001; 2003], are not explained by tomographic models that 

require sharpening and enhancing to produce such strong effects (Figure 4-1B). Moreover, 

the travel times for the phase SKS can change rapidly when crossing the western and eastern 

boundaries of the African anomaly, with changes as large as several seconds between 

 

Figure 4-1. Seismological data. (A) Shear velocity from tomography [Ritsema et al., 

1999] (in %) from South America to South Africa. The lowest velocities are in red. 

Green line is idealized LVZ2 structure with sharp sides (3% velocity reduction in 

enclosed area). Principal ray paths S, ScS (red), and SKS (green) sampling these 

structures for epicentral distances 83° to 95°. (B) Synthetics and observations for S 

and ScS phases (horizontally polarized component, SH): Tomo for tomographic 

model, LVZ2 for hybrid model, and 971128 for data recorded at South African Array 

[Ni et al., 2002]. Large delay of ScS relative to S caused by ALVS structure, which 

disappears at the larger distances since they both sample the ALVS. (C) The SKS 

geometry showing where rays arriving at stations (Figure 4-S1) exit the core 

(diamonds) and sample the ALVS structure. The color of the diamonds represents the 

delay (in seconds) of SKS arrival relative to PREM. The two dashed lines indicate the 

western boundary (WB) and eastern boundary (EB) where the ALVS intersects with 

the CMB. 
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neighboring stations with spacings of less than 50 km (Figure 4-1C). When SKS data are 

modeled alone there is a trade-off between thickness and velocity reduction that can be 

removed by adding the combination of ScS-S and SKS-S data [Ni et al., 2002]. Our preferred 

model fitting differential times and waveforms along this corridor is the LVZ2 model (Figure 

4-1A). It is a 2-D idealization of a large complex anomaly, which we will refer to as the 

African Low Velocity Structure (ALVS). The ALVS is aligned NW-SE and is about 1200 

km wide, while the cross section LVZ2 extends at least 1000 km above D" and leans toward 

the east between latitudes 15° to 30°S.  

These large-scale features are apparent in seismic record sections. The sharpness of the 

western boundary (WB) is particularly evident from a rapid jump in travel times occurring 

near 100˚ for events recorded by the South African Array (Figure 4-2A). Since the travel 

time jump occurs at different stations for other events this feature is not related to shallow 

structure [Ni et al., 2002]. A complementary travel time anomaly occurs for phases crossing 

the eastern boundary (EB), except that the jump in timing occurs in reverse order (Figure 4-

2B). SKS is delayed about 5 s for epicentral distances smaller than 97º, and becomes normal 

beyond 99º as recorded by the Tanzanian Array and is unlikely to be related to shallow 

structure [Ni et al., 2002].  

The steepness of the SKS paths and their relative sharpness in delay times when crossing 

the edges of the ALVS are used to map out the boundaries. Although the arrival of SKS for 

large distances (>99º) is normal, it is late for small epicentral distances (<98º), and between 

97º and 100º the waveforms are broader (Figure 4-2B). This pattern of waveform 

complication is probably caused by multipathing. For the shear velocity profile (Figure 4-

1A), the raypath of SKS around 97º is in the middle of the ALVS and yields a late SKS phase. 
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However, for large epicentral distances (>100º), the raypath of SKS is outside ALVS and 

leads to normal arrivals. But, when the raypath of SKS is close to the boundary of ALVS, two 

arrivals are produced, one from the ALVS and one from the surrounding higher velocity. If 

the boundary is sharp enough and the edge is nearly parallel to the raypath of SKS, a 

complicated waveform results.  

We demonstrate this phenomena with 2-D synthetic seismograms generated from the 

LVZ2 model (Figure 4-2C, D, E). For a sharp boundary with the edge almost parallel to a 

SKS raypath, complicated waveforms appear around 97º (Figure 4-2C). But if the boundary is 

 

Figure 4-2. Record sections. (A) Record section sampling the WB edge for event 

970903 with South African Array. The solid lines indicate the arrival times predicted 

by PREM, while the dotted lines are aligned with the delayed observations sampling 

the ALVZ. (B) Record section sampling the EB with the Tanzanian Array. The travel 

time jumps are about 5 s and occur abruptly where the waveform data show evidence 

for multipathing (more than one arrival). (C–E) This possibility is explored 

synthetically by allowing a smooth transition from slow-to-normal at the EB edge. A 

sample of EB waveform data (B) showing the apparent multipathing is compared 

with synthetics on the right for various test cases. When the transition is thicker than 

about 60 km, the SKS synthetics change gradually with a few fat pulses near 98°. To 

produce some of the most disturbed observed waveforms requires a relatively sharp 

transition and a fortuitous geometry. 
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gradual (60 km or more) SKS waveforms lose their complexity (Figure 4-2D). By comparing 

these synthetics with observed record sections, we estimate that the transition width should 

be less than 50 km. However, the slope of the edges is also important in controlling the shape 

of the waveforms. We explored the trade-off between width and slope and found that SKS 

waveform distortion does not occur when the edge is not well aligned with the SKS raypath 

(Figure 4-2E). While the idealized synthetics display the waveform complexity over a short 

epicentral interval, about 1º, the observations indicate a broad zone. Part of this is caused by 

geometry, where stations at the same epicentral distance are actually separated substantially 

in azimuth and apparently sample the wall differently.  

The multipathing of SKS phases, which travel up the sides of the African superplume, are 

diagnostic of the underlying dynamics. The observations suggest five features of the LVZ2 

that are relevant to understanding the origin of the structure: (i) The eastern side of the 

anomaly is sharp, having a drop in shear velocity of about 3% over a lateral length scale less 

than 50 km, (ii) the eastern vertical boundary of the anomaly is inclined or tilted away from 

the bulk of the anomaly, (iii) the western boundary may also be relatively sharp and tilted in 

the same direction as the eastern boundary, (iv) the location of the sharp interface is 

collocated with the larger-scale seismic anomaly, and (v) the distance between the two sides 

of the anomaly is between one and two times the height of the structure. 

4.3 Geodynamic Models 

We have attempted to simultaneously fit the observed sharpness and shape of the LVZ2 

with models of mantle convection incorporating a plausible range of parameters. The models 

have a dense basal layer interacting with thermal convection. Two parameters controlling the 
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dynamic models are defined as the following. The Rayleigh number is Ra= 0 0 TgR
3
/ , 

where 0, 0, T, g, R, , and  are the reference density, reference coefficient of thermal 

expansion, temperature jump across the whole layer, gravitational acceleration, radius of 

Earth, thermal diffusivity, and viscosity, respectively. The buoyancy number is B = 

ch/ 0 , where ch is the density anomaly associated with the basal layer. The influence 

of increasing B is to stabilize the dense layer while reducing the topography of the layer 

[Davies and Gurnis, 1986; Tackley, 1998]. 

We use the marker chain method [Gurnis and Davies, 1986; van Keken et al., 1997] to 

represent the boundary between ambient mantle and a homogeneous dense layer, which pre-

exists at the base of the mantle. The coefficient of thermal expansion, , has a fivefold 

decrease with depth, consistent with mineral physics data [Chopelas, 1996]. In some cases, a 

constant  is used. The temperature-dependent viscosity changes by four orders of magnitude 

across the bottom thermal boundary layer. These material properties are chosen to enhance 

the stability of the basal layer. The modeling geometry is a two-dimensional quarter-cylinder, 

with inner and outer radii equal to 0.5462 and 1, respectively. This domain is evenly divided 

into 300x70 elements in the azimuthal and radial directions. The surface temperature is fixed 

at 0, and the bottom temperature is fixed at 1. For models with imposed surface velocity, the 

surface boundary conditions are temperature fixed at 0.5 and velocity fixed at 1.5 cm/yr 

(when scaled to Earth). Additional details on our methods can be found in Sidorin and 

Gurnis [1998].  

The models are initial value problems in which a dome-like dense structure is situated in 

the middle of the domain so as to center any subsequent instability. The topography, h, of the 
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layer is initially given by  

 h( ) =
h0 + b*cos( / ) ,  if | |

h0 ,  if | |>

 
 
 

 (4-1)

where h0=0.02, b=0.12, =0.8636, and  is the azimuth away from the central plane of 

symmetry. The initial temperature is given by: T(r, )=1-0.5*erf((r-0.5462)/h( )), where r is 

the radius.  

The chemical origin of the dense layer may be due to substitution of Mg by Fe in the 

mineral assemblage. Using relations between Vs and temperature and density, we transform 

model output into Vs. We use the method of Sidorin and Gurnis [1998] for temperature- and 

pressure-dependence of Vs, and ( lnVs/ ln )P,T=-1 [Karato and Karki, 2001] for the 

composition dependence.  

With no variations in chemistry and at relatively high Ra (10
7
), seismic velocity 

variations occur over a length scale of 200 km with a reduction in Vs of only 2% (Figure 4-

3A; profile 1 in Figure 4-3H). By assigning different seismic velocities across the chemical 

interface, we find a Vs decrease of almost 3% in a distance of 100 km, with half of the 

decrease occurring as an abrupt jump (Figure 4-3B, C; profiles 2 and 3 in Figure 4-3H). For 

low Rayleigh number cases (10
6
), similar structures are found, but the chemical layer is 

embedded in a broad thermal halo (Figure 4-3D; profile 4 in Figure 4-3H). We have not been 

able to find a purely thermal plume that produces an interface sharp enough to give the SKS 

multipathing. We conclude that it is more likely that the interface has a chemical origin. 

The inclination of the interface is also diagnostic of the dynamics. If the dense basal layer 

is stable, then the interface between the two layers is always tilted toward the center of the 
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anomaly (Figure 4-3C). We find that the interface becomes tilted away from the central 

anomaly only when the chemical layer is unstable; that is, when the thermal buoyancy is 

greater than the chemical. Moreover, the two sides of the rising diapir are generally not 

parallel (as the seismic observations of Africa suggest) as both sides become tilted inward 

near the base of the mantle and outward near the top of the diapir (Figure 4-3B). 

Alternatively, the inclination could be caused by a large-scale mode of convection, 

including flow associated with plate motion. Over the past 100 My, Africa has moved 

northeastward in a hotspot frame of reference [Muller et al., 1993]. This motion is in the 
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Figure 4-3. Models of thermo-chemical convection. Only central part of model 

domain is shown. (A–D) Models with no plate velocity. (A) Ra = 10
7
, B = 0. (B) 

Ra=10
7
, B=0.21; (C) Ra=10

7
, B=0.23. (D) Ra = 10

6
, B = 0.23. The white lines mark 

the interface of chemical layer, which becomes stable for B > 0.22. (D–F) Models 

with an imposed plate velocity of ~1.5 cm/yr (scaled to Earth). (E) Ra=10
7
, B=0.21, 

the plume is sheared, but the right boundary is only slightly tilted outward; (F) 

Ra=10
7
, B=0.23, a more stable chemical layer tilts less to the right. (G) Ra=10

7
, 

B=0.32 with constant . (H) Modeled Vs at 2000 km depth. Profile 1 (model in A) has 

insufficient Vs reduction. Profiles 2 (in B) and 3 (in C) reproduce the sharp Vs 

reduction as observed. Profile 4 (in D) has sufficient Vs reduction, but fails to 

reproduce SKS sharpness. Only very buoyant layer is capable of reproducing 

sharpness, tilt, and length scale of LVZ2.  
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same overall direction as the tilting of the ALVS [Ritsema et al., 1999]. Although previous 

models have been able to reproduce the tilt of the ALVS, a tilt that may be caused by the 

shear associated with the African plate [Conrad and Gurnis, 2003], they have diffuse mantle 

structures inconsistent with the sharpness implied by SKS multipathing. This result motivates 

a second class of dynamic models with an imposed velocity boundary condition simulating 

the northeastward motion of Africa. The thermo-chemical anomaly with sharp edges can be 

tilted, but we have been unable to find plumes with subparallel sides (Figure 4-3F) or with 

widths comparable to their heights (Figure 4-3E). When the coefficient of thermal expansion, 

, decreases with depth, we are unable to match the shape of LVZ2. When  decreases with 

depth, thermo-chemical plumes are unstable in the mid-mantle but stable in the lowermost 

mantle and give rise to tilts distinctly different from those observed. However, with a 

uniform , we are able to reproduce the shape of the LVZ2 (Figure 4-3G). The structure has 

sharp boundaries tilted over in the direction of plate motion, subparalled sides, and a width 

comparable to its height. The better fit of cases with apparently unrealistic  suggests that a 

physical process is absent from the dynamic models. However, models with sharp boundaries 

and outwardly tilting edges are always transient because the dense chemical layer is being 

actively entrained upward. The implications of this result are significant for the thermal and 

chemical evolution of the mantle. 
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Abstract 

Seismically, the African superplume is known to have a sharp lateral transition in VS and 

an interface between seismic anomalies with high relief. Such a structure is usually unstable 

in conventional thermo-chemical convection models. Using a compressible thermo-chemical 

convection model in which each material has a distinct equation of state, we find an 

expanded regime of metastable superplumes. In the preferred model, superplume material 

has a bulk modulus 6% higher and density 2.25% higher than ambient mantle. The inferred 

physical properties of the superplume are consistent with subducted oceanic crust, 

simultaneously satisfying seismological, geodynamical, mineralogical, and geochemical 

constraints.  
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5.1 Introduction 

The African and Pacific superplumes are the most prominent features in the lower 

mantle. Both superplumes have low shear velocity (VS), large shear-to-compressional 

velocity (VP) heterogeneity ratio ( VS/ VP>2.5) [Su and Dziewonski, 1997], anti-correlated 

bulk sound velocity (V ) and VS [Masters et al., 2000], and sharp lateral VS transition [Wen, 

2001; Wen et al., 2001; Ni et al., 2002; To et al., 2005]. Together, these observations indicate 

that superplumes are compositionally distinct [Karato and Karki, 2001; Wen et al., 2001; Ni 

et al., 2002]. The superplumes are expected to be warmer than background mantle, as 

inferred from their low shear velocity, correlation with hotspots and the restored position of 

Large Igneous Provinces [Burke and Torsvik, 2004], and anti-correlation with regions of long 

term subduction (cool mantle). The confinement of chemical anomalies at the base of 

upwellings is consistent with the dynamics of thermo-chemical convection [Gurnis, 1986; 

Jellinek and Manga, 2002]. 

From seismological observations, the African superplume has a sharp lateral boundary 

extending steeply above the CMB for 1000 km and has an ~1000 km width in the mid-mantle 

[Ni and Helmberger, 2003; Wang and Wen, 2004; To et al., 2005]. Geodynamic models 

suggest that high Rayleigh number, thermo-chemical convection is required in order to 

reproduce such sharp lateral boundaries. Moreover, high relief (steep sides) and a broad 

width have only been found for unstable structures. Our former conclusion that the African 

superplume is a hot, chemical anomaly that is unstable and short-lived [Ni et al., 2002] is, 

however, unsatisfying. The conclusion implies that two mantle layers are being stirred 

together, which raises questions on the origin and uniqueness of the layers: If the density 
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difference between layers is only marginally stable, how could the dense layer form? Are we 

observing a turnover event, potentially geologically unique, in which an old dense layer is 

overturning? Given these problems, a new formulation of compressible convection is 

advanced that provides an alternative dynamic route to metastability consistent with observed 

structure. 

5.2 Analytical prediction 

The stability of a dense layer below ambient mantle has been investigated [Hansen and 

Yuen, 1988; Davaille, 1999; Tackley, 1999; Jellinek and Manga, 2002; Ni et al., 2002; 

McNamara and Zhong, 2004], mostly under the assumption that the density difference 

between the materials, ch, is depth-independent. Considering a chemical structure with an 

isothermal interior, because of the depth-dependence of thermal expansion, the lower portion 

of the structure would be denser than the surrounding mantle while the upper less dense. The 

upper portion will rise and become a plume, while the lower portion will sink and become a 

flat layer with cusps. It is difficult to produce stable thermo-chemical structures with high 

topography and steep sides when thermal expansion decreases with depth. Past models of 

stable superplumes all assumed constant thermal expansion [Davaille, 1999; McNamara and 

Zhong, 2004]. On the other hand, if ch is not constant, but decreases with depth, the upper 

portion of the chemical structure can become denser and stable, while the lower less dense 

and unstable. Under this scenario, a heated dense material can form a metastable superplume 

with high topography. 

Seismological observations provide hints that ch may decrease with depth. Inside the 

African superplume, the average VS reduction is -3%, but the average VP reduction is -0.5% 
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[Ni and Helmberger, 2003; Wang and Wen, 2004].  A VS reduction of similar amplitude is 

found inside the Pacific superplume [To et al., 2005], but the VP reduction and vertical extent 

of the Pacific superplume remain poorly constrained. The density structure of the African 

superplume is not well constrained by seismology [Ishii and Tromp, 1999; Romanowicz, 

2001], but is unlikely to be 1% denser than the ambient mantle due to the observed high 

topography. A simple calculation of the shear and bulk moduli (μ and KS) anomalies (Table 

5-1) shows that unless the African superplume has very low density (<-2%), which has 

previously been explored [Ni et al., 2002] and will not be considered further in this paper, its 

KS must be larger than the values in PREM [Dziewonski and Anderson, 1981].  

Materials with different KS have different adiabatic density profiles. The adiabatic density 

profile of ambient mantle (material 1), 1,ad, can be calculated by integrating the equations 

for self-compression  

 

dPH = 1, ad gdz

d 1, ad =
Di 1, ad

KS1

dPH
 (5-1)

where PH is the hydrostatic pressure; g is the gravity; Di is the dissipation number;  is the 

Grüneisen parameter; KS1 is the adiabatic bulk modulus of the ambient material. A 

compositionally distinct material (material 2) with a bulk modulus KS2 will have an adiabatic 

Table 5-1. Estimates on the elastic moduli. From the VS and VP observations, μ 

and KS of the superplume material can be estimated by assuming  (based on VS 

and VP of PREM model at 2500 km depth). The bulk modulus observed in 

seismology underestimates the bulk modulus at normal geotherm, because of the 

elevated temperature inside the superplume. 

 1% 0% -1% -2% 
μ -5% -6% -7% -8% 

KS 3% 2% 1% 0% 
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density, 2,ad, given by  

 d 2, ad =
Di 2, ad

KS 2

dPH  (5-2)

The compositional density anomaly, ch, is the difference between 2,ad and 1,ad, and can 

decrease with depth if KS2 is significantly higher than KS1 (Figure 5-1).  

The thermal density anomaly is th=- dT, where dT is the excess temperature and  is 

the coefficient of thermal expansion and is depth-dependent. We define a “height of neutral 

buoyancy” (HNB) as the height above the core-mantle boundary where the density is neutral, 

i.e., total= ch+ th=0. By assuming a constant dT with depth (Figure 5-2), we can 

calculate HNB and predict the stability of the dense layer for range of zero-pressure densities 

and bulk moduli.  
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ρadiabatic

ρ
1,ad

ρ
2,ad

 (KS2=1.04, Δρ0 = 1~5%)

0 0.02 0.04 0.06
0

1

Δρch

Z

 

Figure 5-1. Adiabatic density profiles. The solid line is the adiabatic density profile of 

ambient mantle (KS1=1, 0=1). The dashed lines are adiabatic density profiles of 

superplume material for KS2=1.04, but variable 0 (1%-5%). The inset shows the 

chemical density anomaly (compared to ambient mantle) of the superplume material. 
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5.3 Numerical method 

We modified the finite-element code ConMan [King et al., 1990], using the Truncated 

Anelastic Liquid approximation [Ita and King, 1994] for the governing equations. The 

continuity and momentum equations are solved using a mixed method formulation [Hughes, 

2000]. We adapted the pressure correction algorithm [Ramage and Wathen, 1994] and used 

the Bi-Conjugate Gradient Stabilized method [Barrett et al., 1994] to iteratively solve the 

equations. The algorithm and benchmark are described separately [Tan and Gurnis, in prep.]. 

The interface of distinct materials is traced by a marker chain [Sidorin and Gurnis, 1998]. 

The non-dimensional parameters used in the models are Rayleigh number 

(Ra= g Th
3
/ =2.2x10

5
 to 2.2x10

6
), dissipation number (Di= gh/CP=0.4), Grüneisen 

parameter ( = KS/ CP=1.333), normalized surface temperature (T0/ T=0.75), fraction of 
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Figure 5-2. Predicted (color contours) and calculated (symbols) domains for stability 

of thermo-chemical convection with two materials of differing equations of state. 

Assuming the excess temperature of the anomalous material dT=0.7, the predicted 

height of neutral buoyancy (HNB) is contoured. For KS2<1.02, all of the contours 

converge, such that the transition between stability and instability is abrupt. For 

KS2>1.02, a domain of metastability becomes possible and expands with higher KS2. 

Outcomes of finite amplitude calculations in which the convective mode and stability 

are inferred from morphology and density structure are plotted as symbols. 
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density change due to thermal expansion ( T= T=0.054), initial thickness of dense layer 

(d0=0.08 to 0.125), and rate of internal heating of the anomalous material (H=0 to 100). The 

coefficient of thermal expansion is (1+3.2(1-z)
8.5

)
-1

 for most cases, which is obtained from 

thermodynamic calculation [Sidorin and Gurnis, 1998], or is linear in z in some cases. The 

viscosity is temperature-dependent (changing by a factor of 100) and mildly depth-dependent 

(to compensate for the adiabatic temperature gradient). The side walls have reflecting 

boundary conditions. The horizontal boundaries have free-slip and isothermal boundary 

conditions. The initial temperature is an adiabatic temperature gradient with small 

perturbations. 

5.4 Results 

We computed a series of 2D thermo-chemical convection models, in which the zero-

pressure density anomaly, 0, and bulk modulus, KS2, of the chemically distinct material is 

systematically varied between 0 of 0.0 and 0.04 and KS2 between 1.0 and 1.08. We find a 

wide range of thermo-chemical structures that we classify in terms of the morphology and 

evolution (Figure 5-2).  

First, when 0 is sufficiently large for all KS2 investigated, the anomalous material forms 

a layer with small relief in which sharp cusps occur at the highest elevations of the layer 

interface (square symbols in Figure 5-2; Figure 5-3A-C). The HNB is either too low (lower 

than the initial layer thickness) or non-existent ( total is always positive). In no cases has the 

layer been regionally swept off the bottom. This structure is stable with the most significant 

exchange occurring at the aforementioned cusps. This is a dynamic mode previously well 
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studied since it occurs even when the bulk moduli of the two materials are identical. This 

domain is judged to be stable. 

Second, when 0 is sufficiently small for all KS2 investigated, even for moderate 

fractions of overturn times, the lower layer becomes quickly stirred into the upper layer 

0

1

z

0

1

z

0 0.04
0

1

Δρ

z

|Δρth|

Δρch

0 0.2 0.4 0.6 0.8 1

Temperature
8 -140 -8

Density Anomaly (x10-3)

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

|Δρth|

|Δρth|

Δρch

Δρch

 

Figure 5-3. Three calculations with KS2=1.06 and variable 0. Top row: 0=0.03; 

middle row: 0=0.02; bottom row: 0=0.025. Left column: predicted thermal (red) 

and chemical (blue) density anomalies; central column: density anomaly field; right 

column: temperature field. (a–c) The anomalous material forms a flat layer with 

cusps. These structures occur within the stable domain. (d–f) he anomalous material 

forms several plumes. These structures occur within the unstable domain. (g–i) he 

anomalous material forms a superplume with steep sides. These structures occur 

within the metastable domain. 
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(cross symbols in Figure 5-2; Figure 5-3D–F). The HNB is non-existent because total is 

always negative. A range of morphological states can be found during a period when the 

dense layer is swept off of the bottom. Some of the morphology resembles that of a 

metastable superplume (Figure 5-3H) but can be distinguished by the unstable density 

structure. This regime has also been studied previously since it is well-expressed when the 

bulk moduli of the two material are identical. 

Finally, for KS2 larger than 1.02, as 0 is systematically increased, we find a zone of 

metastability between the two aforementioned states (circle symbols in Figure 5-2; Figure 5-

3G–I). The dense layer is regionally swept off of the base and into a single superplume with 

steep sides and a roughly flat top slightly higher than the HNB. Thermal plumes emerge from 

the top of the superplume and entrain some of the anomalous material. The thermal plumes 

root either along the top of the superplume or along its edge, depending on initial conditions. 

Because ch dominates over th at depths above the HNB, the anomalous material near the 

top is denser and tends to descend to the HNB, while the opposite is true at the base of the 

superplume as the anomalous material tends to rise upward. The dynamic effect stabilizes the 

height of the superplume near the HNB and keeps the average density of the superplume 

close to neutral. Although the height of the superplume rises and lowers by about 10% as a 

function of time, the oscillation is not nearly as large as that found in the plume mode and so 

does not cause the two layers to rapidly stir together. There is a trade-off between 0 and 

KS2. Similar HNB and superplume morphology can be found by varying the two parameters 

simultaneously (Figure 5-2). 
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We find that Rayleigh number, initial thickness, and the rate of internal heating of the 

dense layer do not substantially influence the stability of the layer. The effect of internal 

heating is to increase the internal temperature of the superplume and, therefore, raise the 

HNB. Even for cases with substantial internal heating, the superplume remains metastable 

and only raises the level of its top surface. This means that superplumes can be metastable 

for a wide range of temperatures and persist for long periods of geological time as the mantle 

temperature and rate of internal heat generation decrease. 

For a given 0 and KS2, the domain of metastability is greatly expanded compared with 

that from models with constant thermal expansion, in which the metastable regime exists 

only when thermal and chemical density anomalies nearly cancel each other. However, the 

metastable regime we find is particularly sensitive to the depth-dependence of the coefficient 

of thermal expansion, (z). Using different (z), in some cases the metastable regime shrinks 

and only exists when KS2 is greater than 1.1, while in other cases the metastable regime 

broadens, and metastable superplumes reach almost to the top of the convecting box.  

5.5 Conclusion 

From the dynamics, it seems likely that a range of lithologies might satisfy the increased 

density and bulk modulus we require. We show that the inferred physical properties of 

superplume material are plausible. For example, pyroxenite, commonly associated with 

subducted oceanic crust [Hauri, 1996], has been shown to be 2% denser with a 5% higher KS 

than the PREM value under high pressure-temperature conditions [Lee et al., 2005]. The 

trade-off between ch and KS2 in our dynamic model and the uncertainty in the high pressure 

experiment preclude us from uniquely identifying pyroxenite as the material of superplumes. 
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However, if superplumes consist of subducted oceanic crust, it could explain the spatial 

correlation of superplumes with the DUPAL geochemical anomaly [Hart, 1984]. In order for 

a large mass of oceanic crust to have accumulated at the core-mantle boundary without 

mixing with oceanic lithosphere, an efficient mechanism for the separation of oceanic crust 

with lithosphere is required [Christensen and Hofmann, 1994]. The hypothesis that 

superplumes consist of subducted oceanic crust can satisfy seismological, geodynamical, 

mineralogical, and geochemical constraints simultaneously. 
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Chapter 6  

 

Compressible thermo-chemical convection 

and application to lower mantle 

superplumes  
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Abstract 

A new finite element code for compressible thermo-chemical convection is developed to 

study the stability of a chemical layer at the base of the mantle. Using composition-

dependent compressibility and density at the surface, a composition-dependent density 

profile is derived. Together with depth-dependent thermal expansion, this combination of 

parameters yields a wide range of dynamic evolutions for the chemical layer. The chemical 

structures are classified in five major categories, classical plumes, mushroom-shaped plume, 

metastable domes, ridges, and continuous layers, and a few abnormal cases, such as 

hourglass-shaped plumes and columnar plumes. The dynamic evolution of each category is 

described in detail. Several models have a chemical structure morphologically similar to the 

superplumes at a single time. Correspondingly, several dynamic scenarios are proposed for 

the dynamic nature of the superplumes, including plumes at early stage, plume clusters, 

ridges, passive piles, sluggish domes, and metastable domes. We convert these dynamic 

models into seismic velocity anomalies. The thermo-elastic parameters used in the 

conversion are additional constraints. We compare the density structure with normal mode 

inversion, the seismic signature of the converted seismic anomalies with seismic 

observations, and the required thermo-elastic parameters with mineral physics data. Among 

the proposed scenarios, only the scenario of metastable domes satisfies all constraints 

simultaneously. The implication on the geochemistry and mineralogy of the superplumes is 

discussed. 
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6.1 Introduction 

The large density contrast between the mantle and core, the largest in Earth’s interior, 

facilitates the accumulation of chemical heterogeneity. Seismic image shows strong seismic 

velocity variations at the base of the mantle (cf. reviews by Lay et al. [1998] and Garnero 

[2000]). The seismic velocity variation is too strong to be explained solely by temperature 

variation [Karato and Karki, 2001] and must involve phase or compositional variations, or 

some combination. There are three possible phase changes in the lower mantle. Two of them 

have been associated with seismic observations. The D’’ discontinuity [Lay and Helmberger, 

1983], attributed to the perovskite to post-perovskite phase change [Sidorin et al., 1999b; 

Murakami et al., 2004; Oganov and Ono, 2004], and the ultra-low velocity zones (ULVZs) 

[Garnero and Helmberger, 1996], attributed to partial melting [Williams and Garnero, 1996; 

Wen and Helmberger, 1998; Rost et al., 2005] are evidences of phase heterogeneity. The 

third phase change, the high to low spin transition of Fe [Badro et al., 2004], is another 

potential source of phase heterogeneity. The transition of this phase change may span a broad 

range of pressures [Sturhahn et al., 2005]. If so, this phase change will not constitute a sharp 

seismic discontinuity and will be difficult to observe seismologically. 

Chemical heterogeneity in the lower mantle has been proposed as an explanation for 

observed isotopic heterogeneity in oceanic basalts [Allegre et al., 1980]. To satisfy isotopic 

observations, chemical reservoirs must be isolated from the upper mantle for billions of years 

[Brooks et al., 1976]. Earlier, much of this chemical heterogeneity was thought to be 

associated with the seismic discontinuity at 660 km depth [Jacobsen and Wasserburg, 1979]. 

Advances in seismic tomography, showing images of subducted slabs penetrating into the 
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lower mantle, excludes chemical layering at 660 km depth [Grand et al., 1997; van der Hilst 

et al., 1997]. A deeper chemical boundary, at 1000–1500 km depth, with high relief was later 

proposed [Kellogg et al., 1999]. Such a chemical boundary, accompanied with a hot thermal 

boundary layer, should be observable by seismic tomography [Tackley, 2002], but none has 

been observed at this depth [Castle and van der Hilst, 2003].  

Tomography reveals a degree-2 pattern of seismic velocity anomalies near the bottom of 

the mantle [Grand et al., 1997; Su and Dziewonski, 1997; van der Hilst et al., 1997; Ritsema 

et al., 1999; Kuo et al., 2000; Masters et al., 2000; Megnin and Romanowicz, 2000; Montelli 

et al., 2004; Trampert et al., 2004]. Two prominent regions with low seismic velocity are 

found beneath the southern Africa and the southwestern Pacific, surrounded by high seismic 

velocities. The high velocity anomalies, whose geographic location matches ancient 

subduction zones, have been interpreted as subducted slabs [Richards and Engebretson, 

1992] and thought to be colder than the regions they surround. On the other hand, both low 

velocity regions display large positive geoid anomalies, shallow seafloor and elevated 

topography, and extensive hotspot volcanism [Nyblade and Robinson, 1994; McNutt, 1998]. 

Together with a correlation with the erupted location of Large Igneous Provinces [Burke and 

Torsvik, 2004], these observations suggest that the low velocity seismic structures are 

warmer than surrounding mantle. These regions have been called “superplumes”, although 

uncertainties remain as to their nature. We will adopt the term “superplume” to describe 

these regions, although the regions may not be buoyant upwellings. 

The anti-correlation of shear wave velocity anomaly VS with bulk sound velocity 

anomaly V  [Su and Dziewonski, 1997; Ishii and Tromp, 1999; Masters et al., 2000], anti-

correlation of VS and density anomaly  [Ishii and Tromp, 1999; Resovsky and Trampert, 
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2003; Ishii and Tromp, 2004], spatially sharp reductions in shear wave velocity VS [Wen, 

2001; Ni et al., 2002; To et al., 2005], and spatial correlation with geochemical anomalies 

[Castillo, 1988] suggest that the superplumes have a composition distinct from ambient 

mantle. The sharp reduction in VS indicates the presence of a chemical boundary. Moreover, 

the chemical boundary of the southern African superplume is found to extend 1200 km above 

the core-mantle boundary (CMB) with a width of 1000 km and a length of 7000 km [Ni et 

al., 2002; Ni and Helmberger, 2003a; 2003b; 2003c]. The average VS of the southern 

African superplume is about -3%, while the average compressional wave velocity anomaly 

VP is about -0.5%. The morphological and seismic signatures of this part of African 

superplume are diagnostic of its dynamics. Another important diagnostic is that superplumes 

are denser than its surroundings [Ishii and Tromp, 1999; Ishii and Tromp, 2004; Trampert et 

al., 2004]. The African superplume is sometimes described as a “ridge” based on its 

elongated horizontal extent [e.g., Ni and Helmberger, 2003b]. However, in this paper, we 

reserve the word “ridge” to a structure with a triangular vertical cross-section.  

The fate of a dense chemical layer at the base of the convecting mantle has been 

investigated extensively [Christensen, 1984; Gurnis, 1986; Hansen and Yuen, 1988; Olson 

and Kincaid, 1991; Farnetani, 1997; Tackley, 1998; Davaille, 1999; Montague and Kellogg, 

2000; Gonnermann et al., 2002; Jellinek and Manga, 2002; Ni et al., 2002; Namiki, 2003; 

McNamara and Zhong, 2004]. A chemical layer, stabilized by an intrinsic density 

anomaly ch tends to remain at the CMB. Later, as the layer heats up, its density decreases 

by th. The (negative) thermal density anomaly th, which is proportional to r , 

depends on the reference density r, the coefficient of thermal expansion , and the 

temperature anomaly of the material . The net density anomaly is ch- th. The chemical 
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and thermal effects compete in controlling the stability of the layer. Consider a parcel of 

chemically anomalous material at the CMB: As the parcel heats up,  increases, and so does 

th. When th becomes equal to or greater than ch, the parcel becomes unstable and rises 

upward. The parcel can lose heat by thermal diffusion or adiabatic cooling during ascent and 

subsequently restabilize. The change in stability depends on the rate of heat loss and the 

depth dependence of various aforementioned parameters. 

When ch is small, the layer becomes unstable with a small temperature increase, 

eventually forming a thermo-chemical plume, such that the layer becomes stirred with the 

rest of the mantle. On the other hand, when ch is sufficiently large, the layer remains stable 

with small topography on the interface between the intrinsically dense and ambient regions. 

Only when ch is within a narrow range of intermediate values can the layer have high 

topography on its interface. 

In most previous studies, the reference density and coefficient of thermal expansion were 

assumed to be constant with depth. However, the compression at the large pressure of the 

lower mantle increases the density and decreases the coefficient of thermal expansion. From 

the PREM model [Dziewonski and Anderson, 1981], the average density increases from 3380 

kg/m
3
 at the base of lithosphere to 5560 kg/m

3
 at the CMB. The coefficient of thermal 

expansion of the mantle is 5x10
-5

 K
-1

 at the base of lithosphere. The magnitude of the 

coefficient of thermal expansion in the lower mantle is not as well-known. At 2000 km 

depth, for example, the coefficient of thermal expansion for perovskite is estimated to be 

1.5x10
-5

 K
-1

 [Oganov et al., 2001] or 1.3x10
-5 

K
-1

 [Marton and Cohen, 2002]. The 

coefficients of thermal expansion of several types of mantle rock have been estimated to have 
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a similar value of 1.3x10
-5 

K
-1

 [Hama and Suito, 2001]. Consequently, the product of r  

decreases with depth and the stability of chemically anomalous material will be depth-

dependent. 

In most previous studies, the chemical density anomaly is assumed to be constant with 

depth. However, materials with different compressibility will have different adiabatic density 

profiles. Highly compressible (low bulk modulus) material has a steeper adiabatic density 

profile than less compressible (high bulk modulus) material. The difference between the 

density profiles is the chemical density anomaly profile. As a result, after accounting for 

compressibility, the chemical density profile can be depth-dependent. 

Considering a mantle with an anomalous chemical composition, which has a depth-

dependent thermal density anomaly and is warmer than its surroundings, the lower portion of 

Δρ
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z
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(A) (B)
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Δρ
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Figure 6-1. Density anomaly profiles. (A) When ch is constant with depth, at some 

depth, the chemical and thermal density anomalies are equal and the net density 

anomaly is 0. The net density anomaly is negative above the depth and positive 

below. (B) When ch is also depth-dependent, and changes faster than th, the trend 

of the density profile can be reversed. The net density anomaly is positive above the 

HNB and negative below. 
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the structure is denser than the surrounding mantle while the upper portion less dense (Figure 

6-1A). At some depth, the chemical and thermal density anomalies are equal and the net 

density anomaly is 0. The net density anomaly is negative above that depth but positive 

below. Material above this depth tends to move upward and becomes even less stable as it 

does so. Material below this depth tends to move downward, becoming more stable. As a 

result, the upper portion of the chemical structure will become a plume, while the lower 

portion will become a flat layer with a cusp. The conclusion of this simple analysis suggests 

that a stable thermo-chemical structure with high topography is difficult to produce with an 

Earth-like thermal expansion profile [Ni et al., 2002].  

On the other hand, if ch is not constant and changes faster than th, the trend of 

density profile can reverse. The height above the CMB where the chemical and thermal 

density anomalies are equal is called the height of neutral buoyancy (HNB). The net density 

anomaly is positive above the HNB but negative below. The lower portion of the chemical 

structure is less dense and rises. Both the thermal and chemical density anomalies increase 

during the ascent. If the later increases faster than the former, upon rising above the HNB, 

the chemically anomalous material becomes denser than the surrounding mantle and starts 

sinking (Figure 6-1B). With this scenario, a heated dense material can form a metastable 

dome with high relief [Tan and Gurnis, 2005].  

Although the mantle is compressible, most dynamic models utilize the Boussinesq 

approximation (an approximation for incompressible flow) for mathematical and numerical 

simplicity. Various compressible convection models have been developed [Jarvis and 

McKenzie, 1980; Baumgardner, 1985; Glatzmaier, 1988; Machetel and Yuen, 1989; 

Schmeling, 1989; Steinbach et al., 1989; Leitch et al., 1991; Quareni et al., 1991; 
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Balachandar et al., 1992; Bercovici et al., 1992; Ita and King, 1994; Solheim and Peltier, 

1994; Tackley, 1996; Zhang and Yuen, 1996; Bunge et al., 1997]. The main effect of 

compressibility is to introduce adiabatic density and temperature gradients, which reduce the 

vigor of convection. However, when variation in chemical composition is included, another 

effect of compressibility can significantly change the pattern of the convection. The density 

contrast between materials of different compressibility and, therefore, of different density 

profiles, can vary in magnitude and sign as a function of depth. As a result, compressible 

thermo-chemical convection models exhibit complex dynamics not seen in incompressible 

thermo-chemical convection models [Xie and Tackley, 2004; Nakagawa and Tackley, 2005; 

Farnetani and Samuel, 2005; Tan and Gurnis, 2005].  

In this paper, we will describe our numerical methods for compressible thermo-chemical 

convection. We will systematically explore the effect of composition-dependent density 

profiles and depth-dependent thermal expansion on the stability of a basal dense chemical 

layer. We find a wide range of dynamic evolution for the chemical layer. Several models 

have a chemical structure with similar morphology to that of the superplumes. We convert 

these dynamic models into seismic velocity anomalies. The thermo-elastic parameters used in 

the conversion are additional useful constraints. We compare the seismic signature of the 

converted model with seismic observation and the required thermo-elastic parameters with 

mineral physics data to find the preferred dynamic models. 

6.2 Methods 

We use the Truncated Anelastic Liquid Approximation (TALA) [Ita and King, 1994] as 

the governing equations in 2D (x, z) Cartesian coordinate system. The continuity equation is 
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 ( ru) = 0 (6-14)  

where u=(ux, uz) is the velocity vector, and r= r(z) is the reference density profile.  

The momentum equation is  

 P + = μ 1( chC μ r T)gRa ez  (6-15)

where P is the dynamic (non-hydrostatic) pressure;  is the deviatoric stress tensor; μ is a 

non-dimensional number related to thermal expansion (defined later); ch= ch(z) is the 

chemical density anomaly profile; C is the concentration (between 0 to 1) of the anomalous 

material; = (z) is the coefficient of thermal expansion; T is the temperature; g is the 

gravity; Ra is the Rayleigh number; ez is the unit vector in the vertical direction. The term 

inside the parentheses is the net density anomaly . In TALA, the effect of the dynamic 

pressure on the density is ignored, as justified previously [Jarvis and McKenzie, 1980]. 

The energy equation is    

 rCP

T

t
= rCPu T +  (kT T) + Di(T + Ts) r guz +

Di

Ra
: + rH  (6-16)

where CP is the heat capacity at constant pressure; t is the time; kT is the thermal 

conductivity; Di is the dissipation number; Ts is the surface temperature;  is the deviatoric 

strain rate tensor; H is the internal heating rate. The right-hand side terms are the advection, 

diffusion, adiabatic cooling, viscous dissipation, and internal heating, respectively.  

The constitutive relationship is   

 = 2
1

3
( u)I

 

 
 

 

 
  (6-17)

where  is the viscosity, and I is the identity tensor. The components of the deviatoric strain 

rate tensor are  
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xx =
ux
x

zz =
uz
z

xz = zx =
1

2

ux
z

+
uz
x

 

 
 

 

 
 

 (6-18)

The Rayleigh number is Ra= 0g0 0 totalh
3
/ 0 0, where 0 is the characteristic density; g0 is 

the characteristic gravity; 0 is the characteristic coefficient of thermal expansion; Ttotal is 

the total temperature contrast; h is the depth of the computation domain; 0 is the 

characteristic thermal diffusivity; 0 is the characteristic viscosity. The dissipation number is 

Di= 0g0h/CP0, where CP0 is the characteristic heat capacity at constant pressure. Two other 

useful non-dimensional parameters are the Gruneisen parameter = 0KS0/ 0CP0, where KS0 is 

the characteristic bulk modulus; and the fraction of volume change due to thermal expansion 

μ= 0 Ttotal.  

We modified the finite-element code ConMan [King et al., 1990] by incorporating 

compressibility. The original code uses the penalty function formulation [Hughes, 2000], 

where pressure is treated as a dependent variable of velocity, and the stiffness matrix is 

penalized by the pressure term. Our modified code uses the mixed method formulation 

[Hughes, 2000], where velocity and pressure are treated as independent variables. The 

stiffness matrix is assembled from each element stiffness matrix k
e
. k

e
 can be written as    

 ke = A
a,b
i, j

ei
T Ba

TD Bbd
element

 

 
 

 

 
 e j

 

 
 

 

 
  (6-19)

where A is the assembling operator; indices a and b are elemental node indices; indices i and 

j are directional indices; ei and ej are unit direction vectors. Ba and D  are defined as  
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 Ba =

Na, x

0

Na, z

0

Na, y

Na, x

 

 

 
 
 

 

 

 
 
 

 (6-20) 
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2 /3
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 (6-21)

where Na and Nb are the shape functions of node a and b, respectively; Na,x and Na,y are the 

partial derivatives of Na in x and y direction, respectively. Note that the element stiffness 

matrix is different from the formulation of King et al. [1990] in two ways. The element 

stiffness matrix is not penalized by the pressure term and contains the contribution of 

volumetric change due to compression.  

Equation (6-1) can be rearranged as  

 u +
1

r

r

z
uz = 0 (6-22)  

After discretization, the resultant matrix equations of Equation (6-2) and (6-9) become 

 
K BT

B + C 0

 

 
 

 

 
 
u

p

 

 
 

 

 
 =
b

0

 

 
 

 

 
  (6-23)

where K is the stiffness matrix; B is the divergence operator, whose transpose B
T
 is the 

gradient operator; C  is a constant matrix corresponding to the second term in Equation (6-9); 

b is the force vector. This matrix system is asymmetric because of the non-zero C . We 

adapted the pressure correction algorithm [Ramage and Wathen, 1994] and used the Bi-

Conjugate Gradient Stabilized method [Barrett et al., 1994] to solve the equations iteratively. 

The algorithm is described in Table 6-1. The inverse of the stiffness matrix K
-1

 is calculated 

outside the iteration loop. As a result, computing each iteration involves only matrix-vector 
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and vector-vector contractions. We developed an analytical solution for compressible 

convection and benchmarked our numerical result with the analytical result (Appendix D).  

The energy equation (6-3) is solved using a Streamline Upwind Petrov-Galerkin scheme 

[Brooks and Hughes, 1982]. Each term on the right-hand side of Equation (6-3), except the 

viscous dissipation, is computed on the element level. The viscous dissipation is calculated 

Table 6-1. Algorithm to solve Equation (6-10). Symbols used here are not related to 

symbols in other equations. 

p0 = 0 initialize pressure vector 

u0 =K
-1

 b initial guess of velocity 

r0 = (B+C ) u0 calculate initial residual 

z = r0 choose conjugate residual 

i = 1 initialize iteration count 

0 = 1    

begin loop start iteration 

i = (z, ri-1) compute convergence criterion 

if i = 0, method fails  

if i < , stop loop  is a small positive number 

if i = 1  

qi = ri-1 initial search direction for pressure 

else   

 = ( i / i-1)( i-1/ i-1)  

qi = ri-1+  (qi-1 - i-1di-1) update pressure search direction 

end if   

vi = K
-1

B
T
qi new search direction for velocity 

di = (B+C )vi new search direction for pressure 

i = i/(z, di) set step length 

s = ri-1 - idi update residual 

if norm(s) is too small, stop loop 
if the norm of s is too small, further 

update won't be beneficial 

wi = K
-1

B
T
s new search direction for velocity 

t = (B+C )wi new search direction for pressure 

i = (t, s)/(t, t) set step length 

pi = pi-1+ iqi + is update pressure 

ui = ui-1 - ivi - iwi update velocity 

ri = s - it update residual 

i = i+1 update iteration count 

end loop  

 



  

 

114

using nodal stress and strain rate to improve numerical accuracy. The solution of the energy 

equation is benchmarked in Appendix E. 

The composition field is computed using the marker chain method [Davies and Gurnis, 

1986; van Keken et al., 1997]. The marker chain is advected using a fourth order predictor-

corrector scheme. If the distance between two adjacent markers is greater than a predefined 

threshold, a new marker is inserted in between them. The marker chain defines the material 

interface. Because of material entrainment, the length of the marker chain grows 

exponentially with time. The computational efficiency of the marker chain method severely 

deteriorates if there is substantial material entrainment, in which case we halt the 

computation. For some halted models, the marker chain is trimmed to remove excess 

entrainment, and the computation restarted in order to proceed further. The trimming of the 

marker chain introduces error in the composition field, but the magnitude of the error is 

estimated to be small and does not influence the stability of the chemical layer. 

Potentially, thermodynamics and transport properties of chemically distinct materials 

could be composition-dependent. For the sake of simplicity, only the bulk modulus and 

density are assumed compositionally dependent. The adiabatic density of the ambient mantle 

(material 1) S1 is calculated by integrating the self-compression equation   

 

dPH = rgdz

d S1 =
Di
KS1 S1dPH

S1 = 1,  at  z = 1

 (6-24)

where PH=PH(z) is the hydrostatic pressure; KS1=1 is the bulk modulus of the ambient 

mantle. The reference density profile r is set as S1. The adiabatic density S2 of the 

anomalous material (material 2) with bulk modulus KS2 is calculated by  
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d S 2 =

Di
KS 2 S 2dPH

S 2 = 1+ top ,  at  z = 1 

 (6-25)

The density difference at the top surface top and KS2 vary between models. The chemical 

density profile ch= S2- S1 is the difference between S2 and S1. The non-dimensional 

parameter top/ 0 T is commonly referred to as the Buoyancy number.  

Different combinations of top and KS2 can produce chemical density profiles of different 

slopes d ch/dz. For example, fixing KS2 while increasing top will change the slope of ch 

from positive to zero and finally to negative (Figure 6-2A). On the other hand, fixing top 

while increasing KS2 will change the slope from negative to zero and finally to positive 

(Figure 6-2B). We do not consider cases of KS2<1 because seismic observations require the 

superplumes to have high KS (see Discussion). 

The coefficient of thermal expansion varies linearly in z in the models, = CMB+m z, 

instead of as an anharmonic equation [Anderson, 1967], for simplicity. The coefficient of 
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Figure 6-2. Various chemical density profiles. (A) KS2=1.02, top=1-3%. The slope 

of ch changes from positive to vertical and finally to negative. (B) top=2% 

KS2=1.01-1.04. The slope of ch changes from negative to vertical and finally to 

positive. 
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thermal expansion at the CMB, CMB, is fixed in all models, corresponding to 0.9x10
-5 

K
-1

 

[Table 7.3 in Davies, 1999]. We fix the value of CMB because of the direct trade-off with 

top. Increasing both CMB and top will increase th and ch, respectively. Since the 

stability is affected by the difference between th and ch, changing both density 

anomalies in the same direction will not affect the dynamics substantially. Therefore, we 

vary top while fixing CMB. The value of m  varies between models. We did not incorporate 

composition-dependent thermal expansion in the models because  of the lower mantle 

materials remain poorly constrained. 

The viscosity is temperature and depth dependent according to the equation  

 = exp
E +V (1 z )

T +T

E

T

 

 
 

 

 
  (6-26)

where E  is the activation energy; V  is the activation volume; T  is the temperature offset. 

The magnitude of this depth-dependence is chosen to compensate for the effect of adiabatic 

temperature gradients. The viscosity has a minimum cutoff of 10
-3

. 

In this study, we only consider variation in the adiabatic density profile r and the 

coefficient of thermal expansion . Other physical properties are assumed constant with 

depth and composition. The difference between the thermal and chemical buoyancies drives 

the convection. Variations in the depth- and composition-dependence of r and  change the 

chemical and thermal buoyancies, respectively. These parameters potentially can reverse the 

sign of the buoyancy and greatly change the flow pattern. Other material properties (e.g., 

thermal diffusivity, heat capacity, and viscosity) are not directly involved in the buoyancy 

term. Although these material properties can be depth- and composition-dependent, they can 
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affect the flow through changing the local Rayleigh number. The magnitude of the buoyancy 

might change, but not the sign. Therefore, the profiles of r and  have a profound influence 

on the flow pattern.  

We have not incorporated any phase change into our calculation. The existence of partial 

meltings, inferred from ULVZs, is confined at the very base of the mantle, maybe ~40 km 

above the CMB, and localized horizontally. The dynamic consequence of partial meltings on 

lower mantle convection is probably insignificant. Another phase change, the post-perovskite 

(PPV) phase change, has a positive Clapeyron slope (8-10 MPa/K) and a 120 GPa transition 

pressure (corresponding to 200 km above the CMB) [Tsuchiya et al., 2005]. Inside the 

chemical layer, the temperature could be so high that the PPV phase transition pressure is 

higher than that at the CMB. Actually, the D’’ discontinuity, thought to be caused by the 

PPV phase change, is rarely observed in the superplume region [Helmberger et al., 2005]. 

The compositional dependence of the PPV phase change is actively being studied [Mao et 

al., 2004; Akber-Knutson et al., 2005; Caracas and Cohen, 2005; Murakami et al., 2005; 

Ono and Oganov, 2005; Hirose et al., 2006]. This phase change will destabilize the basal 

thermal boundary layer [Sidorin et al., 1999a; Nakagawa and Tackley, 2004]. 

The computation domain is a 2x1 box with its bottom corresponding to the CMB. The top 

of the box, when scaled to the earth, is 2000 km above the CMB. The size of the box allows 

us to concentrate on lower mantle dynamics without the complexity of transition zone phase 

changes or subducted slabs. The top and bottom boundaries are free-slip and isothermal, with 

fixed temperature at 0 and 1, respectively. The sidewalls are reflecting. The initial 

temperature is adiabatic with a thin, basal thermal boundary layer. The chemical layer is 

initially flat with a thickness d. The values of all parameters are listed in Table 6-2. 
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6.3 Results 

We systematically explore the effect of KS2, top, and m  on the stability of the dense 

chemical layer. To gauge the parameter space, we estimate the height of neutral buoyancy 

(HNB) from a simple heuristic calculation. We calculate ch using Equation (6-11) and (6-

12) and th=μ S2 T by assuming T=0.7. In dynamic models, T varies with depth and 

between models, so the estimated HNB may not coincide with the real HNB. Nevertheless, 

this calculation represents a useful gauge of the parameter space. The two density anomaly 

profiles are compared. The HNB is defined as the height from the CMB where ch and th 

are equal. Another requirement of the HNB is that ch must be less than th below the 

Table 6-2. Values of parameters in models. 

Symbol Description Value 

0 characteristic density 4000 kg/m
3
 

g0 characteristic gravity 10 m/s
2
 

0 characteristic coefficient of thermal expansion 3x10
-5

 K
-1

 

Ttotal total temperature contrast 1800 K 

h depth of computation domain 2000 km 

0 characteristic thermal diffusivity 1.27x10
-6

 m
2
/s 

0 characteristic viscosity 10
22

 Pa·s 

CP0 characteristic heat capacity at constant pressure 1500 kJ/kg 

KS0 characteristic bulk modulus 266.6 GPa 

H internal heating 0 

Ra Rayleigh number 2.2x10
6
 

Di dissipation number 0.4 
 Gruneisen parameter 1.333 

Ts surface temperature 0.75 
μ fraction of volume change due to thermal expansion 0.054 

CMB coefficient of thermal expansion at the CMB 0.3 

E  activation energy of viscosity 11 

V  activation volume of viscosity -1.8 

T  temperature offset of viscosity -1.5 

d initial thickness of chemical layer 0.125 
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height. We do not refer to this height as HNB when ch is greater than th below the cross-

over. For example, there is no HNB is Figure 6-1A. We compute the estimated HNB in the 

3D parameter space (Figure 6-3A). Later, we will see that the dynamic evolution of the 

chemical layer is primarily determined by the HNB and the value of ch at the CMB, 

CMB.  

It is clear from Figure 6-3A how the estimated HNB is affected by the three parameters. 

The estimated HNB is sensitive to the value of top. Increasing top, the HNB will move to 

a lower level. For any given KS2 and m , there is a top above which ch is greater than th 

for all depths, and another top below which ch is less than th for all depths. Between 

the two extremes, ch intersects with th in the mid-mantle, and the estimated HNB has a 

value between 0 and 1. The range of estimated HNB’s expands significantly at large KS2 or 

small m . 

Guided by Figure 6-3A, 130 numerical thermo-chemical convection models were 

calculated, each with distinct values of KS2, top, and m . The range of parameter space 

explored is 1.02 KS2 1.08, 1.25% top 3.75%, and 0.1 m 0.7. We find a wide range of 

thermo-chemical structures that we categorize in terms of morphology and evolution (Table 

6-3). We calculate T= T(z) by taking the horizontal temperature average in the region of 

C>0.8 and use T to infer th. We divide the result into three groups in terms of how the 

profiles of th and ch intersect: 1) the profiles never intersect, 2) they intersect and ch 

dominates below the intersection, and 3) they intersect and th dominates below the 

intersection. Within each group, two or more categories of evolution can be found. We will 
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present one model in each category, showing temperature, composition, and density fields 

and will describe the dynamic evolution of each.  
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Figure 6-3. Parameter space. (A) Estimated HNB in the 3D (KS2, top, m ) parameter 

space. (B–D) Cross sections of the parameter space. (B) top=3% (C) KS2=1.06 (D) 

m =0.1. The thin contours are for the estimated HNB with an interval of 0.1. The 

thick, gray contours are for CMB with an interval of 1%. The outcomes of models 

are plotted with symbols. T: classical thermo-chemical plumes. M: mushroom-shaped 

plumes. : domes. : ridges. : continuous layers. 
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6.3.1 No intersection 

When the profiles of th and ch never intersect, two outcomes exist. If th is always 

greater than ch, a small temperature increase in the chemical layer is sufficient to 

destabilize it. Several thermo-chemical plumes form and reach the top of domain. The plume 

heads impinge the top boundary and spread horizontally. All of the anomalous material is 

entrained into the plumes and transported to the top of the domain. The plumes have highly 

variable T (Figure 6-4A). We call this category “classical thermo-chemical plumes” and 

labeled it “T” in Figure 6-3, mimicking the shapes of plume conduits and spreading plume 

heads. This category occurs at small top and KS2 or at large m . This category should be 

very common at the parameter space of small top and KS2 but is under-represented in our 

sampling of the parameter space. There are a few models of large KS and m  also produce 

classical thermo-chemical plumes. The early evolution of these models is similar to the 

evolution of models of “mushroom-shaped plumes” (described below). However, the large 

m  in these models controls whether the plumes eventually rise to the surface. 

On the other hand, if th is always smaller than ch, the anomalous material forms a 

hot, continuous layer with T greater than 0.8. The layer interface has small topography. 

Table 6-3. Summary of converted seismic models. 

Category Plume Mushroom Dome Ridge Layer 

Preferred 

parameters 

small top 

small KS2 

large m  

small top 

large KS2  

Intermediate 

top and large 

m  

Intermediate 

top and 

small m  

Large top 

and small m  

T variable <0.6 0.7 0.8 >0.8 
  very buoyant buoyant neutral neutral dense 

Stability unstable unstable metastable metastable stable 

HNB >d or N/A >d >~d ~d <d or N/A 
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Thermal plumes rising above the layer entrain small amounts of anomalous material. Sharp 

cusps of the layer interface occur at the roots of thermal plumes (Figure 6-4B). We call this 

category “continuous layer” and label it with a cross ( ) in Figure 6-3. This category occurs 

at large top and small m . 

6.3.2 ch dominates below the intersection 

When ch dominates th below the intersection, depending on the height of 

intersection, there are mainly two kinds of structures. First, if the height of intersection is low 

and close to the CMB, the whole layer can erupt as a plume, like the “classical thermo-

chemical plumes” category above. Second, if the height of intersection is sufficiently high, 

such that the anomalous material never rises to this level, the layer remains at the CMB, akin 

to the “continuous layer” category.  

6.3.3 th dominates below the intersection 

When th dominates over ch below the intersection, the height of intersection is the 

HNB. A broad range of dynamic evolutionary sequences can be found, depending on HNB 

and the magnitude of ch at the CMB, CMB. If HNB is near the top of the computational 

domain, the whole layer can erupt as a plume, like the “classical thermo-chemical plumes” 

category. If HNB is near the CMB, the whole layer remains near the CMB, like the 

“continuous layer” category. In the intermediate range of HNB, three typical states exist, 

which will be described below.  

The first category is the “mushroom-shaped plume” (Figure 6-4C). In this category, the 

HNB is significantly higher than the initial thickness of the chemical layer d, and CMB is 
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small, typically less than 0.8%. Several thermo-chemical plumes form with T usually less 

than 0.6. Unlike the classical thermo-chemical plumes, the bulk of the mushroom-shaped 

plumes never reach to the top of the domain. The plume head of a mushroom-shaped plume 

entrains cold material during its ascent. Subsequently, some of the cold material in the plume 

head starts to descend in the mid mantle, forming dripping side lobes. Simultaneously, the 

plume conduit continues to bring warm material into the rising plume conduit. All of the 

anomalous material is entrained in the plumes. Although a small amount of anomalous 

material with exceptionally high temperature reaches the top boundary, most of the 

anomalous material reaches the mid-mantle. The dripping side lobes and rising conduit 

together have a mushroom shape. This category is labeled “M” in Figure 6-3. This category 

occurs at the combination of small top and large KS2. 

The second category is the “dome” (Figure 6-4D). In this category, the HNB is higher 

than d, and CMB is between 0.8% to 1.2%. Small-scale convection first develops within the 

chemical layer, but eventually several small convection cells coalesce into a few large cells. 

The coalesced convection cells are well-separated from each other. The size of the 

convection cells continues growing until they reach the HNB, where the positive density 

anomaly caps their tops. The domes are rounded or flat-topped with very steep sidewalls. The 

bulk of the anomalous material remains confined to the domes. The thermal plumes, 

developed on the top of the domes, entrain only a small fraction of the anomalous material. 

T of the dome is about 0.7, agreeing with the temperature upon which the HNB was 

estimated in Figure 6-3. This category is labeled with circles ( ) in Figure 6-3. This category 

occurs at intermediate top and prefers larger m . 
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Figure 6-4. Results of various models. The left column shows the profiles of ch, 

th, and T. The central column shows the temperature and velocity field. The right 

column shows the density and composition field. The black line is the contour of 

C=0.5. (A1–3) Classical thermo-chemical plume. KS2=1.02. top=1.5%. m =0.7. 

(B1–3) Continuous layer. KS2=1.06. top=3.5%. m =0.1. (C1–3) Mushroom-shaped 

plume. KS2=1.06. top=2%. m =0.1. (D1–3) Dome. KS2=1.06. top=2.75%. m =0.1. 

t=0.456498E-02 (E1–3) Ridge. KS2=1.06. top=3%. m =0.1.  
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The third category is the “ridge” (Figure 6-4E). The HNB is lower than but close to d, 

and CMB is between1.2% to 1.8%. The evolution is similar to the “dome” category above. 

However, the structure is like a triangular ridge, with gentle-sloping sidewalls. The 

temperature of the ridges is uniform with T greater than 0.7. This category is labeled with 

triangles ( ) in Figure 6-3. This category occurs at intermediate top and prefers smaller m . 

The distinction between these three later categories deserves detailed analysis. When the 

HNB is significantly higher than d, model outcomes will fall in either the mushroom or the 

dome category, depending on the magnitude of CMB. If CMB is less than 0.8%, a small 

temperature increase is sufficient to destabilize the layer. Short-wavelength instability within 

the chemical layer grows quickly and detaches from the bottom, forming several small 

plumes with small T. On the other hand, if CMB is greater than 0.8%, a large temperature 

increase is required to destabilize the layer. Instabilities at short wavelengths within the 

chemical layer merge, forming long wavelength structures, so that the layer further 

accumulates heat. This leads to larger domes compared to detached mushroom-shaped 

plumes. 

When the HNB is comparable to d, the chemical structure of the model outcome will be 

either a dome or a ridge. If CMB is less than 1.2%, the base of the structure is buoyant. 

Strong active upwellings inside the structure rise along the sidewalls. The buoyancy of the 

upwellings maintains the steep sidewalls, forming a dome. On the other hand, if CMB is 

greater than 1.2%, ch is close to th. The net density anomaly is small, and the buoyancy 

force is less important in controlling the shape of the structure. Instead, the shape of the 

structure is controlled by the viscous stress of the background flow. The background flow 
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near the CMB pushes the structure into a triangular ridge. The magnitude of density 

heterogeneity inside a ridge is significantly less than that inside a dome. 

6.3.4 Remarks 

The division between the five categories is gradual and not sharp. A chemical structure 

can exhibit morphology akin to two categories. For a model at the transition between the 

classical thermo-chemical plume and the mushroom-shaped plume, part of the plume head 

forms dripping side lobes that fall, while the other part of the plume head impinges the top 

boundary. For a model at the transition between the mushroom-shaped plume and the dome, 

the dripping side lobes of various plumes are swept by the background flow and merge, 

forming a large dome (Figure 6-5A). For a model at the transition between the dome and 

ridge, its shape is between that of a triangular ridge and a rounded dome. For a model at the 

transition between the ridge and the continuous layer, the bases of the ridges interconnect. 

These transitional models are labeled in double symbols in Figure 6-3. 

We must emphasize the importance of presenting the density field for discerning the 

dynamics of thermo-chemical convection. Chemical structures with different evolutionary 

pathways can exhibit similar morphologies at a single time; temperature alone cannot predict 

subsequent evolution. Such ambiguity is removed by showing the density field, which 

directly relates to the driving force of convection. For example, a classical thermo-chemical 

plume at its early stage can resemble a dome in morphology (Figure 6-5B), but the density 

field clearly reveals its buoyant nature. 

The five categories cover most model outcomes. However, there were a few models that 

did not fit within the five categories. One example is the “hourglass-shaped plume” (Figure 
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6-5C). The profiles of th and ch intersect at the mid-mantle. Below the intersection point, 

ch dominates over th, and the anomalous material is stable. But occasionally parcels of 

anomalous material can rise above the intersection point, where th dominates. The parcel 

will rise to the top of the computational domain as a plume. The base of the anomalous 

material remains at the bottom. The shape of the detached plume and remaining base is 

similar in appearance to an hourglass, with a narrow “neck” in the mid-mantle, similar to the 

structure in Figure 6-1A. Another example is the “columnar plume” (Figure 6-5D). The 

profiles of th and ch are sub-parallel. The anomalous material accumulates into a pile 

and coherently rises as a column slowly. There might be an HNB, but the dense material 

above the HNB could not stabilize the column. The column can reach the top of the 

convection box. Unlike a classical thermo-chemical plume, a columnar plume has a broad 

plume conduit and no plume head.  

The occurrences of hourglass-shaped and columnar plumes are rare and isolated in the 

parameter space. Of the 130 cases explored, only one hourglass-shaped and three columnar 

plumes were found. Farnetani and Samuel [2005] found similar types of plumes, but they did 

not mention how frequently these structures occurred. Due to their restricted range in the 

parameter space, the significance of hourglass-shaped and columnar plumes in the context of 

the Earth’s mantle is questionable. In contrast, each of the five categories (classical thermo-

chemical plumes, mushroom-shaped plumes, domes, ridges, and continuous layers) spans a 

well-defined and significant range in the parameter space. As a result, we will concentrate 

our attention on these five categories in the Discussion section. 
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Regarding stability, the chemical layers in the classical thermo-chemical and mushroom-

shaped plume categories are unstable, and the bulk of the layer is lifted off the CMB in a few 

(A1) (A2)

(B1) (B2)

(C1) (C2)

(D1) (D2)

0 1T -1.25% 1.25%Δρ  

Figure 6-5. Additional model outcomes. (A) Mushroom-shaped plumes swept into 

piles. KS2=1.08. top=3%. m =0.2 (B) Early stage of a classical thermo-chemical 

plume. KS2=1.02. top=1.5%. m =0.7. (C) Hourglass-shaped plume. KS2=1.02. 

top=1.75%. m =0.7. (D) Columnar plume. KS2=1.02. top=1.5%. m =0.5.  
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overturn cycles. The chemical layer in the continuous layer category is stable, as the layer 

will stay at the CMB indefinitely. The dome and ridge are neither stable (as their topography 

is maintained by the excess temperature and will collapse without heating across the CMB) 

nor unstable (as the structures are never removed from the CMB). Hence, the dome and ridge 

are metastable.  

6.4 Discussion 

We have explored a wide range of parameters for compressible thermo-chemical 

convection. Now we will apply these results to the Earth’s mantle. m for the lower mantle 

material is likely not large, suggesting that an HNB could exist for a wide range of KS2 and 

top. If materials with different KS2 and top exist in the lower mantle, what kind of 

structures will they form? 

6.4.1 Possible chemical structures 

Anomalous material with small top is unstable and will erupt as classical thermo-

chemical plumes or as mushroom-shaped plumes. In both scenarios, the material will mix 

with the ambient mantle rapidly. The anomalous material is not expected to remain and 

accumulate at the CMB. As a result, this type of material is not likely to form large-scale 

structures within the present-day lower mantle. Nevertheless, it is possible for the material to 

form large-scale structures beneath cold slabs. If the material could somehow accumulate 

beneath slabs, the dense and highly viscous slabs will inhibit the boundary layer instability, 

and a large volume of the anomalous material could accumulate, similar to the results of 

purely thermal convection models [Tan et al., 2002].  
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Anomalous material with large top will form a continuous layer at the base of the 

mantle. Since such a layer has not been found seismologically, this scenario can be ignored. 

However, subducted slabs can impinge and deflect the layer, such that the layer becomes 

isolated piles [e.g., McNamara and Zhong, 2005]. Such “piles” are passive structures, as the 

high topography of the sidewalls is maintained by slab push. The piles are denser than the 

ambient mantle but less dense than surrounding slabs. This pattern of density variation will 

be an important diagnostic in later discussion. 

Anomalous material with moderate top will form domes or ridges. Such structures are 

metastable and can remain at the CMB for long periods of geological time. If this type of 

material exists in a large quantity, we would expect to find domes and ridges in the lower 

mantle. There is no definitive seismic evidence of ridges, although the part of the African 

superplume under the Atlantic mid-ocean ridge is a possible candidate. On the other hand, 

the shape of the dome resembles the shape of the southern part of the African superplume, a 

broad structure with steep sidewalls and high relief [Ni and Helmberger, 2003a; 2003b; 

2003c]. Before we can attribute the dome as the dynamic explanation of the southern African 

superplume, we must address the problem of uniqueness. 

6.4.2 Possible dynamical scenarios for superplumes 

Several dynamical scenarios have been proposed for superplumes (Figure 6-6), including: 

A) buoyant active upwellings [Forte and Mitrovica, 2001; Ni et al., 2002], B) plume clusters  

[Schubert et al., 2004], C) ridges [Jellinek and Manga, 2002; Tackley, 2002], D) passive piles 

[Kellogg et al., 1999; McNamara and Zhong, 2005], E) sluggish domes [Davaille, 1999; 

McNamara and Zhong, 2004], and F) metastable domes [Tan and Gurnis, 2005]. We will 
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introduce each scenario briefly. Scenario A is similar to the early stage of our classical 

thermo-chemical plume model (Figure 6-5B), where a large, buoyant plum rises to the 

surface. Scenario B is similar to our model of mushroom-shaped plumes swept together 

(Figure 6-5A), where several small plumes are swept together by background flow. Scenario 

C and E are described in previously (Figure 6-4E and 6-4D). Scenario D is also discussed 

previously, where a continuous chemical layer is impinged and pushed aside by subducted 

slabs and becomes an isolated pile. Such piles are passive structures. In Scenario E, the dome 

is more viscous than surrounding mantle and can rise and fall for several overturns. Due to its 

high viscosity, the particle velocity inside the dome is sluggish. This scenario will be 

explored more in Chapter 7. 

(F) Metastable Dome(D) Passive Pile (E) Sluggish Dome

(C) Ridge(B) Plume clusterPlume at early stage(A)

 

Figure 6-6. Various dynamic scenarios for superplumes. The gray scale indicates the 

density anomaly. Darker is denser. The arrows indicate the direction and speed of the 

flow. 
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In Scenario C, the triangular shape of the ridge is distinctive from dome-like structures in 

other scenarios. A ridge-like structure, when filted to the resolution of tomography models, is 

undistinguishable from a dome-like structure [Tackley, 2002]. However, the morphology of 

the southern African superplume is constrained by body wave seismology, which locally has 

higher resolution than tomography. The seismic observations clearly require a steep sidewall 

for the southern African superplume. Therefore, we reject this scenario for the superplume. 

In Scenario D, the passive pile is surrounded by subducted slabs. As discussed earlier, the 

piles are denser than ambient mantle but less dense than surrounding slabs. As a result, the 

pile will look like a low-density anomaly if the horizontal average of density is removed. 

This is incompatible with results of normal mode inversion [Ishii and Tromp, 1999; Resovsky 

and Trampert, 2003; Ishii and Tromp, 2004]. Therefore, this scenario is also rejected. 

In the remaining four scenarios, the outline of the chemical structures all have a similar 

dome shape. With morphology alone, we cannot determine which scenario would represent 

the southern African superplume best. Fortunately, the southern African superplume has a 

distinctive seismic velocity anomaly. The southern African superplume has average VP=-

0.5% and VS=-3%. Can these dynamic scenarios fit the seismic observation and, if so, what 

thermo-elastic parameters are required?  

6.4.3 Conversion to seismic anomalies 

We transform dynamic model results into seismic velocity anomalies VP and VS as 

follows. We assume that the ratio of shear modulus G to bulk modulus KS, R1=G/KS, is fixed 

at 0.45, similar to PREM at 2700 km depth. The value of R1 does not strongly affect later 
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analysis. The perturbations to VP and VS can be written as  
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 VS =
1

2
G( )   (6-28) 

where KS and G are the changes in the bulk and shear moduli; , KS and G are the 

perturbations to the density, bulk modulus, and shear modulus, respectively.  can be 

directly retrieved from dynamic models. In average,  is in the ranges of -1% to 1%. A 

simple calculation indicates the required elastic modulus perturbations (Table 6-4). It is clear 

that positive KS (i.e., KS2>1) is required by the seismic data. 

The perturbations to the elastic moduli are decomposed into compositional and thermal 

parts. Assuming these two parts are linearly independent, we can write  

 KS =
lnKS

C
C +

lnKS

T
T  (6-29) 

 G =
lnG

C
C +

lnG

T
T  (6-30) 

There are four parameters for the composition and temperature derivatives of the elastic 

moduli. Most of the temperature variation occurs inside material 2. Therefore, the 

temperature derivatives of the elastic moduli of material 1 are unimportant, with the 

Table 6-4. Estimate on elastic moduli perturbation. 

 -1% 0% 1% 

KS 1% 2% 3% 

G -7% -6% -5% 
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exception in the thermal boundary layer. We will assume that the two materials have the 

same temperature derivatives of the elastic moduli. The composition derivative of KS is 

known.    

 
lnKS

C
=
KS 2 KS1

KS1

= KS 2 1 (6-31)

Furthermore, we assume that the ratio of temperature derivatives of the elastic moduli is 

constant.   

 
lnG

T

lnKS

T
= R2  (6-32) 

R2 is usually set as 2.6, similar to MgSiO3 perovskite at 2000 km depth between 1500 K and 

3500 K [Oganov et al., 2001], but sometimes as 2.2 or 3.0.  

As a result, two unknown parameters ( lnG/ C and lnKS/ T) can be chosen to satisfy the 

two constraints (average VP and VS). For any given lnKS/ C and , without knowledge 

of T, we can find a unique set of T lnKS/ T, T lnG/ T and lnG/ C that fit the observed 

average VP and VS values (Table 6-5).  

In our dynamic models, T of the anomalous material (i.e. T) is usually between 0.6 to 

0.8, from which we can estimate lnKS/ T and lnG/ T. For reference, the dimensional 

values of lnKS/ T and lnG/ T for MgSiO3 perovskite are -3.29x10
-5

 K
-1

 and -8.62x10
-5

 K
-1

, 

respectively [Oganov et al., 2001]. These values can be non-dimensionalized by multiplying 

Ttotal. The temperature contrast Ttotal across the lower mantle is estimated in the range of 

1800 to 2400 K [Boehler, 2000] and is 1800 K in our dynamic models. After non-

dimensionalization, for MgSiO3 perovskite, T lnKS/ T is between -3.5 to -6.3%, and 

T lnG/ T is between -9.3% to -16.6%. This estimate has large uncertainty and only 



  

 

135

applicable to MgSiO3 perovskite. Nevertheless, it represents a useful reference for plausible 

lower mantle materials.  

From Table 6-5, the case of KS2=1.02 and the case of KS2=1.04 with >0 require a set of 

T lnKS/ T and T lnG/ T whose magnitude is far smaller than that of plausible mantle 

material. On the other hand, for the case of KS2=1.08, extremely negative lnKS/ T and 

lnG/ T would produce excessively negative VS (<-6%) in the thermal boundary layer that 

is incompatible with observations. The excessively negative VS can be remedied if we allow 

lnKS/ T and lnG/ T of material 1 to be less negative than material 2, which is certainly 

possible. In addition to satisfying average VP and VS, each of the converted seismic models 

has additional distinct features contained within the lateral VP and VS variations, which can 

also be compared with seismic observation. 

Models of classical thermo-chemical plumes typically occur at small KS2 and top. The 

plume before eruption resembles a dome (Scenario A). The high temperature and low density 

of the “dome” makes it difficult to fit the observed average VP and VS. To fit VP, a small 

negative lnKS/ T is required, which in turn implies a small negative lnG/ T. As argued 

above, the small magnitude of lnKS/ T and lnG/ T does not match the thermo-elastic 

Table 6-5. Estimate on temperature and composition derivatives of elastic moduli. 

KS2 1.02 1.04 1.06 1.08 

average  (%) -1 0 1 -1 0 1 -1 0 1 -1 0 1

T lnKS/ T (%) -1 0 1 -3 -2 -1 -5 -4 -3 -7 -6 -5

T lnG/ T (%) -2.2 0 2.2 -6.6 -4.4 -2.2 -11 -8.8 -6.6 -15.4 -13.2 -11 
R2=2.2 

lnG/ C (%) -4.8 -6 -7.2 -0.4 -1.6 -2.8 4 2.8 1.6 8.4 7.2 6

T lnG/ T (%) -2.6 0 2.6 -7.8 -5.2 -2.6 -13 -10.4 -7.8 -18.2 -15.6 -13 
R2=2.6 

lnG/ C (%) -4.4 -6 -7.6 0.8 -0.8 -2.4 6 4.4 2.8 11.2 9.6 8

T lnG/ T (%) -3 0 3 -9 -6 -3 -15 -12 -9 -21 -18 -15 
R2=3.0 

lnG/ C (%) -4 -6 -8 2 0 -2 8 6 4 14 12 10
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property of plausible lower mantle material. We conclude that this scenario is unfavorable. 

There are a few models of large KS and m  that produce classical thermo-chemical plumes 

(Figure 6-3). The early evolution of these models is similar to the evolution of models of 

mushroom-shaped plume swept together. The seismic signature of these models is discussed 

below. 

For models of mushroom-shaped plumes swept together (Scenario B), the vertical 

layering produces strong lateral variations (Figure 6-7A). The plume conduits, made of 

ambient material, have low VS. The dripping side lobes, made of anomalous material, have 

moderately low VS. Such vertical layering should be easily visible by seismic waves 

traveling vertically through the structure, like SKS or PKP. The southern African superplume 

is well-sampled by SKS. But no internal vertical layering is found [Ni and Helmberger, 

2003a]. Therefore, we reject this scenario as an explanation of the superplume.  

The scenario of sluggish dome is explored in Chapter 7. The sluggish motion inside the 

dome allows effective cooling. As a result, the base of the dome is warmer and less dense 

than the crest. The strong temperature and density gradients consequently produce strong 

vertical gradients in VS and VP. However, the VS and VP of the southern African 

superplume appears to be vertically uniform. Also in Chapter 7, we argue that the physical 

mechanisms for sluggish domes, including composition-dependent rheology, temperature-

dependent rheology with negative activation enthalpy, and radiative heat transfer, have not 

been demonstrated for lower mantle conditions. Therefore, we reject the scenario. 
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For models of metastable domes, the thermal boundary layer outside the chemical 

boundary produces a VP minimum. In contrast, VS smoothly decreases across the thermal 

boundary layer and has a local minimum at the inner edge of the chemical boundary (Figure 

6-7B). The minimum of VS and VP is offset in a horizontal profile. Such an offset is found 

in all models of metastable domes. The converted seismic model fits the observation 

surprisingly well. The converted seismic model fits not only the average VS and VP, but 

also travel times versus epicenter distance for S, Sdiff, SCS, SKS, P, Pdiff, PCP, and PKP 

phases [Sun et al., 2006]. The VS and VP minimums on the edge, predicted by the dynamic 

models, is observed at the northern edge of the Pacific superplume [Sun et al., 2006]. The 

data are also consistent with the offset in the minimum of VS and VP, although not 

conclusively. Furthermore, the thermo-elastic parameters required by the fit are close to the 

(A1) (A2)

(B1) (B2)

 

Figure 6-7. Predicted seismic anomalies. VP is displayed on the left column (-1.5% 

to 1.5%), and VS on the right (-4% to 4%). (A) converted from Figure 6-5A, using 

R2=2.6, lnKS/ T=-8% and lnG/ C=7%. (B) converted from Figure 6-4D, using 

R2=2.6, lnKS/ T=-6% and lnG/ C=4.4%. 
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parameters of MgSiO3 perovskite [Oganov et al., 2001]. Therefore, the metastable dome 

scenario is favored as an explanation of the southern African superplume. Finally, the density 

structure, close to neutrally buoyancy predicted by the model, is compatible with dynamic 

flow models that simultaneously match observed topography and uplift rate of the African 

superplume [Gurnis et al., 2000]. 

Because of entrainment, the chemical structure will gradually lose its density contrast and 

adjust its morphology accordingly. For example, a continuous layer can evolve into a ridge, 

and then to a metastable dome over geological time scales. As a result, a continuum of 

morphologies is expected in the mantle [Davaille et al., 2005]. We suspect that the mid-

Atlantic African superplume is an elongated ridge structure. As its density decreases by 

entrainment, the superplume becomes a metastable dome structure in the southern part. Our 

interpretation is similar to that of Davaille et al. [2005], except that they invoke a highly 

viscous layer (sluggish dome) to explain the dome-like structures. 

6.4.4 Implication to geochemistry and mineralogy 

Hotspot volcanism is common above mantle superplumes. If mantle plumes originate 

from the superplumes, they must carry entrained superplume material. Superplumes can be 

the source reservoir of the DUPAL anomaly [Castillo, 1988], and thermal plumes rising on 

top of the superplumes can slowly entrain the anomalous material. The DUPAL anomaly has 

high Pb
207

/Pb
204

, Pb
208

/Pb
204

, and Sr
87

/Sr
86

 ratios, indicating the source reservoir is enriched 

in U, Th and Rb. The isotopic age of the source reservoir of the DUPAL anomaly is 

estimated to be 1–2 Gyrs [Hofmann, 1997]. Only the metastable structures (domes and 

ridges) and the stable continuous layer can survive for such a long time. 
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A popular hypothesis for the material of the source reservoir is that it is recycled material 

that was once fractionated (e.g., oceanic crust or enriched oceanic lithosphere) and later 

subducted back into the deep mantle [Hofmann and White, 1982; Hirschmann et al., 2003]. 

Pyroxenite is a pyroxene-rich (MgSiO3) rock that lacks sufficient olivine (Mg2SiO4)
 
to be 

considered peridotitic. Pyroxenite is commonly attributed to recycled oceanic crust [Hauri, 

1996] or enriched oceanic lithosphere [Hirschmann et al., 2003]. In the lower mantle, a 

pyroxenite will contain more perovskite (MgSiO3) and less magnesiowüstite (MgO) than the 

peridotitic mantle. Because the perovskite is denser and less compressible than the 

magnesiowüstite, pyroxenite will be denser and will have a higher bulk modulus than the 

peridotitic mantle. In fact, pyroxenite has been shown to be 1–2% denser and have a 7% 

higher bulk modulus than PREM for a 1600 K adiabat [Lee et al., 2005], which is consistent 

with the material properties of a metastable dome. Fe enrichment might be required to 

increase the density of pyroxenite to better match the dynamic models. Recent mineralogical 

inversion of seismic data suggests that the superplumes are enriched in perovskite and Fe 

[Trampert et al., 2004], which agrees with the pyroxenite model.  

The volume of the African superplume has been estimated to be at least 10
10

 km
3
 [Ni and 

Helmberger, 2003c]. The volume of the Pacific superplume is possibly smaller, and we 

assume it is about 5x10
9
 km

3
. So, the total volume of the superplumes is about 1.5x10

10
 km

3
. 

The average thickness of oceanic crust is 7 km, and the subduction rate of oceanic crust is 

about 20 km
3
/yr. From a simple mass balance calculation, the replenishment time of 

superplumes by oceanic crust is about 0.75 Gyrs, which is consistent with the longevity of 

metastable domes in the dynamic model. In the mass balance calculation, we assumed that all 

subducted oceanic crust goes into superplumes, which is unlikely. Some of the subducted 
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oceanic crust may not segregate from the subducted lithosphere and mix with the mantle 

[Christensen and Hofmann, 1994]. Therefore, the replenish time of 0.75 Gyrs is a lower 

bound of the age of the superplumes. The actual age can easily be 1 Gyrs or older, which 

would reconcile with the observed isotopic age. 

6.4.5 Future works 

In this study, the profile of r is parameterized by the composition-dependent bulk 

modulus and hydrostatic compression, and the profile of  is parameterized by a linear 

equation. The bulk modulus is assumed constant with depth and temperature. This approach 

does not take the thermodynamics into account. Furthermore, in the conversion to seismic 

models, we consider the temperature-dependence of the bulk modulus, which is inconsistent 

with the previous assumption. Such inconsistency is shared among current generation of 

dynamic models. Ideally, the dynamic model should be complemented by an equation of 

state from mineral physics. Given the temperature, pressure, and composition fields from 

dynamic models, the equation of the state can be used to calculate the density and elastic 

moduli, which can be fed back into dynamic models to drive the convection (density) or to 

predict the seismic velocity (elastic moduli). Such an approach is desirable in modeling the 

thermo-chemical evolution of Earth.  
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Chapter 7  
 

Competing roles of rheology and thermal 

expansion in stabilizing a basal chemical 

layer 
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Abstract 

The stability of a chemical layer at the base of the mantle with composition-dependent 

rheology and depth-dependent thermal expansion is studied. A high-viscosity chemical layer 

can form a diapiric plume or a dome by varying the density of the chemical layer and the 

thermal expansion profile. We demonstrate that the strong temperature gradient inside the 

chemical layer, caused by composition-dependent rheology, is the dominant factor in 

stabilizing the chemical layer. Other mechanisms to stabilize the chemical layer are 

discussed, including temperature-dependent rheology with negative activation enthalpy, 

radiative heat transfer, and composition-dependent density profile, with the latest mechanism 

preferred. 
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7.1 Introduction 

The stability of a chemical layer at the base of the mantle has been studied [Christensen, 

1984; Gurnis, 1986; Hansen and Yuen, 1988; Olson and Kincaid, 1991; Farnetani, 1997; 

Tackley, 1998; Davaille, 1999; Montague and Kellogg, 2000; Gonnermann et al., 2002; 

Jellinek and Manga, 2002; Ni et al., 2002; Namiki, 2003; McNamara and Zhong, 2004; Tan 

and Gurnis, 2005; Tan and Gurnis, 2006]. Of particular interest are the physical parameters 

that can produce a long-lived chemical layer but with a high relief on its interface [Ni et al., 

2002]. Much of the claimed longevity relies on the low entrainment rate observed in the 

model. The chemical layer in these models tends to form isolated ridges sitting below 

thermal upwellings [Jellinek and Manga, 2002].  

Composition-dependent rheology has been shown to change the nature of entrainment 

and the shape of a dense, basal chemical layer [Davaille, 1999; McNamara and Zhong, 

2004]. When the dense basal layer has a viscosity lower than ambient, the entrainment 

primarily occurs in thin sheets, while if the material has a high viscosity, the entrainment 

occurs in thin conduits. Low viscosity layers form ridges with cusps at the interface, with the 

strongest entrainment occurring at the tips of the cusps. On the other hand, high viscosity 

layers form domes, which penetrate upward into the less viscous layer but can rise and then 

sink cyclically for several times. Davaille [1999] and McNamara and Zhong [2004] argued 

that the ridges (or cusps) are passive structures, induced by large-scale flow within the 

ambient layer, while the domes are active structures, controlled by thermal instabilities inside 

the dense, basal layer. However, both studies give little discussion on how the composition-

dependent rheology stabilizes the chemical layer. 
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Considering a chemical layer with a density (including thermal and chemical 

contribution) slightly lower than ambient mantle at the base of the mantle. Without 

composition-dependent rheology, the chemical layer will be less viscous, due to its higher 

temperature and thermally activated viscosity. When the layer becomes unstable, a plume 

erupts from the layer. The plume has a lower viscosity than its surroundings and has a large 

plume head, commonly referred to as a cavity plume [Whitehead and Luther, 1975; Olson 

and Singer, 1985; Campbell and Griffiths, 1990]. The plume entrains ambient material as it 

rises, with strongest entrainment in the plume head. In the plume head, the two materials mix 

together. As a result, the chemical layer is drained by the plumes and mixes with the ambient 

mantle quickly. On the other hand, if the dense chemical layer has an intrinsic viscosity 

increase due to its composition, the erupting plume will not have a large head. This type of 

plume is commonly referred to as the diapiric plume [Whitehead and Luther, 1975; Olson 

and Singer, 1985]. The high viscosity of the diapiric plume reduces the particle velocity 

inside the plume and slows the ascent of the plume. The smaller particle velocity makes 

entrainment less effective, which keeps the integrity of the plume. The smaller particle 

velocity also reduces the internal mixing and promotes temperature heterogeneity inside the 

plume. In addition, the slow ascent of the plume leads to more cooling. As a result, there can 

be a large temperature gradient with the plume, stabilizing it at the mid-mantle depths 

(Figure 7-1). 

From this argument, we propose that the temperature gradient within the diapiric plume is 

the dominant factor in stabilizing it. If this is true, we predict that a depth-dependence of 

thermal expansion could change the stability of the diapiric plume. The coefficient of thermal 

expansion, , of the mantle decreases with depth. When a parcel of warm material moves 
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upward, its buoyancy increases as  increases. The parcel would lose its heat by thermal 

diffusion and adiabatic cooling and lose its buoyancy. The adiabatic cooling is proportional 

to  and the dissipation number (defined in Chapter 6). The dissipation number in the lower 

mantle is small (about 0.4), and the buoyancy loss due to adiabatic cooling is smaller than the 

buoyancy gain due to larger . As a result, we expect that the depth-dependency of thermal 

expansion will destabilize the diapiric plume.  

7.2 Method 

The numerical method is described in Chapter 6. We will briefly summarize the model 

setup. The numerical code is capable of the Truncated Anelastic Liquid Approximation 

(TALA) [Ita and King, 1994], but we only utilize the Extending Boussinesq Approximation 

(EBA) [Christensen, 1995] by setting the Gruneisen parameter (defined in Chapter 6) to 

infinity, thus removing the adiabatic density gradient. We choose EBA over TALA for two 

diapiric
plume

Δρ

Δρ
ch

Δρ
thz

unstable

stable

 

Figure 7-1. Cartoon for a diapiric plume. The plume is highly viscous. The particle 

velocity (arrows) inside the plume is much smaller than that outside the plume. A 

large temperature gradient (grayscale) helps to stabilize the plume 
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reasons. First, this removes the effect of composition-dependent density profile, which has 

been shown to strongly control the stability of the chemical layer [Tan and Gurnis, 2005; 

2006]. Second, we can directly compare these results with Davaillle [1999] and McNamara 

and Zhong [2004], which both used Boussinesq Approximation (BA). Compared with the 

BA, the EBA introduces an adiabatic temperature gradient and adiabatic cooling contributing 

to increased stability of the chemical layer. 

The convection is driven by thermal and chemical density variations. The mantle 

composition C is modeled using a marker chain method (see Chapter 6). The mantle consists 

of two types of materials, one is the ambient material (C=0) and the other is the anomalous 

material (C=1), which is denser than the ambient material by ch. The coefficient of thermal 

expansion, =0.3+m z, varies linearly in z.  

The viscosity is temperature and depth dependent according to the equation  

 = e C exp
E +V (1 z)

T + T

E

T

 

 
  

 

 
   (7-33)

where  is the viscosity contrast due to composition; E  is the activation energy; V  is the 

activation volume; T is the temperature; and T  is the temperature offset. The magnitude of 

this depth-dependence is chosen to compensate for the effect of adiabatic temperature 

gradients. The viscosity has a minimum cutoff of 10
-3

. The computational domain is 

Cartesian and 2x1 with the base corresponding to the CMB. The top of the box, when scaled 

to Earth, is 2000 km above the CMB. The top and bottom boundaries are free-slip and 

isothermal, with fixed temperature at 0 and 1, respectively. The sidewalls are reflecting. The 

initial temperature is adiabatic with a thin, basal thermal boundary layer. The chemical layer 

is initially flat with a thickness d. The values of all parameters are listed in Table 7-1. 
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Each model is run for a non-dimensional time t=0.025 or more, which corresponds to 

about 5–10 mantle overturns. We calculate the contour C=0.8 and use the maximum height 

of the contour as the height of the chemical layer. Since the chemical layer is more viscous 

than the ambient mantle, the entrainment rate is low. The contour approximates the interface 

of the chemical layer well. We terminate the model early if the chemical layer reaches the top 

of the domain. 

7.3 Results 

In the first set of models, we fix m =0 and vary ch to find the transition from a stable to 

an unstable layer (Figure 7-2A). The transition is sharp and occurs between ch=0.008 to 

0.009. The temperature, composition, density, and viscosity fields of two models below and 

above the transition are shown (Figure 7-2B and 7-2C).  

Table 7-1. Values of parameters in models. 

Symbol Description Value 

Ra Rayleigh number 2.2x10
6
 

Di dissipation number 0.4 
 Gruneisen parameter Infinity 

Ts surface temperature 0.75 
μ fraction of volume change due to thermal expansion 0.054 

 viscosity contrast due to composition 6.21 

E  activation energy of viscosity 11 

V  activation volume of viscosity -1.8 

T  temperature offset of viscosity -1.5 

d initial thickness of the chemical layer 0.125 
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Figure 7-2. Results of m =0. (A) The time evolution of the height of the chemical 

layer. The transition from stable to unstable layer occurs between ch=0.008 to 

0.009. (B) The result of ch=0.008. Top: temperature; middle: density; bottom: 

viscosity. The white lines are the C=0.8 contours. (C) The result of ch=0.009. 
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For the unstable layer, owing to its large viscosity, the layer forms a diapir plume, which 

rises slowly and loses its heat during ascent. As a result, a strong temperature gradient 

develops inside the diapiric plume (Figure 7-3). Only a small portion of the temperature 

gradient is attributed to the adiabatic temperature gradient. The entrainment rate in the 

diapiric plume is low until the plume impinges the top surface. Then, the entrainment rate 

grows greatly, and the length of the marker chain increases exponentially. The computation 

is terminated as a result. We suspect that as the diapiric plume is cooled by the top surface, 

bulk of the anomalous material in the diapiric plume will fall back to the base of the mantle, 

similar to the results of Davaille [1999] and McNamara and Zhong [2004]. 

In the stable regime, the layer forms large domes, with sluggish convection within. To 

assess the stability of the dome, the calculation continues until t=0.034. The height of the 
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Figure 7-3. Temperature profiles. The solid lines are average temperature profiles of 

the plume in Figure 7-2B and the dome in Figure 7-2C. The dashed lines are three 

different adiabatic temperature profiles. 
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dome undulates slightly over time, but never rises higher than 0.35. The temperature profile 

of the dome is nearly conductive with a strong temperature gradient (Figure 7-3). 

In the second set of models, we fix ch=0.009 and vary m . The increase of thermal 

expansion in the mid-mantle destabilizes the originally stable layer. Again, we can find a 

sharp transition from stable to unstable layer between m =0.3 to 0.4 (Figure 7-4). For the 

stable layer, the amplitude of undulation on the height of the dome increases with m . For all 

cases, there is a thermal plume either locates above the dome or leads the chemical diapiric 

plume. The onset of the thermal plume significantly increases the rising speed of the layer for 

two reasons. First, the thermal plume establishes a low viscosity conduit, which decreases the 

resistance of rising chemical layer. Second, after the eruption of the thermal plume, the 

magnitude of ambient flow increases significantly, which increases the upward drag to the 

chemical layer. 
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Figure 7-4. Results of ch=0.009. The transition from stable to unstable layer occurs 

between m =0.3 to 0.4. The dashed line marks the onset of thermal plumes. 
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7.4 Discussion 

The results clearly demonstrate the competing roles of depth-dependent thermal 

expansion versus composition-dependent rheology in the stability of a parcel of warm, rising 

material. The former will increases the parcel’s buoyancy and destabilize it further. The latter 

will slow down the parcel, so low that cooling by thermal diffusion becomes effective, and 

stabilize the parcel.  

We demonstrate that the strong temperature gradient inside the chemical layer, caused by 

composition-dependent rheology, is the dominant factor in stabilizing the chemical layer. 

Since the chemical layer is also hotter than the ambient mantle, the composition field is 

highly correlated with the temperature field (Figure 7-2). A temperature-dependent rheology 

law with negative activation enthalpy will have similar effect as the composition-dependent 

rheology. It has been proposed that a temperature-dependent rheology law with negative 

activation enthalpy can produce a diapiric plume [Korenaga, 2005]. A possible mechanism 

for the negative activation enthalpy is grain-size sensitive diffusion creep [Solomatov, 1996]. 

But it has not been demonstrated that this mechanism dominate the viscous deformation in 

the lower mantle condition. 

It is conceivable that other physical properties, such as the heat capacity and thermal 

conductivity, if strongly composition- or temperature-dependent, can potentially induce a 

strong temperature gradient inside the chemical layer and stabilize it, too. Besides viscosity, 

the thermal conductivity is the only physical property whose value has been proposed to 

change over an order of magnitude [Hofmeister, 1999; Badro et al., 2004]. The radiative heat 

conductivity, proportional to the third power of the temperature, can dominate the heat 
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transfer process if the material is transparent to photons. The high to low spin transition of Fe 

in (Mg0.9,Fe0.1)SiO3 perovskite increases the transparency in the infrared region [Badro et al., 

2004]. It has been shown in a purely thermal convection model that incorporating radiative 

heat conductivity can stabilize the basal thermal boundary layer [Matyska and Yuen, 2005]. 

Very likely, radiative heat conductivity can stabilize the basal chemical layer too. However, 

impurity in the perovskite, such as Al and other trace elements, even only a small amount, 

can absorb the photon and make the perovskite opaque. It is unlikely that the bulk of a mantle 

rock can be transparent and have high radiative heat conductivity.  

In this study, we did not consider the effect of the composition-dependent density profile, 

which has been shown to profoundly affect the stability of the chemical layer [Tan and 

Gurnis, 2005]. With Earth-like parameters, the composition-dependent density profile can 

produce a dome-like chemical structure that survives for a geological time scale. Comparing 

with the models of negative activation enthalpy and radiative heat conductivity, the model of 

Tan and Gurnis [2005] is more plausible and supported by seismic observations. 
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Appendix A 
 

Benchmarks of regional-regional 

CitcomS.py coupling  

Two regional CitcomS.py Solvers are coupled. The size of the embedded domain is half 

that of the containing domain in each direction (Figure A-1). The two domains share the top 

surface, and the grids are aligned. This configuration does not incur errors when interpolating 

exchanged data. Therefore, any discrepancy in the velocity solutions can be attributed the 

embedded Solver. Moreover, when the element number ratio of the containing to the 

embedded meshes is 2 (case a1 and a5), every embedded node is collocated with another 

containing node, so that the solutions on the two meshes should be identical. For the other 

cases, only portions of the embedded nodes are collocated with the containing nodes. The 

initial temperature field has a hot, spherical anomaly sitting below the embedded domain. 

Therefore, the initial temperature field in the embedded mesh is 0 everywhere, and the flow 

inside is purely driven by the BCs. We compare the velocity fields at the 0th time step on the 

collocated nodes (Table A-1). The purpose of this benchmark is to confirm the consistency of 

the velocity field on both meshes, which is the basic requirement of solver coupling.  

We allow the containing Solver to execute for 100 time steps and the embedded Solver 

for corresponding time steps. One-way communication is used, i.e., no temperature feedback 

from the embedded Solver to the containing Solver. Discrepancy in temperature fields will 
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accumulate over time. Then, we compare the temperature fields at the 100th time step on the 

collocated nodes (Table A-2; Figure A-1). Alternatively, if two-way communication is used 

instead, the temperature fields of both Solvers will be consistent after each synchronized time 

step. Therefore, the temperature discrepancy of a two-way communication model will be less 

than 1/100 of the value in Table A-2. 

The results in Table A-1 and A-2 confirm that the solution on the embedded mesh is 

consistent to that on the containing mesh. When all nodes are collocated (case a1 and a5), the 

discrepancy is minimized. Doubling the resolution of both meshes will decrease the 

discrepancy by half. Refining the resolution in the embedded mesh while keeping the same 

 

Figure A-1. Regional-regional CitcomS.py coupling of case a1 at 100th step. The 

containing mesh and its velocity vectors are in purple, while the embedded mesh and 

its velocity vectors in yellow. The magnitude and direction of the velocity fields are 

consistent for the two meshes. Also plotted are the temperature iso-surfaces (blue for 

the containing mesh and green for the embedded mesh) at T=0.05. The two iso-

surfaces are so close that only one is visible. The numbers of grid points are reduced 

for visualization purpose. 
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resolution in the containing mesh increases the discrepancy gradually (case a2, a3, and a4). 

The consistency achieved is encouraging, considering that grid spacing of the embedded 

mesh in case a4 is four times smaller than that of the containing mesh.  

 

Table A-1. Results of velocity fields at the 0th time step of regional-regional 

coupling. The second column is the number of elements in each direction of the 

containing mesh. The third column is the number of elements in each direction of the 

embedded mesh. u is the velocity field in the overlapping region. du is the difference 

in the velocity fields of the two meshes. RMS is the root mean square. Discrepancy is 

defined as RMS(du)/RMS(u). 

Case 
# of Elements  

(containing) 

# of Elements 

(embedded) 
RMS(u) RMS(du) Discrepancy (%) 

a1 32 16 87.4848 0.374317 0.4279 

a2 32 32 87.4848 0.497431 0.5686 

a3 32 48 87.4848 0.532460 0.6087 

a4 32 64 87.4848 0.935975 1.0698 

a5 64 32 84.2790 0.203668 0.2417 

 

Table A-2. Results of temperature fields at 100th time step of regional-regional 

coupling. We only compare the temperature field in the overlapping region. dT is the 

difference in the temperature field of the two meshes. Discrepancy is defined as 

RMS(dT)/RMS(T). The fifth column is the time step of the embedded mesh when the 

time step of the containing mesh is 100. 

Case 
# of Elements 

(containing) 

# of Elements 

(embedded) 

RMS(T) 

(x10
-2

) 

RMS(dT) 

(x10
-4

) 

Discrepancy 

(%) 

Time step 

(embedded) 

a1 32 16 5.0029 1.9009 0.3799 109 

a2 32 32 5.0029 5.6182 1.1229 237 

a3 32 48 5.0029 5.6161 1.1225 338 

a4 32 64 5.0029 7.5698 1.5130 469 

a5 64 32 10.133 5.0963 0.5029 113 
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Appendix B  
 

Benchmarks of full-regional CitcomS.py 

coupling  

The containing mesh is a spherical shell extending from an inner radius of 0.5 to an outer 

radius of 1, and is divided into 12 caps. The side of each cap is 55°. The embedded mesh 

extends from 0°N to 22.5°N, 45°E to 90°E, and 0.75 to 1 in radius. These two meshes share 

the same top surface. The containing grid is not parallel to the embedded grid. As a result, 

interpolation error is unavoidable. The grid spacing of the embedded mesh in case b4 is 4.9 

times smaller than that of the containing mesh. The initial temperature field has a hot, 

spherical anomaly sitting below the embedded domain. Therefore, the initial temperature 

field in the embedded mesh is 0 everywhere, and the flow within is purely driven by the BCs. 

The embedded velocity field is interpolated to the coordinates of the containing nodes. The 

interpolated velocity field is compared with the containing velocity field at the 0th time step 

(Table B-1).  

We allow the containing Solver to execute for 70 time steps and the embedded Solver for 

the corresponding time steps. One-way communication is used, i.e., no temperature feedback 

from the embedded Solver to the containing Solver. Discrepancy in temperature fields can 

accumulate over time. The embedded temperature field is interpolated to the coordinates of 

the containing nodes. The interpolated temperature field is compared with the containing 
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temperature field at the 70th time step (Table B-2). The temperature discrepancy of a two-

way communication model will be less than 1/70 of the value in Table B-2. 

The results in Table B-1 and Table B-2 show a similar trend as the regional-regional 

coupling benchmark. When the resolutions of the meshes are similar (case b1 and b5), the 

discrepancy is minimized. Doubling the resolution of both meshes will decrease the 

discrepancy by half. Refining the resolution in the embedded mesh while keeping the same 

resolution in the containing mesh increases the discrepancy gradually (case b2, b3, and b4). 

Table B-1. Results of velocity fields at the 0th time step of full-regional coupling. The 

second column is the number of elements horizontally in a spherical cap of the 

containing mesh. The third column is the number of elements along the latitude of the 

embedded mesh. u is the velocity field in the overlapping region. du is the difference 

in the velocity fields of the two meshes. RMS is the root mean square. Discrepancy is 

defined as RMS(du)/RMS(u). 

Case 
# of Elements  

(containing) 

# of Elements 

(embedded) 
RMS(u) RMS(du) 

Discrepancy 

(%) 

b1 32 16 28.3647 0.308470 1.0781 

b2 32 32 28.3647 0.346116 1.2165 

b3 32 48 28.3647 0.500369 1.7622 

b4 32 64 28.3647 0.500971 1.7662 

b5 64 32 28.6791 0.145538 0.5075 

 

Table B-2. Results of temperature fields at 70th time step of full-regional coupling. 

We only compare the temperature field in the overlapping region. dT is the difference 

in the temperature field of the two meshes. Discrepancy is defined as 

RMS(dT)/RMS(T). The fifth column is the time step of the embedded mesh when the 

time step of the containing mesh is 70. Case b5 is terminated early because the 

temperature fields diverge too much. 

Case 
# of Elements 

(containing) 

# of Elements 

(embedded) 

RMS(T) 

(x10
-2

) 

RMS(dT) 

(x10
-3

) 

Discrepancy 

(%) 

Time step 

(embedded) 

b2 32 32 4.1186 2.9344 7.1248 165 

b3 32 48 4.1499 3.4362 8.2802 230 

b4 32 64 4.1662 4.6017 11.045 289 

b5 64 32 2.5045 3.3190 13.252 198* 

* The containing mesh is at 44th time step. 
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The results in Table B-2 show a large discrepancy due to accumulated interpolation error 

over time. However, if two-way communication is used, the temperature fields of both 

meshes are synchronized every time step, so that discrepancy never accumulates.  
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Appendix C 
 

Code listing 

All of the codes listed are written in Python. For the sake of simplicity, the codes are 

greatly simplified, so that the definitions of non-essential functions are omitted and some 

variables are treated global in scope. 

C.1 Simplified structure of Application.  

def main(): 
 # assign a solver to the current processor 
 # (definition omitted) 
 solver = assign_solver() 
 
 # allocates memory, initializes variables, etc... 
 solver.initialize() 
 
 # solve the initial field if necessary 
 # (definition omitted) 
 solver.solve_0th_time_step() 
 
 # loop until finished 
 while True: 
  # notify solver to begin a new time step 
  solver.new_time_step() 
 
  # determine the size of the time step 
  dt = solver.find_stable_time_step() 
 
  # move forward by dt 
  solver.solve_next_time_step(dt) 
 
  # notify the solver to end the time step 
  # (definition omitted) 
  solver.end_time_step() 
 
  # check the end-of-simulation conditions 
  # (definition omitted) 
  if is_finished(): 
   break 
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 # release memory, etc... 
 # (definition omitted) 
 solver.finalize() 
 
 
 

C.2 Simplified structure of CitcomS.py solver 

### Remark: coupler is a “global” variable 
 
def initialize(): 
 # (definitions omitted) 
 allocate_memory() 
 init_variables() 
 
 # assign a coupler (either a ContainingCoupler 
 # or an EmbeddedCoupler) to the solver 
 # (definition omitted) 
 coupler = assign_coupler() 
 
 # initialize the Exchanger package 
 coupler.initialize() 
 
 
def find_stable_time_step(): 
 # calculate proposed_dt from grid spacing 
 # and velocity field (definition omitted) 
 proposed_dt = find_local_stable_time_step() 
 
 # exchange proposed_dt with another solver, 
 # clip it if necessary 
 dt = coupler.clip_stable_time_step(proposed_dt) 
 
 return dt 
 
 
def solve_next_time_step(dt): 
 # solve the energy equation by a time step 
 # of size dt (definition omitted) 
 solve_temperature(dt) 
 
 # solve the momentum equation 
 solve_velocity() 
 
 # save the result to disk 
 # (definition omitted) 
 output() 
 
 
def solve_velocity(): 
 # EmbeddedCoupler receives velocity BCs 
 # from ContainingCoupler and imposes the BCs 
 coupler.pre_solve_velocity() 
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 # solve the Stokes flow problem 
 # (definition omitted) 
 solve_stokes_flow() 
 
 # ContainingCoupler sends velocity BCs to EmbeddedCoupler 
 coupler.post_solve_velocity() 
 
 
def new_time_step(): 
 # update the temperature field of containing 
 # solver if using two-way communication 
 coupler.new_time_step() 
 
 
 

C.3 Simplified structure of Coupler for CitcomS-CitcomS coupling 

ContainingCoupler: 

 
### Remark: inlet and outlet are “global” variables 
 
def initialize(): 
 # source will receive the boundary nodes 
 # from the sink of EmbeddedCoupler 
 source = create_source() 
 
 # outlet will use source to interpolate the data and send 
 # the data to the inlet of EmbeddedCoupler 
 outlet = create_outlet(source) 
 
 if is_two_way_communication: 
  # overlapped is an instance of BoundedMesh,  
  # it contains the overlapped nodes of the 
  # containing solver (e.g. Figure 3-2C) 
  overlapped = create_boundedmesh() 
 
  # sink will broadcast the overlaped nodes  
  # to the sources of ContainingCoupler 
  sink = create_sink(overlapped) 
 
  # inlet will use sink to receive data sent  
  # by outlet of ContainingCoupler 
  inlet = create_intlet(sink) 
 
 
def pre_solve_velocity(): 
 # do nothing 
 pass 
 
 
def post_solve_velocity(): 
 # send velocity/stress/temperature BCs to EmbeddedCoupler 
 outlet.send() 
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def new_time_step(): 
 if is_two_way_communication: 
  # receive temperature from ContainingCoupler 
  inlet.recv() 
 
  # replace the temperature field by the received value 
  inlet.impose() 
 
 
def clip_stable_time_step(proposed_dt): 
 # exchange the value of dt with EmbeddedCoupler 
 ec_dt = exchange_dt(proposed_dt) 
 return proposed_dt 
 
 
 

EmbeddedCoupler: 

 
### Remark: inlet, outlet, is_two_way_communication  
### cc_dt, accumulated_dt, and was_synchronized are  
### “global” variables 
 
def initialize(): 
 # boundary is an instance of BoundedMesh, it 
 # contains the boundary nodes of the  
 # embedded solver (e.g. Figure 3-2B) 
 boundary = create_boundedmesh() 
 
 # sink will broadcast the boundary nodes to the  
 # sources of ContainingCoupler 
 sink = create_sink(boundary) 
 
 # inlet will use sink to receive data sent by 
 # outlet of ContainingCoupler 
 inlet = create_inlet(sink) 
 
 if is_two_way_communication: 
  # source will receive the overlapped nodes 
  # from the sink of ContainingCoupler 
  source = create_source() 
 
  # outlet will use source to interpolate the  
  # data and send the data to the inlet 
  # of ContainingCoupler 
  outlet = create_outlet(source) 
 
 # was synchronized at the previous time step?  
 was_synchronized = False 
 
 # dt of ContainingCoupler 
 cc_dt = 0 
 
 # dt accumulated since the last synchronized time step 
 accumulated_dt = 0 
 
 
def pre_solve_velocity(): 
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 # receive velocity/stress/temperature BCs from 
 # ContainingCoupler when solvers were synchronized 
 # at the previous time step, i.e. both solvers 
 # march forward in this time step 
 if was_synchronized: 
  inlet.recv() 
 
 # impose BCs 
 inlet.impose() 
 
 
def post_solve_velocity(): 
 # do nothing 
 pass 
 
 
def new_time_step(): 
 if is_two_way_communication and is_sync(): 
  # send temperature to ContainingCoupler 
  outlet.send() 
 
 # store the sync state of the previous time step 
 # in a variable 
 if is_sync(): 
  was_synchronized = True 
 else: 
  was_synchronized = False 
 
 
def clip_stable_time_step(proposed_dt): 
 if is_sync(): 
  # exchange the value of dt with 
  # ContainingCoupler (definition omitted) 
  cc_dt = exchange_dt(proposed_dt) 
 
  # reset the time 
  accumulated_dt = 0 
 
 # accumulate the time 
 accumulated_dt += dt 
 
 # if after accumulation, the time exceeds that 
 # of ContainingCoupler, clip the time 
 if accumulated_dt > cc_dt: 
  # clip proposed_dt  
  dt = proposed_dt – (accumulated_dt - cc_dt) 
  accumulated_dt = cc_dt 
 else: 
  dt = proposed_dt 
 
 return dt 
 
 
def is_sync(): 
 if accumulated_dt == cc_dt: 
  return True 
 else: 
  return False 
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Appendix D 
 

Benchmark of compressible Stokes flow 

solver 

We follow a similar procedure to that of Hager and O’Connell [1981] to develop an 

analytical solution for Stokes flow in a compressible, Newtonian fluid. The meanings of the 

symbols are defined in Chapter 6.    

 ( ru) = 0 (D-1) 

 P+ = Ra ez  (D-2) 

If the viscosity variation is restricted in the z direction only, the equation can be 

decomposed in Fourier series. Without losing generality, the flow is assumed to be periodic 

with a wave number k in the x direction. The flow variables can be expressed as  

 uz(x,z ) = Uz(z )coskx  (D-3) 

 ux(x,z ) = Ux(z )sin kx  (D-4) 

 zz(x,z ) = zz(z )coskx  (D-5) 

 xx(x,z ) = xx(z )coskx  (D-6) 

 xz(x,z ) = xz(z )sin kx  (D-7) 

 P(x,z ) = (z )coskx  (D-8) 

 (x,z ) = (z )coskx  (D-9)  
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where = PI is the total stress tensor. The reference density profile is assumed to be 

 r (z ) = e (1 z)  (D-10)

where =Di/ . Substitution of (D-3), (D-4), and (D-10) into the continuity equation (D-1) 

yields   

 Uz = kUx + Uz (D-11)  

where  is a shorthand for d/dz.  

Similarly, the constitutive relationship, Equation (6-4) and (6-5), becomes  

 zz =
4

3
Uz

2

3
kUx

 

 
 

 

 
 P  (D-12) 

 xx =
2

3
Uz +

4

3
kUx

 

 
 

 

 
 P  (D-13) 

 xz = Ux kUz[ ]  (D-14)  

The expression for pressure can be obtained by combining (D-11) and (D-12).  

 = 2kUx +
4

3
Uz

 

 
 

 

 
 zz (D-15)  

The expression of xx can be obtained by combining (D-11), (D-12), and (D-13). 

 xx = zz 2 Uz + 4k Ux (D-16) 

The Stokes equation (D-2) becomes  

 k xx + xz = 0 (D-17) 

 k xz + zz = Ra  (D-18)  

Substituting (D-16) into (D-17) yields    

 xz = k zz 2 k Uz + 4k2 Ux  (D-19)  

Combining (D-11), (D-12), (D-18), and (D-19), we obtain a set of linear equations  
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 (D-20)

where 
*
= / 0 , and 0 is an arbitrary constant. The purpose of 0 is to dimensionalize the 

vector on the left-hand side. Note that when =0, there is no adiabatic density gradient, and 

(D-20) is reduced to the result of Hager and O’Connell [1981]. Subject to free-slip boundary 

conditions at the top and bottom surface, (D-20) is a boundary value ordinary differential 

equation, which can be solved analytically. Instead, we use the bvp4c function in MATLAB 

[Shampine et al., 2003] to solve the equation numerically up to machine precision. The 

solution obtained is referred to as the “analytical solution” hereinafter. 

We compared the finite element solution with the analytical solution. The finite element 

calculation is computed using 16, 32, or 64 elements in each direction. By changing the value 

of Di and , different approximations of the governing equations are benchmarked: 

Boussinesq Approximation (BA, Di=0 and = ), Extended Boussinesq Approximation 

(EBA, Di=0.5 and = ), and Truncated Anelatic Liquid Approximation (TALA, Di=0.5 and 

=1). The density anomaly is set according to  

 (x,z ) = r(z )T (x,z ) (D-21) 

 T (x,z ) = sin z coskx (D-22)  

The viscosity is =e
az

, where a is either 0 or 2. The result of the benchmark is in Table D-1.  
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Table D-1. Benchmark of the Stokes flow solver. 

Approximation a  # of Elements Relative Error on uz 

BA 0 16 0.374% 

BA 0 32 0.0937% 

BA 0 64 0.0234% 

TALA 0 16 0.366% 

TALA 0 32 0.0916% 

TALA 0 64 0.0229% 

TALA 2 16 0.450% 

TALA 2 32 0.113% 

TALA 2 64 0.0281% 
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Appendix E  
 

Benchmark of compressible temperature 

solver 

Once the analytical solution of the velocity and stress are obtained, they can be 

substituted into the energy equation (6-3). Assuming CP=kT= =g=1, each term of the energy 

equation can be expressed analytically.   

 ru T = e (1 z) kUx sin
2 kx sin z Uz cos

2 kx cos z( )  (E-1) 

 kT T = ( k2 2 )coskx sin z  (E-2) 

 Di(T +Tsurf ) ruz = Die (1 z)Uz coskx(sin z coskx+Ts)  (E-3) 

 
Di

Ra
: =

Di

Ra
4k2Ux

2
+
4

3
2Uz

2 4 kUxUz

 

 
 

 

 
 cos2 kx+

1
xz
2 sin2 kx  (E-4) 

 rH = e (1 z)H  (E-5)  

The result of the benchmark is in Table E-1. 
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Table E-1. Benchmark of the energy equation solver. 

Approximation a  # of Elements Relative Error on T/ t 

BA 0 16 10.11% 

BA 0 32 5.20% 

BA 0 64 3.40% 

TALA 0 16 9.47% 

TALA 0 32 4.61% 

TALA 0 64 2.64% 

TALA 2 16 8.20% 

TALA 2 32 3.90% 

TALA 2 64 1.92% 

 


