
COMPLEXITY OF INFORMATION EXTRACTION

Thesis by

Yascr Said Abu-Mostafa

In Partia1 Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1%3

(Submitted May 23, 1983)

- ii ...

© 1983

Yaser Abu-Mostafa

All Rights Reserved

- iii -

Acknowledgement

I should like to acknowledge Professor D. Psaltis, my dissertation advisor,

for his substantial impact on the initiation, development, and refinement of

my doctoral thesis. He had the insight, knowledge, and dedication to supervise

and guide a diversified line of research that culminated in this work. His

friendly and objective attitude made my study at Caltech enjoyable and

fruitful.

Acknowledgement is also due the members of my doctoral committee,

Professors A. Kechris, R. McEliece, C. Mead, E. Posner, H. Ryser, and R. Wilson,

far their thorough study and direction of my thesis as well as their continuous

encouragement. They have been very generous with their time, attention, and

advice. I also like to thank Professors A. Martin and J. van Lint for their

cooperation.

YSA

5.23.83

- iv -

Abstract

This thesis describes a mathematical theory that interrelates the basic

concepts of complexity, cost, information and reliability. The accessibility of

information, as opposed to its availability, is characterized. Universal bounds

for complexity distribution, implementation cost and decision reliability are
estimated. These bounds give rise to a methodology for any consistent

definition of a complexity measure. The basic notions of pattern recognition

and information theory are directly related to computational complexity.

-v-

Contents

/. Introduction
< 1.1> Overview

< 1.2> Original Results

< 1.3> Preliminaries

< 1.4> Llterature

II. Configurations
< 2.1> Boolean Functions

< 2.2> Normal Form

< 2~3> Parameter Relations

< 2.4> Structure

Ill. Compl~xity

< 3.1> Basic Definition

< 3.2> Distribution

< 3.3> Universality

< 3.4> Deterministic Entropy

IV Information
< 4.1> Probabilistic Considerations

< 4.2> Complexity-Reliabilitv
< 4.3> Applications

< 4.4> Epilogue

References

1

3

3

6

7

9

14

15

20

24

25

29

33

35

3?

39

41

- vi -

To my parents

who taught me the theorems I could not prove

CHAPTER I

Introduction

The accessibility of available information is a central issue in pattern

recognition as well as in coding theory and computability theory. Several

problems of different outlook can be reduced to a yes/no decision ba~ed on

substantial amount of information and the bottleneck in making use of this

information lies in the high complexity encountered in extracting the right

''bit'' :from the raw data. This thesis provides a mathematical theory that

interrelates the basic concepts of complexity, the practical implementation

of decision-making systems, and the established notions of information.

< 1.1> Overview:-

The specific problem addressed here is that of characterizing the inherent

complexity of binary decisions based on a number of binary observations and

relating this complexity to different aspects of decision-making such as the

reliability of the decision, the implementation cost, and the information­

theoretic properties. The purpose is to introduce a quantitative measure of

inherent complexity in a well-defined sense and relate it to the inevitable cost

of implementation and to the structure of observations or data. The theory is

developed from first principles in a mathematical way.

The word "complexity" is used in the literature in a diversity of contexts
and meanings. In many reports on the complexity of Boolean functions, it is
shown that almost all functions are 'very complex" [2],[21]. Several
approaches deal with the complexity in terms of implementation cost using
standard gates (12]. Another methodology takes the size of programs as a
basis for the definition [B]. Some reports provide an anatomy of the
computation process [1]. The functional decomposition is also a model for
defining complexity [13]. In pattern recognition [9] and coding theory [15],
complexity is a central consideration that is usually tackled in an algorithmic
way. In this thesis, we try to use these different concepts to build a uniform
relationship between theoretical and practical aspects of complexity and
information theory.

In chapter II, the model on which the complexity definition is base~ is
defined and analyzed. This model is meant to be both ideal and realizable. The
definition of complexity relies on abstract concepts such as reducibility and
comparativeness applied to this model. This definition is given in chapter III

together with elaboration, examples and justiflcation. The concept of
implementation cost is formalized and the complexity measure is related to
cost in a direct way. Although the complexity definition is based on a specific
model. a fundamental theorem about its universal significance is proved_ This
theorem also indicates the complexity distribution that must be met by any
definition of complexity that is consistent with implementation
considerations. It is shown that an important class of functions has low
complexity, an essential fact for practical significance.

In chapter IV, the probabilistic considerations are flt into the complexity
model in a way that relates the information-theoretic quantities to the
complexity measure. This relationship enables us to describe certain
phenomena in pattern recognition and coding theory in a specific way. The
tradeoff between decision complexity and reliability is expressed in terms of
the quantities involved. The application of the theory to actual engineering
problems is surveyed and a conclusive discussion about the significance,
scope and methodology is included.

-3-

< 1.2> Original Results:-

In this section. an account of the original ideas. definitions, methods,
theorems, proofs, observations and conclusions is provided. The following is a
summary of the original results:-
1. Definins: a quantitative measure of complexity that applies to all Boolean
functions of any number of variables in a way that is compatible with
information theory.
2. Use of reducibility, comparativeness, and functional decomposition to
formalize inherent complexity.
3. Defining implementation cost and computing facility and deriving the
complexity distribution and the cost-complexity bounds.
4. lntroduction of the probabilistic model and use of the source coding
theorem and the entropy-complexity relation to describe the cornplexity­
reliability tradeoff.
5. Relating the complexity to different aspects of coding theory and pattern
recognition such as the code rate, channel noise and pattern normalization.

The idea, formulation and proof of the following lemmas and theorems
are entirely original: lemma 1, lemma 3, lemma 4 (implementation
limitation), lemma 5, theorem lb, theorem 2b, theorem 4a,b (norm.al form
cost), theorem 5a,b (complexity distribution), theorem 6a,b (universality),
theorem ?b, theorem 8 (entropy-complexity), and theorem 9a,b (complexity­
reliab111ty). Lemma 2 was found independently by the author. All the
examples given are original. The rest of the theorems and theorem parts are
influenced in different aspecLs and to different degrees by similar methods in
the literature.

< 1.3> Preliminaries:-

In this section. we introduce some notation, notions and lemmas that will
be used to prove the main results in the following chapters. The lemmas of
this section are formulated to suit t.liis purpose and are by no means the
strongest statements that can be made in their context. All logarithms (log)

-4·

and exponentials (exp) are to the base 2.

The uncertainty (entropy) function [20] is defined by

H(:r:) = :r: log .L + (1-z) log -
1

1 for 0 < :r: < 1 and H(O) = H(1) = 0. The following .;z; -:&

lemma estimates H(:r:).

Lem.ma 1. For 0 < :r: < 1, we have z log .L < H(:r:) < z (2+log1..). :r: %

Proof. The LHS follows from the positivity of (1-:.r:)log -1_. For the RHS, we 1-z

estimate this term. (1-:r:) log -
1

1 =
1
1-

2
z In -

1
1 where 'in" denotes the natural -:r: n -:r:

logarithm. Since In 2 is greater than 0.5, we have the over-estimate
1 z 2 r 5

2(1-z)lnl-:r: - 2(1-z)(z + y+ 3+ "'). This is less than

2(1-z)(z +z2 +r3 + · ··) = 2(1-z).:r(l +z +z 2 + ···).The expansion reduces
to (1-z) 1 and therefore we get the final estimate 2.z and the RHS follows. I

Stirling's formula [14] estimates n! for n > 0 by a.,;;; [~ r where a is a

number between 2 and e. The following lemma uses this formula to estimate
(~).Similar estimates are found in appendix A in L18].

"' n! Lemma 2. Let (rJ = , ()' . r. n-r.

a. If a < r < n then _l_znH(rln) < c:>T :s; 2nH(rln).
4Vr -

' --1._ 2nH(t/n) :s; I: C> :s; t 2nH(Cl'n).
4..Jf r=Q

b. If O < t < n/2 then

'
Proof. We manipulate (~)using Stirling's formula.

a. (:> = r ! (:~)I = .:~, [r (n"-r) n (r /e)' f (~~)t!J J•...,.] where a.1.aa.a,, are

between 2 and e. It is simple to show that ~is between 1/+ and 1/~. Also,
aeas

[r(n"'_..) r is between ~ and -v'Z. Therefore, their product is between
4
~

and 1. We now evaluate [(r/e)r ~~~~)A!)"_,.J. This can be rearranged as

-5-

[(r/n)" ((n-r)/n)"...,. r1
• Taking the logarithm, we get n H(r/n) and part (a)

fallows by exponentiation.

b. The LHS considers only the last term in the summation and applies the
LHS in (a). The RHS over-estimates each term by the la.st term (since
0 < t < n/2) and then applies the RHS in (b). This completes the proof.

A mu.l.tiset is c. collection of o bject:s where repetition i:s allowed and the

order doesn't matter. The objects are called the components of the multiset
and the number of times a certain object appears in the multiset is called its
multiplicity. The multiset is denoted by listing its components enclosed in
< > . If A and B are multisets, then the union A UB is the multiset formed

by all the objects of A and B, with the overall multiplicities. The following
lemma estimates the number of different multisets of a special class.

Lemm.a 3. Let p11 be the number of different multisets X11 = < n 1, · • • ,nq>

where the nt's are positive integers satisfying f 2"i = 211 for the positive
i=l

integer M. Then P11 '!!i!. zl!-4'.

Proof. We claim that any X11+i can be written as the union of two X1/s except
X11+1 = < M+l >. To see this, we take the X11+1 and replace each two 1 's in it by
a single 2 (conceivably leaving a single 1 at the end). We next replace each two
2's by a single 3 and continue in this fashion until we replace the M-1 's by
M's. This procedure must yield exactly < M , M > because there is at most a

single 1, a single 2 a single M-1 left and these cannot contribute to f, zR.t
i=l

more than 2J1 - 2. Therefore, we go back and decompose the two M's getting

two X11's which proves the claim. Hence p11+1 is at most 1 + Pll(p: + l). For

Pll ~ 2, which holds for M ~ 2, this is at most p}. The proof now follows by

induction after over-estimating p1 and P2 by 221 and 222 respectively.

In [11]. an asymptotic estimate for p11 is given, but the result derived
there could not be used to improve on main results.

< 1.4> Literature:-

The bibliography includes the. books and technical papers that affected
this work directly or indirectly. Among the several approaches for defining
complexity, [2], [5], (22] had the most relevant notions. For devices and
implementation. [1], [6], [18] were particularly useful. (7], [23] clarified
general concepts. The author was affected by [14] and [19] in combinatorial
methods, by [9] in the concepts of pattern recognition, by [10] and [15] in
information-theoretic analysis, by [4], [12] and [17] in digital logic, and by (3]
and [20] in approaching the problem.

-7-

CHAPTER II

Configurations

This chapter is devoted to the development of the basic notions and
relations used in the definition and application of the complexity measure in
the next chapter.

< 2.1> Boolean Functions:-

The purpose of this section is twofold. On the one hand, it sets up the
notion of Boolean function in a formal way that excludes the redundancy
encountered in the standard definition of a function. For example, if J is a
Boolean function of one variable and g is a Boolean function of two variables
such that their values are always 1 (constant functions), the two functions
are formally different (according to the standard definition) because their
domains are different, but they are the same ''function" in our definition. On
the other hand, our definition makes the distinction between functions in the
sense of "operators" which take a point in the domain to a point in the range
and functions which represent Boolean variables that are dependent on a set
of independent Boolean variables. This framework is necessary for the
development of the theory.

-8-

Let n be a positive integer. A Boolean mapping on n, denoted by f ,.(.),is

a mapping from fo.1Jn (the set of all binary n-tuples) to 10.1). The mapping

/ "(.) is just an operator which expects an n-tuple of O's and l's as an

argument and. produces O or 1 according to some specific rule.

Let U be a universal set of indeterminates which can be thought of as

independent Boolean variables assuming the values O or 1 only. The

cardinality of U is potentially infinite. We refer to any specific assignment of

O's and l's to all Boolean variables in U as the state of the system. Let

S = ls 1, • • · ,sNJ be any non-empty finite subset of U for some positive integer

N. A Boolean mapping on S (which is a set, not an integer). denoted by f s

(without further arguments), is a mapping from io.1J5 (the set of all binary N­

tuples indexed by the elements of S) to fo,1J. The Boolean mapping f s defines

a dependent Boolean variable whose value is determined by the values of the

independent variables which are the elements of S. In contrast to the

. Boolean mapping fn(.) on an integer n, the value offs is determined by the

state of the system.

For a fixed S of cardinality N, there are 2N possible assignments of O's and

1 's to the Boolean variables in S, and hence there are 2:aN different Boolean

mappings f 5 . The set of all Boolean mappings f s on a set s for an· choices of
S (finite non-empty subsets of U) is denoted by llu. The cardinality of llu is

potentially infinite. Some elements of llu are equivalent in the sense that for

all possible assignments of O's and l's to their independent Boolean variables,

they always assume the same value. This will happen when some f s is actually

independent of some of the Boolean variables in S. We want to mer{!e

(identify) these mappings into one entity.

DetlniUon. The relation E is defined on Ku as follows. g91 = 11.81 if, and only il,

for all states of the system, the values of g91 and hs
1

are the same.

It is clear that = is an equivalence relation (reflexive, symmetric and

transitive). Therefore, it induces a partition of 110 into equivalence classes.

Each equivalence class is a set of all Boolean mappings like g81 and hs
1

that

are mutually equivalent (related by =). We now identify each equivalence

-9-

class as an object and introduce the following definition.

Definition. A Boolea.n function / is an equivalence class of the relation • on
110 . The set of all Boolean functions is denoted by F.

Notice that any Boolean function / "depends" on a finite number of
Boolean. variables in U. This is because of the restriction in the definition oI
Boolean mappings on a set S thats must have finite cardinality. The smallest
set of variables on which a Boolean function depends is of special interest.

Definition. The support of a Boolean function / , denoted by T(f), is the
intersection of all sets S for which some Boolean mapping us belongs to (the
equivalence class)/. The rank of/, denoted by r(f), is the cardinality of its
support, r (/) = I T(/) I ·

We shall adopt the usual abuse of notation in the context of equivalence
classes and treat / as an actual function rather than a set of equivalent
Boolean mappings whenever no confusion as to what is meant can arise. We
shall also refer to the value of/ simply by f. We start by saying that only the
constant functions f =O and / =1 have empty support T(/) =II> (zero rank,
T(/) = o). It s 1s a subset of U with cardinality N, the number of Boolean
functions whose supports are subsets of S is 22N whereas the number of
Boolean functions of support S is, by the principle of inclusion and exclusion,
N
L (~) (-1)N-r 22". On the other hand, the number of Boolean functions which ,. .. o

depend on N variables, i.e., whose rank is N, is potentially infinite.

< 2. 2> Normal Form:-

In this section, we introduce the fundamental notions on the way to
defining complexity. We start by discussing what is involved in proposing a
valid and useful measure of complexity. From a practical point of view, a
function whose complexity measure is laree must require a costly
implementation. However, from a theoretical point of view, a measure of
inherent complexity should be essentially independent of any specific
implementation devices that may be available. A significant definition of

-10-

complexity has to capture both aspects.

Suppose that we have n'."'input 'universal gates," e.g .• programmable
devices (section 2.12 in [17)) such as a programmable read-only memory

(PROM) with n address lines and 1 data line, or a finite Turing machine, which

can simulate any Boolean mapping with n arguments. AU Boolean functions

which depend on n variables (i.e., whose rank is n) can be simulated by this

universal gate. However, some of these functions depend on their n variables

in a simple way and do no_t really require a universal gate to simulate them.

They can be implemented using less powerful devices of n inputs or several

smaller universal gates interconnected together. The implementation of a

universal gate with n input lines requires the order of 2" standard switching
devices (e.g., NAND gates) or the same order of memory locations. Therefore,

a decrease in the number of inputs per universal gate at the cost of
increasing the number of required gates (by less than an exponential order)

is a valid implementation strategy. Using finite automata instead of
combinational logic to simulate a universal gate introduces a tradeoff

between time, space, size, and depth [6].

We shall consider a specific standard way of interconnecting the universal

gates. It is conceivable that restricting the interconnection scheme may

deprive the complexity measure of its universal significance. Informally, we

may decide that some function is very complex only because the enforced

standard way of interconnecting the gates is so poorly suited to the function

that we require many more gates than we might have needed if we were free

to choose the interconnection ·scheme of these gates. The universality

theorem which will be proved in the next chapter shows that this dilemma
almost never happens. Other standard forms can also be used to build the

theory. Also, the consideration of universal gates (ideal maximum cost) and
interconnections (ideal no cost) is essential to the generality of this

approach. For example, if we consider special-purpose devices such as linear

sequential circuits or non-universal devices such as :field-programmable logic

arrays (FPLA's) as a basis of defining complexity, the definition will not be
general as such.

-11-

The standard way we adopt here for interconnecting the smaller universal
gates is the normal form. There will be a first stage of universal gates which
take their inputs directly from the function arguments (input Boolean
variables). The outputs of these gates are then input to a final (second stage)
universal gate (figure 1). A normal form can be thought of as an
interconnection of devices analogous to the sum-of-products or the product­
of-sums where the AND's and OR's are now replaced by universal gates. The
normal form resembles a standard system of pattern recognition where the
classification decision is based on a number of features that are extracted
from the inputs. This suggests the following terminology.

Nomenclature. In the normal form, the universal gates of the :first stage are
called the primary gates or feature extractors and the Boolean mappings
they simulate are called primary functions or features, denoted by F's. The
universal gate of the final stage is called the secondary gate or classifier and
the Boolean mapping it simulates is called the secondary function or
classification decision, denoted by D.

Hence, the normal form is a simple decomposition of the function in
question into a classification decision based on extracted features. Normal
form configurations are a variation of support systems which were introduced
in the context of local and global computation [1]. We now give the definition
that formalizes the normal form structure.

Definition. A normal farm input configuration (or simply a configuration) C

is a :finite multiset of finite non-empty subsets of U, C = < S1, • • • ,SL>. The 5' 's
are called the components of the configuration C. The support of C,

L
denoted by T(C). is defined as US,. (all Boolean variables which appear in any

1=1

component of the configuration). The cardinality of the support is called the
rank of C and denoted by r (C) (dimensionality of the space of Boolean
variables in the configuration). The length of C, denoted by l(C) = L, is the
number of the not-necessarily-distinct components of the multiset. The
degree of C, denoted by d. (C), is the maximum cardinality n;. = I & I of a
component 5' in C (zero for the empty configuration).

-12-

Secondary Gate

Primary Gates

Figure I: Normal Form Structure

-13-

Notice that the configuration (the multiset) can be empty, but if it has
components none of these components can be empty. Also, nothing infinite is
allowed in a configuration. For each i = 1, · · · .L. the 'Lt Boolean variables in s,
Will be the inputs to one of L primary gates. The outputs of these L gates, i.e.,
the features, are then input to the secondary gate whose output (the
classificalion decision) becomes the overall implemented function.

Definition. A non-empty configuration c = < S 1, • • · ,SL> is said to admit a
Boolean function! if. there exist Boolean mappings F.§

1
, • • • ,F§L on the subsets

S 1, • • ·,SL of U (the superscript distinguishes between the F's) and a Boolean
mapping DL(.) on the integer L such that, for all states of the system,

J = DL[F§
1

, • • • ,J1i.)· The empty configuration admits the constant functions

only.

A function admitted by a configuration is one that can be lmplemented
using a normal form with the inputs specified by the configuration. Since the
configuration is defined as a multiset, configurations will be equal if, and
only if, they have the same components (with the same multiplicities).
However. some unequal configurations are functionally the same.

Definition. The set of all Boolean functions f admitted by a configuration C

fa denoted by F(C). Two con:tlgrat1ons C1 and c2 are said to be equivalent if

they admit the same functions, i.e., if F(C1) = F(C2). The number of functions
admitted by C is denoted by N(C) (•IF(C)I).

We observe immediately that for a function / that is admitted by a
configuration c, T(f), the support of/, must be a subset of T(C), the support
of C. The degree of C cannot be bigger than its rank, i.e., d(C) !!: T(C). The set
F(C) contains all Boolean functions that can be implemented in a normal
form using the input configuration C. The number of functions N(C)

admitted to a con:figura tion C expresses the power of the configura lion or its
versatility. Notice that each Iunction is counted as "1" regardless of its
11complexity." Since the gates of the normal form in question arc universal,
the configuration which admits an inherently complex function will be
powerful enough to admit a large number of simpler functions and N(C) will

-14-

be indeed large. This would not hold if the building blocks were special­
purpose devices. The next two sections develop the relations between the
different parameters of the configuration as well as its structural properties.

< 2.3> Parameter relations:-

The parameters of a configuration c are interrelated. The following
theorem describes several bounds on N(C). the number of functions admitted
by C, in terms of the length. degree, and rank of C. These bounds will prove
vital in estimating the complexity of Boolean functions in the next chapter
and will provide insight into the nature of configurations.

Theorem (1)

Let C = < S 1 • • • • .SL"> be a configuration which admits N(C)
Boolean functions. Let r(C), l(C) (= L), d(C) be the rank, length
and degree of C respectively. Then
a. d(C) s log log N(C) s max(l (C),d(C)) +log [max (l(C),d(C)) + 1).
b. ~ ~ loglogN(C) s r(C).

Proof. We first maintain that loglogN(C) exists (and is non-negative) by
observing that N(C) ;';!!: 2 since all configurations admit the two constant
functions (including the empty configuration by definition). All statements
are trivial for the empty configuration and we now assume that C is non­
empty.

a. Let Sr be a component of maximal cardinality in the configuration. By
definition, !Sri =d(C). Now c can implement at least the 22d<c> different
functions whose support is a subset of Sr. The LHS inequality in (a) follows by
taking the logarithm twice. To prove the RHS inequality, we observe that the
number of different mappings that can be implemented by the primary gate

on 5' is 2
21

.S.
1

and the number of mappings that can be implemented by the
secondary gate in terms of its inputs is 22'<c>. Therefore. N(C) is at most

exp !'fl 215
' 1 + 2Hc>J. We increase this number by substituting for each I St I and

i=l

·15-

for l(C) by M = max(l(C),d(C)). This gives N(C) !I: 2CM+i)e• which yields the RHS
inequality in (a).

b. The support T(C) contains the support T(/) of any function J admitted by
C. Since T(C) has r(C) Boolean variables, N(C) is at most 22'<ci. Taking the
logarithm twice yields the RHS inequality in (b). Now let c• = < s;. · · · .s;. > be

i-1
the configuration defined by s; = 81 and st= 5j \ U s1 (if non-empty, otherwise

i=l
skip and relabel} for i = 2. · · · ,L • (L •!I: L). We shall prove the LHS inequality in
(b) for c•. If d(c•) ~ -v'r(c•). we are done (LHS inequality in (a)), so we assume
that d(c•) < ..Jr(C"). But l(C.)d(c•) ~ r(C"'} (since the r(c•) variables are
contained in the l(C} components and each component has at most d(c•)
variables). Therefore. l (c•) > ..Jr (C'). Since the S/'s a:re disjoint and non-
empty, c• can implement at least exp 2~ functions (those implemented by
the secondary gate when each primary gate ''passes" a distinct variable).
Taking the logarithm of N(c•) twice, we get the LHS inequality in (b) for c·.
By construction, each variable in the .5('s is contained in some st and vice
versa, hence r(C} =r(C). Also, c• is a 'reduced" form of C which implies that
C admits all the functions admitted by c•. Therefore, N(C) ':ie N(c•) and the
LHS inequality in (b) follows. This completes the proof. I

Notice that max (l(C),ct(C)) has the interpretation of beine the maximum
number of inputs in any gate of the configuration. The observation here is
that 22" is a tremendously increasing function of n which makes N(C)
practically depend only on the size. of the largest gate in the configuration
and nothing else. Also, if a configuration Chas r(C) variables, then no matter
how these variables are distributed on ditrerent components, the size of one
of the gates (possibly the secondary one) must be at least~-

< 2.4> Structure:-

Although the configuration is just a multiset of subsets, it has the
functional interpretation of implementing Boolean functions on normal
forms. This fact led to the equivalence of configurations which implement the
same functions, i.e., which have the same F(C). This equivalence relation

-16-

makes the configuration a com~inatorial object distinct, for example, from
hypergraphs. In this section, we describe the structure of configurations and
derive useful results for the complexity analysis in the next chapter.

Definition. A configuration C = < S 1, • • • ,SL> is said to be redundant if one of
the S;, 's can be omitted without diminishing F(C).

This definition means that a redundant configuration is one which has an
unnecessary gate among its primary gates. For example. it is easy to show
that fs1,s2J can be omitted from C=< fs 1,s2J,fs1,s2,s8 J> without
diminishing F(C). The following theorem deals with redundant and non­
redundant configurations.

Theorem (2)

a. If the configuration C = < S 1, · · ·,SL> is not redundant, then
for all subsets A of f 1, · · · ,LJ:

(1) I Ust,1 ~ IAI.
'"' b. Any configuration C = < S 1, • • • ,SL> is equivalent to a

configuration c• = c; u c; (figure 2) where c; ~ < s:. · · · ,St> and
c; = < .st+1 , • • • .s;.> such that S;,• = fsd for i = l, · · · ,l with distinct
s"'s, the partition c:u c; is unique, and for any subset I\ of
fl.··· ,L"J where An ft+l, · · · ,L•I ~ t:
(2) 1ust1 :> 1x1.

ii:A

Proof. We shall use the Philip Hall Theorem [19] about the existence of a
system of distinct representatives (SDR), which is a collection of distinct
elements such that each element belongs to (represents) a specific subset
within a given collection of subsets.
a. Suppose that condition (1) does not hold. Then there is a subset X of
fl,··· .L~ for which I U.st I< IAI. Let i\ be a minimal subset satisfying this

'"' condition. Let i be any element of >... (X is non-empty since l"-1 > 0). Let
i\:1 =i\\~jJ. Since A is minimal. we have I U&I ~ IA:1I· But Ji\1 1 = IAI -1 and

(r).j

Ii\ I > I Us, I ;i: I U .5(I· This forces bolh ,'!.St and ~!f. 5" to have cardlnallty '"' ""'1 •-7

{ s1} { s.,} , ____ ____ J

v

c* I

-17-

• S., +I * s,,.2

Figure 2: Compact Configuration

c~

-18-

IAI -1 (= IAJ I) and forces s1 to be contained in U St· By minimality of A again,
. iU.j

the sets St with i in 'hs satisfy the Hall condition for an SDR. This SDR has l'hs I
elements and so does U &. Hence the SDR covers all the elements of the & 's

""" with i in 'h1. Now s1 is a subset of U St and we can omit it without diminishing i""
F(C) since the SDR can be "passed" by the other primary gales t.o lhe

secondary gate which can then implement any function of the variables in
Us,. Hence C is redundant and part. (a) is proved.

it.>.

b. We use the argument of part (a) inductively and omit the redundant S/s
until condition (1) is established. Now, if any collection or .s"t's satisfies

condition (1) with equality and are not all one-element sets. we use a similar

argument to replace them by the collection of (the same number of) one­
element sets which is the SDR (the SDR exists since condition (1) holds for all
subcollections) without diminishing (or increasing) F(C). We then re-establish
condition (1). Repeating these two steps for a finite multiset of finite subsets
cannot continue forever since each step decreases either the number of

components in C or the number of elements in a component and does not

increase the other. We show that the resulting configuration c• satisfies the
required conditions. Let c; be the multiset of all one-element components of

c• and let c; be the multiset of all multi-element components of c•. No two
components of c; can be equal since this would violate condition (1) (taking

these two components alone). Condition (2) holds since condition (1) holds,
each component of c; has more than one element, and our procedure leaves

no collection of sts satifying condition (1) with equality except the one­
element components. Uniqueness of the partition follows because if we

included any one-element component in Ca, this would violate condition (2)

(taking this component alone). This completes the proof. I

We can call the reduced form in part (b) of theorem 2 a compact

configuration. It should be noted that even the compact configuration can be

redundant, as in C = < fsd, fs 1,s2,s9 J >. We now make use of theorem 2 in
proving that a configuration does not have to be very long and conclude that
the set of possible values for F(C), where the support of c is any subset of a
given N-set s. has drastically fewer elements than the obVious upper bound of

Theorem (3)

a. If C is a configuration with l (C) > r(C), then there is a
configuration c• with l(c•) s r(c•) which is equivalent to c.

b. Let S be an N-subset of the universal set U. There are at most
~2

possible values for F(C} for all configurations C whose support
T(C) is a subset of s.

Proof. a. By part (a) of theorem 2, C must be redundant since l (C) > r(C)

means that condition (1) does not hold for C with ~=fl,··· ,l(C)J. We keep
omitting the unnecessary Ss's until we get l (c•) ~ r(c·).

b. From part (a), we need to consider only those configurations with l (C) !ii: N.

Since ct(C) :S N, we can now enumerate the number of different C's. Each

component can be assigned zN different subsets of Sand there are at most N
such components. Therefore, the total number of different con:ftgurations is

N a
at most TI zN = zN . Since the different F(C)'s can be at most that many, the

\=l

proof follows.

Theorem 3 shows that we only need to consider a finite, and relatively
small, set of configurations for any finite support. Since all N-sets are
isomorphic, we conclude that the number of different values for N(C) for all
configurations C of rank Nor less is at most 2N

2
, which is far less (for large N)

than the conceivably possible 22N + 1 values. This says that the function N(C}
is, in some sense, quantum. We are now in a position to define complexity in
terms of normal form input configurations.

-20-

CHAPTER III

Complexity

In this chapter, a measure of complexity is introduced and discussed. A
fundamental result about the universal significance of this measure is
proved. Finally, low-entropy functions are defined and their complexity is
estimated.

< 3.1> Basic Definition:-

Suppose we have a number of objects which possess a certain property to
different degrees. We are required to give a quantitative measure of how much
the object X possesses this property. The most obvious way to do so is to
introduce some ordering of these objects according to the degree they
possess the property, then define the measure for X to be the number of
objects which possess the property to a lesser degree than X itself. We call
this approach a compa.ra.tive approach.

The choice of such an approach dnes not readily produce a quantitative
measure of complexity for Boolean functions. The property of complexity has
yet to be defined in order to make the orderina of Boolean functions possible.
The notion of reducibility [23] is a natural way of comparing the complexity
of two procedures. If some procedure A can be carried out by transforming it
in a simple way to another procedure B and then carrying out the procedure

-21-

B instead, A cannot be more complex than B. In our case, we used
configurations as a basis for reducibility, which resembles some established
ideas of reducibility like projection [22]. A similar approach is introduced in
[2]_ The point is that i! we consider the minimal configuration C that admits
a Boolean function/, then the other functions admitted by Care at most as
complex as J since they are reducible to J by reprogramming the universal
gates in C, the configuration that ju.st implements/.

Definition. The comparative norm.al form complexity (or simply the
complexity) of a Boolean function J, denoted by K(/). is defined by:-

K(/) = log log min f N(C) I C admits f ~

The units of K(J) are bits (binary digits).

We first dispose of the '1og log" as being a scale down for N(C) which is
typically of the form 22N. The definition says that we consider all
configurations C that admit the function f, choose the minimal configuration
of these with respect to the number of functions it admits, and take this
number as a measure for the complexity of J. Since N(C) ~ 2 for all
configurations, taking the logarithm twice is valid and K(J) ~ a (with equality
if, and only if, J is a constant function). Notice that the normal fa.rm served
as a "catalyst'' in the definition of complexity. Conceivably, another definition
along the same lines but based on a general setup (instead of normal form
input configurations) would be more general. The following example shows
that this generalization cannot be pursued without limit.

Example. Consider a device D to be formally defined as any fixed subset of
the set F of all Boolean functions (the subset being those functions admitted
by the device). Suppose we define the complexity K{/) of the Boolean function
J to be:-

K(J) = min f N(D) I D admits f f
Then every function has complexity 1 by taking the (special-purpose) device
that simulates the function and nothing else.

-22-

This example is in some sense similar to Berry's Paradox [7], and
essentially says that the measure of complexity cannot take care of every
individual function. The a bjective is to propose a definition that sets a
consistent hierarchy of inherent complexity for "most" functions. Here is an
example of an inherently simple function.

Example. Let I = s 1 EB s 2 Ee • • • EB sN where "EB " denotes the modulo-two sum.
It is easy to show that/ is of complexity o (N) by constructing a configuration
that admits it which has all of its gates with approximately "fl inputs where
each gate simulates the modulo-two sum. Notice that this simple function
requires a maximal sum-of-products or product-of-sums implementation
since its Karnaugh map [12] looks like a chessboard and the prime implicants
have to be taken as the minterms or maxterms.

Other simple functions like symmetric or linear functions can also be
shown to have low complexity in a similar way. This is not immediately
obvious since the normal form which implements these functions in our
framework has only universal gates and is not particularly oriented towards
linear functions for example. Another important class of functions of
moderate complexity is the class of low-entropy functions which will be

discussed in section < 3.4> .

In order to have practical significance for the definition of complexity,
K(J) should be related to the cost of implementing /. We start by defining the
cost.

Definition. The cost, denoted by c, of a universal gate of n inputs is defined
to be 2". The units of the cost are cells. The cost of an interconnection is
zero cells. The cost of a collection of gates and interconnections is defined as
the sum of the costs of the components.

This definition is motivated by the actual number of cells or switching
points on an integrated circuit that simulates a universal gate. Notice that, in
practice, an interconnection has a non-zero cost. However, this fact can only
strengthen the main results to be proved shortly. It is now possible to
estimate that cost of normal forms and one might consider defining the

-23-

complexity of a Boolean function directly in terms of the minimum cost of a
normalform that implements the function. Although such a definition is not
a priori justified, it turns out to be almost identical. nu.m.erica.lly, to 2KC1>.
Inherent complexity is to implementation cost what mass is to weight, an
intrinsic property which i:s different from, but directly related to, a practical
impact.

Theorem (4)

Let J be a Boolean function of complexity K(J) = K. Define
ox= log(l+K). Then
a. Any normal form implementation of J costs at least zx cells.
b. There is a normal form implementation of J which costs at
most 2K+•4 cells.

Proof. The proof relies on theorems (1) and (2).
a. Let C = < S 1, • • • .SL> be a configuration that admits J. From the definition
of K(/}, 22K :I!:: N(C). Let n 1, · · · ,n..t. be the cardinalities of S 1, ···,SL respectively

(number of inputs to each primary gate). Now N(C) ~ exp [2L + ±2"1.] (same
i=l

argument as in theorem (1)). Taking the logarithm yields part (a).
b. Let C be a minimal configuration (in the sense of N(C)) that admits J. If C
is redundant, omit unnecessary S"'s until condition (1) of theorem (2) is
satisfied. We show that max (l(C),d(C)) !li: K. Suppose not: if d(C) is greater
than K, then C admits more than 22x functions using the primary gate with
d(C) inputs; else, if l(C) is greater than K, then by passing an SDR from the
primary gates to the secondary gate, C also admits more than 2~ functions, a
contradiction. Hence the cost of C is at most (K+l) 2K cells and (b) follows by
re-arrangement.

This result does not restrict f or K(f). but it restricts the implementation
to the normal form. A much stronger limit result will be proved shortly, but
we first turn to some estimates for the complexity distribution which will be
used in the proof.

< 3.2> Distribution:-

One of the "health" properties of any complexity measure is that it should
resolve different levels of complexity. We now show that K(/) meets this
requirement by estimating the range of K(f) for ditrerent functions and the
number of functions with different K(/)'s. ·

Theorem (5)

Let Fs be the set .of all Boolean functions / whose support is a
subset of a non-empty N-set S. Define Nx to be
If ftFs I K(/)<$!. KJ I· We have:-
a. If / depends on M variables then V!J '$!. K(f) '$!. M.
b. If O:!ii Ks N lhen K-1 s loglogNx s K+2logN.

Proof. We shall use theorems (1) and (3).
a. Since / depends on M variables, any configuration C admitting f must
have rank r(C) :a: M. The LHS inequality in (a) follows from part (b) of
theorem (1). Now, C = < T(f) > admits/ and has r(C) = M. The RHS inequality
in (a) follows from the minimality in the definition of K(/) and part (b) of
theorem (1).

b. All functions / depending on at most lK J variables have K(/) '$!. K by part
(a). There are at least zeX-1 such functions in Fs and the LHS inequality in (b)
follows by taking the logarithm twice. From theorem (3), there are at most 2N

2

different F(C}'s with T(C) a subset of S. Each function / of complexity
K(f) '$!. K must belong to an F(C) whose cardinality is at most 22K. Therefore,
Nx s 2JY'! 22x and the HHS inequality in (b) follows by taking the logarithm
twice. This completes the proof.

Theorem 5 provides another significance for the quantity K(/). Apart
from being a measure of the comparative complexity of / (from the
definition) and a measure of the cost of any normal form implementation of
/ (from theorem 4), it is also a measure of how many functions, depending on
variables within a finite set S, have complexity at most K(/).

·25·

< 3.3> Universality:-

Although restricting the implementation devices to universal gates was
essential to the independence of the theory. restricting the interconnection
scheme of these universal gates to the normal form is a simplitlco.tion that
may affect the universal significance. In this section, we prove that such a
systematic way is not far from the most general schemes of interconnecting
the gates. Suppose that we have a "computing facility", i.e., a number of
universal gates of different sizes and several ''wires" for interconnection
(figure 3a). It is conceivable that with the freedom to choose the
interconnection scheme of these gates, one can do much better than in
theorem 4. This would mean that K(/) is not really a characteristic measure
of cost, but merely a description of the behavior of functions when
implemented on normal forms. We want to prove that this is not the case.

De:ft.nition. A computing facility P is a finite multiset of positive integers,
P=<n 1,···,nq>.

These inlegers are meant to be the number of inputs to each of the Q

available universal gates. It follows that the cost of this facility, c (P), is given

by f 2n.i cells. Given N Boolean variables :r: 1, • • • ,:r:N and calling the outputs of
(=l

the Q gates 111. · · · ,yq, we have (at most) N+Q different variables that can be
input to each gate. Therefore, for each computing facility P we have at most

Q N+Q n ("-•) possible interconnection schemes or "circuits" (entering ihe same i•l .""

variable twice to the same gate or interchanging the inputs within a gate
cannot increase the implemented functions because the gates are universal).

Q "i
For each circuit (figure 3b), there are at most TI z2 ways to program the

i=l

universal gates and, for each of these, we have Q implemented functions out
of the Q gates. Therefore, the number of functions that can be implemented

q "i
on a circuit is at most Q TI22 • In the following lemma, we estimate the

i=l

number of functions whose support is a subset of given set S and are
implementable on some computing facility given the fixed cost of any such

I

-26-

(a)

_J
I

r

-
Input Variables

(b)

-
-

-

I

Figure 3: (a) Computing Facility (b) Circuit

r-1, Universal l,--rJ Gates

Wires

·27·

facility. The lemma will practically yield the proof of the main theorem.

Lemma 4. Let s be a non-empty N·subset of U. The number of functions I,
with T(/) a subset of S, that can be implemented on some computing facility
that costs 2• cells for some positive integer M is at most 22•+• where
d =log (4 + * log(211- 1 + N)).

Proof. We will estimate the number of different computing facilities for a
given cost. the number of circuits that can be formed using a given
computing facility, and the number of Boolean functions that can be
implemented on a given circuit.

1. The number of computing facilities P = < n 1, • • • ,n.Q> satisfying 'f;28i = 211

i=l

(i.e., whose cost is 2" cells) is at most 22• by lemma 3.

2. Given a computing facility P = < n 1, • • · .nQ> which costs 2M cells and the set
S = fs 1, • • • ,sNI of Boolean variables, the number of different circuits that can

Q
be formed using P and S is at most II (Q+N). By lemma 2, substituting for

(•l ""'

each term in the product, this number is at most exp [(Q+N) t.H[Q';NJ]

where H(z) is the uncertainty function defined in section < 1.3> .
Substituting for each H using lemma 1. this number is at most

exp [(Q+N)t.[Q';N][2 +log Q~N·l]· Since each"' is at least 1, this number is at

most exp [(2 +log (Q+N)) t.n.J· Subject to t.2"' = 2", the maximum value of

ETI;. occurs when all the fl\'s are l's and is 2M-1• Hence, we get the following
i=l

over-estimate: exp (<1 + * log(211- 1 + N)) 211).

3. Given a circuit formed by the above computing facility, the number of
Q

functions that can be implemented on the circuit is at most Q II exp z"i which
i=l

is less than 22xeM.

-26-

Therefore, from 1,2,3, the number of functions/ whose support is a subset of

S and can be implemented on some computing facility of cost 211 is at most

the multiplication of the three estimates, namely exp (C4 + * log(2.11-1 + N))211)

which yields the required formula after re-arrangement. I

This lemma demonstrates the nature of the function 22". Each of the

three estimates is of. the order 22.v and their multiplication is of the same

order (w.r.t. M). We now state the main theorem.

1heorem {6)

Given t > 0, there exists a positive integer N0 such that for any

Boolean function / whose support is a subset of a fixed N-set S

where N ~ N0 , the following holds:-

a. If K(/)=K, then there is a computing facility which costs at

most 2K+uv cells that can implement/.

b. The fraction of functions / in the complexity range

K '!!(,, K(/) !S;; K + tN that can be implemented on some computing

facility that costs at most 2K cells is less than t.

Proof. We shall use theorems 4 and 5, and lemma 4.

a. From theorem 4, there is, in particular, a normal form implementation of

I which costs at most 2K+
0x. Taking N large enough, tN will be greater than

ox= log(l+K) since K~ N. The asserted computing facility can be taken as

P = < I S1 I. · · · . I SL I .L> where < S1, • • ·,SL> is the configuration of the above

normal form.
b. From theorem 5, we have the following estimates: Nx'!!(,, exp 2KulogN and

Nx+rN :ii!! exp 2K + cN - 1• Therefore, taking N large enough, the number of

functions whose complexity is between K and K + tN is at least exp 2K+Cc12>N.

But from lemma 4, at most exp 2.11+4 functions can be implemented by the

facilities which cost. 2J1 cells for any positive integer M. Since any function

implemented on a facility that costs at most 2.v cells can be implemented on

a facility that costs exactly 2.11 (by adding some one-input gates without using

their outputs) and from the definition of 6, N can be taken large enough to

-29-

make the number of implementable functions using the facilities which cost
at most erx1 cells less than exp eK+Cu•>N. Finally, by taking N large enough, the

ratio of exp zK+Cu•)N to exp 2K+(cl'2)N can be made less than r which completes

the proof.

Informally, this theorem says that if you take the functions of complexity

K(/) and try t.o implement. them using a circuit. whose cost. i:s consistent. with

K(/), you will always succeed, whereas if you try to ''save a little bit", you will

fail in almost all cases. Notice that if K(/) itself is of the order o! tN, then

the theorem is not as significant. This has the nice interpretation that if the

function is very simple, it pays to try to study it more closely to come up with

a compact unsystematic implementation, whereas in the much harder case of

a function of considerable complexity, it doesn't pay to do so. In [16], the

structured design approach in VLSI systems is emphasized throughout for

practical reasons. Theorem 6 provides theoretical justification for such an

approach at a basic level.

< 3.4> Deterministic Entropy:-

The argument in the proof of part (b) in theorem 5 may raise the question

as to whether or not there is an important class of functions whose

complexity is at most K, other than those functions which depend on at most

lK J variables. The answer to this question is fortunately yes. Indeed, if such

was not the case, the significance of K(/) would be doubtful.

Definition. Let S be a fixed non-empty N-subset of U. A non-constant

function / whose support is a subset of S is said to be of (deterministic)

entropy H if it assumes the value 1 (or the value 0) in 2H (H ~ N-1) states of

the N variables in S.

The motivation for this terminology comes from information theory

(chapter 3 in [10]). Notice that the definition of H depends on (the fixed) N.

Example. Let S = !s 1, • • • ,sNl· The function / = s 1 has entropy H = N-1

(maximal entropy) since it assumes the value 1 in exactly 2N-t states of the

variables in S, those for which s 1 = 1.

-30-

In spite of this example, most functions of entropy H have their 2H 1 's (or
O's) ·distributed "at random" in the Karnaugh map. The complexity of a
function of entropy H will prove vital in the next chapter. We now develop
some prerequisites. Without loss of generality, we shall consider only the
functions with 2H 1 's.

Definition. For a given function/ of entropy H, the state of the variables in a
subsets, of Sis said to be positive if there is an assignment of O's and l's to
the rest of the variables in S that makes/ = 1.

For a function/ of entropy H, there are at most 2H positive states for any
subset 5'. Therefore, as far as/ is concerned, the state of the variables in S;.

can be encoded Using m. = rlog (1+2H) l binary variables (the extra 1 represents

"the state is not positive''· Therefore, by taking 15' I > m., this encoding
constitutes information compression. We shall use this fact to implement low­
entropy functions on normal forms of moderate size.

Example. Suppose that H << N. Partition S into ..J'fV7m. subsets each of
cardinalityJm:7V (approximately). Consider the configuration C (figure 4)
that has m. duplicates of each of these subsets. Each primary gate has;;:;;:-Jl

inputs and the secondary gate also has m. x ..JN/iii = ...;m:-/V inputs. Since m. is
of the order of H, loglogN(C) will be of the order ..JJ!1i! (by theorem (1))

which is much smaller than N. Furthermore, C admits any function / of
entropy H since the m. (duplicate) primary gates can be programmed to
encode the (relevant) state of their inputs and the secondary gate can decide
whether / =1 (matched positive states) or f =O (unmatched positive states, or
some non-positive state).

This example shows that low-entropy functions have low complexity. Even
if His not much smaller than N, a configuration C can be constructed using

m. duplicates of a subset cf S having approximately N; H elements together

with the rest of the elements in S appearing as singletons in C. This

configuration has loglogN(C) of the order N ;H which is still less than N.

Definition. H•N is defined to be the minimum loglogN(C) for a configuration

Hx ~ = Hx.A" =.JHN Primary Gates

Figure 4: Implementation of low -entropy
functions on normal forms

-32-

C that admits all functions f of entropy H with T(/) a subset of S.

From our discussion. the order of H•N is at most '1H'N for small H and

N ;n for any H. Whether e1Jery function of entropy H can be implemented

using some special configuration C with loglogN(C) significantly less than H•N

is still an open question [24]. The lower bound given by the following theorem

is asymptotically achievable using a multistage configuration.

1heorem (7)

Let H be the entropy of a Boolean function / whose support is a

subset of the N-set S. We have:-

a. K(/) :!!'!: H•N.

b. At least one of these functions J has K(J) > H-3logN.

Proof. We shall use lemmas 1 and 2 and theorem 5.

a. The proof is immediate from the definition of H•N.

b. The statement is trivial for (at least) H :S 4 since N ':If! H+1 and K(f) > 0.
2N

Now assume H > 4. The number of difi'erent J's with 2H 1 's is (2H). From

lemma 2, this is at least (2-C2 +Hl2>)x exp(2N H(2H-N)). By lemma 1,, this is at

least (:z-C2 +Hl2))x exp((N-H)2H). Since H > 4 and N > H, this is ~reater than

exp((N - H -*)2H) :i!: exp :zH-t > exp 2H-lo1N. From theorem 5 (or the positivity

of K(/)), the number of funclion:s J with K(/) :S H-3logN is at most

exp zH-JogN. Therefore, it is impossible that all the functions f of entropy H

have K(/) :!!'!: H-3logN which completes the proof. I

Notice that the upper bound on K(/) of theorem 7 is significantly less

than the a priori upper bound without regard to H (which is N) since the cost

of the implementation of/ is exponential in K(/). The value of H•N is better

than halfway between N and H.

-33-

CHAPTER N

Information

In this section, a probability measure is introduced and the complexity
results of the previous chapters are discussed in a probabilistic context. The
application of the complexity analysis to engineering problems is
demonstrated by examples in pattern recognition and noisy decoding. Finally,
a conclusive discussion about the methodology of the theory draws on the
results in complexity, implementation and information.

< 4.1> Probabilistic Considerations:-

In this section, we consider the case where the Boolean variables s1. · · · ,sN

become random variables under some probability measure, and investigate
the consequences of having this extra factor. Let S be a ~xed (finite) non­
empty N-subset of the universal set U. Define S to be the set fo.1 J8 of all
binary N-tuples indexed by the Boolean variables s 1, · · · ,sN of S. Let p be a
(fixed) probability measure on S (formally, let (S,P(S) ,p) be a probability
space where P(S) denotes the power set of S). This measure induces a
measure on all Boolean functions / whose support T(/) is a subset of S, i.e.,
these functions become (dependent) random variables under this measure.
We shall call S or the pair (S ,p) the ensemble.

-34-

Suppose that we can afford a non-zero probability of error £ in

implementing the function /. Using this freedom, it is conceivable that we

can reduce the complexity of / by "approximating" J by another function g

which is less complex than, but doesn't often difl'er from, / .

Deft.nit.ion. The e-comple:z:ity of a Boolean function J, denoted by Kc(!). is

defined for 0 :s;; t :s;; 1 by:-

K1;(/) = min ~ K(g) I Pr(/ """ g) !&. e J

Since the minimization domain includes / itself, it follows that

Kc(!)~ K(/). Also, it is obvious that for t :!: *· Kc(/) = 0 for any function J
since one of the two constant functions g = o or g = 1 will be in the
minimization domain. We now investigate the (possibility and) conditions for

having Kc(/) significantly less than K(J) for small t.

Definition. The source coding Junction for the ensemble (S ,p), denoted by

H(t), is the (real) function from [0,1] to [O,ca) defined as follows. H(t) =ii
means that ii is the minimum number such that S can be partitioned into

SruSA (T for typical and A for atypical) where I Sr I :s;; 2R and Pr(SA) :s;; t.

The terminology is motivated by chapter 3 in [10]. H(t) becomes very

significant when the partition is such that Sr has most of the probability
(small t) while s... has most ol the pomts (small B). For many probability

measures of interest [25], such as the independent identically distributed s;.'s,

a fundamental theorem in information theory [ZO] :say:s that, for small r; and

large N, H(t) is approximately the entropy Hof the ensemble, which is defined
by:

H = L p (s)log-(
1

) .,s p s
p(•)•O

The following example shows that this is not general for arbitrary (finite)
ensembles.

hample. Let X = (: 0,:1, • • • ,.zo 2" I and let p be the probability measure

defined on X by p (:z:: 0) = * and p (z,) = * 2""" for i = 1, · · · ,2". It is simple to show

that the entropy H = 1 + ; , which is considerably less than loglXI; but no

matter how large IXI is, there is no way to capture most of the probability
Without taking practically all the points in X.

In spite of this example, many practical situations have H(t) significantly
less than N. In these cases, the following theorem becomes particularly
useful.

Theorem (8)

Let J be a Boolean function whose support is a subset of the N­

set S. Then K,(J) :S H(t) • N.

Proof. We shall construct a function g satisfying Pr(/ ~g) ~ t and
K(g) ~ H(t) •N. Partition S into SrUSA according to the definition of H(t).

Define the function g to be equal to J for the states in Sr and equal to O for
the states in SA. Now, Pr(/~ g) ~ Pr(SA) :S e. Also, g assumes the value 1 in at
most 2DCc) states in S. Hence the deterministic entropy (section < 3.4>) of g is
at most H(t) and the proof follows from theorem 7.

For most problems in pattern recognition, theorem 8 guarantees low e­

complexity since H(c) is typically far less than N.

< 4.2> Complexity-Reliability:-

Theorem 8 might suggest that looking for low-complexity approximations

of high-complexity functions is a good policy. It is conceivable that in the
maximum-entropy case (uniform probability measure), some other technique

for constructing g, like the source coding method of the previous section, will
work. In this section, we show that this is not the case.

Definition. An e-error pattern e is any Boolean function satisfying
Pr(e = 1} ~ e.

Each e-error pattern can be thought of as the locations in the Karnaugh
map where an error is made in approximating a function f by a function g

With error probability less than t. We now prove a basic lemma.

Lemma 5. Let the probability measure on S be uniform. Given e > O and
0 s:; d < ~. there exists a positive integer N0 such that for N ::!!: N0 , the number

of functions J having K4(/) s:; N(1 - t) is less than t 22N.

Proof. By theorem 5, the statement is clear for c5 = O. Suppose that 0 < c5 < ~.
By theorem 5 again, we estimate the number of functions g of complexity

K(g) $ (1-r:)N to be at most 22N<Hcnn. From the definition of error pattern, it

is obvious that the function g which approximates some function I with
error $ c5 must satisfy f = g EB e for some c5-error pattern e. The number of
l's in e is at most c52N since the probability measure is uniform. Therefore, by
lemma 2, the number of different c5-error patterns is at most

62N x exp(2N H(c5)) where H(c5) < 1 is the uncertainty function (section < 1.3>)

evaluated at d < *· Hence, the number of functions f that can be
approximated by some function g of complexity K(g) s:; (1-t)N is at most

[22N<H
112»}[152N x exp(2N H(c5))) which can be made less than r: 22N by taking N

large enough. This completes the proof.

This lemma says that the functions of high complexity have their 1 's and
O's in the Karnaugh map so scattered that there is no way to reduce the
complexity significantly by placing don't ca.re's in less than half the blocks of
the map. This yields the following complexity-reliability theorem.

Theorem (9)

Let the probability measure on S be uniform. Given r: > o and
O :s; o !'S 1, the following hold5;-

a. If c5 :l!! *· then K4(f) = O for any function I .
b. If o < *· there exists a positive integer N,, (function of e and c5)

such that for N ':I! N0 • the fraction of functions f having
K4(/) s:; K(/) - eN is less than e.

Proof. The proof for part (a) follows from the discussion in section < 4.1>
and for part (b) from lemma 5. I

-37-

Although theorem 9 assumes uniform probability distribution. a similar
statement can be proved for non-uniform distributions by considering only
the typical blocks in the Karnaugh map.

< 4.3> Applications:-

In this section, we give two examples of the application of the theory in
pattern recognition and coding theory. The examples provide insight into
some standard problems using the new notions of complexity. We start by an
informal description of coding theory.

A block code (section 3.1 in [10]) is a fixed collection of M binary strings
(codewords) each of length N bits. The rate of the code is defined by

R = 10~ M. In communication systems, the transmitter sends one of the M

codewords to convey to the receiver log M facts or decisions, each of which
could be one of two things. The channel is a medium which changes some of
the bits in the transmitted codeword according to some probability measure.
However, when R < 1, there are fewer codewords than there are binary strings
of length N and the receiver may be able to guess from the received
erroneous version of the codeword what the actual transmitted codeword was
by looking for the codeword closest to what he has received (the codeword

that differs from the received word in the least number of bits). The channel
coding theorem in information theory (theorem 11 in [20]) assigns a number
C < 1, called the ca.pa.city, to the channel and states that if R < C then by
takine N large enough, the optimal-decoding error probability can be made

arbitrarily small for almost all choices of the code.

It is desirable to use as high a rate as affordable. However, when the rate
is small, the probability of error goes to zero faster, and long codes, which
mean costly decoding, are avoided. The following example shows that not only
does the code become shorter, but the decoding complexity also becomes
smaller w.r.t. to the code length. We shall use some basic relations of
information theory (section 2.3 in [10]).

-38-

Example. Let z be the transmitted bit, y be the received bit. The binary
symmetric channel (BSC) produces y from z according to the rule y = z EB n
where n is a binary random variable which is 1 only t of the time [15]. When
several bits are transmitted sequentially, the different n's are statistically
independent (from one another and from the z's). We denote the operation
on an N-binary string I to produce an N-binary string y by y = JI: E0 n where n
is a binary N-tuple of noise bits generated by the channel. Denote the
ensembles of I,y,n by X,Y,N respectively. We have H(Y) = H(Y IX)+ J(X;Y)
where H denotes the self-information and I the mutual information. But
H(Y I X) = H(N IX)= H(N) since N is statistically independent of X and, given
I, y and n are deterministic functions of one another. Hence
H(Y) = H(N) + J(X;Y). Suppose we use a random collection of codewords (in
the sense of chapter 5 in [10)) of rate R < C for communication on the BSC.
By the channel coding theorem, we are almost sure that it is a good code and
by theorem 5 (complexity distribution), we are almost sure (a priori) that the
decoding function (best estimate for each bit of information in terms of the
received codeword) has complexity near N. However, if C is near 1 and we use
a rate much less than C, we know that J(X:Y) is at most RN and that
H(N) = (1-C)N. Therefore, H(Y) ~ (1-C+R)N will be significantly less than N
and by theorem B and the statistics of the BSC, the reliable decoding
complexity cannot exceed the order of (v1-c+R) N. A direct relation
between reliability, rate, and complexity (instead of codeword length) is
established.

In a typical pattern recognition problem, an image (an array of binary
data or a point in S) is given and it is required to decide whether this image
belongs to a certain class. Let us denote the optimal classification decision by
D. Dis a Boolean function of the Boolean variables ins (the pixels) and can a
priori have K(D) approximately N. However, since H(t) is typically much
smaller than N, theorem B tells us that the complexity of D cannot be bigger
than the order of ..JN H(t). Since H(t), and hence H(S), is crucial to the
complexity, one should use whatever information that may be available to
reduce the entropy. Such procedure is a common preprocessing step in
pattern recognition and is known as normalization.

Deftnilion. A n.orma.liza.tion procedure is a mapping from S to S such that
I(S;D) = J(S;D) and H(S) < H(S).

Notice how this definition is quite general and does not depend on any
specific classification strategy t.o be followed after normalization. The
normalization step uses the properties of the pattern which are known to us
to get rid of the false entropy, i.e., the variations in the pattern which are
not ''.random."

< 4.4> Epilogue:-

We conclude this work by pointing out some observations about
complexity. Suppose that a ''.random" definition of complexity is introduced
which satisfies a distribution like that of theorem 5. It is obvious that part (b)
of the universality theorem (theorem 6) still applies since this complexity
measure has the right count of functions. However. part (a) need not hold
since the random measure does not guarantee any implementation cost and
this nullifies its significance. On the other hand, if we define the complexity of
a function to be simply its rank, both parts of theorem 6 apply. However, this
definition does not have any class of low-complexity functions like the
modulo-two sum or the low-entropy functions and this nullifies its practical
signiflcance.

Since the complexity distribution is dictated by lemma 4, it is obvious
that a.ny other consistent definition of K(/), based on universal gates, will
not differ significantly from our definition except in a negligible fraction of all
functions. However, it turns out that this fraction is of practical interest and
the definition should accommodate as many low-complexity functions as it
can without violating pa.rt (a) of theorem 6. Lemma 4 is therefore universal
and puts a rigid requirement on any measure of complexity that is related to
cost in a direct manner.

The methodology can also be applied when other devices are available.
Based on the implementation power of the device in question and its cost, it
is possible to derive the counterpart of lemma 4 and predict the necessary

-40-

distribution of complexity, then propose a model for reducibility based on
these devices and introduce the new definition of complexity. Another
approach that accommodates special-purpose devices within our framework
is the conditional complexity. The nature of the device and its cost will not
be explicitly specified, but the function it implements will represent it as far
as the analysis is concerned.

Definition. The conditional complexity of a Boolean function / given a set
of Boolean functions G = fq 1, • • • ,g., f, denoted by K{ / I G), is the complexity
K(/} given that the configuration C = < 8 1, ···,SL> is such that each 5' is a
subset of UUG (instead of U only).

This definition assumes that the definition of Boolean mappings has been
technically modified to accommodate functions as arguments. Notice that
the definition of K(J I G) enlarges the minimization domain of the definition of
K(J). It follows that K(/ I G) !i: K(I). The g/s are meant to be the outputs of
special devices and they capture the role of such devices in reducing (possibly
to a triviality) the complexity of extractine; the function J from the
independent Boolean variables in U. This definition can also be used to
evaluate the usefulness of the device to the particular implementation of f
by comparing K(/ I G) to K(J}.

References

[1] H. Abelson, 'Towards a theory of local and global in computation,"
Theoretical Computer Science, Vol. 6, pp. 41-67, 1978.

(2] H. Abelson et al., "Compositional complexity of Boolean functions,"
Discrete Applied Mathematics, Vol. 4, pp. 1-10, 1982.

[3] Y. Abu-Mostafa, "Information-theoretic characterization of linear
feature spaces," to be published, 1982.

[4] A. Aho et al., The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[5] E. Berlekamp et al., "On the inherent intractability of certain coding
problems," IEEE Trans. on Information Theory, Vol. IT-24, pp. 384-386,
1978.

[6] A. Borodin, "On relating time and space to size and depth," SIAM J.
Comput., Vol. 6, pp. 733-744, 1977.

[7] G. Chaitin, '!nformation-theoretic computational complexity," IEEE
'!'rans. on Information Theory, Vol. IT-20, pp. 10-15, 1974.

[8] G. Chaitin, "A theory of program size formally identical to information
theory," J. of the ACM, Vol. 22, pp. 329-340, 1979.

[9] R. Duda et al., Pattern aassification and Scene Analysis, Wiley­
Interscience, 19?3.

[10] R. Gallager, Information Theory and Reliable Communication, John
Wiley, 1968.

(11] D. Knuth, ''.An almost linear recurrence," Fibonacci Quarterly, Vol. 4,
pp. 117-128, 1966.

[12] Z. Kohavi, Switching and Finite Automata. Theory, second edition,
McGraw-Hill, 1978.

-42-

[13) A. Kolmogorov, ''On the representation of continuous functions of
several variables by superpositions of continuous functions of a smaller
number of variables," American Math. Soc. Transl. (2), Vol 17, pp. 369-
373, 1961.

[14] C. Liu, Jntroduction to Combinatorial Mathematics, McGraw-Hm, 1966.

[15] R McEliece, The Theory of Information and Coding, Addison-Wesley,
1977.

[16] C. Mead et al., Jntroduction to VLSI Systems, Addison-Wesley, 1980.

[17] J. Peatman, Digital Hardware Design, McGraw-Hill, 1980.

[18] W. Peterson et al., Error Correcting Codes, MIT Press, 1972.

[19] H. Ryser, Combinatorial Mathematics, the Mathematical Association of
America, 1963.

[20] C. Shannon, ''A mathematical theory of communication," Bell Sys. Tech.
J., Vol. 27, pp. 379-423, 1948.

[21] C. Shannon, 'The synthesis of two-terminal switching circuits," Bell Sys.
Tech. J., Vol. 28, pp. 59-98, 1949.

[22] S. Skyum et al., "A complexity theory based on Boolean Algebra," Proc.
22nd Symp. on Foundations of Computer Science, IEEE, pp. 244-253,
1981.

[23] L. Valiant, ''Completeness classes in Algebra," Proc. 11th ACM Symp. on
Theory of Computing, pp. 249-261, 1979.

[24] J. van Lint, private correspondence, 1983.

[25] J. Wolfowitz, Coding Theorems of Information Theory, third edition,
Springer-Verlag, 1978.

