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Abstract

A practical algorithm has been developed to construct, through sequential lamination, the

partial relaxation of multiwell energy densities such as those characteristic of shape memory

alloys. The resulting microstructures are in static and configurational equilibrium, and

admit arbitrary deformations. The laminate topology evolves during deformation through

branching and pruning operations, while a continuity constraint provides a simple model

of metastability and hysteresis. In cases with strict separation of length scales, the method

may be integrated into a finite element calculation at the subgrid level. This capability is

demonstrated with a calculation of the indentation of a Cu-Al-Ni shape memory alloy by a

spherical indenter.

In verification tests the algorithm attained the analytic solution in the computation of

three benchmark problems. In the fourth case, the four-well problem (of, e.g., Tartar),

results indicate that the method for microstructural evolution imposes an energy barrier

for branching, hindering microstructural development in some cases. Although this effect

is undesirable for purely mathematical problems, it is reflective of the activation energies

and metastabilities present in applications involving natural processes.

The method was further used to model Shield’s tension test experiment, with initial cal-

culations generating reasonable transformation strains and microstructures that compared

well with the sequential laminates obtained experimentally.
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Chapter 1

Introduction

A central problem in mechanics concerns the prediction of material processes on multiple

length scales and their cumulative effect on material behavior. Constitutive models that

incorporate effects from several length scales are important tools, both in circumstances in

which the model is directly applicable, and in the development of high fidelity models at

larger scales.

The research detailed herein is concerned with the computation of microstructures re-

sulting from the optimization of nonconvex energy functionals. This problem has mathe-

matical interest in its own right, but the present work will focus on applications to solid

mechanics. In particular, the algorithm developed will primarily be used in conjunction

with constitutive models of martensitic materials.

1.1 Martensitic materials

To begin, we review the theory of martensitic materials and compute some relevant exam-

ples. For more background refer to, e.g., [1, 11, 12, 17, 37, 58, 60] and references therein.

This overview shall largely follow the progression of Bhattacharya [17].

Martensitic materials, such as shape-memory alloys, are characterized by the occurrence

of a rapid diffusionless solid-solid phase transformation from a high symmetry austenite
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phase to one or more martensite phases upon a change in temperature or the applica-

tion of load. The resulting microstructures typically consist of complex arrangements of

several symmetry related variants. The composition, arrangement, and behavior of these

microstructures is the topic of this work.

In this class of materials, under proper conditions, the energy landscape imposed by

quantum mechanics renders the austenite phase unstable, instead favoring a different atomic

configuration. The prediction of this instability, while beyond the present scope, is accessible

to current methods in quantum chemistry such as Density Functional Theory [68].

Positing the existence of such phases, we require a formal description. Due to the

diffusionless nature of the transformation, there exists a linear mapping, corresponding to

a homogeneous deformation, that produces the lattice vectors of one variant from another

emartensite
i = Ueaustenite

i (1.1)

where U is the transformation matrix, and the ei are lattice vectors. There will in general

be several symmetry related martensite variants, each with a corresponding transformation

strain U i. As an example, InTl undergoes a cubic to tetragonal transformation with the

cubic austenite described by the transformation matrix

UA = I (1.2)

where I is the identity matrix, and with three martensite phases

U1 = diag(β, α, α), U 2 = diag(α, β, α), U 3 = diag(α, α, β), (1.3)
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where diag() is a diagonal matrix and {α, β} describe the relative lengths of the lattice

vectors. The three martensites thus correspond to stretching the cubic lattice by β in

each of the three coordinate directions in turn, with the remaining two lattice vectors both

deformed an amount α.

Frame indifference and material symmetry require the energy functional to satisfy

W (RT
P FRP ) = W (F ) (1.4)

where F is the deformation gradient and RP are the rotations that map the lattice onto

itself (the point group of the lattice). Accordingly, the energy functional must reflect the

same symmetries embodied by the variants. This further implies that the related variants

must have the same energy. Frame indifference alone implies

W (RF ) = W (F ), R ∈ SO(3), (1.5)

indicating that the energy of each variant is a well. Consequently, an energy model for

these materials is to assign similar energy wells to each martensite variant and another to

the austenite phase. The relative stability of each phase is accounted for by the value of

the energy at each well. Therefore, at the transformation temperature Tc all of the wells

possess the same value of the energy at their minima, above Tc the austenite well is at a

lower energy, while below the martensites are favored. This multiwell structure, imposed

by lattice symmetry, is nonconvex. As we shall see in the next section, these nonconvex

energies are responsible for the formation of microstructures.

Postulating the existence of microstructures, or recalling the experimental evidence [28,

74], we shall investigate the governing relations. For an interface between two material
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phases to exist (without dislocations) the lattice vectors must satisfy continuity. Expressed

in terms of transformation matrices, we require that they share a common plane

RiU i − RjU j = a ⊗ N (1.6)

where {U i,U j} are the transformation strains of the two variants, N is the normal to the

invariant plane, a is the shearing direction, and the variants are allowed to reorient via

{Ri,Rj} ∈ SO(3). Fixing the rotation of one variant and redefining a allows (1.6) to be

re-written as

RU i − U j = a ⊗ N (1.7)

which is known as the twinning equation. This equation states that the deformations RU i

and U j on either side of an interface are rank-one connected, i.e., they differ by the rank-

one matrix a ⊗ N . Note that equation (1.7) assumes that each variant is at its respective

minimum energy deformation U—the ‘constrained’ theory of Ball and James [11, 12]—

which corresponds to the assumption that the material moduli are significantly larger than

the transformation stresses, and thus elastic deformations can be neglected. While the

deformations in general need not equal the transformation strain, compatability still insists

they be rank-one connected. Equation (1.7) does not indicate which microstructure will

form. However, with either sufficient creativity or with recourse to experimental results, it

can be used to explore possible compatible microstructures.

In anticipation of the work to follow, we shall derive several important microstructures

present in Cu-Al-Ni. This material undergoes a cubic to orthorhombic martensitic transfor-

mation and has, therefore, six variants in the martensitic phase. The deformation undergone

by the material in transforming from austenite to an unstressed variant of martensite may
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be described by a stretch tensor Um, m = 1, . . . , 6. For Cu-Al-Ni, these are [28, 29]:

U1 =




ζ 0 0

0 ξ η

0 η ξ




, U2 =




ζ 0 0

0 ξ −η

0 −η ξ




, U3 =




ξ 0 η

0 ζ 0

η 0 ξ




, (1.8)

U 4 =




ξ 0 −η

0 ζ 0

−η 0 ξ




, U5 =




ξ η 0

η ξ 0

0 0 ζ




, U6 =




ξ −η 0

−η ξ 0

0 0 ζ




, (1.9)

where ξ = 1.0425, η = 0.0194 and ζ = 0.9178, and all components are referred to the cubic

axes of the austenitic phase.

1.1.1 Martensite–martensite laminate

An important microstructure observed experimentally [28, 29] is the laminar mixing of two

martensite variants, shown schematically in Fig. 1.1. Thus, given variants U i and U j, we

A

B

A

B

Figure 1.1: Schematic of a martensite–martensite microstructure with variants A and B.

wish to determine values of R, a, and N that satisfy (1.7). Using Proposition 4 of Ball and

James [11], this can be reduced to the following algorithm as given by Bhattacharya [17].
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Equation (1.7) has a solution if and only if

λ1 ≤ 1 λ2 = 1 λ3 ≥ 1 (1.10)

where the λi, not all 1, are the ordered eigenvalues of

C = U−T
j UT

i U iU
−1
j . (1.11)

There are then two solutions, given by

a = ρ



√

λ3(1 − λ1)

λ3 − λ1
e1 + κ

√
λ1(λ3 − 1)

λ3 − λ1
e3


 (1.12)

N =

√
λ3 −

√
λ1

ρ
√

λ3 − λ1

(
−
√

1 − λ1U
T
2 e1 + κ

√
λ3 − 1UT

2 e3

)
(1.13)

where κ = ±1, ρ 6= 0 such that |N | = 1, and ei are the eigenvectors corresponding to λi.

R can then be found via (1.7).

The above procedure can be used to determine the required {R,a,N} to satisfy (1.7)

for two general deformations. Since we are following the constrained theory, as noted, the

above has been written with respect to the transformation strains U .

When the martensite variants are related via

U i = RT U jR (1.14)

where R is a plane of symmetry of the austenite and therefore is a 180◦ rotation about an

axis ê, as is the case for Cu-Al-Ni, there is a simplification to the solution of (1.7). The
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twinning equation again has two solutions, with the first solution given by [17]

a = 2

(
U−T

i ê

|U−T
i ê|2

− U iê

)
, N = ê, (1.15)

and a second solution

a = ρU iê, N =
2

ρ

(
ẽ − UT

i U iê

|U iê|2
)

, ρ = 2

∣∣∣∣ê − UT
i U iê

|U iê|2
∣∣∣∣ , (1.16)

where ρ has been calculated so that |N | = 1. For Cu-Al-Ni this calculation has been carried

out by Bhattacharya, Li and Luskin [21]. The required rotation axes are given by ê = e/|e|,

with the vector e as in Table 1.1.

wells 1 2 3 4 5 6

1 e3 e1 − e2 e1 + e2 e1 − e3 e1 + e3

2 e2 e1 + e2 e1 − e2 e1 + e3 e1 − e3

3 e1 − e2 e1 + e2 e3 e2 − e3 e2 + e3

4 e1 + e2 e1 − e2 e3 e2 + e3 e2 − e3

5 e1 − e3 e1 + e3 e2 − e3 e2 + e3 e2

6 e1 + e3 e1 − e3 e2 + e3 e2 − e3 e1

Table 1.1: Vector e arising in the twinning relations for Cu-Al-Ni [21]. The vectors
{e1, e2, e3} correspond to the cubic directions in the austenite phase.

These solutions can be classified as follows. When the solution for N is rational, as in

(1.15), the solution is referred to as a Type I twin. Conversely, solutions (1.16) where a is

rational are Type II twins. In some instances both a and N are rational—corresponding

to two solutions for R in (1.14)—referred to as a compound twin. For Cu-Al-Ni, the pairs

{1, 2}, {3, 4} and {5, 6} produce compound twins.
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A

A

Austenite

N

M

B

B

Figure 1.2: Schematic of an austenite–twinned martensite microstructure with martensite
variants A and B.

1.1.2 Austenite–twinned martensite

Note that the solutions in Table 1.1 are between martensite variants only, and do not include

the austenite phase. Equation (1.7) has a solution involving austenite and martensite only

in very specific circumstances that do not occur for the vast majority of materials. Yet,

experimental evidence [74] clearly indicates the formation of an interface between austenite

and martensite. One such observed microstructure is illustrated in Fig. 1.2.

The interface between the martensites in the figure obeys (1.7) as above, but the interface

between this laminate and the austenite satisfies continuity only in an average sense. In

physical microstructures a transition region attains exact compatability at the interface [29,

50]. This average deformation gradient is

F M = λRU i + (1 − λ)U j (1.17)

where λ is the proportion of variant U i. We thus wish to find possible interfaces between
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F M and austenite. Writing (1.7) for each of the interfaces shown in Fig. 1.2

RU i − U j = a ⊗ N (1.18)

QF M − I = b ⊗ M (1.19)

where I is the transformation strain of the austenite, {Q,R} ∈ SO(3), and {N ,M} (with

corresponding {a, b}) are defined in Fig. 1.2. The solution to (1.18) must correspond to

one of the solutions obtained above. Theorem 7 of Ball and James [11] provides a solution

to (1.19), which can be stated as follows [17].

Let

δ = a · U j(U
2
j − I)−1N (1.20)

η = trace(U 2
j) − det(U 2

j ) − 2 +
|a|2
2δ

. (1.21)

A solution exists if and only if δ ≤ −2 and η ≥ 0. If δ = −2 there is only one solution

λ =
1

2

(
1 −

√
1 +

2

δ

)
(1.22)

b = ρ



√

λ3(1 − λ1)

λ3 − λ1
e1 + κ

√
λ1(λ3 − 1)

λ3 − λ1
e3


 (1.23)

M =

√
λ3 −

√
λ1

ρ
√

λ3 − λ1

(
−
√

1 − λ1e1 + κ
√

λ3 − 1e3

)
(1.24)

where λ1 ≤ λ2 ≤ λ3 are eigenvalues with corresponding eigenvectors {e1, e2, e3} of the
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matrix

C = (U j + λN ⊗ a)(U j + λa ⊗ N) (1.25)

and where ρ is chosen so |M | = 1, κ = ±1, and Q is obtained from (1.19), while if δ < −2

there is a second solution corresponding to λ → (1 − λ).

Note that for each pair of variants i and j there are two solutions to (1.18) corresponding

to the two choices for κ in (1.12) and (1.13), each with up to four solutions to (1.18) and

(1.19). There are, therefore, eight possible austenite–twinned martensite solutions for each

pair of martensite wells. For the case of Cu-Al-Ni, all eight solutions exist for the 12 Type

I and Type II twins, with no solution for the three compound twins, resulting in a total of

96 solutions. A tabulation of these solutions is available in [74].

The two examples discussed above, while important, are by no means comprehensive.

For example, Bhattacharya has studied martensite wedges [14], while Chu and James have

observed a doubly laminated microstructure [29]. To determine which microstructure is

preferred, and to understand why they occur at all, one needs to look at energetics and the

issues involved with minimizing the nonconvex multiwell energies of such materials.

1.2 Nonconvex optimization

This section will give a brief overview of some of the issues involved in the minimization of

nonconvex energies such as the multiwell energy discussed above. The field is a large and

difficult one; for more background refer to [9, 11, 12, 17, 33, 37, 48, 54, 59, 60, 71].

Formally, we are interested in problems of the form

inf
y∈V

I, I =

∫

Ω
W (Dy(x))dx (1.26)
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where Ω ∈ R
3 is a deformable body, y(x) : Ω → R

3 is a deformation with gradient F (x) =

Dy(x), W (F ) : R
3×3 → R,W ≥ 0 is an energy density, and V is a suitable solution space.

While seemingly innocent, it is well known that such problems may be ill-posed if W is

nonconvex. Recall that a function f(x) is convex if

f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b) (1.27)

∀a, b in the domain of f , ∀λ ∈ [0, 1].

We begin by reviewing the simple scalar case (see, e.g., [44, 59]) using the classical

approach. We are interested in obtaining the function y(x) that infimizes

I =

∫
f(x, y(x), y′(x))dx. (1.28)

In this case we can write the first variation

∂

∂λ
I(y + λη)

∣∣∣∣
λ=0

= 0 (1.29)

where η(x) is any admissible function. This results in

δI =

∫ [
η′(x)fy′ + η(x)fy

]
dx = 0 (1.30)

where, e.g., fy = ∂f/∂y. When integrated by parts this yields

δI =

∫
η

[
fy −

d

dx
fy′

]
dx = 0 (1.31)
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which must hold for all η. This finally leads us to the Euler equation for this case

fy =
d

dx
fy′ = fy′y′y′′ + fy′yy

′ + fy′x. (1.32)

Note that if fy′y′ ≥ 0 this equation is elliptic, a necessary condition for a solution of (1.28)

to exist, indicating the importance of the convexity of f with respect to y ′.

The vectoral case is more complex. Following the direct method of the calculus of

variations [33], we demand that the integral I in (1.26) be finite and bounded from below.

We then seek minimizing sequences {yν} such that for some subsequence yν → ym and

I(yν) ↘ Im so that I(ym) = Im and I has a minimizer ym. This requires the (sequential)

weak lower semicontinuity of I

yν ⇀ y ⇒ lim inf
ν→∞

I(yν) ≥ I(y) (1.33)

and reveals the crux of the problem: we need to determine if I is weakly lower semicontin-

uous (l.s.c.) for the energy functional of interest.

Morrey [59] showed that an equivalent condition for the existence of minimizers is for

W to be quasiconvex, that is,

∫

Ω
W (F )dx ≤

∫

Ω
W (F + Dϕ(x))dx (1.34)

for all F and ϕ(x). Hence, for a quasiconvex energy W , I is minimized by linear mappings

F [59].

A similar existence condition is based on polyconvexity [9], where a function W is
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polyconvex if

W (F ) = g(M(F )) (1.35)

where g is a convex function of M(F ), the vector of all minors of F . For F ∈ R
3×3,

M(F ) = (F , cof(F ),det(F )).

Another important concept of convexity is rank-one convexity, defined as

W (λa + (1 − λ)b) ≤ λW (a) + (1 − λ)W (b) (1.36)

∀a, b in the domain of W , ∀λ ∈ [0, 1], where rank(a − b) ≤ 1. Thus W is rank-one convex

if it is convex along all line segments with endpoints that differ by a rank-one matrix. Note

that this definition (1.36) implies that the total energy described by the rank-one compatible

energy wells discussed in §1.1 is not rank-one convex (see, e.g., [33, 71]).

An important result is the relationship between the various notions of convexity, given

here as in Dacorogna [33]

W convex
6⇐⇒ W polyconvex

6⇐⇒ W quasiconvex
6⇐⇒ W rank-one convex

m m

I weakly lower
semicontinu-

ous

Euler
equations are

elliptic

(1.37)

where the last negative result is due to Šverák [80]. In one dimension all of these forms

are equivalent. In the present context, the most important implication of (1.37) is that the

multiwell energy density under discussion is not quasiconvex (and I is not l.s.c.), and thus

in general the infimum of (1.26) is not attained.
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The concepts above are best illustrated with a simple example as discussed by Bhat-

tacharya and others [17, 60, 86]. Consider the one dimensional problem involving the

deformation y(x), x ∈ (0, 1) with gradient f = dy/dx and an energy

E(f) = (f(x)2 − 1)2 (1.38)

which has two wells at f = ±1. We will consider the total energy functional

I =

∫ 1

0

[(
(f(x))2 − 1

)2
+ (y(x))2

]
dx (1.39)

as in this simple example it is necessary to augment E(f) to obtain the behavior of interest.

We wish to find a deformation y with zero energy. This requires

dy(x)

dx
= f = ±1 and y(x) = 0 (1.40)

which is obviously impossible. Yet, we can construct a minimizing sequence {yν} =

{y1, y2, . . . , yn} composed of the ‘sawtooth’ functions

yn(x) =





x, if 0 < x < 1
2n ,

1
n − x, if 1

2n ≤ x < 2
2n ,

(1.41)

where yn is extended periodically for x ∈ ( 2
2n , 1), and is continuous. Obviously f = ±1 =⇒

E(f) = 0, while y → 0 in an average sense: {yν} is a weakly convergent sequence. It is thus

clear that limn→∞ I(yn) = 0. Yet notice that I is not weakly l.s.c., i.e., {yν} ⇀ 0 but I(0) >

0. Similar, less contrived, but more lengthy, examples can be found in the references above,

all of which reinforce the key point: lack of lower semicontinuity (or similarly quasiconvexity)
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leads to the formation of microstructures which represent approximate solutions to the

problem (1.26).

One approach to the solution of such problems is via direct minimization of (1.26)

using, e.g., the finite element method. While straightforward, the preceeding discussion

indicates that this effort is in general essentially hopeless; the mesh would need to resolve

the microstructural details, and, further, would bias the solution. Nevertheless, as shown by

the indentation calculations of Tadmor et al. [81], and the small-scale finite element model

of the austenite–martensite interface of James et al. [50], this method can yield useful

results. Similarly, Collins et al. [30, 31, 58] solve the unrelaxed problem directly on a finite

element mesh, imposing affine boundary conditions consistent with the average deformation

gradient of a given laminate microstructure. This technique allows for the examination and

visualization of possible microstructures, but does suffer from mesh effects.

Alternatively, one can search for an effective or relaxed form of the energy that ac-

counts for the development of microstructure, and consequently would be quasiconvex. The

solution of this relaxed problem would be devoid of microstructure and would attain the

infimum.

Associated with each concept of convexity in (1.37) is an associated convex envelope

and convexification. The convex, polyconvex, quasiconvex, and rank-one convex envelopes

of the function f are defined as [33]

Cf = sup {g ≤ f : g convex}

Pf = sup {g ≤ f : g polyconvex}

Qf = sup {g ≤ f : g quasiconvex}

Rf = sup {g ≤ f : g rank-one convex}

(1.42)
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which with (1.37) implies

Cf ≤ Pf ≤ Qf ≤ Rf ≤ f. (1.43)

Again following Dacorogna [33], given a function f : R
n×m → R∪{+∞} the convexification

is

Cf(A) = inf
λi,Ai

{
nm+1∑

i=1

λif(Ai) :
nm+1∑

i=1

λiAi = A

}
, ∀A ∈ R

n×m, (1.44)

with an analogous expression for the polyconvexification. The quasiconvexification is simi-

larly computed via

Qf(A) = inf
ϕ

{
1

|Ψ|

∫

Ψ
f(A + Dϕ(x))dx

}
, ∀A ∈ R

n×m, (1.45)

and is independent of the domain Ψ. Finally, following the construction of Kohn and

Strang [53, 54], the rank-one convexification can be written as

Rf0 = f (1.46)

Rk+1f(A) = inf
λ,A1,A2

{λRkf(A1) + (1 − λ)Rkf(A2)} (1.47)

Rf = lim
k→∞

Rkf (1.48)

where A = λA1 + (1 − λ)A2 and rank(A1 − A2) ≤ 1. This definition is equivalent to

the HN conditions discussed, e.g., by Dacorogna [33]. In the present setting, the rank-one

convexification is the minimum energy attainable via recursive laminations of rank-one con-

nected deformations. Such a construction is referred to as a sequential laminate, with a mi-

crostructure corresponding to Rk denoted as a rank-k laminate. The martensite–martensite

microstructure studied in §1.1.1 thus corresponds to a rank-one sequential laminate, while
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the austenite–twinned martensite of §1.1.2 is rank-two.

Returning to the solution of (1.26), it can be shown [33] that not only does the relaxed

problem attain the infimum, but the solution is also a minimizer to the original problem,

i.e.,

min

∫

Ω
QW (Dy(x))dx = inf

∫

Ω
W (Dy(x))dx. (1.49)

More precisely, as the unrelaxed problem need not attain its infimum, the minimizers of the

relaxed problem are weak limits of minimizing sequences of the original problem. A general

approach to obtain QW is thus highly desirable.

Unfortunately, the quasiconvexification is known only for a few problems (see, e.g.,

[37, 52, 54]), with no general algorithm available. Equation (1.46) does suggest a method

for obtaining RW , at least in the limit. However, RW 6⇒ QW in general, implying that

this may only obtain a partial relaxation. We could therefore restrict ourselves to the study

of sequential laminates, which is the basis for the algorithm developed in the sequel.

Using this approach, Dolzmann introduced an algorithm [36, 39] that computes the

rank-one convexification of a function f ∈ R
m×n on a uniform grid, shown to converge to

Rf as the mesh size decreases. The method operates via iterating over all matrices on the

grid and performing a convexification using tabulated rank-one directions at each point.

However, because of this tabulation the algorithm is only practical for f ∈ R
2×2, and is

somewhat expensive: the presented numerical examples used, e.g., a mesh on [−4, 4]4 of 334

mesh points with 64 rank-one directions, requiring 75 million individual convexifications

per iteration over the grid.

More generally, Govindjee et al. [45–47] have implemented an algorithm based on a

lower-bound of the quasiconvexification of the energy. The implementation, reminiscent
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of plasticity calculations, has been used to predict the experimental results of Shield [74],

and, further, offers insight into the relaxation of a general N -variant energy. However, this

method is formulated using small strains, requires isotropic moduli, and cannot provide

microstructural details if desired.

Bhattacharya and Dolzmann [18, 19] have constructed approximate relaxed energy func-

tionals for the tetragonal-to-orthorhombic (two-well) and tetragonal-to-monoclinic (four-

well) cases. Their approach involved the determination of the quasiconvex hull of the

transformation strains—the (average) deformation gradients with zero energy. Given this

set, a quasiconvex energy functional was constructed that satisfied material symmetry, was

zero only on the quasiconvex hull with quadratic growth elsewhere, and reproduced the

material moduli.

An alternative approach to convexification is to solve the unrelaxed problem (1.26), but

consider a solution space consisting of ‘acceptable’ microstructures as described by param-

eterized measures or Young measures. This method, first introduced by Young in 1937 [86],

describes the solution in terms of the local proportions (or probability distribution) of each

phase in an infinitesimally fine mixture. By their definition, Young measures character-

ize all minimizing sequences without requiring unnecessary details, and need not represent

laminates. For more detail, see [51, 60, 70, 71] and references within.

Ball and James have used parameterized measures to obtain an important result for the

two-well and three-well problems [11, 12]. Given boundary conditions corresponding to a

simple laminate

F = λU1 + (1 − λ)RU 2 (1.50)

with R ∈ SO(3), λ ∈ [0, 1] and rank(U 1 − RU 2) = 1, where the U i are transformation
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stretches, they showed that the resulting microstructure is unique with Young measures

that correspond to a simple laminate if λ ∈ (0, 1). Bhattacharya, Li and Luskin [21] have

obtained a similar result for cubic-to-orthorhombic transformations for nearly all values of

the transformation strains. Bhattacharya et al. also provide stability and error estimate

results useful in finite element calculations similar to those given by Li and Luskin [56, 57]

in the cubic-to-tetragonal case.

An example of a numerical application utilizing this method, Aranda and Pedregal [4]

have proposed an algorithm based on a finite element approximation of Young measures

resulting from the partial rank-one convexification of the energy [5]. They present results

for the two well problem which indicate some influence on mesh orientation.

For a survey of other numerical approaches consult the review article by Luskin [58].

Further background particularly relevant to the specific topic at hand will be provided in

later chapters.

Given the limitations of the current relaxation methods, there remains a need for an

efficient numerical algorithm for the relaxation of general multiwell energy densities. The

work presented here represents significant progress towards this end.

1.3 Outline

The next chapter, which first appeared as [7] (reproduced with permission), will present and

demonstrate an algorithm for computing the partial relaxation of a general multiwell energy

density via the explicit construction of a sequential laminate. The resulting microstructure

is at a local energy minimum, and is in static and configurational equilibrium. The present

author’s contribution included the finite element example calculations and requisite adap-

tation and refinement of the lamination algorithm.
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The algorithm will be verified in Chapter 3 through comparison with several benchmark

problems. This provides the opportunity to both verify the correctness and understand the

limitations of the algorithm without the complications of an experiment.

In Chapter 4 the lamination algorithm will be used to model Shield’s Cu-Al-Ni tension

test experiment [74]. Shield obtained both the stress-strain response and microstructural

details for specimens at several orientations, enabling experimental verification of both the

response and microstructures obtained numerically.

The final chapter will offer conclusions and areas for further research.
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Chapter 2

A constrained sequential

lamination algorithm

2.1 Introduction

Materials often are capable of adopting a multiplicity of crystal structures, or phases, the

relative stability of which depends on temperature, the state of stress, and other factors.

Under conditions such that several phases are energetically favorable, e.g., at the transition

temperature in martensitic materials, materials are often found to develop microstructure

in nature or in the laboratory. A central problem in mechanics concerns the prediction of

these microstructures and their effect on the effective or macroscopic behavior of materials,

including such scaling properties and size effects as may result from their formation and evo-

lution. When martensitic materials are modelled within the confines of nonlinear elasticity,

the coexistence of phases confers their strain-energy density function a multiwell structure

[16, 29, 40, 57]. The corresponding boundary value problems are characterized by energy

functions which lack weak sequential lower-semicontinuity, and the energy-minimizing de-

formation fields tend to develop fine microstructure [11, 12, 33, 60].

There remains a need at present for efficient numerical methods for solving macroscopic

boundary-value problems while simultaneously accounting for microstructure development
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at the microscale. One numerical strategy consists of attempting a direct minimization of

a suitably discretized energy function. For instance, Tadmor et al. [81] have applied this

approach to the simulation of nanoindentation in silicon. The energy density is derived from

the Stillinger-Weber potential by recourse to the Cauchy-Born approximation, and accounts

for five phases of silicon. The energy functional is discretized by an application of the finite-

element method. Tadmor et al. [82] pioneering calculations predict the formation of complex

phase arrangements under the indenter, and such experimentally observed features as an

insulator-to-conductor transition at a certain critical depth of indentation.

Despite these successes, direct energy minimization is not without shortcomings. Thus,

analysis has shown (see, e.g., [60] for a review) that the microstructures which most ef-

fectively relax the energy may be exceedingly intricate and, consequently, unlikely to be

adequately resolved by a fixed numerical grid. As a result, the computed microstructure is

often coarse and biased by the computational mesh, which inhibits—or entirely suppresses—

the development of many of the competing microstructures. By virtue of these constraints,

the numerical solution is often caught up in a metastable local minimum which may not

accurately reflect the actual energetics and deformation characteristics of the material.

In applications where there is a clear separation of micro and macrostructural length

scales, an alternative numerical strategy is to use a suitably relaxed energy density in

calculations [13, 27, 34, 45, 58]. In this approach, the original multiwell energy density

is replaced by its quasiconvex envelop, i.e., by the lowest energy density achievable by the

material through the development of microstructure. Thus, the determination of the relaxed

energy density requires the evaluation of all possible microstructures compatible with a

prescribed macroscopic deformation. The resulting relaxed energy density is quasiconvex

[60], and its minimizers, which represent the macroscopic deformation fields, are devoid
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of microstructure and, thus, more readily accessible to numerical methods. In essence,

the use of relaxed energy densities in macroscopic boundary value problems constitutes a

multiscale approach in which the development of microstructure occurs—and is dealt with—

at the subgrid level. The central problem in this approach is to devise an effective means of

determining the relaxed energy density and of integrating it into macroscopic calculations.

Unfortunately, no general algorithm for the determination of the quasiconvex envelop

of an arbitrary energy density is known at present. A fallback strategy consists of the con-

sideration of special microstructures only, inevitably resulting in a partial relaxation of the

energy density. For instance, attention may be restricted to microstructures in the form of

sequential laminates [34, 36, 52, 58, 63, 64]. The lowest energy density achievable by the ma-

terial through sequential lamination is known as the rank-one convexification of the energy

density. Many of the microstructures observed in shape-memory alloys [29] and in ductile

single crystals [63] may be interpreted as instances of sequential lamination, which suggests

that the rank-one convexification of the energy coincides—or closely approximates—the re-

laxed energy for these materials. Ductile single crystals furnish a notable example in which

the rank-one and the quasiconvex envelops are known to coincide exactly [6].

In this paper we present a practical algorithm for partially relaxing multiwell energy

densities. The algorithm is based on sequential lamination and, hence, at best it returns

the rank-one convexification of the energy density. Sequential lamination constructions have

been extensively used in both analysis and computation [4, 5, 11, 16, 49, 52, 55, 58, 63]. All

microstructures generated by the algorithm are in static and configurational equilibrium.

Thus, we optimize all the interface orientations and variant volume fractions, with the result

that all configurational forces and torques are in equilibrium. We additionally allow the

variants to be arbitrarily stressed and enforce traction equilibrium across all interfaces.
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The proposed lamination construction is constrained in an important respect: during

a deformation process, we require that every new microstructure be reachable from the

preceding microstructure along an admissible transition path. The mechanisms by which

microstructures are allowed to effect topological transitions are: branching, i.e., the splitting

of a variant into a rank-one laminate; and pruning, consisting of the elimination of vari-

ants whose volume fraction reduces to zero. Branching transitions are accepted provided

that they reduce the total energy, without consideration of energy barriers. By repeated

branching and pruning, microstructures are allowed to evolve along a deformation process.

The continuation character of the algorithm furnishes a simple model of metastability and

hysteresis. Thus, successive microstructures are required to be ‘close’ to each other, which

restricts the range of microstructures accessible to the material at any given time. In gen-

eral, this restriction causes the microstructures to be path-dependent and metastable, and

the computed macroscopic response may exhibit hysteresis.

The proposed relaxation algorithm may effectively be integrated into macroscopic finite-

element calculations at the subgrid level. We demonstrate the performance and versatility

of the algorithm by means of a numerical example concerned with the indentation of a

Cu-Al-Ni shape memory alloy [29] by a spherical indenter. The calculations illustrate the

ability of the algorithm to generate complex microstructures while simultaneously delivering

the macroscopic response of the material. In particular, the algorithm results in force-

depth of indentation curves considerably softer than otherwise obtained by direct energy

minimization.
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2.2 Problem formulation

Let Ω ∈ R
3 be a bounded domain representing the reference configuration of the material.

Let y(x) : Ω → R
3 be the deformation and F (x) = Dy(x) be the corresponding deformation

gradient. We denote the elastic energy density at deformation gradient F ∈ R
3×3 by W (F ).

We require W (F ) to be material frame indifferent, i.e., to be such that W (RF ) = W (F ),

∀R ∈ SO(3) and F ∈ R
3×3. In addition, the case of primary interest here concerns materials

such that W (F ) is not quasiconvex. As a simple example, we may suppose that W (F ) has

the following special structure: Let Wi(F ), i = 1, . . . ,M be quasiconvex energy densities

(see, e.g., [33] for a definition and discussion of quasiconvexity), representing the energy

wells of the material. Then

W (F ) = min
m=0,...,M

Wm(F ) (2.1)

i.e., W (F ) is the lower envelop of the functions Wm(F ).

A common model of microstructure development in this class of materials presumes that

the microstructures of interest correspond to low-energy configurations of the material, and

that, consequently, their essential structure may be ascertained by investigating the absolute

minimizers of the energy. However, the energy functionals resulting from multiwell energy

densities such as (2.1) lack weak-sequential lower semicontinuity and their infimum is not

attained in general [33]. The standard remedy is to introduce the quasiconvex envelop

QW (F ) =
1

|Q| inf
u∈W 1,∞

0 (Ω)

∫

Q
W (F + Du)dx (2.2)

of W (F ), or relaxed energy density. In this expression, W 1,∞
0 (Ω) denotes the space of

functions whose distributional derivatives are essentially bounded and which vanish on
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the boundary, and Q is an arbitrary domain. Physically, QW (F ) represents the lowest

energy density achievable by the material through the development of microstructure. The

macroscopic deformations of the solid are then identified with the solutions of the relaxed

problem

inf
y∈X

{∫

Ω
[QW (Dy) − f · y]dx −

∫

∂Ω2

t̄ · y
}

(2.3)

where X denotes some suitable solution space, f is a body force field, t represents a dis-

tribution of tractions over the traction boundary ∂Ω2, and the deformation of the body is

constrained by displacement boundary conditions of the form

y = ȳ on ∂Ω1 = ∂Ω − ∂Ω2. (2.4)

Thus, in this approach the effect of microstructure is built into the relaxed energy QW (F ).

The relaxed problem defined by QW (F ) then determines the macroscopic deformation.

In executing this program the essential difficulty resides in the determination of the

relaxed energy QW (F ). As mentioned in the introduction, no general algorithm for the

determination of the quasiconvex envelop of an arbitrary energy density is known at present.

A fallback strategy is to effect a partial relaxation of the energy density by recourse to

sequential lamination [52, 58] and the use of the resulting rank-one convexification RW (F )

of W (F ) in lieu of QW (F ) in the macroscopic variational problem (2.3). We recall that

the rank-one convexification RW (F ) of W (F ) follows as the limit [53, 54]

RW (F ) = lim
k→∞

RkW (F ) (2.5)
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Figure 2.1: Example of a rank-two laminate. λ1 and λ2 are the volume fractions cor-
responding to levels 1 and 2, respectively, and N 1 and N 2 are the corresponding unit
normals.

where R0W (F ) = W (F ) and RkW (F ) is defined recursively as

RkW (F ) = inf
λ,a,N

{(1 − λ)Rk−1W (F − λa ⊗ N ) + λRk−1W (F + (1 − λ)a ⊗ N),

λ ∈ [0, 1],a,N ∈ R
3, |N | = 1

}
k ≥ 1.

(2.6)

In these expressions, λ and 1 − λ represent the volume fractions of the k-level variants,

N is the unit normal to the planar interface between the variants, and a is a vector (see

Fig. 2.1).

Unfortunately, a practical algorithm for the evaluation of the rank-one convexification

of general energy densities ‘on the fly’ does not appear to be available at present. Dolzmann

[36] has advanced a method for the computation of the exact rank-one convexification of

an arbitrary energy density in two dimensions. However, extensions of the method to three

dimensions are not yet available. In addition, the method requires the a priori tabulation

of RW (F ) over all of R
2×2, which limits its applicability to large-scale computing.

An additional complication arises from the fact that the cyclic behavior of martensitic

materials often exhibits hysteresis. Under these conditions, the response of the material

is path-dependent and dissipative, and, therefore, absolute energy minimization does not

furnish a complete model of material behavior. The modeling of hysteresis requires con-
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sideration of entire deformation processes, rather than isolated states of deformation of the

material. A framework for the understanding of hysteresis may be constructed by assum-

ing that the evolution of microstructure is subject to a continuity requirement, namely,

the requirement that successive microstructures be close to each other in some appropriate

sense. This constraint restricts the range of microstructures which the material may adopt

at any given time and thus results in metastable configurations. The particular sequence

of metastable configurations adopted by the material may be path dependent, resulting in

hysteresis. The connection between metastability and hysteresis has been discussed by Ball,

Chu and James [10].

2.3 A sequential lamination algorithm

The problem which we address in the remainder of this chapter concerns the formulation

of efficient algorithms for the evaluation of RW (F ), and extensions thereof accounting for

kinetics and nonlocal effects, with specific focus on algorithms which can be effectively

integrated into large-scale macroscopic simulations. We begin by reviewing basic properties

of sequential laminates for subsequent reference. More general treatments of sequential

lamination may be found in [14, 15, 52, 54, 58, 69].

Uniform deformations may conventionally be categorized as rank-zero laminates. A

rank-one laminate is a layered mixture of two deformation gradients, F −, F + ∈ R
3×3.

Compatibility of deformations then requires F ± to be rank-one connected, i.e.,

F + − F− = a ⊗ N (2.7)

where a ∈ R
3, and N ∈ R

3, |N | = 1, is the normal to the interface between the two variants
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of deformation. Let λ±,

λ− + λ+ = 1, λ± ∈ [0, 1], (2.8)

denote the volume fractions of the variants. Then, the average or macroscopic deformation

follows as

F = λ−F− + λ+F +. (2.9)

If F and {a, λ±,N} are known, then the deformation in the variants is given by

F + = F + λ−a ⊗ N

F− = F − λ+a ⊗ N

(2.10)

and, thus, F and {a, λ±,N} define a complete set of—deformation and configurational—

degrees of freedom for the laminate. Following Kohn [52], a laminate of rank-k is a layered

mixture of two rank-(k − 1) laminates, which affords an inductive definition of laminates

of any rank. As noted by Kohn [52], the construction of sequential laminates assumes a

separation of scales: the length scale lk of the kth-rank layering satisfies lk � lk−1.

Sequential laminates have a binary-tree structure. Indeed, with every sequential lami-

nate we may associate a graph G such that: the nodes of G consist of all the sub-laminates

of rank less than or equal to the rank k of the laminate; and joining each sub-laminate of

order 1 ≤ l ≤ k with its two constituent sub-laminates of order l− 1. The root of the graph

is the entire laminate. Two sequential laminates will be said to have the same structure

(alternatively, topology or layout) if their graphs are identical. Evidently, having the same

structure defines an equivalence relation between sequential laminates, and the set of all

equivalence classes is in one-to-one correspondence with the set B of binary trees.

Let i = 1, . . . , n be an enumeration of the nodes of G. Then, to each node i we may
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Figure 2.2: Example of a rank-two laminate. In this example, ν1 = λ−λ−+ and ν2 =
λ−λ−−.

associate a deformation F i. The root deformation is the average or macroscopic deformation

F . Each node in the tree has either two children or none at all. Nodes with a common

parent are called siblings. Nodes without children are called leaves. Nodes which are not

leaves are said to be interior. The deformations of the children of node i will be denoted

F±
i . Each generation of nodes is called a level. The root occupies level 0 of the tree. The

number of levels is the rank k of the tree. Level l contains at most 2l nodes. The example

in Fig. 2.2 represents a rank-two laminate of order four. The three leaves of the tree are

nodes F +, F−+ and F−−. The interior nodes are F and F −. The children of, e.g., node

F− are nodes F−+ and F−−.

Compatibility demands that each pair of siblings be rank-one connected, i.e.,

F +
i − F−

i = ai ⊗ N i, i ∈ IG (2.11)

where ai ∈ R
3, N i ∈ R

3, |N | = 1, is the normal to the interface between F −
i and F +

i , and

IG denotes the set of all interior nodes. Let λ±
i ,

λ−
i + λ+

i = 1, λ±
i ∈ [0, 1], (2.12)
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denote the volume fractions of the variants F ±
i with respect to node i. Then, the deforma-

tion of the parent variant is recovered in the form

F i = λ−
i F−

i + λ+
i F +

i . (2.13)

If F i and {ai, λ
±
i ,N i} are known for an interior node i, then the deformation of its children

is given by

F +
i = F i + λ−

i ai ⊗ N i

F−
i = F i − λ+

i ai ⊗ N i.

(2.14)

Therefore, F and {ai, λ
±
i ,N i, i ∈ I} define a complete and independent set of degrees of

freedom for the laminate. A recursive algorithm for computing all the variant deformations

F i, i = 1, . . . , n from F and {ai, λ
±
i ,N i, i ∈ IG} has been given by [64].

We shall also need the global volume fractions νl of all leaves l ∈ LG, where LG denotes

the collection of all leaves of G. These volume fractions are obtained recursively from the

relations

ν±
i = λ±

i νi, i ∈ IG (2.15)

with νroot = 1 for the entire laminate, and satisfy the relation

∑

l∈LG

νl = 1. (2.16)

Thus, νl represents the volume occupied by leaf l as a fraction of the entire laminate. The

Young measure (e.g., [60]) of the laminate consists of a convex combination of atoms δF l
(F )

with weights νl, l ∈ L.
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The average or macroscopic stress of the laminate may be expressed in the form

P =
∑

l∈LG

νlP l (2.17)

where

P l = W,F (F l), l ∈ LG (2.18)

are the first Piola-Kirchhoff stresses in the leaves. The average stress may be computed by

recursively applying the averaging relation

P i = λ−P−
i + λ+P +

i , i ∈ I (2.19)

starting from the leaves of the laminate. A recursive algorithm for computing the average

stress P from {P l, l ∈ L} and {λ±
i , i ∈ IG} has been given by [64].

2.3.1 Microstructural equilibrium

We begin by investigating the mechanical and configurational equilibrium of sequential

laminates of a given structure. Thus, we consider an elastic material with strain-energy

density W (F ) subject to a prescribed macroscopic deformation F ∈ R
3×3. In addition, we

consider all sequential laminates with given graph G.

The equilibrium configurations of the laminate then follow as the solutions of the con-

strained minimization problem

GW (F ) = inf
{ai,λ

±

i ,N i,i∈IG}

∑

l∈LG

νlW (F l) (2.20)
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λ±
i ∈ [0, 1], i ∈ IG (2.21)

|N i| = 1, i ∈ IG (2.22)

where the F l are obtained from the recursive relations (2.14). The effective or macroscopic

energy of the laminate is GW (F ). If W (F ) is quasiconvex then it necessarily follows that

ai = 0, ∀i ∈ IG, and GW (F ) = W (F ).

It is interesting to verify that the solutions of the minimization problem (2.20) are

in both force and configurational equilibrium. Thus, assuming sufficient smoothness, the

stationarity of the energy with respect to all deformation jump amplitudes yields the traction

equilibrium equations

(P +
i − P−

i ) · N i = 0, i ∈ IG. (2.23)

Stationarity with respect to all normal vectors yields the configurational-torque equilibrium

equations

[ai · (P +
i − P−

i )] × N i = 0, i ∈ IG. (2.24)

Finally, stationarity with respect to all volume fractions yields the configurational-force

equilibrium equations

fi = (W+
i − W−

i ) − (λ+
i P +

i + λ−
i P−

i ) · (ai ⊗ N i) = 0, i ∈ IG (2.25)

where fi is the configurational force which drives interfacial motion [75]. It bears emphasis

that the leaf deformations F l may in general be arbitrarily away from the minima of W (F ),

and thus the equilibrium equations (2.23) must be carefully enforced. In addition, the

minimization (2.20) has the effect of optimizing the volume fractions of all variants and
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the corresponding interface orientations. If all the preceding stationarity conditions are

satisfied, then it is readily verified that the average or macroscopic deformation (2.17) is

recovered as

P = GW,F (F ) (2.26)

which shows that GW (F ) indeed supplies a potential for the average or macroscopic stress

of the laminate.

The case in which the energy density W (F ) possesses the multiwell structure (2.1)

merits special mention. In this case, the minimization problem (2.20-2.22) may be written

in the form

GW (F ) = inf
{ai,λ

±

i ,N i, i∈IG}
{ml∈{1,...,M}, l∈LG}

∑

l∈LG

νlWml
(F l) (2.27)

λ±
i ∈ [0, 1], i ∈ IG (2.28)

|N i| = 1, i ∈ IG (2.29)

where m = {ml ∈ {1, . . . ,M}, l ∈ LG} denotes the collection of wells which are active in

each of the leaves. This problem may be conveniently decomposed into two steps: a first

step involving energy minimization for a prescribed distribution of active wells, namely,

GmW (F ) = inf
{ai,λ

±

i ,N i, i∈IG}

∑

l∈LG

νlWml
(F l) (2.30)

λ±
i ∈ [0, 1], i ∈ IG (2.31)

|N i| = 1, i ∈ IG (2.32)
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followed by the optimization of the active wells, i.e.,

GW (F ) = inf
{ml∈{1,...,M}, l∈LG}

GmW (F ). (2.33)

It should be carefully noted that the minimizers of problem (2.20-2.22) may be such

that one or more of the volume fractions λ±
i take the limiting values of 0 or 1. We shall

say that a graph G is stable with respect to a macroscopic deformation F if at least one

minimizer of (2.20-2.22) is such that

λ±
i ∈ (0, 1), ∀i ∈ IG (2.34)

and we shall say that the graph is unstable or critical otherwise. The presence of sub-trees

of zero volume in an unstable graph is an indication that the graph is not ‘right’ for the

macroscopic deformation F , i.e., the graph is unable to support a nontrivial microstructure

consistent with F . Unstable graphs are mathematically contrived and physically inadmis-

sible, and, as such, should be ruled out by some appropriate means. This exclusion may

be accomplished, e.g., by the simple device of assigning the offending solutions an infinite

energy, which effectively rules them out from consideration; or by defining solutions modulo

null sub-trees, i.e., sub-trees of vanishing volume. In the present approach, we choose to

integrate the exclusion of null sub-trees into the dynamics by which microstructures are

evolved, as discussed next.

2.3.2 Microstructural evolution

The problem (2.20-2.22) may be regarded as a partial rank-one convexification of W (F )

obtained by prescribing the graph G of the test laminates. The full rank-one convexification
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follows from the consideration of all possible graphs, i.e.,

RW (F ) = inf
G∈B

GW (F ) (2.35)

where, as before, B is the set of all binary trees. In the particular case of energy densities

of the form (2.1), we alternatively have

RW (F ) = inf
G∈B

{ml∈{1,...,M}, l∈LG}
GmW (F ). (2.36)

It is clear that this problem exhibits combinatorial complexity as the rank of the test

laminates increases, which makes a direct evaluation of (2.35) or (2.36) infeasible in general.

Problems of combinatorial complexity arise in other areas of mathematical physics, such

as structural optimization and statistical mechanics. Common approaches to the solution of

these problems are to restrict the search to the most ‘important’ states within phase space,

or importance sampling; or to restrict access to phase space by the introduction of some

form of dynamics. In this latter approach the states at which the system is evaluated form

a sequence, or ‘chain’, and the next state to be considered is determined from the previous

states in the chain. If, for instance, only the previous state is involved in the selection of

the new state, a Markov chain is obtained. In problems of energy minimization, a common

strategy is to randomly ‘flip’ the system and accept the flip with probability one if the

energy is reduced, and with a small probability if the energy is increased.

In other cases, the system possesses some natural dynamics which may be exploited

for computational purposes. A natural dynamics for problem (2.35) may be introduced

as follows. Evidently, the relevant phase space for this problem is B, the set of all binary

trees, and the aim is to define a flow G(t) in this phase space describing the evolution of
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the microstructure along a deformation processes F (t). Here and subsequently, the real

variable t ≥ 0 denotes time. A natural dynamics for G(t) is set by the following conditions:

1. G(t) must be stable with respect to F (t).

2. G(t) must be accessible from G(t−) through a physically admissible transition.

The first condition excludes laminates containing null sub-trees, i.e., sub-trees of zero vol-

ume. The second criterion may be regarded as a set of rules for microstructural refinement

and unrefinement.

In order to render these criteria in more concrete terms, we adopt an incremental view-

point and seek to sample the microstructure at discrete times t0 = 0, . . . , tn, tn+1, . . . .

Suppose that the microstructure is known at time tn and we are given a new macroscopic

deformation F n+1 = F (tn+1). In particular, let Gn be the graph of the microstructure at

time tn. We consider two classes of admissible transitions by which a new structure Gn+1

may be reached from Gn:

1. The elimination of null sub-trees from the graph of the laminate, or pruning.

2. The splitting of leaves, or branching.

Specifically, we refer to branching as the process by which a leaf is replaced by a simple

laminate. The criterion that we adopt for accepting or rejecting a branching event is simple

energy minimization. Thus, let l ∈ LGn be a leaf in the microstructure at time tn, and let

F n
l be the corresponding deformation. The energetic ‘driving force’ for branching of the

leaf l may be identified with

fn
l = W (F n

l ) − R1W (F n
l ) (2.37)
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where R1W (F ) is given by (2.6). We simply accept or reject the branching of the leaf

l ∈ LGn according to whether fn
l > 0 or fn

l ≤ 0, respectively.

In the particular case in which W (F ) is of the form (2.1), the evaluation of R1W (F )

may be effected by considering all pairs of well energy densities, one for each variant.

However, since the well energy densities Wm(F ) are assumed to be quasiconvex and we rule

out variants of zero volume, we may exclude from consideration the cases in which both

variants of the laminate are in the same well. The evaluation of R1W (F ) is thus reduced

to the consideration of all distinct pairs of well energy densities.

The precise sequence of steps followed in calculations are as follows:

1. Initialization: Input F n+1, set Gn+1 = Gn.

2. Equilibrium: Equilibrate laminate with Gn+1 held fixed.

3. Evolution:

(a) Are there null sub-trees?

i. YES: Prune all null sub-trees, GOTO (2).

ii. NO: Continue.

(b) Compute all driving forces for branching {f n+1
l , l ∈ LGn+1

}.

Let fn+1
lmax

= maxl∈LGn+1
fn+1

l . Is fn+1
lmax

> 0?

i. YES: Branch leaf lmax, GOTO (2).

ii. NO: EXIT.

Several remarks are in order. The procedure just described may be regarded as a process

of continuation, where the new microstructure is required to be close to the existing one in

the sense just described. Evidently, since we restrict the class of microstructures which may
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arise at the end of each time step, there is no guarantee that this continuation procedure

delivers the solution of (2.35) for all t ≥ 0. However, metastability plays an important role

in many systems of interest, and the failure to deliver the absolute rank-one convexification

at all times is not of grave concern in these cases. Indeed, the continuation procedure

described above may be regarded as a simple model of metastability.

In this regard, several improvements of the model immediately suggest themselves. The

branching criterion employed in the foregoing simply rules out branching in the presence of

an intervening energy barrier, no matter how small, separating the initial and final states.

An improvement over this model would be to allow, with some probability, for transitions

requiring an energy barrier to be overcome, e.g., in the spirit of transition state theory and

kinetic Monte Carlo methods. However, the implementation of this approach would require

a careful and detailed identification of all the paths by which branching may take place, a

development which appears not to have been undertaken to date.

2.4 Illustrative examples

As a first illustration of the sequential lamination algorithm presented in the foregoing,

we apply it to a simple model of a Cu-Al-Ni shape-memory alloy, a material which has

been extensively investigated in the literature (cf. [11, 12, 29, 58], and references therein).

Photomicrographs taken from the experiments of Chu and James [29] (also reported by [58])

reveal sharp laminated microstructures, often of rank two or higher. In order to exercise

the algorithm, in the examples that follow we simply take the material through a prescribed

macroscopic deformation path.



40

2.4.1 Material model

Cu-Al-Ni undergoes a cubic to orthorhombic martensitic transformation and has, therefore,

six variants in the martensitic phase described by the transformation stretches given by (1.8)

and (1.9). For purposes of illustration of the sequential lamination algorithm we adopt a

simple energy density of the form (2.1), with well energy densities

W0(F ) =
1

8
(F T F − I) C0 (F T F − I) (2.38)

for the austenitic phase, and

Wm(F ) =
1

8
[(FU−1

m )T (FU−1
m ) − I] Cm [(FU−1

m )T (FU−1
m ) − I], m = 1, . . . , 6 (2.39)

for the martensitic phases. In these expressions Cm, m = 0, . . . ,M , are the elastic moduli

at the bottom of the variants. These are (in MPa) [79, 85]

C0 =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




(2.40)

where C11 = 141.76, C12 = 126.24 and C44 = 97 and

C1 =




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




(2.41)

where C11 = 189, C22 = 141 and C33 = 205, C12 = 124, C13 = 45.5, C23 = 115, C44 = 54.9,
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C55 = 19.7, C66 = 62.6 and with the moduli of the remaining martensitic variants following

by symmetry. The energy density defined by (2.1) and (2.39) is material frame indifferent,

results in stress-free states at the bottoms of all wells, i.e., at F = I and F = RU m,

R ∈ SO(3), m = 1, . . . , 6, assigns equal energy density to all unstressed variants, and

exhibits all the requisite material symmetries.

2.4.2 Optimization

In the examples presented here, and in the finite element calculations presented in the

following section, problem (2.20-2.22) is solved using Spellucci’s [77] sequential quadratic

programming (SQP) algorithm for constrained minimization. The SQP algorithm is an

iterative procedure which requires an initial guess in order to start the iteration. In calcu-

lations we begin by setting the initial values of {ai, λ
±
i ,N i, i ∈ IGn+1

} at time tn+1 equal

to the converged values at time tn. The main issue arises in evaluating possible branching

events, as in this case new interfaces arise for which no previous geometrical information

exists. The selection of initial guesses for ai and λ±
i , i ∈ IG, offers no difficulty, and we

simply set ai = 0 and λ±
i = 0 or 1. The choice of the initial value of the new interface

normals N i requires more care since it strongly biases the resulting microstructure.

We have investigated two ways of initializing the normals N i arising during branching. A

first approach is based on sampling the unit sphere uniformly. Thus, we simply select initial

values of N i uniformly distributed over the unit sphere with some prespecified density and

select the solution which results in the least energy. If two or more branched configurations

possess the same energy, we select one at random. This exhaustive search approach is

effective but costly owing to the large number of cases which need to be considered.

The second approach consists of priming the iteration using an initial guess derived from
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Ball and James [11, 12] constrained theory for shape-memory materials. In this theory,

the elastic moduli are presumed large compared to the transformation stresses, so that

the geometry of the laminate can be obtained, to a first approximation, directly from the

transformation strains. Conveniently, all resulting twinning relations between every distinct

pair of martensitic wells can be tabulated beforehand. For Cu-Al-Ni this tabulation has

been carried out by Bhattacharya, Li and Luskin [21], with the solutions given by (1.15) and

(1.16) with use of Table 1.1. These results from the constrained theory may conveniently

be used to start a branching calculation when the energy density is of the form (2.1). In

this case, the branching calculation entails the consideration of every pair of well energy

densities Wm(F ) and Wn(F ), m,n = 1, . . . , 6, m 6= n, in the new leaves. The attendant

iteration may then be started from the constrained solutions {a,N} described above, with

the initial value of λ± determined by means of a line search.

2.4.3 Martensite–martensite transition

Our first test case concerns the macroscopic deformation process

F (t) = (1 − t)U 3 + tU4, t ∈ [0, 1] (2.42)

which takes the material from one variant of martensite to another. Fig. 2.3 shows the

evolution of the energy, the component P13 of the first Piola-Kirchhoff stress, and the volume

fraction λ of U 4, respectively, for the unrelaxed and relaxed cases. In the calculations to

follow the branching constructions employ the constrained geometry as an initial guess, as

discussed in the foregoing.

The unrelaxed response shown in Fig. 2.3 exhibits an abrupt transition from the initial to
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the final variant, as no mixed states are allowed to develop during the deformation process.

By contrast, the relaxation algorithm results in the development of a rank-one laminate

immediately following the onset of deformation. It should be carefully noted that the

material is allowed to develop laminates of arbitrary rank, and that the persistency of a rank-

one laminate is due to the fact that both leaves are stable against branching. The computed

volume fraction λ increases linearly from 0 to 1. As a result of this evolving microstructure,

the energy of the material is fully relaxed, and the material remains unstressed. In this

example, the unloading response exactly traces in reverse the loading response, and hence

no hysteresis is recorded.

2.4.4 Simple shear

Our second test case concerns macroscopic simple shear on the plane (010) and in the

direction (100). The material is taken to be initially undeformed. The shear deformation

is increased from zero up to a maximum value and then decreased back to zero. The

calculations are carried out excluding the austenitic well from the definition (2.1) of the

energy and considering the six martensitic wells only.

Fig. 2.4b shows a comparison of the computed unrelaxed and relaxed energies. By

the exclusion of the austenitic well the material is forced to develop a rank-five laminate

in its initial undeformed configuration. The graph of this laminate, and of all laminates

which subsequently arise during deformation, is shown inlaid in Fig. 2.4a. As is evident

from Fig. 2.4b, the relaxation algorithm ostensibly succeeds at fully relaxing the energy

of the material. With increasing deformation, the computed microstructure undergoes

transitions to rank-four and three laminates. A first rank-three laminate of order thirteen

is first predicted which subsequently simplifies to a rank-three laminate of order seven.
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As a result of this microstructural evolution, the relaxed energy remains well below the

unrelaxed energy through the deformation, Fig. 2.4b. Upon unloading, the order-seven

rank-three laminate is maintained down to zero deformation, suggesting that the initial

microstructures computed during loading are metastable. Indeed, the unloading stress-

strain curve lies below the loading one, resulting in a certain amount of hysteresis, which

suggests that the order-seven rank-three laminate is indeed more efficient than the precursor

microstructures.

2.5 Nonlocal extension

The simple branching criterion (2.37), which accounts for the energies of the variants only,

neglects any energy barriers that may oppose the transformation and may lead to runaway

refinement of the microstructure. In order to limit branching and, additionally, to estimate

the size of the microstructure, we follow Ball and James [11] and take into consideration two

additional sources of energy: the energy of the twin boundaries, and the mismatch energy

contained within the boundary layers separating pairs of leaves. For instance, Boullay

et al. [24], and James et al. [50] have investigated in detail the structure of branched

needle microstructures that develop within the misfit boundary layers, e.g., at the edge of

a martensite laminate. Such level of detail is well beyond the scope of this work. Our

aim here is to derive a rough estimate of the misfit energy amenable to a straightforward

calculation.

One such simple estimate may be derived as follows. Begin by enforcing ‘rigid-device’

boundary conditions

yBL = y0 + F̄ (x − x0), x3 = 0 (2.43)
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where F̄ is the average deformation in the laminate, x0 is a material point within the

reference configuration of the laminate, and y0 = y(x0) is its position on the deformed

configuration. This insulates the laminate from the details of the adjacent deformation field

in the regions x3 > 0 and x3 < −l. A simple interpolating deformation mapping is then

yBL(x) = y0 − (y(x) − y0)
x3

∆
+ F̄ (x − x0)

(
1 +

x3

∆

)
, −∆ ≤ x3 ≤ 0 (2.44)

where y(x) is the deformation mapping of the laminate, and ∆ is the boundary layer

thickness. The boundary layer at x3 = −l can be given an identical treatment. The

corresponding deformation gradient is

F BL(x) = −F (x)
x3

∆
+ F̄

(
1 +

x3

∆

)
+

1

∆
[F̄ (x − x0) − (y(x) − y0)] ⊗ e3. (2.45)

We proceed to estimate the elastic energy of the region defined by the intersection of each

variant with the boundary layer by a simple one-point quadrature rule. Let x± be a pair

of consecutive sampling points, Fig. 2.5, chosen such that x±
3 = −∆/2, and select x0 = x−
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for simplicity. Then, it follows immediately from (2.45) that

F BL− ≡ F BL(x−) =
1

2
(F− + F̄ ). (2.46)

Likewise,

F BL+ ≡ F BL(x+) =
1

2
(F + + F̄ ) + [F̄ (x+ − x−) − (y+ − y−)] ⊗ e3. (2.47)

But, since y(x) is piecewise linear, it follows that

y+ − y− = F−(λ−(x+ − x−)) + F +(λ+(x+ − x−)) = F̄ (x+ − x−) (2.48)

and

F BL+ =
1

2
(F + + F̄ ). (2.49)

Collecting the above results we finally have

F BL± =
1

2
(F± + F̄ ). (2.50)

Within this approximation, the misfit boundary-layer energy density finally evaluates to

WBL = λ−[W (F BL−) − W (F−)] + λ+[W (F BL+) − W (F +)] (2.51)

which furnishes a remarkably simple (though rough) estimate. We note that

F BL+ − F BL− =
1

2
(F + − F−) =

1

2
a ⊗ N (2.52)
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and

λ−F BL− + λ+F BL+ = F̄ . (2.53)

Thus, the deformations F BL± are rank-one compatible and match the average deformation

of the laminate. Since the deformations F ± minimize the energy of the laminate among all

rank-one laminates with average deformation F̄ , it follows that W BL ≥ 0, i.e., W BL does

indeed represents an excess energy.

For simplicity, we assume that the twin-boundary energy Γ per unit area is a constant

independent of the deformation of the variants. Combining the preceding estimates, it

follows that the total excess or nonlocal energy due to the twin boundaries and the misfit

boundary layers contained within a region of the laminate of dimensions L × L × l is

ENL = L2l

{
Γ

lc
+

2∆

l
WBL

}
. (2.54)

Taking ∆ = lc/2, for definiteness, this expression reduces to

ENL = L2l

{
Γ

lc
+

lc

l
WBL

}
. (2.55)

This excess energy may now be minimized with respect to lc, with the result

lc =

√
Γl

WBL
(2.56)

which affords an estimate of lc. The corresponding minimum excess energy per unit volume

is

WNL ≡ ENL

L2l
= 2

√
ΓWBL

l
. (2.57)
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We note that this excess energy grows as l−1/2, which tends to suppress microstructural

refinement. In calculations, we interpret the excess energy density W NL as an energy

barrier for branching. Consideration of this energy barrier has the effect of reducing the

local branching driving force (2.37) to

fn
l = W (F n

l ) − R1W (F n
l ) − WNL(F n

l ) (2.58)

which effectively introduces a lower cut-off for the size of the microstructure and eliminates

the possibility of runaway microstructural refinement.

2.6 Finite-element simulation of indentation in Cu-Al-Ni

The sequential lamination algorithm developed in the foregoing may conveniently be taken

as a basis for multiscale simulation in situations in which there is a strict separation of scales:

a macroscopic scale characterized by slowly-varying smooth fields; and a much smaller scale

commensurate with the size of the evolving microstructure. As remarked by several authors

[25, 27, 34, 58], these problems may be solved effectively by pushing the microstructure to

the subgrid scale, while solving the well-posed relaxed problem on the computational grid.

In this section we present an example of the application of this multiscale approach in

which the macroscopic problem is solved by the finite-element method, while the effective

behavior is computed, simultaneously with the macroscopic solution, at the Gauss-point

level using the sequential lamination algorithm developed in the foregoing. The particu-

lar problem considered concerns the quasistatic normal indentation of a Cu-Al-Ni shape-

memory alloy by a spherical indenter. The domain of analysis and the computational mesh

are shown in Fig. 2.6. The analysis is reduced to one quarter of the entire domain for sim-
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Figure 2.6: Computational domain and finite element mesh.

plicity. In particular, solutions exhibiting broken symmetry are ruled out by the analysis.

The size of the computational domain is 20 mm × 20 mm × 20 mm. The radius of the

indenter is 15 mm. The specimen is fully supported over its entire base, and the remainder

of its boundary is free of tractions. The computational mesh contains 254 nodes and 105

ten-node quadratic tetrahedral elements. Contact between the indenter and the specimen

is assumed to be frictionless and is enforced by a penalty method [67]. To ensure that the

jacobian J of the deformation remains positive in all variants at all times, the simple energy

of each well is augmented by a term of the form [62]

W vol(J) =





C(J2 + J−2 − 2)2, J < 1

0, otherwise

(2.59)

where C is a constant chosen sufficiently small to minimize the effect on the total energy. By

design, W vol(J) and its first and second derivatives vanish at J = 1. In addition, the twin-

boundary and misfit energies are accounted for as part of the branching criterion as a means
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Figure 2.7: Cross sections and energy-density contours for two unrelaxed solutions at
depths of indentation: a) 0.150 mm, and b) 0.375 mm. The symbols designate the energy
well which is activated at each Gauss point of the mesh.

of introducing a lower cutoff for the laminate size and preventing runaway microstructural

refinement. In all calculations, the twin-boundary energy per unit area Γ is set to 1 J/m2.

The maximum size of the laminate at a particular Gauss point is set to the element size.

The finite-element solution is obtained by dynamic relaxation followed by a precondi-

tioned conjugate-gradient iteration [73]. The high level of concurrency in the constitutive

calculations was exploited via an MPI-based parallel implementation [66] on the ASCI Blue

multiprocessing computer. Performance studies showed excellent load balancing and scala-

bility.

Fig. 2.7 shows the unrelaxed deformed configurations, and the corresponding distribution

of active energy wells at the Gauss points of the mesh, at depths of indentation of 0.150 and

0.375 mm. As is evident from this figure, two energy wells become active during indentation.

The transformed zone under the indenter grows with depth of indentation, but the fineness
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Figure 2.8: a) Normalized total energy vs. normalized depth of indentation; b) Normalized
indentation force vs. normalized depth of indentation.

of the variant arrangement is severely limited by the mesh size. Correspondingly, the total

energies and indentation forces recorded during indentation are comparatively high, Fig. 2.8.

In this figure the energy has been normalized by E0 = V0C
Austenite
11 , where V0 is the volume

of the undeformed specimen, while the force has been normalized by F0 = E0/RIndenter.

The relaxed solution obtained using the sequential lamination algorithm differs markedly

from the unrelaxed solution just described, Fig. 2.9. Thus, the relaxed deformation field

is accompanied by the development of well-defined microstructures at the subgrid level.

Some of the laminates generated by the sequential lamination algorithm are quite complex,

reaching rank two. Of note is the appearance of a de-twinned zone directly under the

indenter. The effect of relaxation on the total energy and indentation force is quite marked,

Fig. 2.8, with the relaxed values lying well below the unrelaxed ones. Unloading exhibits the

path-dependent nature of the algorithm, with the microstructure established at maximum
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Figure 2.9: Cross section and energy-density contours for relaxed solution at an inden-
tation depth of: a) 0.150 mm, and b) 0.375 mm. The symbols indicate the rank of the
microstructure at the Gauss points. The insets depict the geometry of the microstructure
at the indicated sampling points, with each color representing an individual well, and are
of identical size oriented such that the left face corresponds to the cross section plane.
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load remaining in place during much of the unloading process, which in turn results in a soft

response. The fineness of the microstructure is somewhat overpredicted by the calculations,

with some of the variants attaining sub-micron thicknesses. In view of (2.56), this excessive

refinement may owe to a low value of the twin-boundary energy Γ, or to an overestimation

of the misfit energy W BL, or both.

2.7 Summary and concluding remarks

We have presented a practical algorithm for partially relaxing multiwell energy densities.

The algorithm is based on sequential lamination, but it is constrained in such a way that

successive microstructures occurring along a deformation path are close to each other in

a certain sense: the new microstructure should be reachable from the preceding one by a

combination of branching and pruning operations. All microstructures generated by the

algorithm are in static and configurational equilibrium. In particular, we optimize all the

interface orientations and variant volume fractions, with the result that all configurational

forces and torques are in equilibrium. We additionally allow the variants to be arbitrarily

stressed and enforce traction equilibrium across all interfaces. Owing to the continuity

constraint imposed upon the microstructural evolution, the predicted material behavior

may be path-dependent and exhibit hysteresis.

In cases in which there is a strict separation of micro and macrostructural length scales,

the proposed relaxation algorithm may effectively be integrated into macroscopic finite-

element calculations at the subgrid level. We have demonstrated this aspect of the al-

gorithm by means of a numerical example concerned with the indentation of a Cu-Al-Ni

shape memory alloy [29] by a spherical indenter. The calculations illustrate the ability of

the algorithm to generate complex microstructures, resulting in force–depth of indentation
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curves considerably softer than otherwise obtained by direct energy minimization.

Several improvements to the present approach immediately suggest themselves. The

relaxation algorithm, in its present form, does not account for energy barriers for branching.

Thus, a significant improvement over this model would be to permit, with probability less

than one, transitions requiring an energy barrier to be overcome, e.g., in the spirit of

transition state theory and kinetic Monte Carlo methods. This extension would require

a careful and detailed identification of all the paths by which branching may take place,

and the attendant energy barriers. Another significant improvement would be to relax the

configurational force equilibrium constraint and replace it by a kinetic relation governing

interfacial motion [2, 3, 75]. Kinetic relations of this form can effectively be integrated into

the variational principle with the aid of time discretization [63, 65].
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Chapter 3

Algorithm verification

3.1 Introduction

This chapter is concerned with the verification of the lamination algorithm detailed in

Chapter 2. The algorithm will be applied to four problems and the results compared to the

known analytic solutions.

The first problem consists of three pairwise rank-one compatible wells representing anti-

plane shears [72]. As the transformation stretches differ by a rank-one matrix, satisfying

the twinning equation, it is expected to be an uncomplicated initial verification. The second

model, studied by several authors including [8, 20, 83], involves four incompatible wells with

an analytic relaxation that involves infinite rank laminations. This is a popular benchmark

problem, with the algorithms of Dolzmann and Walkington [36, 39] and Aranda and Pedre-

gal [5] both obtaining the exact result with recourse to statistical optimization approaches.

The next verification test considers a model for nematic elastomers [35]. In contrast to the

solutions considered previously, the energy consists of a single nonconvex well. The final

calculation, a constitutive model for polycarbonate, also possesses a nonconvex well that,

in addition to being relaxed itself, forms laminations with a second convex well [41]. These

particular examples were chosen to provide a breadth of applications, without revisiting the
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two-well problem considered in §2.4.3.

To solve these problems with the lamination algorithm we require an energy functional.

For simplicity, the energy functional for each well in the first two problems was chosen to

be

W (F ) = C trace(BT B) (3.1)

with associated first Piola-Kirchoff stress

P (F ) = 2CB (3.2)

where B ≡ F − U i, U i are the well locations, and C is a constant. The third and fourth

examples use different energy functionals, discussed later.

Additionally, the algorithm requires an initial guess for the lamination variables λ, a,

and N for each new branch, given the variants of the leaves. While λ can be found via a

line search, the values of a and N are problem specific and will be discussed below.

The surface energy detailed in §2.5 is not relevant here and was not included.

3.2 Three-well model

The first verification test is a three-well problem related to twinning in BCC crystals (see [72]

and references therein). While the general two-well problem has been studied for some time,

e.g., [25, 38, 55, 61], with a solution in the linearized case first given by Kohn [52], the

three-well problem is significantly more difficult [52], only recently yielding a solution [76].

The problem under consideration here is less general, with the three wells pairwise rank-one

connected, i.e., they differ by a matrix of rank one without the need for the rotation R as
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Figure 3.1: Contours of the unrelaxed energy for the three-well model. Note that the
energy scale is logarithmic.

in (1.7).

For the present problem, the wells correspond to the three twinning shears, with the

crystal lattice oriented such that they are anti-plane shears

U1 =




1 0 0

0 1 0

0 ξ 1




, U2 =




1 0 0

0 1 0

−
√

3
2 ξ −1

2ξ 1




, U 3 =




1 0 0

0 1 0

√
3

2 ξ −1
2ξ 1




, (3.3)

where ξ = 1/
√

2 is the magnitude of the twinning shear. This energy is illustrated in Fig. 3.1

for the energy functional given above. Note that here we are not including the undeformed

variant at the origin.

We now require an initial guess for the optimization of new branches. As the variants
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Figure 3.2: Tree representation of a solution to three rank-one connected wells.

are rank-one connected, we can express the difference between each pair of matrices with

respect to {a,N} as required

U i − U j = aij ⊗ N ij. (3.4)

This yields the value

a = (0, 0,
√

3/2) (3.5)

for every pair of wells, with N given in Table 3.1.

wells 1 2 3

1 (1
2 ,

√
3

2 , 0) (−1
2 ,

√
3

2 , 0)

2 (−1
2 ,−

√
3

2 , 0) (−1, 0, 0)

3 (1
2 ,−

√
3

2 , 0) (1, 0, 0)

Table 3.1: Initial guess N for lamination between the indicated wells for the three-well
problem.

It is known that three pairwise rank-one connected wells can be fully relaxed inside their

convex hull [26]. This can be demonstrated by constructing the microstructure illustrated

in Fig. 3.2 for F in the convex hull of U i. The deformation F 12 can be constructed via

F 12 = U1 + λa ⊗ N = U 2 − (1 − λ)a ⊗ N (3.6)

for an arbitrary F 12 that is a convex combination of U 1 and U2. We then wish to show
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that this resulting deformation is rank-one compatible with the remaining well U 3, i.e, that

rank(F 12 − U3) = 1 (3.7)

thus allowing the construction of the illustrated zero energy microstructure. Substituting

one half of (3.6) into (3.7)

rank(F 12 − U3) = rank(U 1 + λa ⊗ N − U 3) (3.8)

and then using the pairwise connection between U 1 and U3 allows this to be simplified to

rank(F 12 − U3) = rank(b ⊗ M + λa ⊗ N) (3.9)

where U 1 − U3 = b ⊗ M . Chipot et al. [26] showed that for a lamination of pairwise

connected wells, either all of the associated shear vectors a or normals N must be parallel.

For this specific problem, (3.5) indicates that a = b in (3.9). Using this relation with (3.9)

yields the required result.

The above fully relaxed construction was obtained exactly by the lamination algorithm,

as illustrated in Fig. 3.3.

3.3 Four-well model

The next problem under consideration is the four-well problem, detailed in Müller [60]

and references therein. This problem has been studied independently by several authors



62

FZX

F
Z

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1 energy
1.0E+00
1.0E-01
1.0E-02
1.0E-03
1.0E-04
1.0E-05

Rank 0

Rank 1

Rank 2

Figure 3.3: Laminate energy obtained for three-well model. The lines are contours of
laminate rank, as indicated, while the colors are energy contours on a logarithmic scale.
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including [5, 8, 20, 36, 39, 83], and consists of the four two-dimensional diagonal matrices:

A1 = −A3 = diag(−1,−3)

A2 = −A4 = diag(−3, 1)

(3.10)

illustrated in Fig. 3.4 using the aforementioned energy functional. Note that the wells are

not rank-one connected, i.e., rank(Ai − Aj) 6= 1.

For convenience, we now define four other matrices J i, Fig. 3.5. It can be shown [60]

that points inside the shaded region R, as well as along the lines connecting J i and Ai, can

be constructed via a lamination that converges to zero energy as the laminate rank tends to

infinity. The proof, by construction, involves successive laminations between pairs {A i,J i}.

An arbitrary matrix F , interior to R, is decomposed into a laminate of the points F 1 and
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four-well problem. Refer to Fig. 3.5 for the definitions of {Ai,J i,F ,F i}.

F 2 on the boundary. Each of these boundary points can then be expressed as a laminate

involving pairs of Ai and J i. One laminate in this infinite sequence is shown in Fig. 3.6.

The next laminate in the sequence for the left half of this tree is constructed by expressing

J3 as

J3 =
1

2
(A4 + J4) (3.11)

after which the pattern repeats. Observe that, because the leaf deformation gradients Ai

as in (3.11) are at zero energy, the energy is reduced by a factor of two with each successive

lamination after the initial lamination on the boundary (e.g., starting with leaf J 1 on the

left of Fig. 3.6).

Recall that the lamination algorithm requires an initial value of {λ,a,N} for each new

branch, given the variants of the two leaves. As the region of interest includes the zero

matrix and the ‘transformation matrices’ have negative determinants, it is not clear that

one should apply the twinning equation [17]

QAi − Aj = a ⊗ N (3.12)
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where Q ∈ SO(3), a,N ∈ R
3, and |N | = 1, as is done in Chapter 2 with Cu-Al-Ni.

However, laminations between pairs {Ai,J i} play a central role in the analytic solution

constructed above. Each pair is rank-one connected, and can be expressed using (3.4) in

terms of a and N to yield

{J1,A1} ⇒ a1 = (0, 4), N 1 = (0, 1)

{J2,A2} ⇒ a2 = (4, 0), N 2 = (1, 0)

{J3,A3} ⇒ a3 = (0, 4), N 3 = (0,−1)

{J4,A4} ⇒ a4 = (4, 0), N 4 = (−1, 0).

(3.13)

Unfortunately, these values are for laminations between J and A. Furthermore, recall that

the deformation gradient at the leaves need not coincide with Ai; the leaf variant only

indicates which Ai is used in the energy functional. It is thus not clear which of these four

pairs of values are applicable for a given pair of variants, as required by the lamination

algorithm. For robustness, the minimum energy solution is selected using each of these four

cases.

To preclude infinite branching in this numerical test, the algorithm was modified to re-

quire that the energy reduction obtained by branching be larger than a numerical tolerance,

chosen here to be 0.001 (note that at the origin the unrelaxed energy attains a value of 10.).

If this tolerance is much smaller the algorithm develops extremely high rank laminates and

the computational effort quickly becomes unreasonable.

The lamination was computed on a grid of points in the Fxx–Fyy plane, Fig. 3.7. As im-

plemented, the algorithm is not able to obtain satisfactory results near the origin, although

the solution elsewhere is encouraging.
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Figure 3.8: Diagram of solution obtained at F = diag(−0.3, 0.1) for the four-well problem.

A schematic of the laminate obtained at F = diag(−0.3, 0.1) in this central region

is plotted in Fig. 3.8. In these diagrams, laminations are represented by points joined

by horizontal or vertical lines. Leaves are associated with unconnected line endpoints, an

intersection represents an interior node, and volume fractions are related to segment length.

For the laminate in Fig. 3.8, the root is F , with children b and e. The volume fraction for c

with respect to its parent b is λc = ab/ac, while the total volume fraction is νc = λcFe/be,

where, e.g., ab indicates the length of the line segment between a and b.

Near the origin, the analytic solution described above would construct a microstructure

that has a very high energy for the initial two levels shown in Fig. 3.6. However, the

numerical algorithm constructs solutions via recursive branching of the existing laminate,

minimizing the energy after each branching, and terminating when no further rank-one

branch reduces the total energy. The algorithm is thus unable to construct laminates in
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which a rank-one branch leads to an increase in energy, but further branching would result

in an energy reduction. Essentially, this represents an energy barrier for branching.

Given the solution in Fig. 3.8, evidently there is no rank-one branching of the leaves

{a, c,d,f} that reduces the total energy. This is readily apparent, given the quadratic

energy functional and location of the leaves in the figure, for a fixed location of the leaves

(discounting the global optimization of {λi,ai,N i}), but is not obvious in the general case.

This energy barrier also explains the failure of the algorithm to laminate close to the wells

themselves, even along the lines AiJ i, due to the relatively small unrelaxed energy close to

the well.

It is envisioned that the ultimate use of this algorithm is to incrementally deform a ma-

terial from a known initial microstructure. The evolution of the microstructure along such

a deformation path should assist the algorithm in overcoming the energy barrier discussed.

The calculation in Fig. 3.7 was thus repeated in this fashion by computing the result at

each point X in the figure via the arbitrary linear deformation path

F (t) = (1 − t)A∗ + tX, t ∈ [0, 1] (3.14)

starting from the location A∗ of the nearest well (where the microstructure is known to

consist of this single variant).

The incremental results, Fig. 3.9, indicate that the algorithm was able to obtain a fully

relaxed result, within the numerical tolerance discussed above, along the lines connecting

each pair {Ai,J i}, discounting the small regions near the wells themselves. In the interior

of R the algorithm is able to relax the energy to 1.5% or less of the initial value, but does

not obtain the exact result.
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For further illustration, results were obtained for the deformation path

F (t) = (1 − t)A2 + tA4, t ∈ [0, 1] (3.15)

between two of the wells, Fig. 3.10. Except for a few isolated points, the laminate is rank-

eleven in the interval F xx = [−2.4, 3] where lamination is obtained. Unlike the results in

Fig. 3.9, the deformation is incremented from the left of the figure continuously to the right,

with the lamination starting from the microstructure obtained in the previous step. Thus,

although the algorithm cannot overcome the energy barrier for F xx < −2.4, the laminate

that is eventually created is energetically favorable up to F xx = 3.

To observe the difficulties encountered close to the origin, we shall examine the mi-

crostructure obtained at F = diag(−0.3, 0.1) under the deformation (3.15). The analytic
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Figure 3.11: Graph of the rank-eleven solution obtained at F = diag(−0.3, 0.1) for a
deformation path from well A2 to well A4. The variant number (indicating A1, A2, A3, or
A4) is given for each of the leaves.

solution for this point is a zero energy balanced tree, as shown in Fig. 3.6, but of infinite

extent. The numerical results, Fig. 3.11, appear significantly different. However, the entire

left half of this tree can be made to resemble the left half of analytic solution in Fig. 3.6 by

appropriate switching of left and right-hand leaves, corresponding to changes in the sign of

N . This solution is further plotted on the Fxx–Fyy plane, Fig. 3.12. Examining the details

of the leaves a and b from Fig. 3.11 indicates that they are nearly identical to nodes d

and f shown in Fig. 3.8, and furthermore account for 90% of the total energy. The other

terminal leaves, c and d, have a very low volume fraction and do not contribute significantly

to the energy. Although the chosen incremental deformation path significantly reduced the

total energy, it was only successful in overcoming the energy barrier for one of the rank-two

leaves in Fig. 3.11.
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3.4 Nematic elastomer model

The next example is a model for nematic elastomers first proposed by Bladon et al. [23, 84],

and studied extensively by DeSimone and Dolzmann [32, 35, 37], who showed it qualitatively

reproduced experimental results [88].

The energy model of Bladon et al. can be written as [37]

W (F ) = β2

(
|F |2 − β6 − 1

β6
|F T d|2

)
− 3 (3.16)

where d, |d| = 1, is the director, a characteristic direction in the elastomer, β is a constant,

and the deformation gradient F ∈ R
3×3 is restricted such that det(F ) = 1. As d is an

independent variable, (3.16) can be minimized first with respect to the director. This energy

can be expressed using the eigenvalues λ2
i of C = F T F , ordered such that λ1 < λ2 < λ3,

with the restriction that λ1λ2λ3 = 1. This form allows for the trivial minimization of the

term involving d, resulting in the energy functional to be considered here

W (F ) = β2λ2
1 + β2λ2

2 +
λ2

3

β4
− 3. (3.17)

The energy (3.17) represents a continuum of SO(3) invariant states, rather than in-

dividual energy wells as previously considered, and essentially can form laminations with

reoriented versions of itself. DeSimone and Dolzmann have obtained the quasiconvexifica-
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tion of this energy [35]

W qc(F ) =





0, λ3 ≤ β2,

2
βλ1

+ β2λ2
1 − 3, λ1λ

2
3 ≤ β3,

W (F ), λ1λ
2
3 ≥ β3,

(3.18)

where the three solutions represent a liquid phase, intermediate phase, and solid phase,

respectively.

Following the construction of W qc, we shall consider as initial guesses those laminations

in which one of the three principal stretches λi remains constant. This results [35] in an

initial guess λ = 1/2, with a and N chosen to be the eigenvectors perpendicular to the

lamination direction. Thus, e.g., for laminations along lines in which λ1 is constant, the

initial guess is taken to be a = v2 and N = v3, where vi is the eigenvector corresponding

to λ2
i . The lamination direction is determined for each branching via energy minimization.

Applying the lamination algorithm, using β2 = 1.26, yields the exact solution, Fig. 3.13

(compare with Fig. 3 in [35] with β2 = r1/3).

3.5 Polycarbonate model

The final verification test involves a constitutive model for polycarbonate that is similar to

the nematic elastomer model just discussed. Of particular interest is the nearly perfectly-

plastic behavior of the material characterized by the appearance of nanoscale laminations

between elastic and plastic ‘phases’ [42]. Here we focus on algorithm verification rather

than the details of the development of the model or its comparison with experiment. For

further discussion regarding these topics see [41].



76

λ3

1/
λ 1

1 1.1 1.2 1.3 1.4
1

1.1

1.2

1.3

1.4

Rank 1
E=E(λ1)

Rank 2
E~0

Rank 0

Unobtainable

U
no

bt
ai

na
bl

e

β2

β

Figure 3.13: Lamination result for the nematic elastomer model, corresponding closely to
the exact solution.
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The model involves two energy wells

W1 = λ2
1 + λ2

2 + λ2
3 − 3 (3.19)

W2 = η2λ2
1 + λ2

2 +

(
λ3

η

)2

+ dU − 3 (3.20)

where again the λ2
i are the eigenvalues of C = F T F , ordered such that λ3 ≥ λ2 ≥ λ1 ≥ 0,

and where the energy has been normalized by µ/2, with µ the shear modulus. As in the

DeSimone-Dolzmann model discussed beforehand, we are presently restricting this model

to isochoric deformations, i.e., λ1λ2λ3 = 1. The elastic response is embodied in W1, which

is essentially just (3.1). The second well is similar to (3.17) in that it consists of an SO(3)

continuum of states. However, this well can form laminations with the first well in addition

to the ‘self-laminations’ encountered in the nematic elastomer model. W2 is at a higher

energy than W1 in the undeformed state, but becomes preferred at high shear. This well

thus represents plasticity with the amount of plastic yield and plastic work related to η and

dU respectively.

The relaxation of this energy corresponding to the polyconvex envelope has been ob-

tained by Fortunelli et al. [41] using a parabolic approximation of the energy. As the solution

is symmetric about λ2 = 1 in the (1/λ1, λ3) plane, we will state the result for λ2 ≤ 1

W pc(F ) =





W1, α < α1,

Wa, α1 ≤ α ≤ α2 and λcrit
2 ≤ λ2 ≤ 1,

Wb, α1 ≤ α ≤ α2, λ2 ≤ λcrit
2 and λ3 ≤ λcrit

3 ,

Wc, λ3 > λcrit
3 and 1

λ1
≤ √

ηλ3,

W2, otherwise,

(3.21)
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where:

Wa = λ2
2 +

2

λ2
+

dU

γ

√
λ2

(
α − dU

4γ

√
λ2

)
− 3, (3.22)

Wb = Wb (λ3) = Wa|λ2=λcrit
2

, (3.23)

Wc =

(
λ3

η

)2

+ 2
η

λ3
+ dU − 3, (3.24)

α = λ3 − λ1, (3.25)

α1 =
dU

2γ

√
λ2, (3.26)

α2 =
γ√
λ2

+
dU

2γ

√
λ2, (3.27)

γ = η − 1

η
. (3.28)

The value for λcrit
2 is obtained at each value of λ3 by solving

dWa

dλ2

∣∣∣∣
λ3

= 0 (3.29)

using the relation λ1λ2λ3 = 1 to eliminate λ1. We also define λcrit
3 as the intersection

between α = α2 and λcrit
2 (λ3), and λcrit

1 = 1/λcrit
2 λcrit

3 . The different regions in the relaxed

energy can be characterized as follows: the energy Wa arises through rank-one laminations

between W1 and W2, Wb is a rank-two laminate between W1 and a laminate of W2, and Wc

is a self-lamination of W2.

The lamination algorithm again requires initial guesses for {λ,a,N}. For laminations

involving W2 laminating with itself the initial guess is identical to that given in §3.4. For

laminations between the two wells we refer to the construction of the solution [41]. We again

attempt laminations such that each of the three eigenvalues λi are constant. The eigenvalue

λi under consideration will be denoted by ζ2, the remaining two eigenvalues ζ1 and ζ3 are
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ordered such that ζ1 ≤ ζ3. As derived by Fortunelli et al., the appropriate lamination values

are

N = −f1v1 + f2v2 (3.30)

a = |A| (f1v1 + f2v2) (3.31)

λ =
4 (η − 1) α

√
ζ2 − dUζ2

8 (η − 1)2
(3.32)

where vi is the eigenvector corresponding to ζi, with the values α, f1, f2, and |A| given by

α = ζ3 − ζ1 (3.33)

f1 =

√
ζ1

ζ1 + ζ3
(3.34)

f2 =

√
ζ3

ζ1 + ζ3
(3.35)

|A| = 2 (η − 1) ζ1ζ3. (3.36)

With the above expressions for the unrelaxed energy and initial guesses it is straightfor-

ward to apply the lamination algorithm. For the following calculations, we take η = 1.06,

and dU = 0.006. The resulting energy ‘phase’ diagram is shown in Fig. 3.14. In this dia-

gram Wa is the rank-one region along the diagonal, defined by diagonal lines corresponding

to λcrit
2 in two directions and α1 and α2 in the remaining directions. The rank-two region

to either side is Wb, further defined by the vertical line λcrit
3 . Finally, Wc is the remaining

rank-one area bounded by the given parabola and λcrit
3 .

As indicated, the material of interest exhibits very soft behavior. Examining the cauchy

mises stress response, Fig. 3.15, clearly indicates the areas of constant stress corresponding

to Wb in (3.21). The central region identified with energy Wa is also at a constant stress
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Figure 3.14: Phase diagram of polycarbonate model obtained via lamination. The col-
ors indicate total energy, while the lines demarcate regions of constant laminate rank as
indicated. The rank-two regions are at constant mises stress. Note the regions that are
unobtainable due to the isochoric constraint.
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along lines parallel to pure shear, λ2 = 1, with a yield point defined by α1, and continued

hardening after the curve given by α2.

Closer examination of the energy along the diagonal line λ2 = 1 displays a constant slope

tangent to both energy wells, Fig. 3.16. The figure also gives an indication of the robust

performance of the algorithm in obtaining the relaxed solution along this entire tangent

line.

Finally, plotting the stress-strain response for both shear and tension, Fig. 3.17, gives

an indication of the performance of the model in predicting experimental results. Note that

this figure was obtained from Fig. 3.14, with tension corresponding to the parabola

λ1 = λ2 =
1√
λ3

. (3.37)

This model, still under development, obtains a region of perfectly plastic behavior fol-

lowed by hardening. Planned extensions to the model, including volumetric and hydrostatic

pressure effects and hysteresis, are necessary to compare to experimental data [22]. Initial

results of the enhanced model are promising. Notwithstanding the current physical appli-

cability, the lamination algorithm obtained the correct analytic result.

3.6 Conclusions

In this chapter we have performed verification tests of the lamination algorithm detailed in

Chapter 2 via the solution of several problems with analytic solutions.

The anti-plane shear problem was not especially difficult because the transformation

stretches were pairwise rank-one connected (without the need for a rotation). Nevertheless,

the method did obtain the exact result, providing an initial verification of basic correctness.
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The four-well problem, without rank-one connected wells, proved to be more challenging.

The exact solution prescribes zero energy laminates in the region R and along the line

segments AiJ i in Fig. 3.5. While the algorithm is able to obtain the exact result along

portions of these line segments, computing the lamination afresh at each point in this

plane results in an energy reduction of less than 10% near the origin. This difficulty can be

attributed to an ‘algorithmic’ energy barrier to branching inherent in the method chosen for

microstructural evolution: that each rank-one branching must result in an energy reduction

(see §2.3.2). The introduction of an incremental deformation path in the spirit of a physical

application allows for the development of high rank laminates in the central region. While

these microstructures are still limited by the energy barrier from completely relaxing the

energy, they are able to reduce the energy in R by more than 98.5%. While this is not the

optimal result obtained by Dolzmann and Walkington [36, 39] and Aranda and Pedregal [5],

the present work utilizes a more practical deterministic optimization routine. While the

aforementioned energy barrier was not designed to mimic a specific physical process, it is

reflective of the metastability and activation energies present in physical processes. With

this realization, this feature of the sequential lamination algorithm is not undesirable.

The nematic elastomer model was more unusual in that it consisted of the relaxation

of one nonconvex ‘well’ formulated in terms of the principal stretches, possessing an SO(3)

continuum of minima. Given the relatively obvious initial guesses for the plane normal and

shear direction, the algorithm attained the exact result.

The final verification test concerned a constitutive relation, still under development, for

polycarbonate materials. This two well model has one ‘elastic’ well at the origin with a

second well that is activated in shear. The second well, similar to the nematic elastomer

model, is again nonconvex. By attempting laminations both between the elastic and plastic
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wells in addition to the relaxation of the second well itself, the model is able to obtain a

perfectly plastic response followed by hardening reminiscent of the polycarbonate material

of interest.

Given reasonable expressions for {a,N} with which to initiate the laminate optimization

(obtaining λ from a line search if necessary) the calculations produced good results, as

discussed. For the anti-plane shear problem these values were obvious. Reasonable values

were also obtained for the four-well and nematic elastomer calculations with little difficulty,

but with knowledge of the exact solution. The relaxation of the polycarbonate model

was quite sensitive to the initial guess, but it is unclear if one could obtain useful initial

values without access to the relaxation. This then identifies one drawback to the general

applicability of the present approach. However, in applications in which initial guesses are

readily available, such as anti-plane shear, the nematic elastomer model, and martensites,

this difficulty is not a consideration.
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Chapter 4

Experimental validation: Cu-Al-Ni

tension test

4.1 Introduction

Experimental validation is an important step in the development of any practical mate-

rial model. The lamination algorithm presented in the foregoing provides both an explicit

construction of the material microstructure and the macroscopic behavior. It is thus advan-

tageous to compare the numerical model to experimental results that provide similar data.

Fortunately, Shield [74] performed tension test experiments at several orientations on the

same Cu-Al-Ni alloy studied in §2.4, and obtained both stress-strain curves and images of

the microstructure present on the specimen surface.

Various constitutive models that are relevant to this experiment have been developed.

For instance, Gao and Brinson [43] have developed a simplification of the ‘Multivariant’

model, a small strain approach based on the evolution of the volume fractions of variant

‘inclusions’ in an austenite matrix, that includes hysteresis and temperature effects. With

proper fitting of the parameters, the model provides reasonable predictions of the transfor-

mation stress and hysteresis. The model of Govindjee and coworkers [45–47] is based on

a lower-bound of the quasiconvexification of the energy. Reminiscent of plasticity models,
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a dissipation argument is used to derive variant volume fraction evolution equations that

are integrated using a generalization of the ‘trial elastic-step’ method popular in plasticity.

While the approach ignores large deformations and is limited to isotropic moduli, the com-

parison with Shield’s experiment is surprisingly good. As a final example, Stupkiewicz and

Petryk [78] present a model based on sequential lamination and the linear theory of marten-

sites [16]. The algorithm utilizes a local criterion for transformation, with the requirement

that the thermodynamic driving force exceed a critical value for transformation to occur,

producing hysteresis. With the assumption of an austenite–twinned martensite microstruc-

ture, the authors obtain the correct trends for the transformation stresses and hysteresis.

While the above theories generally produce respectable results, they are all limited to small

deformations, and are not as widely applicable as the present algorithm.

This chapter will first discuss the Schmid law used in the design of the experiment,

and then briefly review the experimental results. The lamination algorithm as described

in Chapter 2 will then be used, both at a single point and via a finite element calculation,

to model the experiment. Based on these results, the algorithm will be extended and the

calculation repeated.

4.2 Schmid law material model

Shield used an approximate model similar to the resolved shear stress (RSS) or Schmid

law, but based on the work of transformation, to predict the transformation stress and the

participating variants and their geometry. Zhang et al. [87] have presented a comparison

between a similar transformation work formulation and the RSS approach, providing a

stereographic projection indicating the most favorable Type I and Type II twins for each

model, and concluded that the work model more accurately predicts their experimental
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results.

Shield’s derivation [74] begins with an approximation for the work of transformation

Wi = trace((U i − I)σ) (4.1)

where σ is the applied stress and U i is the transformation stretch of variant i. This

neither accounts for surface or nucleation energy, nor does it account for elastic effects (the

‘constrained’ model [11, 12]). Although the specimen is to be deformed uniaxially, this does

not imply that the state of stress remains purely axial. In this approximation, however, the

stress is assumed to be

σ = se ⊗ e (4.2)

where s is the magnitude and e is the axial direction. As shown in §1.1, Cu-Al-Ni cannot

form an interface between austenite and individual martensite phases. This requires that U i

in (4.1) be the average deformation gradient of one of the 96 twinned-martensite laminates

(8 solutions for each of 12 compatible martensite variant pairs) that are compatible with

austenite in the constrained model. The deformation can thus be expressed as

U i = I + bi ⊗ mi (4.3)

for the habit-plane solution i. The work required thus becomes

Wi = s(bi · e)(m · e). (4.4)
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Solving for s and minimizing yields

scr = min
i∈habit−plane

Wcr

(bi · e)(mi · e)
(4.5)

where Wcr is a material property similar in intent to the critical resolved shear stress.

This transformation stress is a function of the tensile direction e, and has been plotted via

stereographic projection in Fig. 3 of [74]. This approach thus predicts the formation of the

microstructure i that minimizes (4.5) for a given orientation.

4.3 Summary of experimental results

A brief summary of the relevant data and results from Shield [74] are presented here for

convenience.

Shield performed Cu-Al-Ni tension test experiments at three different crystal orienta-

tions, and obtained the stress-strain response and images of the microstructures visible on

the sample surface. The tests discussed here were performed under displacement control

with fixed grips and at a temperature of 40◦C. The ‘dog-bone’ test specimens were 38 mm

long × 9.5 mm wide × 1 mm thick overall, with a 19 mm long × 6 mm wide gauge sec-

tion. The samples were heat-treated such that they initially were composed entirely of the

austenite phase. The material properties of Cu-Al-Ni are detailed in (1.8), (1.9) and §2.4.1,

while the crystallographic orientations are supplied in Table 4.1. These three material ori-

entations were chosen via (4.5) to be near the minimum, at an intermediate value, and at

the maximum transformation stress, respectively.

The experimental stress-strain response, Fig. 4.1, and corresponding microstructures,

Fig. 4.2, are given for each of the three sample orientations.
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Orientation Surface normal Tension axis

A1-T1 (−0.380, 0.925, 0.0) (0.925, 0.380, 0.0)

A1-T2 (0.707,−0.707, 0.0) (−0.447,−0.447, 0.775)

A1-T3 (0.707,−0.707, 0.0) (−0.577,−0.577, 0.577)

Table 4.1: Experiment specimen material orientations with respect to cubic axes. Orien-
tation names are from Shield [74].
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Figure 4.1: Experimentally obtained stress-strain response for Cu-Al-Ni at three material
orientations [74] (reproduced with permission).

(a) (b) (c)

Figure 4.2: Microstructures visible on sample surface during tension tests for orientations:
(a) A1-T1, (b) A1-T2 and (c) A1-T3. Notation and figures from Shield [74] (reproduced
with permission).
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The results for orientation A1-T1 indicate a short linear region followed by a nearly

flat plateau, Fig. 4.1. The sample remained in the austenite phase until the knee in the

curve, after which microstructures were observed, Fig. 4.2(a). In this figure orange and

blue correspond to austenite and martensite, respectively. Of note, the two microstructures

which appear as sets of crossed 45◦ lines were observed to respond independently during

the experiment. Each individual blue region corresponds to a lamination of two martensite

phases, with austenite–martensite interfaces perpendicular to the sample surface.

As expected, specimen A1-T2 was significantly stiffer than the first sample. However,

it did not exhibit a linear regime. The observed decrease in stiffness was accompanied by

the appearance of fine lamellae in the sample immediately upon the onset of loading. Near

the plateau in the stress-strain curve the martensite areas were observed to grow rapidly,

until the sample appeared as shown in Fig. 4.2(b). In this figure the austenite is the lighter

of the two colors, with either side of the image consisting of several adjacent regions of

twinned-martensite. The austenite–martensite interfaces appear as nearly vertical lines.

The sample finally broke due to the out-of-plane deformation and the fixed-grip boundary

conditions. Shield investigated this transverse response in a further set of experiments, but

we will focus on the initial data.

The stiffest sample, A1-T3, also displayed initially nonlinear behavior accompanied by

the formation of martensite. Up until the cusp at ∼500 MPa in Fig. 4.1 the microstruc-

ture appeared similar to that of specimen A1-T2, followed by the formation of twinned-

martensite wedges, Fig. 4.2(c). Shield attributed the large amount of hysteresis observed in

this test, as compared to the minimal hysteresis present in sample A1-T1, to the coupling

between the martensite laminates on the left and right sides of each wedge.

See Table 4.2 for a summary of the experimental results [74]. Note that the variants

were not identified experimentally, but inferred from the Schmid calculations.
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Orientation Modulus (GPa) σxform (MPa) εxform Variants A-M interface
A1-T1 26.7 108 0.45% (3, 5) and (4, 5) 46.8◦

A1-T2 72.0 211 0.50% (2, 4) 21.4◦

A1-T3
(initial)
(wedge)

158 511 0.65%
(4, 5) or (2, 4)

(2, 4)
9.8◦

15.5◦

Table 4.2: Summary of experimental results indicating initial modulus, transformation
stress and strain, expected pair(s) of martensite variants, and the measured angle of the
austenite–martensite interface. The variants are labeled as in Chapter 2, not [74], while the
austenite–martensite interface angle is with respect to the tension axis in the plane of the
sample.

4.4 Numerical results

In this section we present the application of the lamination algorithm to a model of the Shield

experiment. To obtain physically realizable solutions we require the volumetric constraint

(2.59) to enforce a positive jacobian of deformation. To limit branching, the nonlocal energy

model presented in §2.5 is used, with the twin-boundary energy per unit area Γ set to 1

J/m2.

4.4.1 Initial single point calculations

For a first comparison, the laminate algorithm was applied to a single material point for

each sample orientation. Although the macroscopic sample is under axial deformation,

a representative infinitesimal deformation gradient is unclear. As a first approximation,

only the axial component F33 was specified, with the other components of the deformation

gradient obtained through a conjugate-gradient energy minimization. This is equivalent to

a stress-free condition for the optimized components, and thus corresponds to a state of

axial stress.

The computed stress-strain curves, Fig. 4.3, over-predict the transformation stress by

almost exactly an order of magnitude. The sharp drop in the stress after transformation,

with a corresponding discontinuity in the energy, is due to the pointwise nature of the
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Figure 4.3: Initial single material point response for Cu-Al-Ni tension test.

calculation; the entire sample is transforming to the softer, lower energy, laminate. Note

that the algorithm is able to completely relax the energy for orientation A1-T1 and A1-T2.

Somewhat unexpectedly, the computed microstructures were simple laminates, versus the

experimentally observed rank-two austenite–twinned martensite.

The modulus of 34.4 GPa obtained for A1-T1 is significantly higher than the exper-

imental value of 26.7 GPa. The computed value does correspond to that obtained from

linear elasticity for uniaxial stress using the given orientation and the stated moduli (2.40).

The discrepancy is attributable to the ∼1◦ orientation uncertainty and variation in material

processing. The moduli at the other two orientations are influenced by these effects as well

as the unexpected nonlinear softening discussed above.
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Figure 4.4: Finite element mesh of test specimen.

4.4.2 Finite element simulation

To better capture the experimental behavior, the lamination algorithm was used at the

subgrid of a finite element model of the test specimen. This approach is of significant

computational cost, requiring a parallel implementation and more robust solver consisting

of an initial dynamic relaxation followed by a conjugate-gradient iteration. The mesh,

Fig. 4.4, consists of 200 ten-node quadratic tetrahedral elements, and is 1 mm × 6 mm ×

38 mm. Although the specimen and loading both possess several planes of symmetry, the

experimental results do not; the mesh thus corresponds to the entire effective specimen.

Unlike the single-point calculations, the boundary conditions here are unambiguous: the

±z faces are fixed except for prescribed z displacements on the +z face, with the remainder

of the boundary traction-free.

The stress-strain response, Fig. 4.5, is still at odds with the experimental results. The

microstructures are again rank-one laminates as obtained above. As expected, the sharp

drop accompanying transformation in the previous results does not occur here. While it

is encouraging that the more realistic model and boundary conditions have reduced the

transformation stresses, the continuing discrepancy is indicative of missing physical pro-



95

ε33

σ 33

0 0.005 0.01
0

200

400

600

800

1000

1200

1400

1600

A1-T1
A1-T2
A1-T3

(M
P

a)

Original
Slope

Figure 4.5: Stress-strain response of finite element simulation.

cesses in the model. Although it was expected that the sequential lamination algorithm, as

implemented, would obtain the correct rank-two lamination, this clearly is not the case.

4.4.3 Austenite–twinned martensite extension

To attempt to reduce the high transformation stresses, the algorithm was modified to ex-

plicity allow for the direct formation of an austenite–twinned martensite microstructure.

Thus, whenever a leaf is considered for branching (refer to §2.3.2) the algorithm tests both

the two simple laminates as well as the eight austenite–twinned martensite microstructures

for each pair of martensite wells, Fig. 4.6. The habit-plane solution, available, e.g., in

either Shield [74] or Bhattacharya [17], and discussed in §1.1.2, provides the initial guess

for {λ2,a2,N 2} and {a1,N 1}, while λ1 is found by a line search.

This refinement was tested on a single Cu-Al-Ni laminate by loading from the austen-
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Figure 4.6: Tree representation of an austenite–twinned martensite microstructure.

ite transformation stretch to the transformation stretch of one of the martensitic variants

through the linear interpolation

F (t) = (1 − t)I + tU 1 (4.6)

where I and U 1 are the stretches of the austenite and martensite phases, respectively. The

lamination is again constrained by surface energy effects. It is evident, Fig. 4.7, that the

transformation stress is greatly reduced.

4.4.4 Extended algorithm results

The tensile response was computed using the extended branching procedure. Due to time

constraints it was not possible to recompute the finite element simulation. Instead, two

sets of single point calculations were obtained for extremes in the conditions imposed on

the deformation gradient F . The first calculation fixed only the axial component F33, with

the remaining components obtained via minimization, as above, and will be referred to as

the ‘free BC’ or axial stress case. In contrast, for the ‘fixed BC’ case only the F11 and F22

components were optimized, with F33 again providing the load, while the other components

were fixed at zero.

The improved algorithm is successful in reducing the transformation stress, Fig. 4.8, for
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Figure 4.7: Comparison of stress response with and without explicit austenite–martensite
branching. The loading is given by (4.6).

either boundary/loading condition. In the free boundary condition case, Fig. 4.8(a), while

the transformation strain of A1-T1 is double the experimental value, it is quite reasonable

for the other two orientations. However, the transformation stresses are still higher than

experiment by about a factor of three. This discrepancy is certainly due in part to the

nonlinear softening observed in the experiment for A1-T2 and A1-T3 caused by the devel-

opment of microstructure from the onset, as well as uncertainty in the experimental crystal

orientation. Finally, note that the lamination has resulted in a nearly stress-free state after

transformation.

In the stiffer loading case, Fig. 4.8(b), the moduli have increased for the first two ori-

entations, resulting in a reduction in the transformation strain. The response of sample

A1-T3 is virtually unchanged up to transformation, but the more restrictive conditions do

not allow the material to completely relax. This behavior is also evident for A1-T2.
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Figure 4.8: Computed stress-strain curves at a single material point using algorithm with
explicit austenite–twinned martensite transformation with (a) free and (b) fixed boundary
conditions.
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(a) (b) (c)

Figure 4.9: Representative microstructures computed at a single material point for ori-
entations (a) A1-T1, (b) A1-T2 and (c) A1-T3. The grey represents austenite, while the
remaining colors indicate martensite variants.

The computed microstructures, Fig. 4.9, did not vary appreciably between the two

boundary condition cases. Noting that these results represent a single material point, the

microstructures obtained for the first two orientations compare well with experiment, with

the results for A1-T1 producing a nearly identical laminate. At the stiffest orientation,

Shield obtained a martensite wedge microstructure which is explicitly excluded by sequential

lamination and thus not obtained here.

A summary of the numerical results is presented in Table 4.3. The variants obtained

for sample orientation A1-T1 correspond to those predicted by Shield, with the habit-

plane angle also matching closely. The second orientation similarly obtains the correct

variants, with approximately the correct habit-plane angle. As mentioned previously, the

wedge microstructure obtained experimentally for A1-T3 is not allowed by the algorithm,

although it did obtain the same variants.
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Orientation Modulus (GPa) σxform (MPa) εxform Variants A-M interface
A1-T1 34.3− 61.0 371− 396 0.60% − 1.13% (3, 5) 45◦

A1-T2 94.4− 202 600− 761 0.38% − 0.60% (2, 4) 34◦

A1-T3 234 1540 0.65% (4, 5) 75◦

Table 4.3: Numerically obtained modulus, transformation stress and strain, initial marten-
site variants and initial angle of the austenite–martensite interface. Where the results differ
between the two boundary condition cases the value is indicated as a range.

4.5 Conclusions

The performance of the lamination algorithm described in the preceding has been compared

with the experimental results of Shield. The branching scheme, as originally envisioned, is

unable to obtain the austenite–twinned martensite observed experimentally, leading to the

explicit addition of this microstructure, alongside martensite twins, as a possible branching

type. With this modification the numerical results are quite promising, obtaining reasonable

values for the transformation strain, and producing similar microstructures in the two cases

describable by sequential laminates. Although the transformation stress and moduli are still

higher than the experimental values, this is likely due in part to experimental uncertainty

in the crystal orientation and material processing. The calculations also have not as yet

attempted to include the nucleation of the initial lamina that contributed to the softer

response obtained by Shield. The single material point calculations used in much of the

above are not particularly suitable for these calculations, and the final comparison must

await the reapplication of the finite element model with the improved lamination algorithm.

In closing, the comparison to date is very encouraging, especially given that there are

essentially no free parameters in this model. The moduli and transformation stretches are

known, with only the energy functional requiring specification. The only two other constants

are related to the volumetric constraint and surface energy terms, currently used only to

provide physical deformation gradients and length scales. These values, if reasonable, play

little part in the material response.
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Chapter 5

Conclusions and future directions

A practical numerical algorithm has been developed to compute the partial relaxation of a

general multiwell energy density for arbitrary deformations. While the present work has fo-

cused on martensites, the model has been applied to polycarbonate and nematic elastomers

as well as purely mathematical problems. The approach consists of the explicit construc-

tion of a sequential laminate such that new microstructures are obtainable via pruning and

branching operations, while enforcing both static and configurational equilibrium. This con-

strained evolution, necessary to obtain reasonable computational complexity, coupled with

equilibrium, provides a description for metastable material states and hence may display

hysteresis. The algorithm was illustrated with calculations involving the mixing between

two martensitic wells and a martensitic crystal loaded in simple shear.

For calculations with a separation between the microstructural and macroscopic struc-

tural scales, the lamination algorithm is suitable for inclusion at the subgrid level of a finite

element calculation. This capability was demonstrated via a finite element simulation of

spherical indentation in Cu-Al-Ni which developed complex microstructures and resulted in

a softer response than obtained via direct energy minimization.

The lamination procedure was verified through the computation of several benchmark

problems. An exact result was obtained in the first computation involving three pairwise
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rank-one connected wells. The classic four-well problem, in which the wells are compatible,

but do not differ by a rank-one matrix, was more difficult. The calculations obtained the

exact zero energy result along much of the rank-one connections involved in the analytic

solution, and relaxed the energy by more than 98% near the origin. This shortcoming was

determined to primarily be due to the ‘algorithmic’ energy barrier imposed by the method of

microstructural evolution. In the final examples, the algorithm was able to obtain the exact

quasiconvexification of the nematic elastomer model by DeSimone and Dolzmann [35] and

of the polycarbonate model of Fortunelli et al. [41]. Both of these latter models incorporate

an energy well, formulated in the principal frame, that consists of a continuum of SO(3)

invariant states rather than the separate wells encountered, e.g., in martensitic materials.

The verification tests also indicated the importance of reasonable values for the initial

guesses used to initiate the laminate optimization. Toward this end, the analytic solution

was used in several of the above problems. While this may present a difficulty in some

applications, it is not a consideration for many problems of interest, including martensitic

materials, in which reasonable values are available.

The final work in this development was to use the lamination algorithm to predict the

experimental results of Shield [74]. As originally written the model did not correctly obtain

the rank-two microstructure observed experimentally. Explicit inclusion of the austenite–

twinned martensite microstructure as a possible lamination type produced good initial

numerical results for the two cases in which the experiment produced a sequential laminate.

Note that the present algorithm does not contain any tunable parameters. Further finite

element simulations of the complete test specimen are planned and should improve the

comparison.

Experimental observations include both sequential laminates and more complex mi-
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crostructures, such as the martensite wedges from the third of Shield’s tests, indicating a

need to extend or generalize the current approach. Such future research must be carefully

undertaken to preserve the mathematical basis of the present work.

As discussed, an energy barrier precludes the attainment of the full relaxation in some

instances. The resulting discontinuous energy can be very challenging to minimize numeri-

cally, especially when integrated into a global finite element calculation. While improvement

in this area would greatly improve the model, the proper course of action is unclear. One

possible approach, similar to Monte Carlo methods from statistical mechanics, would be

to accept a branch that leads to an energy increase with some probability less than one,

while an energy reducing branch would always be taken. Although a more deterministic

approach is desirable, it is unclear how to more fully explore the topology of the lamination

graph without incurring combinatorial complexity. On the other hand, although this energy

barrier is troublesome in mathematical problems, it is suggestive of the activation energies

and metastabilities present in physical processes, and is in this sense not undesirable.

Finally, materials such as Cu-Al-Ni often exhibit significant hysteresis, not attainable

with the present approach. This behavior can be included by replacing the configurational

equilibrium with a kinetic model for interfacial motion [2, 3, 75], possibly including interface

orientation.
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[48] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer, 2001.

[49] R. D. James and D. Kinderlehrer. Theory of diffusionless phase transitions. In M. Rascle,

D. Serre, and M. Slemrod, editors, PDEs and continuum models of phase transitions, number

344 in Lecture Notes in Physics, pages 207–215. Springer, 1989.

[50] R. D. James, R. W. Kohn, and T. W. Shield. Modeling of branched needle microstructures at

the edge of a martensite laminate. Journal de Physique IV, 5(C8):253–259, 1995. Colloque C8,

supplément au journal de physique III.

[51] D. Kinderlehrer and P. Pedregal. Characterizations of young measures generated by gradients.

Archive for Rational Mechanics and Analysis, 115:329–365, 1991.

[52] R.V. Kohn. Relaxation of a double-well energy. Continuum Mechanics and Thermodynamics,

3:193–236, 1991.

[53] R.V. Kohn and G. Strang. Explicit relaxation of a variational problem in optimal design.

Bulletin of the American Mathematical Society, 9(2):211–214, 1983.

[54] R.V. Kohn and G. Strang. Optimal design and relaxation of variational problems I-II-III.

Communications in Pure and Applied Mathematics, 39:113–137, 139–182, 353–377, 1986.

[55] M. Kruzik. Numerical approach to double well problems. SIAM Journal on Numerical Analysis,

35(5):1833–1849, 1998.

[56] B. Li and M. Luskin. Finite element analysis of microstructure for the cubic to tetragonal

transformation. SIAM Journal on Numerical Analysis, 35:376–392, 1998.

[57] B. Li and M. Luskin. Approximation of a martensitic laminate with varying volume fractions.

Mathematical Modelling and Numerical Analysis, 33(1):67–87, 1999.

[58] M. Luskin. On the computation of crystalline microstructure. Acta Numerica, 5:191–257, 1996.

[59] C. B. Morrey, Jr. Multiple Integrals in the Calculus of Variations. Springer-Verlag, 1966.



110

[60] S. Müller. Variational models for microstructure and phase transitions. In Calculus of Variations

and Geometric Evolution Problems, volume 1713 of Lecture Notes in Mathematics, pages 85–

210. Springer-Verlag, Berlin, 1999.
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