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SUMMARY

PART | OF THIS THESIS CONTAINS A REVIE® OF THE BASIC THEORY OF THE CABLE AND
STIFFENING GIRDER COMBINATION ACCORCING TO THE METHOD OF DR, RODE WHICH TAKES INTO
ACCOUNT THE INEVITABLE LONGITUDINAL DISPLACEMENTS OF THE SUSPENDER CONNECTIONS,
WHEN THE CABLE 1S DEFLECTED FROM 7S NORMAL CONFIGURATION,

NUMERICAL CALCULATIONS HAVE BEEN CARRIED OUT TO ESTABLISKE THE ORDER OF MAGNE TUDE
OF APPROMIMATIONS M THE OROINARY DEFLECTION THEORY AS DEVELOPED IN THIS COUNTRY BY
F. E. TURNEARE FRO® THE WORK OF J, WELAN, DESICES THE ESSENTIAL OMISSION WHICH IS
EVIDENT iN THE COMPARISCN CF THE FUNDAMENTAL DIFFERENTIAL EQUATION OF RODE'S THEORY WiTH
THAT OF THE ORDINARY DEFLECTION THEORY, THE MOST SIGNIFICANT ERROR 18 THE NEGLECT OF
THE EFFECT OF INCLINATION OF THE SUSPENDERS ON CABLE DEFLECTION, | T WOULD APPEAR THAT
AN ERROR OF THREE PERCENT CAN ARISE FROM THIS SOURCE WHICH ALTROUGH UNIMFORTANT FRO#M
THE STRUCTURAL ENGINEER'S POINT OF VIEW, IS IMPORTANT AS A LIMIT ON ACCURACY REQUIRED
OF ANY THEORY WHICH MEGLECTS {7,

RODE'S DIFFERENTIAL EQUATION 18 NCT INTEGRABLE AND AN APPROXIMATION HAS BoEN
DEVELCPED WHICH 1S TRACTABLE BY THE METHODS OF PART |1 AND YET DOES NOT SACRIFICE
ENTIRELY THE IMPROVED REPRESENTATION OF STRUCTURAL ACTION GIVEN BY RODE'S THEORY,

PART |1 UTILISES TRIGONOMETRIC SERIES FOR THE.6€VELOPMENT OF A SIMPLE METHOD OF
DETERMINATION OF THE DEFLECTIONS AND GIRDER BENDING MOMENTS 1N A SPAN, AS APPLIEC TO
THE ORDINARY DEFLECTION THEORY THERE RESULT FORMULAE OF EXTREME SIMPLICITY WHICH BRING
INTC SHARP PERSPECTIVE THE RELATED FUNCTIONS OF CABLE AND STIFFENING GiRDER. FROM THLSE
FORMULAE A PICTORIAL REPRESENTATION OF BRIDGE STIFFNESS IN TERMS OF CERTAIN BASIC
PARAMETERS HAS BEEN DEVELOPED.

THE THEORY AND METHOD OF COMPUTATION HAVE THEN BREEN EXTENDFD TO TAKE INTO ACCOUNT
THE EFFECT OF A PRESTRESS INTRODUCED BY ARBITRARY ADJUSTHMENT OF SUSPENDER LENGTHS WHICH
MAY BE NECESSARY IN THE REHABILITATION OF OLD STRUCTURES OR RELUCTION OF PEAK BENDING
STRESSFS 1IN NEW DESIGNS.

THE APPROXIMATION TO RODE'S THEORY DEVELOPED IN PART | 18 THEN SOLVED IN TERMS OF
THE METHODS DEVELOPED FOR THE SIMPLE THEORY AND FORMULAE RESULT WHICH ARE BUT SLIGHTLY
MORE COMPLICATED THAN THE ELEGANT FORMULAE CF THE PREVIOUS WORK., THE PRACTICABILITY OF
APPLICATION HAS BEEN TESTED BY EXAMPLES,

FINALLY, IN ORDER TO DISPEL CERTAIN ERRONEOUS CONCEPTIONS OF THE EFFICACY OF THE
STIFFENING GIRDER IN CONTROLLING THE BENDING MOMENTS, (AND CONSEQUENTLY, THE DEFLECT!ONS}
IN A SPAN, TRE METHOD HAS BEEN EXTENDED TO PERMIT THE INVESTIGATION OF THE INFLUENCE
OF VARIATION IN FLEXURAL RIGIDITY OF THE GIRDER, TH1S LEADS 7O FORMULAE, NOT OVERLY
LENGTHY, WHICH SHOW IN PROPER RELATION THE INFLUINCE OF THE VARIOUS HARMONIC COMm
PONENTS OF THE FLEXURAL RIGIDETY OF THE GIRCER.

THE METHODS OF THIS THESIB ARE SIMPLE IN CONCEPTION AND APPLICATION WHILE STILL RE-
TAINING A PROPER PHYS?CAL BAS(S, AND ARE CAPABLE OF EXTENSION BEYOND THE BOUNDS OF
CURRENT METHODS WI THOUT LOSS OF ALGEBRAICAL AND ARITHMETICAL TRACTABILITY.
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PART 1.

A Critical Review of the Basic Theory of Cable and

Stiffening Girder Systems.



1.01. The Assumptionsof the "Deflection Theory".

The usual assumptions introduced in the analysis of two-

hinged- truss suspension bridges are as follows:

1.
2.

4.

The initial cable curve is a parabola.

Initial dead load, w, is carried by the cable with no bending
stresses in the truss.

The stiffening truss has constant moment of inertia( E.I.),
although this is not essential to the application of the
"Deflection Theory".

There is a continuous sheet of wvertical hangers connecting

the cable to the stiffening girder.

The hangers are vertical in all deflected configurations of

the structure i.e. inclination of hangers may be neglected
under live loads.

Axial elastic.deformatiomsof towers and hangers are neglected.
Apronos of this L.Moissieff ( reference 1,p.1207 ) says:
"Deflection Theory assumes that the effect of elongation of the
sugpenders is negligible, and that its effect on the cable

pull is insignificant. This assunption has been justified

by computations in several instances as well as by observations
on models.

The effect of suspender elongation cannot however be
neglected locally. HNear the towers, where the suspenders are
longest the effect of lengthening under live load cannot be
neglected.

Moments and shears will increase up to 25% towards the

ends'.



1.62. For a critical evaluation of the assumptions involved

in the theory of cable and stiffening girder systems, it is con-
venient to begin with a study of the geometrieal relations between
the positions and dimensions of a given element of the cable in the
initial and deflected configurations.

In Pig.1.01 an element of cable length defined by cd subtends
a length ab when undeflected. After deflection the points ¢ and 4
move to new positions c¢' and d4' and the length c¢'d' is in general
not equal to cd.

The vertical deflection of ¢ is denoted by n and the lateral
shift of the same point is € . The suspenders which connect cd
50 ef in the initial configuration, are attached to e¢'d' in the
deflected position since c' and d' are the new positions of ¢
and d. The deflection of the girder at e is denoted by p and is
equal to the sum of r and changes due to the suspenders.
Structural details decide whether g shall be vertically below e
and are discussed later. The slope of the undeflected cable, W,
changes to ¢ +J¢ after deflection.

Lower order quantities are defined in Fig. 1.01.

The relation between ¥ and N may be written

. g hat
=1 + h.wt + h. =+ 24
v n versin ¢ + Ahbh (1)
where « = temperature coefficient.
t = temperature change contributing to the change in

configuration.
= length of suspender.

area of cross section of suspender.

S

5!
I

ol a ¥

Young's Modulus of suspender.

= increase 6%»suspender force due to added live load.
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From (2) and (7) %5 can be expressed in terms of %% ang vice versa.

Thus

H .
;—d%—'lx‘taﬂ(//+ %—%.%—g tang sec ¢ + %——-Asec3(;é +4¢) + w0t 860296( )
' 8).
H

1+ =% secy ta;a2¢

as
ax

It will be of interest to express the slope of the element of the
cable in the deflected position in terms of R

In Fig.1.02,

tan(¢ +S¢) = dy + "k _ dy , dq _ dé
2 = =t A - ae tan ¢ (9).
and %é can be expressed in terms of %g from (8).

From (9) the rate of change of defleection of the cable ié

d d
tan(p + 9p) —tang- U _ 48 4ony (10).
1.03. The Differential Bquation of the Stiffened Suspension
Bridge.

In what follows, the deflections of the stiffening girder are
of prime importance, and the differential equation will be
expressed in terms of v , the deflection of the girder at x.

By differentiation of (1) with respect to x and transposing
terms

%% g; -0t gg %E (h vers g ) - EE Ki%“ ) (11).
Using (11) and (8) in (10) the rate of change of cable deflection

can be expressed in terms of the rate of change of girder deflection.



In Pig.1.01 c'd" is drawn varallel and equal to cd and the
section including cd"d' is redrawn to larger scale in Fig.1.02.
d"j is drawn perpéndicular to ¢'d' and since d¢ is small the angle
d" jk is practivally a right angle and c' j 1s equal to 4L.

4dL = jd' = d"m sing+ d'm cos ¢
6dL = dn siny + 4§ cos ¢ (2).

Furthermore, if during the change in configuration, a
¥ D oS b

change in stress, d4d , and a change in temperature,t,occur then

§aL = (§2 + wt) aL (3).
In the initial condition the stress of the cable, ¢ , is given
by
H
6 = ¥ gec @
A

In the final condition the stress has become

H + H

6 +88 = —EK——-——- sec(y + d¢)
86 = ._W_.I. se0(g +df) - X secy (4).

From Fig.1.02,
sec(('b +dp) = sec¢+ dn - dé tan ¢ sin ¢

i

secy + ( tang/l)snl;b (5).
Substituting (5) in (4) we obtain

H ag , "
b6 = -A--— (dx = tanc}')31nz/»+ 3 sec(¢ +dy) (6).
and substituting (6) in (3) there results

$dl = %E { o (dx ﬁ)% tan¢ ) sing + Hsec(p +J¢’ wt.aL (7).



The load per unit length supvported by the element of cable
which originally subtended the length dx, is equal to the product
of the horizontal tension Hw*H’ and the rate of change of slope
of the cable curve as given by (9), and is given by

(H, +m) & (adn_af L (12)

w' % dx Vdx T ax T ax =P .

The loads per unit length supported by the girder on the

length dx is given by the simple theory of bending as

2
- L) = p (13).
Therefore, the total load per unit length supported by the

combination is given by

2 2
p'+p"=§-——2-(m§-—‘2’-)_(HW+H)-@—(§E+@_%—§tan¢) (14).
X X

Bquation (14) combined with (11) and (8) and (1), constitute
the equation of the stiffened suspension bridge.

Equation (14) contains the coefficient (HW + H ) which must
be determined from the condition of continuity of the cable and its
supports. For the present it will be assumed that the cable is
supported at two points whose distance apart is fixed for all
loading conditions.

Then, the integratibn of equation (8) is to be executed with
the boundary condition that é vanish at the supports and the result

will provide a means of determining H.

1.04. Before proceeding further it is desirable that an inves-
tigation be made of the order of the various terms occuring in “the
bagic equations. A critical review will also be made of the

imolicit or explicit assumptions involved in the analysis and this



will lead to a considerable simplification of the results,wnich
is desirable in the light of the overall accuracy which can
be achieved in Bridge Design.

In order to make the problem amenable to analytic formulation
the discontinuous cable and suspender system has been replaced
by a continuous distribution of suspenders, which in effect
replaces the discontinuous ¢able curve by a continuous curve.
However, in actual fact the cable contains from 10 to 30% of the
structural weight, and the number of ¢ hangers is of fthe order
of 70 to 100 in a main span. In practice, then, the devarture
of the continuous curve from the actual curve is of very low
order, provided the dead load distribution contains no signifi-
cant discontinuities, and thie suspender lengths are correctly
determined. From this cause alone the error in determinations
of girder bending moments is H.e, where e is the error in the
assumed cable curve ordinate.

This is to be compared with the computed cable moment due

to live load, H_n + H(y +n). The ratio is

T o= e He _ e
qu + H(y +rl) .
- +(y+n)
For a practical case we can take o

gﬂ =4, N =6',y +n = 206"
nd r = %?6. e will never be greater than a few inches in good
design and construction, so the error in computed moments will be
much less than 1%. Inability to achieve oproper girder construction

to zero stress under dead load may increase the effective errar,



beyond the order indicated. Such a condition necessitates adjustment
of suspender lengths to achieve the optimum conditions.

Of at least equal significance, is the neglect of the bending
stiffness of the cable. For the main span of the Golden Gate
Bridge at San Francisco, the moment of inertia of one cable is
- approximately
mx 3t x12° = 572 in

64
The moment of inertia of one stiffening girder is 43,150 in

212 _ o.0132.
43,150

2 2

£t°.

25,2

il

While admitting the approximate nature of these numbers, there
is still an apparent effect of the order of 1%.

In the same connection it should be noted that areas and
weights and the value of E will not in general be realised to a
correctness of 1%. These are only a few of the sources of practical
error in the achievement of a design, and are introduced here to
provide a criterion with which to judge the importance of the various
terms which occur in the analysis.

The establishment of some such criterion is necessary to
avoid overloading a solutiqn with inconsequential terms sometimes
in direct contradiction to actual realisation. For example,
when a main span is deflected anti-symmetrically the suspenders
all suffer ar inelination from the vertical ( as shown in Fig. 1.0%)
all in the same direction. As a result the horizontel thrust departs

from the constancy assumed in the derivation by a maximum amount

l
g F, .Sin %—



ﬁhére F is the suspender force and Z:indicates summation over
/¥he whole span. Fig. 1.03 illustrates the resultant horizontal

force system.

Although the total change of the horizontal force produced
nay be‘comparatively small, the couples produced may be significant.
Furthermore, there is a strong tendency to shift the total
deck load to the left in Fig. 1.0%3, Since expansion joints are
provided at both ends of long spans, this does occur but is con-—

veniently ignored in conventional analyses.

R.J.Atkinson and R.V.Southwell (4) have approached thds
aspect of the problem from another direction by formulating the
fact that the girder load at (x,y) is transmitted to the cable

at a point x +¢ , y +1 , while neglecting the horizontal compon-



ents of suspender forces, and prohibiting longitudinal displacement
Wéf the girder. These authors are completely in error in another
respect ( see Appendix I ) which removes their derivation of a

" corrected " differential equation from further consideration.

In the presentation given above, the longitudinal shift of the
girder is immaterial, provided horizontal force components are neg-
lected. Because of the methods of supporting the ends of the
- girder, the support moves with the suspended structure, and the
origin of coordinate is always at this support. Expressions
involving the cable displacement are all referred to the initial
configuration in such a manner that the lateral shift of the cable
relative to the girder does not affect the result.

Parcel and Maney, in the book " Statically Indeterminate
Stresses " p.396, ascribe to this load shift the discrepancy between

the usual Deflection Theory equation

4 2 2
P:EI‘—i—-—}—-HC—I—‘%—(H‘+HW)§—-§—
dx dx .odx

and Rode's Deflection Theory equation,

4 2 '
- an _ x4y _ 4 (41 o .2
P = ET o H dx2 (H + HW) T (dX Sec ¢ )

whereas in point of fact, both theories neglect all the consequences
of such a shift.

The discrepancy lies in the somewhat naive assumption that
at a given vertical section defined by x, the deflection of the
cable is identical with the deflection of the girder, although a
little consideration will show that a pure vertical motion of a

point on the cable can occur only under very exceptional circumstances.



Put in another way, the ordinary Deflection [heory assumes that
the cable bands can slide along tie cable in order to satisfy the
conditions that the suspenders remain vertical. Such a slip would
prove disastrous in practice.

The longitudinal 8hift of the suspended load and the effect
of inclined suspenders are amenable to treatment in a discussion
directed towards development of a practicable analytical
treatment of tThe problem, only if all the load is assumed to be
at the girder level and the horizontal forces due to inclined
suspenders are neglected. A longitudinal shift of the girder
means all the suspended load is moved towards a support, and
the support points of girder and cable are no longer in the
same vertical line. If the origin of coordinates is regarded as
lying at the girder support the analysis of section 1.02 applies,

The computation of the longitudinal shift of the cable
bands, € , given in Table IIT, Column (4), shows that for that
case at least the assumption that all the load moves longitudinally
with the girder is closely satisfied in fact.

The ends of the girder are usually supported by some form
of rocker link much shorter and with greater cross section
than the theoretical end suspenders, which are approximately

equal to the tower height.



The substitution of a short rocker link for a full suspender
invalidates F.E.Turneare's formulae (6) for effect of cable stretch..
on girder bending moments.

Numerical calculations carried out by the method of Dana and
Rapp have established the importance of the effect of end supoorts
( see Section 1.01, assumption 6 ) and suitable means for evaluation
of suspender elongation are discussed im Part 2. The methods thers
developed can be applied to deflection effects arising from
suspender inclination, if necessary, but the computation cf this
inclination presupposes a knowledge of the lateral shift of the
girder which can only be carried out numerically.

In the above analysis leading to equation (14) which is based
on the work of Dr.Rode(3), the essential sources of difference
in deflection of cable and girder have been included in order to
emphasise the fundamental nature of the difference. Some of the
contributions are of insignificant order and their inclusion in (14)
is no criterion of the order of accuracy of that equation which
still involves the assumptions already discussed.

Engineers are accustomed to base judgment of the desirable
accuracy of structural calculations on a standard of 1%-2% and
there seems no reason to raise the standard for suspension bridge
calculations. A false impression has arisen from the necessity of
using a large number of figures in the calculations of the
exponentional functions of the Deflection Theory in orader to

achieve a final result correct to three significant figures.



Investigations of lower order terms are useful in establishing
beyond doubt the order of the quantities involved, but need play
no part in the final working method of design. A few such inves-—

tigations will be undertaken herein for that purovose.

1.05, Where numerical data is needed the proportions of the main
span of the Golden Gate Bridge at San Francisco will be used.
The Golden Gate Bridge ~————- Significant Dimensions
and Weights.
Length of lain Span 4,200 f+4.
Sag of Main Span 470 f%.
Length of Side Spans 1,125 f+%.

Weight of lain Span per lineal f%. Deck110,300 1bs.,

Cables, Suspenders esc. 6,670 1bs.
Stiffening Trusses 3,330 1lbs.
Bracing 600 1lbs.
i#fiiscellaneous - _400 1bs.
Total 21,300 1bs.
Dead load for side spans per linear f+t. 21,500 1bs.
Live load capacity per linear ft. 4,000 1bs.
liaximum downward deflection of Main Span 10.8 ft.
Longitudinal Tower deflections Shoreward 22 ins.
Channelward 18 ins.
Diameter of Cables over wravuing %363 ins.
Length of one cable 7,650 ft.
Number of wires in each cable 27,572
Size of wire, diameter | 0.196 ias.

Weight of cable, suspenders ete. 24,500 tons.



,am;nt‘bf inertia of one main stiffening girder 43,150 inzftZ.
ﬁ&fmal Temperature 70°F.,
~;ﬁéﬁimum Temperature 110°%.
;ggnimum Temperature 300p,

Unit stress in cable wire 82,000 p.s.i.

%1,66. Some numerical evaluations of the various terms of
ééqnation {8) will be made for hypothetical lodding conditions which

-.are fairly representative of maximum conditions on the bridge.
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Fig, 1.04

The equation of the cable curve regarded as a parabola with

origin at the top of the left hand tower is

y:il%(lx_x?):m(z_z?) (15)
where f is the centre sag of the cable, l is the span length and
7 =i— .

4 ¢
For dea gfbne on the cable at mean temperature

w . 8f (16)

wherein w is the dead load per lineal foot.



From (15)

dy _ dy _ S S
ix = a5 = ten¢ 7 ((1-22) (17).
To investigate the effect of d¢ in the function sec(¢ +d¢)
an anti-symmetrical expression forrzis used, given by

Q = a, sin Q%LE = a, sin 212 (18)

where a5 is chosen to represent the maximum deflection of the

structure in the region of the quarter-point of the span. Then

an _d4danq _ 271ra
dx =~ Tg” N ——Tg- Cos 2TT2 (19)

For the chosen example, the Golden Gate Bridge

Hw = ZI’BSOXX84§OZ7g 4200 =5 x 107 1bs. per cable.
H 7
W 5 x 10 -3 , .
A T35 x 106 x 27,572 £ 0.0312 = @ ¥ 1077 anit strain.
teng = £EFC (1 -22) = 0.4477(2-22).
8o has been chosen as 10 feet making
n = 10 sin 21T'Z where 1 will be in feet
gg = 21225010 cos 2TMZ = 0.01496 cos 21T Z.

Prom Table I it is evident that for the purpvoses of design it

is satisfactory to take

H

1 -3 Secy =0.998 K 1.000
7

1+ 2% Secy tany = 1.000.

Then equation (8) can be s'mplified to

af _ in . il 3 2

3= = - 0.998 i mn1¢ + 31 Sec (p+d¢) + @t Secy (20).
In this equation wt takes account of temperature changes, and will
be shown later to take care also of changes in span in later

developments., For the present purpose at is taken as zero, and under
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this limitation equation (203 becomes

%—-}% = ~0.998 %—}% tan¢ + %K sec” (¢ + 8¢). (21).

Substituting %‘Xl for tan¢, we have

a€ e AN &y L H

45 - 0098 . L+ oy sec? (¢ + dp).
Integrating from O to x

x 2 X
E = + 0.998fq : %—X% ax - 0.998%. %ﬂ + & sec? (¢ +8p)ax (22)
(I o

From the condition of fixity of position of the cable supports
é =N = Oatx=20and x =L

and arn equation is obtained fforn determining H, thus:

A L r 2
lil- fSe03 (¢ +dax = - O.998frl. g__g_ . dx (23).
- ax
(/] (¢]
2
Substhtuting -@—% = - %—g from equation (15), and n from equation(18)
dx

and carrying out thé integration, the right hand side of (23)
vanishes. On the left hand side sec(¢f+&¢) is always positive,
which can be seen from Table I, so ;n order that the left hand side
vanish it is necessary that
H= 0.

The explanation of this very useful and unexpected result
lies in the cable load distribution necessary to produce such
an assumes curve of deflection, and is discussed further in Part II.
The same conclusion applies to all even harmonics. The asgumption
of equation (18) differs from practical quarter point deflection

curves only by the omission of the odd harmonic terms which produce

the changes in horizontal force. This can be verified numerically



- by éompérison with the computed deflection curves of reference (7).
Since‘the second harmonic predominates in the quarter point
deflection curves, this investigation is not limited in value
by the apparently impractical conclusion H = O.

The restricted equation (21) can now be written be for all even

harmonics

L3 (24).

a& _ an B,

ks

Substituting (24) in (10)

tan (c/'+{5¢) - tan ¢

i

a an ., 2
21 4+ 0.998 & tan?y

=$£( 1+ 0.998 tan®y )
tan (¢ +0¢) = tangp+ F (1 + 0.998 tan®p) o tan g+ TEsec? ¢
| (25)
From equations (17), (19) and (25) values of Sec ($b+d¢) have been
calculated for ten points in the span and ay = 10' and tabulated
in Table II.
From Table II it is evident that the substitution of sec¢ for
Sec (¢ +d¥) may produce errors up to 3% in the value of se03(¢ +d¢).
However the errors due to this substitution vanish for all practical
purposes when that quantity is integrated over the span length
as in equation (23) for the determination of H; this is evident
from the agreement of the totals of the columns (9) and (10) in
Table II. This conclusion can be generalised for all even harmonic
deflection curves.
In the case of odd harmonic deflection curve shapes the
errors due to the substitution of ¢ for (¢ +d¢¥) will also
compensate, although not completely, in the integration of equation(23%)

except in the case of the first harmonic.



TABLE ITI.

tan¢y = 0.44762 (1-22) =91 = 0.01496 Cos2mz.

1. 2, 3. 4. 5. 6.

Z . tang sec .0.998tanP+l. 32 . 21(140.998tanp).
0 0.44762  1.0956 1.2000 0.01496  0.017952
0.1 0.35810 1.0622 1.1280 0.01210  0.013967
0.2 0.26857  1.0354 1.0720 0.00462  0.004952

0.3 0.17904  1.0159 1.0%20 ~0.0U462 30.004768

0.4 0.08952 .1.0040 1.0080 ~0.01210 -0.01220
0.5 0000 1.0000 1.0000 ~0.01496 -0.01496
0.6  -0.08952  1.0040 1.0080 ~0.01210 -0.01220
0.7  -0.17904 1.0159 1.0320 ~0.00462 -0.004768
0.8  -0.26857 1.0354 1.0720 0.00462  0.004952
0.9  -0.35810 100622 1.1280 0.01210  0.013967
1.0 -0.44762  1.0956 1.2000 0.01496  0.017952

/ tanrz:}%&/}) Sec(i;ﬂfgll) Sec%;b Sec%(()t;bJr d¢).
0 0.46557 1.1031 1.315 1.342
0.1 0.37207 1.0669 1.198 1.214
0.2 0.27352 1.0367 1.110 1.114
0.3 0.17427 1.0151 1.048 1.046

0.4 0.077%2 1.0030 1.012 1.009

0.5  -0.01496 1.0001 1.000 1.000
0.6  -0.10172 1.0051 1.012 1.015
0.7  -0.18381 1.0167 1.048 1.051
0.8  -0.26382 1.0%341 1.110 1.106
0.9  -0.34413 1.0575 1.198 1.183
1.0 -0.42967 1.0884 1.315 1.289



In %he éase of the first harmonie the error is cumulative but of
lower maximum value due to the smaller amplitude and the longer
wave length. For practical cases the error in determining H
will be in error by less than 1% due to the neglect of d¢ .
We can then, substitute ¢ for (¢ +d¥) in equation (20) without
introducing errors of significant magnitude, in the values of X
or H, subject of course, to later discussion of the influence of
the term @t 8902¢'.

“quation (22) can be used to evaluate the longitudinal
displacement of the cable bands at any point in the span.
It has been shown above that for the particular example being

discussed (22) can be written,

- 0.998 {-@if—a foxq Ldx + ["( : %%]:

z
- 0.998 (-49@ (1-22)Sin 2172 + 595?—& Sin 2172 dz}

{ L

4. 465 { (1-22)sin 20 + 1 (1-Cos zm:)} £5.  (26).

¢

il

i

Finally, °

S

Table III has been computed for nineteen points in the span of

i

the Golden Gate Bridge. It contains the values of € from eqaation(26),
suspender lengtha , and Sin §~ . It would be desirable to carry
Table III through for each cable band (83 points) but in the
interest of brevity 19 points only were calculated.

In order %o determine the longitudinal movement of the girder,
due to the inclination of the suspenders it is necegsary to know
the forcgs in the suspenders, Fh. These have been determined by

differentiating twice the equation to the deflected cable curve,

and subtracting the weight of the cable thus:
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S Af 2 i 2T
Hw(y +h) = - IE dx - x°) - a,sin
ﬂ\z
=24 &TE 8y gin 21 ]

w=-H (y+n) = H_ T +
where w is the cable load per foot run.

M

3 —
M

l

SBpbstipating numerical values

2
5 % 107 8.4702 . 4.1?.;0 Sin 2TTZJ
4,200° 4,200

10,650 [1 + 0.105 Sin 272 ] 1b/ft. C(27).

W

For an assumed hanger spacing of 210 ft., which is a consequence
of the choice of nineteen points in the 4,200 ft. span, the
hanger force is

Py

210 x 10,650 [ 1 + 0.105 sin 217z ] - 210 x 22819
2

i

2,240,000 [ 1 + 0.105 sin 21z ] - 701,000 1b.

From this equation Eh has been evaluated as shown in Table III.
It is now possible to calculate the horizontal forces, Fl,

at the cable bands, which are given by

P R, sin,g.ng . 6
2 o Bm

Column(8) shows that the longitudinal forces are quite appreciable
and their magnitudé leaves no doubt that the deck will move
longitudinally. The amount of longitudinal displacement is
determined by the condition that
2 B =0.
To determine this shift the following artifice has been
adopted: The nett longitudinal force;EF , has been determined for
é as tabulated, and foré=£+S for two values of S, which are

chosen to embrace the condition

ZF_L = 0.
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B Theﬁ, by means of the plot of Fig. 1.05 the value of S is inter-
polated which will result in the equilibrium
ZFI = 0.

With the known shift it is possible to compute the inclination
of the hangers, and the effect of this igclination on deflection,
as included in equation (1). This is shown in Table III, Column{1l2),
and it is evident that it is negligible in comparison with the
méximum déflection'of 10', being 0.04% at most for this represent-
ative example.

It is evident from Table III, Column (10), that the short
hangers exert very large forces for very small shifts of the cable
bands, which is to be expected. This enables us to state in general,
that the effect of obliquity of the hangers on the deflection of
the girder will always be small, since the short hangers will tend
to remain vertical, because of their predominant control overthe
longitudinal shift of the girder.

. 044 harmonic deflection curves will produce much smaller
longitudinal displacements of the cable bands and, from symmetry,
no longitudinal shift. The magnitude of the longitudinal forces,
however, requires further invesgtigation.

Table 3II, Column (8), shows how large forces can occur at
the suspender connections if the girder is prevented from moving
longitudinally. This occurs when the deflection of the cables
is caused by twist of the bridge about a longitudinal axis, and
the total longitudinal forces due to the suspenders are equal
and opposite on the two cables. If the.deck is strong enough

to withstand these forces without sidewise buckling in the deck plane



or sheéring distortion of the deck, it is evident that torsional
distortion of the bridge is strongly opposed. That this consid-
eration becomes important in long span bridges has been tragically
demonstrated by the failure of the Tacoma Bridge. The weak point
for this condition lies at the centre cable band which contributes
the largest control force.

It is now possible to compute the magnitude of the error
in the cable live load bending moment due to the longitudinal
suspender forces, F,. This has been done in Table III, Column(14),
and it may be compared with the live load bending moment carried
by the cable, H 1 , in Column (15).

The moment oﬁrthe longitudinal forces is given by

Z P .

and positive values indicate that the neglect of these moments
underestimates the deflection of the cable. The maximum
percentage of the corresponding cable live load moment is 2.4%
occurring at O.ll.. If the cable were totally unstiffened
this would represent an error in deflection of practically 2.4%
at that point. Because of the girder the actual percentage error
in deflection will be less depending on the effectiveness of the
girder.

It is important to note that bending moments in the girder
in the critical locations, are increased in absolute value by
the lateral forces, although it is somewhat unsafe to generalise
this statement for higher harmonic deflection curves. However,it
appears quite possible to have 2% error in the maximum girdeg

bending moment due to this cause.



: 1;07. | In practice, the points of support of the cables move
| longitudinally due to a variety of causes. Thus it is not proper
0 assume that the span length remains unchanged under actual con-
ditions. The amount of this change of span can reach l/lOOO of
the span length. ,

The deviation of the fundamental equation is not invalidated
by this variation except insofar as the neglect of léngitudinal

does
cable band forces will affect the result. However, this, not

A
remove the necessity for consideration of the effects of the
cable deflection resulting from such a change in cable span.

In the consideration of temperature change it was assumed that
the cable length changed and all vertical dimensions of the
structure changed in the same proportion, but the span of the
cable remained unchanged. For such small changes we could equaily
correctly assume that all the structural parts remained unchanged
while the span changed a small amount due to temperature.

When temperature changes are considered in this light a rise
of temperature above normal corresponds to a decrease in span length.
It is at once evident that a change of the distance between cable
saddles due to any other cause can also be regarded as resulting
from a temperature change.

The term wt in the present analysis must now be taken
rengitudinalddty to include also the span change due to longitud-
inal shift of the tower tops. A decrease of span length &1,
when divided by the span and the coefficient of expansion @, will
give a number which may be regarded as an equivalent rise of temp-

al

erature, t, thus: t =——=

w{_ :



1.08. It appears that the acceptance of assumptions(4) and (5)
of section 1.01 will not produce serious errors in the evaluation
of deflections of the structure under live load. If, furthermore,
we accept (6) with the proviso that the effect of suspender
elongation can be calculated as a correction if necessary, then

equation (1) can be written

= 1+ h.wt (28)
and equation {%y)can be written
an _ av dh

dx ~ dx — Wt dx (29).

If we eliminate the terms that have been shown to be trivial in

equation (8) then we obtain

an H
%g = - 3= tan¢g +—5x Sec5<// wt Sec (30).
Differentiating (28) and transposing we ohtain
an _ dav dh -
ix — ax - Wt & (31).
But
dh
—d—i = = tan ‘7b

which, when substituted in (31) gives

8- L wt tany (32).

Eliminatinéi g—}% from (%0) by using (32) there results

d§ av. ) 3
= T & tan¢ - @t tan 5b+ wt Sec P+ oﬁ ‘Sec ¢

3§ tansb + Wt + EK SecBSb (33)

il

an aé . 2 a H
—;‘g-—a—};tancp a‘*}ztan</}+ £ -—E-KSeCBSbtansﬁ

(1

= [%% - %ﬂ Secy tan‘//J 3802%



and"qubstituting this into equation (14) we obtain the fundamental

equation of the stiffened suspension bridge

2 2
' d mr A5V d dy
p' +p''=w, +w, = —, ( EI ) - (B + H)g=— +
1 d dX2 dX2 x | dx

[%—z— - %’A’ Sec t,btangb] Secch} (34).
Where w and "3 repregent live and dead load per unit length
respectively.
The equations (33) and (%4) are free of insignificant terms
and must be integrated before +the stresses in a suspension bridge

can be satisfactorily evaluated.

1.09. Main Suspension Span. Horizontal Tension due to Live Load.

In the case of a main span the cable saddles are at the same
level and the ordinates of the cable curve are measured from the

horizontal. Then

d
tan¢g = E%
and equation (33%) becomes
. _dv dy H_ 3
%5 = - 33 G2t Wt + 35 Sec’¢ (35).

This may be integrated as follows:

l l l l
LA A
(4] o

o gl
+~/$ é~% dx + wtl + %KJ[Sec%ﬁdx
o] o dX o

The first term on the right hand side is zero Tbecause V¥ is zero

at the two supvorts. In the unstrained condition the cable curve

ig approximately a parabola. Since the terms in H are already small



4

the error introduced by using the geometry of the parabola in the
evaluation of the integrals will be unimportant.

We write then

2 .
a7y _ _ &t
o
and integrate again
l
g = g’—f—.z-‘[\}deLu)tl +% SGCBSL.
L b
l
of H
° 2
e el U
o
o

55¢ & ('if + ( 1+ 16f _]}

Then H can be determined from the equationé: 0 whence

l
H 8f iy
-EE = {‘ii foﬁdx - th.} Ec (37)

wherein a rise of temperature, actual or calculated from a span

change is considered positive,



1.10. Equation (34) m e integrated once directly
2
d o A5 ! dy . dve. 2, H o 3
/(Wl +gg) dx == 41 T——) - (H + H) {dx + gxoec Y- TASecﬁan%}

+Cl

Integrating again we obtain the bending moment, M:

x ¢
2
y e AV , av o 2 H %
M = EI —0 = (HW + H)y - (HW + H)/E}E Sec 55 dx + ﬂ/SecyztangbdX
dax . b o
+ cqX (38)
The ordinary deflection theory writes seczgll = 1 and both of the
integrals in (38) can then be evaluated. This approximation introd-—

uces large errors and cannot be accepted in a refined theory. A

better approximation is obtained as follows:

'/?%:\E) Secgyé dx ﬂPSeczsb - Z%/}V Secz()& tan;[l% ax
(] (o]

and l‘é’-_ﬁi 1
dx ~ 12 Sec2¢

therefore

x

X
/-‘-i-\?- Sec%ﬁz \)Sec:z¢ + -1-62% / v tangd dx.

The seoond term on the right hand side will be neglected on the
basis of a later discussion.
The second integral on the right hand side of equation (38)

may also be evaluated

<~ 3 dx
Sec tan d
Z(. ¥ ?ﬂiﬁ

i
wi
k~\‘\
(€]
@®
e}
o~
&
[o71 1 6]
@
O
t;
ol
SN

)
—
e
)
o
Ul
&
w
@
o
un
=~



The constant ¢y is evaluated from the condition that M = 0 at
X = O for the condition of no rotational restraint and no
deflection at the ends. This gives cq = 0. Bubstituting these

modifications in equation (38) we obtain

. 2 182
C a°p 2 H 5 2
- M — = - P
M= M + M, =EI = (HW + H) (y +V Sec) +m€Sec ¢—Secd)
(39).
The external bending moment is due to live load and dead
load and the two constituents have -been shown explicitly by
writing M = ML + Md.
1.11. In order to obtain a numerical idea of the effect of the

term Sec%ﬁin equation (%9) calculations have been made of the cable
deflection of various points in a span, for the assumed girder
deflection used in section 1.06.
The deflection theory assumes the cable deflection, Y]D)
is the same as the girder deflection,V , at every section if
suspender elongation is neglected.
Rode's theory is free of this assumption and the deflection
of the cable can be expressed with satisfactory accuracy by
g = V- é tan(¢ + d¢p).
The modification of Rode's Theory included in equation (39)
involves the assumption
rlM =V Seczsb =P(1 + tanz’/ ).
Table IV contains the tabulated values from these equations

for tre deflection curve

Table IV shows the improved apyproximation obtained by the



assimotions of equation (39). It should also be noted that the
stretch of the suspenders will improve the approximation, and it
is stated here for the record that the effect of suspender elongation
should not be included in design calculations based on the
Deflection Theory, or the improved equation (3%), as this
elongation tends to improve the approximation slightly.

The discrepancies between model test and calculated values
observed by Beggs, Davis and Davis (2), are not surprising in
view of the disagreement between the values in columns (6) and (7)

in Table IV,



0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9
1.0

0
5.878

9.511
9.511
5.8783

-5.878

-9.511

-9.511

-5.878
0

TABLE IV,
tan (¢+ ) sec%ﬁ

&

3

0
-2.57
~3.53
~3.56

-2.84
-3.09
-5.56
-3.53
-2.37

4

0.7721
0.273%5
0.1743
0.0773
-0.015
-0.1017
-0.1838
~0.263%6
-0.3441

5

1.128
1.072
1.031
1.008
1.00

1.008
1.031
1.072
1.128

1o
6

0
5.8783
9.511
9.511
5.878

-5.878

-9.511

-9.511

-5.878
0

0
6.76

10.48
10,13
6.12
-0.04
-6.19
-10.16
-10.44
-6.69
0



PART II.

The Determination of Deflections and Bending Homents in

Cable and Stiffening Girder Systems.



2001; Approximate Solution of Structural Problems by Use of a

Finite Series of Chosen Punctions.

Structural problems involving deflections, bending moments,
and loads arise in the daily practice of the structural engineer,
In many cases the solution by the "exact" approach leads to
cumbersome or intractable equations, which, considering the great
uncertainties in loading, and the somewhat idealised structural
details adopted to‘render the problem amenable to mathematical
treatment, are not justifiable for general use.

In many such cases solutions in terms of a convergent infinite
series are possible and desirable, insofar as only a few terms of the
gseries, consistent with the approach of the structure to ideal
behaviour, are retained. Furthermore, an intelligent procedure of des—
ign is made possible by the consideration of major terms only in
the early stages and introducing terms of lesser magnitude
in the later stages. ‘

In the application of this #Hethodothe wanted function Y is
expressed by a series of functions Yl,YZ,YB.......which severally
gatisfy the boundary conditions of the problem.

Then Y = alYl + a2Y2 + 33Y3 teeerecnnnan
where Yl’Yz’Y3 ceses. Aare the chosen functions, and 81585189 +een.
are numerical coefficients whose values must be determined so that
Znanyn is a good fit for Y.

The criterion of fit is a matter of choice in practical cases.

One can by arbitrary guess and trial, find values of 8 wnich will



resiilt in a satisfactory fit of > a, ¥ to the plotted values of Y.
This method can lead to good resul?s in simple cases but it lacks
the theoretical background which is necessary to guarantee a result
of sufficient accuracy with a finite amount of labour.

Alternatively, the coefficients of the finite series, %; %1Yn
can be chosen so that at n special points the equation

Y = 2;anYn
is satisfied exactly. This procedure leads to a system of n linear
gimultaneous equations for the coefficients. This is a definite
procedure and a result can be dbtained in a reasonable time. It
has the disadvantage that there is no guide to the best points to
select to obtain a good fit with a few terms, so in general,‘it
is necessary to retain a larger number than is desirable from the
standpoint of office use.

The third method is to select each coefficient to obtain the
best "least square'" fit to the residual remaining from the previous
term. This procedure gives a criterion for the determination of
each coefficient in turn. The latter condition is autoymatically
satisfied by trigonometrical series which are specially significant

to the sgstructural engineer.

2,02, The problems of structural mechanics involve the
bending moments and deflections in beams and columns. The fundam-

ental equation of bvending

4 a°%y a2u
2 ( EI 2) - - -——2_— = p’
dx ax ax



can be satisfied, under certain very commonly occuring boundary

conditions, by a Fourier Series of the form

()

[
y:f(x):ZanSinnwx+ > b Cos RITX
n:l ]_’]_:O n l

y may have a finite number of discontinuities, and except in the

neighbourhood of such discontinuities, the series converges to £(x).
In those problems which require evaluation of deflections

as an intermediate or final step inﬁdesign this series has particuwlar

interest because of the recurrence of sines and cosines after every

two differengptions.

2 2.2
. nft ™ o . nt m°e .
. gx(81nnl ) = ET Cos n:lx y §;§(Sln n lX ) = e 12 glnnH{X

This allows many results to be obtained by the technique of equating
coefficients. | ‘

It can be shown (9) that the finite series obtained by cutting
off all terms beyond a certain order n , is the best approximation
pbssible by a trigometric series of the same order. The coefficients
remain unchanged if more terms are taken in a new approximation.
Furthermore, the coefficient of each term results in the best
"least square" fit of the term to the remainder of the function
and each additional term of the series results in an improved
"least square" fit of the finite series to the function Y.

This series, then, has desirable characteristics from the
point of view of the structural analystst.lt lendés itself well
to successive improvement in accuracy of calculation as design

proceeds. Tables of Sines and Cosines make calculations and plotting



of ?alués a very simple matter. In many cases, the influence of
design changes on stresses can be de¢tected by their effect on
coefficients of terms of certain orders and the result of such
changes can be rapidly evaluated.

The evaluation of the coefficients an,bn and bO follow certain
rules which depend on the orthogonal properties of these trigonom-

etrical functions. Thgy are quoted here without derivation

a, = ——i—-— f(%—z) Sin nl{x dx
o2l
b, = T/f(ﬁx ) dx
2 o2l l
1 nmx
b, = 3 f(x) Cos 7 dx

D e~

wherein £(x) is th q,u.aantity which is to be expressed as a Fourler
Series over a certain interval and ZZ is the length of one cycle
of this funection.

In cases where the beam of length,l , is freely supported at
the two ends as in Fig. 2.0l an expansion in Sine terms alone

satisfies the boundary conditions, and in effect, we are assuming a

cycle over the distance 21 as shown.

AN z 7
Frg 2.0/
A V-l <

Frg2.0z2



Whei;e the ‘oéam is fixed with zero slope and deflection at the ends
the cosine series alone satisfies the boundary conditions over a
span length, QZ . As shown in Pig.2.02 the function Y is assumed
to repeat beyond the end of the span, B.

Boundary conditions other than these two types are not easily

treated by trigonometric series.

2.03. The work which follows requires that the bending moment
due to the extermnal loads, be expressed in a trigonometric series.
The few necessary types of expansion encountered in usual

structural analysis are collected here for convenient reference.

(1) The shape of the triangle is givan'm
A \,P by 2 0
My, A~ y = _Z_QL________, 1 il g 00X
f //e \\\\\ ﬂgb(l p) n=t 1 L L o
; Z JL~ - “\\ ¥ A triangular bending monment dlagram
0 ;":y *due to a load Paols defined by ..
(2)  The parabola y = (lx - X2) is a180 '
A defined by l T
MY, _ Zoo: _l__3 sin _n_f_@c_ for n odd only."f’*;

The bendln mo"lent due to unit 10’ad"

e e p ver unit length is given by
e 7: \\ x 5 o
L éi“} M = 4pl Z L sin 9—1@ for n odd.
(3) The bending moment due to a uniform
A load p per unit length extending from

i X =a tox=D>uona spanz , 1s givenf@

pe—— Ly

; 00
) o " 2“pl.2 Z(COST - cosma) si m{x
b Jurut length > A=t n
rJ@ — N,
S Fa |
I R Fig. 2.0%




- From (3) all the formulae for uniform load p per unit length

over part of the span, can be derived. A great simplification

is achieved here since the single equation replaces three separate

equations in the usual method of calculation.

2.04, FPor the theory which foliows we need to know the

coefficients of the expansion

Sin

. o S
IMLG k™ _ > 4 sin B a_ Sin mTZ
m =1

l l Z m=1 "m

where 1 may have any odd ppsitive integral value and k may have

any positive integral values,

For the purposes of calculation it will be sufficient to

tabulate values of i, k, and m up to 7.

The coefficients a,, are determined by

8

l .
g-jSinw . Sin iITX Sin%r—j—(dx.

{ L [4 T
_1°[cos(i -k +m) T, Cos(k -im) T~
21 (i -k + n) (k -i +n)

% Tx Z
. Cos(d +k -n) ] _Cos(di +k +n)" [ ‘]

(i +k -n) (i +k +n) o

The coefficients have been calculated and tabulated in Table V.
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1.
0.849
0
-0.1696

o -0.1939

-0.02425

O -0.0323%4
-0.00808

0

-0.01177

TABLE V.

Values of k.

5.
-0.1696

0 -0.1939

0.655
-0 0.682

-0.2021

0 -0.2056
~-0.0360

0 -0.0380

5.

-0.02425

0
-0,2021

0.6435

-0.2075
0

6. 7
0  -0.00808
-0.03231 )
0 ~0.0360
~0.2056 0
0 -0.2075
0.641 0
0 0.640
-0.2088 0



6o} -3 [©2 A 3 -+ N A [ B
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e

m

1
2
3
4
5
6
7
8

L4

»

»
3
3
-
.
L]

It
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1.
-0.1696
0]
0.655
0
-0.2021
0
-0.,0360
0

1.

0
-0.2021
0
0.643%5
0]
-0,2075
0

2
0
0.485
0
0.453
0
-0.2382
o)
-0.0497

2.

v
-0.2263
0
0.441
0
0.435
0
-0.2466

Values of k.

3.
0.655
0
0.283
0
0.4156
FO
~0.2516
0

4,
0

0.453
0
0.2470
0
0.4025
0
-0.2585

Values of k.

3.
-0.2021
0
0.4%65
0
0.2331
0
0.3962
0

4.
0
0.441
0
0.2088
0
0.1939
0]
0.3805

5.
-0.2021
0
0.4165
0
0.2331
0
0.3962
0

5.
0.6435
0
0.2331
0
0.1696
0
0.1782
0

6.
0

0.4025
0

0.2263

0.392

0.435

0.1939

0.1542

0.1701

7.
-0.03602

0
-0.2518

0

0.3962

0
0.2224

0

7.
-0.2075
0
0.3962
0
0.1782
0
0.1459
0



i o=7.

Values of k.
m; 1. 2. 3.
1. -0.00808 O  -0.0360
2. 0 -0.0441 0
3., =0.0%60 0 -0,2518
4, O -0.2473 0
5. -0.2075 0 0.3962
6o 0 -0.432 0
7. 0.640 O 0.2224
8. 0 0.4295 0

4.
0
-0.2473
0
0.3878
0
0.2864
V)

0.1820

5.
-0.2075
0

0.3962

o
0.1783
o

0.1459
0

6.
0
-0.432
0
0.1864
V]
0.1379
0

0.1291

7.
0.640

0.2224

0.1459
0

0.01212
0



2,05, It is necessary to expand the function
Z(1 - 2)Sin ifrZ

as a Sine Series, and the coefficients of the expansion are given by

!
a, = 2fz(1 - 2) Sin 1M Z Sin mTvZ 4Zz.

Q
After integration the coefficients, a,, are determined by the expressions

_ L1 [ 1+ Cos( i = m)m™ _ 1 + Cos(d + m)ﬂji€ nl £ §2
m T2 (i - m)? (1 + m)?

1
2(1m)?
It will be sufficient for the purposes of this thesis to tabulate

and

8, ifm= 1.

fl

oy

a, for values of i and m up to 5.
TABLE VI.

Values of i.

m. 1. 2. 5. 4. 5.
1. 0.2173 0 -0.038 0 -0.007
2. 0 0.1793 0 -0.0455 0
3. -0.0380 0 0.1722 0 -0.0475
4. 0 -0.0455 0 0.1698 0
5. -0.007 0] -0.0475 0 0.1686
2.06, It will also be necessary to represent the function

Secsyﬁ - Se05¢
in terms of a Sine Series. The influence of the term containing the fun-
ction on the equation of the suspension bridge is quite small, and for
all practical purposes it is suffieient to comparte this term for a

parabolic cable curve.



Then
yzé‘{—g(lx-xz)'—*—ﬂrf( 7z - 2°)

e =i‘1§zztan¢=f‘ﬂif-(1-2z>.
The analytic determination of the harmonic coefficients has not
proved practicable so a numerical method has been used. HFor three
values of % the value of the function, Sec%é - Sec%é has been computed
for +twenty four points in main span and the sine series coefficients
detcrmined by standard harmonic analysis.
These coefficients are plotted against ﬂi in Fig.2.04. Two

coefficients are given. No great accuracy is warranted in these factors

as the term which involves them is relatively unimportant.

8

04

&.03
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o2 :
9075 o0 ﬁ% OF25
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“2.06;\ Deflection of a Simple Beam.

Consider the simple beam under any loading which produces a
moment diagram defined by M.

We may eXPress M as fcl oo

Moo 2 a, Sin 9—-"{5 2.01.
n :1

Furthermore, we may @;ite the deflecticn

y = -2: b, 5in amrx 2.02.
n =1 1
From the relation
_EI i-l,g-—z M 2.03.
dx
we obtain, using 2,01 and 2.02
5 3
2
m 2 . nThx . nTPx
lz BT no1 0 bn Sin l = 01 2 Sin l 2.04.

Bguating coefficients of like terms in 2.04 we derive

v - L

n EI?FEZ 8 2.05.

Now, & is easily found for all the usual loadings, from Lhe

expansions of Fig.2.03.

m*EL . . .

—3z — 1s a property of the beam and n is an integer. Hence,

the derivation of the deflection of a beam is extremely simple.
This approach avoids entirely the introduction of the "virtual

work" concept and the consequent integration of virtual work as

developed by Timoshenko in reference (10).
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Fig 2.06



The expansion for the figure shown in Fig.2.05 is,from Fig.2.03,

2912 S
V= 7%(L -b) n =1 1-2- Sin n‘{b Sin m{x
n
For o 108d P at x = b szﬁlzﬁlﬁ,y=e
M = g_ P :E' Sin nirb Sin nitx
m2 1 l
& ole 1 .. nmb
b = ‘ = Sin
n  EIMM?n? ™2 2 1
22 . amo

= Sin
eIt l
which result is identiegal with that ohtained by Timoshenko (10).
The elegance of the trigonometric series method is even more

evident here than in Timoshenko's derivation.

2;07. Deflections or Stresseg in Beams or Plates.

1. Edges simply supported.
The deflection of the plate i1f initially straight can be

represented by the ser;is

nITrx:
rl = l’lZl an Sin —‘—T—”

where the origin of x and y is as shown in Fig.2.06,



n
n=t
the total dev1at10n from the x axis under load is

afrx nirx
Yo=Y, * n = nZ:l " Sin -l_ + Z—l 2, Sin i 2.06.

o -
" If the plate is initially bent to the curve y, §:e Sin &

The external moment, M , due to the load can be similarly

expressed as
: M = Z b Sin nirx
n -1 1 2.07.

8

If the ends are not free to approach each other without restraint
a tension,T, exists at the gsupportsy

Equating moments at a sectlon distant x from the origin we
nave M, - T( y, +n) = -iuI———-ﬂ-

dX
or sugftituting from 2.06 and 2.07

x

Zi .. nThx _ jz 2 .. nfrx

=1 b, Sin ] —-T(yo+q).—E _l %lnan81n l
And equating coefficients we obtain

2
_MEL 2
1c)n—ff.‘(een+an)—-—————-L2 n® a,
whence b, — Te
| a_ = --4—---—-—9-—— 2.08.

n TTEI2
lz

T is determined from the condition of restraint of the longitudinal

+ T

dimensions of the member.

2a For the plate with clamped edges we must introduce the
restriction that the external bending moment due to the load is
symmetrical about the centre line of the plate.

It is &Pen possible to express the deflection due to load

q = Z;O 2, Cos HT{X and the symmetry of the problem

Tl =
excludes at once the odd values of n.



1

2 oo
T 2 nmx
= - S5 _;_ n anCos —

dX2 B l ° l
Further we know that, in order that n= 0 at x =0 and x =1

Z a, =0 2.09.

The static bending moment diagram can be expressed in a

®
.. nTtx
:-.___f!‘_Znan81n
T o

series of the _’g.‘oorm
nx

l

and the clamped edge conditions prescribe a fixing moment Mf.

MS = 220 bn Cos

If the supports are restrained longitudinally a tension T

is induced in the member.

Equating moments at section distant x from the left hand support

2
- M, - - - an_
M - M - D= - EL S

Substituting for rland Ms we obtain
ol

Z b Cos BTX _ y  _np < G nmx ’ITZEIin CoslIX
n:OnOS 1 —f—;an 0s 2 -lz onanOST

2.10

Equating coefficients we have
b, -, -Ta, =0 | 2.11
b, - T a, = MBI 2

n n 12 an
or a = bn
n = > 2.12.
1T EInE +




>3. The change in length of the member due to the curvature is

given by (10)

If the supports do not approach each other the stretch is

r. [

Al = EA
[
.t T:iﬁi%éz‘;nz anz 2.13.

For thin plates EL is taken as zero to obtain a first value
for T. In the case of thick plates T is taken as zero. This
first value is used to obtain a new set of coefficients. The

procedure converges.,

2.08. The method of approximate solution exemplified by the
content of sections 2.06 and 2.07 can be applied to a wide variety

of problems in structural mechanics. It is a variation of the
trigonometric series method developed by S. Timoshenko and differs
in the method of determination of the coefficients of the series
representing the deflection curve.,

A1l plate and beam bending problems of Chapter I, reference(ll)
can be treated effectively by this method, and all the beam-column
formulae which have been treated by trigonometric series using
the energy method can be simply derived by this alternative

procedure.



Ai firstkglamce there seems to be no advantage to be gained
by the variation. However, in the usual method, the determination
of the coefficients requires the evaluation of integrals
representing the internal strain energy and, except in a few cases,
this is not easily done.

Purthermore, the technique of equating coefficients permits
us to introduce arbitrary differences in the initial conditions,
e.g. the initial bent shape of the beam of section 2.07, by
simply varying a coefficient, and the most advantageous variations
are at once evident from the form of the expansion of the applied
bending momént.

This advantage is much more in evidence when two members
participate in supporting a load as in the flitched bean, deck and
rim in an arch, and, of more immediate interest, the cable and
girder of the suspensicn bridge.

If for some reason, e.g. hanger elongation in the suspension
bridge, the second supporting member deflects more or less than the
first by a determinable amount it is very simply taken into account
by writing in the appropriate harmonic coefficients in the
static equilibrium equation as typified by equation 2.10.

It may be desirable to investigate the possibilities of
applying a prestress in the stiffening girder of a suspension
bridge in order to relieve a member which is overloaded. This
can be done fairly readily by adjustment of the suspender lengths.
The critical load conditions are set up in the form of a static

moment equation with all terms expanded in harmonic series. Then



it will be evident that a certain harmonic has greater effect at the
point considered than others and harmonic prestress of the same
order but of opposite sign is most effective in reducing the

critical conditions.

2.10, The Deflection Theory ordinarily takes no account of the
difference in the deflection curves of the cable and stiffening
girder due to the longitudinal shift of the cable bands. In

the present section it is proposed to present another approach

to this simple theory for the main span, of a suspension bridge.
The development of the equations for a side span follows the

same pattern closely and is not presented in this work.

We accept the assumptions (2) to (6) of section 1.01 which
involve, by assumption (5), the condition that the supports of the
cable are vertically above the corresponding girder pin joints.-
The fundamental eguationiofirthe Deflection Theory can then be

written down briefly for a point distant x from the origin(Pig.2.07).

My =M - (H+ H) (y +n.) 2.14
where Mt = bending moment supported by the girder.
M = leMd = bending moment due to all loads in the span.
¥y = initial cable ordinate under dead load above .

cable deflection due to added live load.

S
0“

jusi
il

Horizontal tension due to dead load above.

sy
it

change in horizontal tension due to change in condit-

ions of load and deflection.



_1!8

From assumption (2), section 1.01, the dead load bending moment,
Md, was carried initially by the cable alone, whence
Md = Hw.y
and equation 2.14 can be reduced to the familiar equation
My = My - Hiy - (H+ H )N 2.15.
From the theory of bending with the usual convention of signs
for bending moments in the girder
2
i, = - 51 T 2.16.
dx
where yn is the truss deflection corresponding to, but not
necessarily equal to rk . By substituting from 2.16 in 2.15
and transposing there results the fundamental esuation of this section®

320

ET 5

- -{] = -
: By -2 + B = - i 2.17.
dx

o restrictions have been placed on the form of the cable curve
as defined by ¥y in equation 2.17. Thig is determined by the dead
load distribution in the span. Furthermore, the form of equation
2.17 i1s such that it i&¢ possible to introducs arbitrary ditferences

between the corresponding values of e and e To permit investig-



ati@ns<of prestress and otner sources of difference between cable
and girder deflection.
In the study of prestress, the effect of an arbitrary change
in suspender lengths is included by writing
Ne~ e = f(x) 2.18.
In the study of errors in theory due to the longitudinal
shift of the cable bands we begin by accepting the approximation
Ne & Ne from the first order theory. By proper manipulation
it is possible to calculate from the deflection N¢the true def-
lection of the cable. The values aqu-qccan,then be determined
and introduced as a prestress to determine closer valuecs.
Regardless of the dead load distribution it will be possible
to express the cable ordinate y as a sine series to any degree
of accuracy required for computation. Some idea of the number
of terms necessary for the usual accuracy of structural
calculations can be obtained from a comparison of the ordinates

of a parabola as derived from the exact expression
¥ _ _ 52
F = 4(2 z°)

and from the expansion

o0
22_ 1.
T3 %:': 1,3,5,7, pn3 Sin n1rz

L=
f

= 1.031 SinTrZ + 0.0382 Sin31TZ + 0.0082 Sin51T Z +...
The convergence is evidently very rapid.

The dead load configuration of the cable is written then as
jgi f%:
¥ - in ATX i
= Cn Sin 1 = = C, Sin nT2 2.19.

n =1 n



whére fhe coefficients e C, are determined by the usual methods
for Fourier series. For symmetrical spans only odd terms appear
in equation 2.19.

In the same mamner the curve of bending moment due to live loads
can be expressed as g sine series, and for all the usual loads
encountered~in design, Fig.2.03 gives the coefficients in terms
of the 1oads and dimensions of the span. For the purposes of a
general discussion the live load bending moment will be written

[~ 00

ML nmx

T = j;g a, Sin l = ﬁ:ga 8, Sin nTZ 2.20.

A convenient and simple expression for f(x) in equation 2.18

is written as follows
o o0
e e . 2 4, nrx D
[ =»n-=

n =1 —F Sin

dn
1 7 —5in nmz 2.21.
and usually this equation will be limited to a single term and

always to odd terms for symmetrical spans. then
o0

e Me_ 2> -
T F T 4o dn Sin nmZ 2.22.

Substituting from equations 2.19, 2.20, and 2.22 in equation
2.17, the following expression for qt is obtained. It should be

noted that £I is assumed constant.

2(‘1;5 ) - (1 /Sa)ﬂzrbC "'~ﬂ20({ Z 1C,5in amz - Z_lan;s;m nfrs -

o0

(1+8) nzzl d, Sin nmZ 2.25%

where 2

jan
=

_
3
;
QO
a
oY
]




Ali thé quantities on the right-hand side, except B8, are known
from the loads and dimensions of the structure. £ must be
determined from the equation of continuity of the cable with the
foundations and will be discussed in the next section.

If an cxpression for Neis assumed ofthe form
[ ]

[}
N+ _ Z . nfhx Z .
- = 4O Dn Sin l = 1 DnS].l’l 1ok L V4 2.24

the boundary conditions for the girder and cable are satisfied

identically. Then
('lt

[+
Z n D Sin nmZ2 2.25.

Substituting from 2.25 and 2.24 in equation 2.2% and equating the
coefficients of terms of the same order, the coefficients D in
2.25 can be evaluated.

5 [an—ﬁcn + (1 +@) dn)
n - 148+ %‘_ 2.26.

Bpis the only unknown in equation 2.26 and it occurs in both the
numerator and denominator. BEvidentezly the coefficients for the serie
for deflection, equation 2.24, are not linear functions of A .

As the value of the %2- in the denominator becomes large, the in-

fluence of B on the denominator decreases. This occurs if &€ is

small which defines a structure with a relatively stiff girder.
For & very small equation 2.26 shows deflections are linear

functions of the applied bending moment. Since bending moments

are determinable by the method of superposition and B multiplies



the cable curve coefficient: in the numerator, which is effectively
a constant for given design dimensions, the only bar to the use
of the method of su%gsition in the determination of deflections

2
is the B in the denominator. Vhen o is very small the term a_

o«
will become large and ﬂ may be negléc’ced in the denominator.

A criterion is now available for determining the applicability
of the "Elastic Theory". First order harmonics are not usually
very important so we will consider the second harmonic which
makes n2 = 4. Then = 2 makes the denominator 3 +8, and /3 may
be 0.3. The neglect of g in the denominator will mean an error of
10% in the second order harmonic of the deflection curve. In
.thé first harmonic there will be an error of about 16% and in
harmonics above the third a negligible amount. Table IX shows
that for modern bridges, especially those for highway traffic
alone, the value of is much larger than 2, and in some cases so
large that the term in @ can be neglected. [t will not be satis-—
factory in such cases to use the "Elastic Theory" and the method
of Influence Lines, except for qualitative discussions. Where the

ratio of live load, , to dead load, Wd’ becomes small with &

M
remaining large, A may always be small and the problem again
approaches linearity.
Leaving prestress out of account the equationiagoefficients
of deflection of the girder will be given by
a, - BCH

D = 5 2.26(8,).

.
1+,3+0£




2.11. For the evaluation of B it may‘be assumed that the
initial cable curve is sufficiently close to parabolic to
justify the use of eqaation (37) of Part I where ¥ , corresponds

to e of equation 2.22. From that equation

" EAl 8r° ’?c _
6-% - Br [ f 4% - wt 2.27,

and applying equatlons 2.22 and 2.24

2
B = 5{%[ (D, - 4,) Sin nerZ 4z - wt} where Y = EA},

W C

which after integration yields
(e e

2
- 8f (D, -4 )
B = g['ﬂ“lz :g;_-l "{l*"'ﬁ-ri (1 - Cos n1T) -a)tJ 2.28.
If prestress is left oul, the equation 2.28 becomes
o0
2 D
3 = ¥ 2 ;E: —%~(1L—}Cos nf) - u)%} 2.28(a).
1T n =1

It should be noted that (1 - Cos nft) vanishes for even values of n
s0 only odd terms occur in the evaluation of /3 . This is a usetul
simplification.

A rise of temperature or a decrease in span are considered

positive in the application of equation 2.28.

2.12. Bquations 2.28 dnd 2.26 together enable us to determine
the curve of deflection of the stiffening girder for any specified
load and dimensions. Evidently for a particular case 3 must be
détermined by trial, and it is not difficult to guess a
sufficiently good value of 4 to determine first velues of Dn

for use in evaluation of B from equation 2.28. This new value of 3



is then used to obtain new values of Dn for a betser approx-
imation, and so on.

However, the value of Bdepends also on the tower top
deflection due to @&ide span interaction, and it must be chosen
so that for a given loading condition the value of A in the main
span differs from thé value of ﬂ in the sidespan by the small
proportion of the dea%oléi%rizontal tension necessary to deflect
the tower. When the cables are employed they also affect the
value of/J' .

In order to satisfy these various conditions it is necessary
in practice to determined for various changes in span length
for main spans and sidespans, and plot B against span change.
Under these oircmstances the evaluation of 4 no longer presents
any difficulty if we proceed in reverse order thus: For
various values of 3, Dn is evaluated from equation 2.26 and
substituted into equation 2.28, which is then solved for &+%t.

It has been stated in section 1.07 that wt can be regarded as
the result of temperature change, span change, or both together.
The valuesof wt fhus obtained are plotted against /A .

In the case wheére the structural action is such that @t = O
the correg%lg%ﬂto satisfy 2.26 and 2.28 is given by the inter-
section of the plot with the A-axis.

For the use of such plotted curves when side span interaction
and tower stiffness exists, the reader is referred to R.A,Tudor's
discussion of the "Wodified Dana lethod" in Reference 2. It will
be evident that the form of equations 2.26 and 2.28 is very con-

venient for use in this manner.



2.1%. An example is presented here to illustrate the use of
the results of sections 2.10 and 2.11. At the same time, the
example has been taken from reference (8) so that a comparison
can be made with the well-known trigonometric series' method
of Priester énd Sdimoshenko.

Manhattan Bridge.
6

of= 1.746 H, = 10.48 x 10° 1b. L 4084 1b/f%.
_fl._z 0.1004 l = 1.447 3. B = 0.10

J= 704 5 6.6 X 10"6 pero F.
The live laad, Wl, is applied over the first quarter of the span,

then, in Fig.2.03, (3), 2~ =0 anad =—. Therefore

l [
ML i 1 - Cos =
— = 0.%614 =1 Sin n1tZ
wa n3
n1t
whence a, = 0.3614 (11 - Cos 4 )
3 *

n
.

The cable shape is the expansion of a parabola and

1.032
6n —;3—— for n odd only.

No prestress is involved so D  is determined from equation 2.26(a)
for the assumed value of B . The values of D thus obtained are
used in equation 2.28(a) to find the value of wt corresponding to
the assumed value of @ . Table VIII shows the computations for

one value of A3 .



8 0.1

el Cy

1 1.0383

2 0

3 0.038%

4 0

5 0.00825
6 0

7 0.0030

8 - 0,101

1 1.0323

g

3 0.0382

4

5 0.00885

By linear interplation,

B - 0.0997
1 1.03s3
2 0
3 0.0882
4 0

Tabom VIII

a, 8o,
¢.1088 U.L0383
0.0452 0
0.02283 0.00362
0.011z9 0
0.00483 0.00082
0.00187 0
¢.00031 0.00030
0.10560 0..0426
0.0228 0.00386
0.00493 0.00084a

B = 0.0997 for t = 0

0.1058
0.0452
0.02£83
0.01129

0.00493

Dn
0.001536
0.01332
0.00303%
0.00L101
0.000866
0.0000709

0.0000003
Computed
0.00092 |
0.003026

0.000266

Computved t

0.0017a5&
0.0133%

0.,003805%
0.,001101

0.000266

%&(1-008 n)
0.00a072
0.0000
0.0020z6
0.00000
0.000106
0.00000

0.00000

= .1.59° @

0.001, 840

0.00&0 17

0.000,106

0.00596%
= -6.50 F



The results agree with the " H - approximate " values
tabulated by Priester (reference (8) ) and lie a small
percentage below his " H- exact " values. However, the develop-
ments of Part I of this thesis show that the equation from which
B is derived in this work is highly accurate and it takes
into account the actual structural behaviour of the cable.

It would seem that the " H - approximate " values of
reference (8) are more near the truth than the " H - exact"
values. On the basis of the present work the writer feels that
the method of this text is most reliable for general use, although
for particular cases it can be shown that the methods of
references (6) and (8), and section 2.11, will agree within 3%.

It is not possible to generalise this statement without extensive
computations.

For étiff bridges, into which class the example falls, three
terms prove sufficient, but for more flexible bridges a fourth and
perhaps a fifth term may be used. The calculations are very
gimple and involve no difficulties when used with Tudor's
procedure (reference 2 ). Table IX gives the basic design

parameters for a few modern bridge spans.

2.14. For modern suspension bridges of can be large and
equation 2.26 shows that when &is large the term which it influences
loses importance. This leads to the deduction that any attempts to

reduce girder stress by local increases of the moment of inertia
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isﬂof‘no great avail. This point cannot be over - emphasised
for too often in the reports of constructed bridges one notes

the statement that the girder chords are proportioned to take

the bending moment at the section. On the contrary, if attempt
is made to reduce stress by inereasing the chord area the result
will be weight increase and practically no change in chord stress
which is completely undesirable. If, instead, the girder depth
is increased, then the result will be an increase of chord stress
which degrades the design.

In spans with large values of &, then, the girder depth defines
the maximum chord stress and any attempt to proportion the chords
to the bending moment is futile. The Golden Gate, Tacoma,
andBronx - Whitestone Bridges are in this class.

Spans with smaller values of &, say from & to 50, which
includes a large class in Table IX, can be designed with variable
chord sections to some advantage and means of evaluating the
influenge of variable & will be developed in later sections.
Better results in this direction can be attained with the lower
values of o , because 2s & increases the effect of a given
increase of moment of inertia rapidly decreases.

A given amount of chord material should, for maximum
effectiveness, be arranged with the greatest possible depth of
truss consistent with the stress limitation of the material.
Since, for construction reasons, the chords are generally parallel,

the moment at one section determines the chord depth, and the



stress at all lower order maxima will be less than the allowable.
One can with advantage introduce arprestress which will
reduce the girder bending at the first order maximum and increase
it at others, and as a result, the chord depth can be increased.
It is to pefmit the calculation of the influénce of prestress

that the additional term, d_, has been included in equation 2.26

n’
and 2.28,

The procedure is as follows: All maximum moments are calculated
agsuming no prestress, and experience shows that there will be
pogitive and negative maxima at the center and near the quarter
points. Positive and negative maxima at a given point will not
in general be equal, and it will be found that suitably chosen
first order and third order deflection curves will help to
equalise the positive and negative values at each point, and
the values at the quarter point and the centre. Even order
prestressing deflections will not appear because of symmetry,
and higher orders than the third are unwarranted.

IThus the valuesg of dl and d3 are determined and resubstituted
in equations 2.26 and 2.28 to check the work. The effect of the
prestress terms on @ will be small but in any case any discrepancy
is readily adjusted by carrying through again the calculations
of @ for the critical loadings.

The prestress is introduced during o¥ after completion of cone’ .
struction by adjustment of suspender lengths and involves no
difficulties. Some guidance in estimating the desirable amount of
prestress can be had from the curves of reference (7) but in
general the oroper maxima must be calculated for the particular

case because of sidespan and temperature effects.



2.15,v The emphasis in all the preceding sections has been
placed on deflections because in suspension bridges permissible
deflections ( or permissible flexibility) controls the design.
‘The girder proportions are determined by the moment of inertia
necessary to limit deflections to the chosen values, and the
allowable stress which depends on the depth. The dependent
variable is then the area of the chord cross-section and
reduction in that area can be achieved solely by increase of
allowable stress which permits a greater depth for a given value
of I. A proper recognition of this philosophy is necessary for
intelligent design of such bridges.

Equation 2.26 enables us to develop a pictorial representation
of the influence of the several design variables on the
flexibility of the structure. Usually a span length and traffic
capacity are the first known quantities, and the representation
deﬁeloped below will enable us to determine the influence of

the design parameters f/i , W, , and ¢ on flexibility for
wa
any definite live load, W, and span l .

The type of loading assumed is such that only the second
order harmonic deflection curve appears. This is an entirely
fictitious loading that gives B = O from equation 2.28(a).

Since we seek only the influence ﬁhe%éﬁéiaeﬁee of parameters
on flexibility the fictitious character of the loading assumed is

of no great importance. We may write then for the quarter point
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where Ki is a constant whose numerical value is of no consequence

in the present discussion.

2
1T2E% 8fm2el W, £ 2 ;
where KZ = Wll
8M?EI
From equation 2.29 A is evaluated and platted against &
for various values of ¢ in Fig. 2.08. The K2 = constant lines

in Fig. 2.08 are deéedsewrmined from equation 2.30 and connect
points related by fixed wvalues of Wy, Z , and BT because
K2 is then constant, and for any two values of #, equation 2.30
gives
P 4z 2.31
3_ 2 Sl
2 1
The effect on flexibility of a proposed change in the paraw: .
w f
meter w% . TT
estimated by locating the point on Fig.2.08 corresponding to

= # due to a change in dead load or sag is

the existing design, then following the K2 - lines to the new

proposed value of ¢ and reading off the value of A .



The influence of an increase in stiffening by increasing EI
without change in dead load, can be found by following the full
lines to the point determined by the new value of ¢, and
reading off the corresponding value of A . Mixed changes afe
treated in two steps by taking the changes separately and

consecutively.

2.16, The theory of section 2.10 leads to an expression for
the curve of deflection of the cable, in terms of an infinite
sine series whose coefficients are known. These coefficients do
not decrease in value very rapidly, compared with those obtained
by the method of variation of strain energy. It will be found
that usually two more terms Will be needed to obtain satis-
factory approximation but this:; small disadvantage compared
with the gain in flexibility of this alternative technique.

Mathematically speaking it is possible to improve the
convergence of the coefficients in the manner of Karman in
reference (145, which is equivalent in our case, to separating
equation 2.26 into two parts; one part is the deflection of the
unstiffened cable under load, and the other is a correction to
be subtracted due to the action of the stiffening girder.
Theoretically, the first part is simply a matter of statical
equilibrium and easily evaluated algebraically, and the second
part will be small and rapidly convergent if the girder is

relatively flexible, which is usually the case in modern bridges.



However as a matter of computation, which, after all,
is the final destiny of structural theoty, it is much easier 1o
evaluate up to ten terms of a sine series and add the results,
than it is to evaluate the algebraic expressions for the static
deflection curve of a cable and two or three correction #ermss.
The first is simply a matter of reading off tabulated values
of the sine and multiplying by a coefficient and the coefficients
"are determined without any special difficulty. For all usual
load distributions only four or five terms of the series are
necessary for satisfactory accuracy, so the writer has not
included here any mathematical rearrangements of the basic
equation. From the'standpoint of office computation the form
given is ideal for calculation and checking, and has the further
advantageg that a single series represents the deflection
curve for the whole span.

Very stiff bridges, which are characterised by low values of

oL, produce a satisfactory rate of convergence with few terms,

because then the term in (K, strongly influernces the denominator
of equation 2.26. Flexible bridges such as the Tacoma or Bronx-
Whitestone are scarcely influenced by the term in gf. A few
constructed bridges are marked up in Fig. 2.08 according to their

parameters @ and L .



2.17. Although deflections have become the foremost design
considerations in suspension bridges and are dependent on the
parameters oL and f, it is still necessary to determine the
maximum bending moments in the girder in order to determine the
maximum permissible girder depth( and consequently the cross -
gections) consistent with the chosen values of moment of inertia
and maximum chord stress. We repeat that the designer must not
mistakenly attempt to design for the maximum bending moment

of all sections as for a simple girder.

Rewriting equation 2.16

, 2
My a=f,

EI  dx°

and introducing dimensionless variables

M 2
L - Q—--g ( g:"f—) 2.32
EIf 4z

and using equation 2.25 the expression for bending moment in the

girder is

2 ) o0 o0
M,

Ll = E;TﬁﬁlSm.nﬂX:: ﬁﬁn8n1nﬂ2=:zz n&ﬂ%

EIf n =1 l n =1 n =1
%ﬁﬂlnﬂz 2.35,

from which we obtain, by equating coefficients
_ .2

m, =n" Dy 2.%4.

which enables us to determine the truss bending moment curve at once
[ -]

2
from i l
Y S Z m Sin nTrZ 2.35.

m EIf n =1



The remarks an convergence of section 2.16 apply also to
equation 2.34 of the present section. However it is found that
five terms usually are sufficient and calculationsfor additional
terms are simple as is evident from equations 2.34 qnd 2.26.

After determination of the desirable prestress only the term of the

order of the prestress curve will be much affected.

2.18. The writer has made an attempt to use the fundamental
formulae of section 2.10 of this thesis as foundation for the
preliminary design method of Wessman and Hardesty in Reference(7),
and is forced to the conclusion that the method advocated by those
authors is safe only insofar, as it has been checked against
computations by the Deflection Theory for the determination

of the empirical coefficients. If we accept the parameters K

and ¢ as being descriptive of a suspension bridge as shown in

Fig. 2.08, then the bridges upon which Wessman and Hardesty

have based their method of computation cover a very small range;
their exampiesare the first six bridges listed in Table IX and
show values of ¢ between 1.7 and 7.1 with ﬂ ranging from 0.2

to 0.7. The range of ¢ is large but the range of ¢ defines

only a very small region low down in Fig. 2.08, and it cannot be
expected that an empirical approach thn lead to equations which
will represent the action of the stiffening girder over a very
large range without recourse to changes in the empirical

coefficients.



if only one harmonic proved important in the determination
of eritical deflections thens #& some proper physical basis
for the Preliminary Design Method can be established. In
general, there are two important harmonics and the applicability
of the method must be proved by calculations based on the usual
theories which are more nearly representative of the facts.

Bach suspension bridge is a problem in itself and exact
calculations for the two major design points treated in
Reference (7), namely centre and quarter points, are as easily
made by the present theory with better physical basis.
Furthermore, Moissieff has stated, and adduced data for actual
designs as evidence, that the quarter point is not always a point
of maximum bending but the maximum lies appreciably nearer the
support. Under the latter circumstances the empirical approach of
Wessman and Hardesty fails because of its lack of gonsideration
of the proper vhysical relation between the basic parameters of the

suspension bridge.

2.19, In the present analysis it is vossible to remove the
limitation of assumption (1) of section 1.01 from all except
low order terms because of the orthogonal properties of the
sine series.
Hepeating the integration of equation (35) of section(1.09

there results again

[ {
§: fVL%dx+wtl+%K/ Se03¢dx - 2.36.

dx



The prose"t section concerns itself with the integration of
the first integral on the right— hand side. The expressionfor V

we nay write in ggﬂeral

o0

_ 2{: s 0P :E: -~ s, DThX

= N, - £4—=, 4,5in 1 =f 4= (3D, -4)) Sin 1
and from equation 2.19

Z nmx
y=%4¢—2,C, Sin 1

whence 00

2 2ol

i—‘% = —ﬂ—ig— ZZ;]. 12 Cn Sin BITX

dx Z S l

S i
2 .0
Lo o / Z n? Qoo Sin BILX (D. -3 ) SintTZE ax
©

12 n=1"'‘n " "n i

-, n°c (D, -d,) 2.57.

Substituting 2.37 for the first integral in 2.3%36 and writing

§ = 0 for the support conditions the more general equation

for the horizontal tension is

HL 2] 2 e
c ™ £ E
EA 2 lg < _—,]_ Il( n I’l) W l

For symmetrical cable curves only odd harmonics occur in the

summation. Then

o0
eal | w2 2 |
3 g [ 2 2 Z nC¢ (D, -d ) - &t ..

o0
D, -d,) - u)t] 2.39.

[

l
:?\)
Mo

which is a 11ttle more general than equation 2.28 and contains the



assumption'of a parabolic cable curve in LC only. For a
parabolic cable curve equations 2.28 and 2.%9 give identieal
numerical results and, for the usual curves, they are inter-

changeable.

2.20, We recall now equation (39) of section 1.10.

2 2
) d\? 2 H1
M o= My + My z.EI 2 - (H +H)[Fy +V)Sec ) ~105AT

(Sec y@ - SecSyﬁ ).

If we accept assumption (2) of section 1.01 which states in effect
that the curve of the cable defined by y is determined to match
the dead load bending moment curve, then
and the equation above reduces to
2 2
M; = EI d g [y + L—Q{w—i}—i—l(SeCSﬁ-— Sec%‘)} - (HW+H)\) Seczcﬁ
dx 40 EAP _
If we use the expansion of section 2.06 for SecSyé -Secsy9
then that term can be ineluded with y and offers no further
difficulty. In actual cases it results in a correction ocof much
less than 0.1% in the coefficients of the expansion for y
and will henceforth be ignored as trivial. There remains
2
-y = F}:Q-—-Z‘Z--E - (8, + H) Y Sec®¢
dx
where V is the deflection of the lower ends of the suspenders

and the sign convention for bending moment has been changed to

agree with section 2.&9.

. nIPX
ey = V+ 1 Z d, Sin 1 2.40
n =1




where f, and d, are defined in section 2.10, and if we wish %o

include prestress the equation becomes

2
- mp = BT & T8 - H - (H_ + H)VSec? 2.41.
2 y w
dx
Introducing dimensionless quantities
M 2
L EI 4 ("lt) I (1 P 2] 2.42,
- e = FEmg —5—( =) - 3. - +3 ) =Sec
wa 'HWL d22 f {3 f ﬁ? f %

Using the geometry of the parabola
: 2

Sec®h = 1 + tan’p = 1 + 8L (1 - 27)?

-2 2

=1 + 16£~ _ 64f

la E z(1 -2)
and substituting into equation 2.42 :
ML 2 2
EL__ 4% 'Lt) L 1685y P
- = - - (1 +B)(1 + =) = +
T ¥ B2 42 | 1 A% 1z T
2
(1+4) 24 20 -z)—-—f‘) 2.4%.
1 l
H 2 2
‘s 16f 64f
Writing d= —& A=1+ =5, and B= ——5
T°ET 2’ 12

we obtbtain

- M. . 2

L 1 ac_ Mt % %
T iR 5 (=) _/5% ~(1 +8)a 5 +(1 +8)B Z(1 -Z)f
w

and substituting from equation 2.19, 2.20, 2.22 and 2.24 and

reducing we obtain

ﬂ;{;l[an —ﬁCn + A(1 +/3)dn] Sin nmZ - B(1 +4)2(1 -Z) i

n =1

dn Sin nTZ e



S ; ”
= Z[%{ + A(L +ﬂ)] D, Sin nT2 -B(1 +8)z(1 -2) Z

n =1 n =1

DnSin nit 7 2.44,
Equation 2.44 is general and can be used to discover the effect
of the correction term in Z(1l -Z) and the influence of variable
moment of inertia of the girder. It is not yet in a form
which enables the coefficients, Dn’ to be determined. If we
expand the preduct

<

z(1 -2) E d_Sin nTrZ
n=1 "
by means of Table VI for first and third order deflection

curves we obtain

B( 1 +3)z(1 -z) [dlsmﬂ‘z +d58in 3% = B(1 +3) {dl[

0.217% SinMZ - 0.038 Sin 3MZ -0.007Sin 51TZ
- dB{:O.OBB Sinrz -0.1722 Sin31Z + 0.0475 Sin 54TZ]} 245

The left hand side of equation Z2.44 is now fully expanded in
trigonometric series and makes possible the inclusion of
/prestress in the more accurate deflection theory equation 2.41.
For what follows there is no necessity to include the prestress
explicit¥y if it is understood that its inclusion requires
only that the proper harmonic coefficients from equation 2.45
be included in the numerator of the expression for Dn as

typified by equation 2.26.



The nurﬁerator for n =1 is quoted here as a guide
Nl = a, —[1’01 + A1 +ﬂ)dl - B(1 +/3){O.2173d1 —0.038d3}

Equation 2.44 is simplified to
o0 o9

. n2 .
Z [an —-ﬂCnJ Sin nvZ = Z o +A(1 + B) D, Sin nWZ
n =1 n =1
-0
-B(1+B) (1 -32) > DSin Tz 2.46.
n =1

and the second term on the right hand side is expanded using

Table VI as before

Z2{ 1 -2) Z Dn Sin nfrZ = Dl[0;2173 SinTtZ - 0,038 Sin 312 -~
n =1

0.007 Sin 57°%] + D, [0.1793 Sin 2177
~0.0455 Sin 4778]- Dy [0.038 SinTz
~0.1722 $in 32 + 0.0475 Sin 577% ]
_3)4[0.0455 Sin 27z - 0.1698 Sin 4% |
-.:05[0.007 SinTrZ + 0.0475 Sin 31MZ - 0.1686
Sin STTZJ + eeene 2.47.

If(is constant which signifies a girder of comstant flexural
rigidity, then it is possible to write down the coefficients, Dn’
from 2.46 and 2.37. For example, equating coefficients of terms

of the first order and solving for D, we obtain

a; -Bc; - BQ1 +ﬁ)(0.038})3 + 0.007Dg +...)

D, =
' 1 .48
(A - 0.2173 B)(L +8) + g 2.48(a)
Similarly
D, - a, -/8C, -B(1 +/8)(0.0455D, +....)

(A - 0.179% B) (1 +8) + % 2.48(b)



a- —~AC: — B{(1 +3)(0.038 D, +0.0475 Do + c...)
D3 = =2 3 z 2 2.48(c)

(A - 0.1722B)(1 +8) + ;?z-

and so on.
It will be noted that the denominator is inereased in value
over that given by the ordinary Deflection Theory. This is
evident if one compares the denominator of the second harmonic

from equation 2.26(a) with equation 2.48(b). From 2.26(a)

i

1+f+ % =41 +8) -F-(1+8) + &

1t

(A - 0.25B) (1 +/8) %‘c" < (A - 0.179%B)

(1 +8) + ,—;‘-’5— from 2.48(b).
Deflections will be decreased but generalisation as to the
amount of decrease is not possible because of the influence
of other harmonic coefficients in the numerator.

It would seem that the appearance of other unknown
coefficients in the numerator renders the equations 2.48
useless for computation, but this is not the case. The
coefficients in the numerator appear as part of a small
correction term and need to be known only approximately.

They can be obtained by using the equation 2.26(a) which would

in any case be computed as a first step ilnkdésign calculat-

ions. Then equations 2.48 are as tractable as equation 2.26(a)

and can be used to find Bin the manner disemssed in section 2.12,
The general appearance of the numerator suggests that the

correction has the same nature as a prestress term. We may



readily include the prestress term discussed earlier in this
section; for example, the first harmonic coefficient will then

be
] a; -ACy + B(1 +8) [( %—- 0.2173 )dl- 0.038(1)3—&5)-0.00:5

(A - 0.2173 B(1 +B) + al’c‘

(335 —-(15) e

To illustrate the use of equation 2.48 the example used
for Table VIII will be used., This example is not altogether
gatisfactory because the value dfxxi 1.746 is low according
to modern standards and obscures the issue somewhat. The
equations for the coefficients are derived from equation 2.48

as follows:
From Table VIII

D, = 0.0015%6 Dy = .003039 D =0,000266
A =1+ 16 x 0.10042 B = 64 x 0.1004°
- 1.161 _ 0.425

Usging these values equation 2.48 gives

aq - ﬁ(ol + 0.00005) -~ 0.00005

E 1.642 + 1.069 B
a5 -B(Cy + 0.00C03) ~ 0.0000%
D, = b
5 6.24 + 1.083 /3
a: -/3(Cg + 0.000066) - 0.000066
D, = *

15.41 + 1.089 /5
To determine the influence of the correction terms Table X

has been computed. It is evident that the uncorrected Deflection



Tapghs X

B =0.1
n | Cn by Dy 2Dy
, o
1 1.0323 0.1058 0.001441 .002882
2 0.0 0.045& |
5 0.0382 0.02283 0.008998 001995
4 0.0 1 0.01129
5 0.00825 0.00493 0.000260 +000104
.004981
Computed t = -2.19 F
B = 0.0996
1 1.03283 ' 0.1058 0.001628 L0UBZH6
2 0.0 0.04852
3 0.0262 0.02263 0.002994 .001956
4 0.0 0.01129
) 0.00825 0.00493 0.000260 .000104
005356

Computed & = -0.6° F

3y linesr interpolation B = 0.09694 for t = 0

B = 0.0994

1 0.00172

2 0.01295

3 0.002994
4 0.0C1066

D ‘ 0.000260



Theory overestimates the deflection of the cable, and gives
too high values for,@ . This effect will become more apparent
in bridges with larger values of of . For a stiff bridge such
as the Manhattan Bridge used in Table X the value of @ is
sufficiently small to reduce appreciably the effect of the
correction terms, because of the large contribution of the A-term
to the value of the denominators in equétion 2.48. In a
bridge such as the Golden Gate, where = 70, the effect on B
can reach 10%. This accounts very satisfactorily fox the
deficiency of 6% in the measured values of Bfrom a model of
the San Francisco Bay Bridge which is reported in Reference(2).
The difference in deflections of the Deflection Theory
and the corrected Deflection Theory is shown in Table XI
which collects and compares the harmonic coefficients from

Tables VIII and X.

TABLE XTI
D ‘
n
- Deflection Corrected

n Theory Theory
1 0.00173% 0.00172
2 0.01332 0.01295
3 0.00%04 ' 0.00299
4 0.00110 0.00107
5 0.000260 -0.000266

The second order term shows the largest discrepancy
amounting to 3%. Itelwere four times larger the error would be

more than 6%.



2.21. There remains to be investigated the influence of
variable moment of inertia on the deflection coefficients.
We eliminate from equation 2.24, the terms involving prestress

and the correction term discussed in section 2.20. There results

<0 : <0 02 o)
> [an -pcn] Sin nmz = Z 20, Sin nTz +(HA) Z D Sin nTz
n =1 n =1 n =1 2.49
where({ is now con.sidﬁered variable. We may write
A1
A HWlZ(IO +1,8in™Z + I;8in 31M2Z+...) wherein
symmetry excludes the even harmonics. Then, we write
2 2
n n 20 1 s 1 .
e — — — LA ] * O
oA A, +n(dl81nﬂ'2+o(351n311‘z+ ) 2.5
1 m?
where = I
dn ng a

IO is the moment of inertia at the ends of the girder, and

In ig an additional amount. This subdivision of the flexural
rigidity is convenient in that it permits us to discover the

influence of a particular change superimposed on the uniform

girder. For convenience of algebraic presentation, only the

first harmonic will be retained in the following treatment.

ZE: EZ“DﬁSln nfzZ = ;Ef n°D Sin nz ( af-+ 5(81n1T2)

n =1 n =1 ° '
0 2
- Z LD _Sin afz + E LD sin nirzg SinmZ
— do —- dz
n =1 n =1

Using Table V
0

> D
E 2D 8inT2 Sin Tz = L _(0.849 SinMZ - 0.16968in3T 2
n =1 dl d '



- D
- 0.02435 Sin 5TM)+ 33(2.72 Sin 27TZ - 0.776 SindTZ -)

D
- 33—(1.525 SinTZ - 5.89 Sin 3MZ + 1.82 Sin 5TZ +)
]
D,
- B (3.1 Sin 277 - 10.9 Sin 41TZ +)
D

- —5(5—-(0.606 SinTZ + 5.06 Sin 3MMZ - 16.1 Sin 5TTZ + )
[}

We may now write down the coefficients of Dn using the fore-

going expansion and equation 2.49

N
21 %+ r(ases D; + 0.606 Dy + )

2.51(
1 +‘6 + éf + Qi%ig )

l+ﬁ+§.’._+2-2 2-51(b)

1
_as A5 + 5-(0.1696D; + 5.06Dg +)

1+,3+§(_ 4 2289 2.51(c).
0 &,

and so on.
With the aid of Table V it is a simple matter to carry
through a similar analysis for any other sinusoidal variation
of the moment of inertia.

Bquation 2.51 show one important point, namely, that a
relatively small variation in the moment of inertia, which
means essentially a large value ofcxn, can have very little
effect on the lower order deflection curves.'

The method of calculation reqairés first values of Dn

to be known and these are found from the deflection theory

equation 2.26(a) taking into account only ] . If A, is

[4



positive these values will be too large. Using tnese values
in equation 2.51 permits the determination of more accurate values
of 3and D, .

It is very easy to check the structural value of a proposed
variation of I in a design which has already been calculated for

a truss of constant moment of inertia Io.



Taking into account now the first and third harmonic

variation of I we have

O (o7}
X n2 n2 2 1
= D Sin nTTZ = =D + g n“D Sin n77Z(=Sin 77 +
A 0 o, 7 n o,
n =1 n =1 n =1

L 5in 3772).

o3

Using Table V, oo

nZ
VIR Dn SinfZ Sin n 72 =

Dy

—— ( 0.849S8in 7¥Z - 0.1696Sin 37Z - 0.02425 Sin S5/7TZ + )
, d
D,

+ a—-—( 2.72 Sin 2mZ - 0.776 Sin 4 77 + )

’ ]
D

- -d:i( 1.525 Sin7Z - 5.89 Sin 3 /72 + 1.82 Sin 577Z + )
1

", (3.1 8in 212 - 10.9 Sin 4172 + )

D
- —i——( 0.606 Sinf7Z + 5.06 Sin 3MZ - 16.1 Sin STIZ + )

)
0

md > a2

D
- -1 (0.1696 Sin Mz - 0.655 Sin 3112 + 0.202 Sin 512 + )

e
D,
o, ( 1.94 Sin 2172 + 1.81 Sin 4712 - 0.953 Sin 6112 +)

D
+ &i( 5.9 SinfIZ + 2.55 Sin 3(1% + 3.74 Sin 5 7% + )
3

D
4 (7.25 5in 2772 + 3.95 Sin 4172 + )
oy



D
- 3? ( 5.06 SinTrz - 10.4 Sin 312 - 5.8% Sin 517 + )
3

Collecting the coefficients of the terms of each order and solving
for each value of Dn in terms of the others we obtain as before.

L = 1
. - ay _'601mi ?ﬁﬁ 1.525 D5 + 0.606 D5 +) - 5 ( 5.9 D3~5.O6 D5+ )

1
1, 0.849 _ 0.1696
1 +ﬂ+ap+ oL, Xy 2.52(a)
8, —BC, +%(3.1D, + ) - %(7.25D, + )
D = 2 2 T AN 2ty oG 4
) =
1, 2.72 ,1.94
LB+ Y R TG, 2.52(v)
—Ac. 4 L i
. a 305 + d'( 0.1696 Dy + 5.06 Dy + ) da( 0.655D;+ 10.4:05 +)
5 =

1+4 +(§r + 52§2'+ 2225

? : X3 2.52(c)
and so on.

It will be seen that equations 2.52 differ eguwsttrms from equations

2.51 only by the addition of the terms involvinggq%. This

may be generalised for any number of harmonic variations of I.

It will be noticed that the equations 2.51 and 2.52 are linear

in the coefficients, Dn' If we use Tudor's method of reference(2)

to solve forBit will be necessary to solve simultaneous. -

equations for Dn‘ When only one harmonic variation of flexural

rigidity is present this is very simple because there are only Tthree

unknowns in any equation if we retain five harmonic coeffifients.

For investigation of the influence of wvariation of I Whencxn is

small this procedure is t e best and proves very eonvenient

because even and odd harmonics can be solved - for independently

and only even harmonics are concecrncd whenfis being determined.



