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ABSTRACT

This paper presents a new direct method of obtaining wave
front approximations for problems involving hyperbolic differential
equations. In the problem of a semi-infinite, end-loaded elastic
strip (the problem used to illustrate the method), asymptotic
solutions are obtained for wave fronts prior to multiple edge
interactions. For the special end loading of a step velocity, the
results agree with prior results obtained by more complex methods
of approximation. Extension of the method to multiple interactions
and to other problems of stress wave propagation is briefly

discussed.
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I. INTRODUCTION

In this paper we will preseut a new method for oblaining an
approximate solution at wave fronts for wave propagation problems.
Although the method has possible uses for many propagation prob-
lems which involve hyperbolic partial differential equations, we will
illustrate the method only through the analysis of a stress wave
propagation problem in the linear plane strain theory of elasticity.
By assuming constant material properties, this class of problems
resolves into the study of two scalar wave equations.

A common procedure for the analysis of any stress wave

propagation problem in linear elasticity is as follows:

1. Perform a Laplace transform (on time) on the basic
differential equations and the boundary conditions.

2. Solve the problem exactly in the Laplace transform
domain. This is usually done by means of another
suitable transform on a space variable.

3. Us’e the inversion theorem for the Laplace transform
to obtain an integral representation for the solution.
If wave front approximations are required, they may
be obtaine& by asymptotic analysis of this integral
representation. - |

In this paper we apply the new method to the problem of the
end-loaded semi-infinite strip. We will seek information at, and
immediately behind, the various wave fronts. For this problem,

(

Rosenfeld and Miklowitz 1.2) have determined the exact solution by
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the method described above. They used a large Laplace transform
pai'ameter approximation in step 3 to get approximate wave front
information valid at any arbitrary point reasonably close to the
applied external loading.

The purpose of this paper is to show that, if only wave front
approximations are required, it is possible to eliminate step 2 by
performing an asymptotic analysis directly on the boundary value
problem for the Laplace transform in stecp 1. Roughly spcaking,
this analysis is based on the fac.t that wave front behavior of the
solution is determined by the behavior of the Laplace transform of
the solution for large values of the Laplace transform parameter.
The techniques involved are those commonly used in problems of
boundary layer type. In this way we obtain (in part V) some of the
wave front approximations of Rosenfeld and Miklowitz, and thus
check the present method. Also in the discussion section (part V)
the extension of the method is made to other related problems
which can also be handled by double transform techniques; that
is, those problems involving '"mixed"* boundary conditions. The
importance of the method, though, lies in its relevance to as
yvet unsolved transient problems. For these problems it is often
step 2 in the procedure described above which presents major
difficulties. It is thercfore possible that a method which circumvents

step 2 would be helpful.

* '""Mixed'" boundary conditions are when one condition is on stress;
the other, on displacement.
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An example of the latter category is the semi-infinite strip
with parallel edges free and with prescribed normal and shear

stresses at the remaining edge. This problem is briefly discussed.
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II. PROBLEM FORMULATION

A. Basic Equations of Dynamic Plane Strain

Consider the dynamic problem of small-strain linear elas-
ticity theory in a medium that is homogeneous and isotropic. The
displacement field, ﬁ, is assumed to have small gradients and to be
caused by external forces which are independent of . We shall
also eliminate body moments and forces from consideration. The

field equation of motion is thus

= U
(1-1) v-T =€ 33
where W = vector operator '"'delV
<7» = divergence operator
% = stress tensor(which is symmetric due to the absence

of body moments)
¢ = density, a constant
t = time

For the linearly elastic material, Hooke's Law is just
(1-2) T=A(v-2)]+1 (vu +UV)

where sz_, UV are the dyadic and its conjugate dyadic, respectively.

-
—h

I is the unit tensor.
}\)/“ = Lamé material constants

Combining (1-1) and (1-2), we get the Navier equation
Y
3
ot

1-3)  (A+F) v (v- a)"‘ FFu=¢C
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Alternatively, the above equation may be altered by using the identity
2 - - —_—
ViR = v(v-d)- V(v~Z)

equation (1-3) becomes the following equivalent form

—

(1-3a) x+af‘)v(v-u) M (V)= (’ME

If we let the displacement field T{ have rectangular cartesian

components U, U, U, and consider the case of plane strain where
14y  w=o, wu=u(tyt), v-v(xyl)

then the previous equations can be simplified to the following two-
dimensional problem (using rectangular cartesian system of coordi-

nates X, 7%, and letting 0", T denote real stresses).

(1-5) Equations of 90} + 52'; _ f BZZL
Motion % 3 7/ - 9 z.z

3% 30y v

2y S 67 —=3
s« 37« ot

{(1-6) Hooke's Law Su Svr
= (}4—2/")-—3—;— + A ‘——-’3%
_ v U
03y = (x+2M) Sy/—i‘g e
— /4( du . oV

Tey

(1-7) Navier Equations

( +/u>(axe gga;) +/u(axz + by) ¢ Bbta

(i) (S5 2 ) +H(30+ 35)-c By




B. Use of Wave Potentials

By a theorem due to Helmholtz, any vector field can be ex-
pressed as the sum of an irrotational vector field plus a vector
field whose divergence is zero. The irrotational part can be ex-
pressed as the gradient of a scalar potential; the divergenceless
pa:ft as the curl of some vector field. Furthermore, this represen-
tation is essentially unique. For the displacement field, 1—1, we can

mplien.

define the scalar field, ¢, and vector field, L4 , by the equation

(2-1) a'-'——? v¢ + VX'\—!; where V-'\TV'»=O

Taking the divergence of equation (1-3a) and using (2-1) and vector

identities, we are led to the following expression

2 2
2-2) v s 3k -V9 - 0

Taking the curl of equation (1-3a) and using (2-1) and vector identities

leads to the second equation condition

2“ —,
(3

Sternberg 5 4) has shown that, assuming zero initial conditions, the

unique solution to equations (2-2), (2-3) are the following equations.

aa
(2-4) L ?é =V

d

1 PV _ e
(2-5) =5 =V v
where

— -
(2-6) ¢y = . = a
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The symbols ¢ and ¢; are the dilatational (compressional) and

shear (equivoluminal) phase velocities, respectively. Accordingly,

—h

Cp is usually called the dilatational displacement potential; Y/,
the shear displacement potential.

For plane strain problems,
——

= = (3 = ynit vector in the
(2-7) W €. \V(%’ Ve t) = z direction)

O = ¢ %,t)

The displacement field can now be expressed in terms of ¢, ¥ .

PXe. dY
(2-8) u(x’%t)z sx 3y

29 YW
W T Ty

v (-X'J’y') t> =

For stresses, we obtain

2 2 BZV
o,y t) =2AV°P +Z,u-(337?; - % oy
@9 (1,y,ﬂ = AV + 2.}*(33(;_2 + ;;c;;
PV Ry
('U/t) = /‘(3 Bvoé} 3% )

Thus for any given problem we will seek solutions for ¢ (1) 7,,Z)
and "J’(Z,y_,t) from which the desired physical quantities can be

calculated using (2-8) or (2-9).

C. Tmpact Prohlem for the Semi-Infinite Strip

Within the linear elasticity theory of section A, we will
select the semi-infinite strip as a suitable problem for applying
the new approximation method for the wave front approximation.

We will consider the strip as bounded by OéXSN and OsYSCI. ,
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where (L is the uniform thickness (Figure la). After being free of
sfress until t=o0© , a known normal displacemeunt is applied along
the edge, and the normal stress at the edge becomes non-zero. The
other boundary conditions arise from all the remaining surface
stresses being zero for all time.

For convenience, we non-dimensionalize all lengths by divid-
ing by the thickness @ . Figure 1b now shows the problem in this

new context. Using new variables and constants defined as

v = X u(z%t>~—’—u(z )

a [~
%E%— vy, =t v(LT, )
(3_1) C = CJAL O\‘x = aZ O—'X:

P =y

we can now complete the mathematical formulation for the problem.
The field equations of section B become (for O=x<e O<7?$1 t>0 )
qbzz + CD ca cﬁnf = O
= 0O
%z’ + wg ,6 c® w

where the subscripts %, ’7,, t denote partial derivatives. The

(3-2)

boundary conditions at 34=0 and %=1 (for O<x<oo, t>0 )} are

(3-3) %=O,1: 3 Y7 T %7( 171/.;,

¢xz+‘ 7 12/6( 17 x> 0
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Boundary conditions at ¥X=0, (for Os??,éi ) t >0 ) are
- -0
B Tey T Yo Fay
(3-4) x=0:

@, - 1@ = f(i/,t)

where {(}}i) is known. The state of zero stress prior to T =0

determines the initial conditions as
(3-5) ¢ =¢ =¥ =%=0

It should be noted that the initial conditions insure that the strip is
initially at rest and also climinate any arbitrariness {(like rigid-
body motions) in the solutions for displacements 2 and v~ . Any
pair of functions @, ¥ satisfying the Cauchy-Riemann equations
would not cause any displacements U or U |, but they would satisfy
the field equations. If these harmonic solutions were independent
of time, they could also satisfy the boundary conditions, but they
cannot satisfy the initial conditions (3-5). Thus these unwanted

solutions will be automatically discarded.

D. The Laplace-Transformed Problem

For the linear equations of section C, we can conveniently
utilize the method of Laplace transforms in order to eliminate
the time dependence and to automatically incorporate the initial
conditions (3-5). Define the Laplace transform of a time-dependent

function 'Z (Zf)as oo

(4-1) Qf{Z(t)}= Z () = J;ﬁ_StZ(t) dt
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The corresponding inversion formula is

Y+ico

(4-2) lﬂ—i{?ﬁ@} = Z() = gi;;j 7 (s ds

¥-{oo

where ¥ is a positive, real constant greater than the real part
of any singularity of ECS) in the complex s-plane.

Applying the definitions (4-1) to the problem of section C
-gives the following mathematical problem for 5@2 Y5 s), 77(7@7,}5):

Field Equations:

(4-3)

where

is a dimensionless parameter which will be greatly utilized in
subsequent sections. We regard § as real and positive until
Part IV of this paper.

Boundary Conditions for Ofx<oes, y=0 13(=1

== o=t

z ?EZK;L asz' ‘y%;y
—é? $ +1£:P (¢y? 2’}):0

Note the use of (4-3) on the second equation of (3-3).

(4-4)

Boundary Conditions at x=0, O0=Yy=1:

= ==_ ==O
Z¢z},+ﬂ ¥,

(4-5)

Boundary Conditions at x=eo, O-‘-%Si :
=3 ——4¢

(4-6) ¢ = ¥=0
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" III. DIRECT ASYMPTOTIC SOLUTION FOR LARGE s

A. Introduction of Approximations

In the preceding sections, the boundary value problem satis-
fied by the Laplace transforms of the dilatation and shear potentials
5(%, Y, s, 77(1,,17,, s) has been formulated explicitly for the wave
propagation problem of figure 1b. If we now followed the usual
procedure of analysis, we would try to find some appropriate
method by which the exact solutions for 5, "‘77 could be obtained;
and then @ and ¥ would be found by the inversion integral of (II-4-2).
Such a program has already been carried out in detail for the specific

(1,2)

problem under consideration Even though the final integral
representations for ® and ¥ that evolve from the usual method are
extremely complicated, all requircd information about ®, ¥ and
all pertinent physical quantities can, at least in principle, be
evaluated. For example, the relevant information about the wave
front behavior can be derived, in most cases, by appropriate asymp-
totic operations on the exact integral representation of the solution
using the approximation for 5 and ¥ for large S .

Our objective is to find only the wave front approximation.
We do it by obtaining the asymptotic expansion of 3, ¥ for large s

directly from the boundary value problem without first obtaining the

exact solutions. To do this, we can use an already-defined parameter

= L [ C
- (o)

Since large S corresponds to € being very small, we can use the
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€ as a small parameter for an asymptotic series. In addition, we
can utilize the fact that the wave front behavior is, approximately,
involved only with external disturbances occurring near f =0 , and
we assume that the given displacement f(’(é,t) at ¥X= 0 has an

asymptotic series in t like

(1-1) f(%t) = c*t Fy) + c? tZG(V) + c"tBH(y) + -

as t approaches zero.* For the Laplace transform of (1_1),' we get
(1-2) ?(11,,5) = ¢€° F(ﬂjf) + 63G(’7) + é‘*H(y) + O(%)

In terms of ?(17,) 5) , €, ¢ and V¥, the problem as defined by

equations (II-4-3) to (II-4-5) become

Field Eguations:
osy= (Bt Oyy) - 9
(1-3) s = —
/‘32&2(%74 T %})ﬁ Vo=

Boundary Conditions at Xx=0 ,0O< %‘1 :

2 cb Vf
(1-4) 5 - 1?? = € F(’Lf)+ € G(V)"' E*H(y)ﬂ‘"'
Boundary Conditions at Y= 0,1; 0=<x<ea;

2oy V- ¥, -0

o <7>’+ff;; R

* Mathematically, we could retain step and delta function behavior in
f(%,t) , but the physical interpretation of such additional terms
make it hard to justify their inclusion in (1-1).
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With the problem now formulated for the Laplace transform
ddmain, we seek the asymptotic approximation for € small.
Inspection of the previous equations shows that €° multiplies the
highest order derivatives in the differential equations. Thus the
problcm appcars to be onc of ""boundary layer' type. Our analysis
is based on that assumption. The validity of this assumption will
be verified if the derived results compare to previous Work(l’ 2) and

if the results exhibit proper decay away from the boundary layers(S’ 6)

B. Solution Away from %= 0

Applying our asymptotic method in a formal way, we can see
that the first or crudest approximation to the solution of the problem
for small € would be obtained by simply neglecting the terms with
€ factors in equations (1-3) to (1-5). This would lead to the
approximate solution
(2-1) ?D: = IT; = 0
This solution will satisfy all the field equations and all boundary
conditions except for the second of equations (1-4).

Liet us use a more mathematical procedure by first replacing
the 5 and \? by a formal power series in € . Here the coefficients

are functions of X, ’lf,, so that the solution series are

Py = V) + € POy + € FPmy) + -

(2-2)

\T(Z, 705) = \7(0)(7(]1?) + e .T,m(%%) ;€2 f,f-’ca)(z) %) U

But substituting this into the field equations (1-3) again leads to the
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solution c?= 17; =0 to any order in € . Inspection of (1-4), (1-5)
shows that these zero solutions match the boundary conditions only
up to order €®. The approximation cannot possibly be valid near
the edge X =0 for terms of order €® because of the non-homogenous
boundary condition at X = O. Taking thc vicwpoint that the problem
is one of the boundary layer type, we interpret the above trivial
solution as the appropriate one away from the X =0 edge. Thus
there must exist a boundary layer along X = 0O to match the

4

.. 3 . .. .
conditions for order € ,€ ,. .. ,€N terms with the trivial solution

away from the edge.

C. Boundary Layer Solution Near x =0O

Along the X=0 edge of the strip, we seek a solution that will
satisfy the boundary conditions at X =0 (equations (1-4)) and also
match the solution away from X =O; that is, g“-‘ 27= O. To inves-
tigate the situation near = = O, we introduce an appropriate' stretch-
ing of the X -scale. This is a standard procedure in problems of

(5:

this kind .6)We define a new variable as

(3-1) = e

and then {by ""trial-and-error" if necessary) pick a real constant, N,
such that the solutions will exhibit the proper behavior (Note that
this N may or may not exist !). For this problem, N =11is an
obvious selection to try. This choice leads to the following change

of variable and operator deiinitions:

~g=_’é_ 3 _ 1

= 2 -1 2 g
€ 5 3% € 2% s 2%

12"

(3-2) €2 2%%
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The boundary value problem of equations (1-3) to (1-5) is now

£ ¥t O<F <
(3-3) osgy<l
+ 62777,} -LY=0 J ls

At T=0, 0< 77,$ 1, the boundary conditions are
= == _ €2 _17 - o
2 e ¢??+ Ve iy

=

%

-4 - e“s?; = e3F(—7,)+e"G(1/,)+esH(j/,)+~-

At ¥ —>og 0=y =1, the boundary conditions are
(3-5) -V -0

Aty =0, 1; 0< F<oo , the boundary conditions arc
263?&'7'-‘- ?f_ 621?7'3»-:0
<T)J+f2;‘g;;(eﬁ=f;7 + €* @%> =0

Thus for N =1, the variable change (or scale change) of equations

(3-6)

(3-2) has the effect of making the x-derivatives and the undifferen-
tiated terms of the field equations have the same apparent ofder

of magnitude. It therefore exhibits the scale of X on which the
terms e 574% and €° 3?1 cannot be neglected as we did in section B.

Since the scale of ?%, has not been transformed in a similar

manner, we expect that the present procedure will not produce
suitable approximations in those parts of the strip where 5, '{7
undergo rapid fluctuations in y/ Regions such as this do occur
in the corners. and will be handled later (section D).

We now attempt to determine asymptotic expansions in powers

of € for 5, ¥  using an expansion similar to (2-2), but now the
g P
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coefficients are functions of § (r_w__(_):c %) and 7# :

§ =2 TG

(3-7)

¥ =2 TP

, n=

The above definitions are now inserted into the field equations and
boﬁndary conditions. Note that the boundary conditions at 1}: 0,1
are not written since they will not be needed to determine the
solutions in this region.

Field Equations for 0<% <1, 0< F<oo:

( O ") cer) = (4>”+eq>"> )+—e (¢(°}+G .;% ) =0
(3-8)

<¢w P AP T AT e T )= 0

Boundary Conditions. at ¥ = 0, 0< Y = 1t

( 92)6(¢()+€ > ( c°>+€’l//“ -)—-62 1’3;;1—67’?;) -'->=O
3-
(F+ e PPuoen) ¢ (‘I?;“% eﬁ—‘f;')w-') = €Fap + "G+ Hy

Boundary Conditions as §—>°°:

ra(¢)) == ) .
(3-10) (P = 'l/f = 0 for all t and Oéy-si-
The problem now resolves to a recursive system of boundary
value problems for each order in € . For €° the field equations
are: (o) $(o) -
3-11 =
( ) (c) _ 'Ba‘T(O)

The solutions are: .
(7?@= Aoeg + B, e
3.12 —, 5 7.
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To achieve matching with the zero solution as §'——-> oo,
(3-13) A, - C,=o0
At F =0, %= 0implies D,= 0. Also, ®”= 0 implies B, = 0.

The solution of (3-11) is thus the trivial solution

=( —
(3-14) ¢ 20, e

The problems for orders €' and e° are similar, thus their

solutions are similar to the above.

== ) (=) T T _
(3-15) ¢ = ¢ 7=0, ¥'=¥"=0
For order e° , the boundary conditions along ¥ = 0 change to
= ( 3)
Hy = ©
(3-16) < _ F
$§_ = F(y)

. . . e
The solution to this order is non-zero for P.

- ~¥
(3-17) TP< 0, ¢¥=-F@pe

=2(3)
For order E“, the non-zero P adds yet another non-zero term

to the § = 0 boundary equations. The other equations are still
similar to (3-11), (3-12), Sind (3-13). At § = 0 the conditions are
(. = (4)
2 $§' » + ?,Un, = O
5;“) = G(y)

Letting primes denote differentiation with respect to the argument,

(3-18)

the solutions for this order become
= ~§ = E -
(3-19)  @¥= - Clyle TE = —2p F<73’-
Similar analysis for order e gives
7P = [-Hep +E(3-1r a2 F ] e "
= s - y
w(ﬂ — ——E,@Z G—(’%) e G

¥/

(3-20)
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Obviously, with more algebra, higher order approximations
could be obtained. The asymptotic solution for the boundary layer
along ¥ = 01is

—_— - = = == 4 A0 5576
D ~ 3P+ 3% P, VmeW +ea W

(3-21)
where the coefficients are given in equations (3-17), (3-19), (3-20).
Aithough three terms are calculated here, the subsequent sections
will usually use fewer terms of (3-21) for the sake of clarity.
Before proceeding further, it is appropriate to indicate the
mathematical sense in which (3-21) is expected to asymptotically
represent the solution of the boundary value problem for the

boundary layer along X = 0.

Let §> 0 be an arbitrary positive number. We expect that
022 Flauy,0= U2 )+ " FYZ, ) + 7 (F P+ 069
where the error term, C(€% is uniform on the set of points (%, %)
in the portion of the strip such that
(3-23) 2£=z0, o<yl 762“;‘2?5&) 11*“#"’)2332
This corresponds to a closed strip 0=x<ow  (0=y=1 with the
corners at X = 0, % =0; X =20, ’7, =1 removed by quarter disks
of radius § . A rigorous proof of a similar proposition for a related
problem has been given in (7). In this paper, our concern is
strictly with the construction of the formal expansions, and no
effort is made to rigorously establish our expectations on the error
term for this problem.

The validity of solutions (3-21) does not extend entirely to the

corners x= 0, 1}2 0, and %= 0, ‘% =1 since (3-21) was derived
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without reference to the boundary conditions along the surfaces

'7/ =0 and y« = 1. 'j.‘hus the approximation (3-21) is not valid
when, for fixed ¥, Yy approaches zero or one. To rectify this
error, we must perform another boundary layer type analysis where

both 2 and 1?, coordinates undergu a change in scale. Examples

of complicated problems which have used this corner layer technique

are given in references (7,8). This is the subject of the next section.
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D. Corner Layer Near x=0, y=20

1. Formulation of the Problem:

Let us now construct the corner layer near x=0, vy =0 bya

boundary layer procedure( )As before, we make a scale change in x

of .¥= 74/6 . In addition, we change the vy scale by a new variable

n which gives rise to the following identities:

) _ _ 1 d *
(4-1) .7"%/5) )%-?3—733?:%'5372

We will now modify our previous solution, equation (3-21), by adding

terms 9:, T, which will be significant only in the corner x = 0,

v = 0. The solutions 5, "? are then

'y 3 &= ¥ T 5 TCs) =

¢ (%,y;e) ~ € ¢ca>(2é‘_#> +é' P 4({4#) +e P %}%6(?, %9
Vo0 % S TUE Y+ T (Ey)+ X (5, %59

By substituting the above definitions into the field equations and

(4-2)

boundary conditions (see section A), we can formulate the problem
for variables § , v as the following:

Field Equations:

2| 1 = 3 1 ) 2l4 = 3T =, _35) _
€ [639§-§+6‘-€—5 ¢S_f+...]+é ;.2977+e ¢7#+..Z)-—[9+€¢) +..:] =0

(4-3)
i = # 9 |==(4) = He= oy —m W, &) =
fe LJC 6'?%; ]*,36 Lz xn““éﬁvy%+--] [I’a—euf + ] 0
Boundary Conditions at ¥ = 0, n > 0:

2[%?5‘;74' ali(; ]+ I”ﬁoxﬁ” : V@ ]+

== ey 1 = '=C‘I-) 3
[48+et AP T B Fey)+e* eyl -
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Boundary Conditions at » = 0, §>0:
' )
1 = 34 7® ], ! Ay L sy )=
2[-6—2-9 e- 1, +- [ez’x’ -3 IPY e 4 4 @)

§—7+ < Ty 13 £ € y
(4-5)
= 3T aéz 2__1_2_-9- LY, 1 —
[9+E$ + J"'G_z/gz)e [6 ,77 ¢?#+ +€2T§’7 'Ilj‘y.g...- =0

In the field equationsg, it should be noted that all { derivatives of
Cflﬁjand ‘3‘7@ cancel with the last QID&'contributions since this was the
problem of the x = 0 boundary layer region. Similarly, the terms
of the x = 0 boundary layer problem cancel for the equations at

¥ = 0; thus, the terms exhibiting the given displacement at ¥ =

are cancelled in the second equation of (4-4).

Now we again expand the dependent variables into a power

By = 2, 8°G»
X7 = 25’ TP

Substituting (4-6) into the equations (4-3) to (4-5), we can again

series in € .

W

(4-6)

obtain a series of problems for each order in € by the limit .process
of fixing §, » and letting € approach zero. If we take only the
first five problems in € for our asymptotic approximation, we get
the following boundary value problems:

Field Equations: =) =) =G) _
g £5 77 N = for 1= 0,1, 2, 3,4.
. = (2 Z
,32( O)“' x ) X =0 (See footnote)

Boundary Conditions at E’ = O

(i) Y | 556)

+ 4 =0
2 6, x“ QCW
5;-(:)_ I“) - O
7

Note that additional terms involving Eg?,y), ‘7;(?};}/) would appear for {>4.

(4-7)

(4-8) for 7=0,1,2,....
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It is now convenient to change the above boundary conditions at
¥ =0. First we take (d 7) of the last equation and substitute the

result into the first equation.

(4-9) 2 (" + - X=X+ XY =0 for 220.
GX,’M X?! 77 £ 77 ¢£=0.
But for <4 , the field equations (4-7) make the above condition
become
(D .
(4-10) X f= o for i=0,1,2,3, 4.

If 7“’ = 0 along §t =0, then any ¥ derivative is also zero. The

one derivative which will he ntilized is

(4-11) =0
7 e
Using (4-11) in the second equations of (4-8), the boundary conditions

at ¥= 0 are equivalent to

(4-12) ¢} - for i=0,1,2,3, 4.

9,5 = O and 7>0.

[
o
f

”~

o

Boundary Conditions at 7 = 0:

» == ==, _¥/ —F
=) & @ . 2 _
Zépl + A —I_77 = §4i[3‘:—(0)(a L >]
(4-13) for /=0,1,2,3,4.

5(1)_'_1__&__— =(1) ) 35[]:_(0)@—;] g [G(,O ]

In the above equation the Kronecker delta is defined as

o ol
(4-14) Sj-i = 25 L =g
Boundary Conditions at {§*+ %2 —>o00:
(4-15) & X?|= o for 7 = 0.
o (=]
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Each problem in € can now be analyzed. It should be noted
thaf we are really doing a problem involving the full equations of
part I; however, the region has been simplified from a semi-
infinite strip to a quadrant. The simplification of the problem
geometry is one of the key advantages of using boundary layer

techniques.

2. Introduction of Fourier Transforms:

Since each problem for a given order in € still involves a
partial differential equation with two independent variables, an
additional transformation will be useful. The particular boundary
conditions at £ = 0 and %} = oo in this corner layer are compatible
with the '""mixed'' boundary conditions that can be handled by Fourier
Sine and Fourier Cosine transforms on{ (see Table 1, p. 56).

Define the Fourier Sine and Fourier Cosine transform pairs

as follows:

")':'C(w,';?) = _L T(f)n)xu/n(w?)oa’f = @/{ Tf

(4-16) — 00 o )
Xty = —%f,, X(w, ) dim@pdw = (£ 1{%}
g(w,ﬁ)’——: f‘é'w,y)m(ww; =0¢{5}

(4-17)

oo
6(?)'7) = —;T-L 9(w,~7)w(w§')4’w = 0%/ { 9}
From the above definitions the transforms of various partial deriva-

tives are obtained (using ''integration-by-parts'').
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R g
518, ] =8 L

Note that all the terms involving X and & at ¥ =0 are zero because
of equations (4-10), (4-11) and (4-12). Taking the Fourier Sine trans-
form of the first of equations (4-7) and of the second equation of
(4-13), and taking the Fourier Cogine transform of the other two
equations of (4-7) and (4-13), the following transformed problem is
obtained.

Field Equations for » > 0:

XA =D
677 -6 (1+wd) =0
(4-19) Sy &) for 7=0,1,2,3,4.
DC - I o4 C'Ja): @
77 P
Boundary Conditions at 77 =0 (for 7 =0,1,2,3,4.)

2w Qm 2 f” = “[ 2F o) Trae ",Z-(%TJZN
(4-20)

5 N _él_g__ i 26 TG)J = [ F(o) -1_.}4-—5‘2] + XL”. ]_G(o)i—_—tgz}

Boundary Condltlons as y——soo!

g({) 2=(7) - O
(4-21) ¥ =T =
The solutions of (4-19) are

BO- awy c 7w Cuwr e
T - B(o) £ ' Ty D,

+H1rw® 'y
+wZ“I:7_T7

(1-22)
cw)

Using (4-21), we get C;) = D;w) = 0. This makes the solutions of

the form
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5D = Ay 2 et
%C{) =B, (e el

The final two constants will be determined by using (4-22) in (4-20).

(4-23) for i=0,1,2,3 4.

3. Solutions for Order €D, 61, GE:

For these problems, the right-hand side of (4-20) has no
non-zero termé. Hence the equations for determining A,-(w), B;(w)
are homogeneous. Since the determinant of the coefficients (later
denoted as R(«) ) is non-zero for most w values, the only possible

solution is the trivial solution

Az.(w\)= Bi@nzo for - 7=0,1,2.

The inversion equations (4-16), (4-17) give

f’:w: 7(0: T(z)= o

(4-24) 8 =89 =58%0 ,

4., Solution for Order 63 :

The second equation of (4-20) has a non-zero contribution,

thus the two equations for AB(w) , B,(w) become
As(aﬂ l*aw\}uwa ] + BS(@R/&"- +2w2] = O

i__ 2
As(&J)L{H— ZIBZ“)ZJ + BS(U) [—Ewﬁa\J/an—wa ] = F(o)[ﬁ%fa’]

Solving and substituting into (4-23) gives
=@ _ [ -28) F)] —mfi+oZ
(4-26) e = | Rw) €
| v)%'c)'m_ I(l—aﬁ") F‘(o)] (P
“ 1T RW |¢

R (w)

(4-25)
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where

2 — —
4-27y R = [14_2_/325.)2] —L}}g#w?‘\/;wa Vi{gz-l»wa

The determinant of the coefficients, R(w) , is physically related to
the Rayleigh surface wave phenomena.

Finally, we use the inversion formulae (4-16), (4-17) and the

fact that cos(x):@{z{x} , Si“(X):”@”L{Ziz}

w2n BV, W= 20-2p)F0 R [THEE Sl
enp| L (YT - 125) ) o |

29 O, Y0 =% (0 -26) Fo) fonf [ L I
.J@Q%Q[:%—(%%%ZE;:ZFP~i:Za;ﬂcﬂaﬂf

5. Solution for Order 64:

The equations for Alp (w) , B4(w) now become (using
(4-19), (4-22))

A4Cw) [‘aw \/175?] + Bu(w)[ﬁ~a+2w‘%]=2Ffo)[1fjaa —ﬂ_::wa}

(4-30) : 2
/\4<w) [1+2ﬁza)2] + B‘*(w)[—awﬁzx{éﬁwa ] GCO)[T;_:)@——]

Substituting the solutions of (4-30) into (4-23), and then inverting, we

get

oy 6 EW=2R) | B +Ew] gl -
- Wo[—-—@w—zw)]iwf
(4-32) X’(" )= 0., ?S[E@*E@JR()'
«onp|- (Y Tam —izd)] a?w}
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where
_ , w?
t‘_\(a)) = 4'162(1”,52) F (o) (1_‘_0)2) W
_ 2 1+2 pow®
(4-33) E, ) =(1-2£) Gl = "B L

w (1 +2 p2°)
(+vw®) (p2+ a)z)

E(w) = 25 Gl) (1-28%) VT(;F

E,w) =2 (1-) Flo)

E. Corner Layer Near x = 0, vy = 1:

Inspection of the results of the x =0, y =0 corner reveals
that the solution in the Laplace transformed domain depends on the
geometry and constants. The edge loading f(y,t) enters only as
constants (like F(0), F'(0), G(0), etc.). Since the geometry of
the problem is symmetric about the line y = —é—, the wave front
locations (from the corner waves) are also symmetric about the
same line. The differences in the corner solutionat x=0, y=1
from the solution at x =0, y =0 involves a simple change of
coordinates and use of different constants. That is, the corner
waves from the two corners will be symmetrically located about the
line y = —-:i:— , but the amplitudes will vary due to different constants
(like F(0), F'(0}, G(0), etc.). We add terms g(f’, 753 G) ,
?(E) )7; e) to 5 and \77 . These new terms correspond to
the 5(%’,'7; €) TV(YJ -»7;e> of section D. Then we expand the
new terms in an asymptotic series in € .

To change the results in section D so that they apply to x =0,

y =1, we first make the coordinate transformation
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IR
al

(5-1)

X
for 0%y<l, x>0.
1

=iy

where x and y would be coordinates of a new system centered at

x =0, y=1. Now the solutionat x=0, y=1 can be written down

in terms of x, y by using (5-1), the results of section D, and the

following constants:

Counstant in Section D Replacement for x=0,y=1
F(0) F(1)
(5-2) G(0) G(1)
F'{0) -F1(1)
Note that the minus sign on F'(l) occurs because F'(y) = - F'(y).
o 1

2 . . .
For € , €, € the solutions are (using an extra horizontal

line to distinguish the new solutions):

(5-3)

For €, (4-28) and (4-29) become

5% v) = 2 (e Pk | A gl
5o Ry ) ]

Xz we) = 2 (1-28°)F (1) "@M{S: Véff_z:_ Rla.» .

 oap [ L (1) yEE T+ 122 ] do |

For € , (4-31) and (4-32) are changed to

Uz %) =% @{ S [_E(w)*-E (w)J ) M;g[—-(l-?j_)v;t-l- a‘+3£"—)]al?w}
(5- 5) 1/“ :
?ﬂ)(e,?/)"%‘ 4”‘{5 [E(w)+E C“’\’] R@)W[ (i‘%) pee +175"-’} z
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where
= i at /At / a)z 47”/77
EL(“D = e p) By (1+0®) Yo+ w?
E (N = (10 gt 1+24°
B, = (1-247) o) — 2224

(5-6)

w(i"“szﬁa)

E,(w) = -2(1-£%) F1) o E D

E6) = 28028 C) — s
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IV. INVERSION FOR WAVE FRONT APPROXIMATIONS

A. Introduction of the Cagniard Method

All of the solutions in the last part are for the Laplace trans-
formed potentials, 5 and 17 . Thus it remains to invert back to
the time ciomain. This can easily be done for some of the terms by
using equation (IT-4-2), but this approach leads to double integrals
for the terms arising from the corner layers.

If we note that € = c/s , then each corner layer solution in

. i
the Laplace transform domain has the form of (constant)--sﬂo Z

where

a0 Ronyss) = |y £ i

Now the inversion of the above equation for % (x, y, t) would be

simple if the right-hand side of (1-1) were of the form

* s
(1-2) Soa Gy 32 L

where 7" is real and positive. The inversion of the Laplace

transform is direct and equals

(1-3) Z (hyst) = G(t) ¢

To change the integral in (1-1) to the form (1-2), the path of integra-

Dw(t)

tion in the complex w-plane must be deformed {rom the real axis to
the particular path which will yield a real and positive T at all
points. The only restriction on performing this deformation is that

the path not be deformed through any poles or branch cuts of the
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integrand, M(w)Bui(w). This ingenious method for inverting the Laplace
transform is due to Cagniard(g). As applied herc, thc details of the
calculation are similar to those in (1, 2).

Now.that we can theoretically revert back to the time domain,
we must ascertain that the ¢ and ¥ will truly approximate the
behévior at, and immediately behind, the wave fronts. With this
goal in mind, we consider the Tauberian theorems for Laplace
transforms which enable one to obtain an asymptotic series expan-
sion in t from a knowledge of the behavior of the Laplace transform
when the parameter s is large(lo). The series expansion is valid
for small t only; and, in our problem, this is exactly when we
desire to know the effect of the edge disturbance. The nature of
wave propagation in elastic media should then enable us to give
the correct wave front information throughout the entire body
because the wave front consists of phenomena relating only to the
geometry of the strip and the nature of the original disturbance for
small t.

The relation between the asymptotic approximations for large
s and wave front behavior can also be seen from a more mathema -
tical point of view. We illustrate by considering the dilatational
potential C,b(x,y;t). Retaining only first terms in the asymptotic
expansions for (l?(x yis) as s—> oo, our approximations are

== - 3%
(1-4) Cb(j()%;g)/&/ Egélé = l m(3)(59< 53')_4_ “1_5 é(s)(_cz) %\)

5

We expect (but do not prove) that, in fact, the relation
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s (%,7,;5)‘:[ <3y +©<S"‘)] R

(9(57% sy/> +®Y_S ’ " 2Vx 2+1f X +

+ L B spe)s o 4 ST ]

holds as s—> co. Moreover, we expect that such a relation holds"
for complex s uniformly in Yy for x20, 0<y<1, and uniformly
in s for -co< fms<oe as Rs—> o . From the above relation,

it follows from the inversion formula for the Laplace transform that

160 Plryst) = TFop - Wit-%)+ Olct- % Ho-2)] +
- £ g de O] G-RPH G-RY) +

t 2 _(3
+ 1) 6-78%, g + Ry Het-R))
R = sz

This gives an approximation which is valid for a short time interval

where

after the wave front arrives at a point x,vy.

A similar argument would apply to the potential V' and to
stresses and displacements computed from @ and YW . Appropriate
refinements of the above statements could be obtained by retaining

second and higher order terms in the asymptotic expansions for

==

¢ or V.



34-

=) (7
B. Inversion of & z, %[Z):

We now apply the Cagniard method to the corner layer terms.

= (3) g§(4>

Consider 6 integrals of equations (III-5-4) and (III-5-6).

Since they both have the same functions in the exponential, we define
(2-1) -S7T =L}—( 1+ew? —Z'ZW>

= - 11, A
or

(2-2) T = YVirw?: i Xw

where both X and Y are positive real numbers defined as

Y= %%

1/2
The function [1+@?] must now he precisely defined for

(2-3) X= %2

bl

complex w. DBy letting w=wx+ib, for « and § both real, the

definitions of variables shown on figure 2a become

(2-4) o, = |w-i) =P (5-1F | = e =y (5110

3

- _3 =37 a — . -Ir
(2-5) (pl: a/»da,(u) Z)) Z<g01<é : (pa,‘ a%(a»z)) -é<@z<2—
Note that the range of angles makes the radicals real and positive

for points on the real w axis. Using (2-4) and (2-5), equation (2-2)

can be expressed as follows:

- T=Y [refl X
= YVr, 2, oo [ BLe] 5] + 1 Y 2y i 250 - 3]
{_VE?Y g2yt o ®=§34+ 1 +X S} K

t i{-‘}—? Y’J'fﬂ @ﬁ%)\/ﬂi 2o "“2+SZ_1’~X(X}

where W{@\«-@Q signifies the algebraic sign of (‘91"’ (Da)

i
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13

Sg w(°<15> "

¥ '/z -L Q,+ ¢

§ [14-&)2] = /7‘,/?'2 zﬁ( 1 q)a)

¥
2, =] o <D<V
'17_2:?_\(«)4-'”, "W//Z<Cpa4 3%

________ Y

¥
¥
¥
- P\ahe

Ve
Fie. 2o DEFINITION oF [1+w?]

e . E(erq@,)
/LJJL‘I...Za 3' H

‘ "/,4\, —37r/2<4)3<%
- < q74<37f/a
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== ==

: (3 ),
For the 9( and T integrals, the procedure is similar and

uses figure 2b. Corresponding to T , a new variable T is

@7 T=Y [/B—E‘Lwa]%—i)(w
é\( 223 Ry W[CE%@_'I:].;.XQ} + Z{Ymdn{%—%(}

= {%Y\/ABAM— osEipe +XSE

Y agnlor R - e 2B X}

where the new radii and angles are defined by

(2-8) 7= o= Yal = A <F (5"

/7—43 lw_\_l/)g[ :\/"<L+(S+1/ﬂ>z

o) %= el “Fe<o,<l

@, =arg(wrip) , T g <33T

Equations (2-6) and (2-7) are used for determining the appro-
priate Cagniard paths in the w-plane as shown in figures 3a, 3b.
The FZ paths of figure 3 were found by:

(a) finding the locus of points for Whichveﬂ.f =0

(b) finding those points on this locus for which (e ¥ 2 ’L’Lﬁo
In this problem, step (b) includes the entire hyperbolic curve in the
upper half plane, but only the portion of the curve in the first quad-
rant is used for |;{ because of the locus of [o and the requircment
of exponential decay as |w|—oco.

It remains to check that no singularities or branch points of

the integrands are inside the T;-T]-T_ paths of figure 3. Consider

first R~1 (w) , which appears in all the integrands. The singularities
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Branct Cuts

7
/

R o

F) G, da Casni ARD PATH

Fic. 3t CacNIARD PATH WITH A
w=plane HEADWAVE CoNTRIBUTION
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a0

of the function are as shown in \_N"L
| e
figure 4. Note that the zero of
4 7
R(w) satisfies W,>f; therefore
. >
w=tW,7 lies outside the branch -3
cuts of the function. Almast .
| o
all materials of interest have Wi
w-plane

properties such that W, is
4 Fig. 4 Singularities of R(w)
located as shown in the figure.
The choice of the branch cuts for the radicals (see figure 2)
places all singularities of the integrands along the imaginary axis

at, and outside of, the points w=2*1. For equations (5-4) and (5-6),

the integrands have singularities as shown in figure 3a; for equations

(5-5) and (5-7), as shown in figure 3b. The deformation ot [, to

the path [} + 1 is valid.

The contribution of the I, paths in figure 3 are negligible
because ¥ and T have positive real parts along this curve.

This can be easily seen from equations (2-6) and (2-7) since X,Y,
@i+comst. and § are all positive on the | paths. Thus & ¥ and
R. ® are positive; and, as all Jt; go to infinity, the real parts of

T , % also go to infinity. The result is that ﬂ—?:s goes to zero

along Moo
With Jeo neglected, Cauchy's theorem gives
(2-10) [ = J

N ¥

In figure 3b, the point where the path ri' leaves the imaginary
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axis in the w-plane can be at a point above w={ . Thus for (X/ﬂﬁ>> 1,

: Ve
the path I must go around the branch cut associated with [w?+ 11",
This segment between w = I and o= i X will yield the "head

AR
wave! contribution.
All factors in the integrands can now be expressed in terms of

== (g) =

‘ &
T . Forthe 9, 0 ) integrals (being careful to note that
R

= ¥ X+ ¥* ;itis not R(w))
i[Xt—YW for Y=s7=R

2-1) Row-=
it X + YYTi-R? for T > R
(2 N/ /ml___m-z"_\.%-] for YeT<R
(2-12) aaw__Jl LLAT T CUR =0 ]
T, ; 2y iz
l X +Y7 ,(,C,Z__R ) for T >R
2 2 2 fum 2
- -Y(R-77)+27 =r* for Y<€TZR
e R Y=Y ) +2eXYVR

...L_Z XZ + YZ(’CZ* Rz) + Z'Z'L’XYVT{'RZ for TSR
X YR - + 02 Y X (R -17) +
Y YRE=22 [EX YA (R=T)]  for YeT<R

(2-14) Ru= |
R X+ Y ]Rz)2~ Y X -K) +

+1 472 XYV - R® [—?:Zx?'-t—Yz(r‘— ﬂRz)] for >R |

=1 ==y
For the f@) and T( )integrals

i Xe-YVRE-° for Ve <T<RA
(2-15) R =

IXE +YY2E-RpE for >Ry
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- -2 a2v%
. 'ilXT"Y(RZFZ"T) for L¢p¢R
(2-16) RZ%‘_{;: , AR
{X +Y % (7?2" : i) : for * > R/ﬂu

| P YRR Y E 128 X YYRE 2" for Ttk
(2-17) ﬁ?"w2= z<T<p
| | 2 X -V RET+YE ‘izt XXYVEEREZ  for t> B

X LY RE S e XY (R - 25)+
NNV R [£ XY (RE™T)] for
YRR o8 TXEERE)
148 XYVERE [ EXHYE-RE)]  for B> %‘

(2-18) Raw‘*:

For the region along the branch cut, corresponding to the

head wave, the following definitions are used

. % i _
[ a] "= n 2 e FVn, for (X+‘r1/,s""—1)s <Ry

2-1
(2-19) L, _imy )

/2 Lox
(1) =T 4 =i

The 67 and Y%equations can now be inverted back to the

time domain in the manner of section A. However, this does not
. . s 4 . .
give terms of ¢,V because the € and € factors multiplying

¢ @ and T(Z) have not been considered.

There are two related approaches to the inversion of forms like
=) -i 82) -7 L =) BB
6 s , 7; S  where ez, T(! are known along with the inversion
identity
-1 N NI—i, L
(2-20) I =" ]

One can either express the result in multiple integrals (as in (1, 2) ),

- CN .tN-l
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or one can use the Convolution Theorem.

: o .
-2y [ {Fo e<s>§ - [ Foct-vde
| Using (2-21}, the corner layer terms of ¢ and ¥ are as

for Ct<v 2Z+ ’lj«z

®)
S 3 =) ‘ £
(2-22) L 1€ o) } =42 3 2 1428w @ 1w, ]
{ - ¢ (1"‘2’3 ) F(O)J[R@{ 1 +w2('f’) R (D az,(f)}

shown below

¢ [t‘ﬁPJZGQ,P for t> R

O for T< R
—1 =3 () -
(2-23) S {64 (f: %c4784(1—‘32) F?O)j;&{ wd Wy [5'24-@2] 1/2}. |

R 1+w?
[t-pTelp + 2 ct(1-282) G(o)

it
+ 2 2 Y 3
.xm&"{iRaci)w 1 +/3€}[{: —/P] Jqp for t> R

where the functions of p in (2-22) and (2-23) are equations (2-11) Lo
(2-14) with T replaced by p.
In the next two equations (the results for X), equations (2-15)

to (2-18) are used with 7 replaced by p, and tHE % (%4.%%372:—1').
L LT
(2-24) i {6 X }=O for tétH < g ’X+'id-

t
- BB O LGy o tT<E

Rp T
= —t#fﬁu—zfﬁ(@lft ox dp + 5“;;;41 &f} for t> T
H

where

Stz o B 32 (1401 (1"
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U aw) ; p<t, < B
@25 L {X“l= 0 or W< B
t
= & 2 (12%) Glo) Xt 4, Tl dp
L
t
+=ctt-8) F’@)L»éux dp for 1, <t<illsi
R t
- %- cwﬁz(i—z‘gzjc;(o)u43){[{_{)} 60104_3'8/\7(3)( [t—fj 1,30]4-
H {3 ;

[ ’
+7:_rh *(1—pz)r(o)[5:jb(4xog,f+ S%*j#xoqfa] for t?E

where

_ 1r2p%w* dwhiv  wr E 43
v(z;x(“f’)t»%a ):”g"{ R)  1+w? g 2%p0° [t 'F]
Note that, for t >‘R//5, the integrals in (2-24) and (2-25) must be
split up at “% because I_l‘*‘wz]‘/z is defined as in (2-19).

C. Solutions in the Time Domain

2
If we combine the results for the time domain up to orde'r(t— 575)

we get

6y Ol yst) m-CFapM(E-E) (t- ) + § C-267)F@) -
t :
’%(f "é‘ ¥ ¥a+?a)&m?&i «_1; Zfz Ri(w) %‘%}[t—f]zaefﬂ-

+‘${ 3(1“2132)‘:(1) c)‘é(t"‘év ¢2+(1-7#)‘> .

t 2 2
1+2fw” 1 Yw 2
. S bt a&wa R@ "ﬁ-} Lt-pldp
'5sz+(1—100 Y
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(3-2) W(’Kﬂé;ﬂ X 174(’5 )~ Mt A= VTR ] 4 (-2 Fe)r
t
.S “an(’d%tﬂﬂpcﬁf + N(t W C,B “(1-28° Fo>
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Stresses and displacements can be approxlnnated‘h)the same
order in (t-%) by using the above equations in (II-2-8) and (II-2-9).
The arrival times (defined by the step functions, N , in (3-1) and
(3-2) ) do not change for stress and displacement since all deriva-

tives are taken with respect to space variables.
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V. DISCUSSION

A. Description of Wave Fronts

We can now relate the asymptotic expansions of part IV to the
physical problem of figure la. The task of locating the various
wave fronts is indeed easy because of the step functions that appear
in the equations (IV-3-1) and {IV-3-2). If we could take a picture
of one corner of the strip at some fixed time after t = 0, the wave
fronts shown on figure 5 would be seen.

Lict us first considcr the two plane waves which are illustrated
by dashed lines on figure 5. The approximate solutions for each of
these fronts came from the analysis of the boundary layer near
x = 0 in the Laplace transform domain. From that analysis (see
part III), the series expansion in CT(?.)G’)?} results in the asymptotic
expansion for the dilatational plane wave which propagates along
the strip with speed ¢;. Correspondingly, the series expansion

;'(z')(?) w eventually makes up the approximation for the plane

in
shear wave with propagation speed C5. For each expansion arising
out of the boundary layer in the transformed domain, the exponential
decay in the § direction not only gives the proper boundary layer
behavior, but also leads to the step functions in the time domain.

In the problem being considered, the magnitude of the plane
shear wave is smaller in terms of (t- -f:) than the magnitude of

the plane dilatational wave. This is due to the facl thal the primary

effect of the input at x = 0 is dilatational. In the conjugate
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problem* in which the end loading would involve a prescribed ’C’x%
and v = 0, the relative orders of magnilude of the plane waves
would be reversed.

Another interesting point is that all of the wave fronts, except
for the two plane waves, arise from the corncrs, as pointed out in
(1,2). Thus any end loading with similar displacements near the
corners will have the same asymptotic approximation for the wave
fronts arising from the corner layer analysis.

The above characteristic of the method also leads to difficulties
when large local displacements of f(y,t) occur away from the
corners. With our method, these peaks can only influence the two
plane wave fronts shown as dashed lines in figure 5; and the method
of this paper keeps the magnitude of the expansion terms (for these
two wave fronts) depending only on f(y,t) and its derivatives.
However, in the limiting example of a very localized end displace-
ment, the wave front amplitude would diffuse spatially outward.
from the application point in a more radial manner. Thus our
method is definitely restrictive on the allowable smoothness of the
displacement function f(y,t) away from the corners. And, of
course, derivatives of f(y,t) must exist up to the order of approxi-
mation one is calculating in the boundary and corner layers.

The validity of the approxirﬁate solution we obtained in part IV
also does not hold if we go far enough from the edge (or, equiva-

lently, consider times too long after t =0 ). This can be seen

* This problem can also be handled be our method. See section D.
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from the order €° solution for a:m(f) ?,) (equation (III-3-20) )
which involves a linear function in § . Thus if § is order =
(i..e., if x=0()), then the § term in 5@(5) g,/) should be consi-
dered in order €' . One can then say that the three-term asymp-
totic solution for the plane dilatational wave (equation (II-3-21) )
is ‘certainly not uniformly valid for all x » 0.

The wave fronts shown in solid lines in figure 5 arise from
the corner, and they are calculated through the analysis of the
corner layer.  For the dilatational corner wave we note that,

after t= , there are regions of the strip where waves from

i/z
c
both corners overlap. The approximation for a wave front in this
region requires the superposition of effects from both corners.
Point B on figure 6 would represent such a region. For later
times, there is also a region (point D in figure 6) where one of the.
corner shear waves would superimpose on a dilatational wave from
the opposite corner.

This superposition process continues only up to the time
that the wave fronts from one corner have interacted with the
opposite corner, and then have reached the points like F, G of
figure 6. At this time, our solution approximation is no longer
valid since multiple reflections are involved. These are discussed
further in section C.

After the corner dilatational wave, the remaining corner
wave fronts involve only V. This fact makes the nomenclature

for the wave fronts in figure 5 seem more appropriate since all



-48-
shear effects arise only from ¥ .

Mathematically, the head wave is the contribution from the
segment of the Cagniard path along the imaginary w axis along the
branch cut from w=7 (see figure 3b, p. 37). Physically this wave
is just the shear effect of the plane dilatational wave interacting with
the >stress—free boundary.

The final shear front has two parts due to the head wave
interaction over part of the circular arc. Mathematically. this comes
from the Cagniard path away from the imaginary axis in figure 3b.

Physically it is the effect of the corner load at t = 0.

B. Comparison to Previous Methods

Rosenfeld and Miklowitz(l’ 2) analyzed the strip impact
problem where the end is pushed with a constant velocity V, from
time zero. In our analysis, this means that the given end displace-
ment is
(2-1) ﬂ%)t): u(@nﬁi‘) =\, t ¥(t)
where V, is the constant velocity of impact. When f(y,t) is approxi-
mated by a series in t for small t, there is only one term; thus for

equation (III-1-1) we would obtain

(2-2) F(%:‘{; G=H=z--+=0

pJ

This problem has no plane shear wave since the boundary layer
. 11 s T . .
analysis at x = 0 will involve only gb (f, y) . The inversion of
' . — = .
5 == {5 &3 ") €24
5“(’5) 7) and the corner layer terms 9(7,) g Y x

leads to exact agreement with the so-called “exact integral solution

3
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of Rosenfeld and Miklowitz when specialized to the case of no

multiple reflections. *

C. Multiple Reflections

As mentioned in section A, our solution approximation was
valia (at some point) only until a corner wave front had interacted
with the opposite corner and then returned to the selected point.
Thus the multiple reflections introduce additional wave fronts which
have not been considered up to this point in the paper.

Rosenfeld and Miklowitz treat many more of these additional
wave fronts mathematically, and, using their methods, they obtained
approximate behavior at these fronts. The method of this paper can
be applied in a step-by-step fashion to calculate an asymptotic
expansion valid at, and immediately behind, these additional wave
fronts. EverSr additidnal wave front arises out of wave interactions
in the corners, thus the additional fronts will arise solely from the
corner layer approximation terms.

Consider the first of the additional waves. This front arises
when the wave front posi‘tions’are as shown in figure 7. In this
figure, note that only waves from the corner x =0, y = 0 are
shown since the situation for the other corner is similar. The
boundary conditions at y =1, x = 0 are the same as before, but the

wave potentials are modified from those considered in parts III and IV.

Specifically, see equations (111} to (113) of reference (1) with the
m and n subscripts set to zero.

sl
b
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In the corner layer at y =1, =0, and at t =7, let the
5(’.)(591) of (III-5-2) be composed of two parts. The first is the poten-
tial of a new wavefront; and the second part is due to the ‘;ﬁ){{ g“*)
expansion for T > ma—" in equations (II1-4-28) and (II1-4-31}).
Since there is, at that time, no shear potential effect from the corner
X = >O, y = 0, the only shear at x =0, y=1 is due to the plane

wave. This enables one to define the new corresponding shear

potential.
: ey -~ &
=(2) — 6(1) o+ e(
(3']—) 16 - t:’[;-i—
’\/75—7-4-1#_2'=1+
= i) =9 =5 ()
& =01
(3"2) 1% i t=’(,"o+
wErgE = 1t

Since the last terms of the above definitions are known, the effect
of these terms is to add additional constants to each order € problem.
Analytically, this does not mean more than increasingly difficult
bookkeeping. |
The above process is now repeated each time a new wave
front reaches an opposite corner. Due to the geometrical symmetry
of the problem and the wave [ront locatious, the new wave {ront
expansion in one corner easily converts to the new expansion in the
other corner by using the same process as in section E of part III.
There is another approach which can be followed if one is
interested in only the first of the multiple reflections. For this
approach one considers the effect of the opposite corner solution

when solving the corner layer problem in the Laplace transformed
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domain. FKven though the effect on the previous corner layer expan-
sions will bhe ver? small due to the [a,_}(w))?:) factor, this exponcntial
only introduces a time delay when the solutions are finally brought

back to the time domain.

D. Other Problems

There are several other stress wave propagation problems
which clearly can be handled by the method of this paper. Conksider
the elastic quadrant with one edge stress-free and the other edge
having "mixed'" boundary conditions. If we just delete the effects
from the upper corner in the semi-infinite strip problem of parts
II, III, and IV, we obtain an asymptotic expansion for the wave
fronts of the quadrant. In this case, there are no additional wave
fronts from multiple reflections.

Figure 8a shows an additional semi-infinite strip problem
that can be easily handled because the boundary conditions are

""mixed' at x = 0. The complete boundary conditions are

(4-1) y =01 Oy = Ty =0

(4-2) x = 0 oy = Fly,by, v=o

where F(y,t) is a given function. *
For the line load on an infinite strip (figure 8b) and the point

load on an infinite plate (figure 8d), the use of our method leads to an

* Another physically less interesting set of end conditions (also of
the ""mixed' type) which can be handled by the method are

at x= 0: uU=0, Ty = Fly,t)
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analysis similar to the semi-infinite, end loaded strip. The result-
ing expansions are expected to give a valid asymptotic behaviar for
the wave fronts.

-With‘the problems of figures 8c, 8d, we are using cylindrical
symmetry and ""mixed' boundary conditions so that the method of
analysis is similar after the field equations are modified to fhe new
geometry.* The transforms of Table 1, p.56 are again used.

Reference (1) gives further discussion of the problems in
figure 8, and the approximate results are also enumerated. The
similarity in these problems is most noticeable in the form of the
kernel, G(w), in the inversion equation for the solution in the
Laplace transform domain (see part IV). The Cagniard paths are
also the same ones displayed in figure 3, p. 37.

Since the key to the use of our method is solving a boundary
layer and corner layer problem, the method is expected to apply
to strips having an end geometry as in our problem, but being
curved away from the edge where the external load is applied. Such
a curved geometry will, of course, require modified field equations
and boundary conditions on the stress free surfaces.

For end loads on the semi-infinite strip corresponding to
"'non-mixed" end conditions (e.g., 0y and ’Lj,(# prescribed at x = 0;
or, u , V" prescribed at x = 0 ), the present procedure could be
successfully applied if the relevant corner {or quadrant) problem

with '""non-mixed" boundary conditions could be solved. A solution

* Notc that Hankcl transforms should be used for 8d.
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to such a '""non-mixed" problem for a quadrant has not yet been
reported in the literature.

Finally, it should be again noted that the method of this
paper is not restricted to only stress wave problems in two space
variables. The method should prove useful for obtaining wave
front asymptotic solutions to many other problems involving

hyperbolic partial differential equations.
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TABLE 1

Transform Methods for Mixed Boundary Conditions in Stress Wave

Propagation Problems

Method 1 Method 2

Laplace & cosine transformed equations (1), &) (2).(3),65)
. ? ) H
Laplace & sine transformed equations (2),(3),5) @),4)
Laplace & cosine transformed variables U, Tuy VvV v'go%ﬂ;u @
Laplace & sine transformed variables U, 0y, % ,P u,t‘x%"{f
Known Boundary Conditions at x = 0 %V, B, uaTxy,uf,QDx

For x,y coordinates, use the following equations for (1) through (5)

(see p. 57 for equations in two other coordinate geometries).

Fiewp Eauations @ % N %«%% . 3;%[2
(2) %% + %}1 = ¢ %

JTRESS- SIRAIN (3)  &6=2A %@ + (a2 %
Mg =2 &+ (a+2r) %L;;.
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Further equations for Table 1 are given below in order to use the

transform method on the problems of figures 8c and 8d.

AXUH_SYMMETRY (H&8£>
GRS (), = = Dt

() W+ (kW) =gV
@) o= % (2 D), - L), (a2 by
()G = N 2/ Wit 5 (nBa), +2f D
9 Gy r{z, V-G, ]
RaviaL Symmerry (Fie sd)
() % CrBy), +Pyy = & Oy
e) (5 9, Yy e Y
SR IRLA 22 (o) rerd,
@ my =R B, 2L ¥y H(2R0y,
& T {2y, + }me]&—wﬁ}
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