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Abstract

We have conceived and implemented a cyclical protein design strategy
that couples theory, computation and experimental testing. Our goal is an
objective, quantitative design algorithm that is based on the physical
properties that determine protein structure and stability and which is not
limited to specific folds or motifs. Such a method should escape the lack of
generality that has resulted from design approaches based on system-specific
heuristics and/or subjective considerations. A critical component of the
development of our methods has been their experimental testing and
validation. The use of a design cycle coupling theory, computation, and
experiment has improved our understanding of the physical chemistry
governing protein design and hence enhanced the performance of the design
algorithm.

Our protein design automation algorithm objectively predicts protein
sequences likely to achieve a desired fold by using a side-chain selection
algorithm that explicitly and quantitatively considers specific side-chain to
backbone and side-chain to side-chain interactions. Using a rotamer
description of the side chains, we implemented a fast discrete search
algorithm based on the Dead End Elimination Theorem to rapidly find the
globally optimal sequence in its optimal geometry. We subdivided the
sequence selection problem into regions of proteins expected to be dominated
by different factors: the tightly packed buried core, the solvent exposed
surface, and the boundary between core and surface. We assessed the accuracy
of a scoring function or combination of scoring functions by experimentally
testing their sequence predictions. Improvements to the scoring function

were derived from the experimental data and incorporated into the design
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algorithm. In this manner, we developed a scoring function for the core of a
protein that considers packing interactions and hydrophobic solvation energy.
In order to design boundary residues effectively, the usually neglected effect of
exposed hydrophobic surface area was addressed. Scoring functions for the
design of surface residues were developed that account for hydrogen bonding
interactions and secondary structure propensities of amino acids. These
potential functions were used to successfully redesign several proteins. The
integration of these scoring functions was tested by designing the sequence for
an entire protein and solving the NMR solution structure of the designed
protein. This work reports the first successful automated design and

experimental validation of a novel sequence for an entire protein.
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Chapter 1
Introduction

Efforts to control protein structure, and hence function, have generated
a great deal of interest in recent years (1, 2). The ability to design novel
proteins or redesign existing proteins has obvious practical impact for
therapeutic and industrial biotechnology, fields based on proteins. Already,
modified functions and specificities have been engineered into proteins by
both rational and random library design methods (3, 4, 5), conferring new
functions such as peptide ligation or novel substrate recognition. The
functions of various proteins have been combined by linking different
proteins together (6), and efforts to improve the physical properties of
proteins, such as stability or solubility, have shown modest success (7, 8). The
design of completely novel structures has been elusive (9, 10), but small
peptides with novel sequences that bind receptor targets with high affinity
have been selected for and demonstrate the potential for creation of new
structures with biological activity. Protein design efforts have also shed light
on the factors that control protein stability and folding by allowing critical
tests of various structure determinants, such as hydrophobicity and
electrostatics (11, 12).

Protein design is the problem of finding a sequence of amino acids that
will take a desired protein structure and perform a desired function. Given
the practical limits on the size of random sequence libraries, designing all but
the smallest protein structures will necessarily depend on knowledge of the
physical properties that determine protein structure. Rational design efforts

typically incorporate effects such as the patterns of hydrophobic and



hydrophilic residues in the sequence, salt bridges and hydrogen bonds, and
secondary structural preferences of amino acids. Various approaches to apply
these principles have been attempted. For example, the construction of -
helical and B-sheet proteins with native-like sequences was attempted by
individually selecting the residue required at every position in the target fold
(13, 14). Alternatively, a minimalist approach was used to design helical
proteins, where the simplest possible sequence believed to be consistent with
the folded structure was generated (9, 15, 16). An experimental method that
relies on the hydrophobic and polar (HP) pattern of a sequence was developed
where a library of sequences with the correct pattern for a four helix bundle
was generated by random mutagenesis (11). Among non de novo approaches,
domains of naturally occurring proteins have been modified or coupled
together to achieve a desired tertiary organization (6, 17). Iterative mutation
of proteins and testing of the new sequences has also been used to design
proteins (12, 18, 19, 20).

Thc;ugh the correct secondary structure and overall tertiary
organization seem to have been attained by several of the above techniques,
many designed proteins appear to lack the structural specificity of native
proteins. The complementary geometric arrangement of amino acids in the
folded protein is the root of this specificity and is encoded in the sequence.
However, few protein design methods to date have systematically applied
specific packing interactions (21, 22, 23, 24, 25). In addition, the qualitative
nature of many design approaches has hampered the development of
improved, second generation, proteins because there are no objective
methods for learning from past design successes and failures. Even more
limiting is the inability of these design techniques to generalize to other

protein motifs.



Recently, several groups have applied and experimentally tested
systematic, quantitative methods for protein design (10, 21, 24, 25, 26, 27, 28).
Quantitative approaches to protein design should aid the development of
improved, second-generation protein designs because changes to the
underlying design principles can be objectively incorporated into the method
and avoid subjective biasing of the results. Quantitative techniques are
necessary to automate the design procedure and to reduce the time needed to
try successive generations of designs. Also, though some proposed
algorithms rely on statistical distributions of amino acids to design proteins
(23), most are based on physical chemical potentials that screen possible
sequences for compatibility with the desired protein fold. Such methods
should escape the lack of generality that has resulted from design approaches
based on system-specific heuristics and/or subjective considerations.

The use of a quantitative, physical chemistry based method for protein
design requires an accurate set of potential functions for scoring of sequences.
Unfortunately, current molecular mechanics forcefields are more suited to
modeling small perturbations in protein systems and for the refinement of
experimentally determined structures. The requirements of protein design
are more difficult. The selection of a sequence, which is the essence of protein
design, is a comparison of different molecules and is fundamentally more
challenging than the comparison of different conformations of the same
molecule, which is the most common use of forcefields. Also, the
tremendous number of possible sequences for a protein of a given length
creates an immense optimization problem. In order to search this vast
sequence space efficiently, many design approaches reduce the degrees of
freedom in the protein structure by using a fixed protein fold template, in

addition to fixed bond lengths and angles. Interactions between residues are



often precalculated to speed optimization algorithm performance. This
reduction of the energy calculations to pairwise terms requires recasting of the
energy expressions and novel methods for computing certain components,
such as surface area based solvation potentials. To date, these techniques,
which screen possible sequences for compatibility with the desired protein
fold, have focused mostly on the redesign of protein cores. Also, the redesign
efforts have met with mixed success due to the imperfect sequence scoring
functions used (29).

We have sought to expand the range of computational protein design
by developing quantitative design methods for residues of all parts of a
protein: the buried core, the solvent exposed surface, and the boundary
between core and surface (28, 30, 31). A critical component of the
development of our methods has been their experimental testing and
validation. The use of a design cycle coupling theory, computation, and
experiment has improved our understanding of the physical chemistry
governing protein design and hence enhanced the performance of the design
algorithm (28). The following chapters detail the development of the various
parts of the design algorithm and their integration and testing for the design
of a complete protein.

Since protein design is the problem of finding an amino acid sequence
to take a desired fold, a complete quantitative design algorithm requires both
a quantitative description of the target backbone structure and a sequence
optimization algorithm to find the best amino acid sequence for the fold.
Though backbone specification and sequence selection are coupled, we chose
to develop the sequence selection algorithm first because it can be readily
tested on known backbones from solved protein structures. Conversely, the

testing and development of a backbone generation technique requires an



accurate sequence selection algorithm, since the function of the designed
backbone is to serve as an effective scaffold for sequence optimization.
Further, the redesign of known structures to take different, and hopefully
improved, properties is an important goal that can be achieved with sequence
selection alone. Recent results indicate that the sequence selection algorithm
is not sensitive to even fairly large perturbations in backbone geometry and
should be robust enough to accommodate computer-generated backbones (32).

We subdivided the sequence selection problem into regions of proteins
expected to be dominated by different factors: the tightly packed buried core,
the solvent exposed surface, and the boundary between core and surface. In
Chapter II, the tremendous combinatorial optimization problem inherent to
sequence selection is addressed using the Dead-End Elimination Theorem
(DEE) (33). In addition, the development of a scoring function for core
residue sequences is presented. In Chapter III, the balance between van der
Waals packing forces and hydrophobic solvation was examined to determine
bounds on the need for packing specificity in protein core design. Also,
analysis and experimental characterization of designed sequences suggested
factors important for the design of boundary residues. Chapter IV presents
the initial development of scoring functions for the surface of a protein. In
Chapter V, the entire sequence selection algorithm was tested by designing a
complete protein sequence and solving the NMR solution structure of the
designed protein. This test of the algorithm was successful, though further
tests to examine the generality of the design algorithm to other protein

structures are needed.
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Chapter 2
Automated Core Sequence Selection

The text of this chapter is adapted from a published manuscript that was coauthored with
Professor Stephen L. Mayo.
B. L. Dahiyat and S. L. Mayo, Protein Sci., 5, 895 (1996).

Abstract

We have conceived and implemented a cyclical protein design strategy that couples
theory, computation and experimental testing. Our protein design automation algorithm
objectively predicts protein sequences likely to achieve a desired fold. Using a rotamer
description of the side chains, we implemented a fast discrete search algorithm based on the
Dead End Elimination Theorem to rapidly find the globally optimal sequence in its optimal
geometry. Rotamer sequences were scored for steric complementarity using a van der
Waals potential. A Monte Carlo search was then executed, starting at the optimal sequence,
in order to find other high scoring sequences. High scoring sequences were found for the
buried hydrophobic residues of a homodimeric coiled coil based on GCN4-pl. The
corresponding peptides were synthesized and characterized by circular dichroism
spectroscopy and size exclusion chromatography. All peptides were dimeric and nearly
100% helical at 1 °C with melting temperatures ranging from 24-57 °C. A quantitative
structure activity relation analysis was performed on the designed peptides, and a
significant correlation was found with surface area burial. Incorporation of a buried
surface area potential in the scoring of sequences greatly improved the correlation between

predicted and measured stabilities and demonstrated experimental feedback in a complete

design cycle.
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We have conceived and implemented a cyclical design strategy that couples theory,
computation and experimental testing in order to address the problems of specificity and
learning (Figure 1). Our protein design automation (PDA) cycle is comprised of four
components: a design paradigm, a simulation module, experimental testing and data
analysis. The design paradigm is based on the concept of inverse folding (1, 2) and
consists of the use of a fixed backbone onto which a sequence of side-chain rotamers can
be placed, where rotamers are the allowed conformations of amino acid side chains (3).
Specific tertiary interactions based on the three-dimensional juxtaposition of atoms are used
to determine the sequences that will potentially best adopt the target fold. Given a
backbone geometry and the possible rotamers allowed for each residue position as input,
the simulation must generate as output a rank ordered list of solutions based on a cost
function that explicitly considers the atom positions in the various rotamers. The principle
obstacle is that a fixed backbone comprised of n residues and m possible rotamers per
residue (all rotamers of all allowed amino acids) results in m” possible arrangements of the
system, an immense number for even small design problems. For example, to consider 50
rotamers at 15 positions results in over 1025 sequences, which at an evaluation rate of 109
sequences per second (far beyond current capabilities) would take 109 years to exhaustively
search for the global minimum.

The synthesis and characterization of a subset of amino acid sequences presented by
the simulation module generates experimental data for the analysis module. The analysis
section discovers correlations between calculable properties of the simulated structures and
the experimental observables. The goal of the analysis is to suggest quantitative
modifications to the simulation and in some cases to the guiding design paradigm. In other
words, the cost function used in the simulation module describes a theoretical potential
energy surface whose horizontal axis comprises all possible solutions to the problem at
hand (Figure 2). This potential energy surface is not guaranteed to match the actual

potential energy surface which is determined from the experimental data. In this light, the
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goal of the analysis becomes the correction of the simulation cost function in order to create
better agreement between the theoretical and actual potential energy surfaces. If such
corrections can be found, then the output of subsequent simulations will be amino acid
sequences that better achieve the target properties. This design cycle is generally applicable
to any protein system and, by removing the subjective human component, allows a largely

unbiased approach to protein design, i.e., protein design automation.

Results and Discussion

Design paradigm

The PDA side-chain selection algorithm requires as input a backbone structure
defining the desired fold. The task of designing a sequence that takes this fold can be
viewed as finding an optimal arrangement of amino acid side chains relative to the given
backbone. It is not sufficient to consider only the identity of an amino acid when
evaluating sequences. In order to correctly account for the geometric specificity of side-
chain placement, all possible conformations of each side chain must also be examined.
Statistical surveys of the protein structure database (3) have defined a discrete set of
allowed conformations, called rotamers, for each amino acid side chain. We use a rotamer
library based on the Ponder and Richards library to define allowed conformations for the
side chains in PDA.

Using a rotamer description of side chains, an optimal sequence for a backbone can
be found by screening all possible sequences of rotamers, where each backbone position
can be occupied by each amino acid in all its possible rotameric states. The discrete nature
of rotamer sets allows a simple calculation of the number of rotamer sequences to be tested.
A backbone of length n with m possible rotamers per position will have m”" possible
rotamer sequences. The size of the search space grows exponentially with sequence length

which for typical values of n and m render intractable an exhaustive search. This
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combinatorial "explosion” is the primary obstacle to be overcome in the simulation phase of

PDA.

Simulation algorithm

We use an extension of the Dead End Elimination (DEE) theorem (4, 5, 6) to solve
the combinatorial search problem. The DEE theorem is the basis for a very fast discrete
search algorithm that was designed to pack protein side chains on a fixed backbone with a
known sequence. Side chains are described by rotamers and an atomistic forcefield is used
to score rotamer arrangements. The DEE theorem guarantees that if the algorithm
converges, the global optimum packing is found. The DEE method is readily extended to
our inverse folding design paradigm by simply releasing the constraint that a position is
limited to the rotamers of a single amino acid. This extension of DEE greatly increases the
number of rotamers at each position and requires a significantly modified implementation to
ensure convergence (Dahiyat and Mayo, unpublished results). The guarantee that only the
global optimum will be found is still valid, and in our extension means that the globally
optimal sequence is found in its optimal conformation. The initial scoring function for
sequence arrangements used in the search was an atomic van der Waals potential. The van
der Waals potential reflects excluded volume and steric packing interactions which are
important determinants of the specific three-dimensional arrangement of protein side
chains.

Following DEE optimization, a rank ordered list of sequences is generated by a
Monte Carlo search in the neighborhood of the DEE solution. This list of sequences is
necessary because of possible differences between the theoretical and actual potential
surfaces (Figure 2). Starting at the DEE solution, random positions are changed to other
rotamers, and the new sequence energy is calculated. If the new sequence meets the
Boltzmann criteria for acceptance, it is used as the starting point for another jump (7).

After a predetermined number of jumps, the best scoring sequences are output as a rank
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ordered list. Starting at the global optimum is critical for the Monte Carlo routine to find
high scoring sequences and to avoid searching low scoring regions of sequence space.
Hence, the DEE algorithm and the Monte Carlo search are both critical for providing

candidate sequences for experimental testing.

Model system and experimental testing

The homodimeric coiled coil of o helices was selected as the initial design target.
Coiled coils are readily synthesized by solid phase techniques and their helical secondary
structure and dimeric tertiary organization ease characterization. Their sequences displéy a
seven residue periodic HP pattern called a heptad repeat, (a-b-c-d-e-f-g) (8). Theaand d
positions are usually hydrophobic and buried at the dimer interface while the other
positions are usually polar and solvent exposed (Figure 3). The backbone needed for input
to the simulation module was taken from the crystal structure of GCN4-p1 (9). The 16
hydrophobic a and d positions were optimized in the crystallographically determined fixed
field of the rest of the protein. Homodimer sequence symmetry was enforced, only
rotamers from hydrophobic amino acids (A, V, L, I, M, F, Y and W) were considered and
the asparagine at an a position, Asn 16, was not optimized.

Optimizing the 16 a and d positions each with 238 possible hydrophobic rotamers
results in 23816 or 1038 rotamer sequences. The DEE algorithm finds the global optimum
in three minutes, including rotamer energy calculation time. The DEE solution matches the
naturally occurring GCN4-pl sequence of a and d residues for all of the 16 positions. A
one million step Monte Carlo search run at a temperature of 1000 K generated the list of
sequences rank ordered by their score. To test reproducibility, the search was repeated
three times with different random number seeds and all trials provided essentially identical
results. The second best sequence is a Val 30 to Ala mutation and lies three kcal/mol above
the ground state sequence. Within the top 15 sequences up to six mutations from the

ground state sequence are tolerated, indicating that a variety of packing arrangements are
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available even for a small coiled coil. Eight sequences with a range of stabilities were
selected for experimental testing, including six from the top 15 and two more about 15
kcal/mol higher in energy, the 56th and 70th in the list (Table 1).

The designed a and d sequences were synthesized using the GCN4-p1 sequence
for the b-c and e-f-g positions. Standard solid phase techniques were used and following
HPLC purification, the identities of the peptides were confirmed by mass spectrometry.
Circular dichroism spectroscopy (CD) was used to assay the secondary structure and
thermal stability of the designed peptides. The CD spectra of all the peptides at 1 °C and a
concentration of 40 UM exhibit minima at 208 and 222 nm and a maximum at 195 nm,
which are diagnostic for o helices (Figure 4A). The ellipticity values at 222 nm indicate
that all of the peptides are >85% helical (approximately -28000 deg cmZ2/dmol), with the
exception of PDA-3C which is 75% helical at 40 uM but increases to 90% helical at 170
UM (Table 2). The melting temperatures (Tp,'s) show a broad range of values (Figure 4B),
with 6 of the 8 peptides melting at greater than physiological temperature. Also, the Tpy's
were not correlated to the number of sequence differences from GCN4-pl. Single amino
acid changes resulted in some of the most and least stable peptides, demonstrating the
importance of specificity in sequence selection.

Size exclusion chromatography confirmed the dimeric nature of these designed
peptides. Using coiled coil peptides of known oligomerization state as standards, the PDA
peptides migrated as dimers. This result is consistent with the appearance of B-branched
residues at a positions and leucines at d positions, which have been shown previously to
favor dimerization over other possible oligomerization states (10).

The characterization of the PDA peptides demonstrates the successful design of
several stable dimeric helical coiled coils. The sequences were automatically generated in
the context of the design paradigm by the simulation module using well-defined inputs that
explicitly consider the HP patterning and steric specificity of protein structure. Two-

dimensional nuclear magnetic resonance experiments aimed at probing the specificity of the
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tertiary packing are the focus of further studies on these peptides. Initial experiments show
significant protection of amide protons from chemical exchange and chemical shift
dispersion comparable to GCN4-pl (Dahiyat, Xu and Mayo, unpublished results) (11,
12).

Data analysis and design feedback

A detailed analysis of the correspondence between the theoretical and experimental
potential surfaces (Figure 2), and hence an estimate of the accuracy of the simulation cost
function, was enabled by the collection of experimental data. Using thermal stability as a
measure of design performance, melting temperatures of the PDA peptides were plotted
against the sequence scores found in the Monte Carlo search (Figure 5A). The modest
correlation, 0.67, in the plot shows that while an exclusively van der Waals scoring
function can screen for stable sequences, it does not accurately predict relative stabilities.
In order to address this issue, correlations between calculated structural properties and
Tm's were systematically examined using quantitative structure activity relationships
(QSAR), which is a statistical technique commonly used in structure based drug design
(13).

Table 2 lists various molecular properties of the PDA peptides in addition to the van
der Waals based Monte Carlo scores and the experimentally determined T,'s. A wide
range of properties was examined, including molecular mechanics components, such as
electrostatic energies, and geometric measures, such as volume. The goal of QSAR is the
generation of equations that closely approximate the experimental quantity, in this case T,
as a function of the calculated properties. Such equations suggest which properties can be
used in an improved cost function. The PDA analysis module employs genetic function
approximation (GFA) (14), a novel method to optimize QSAR equations that selects which

properties are to be included and the relative weightings of the properties using a genetic
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algorithm. GFA accomplishes an efficient search of the space of possible equations and
robustly generates a list of equations ranked by their correlation to the data.

Equations are scored by lack of fit (LOF), a weighted least square error measure
that resists overfitting by penalizing equations with more terms (14). GFA optimizes both
the length and the composition of the equations and, by generating a set of QSAR
equations, clarifies combinations of properties that fit well and properties that recur in many
equations. All of the top five equations that correct the simulation energy (Emc) contain
burial of nonpolar surface area, AApp (Table 3). The presence of AAyp in all of the top
equations, in addition to the low LOF of the QSAR containing only Epmc and AAyp,
strongly implicates nonpolar surface burial as a critical property for predicting peptide
stability. This conclusion is not surprising given the role of the hydrophobic effect in
protein energetics (15).

To assess the predictive power of these QSAR equations, as well as their
robustness, cross validation analysis was carried out. Each peptide was sequentially
removed from the data set and the coefficients of the equation in question were refit. This
new equation was then used to predict the withheld data point. When all of the data points
had been predicted in this manner, their correlation to the measured T,'s was computed
(Table 3). Only the Emc/AApp QSAR and the EMc/AAnp/AAp QSAR performed well in
cross validation. The Epc/AApp equation could not be expected to fit the data as smoothly
as QSAR's with three terms and hence had a lower cross validated r2. However, all other
two term QSAR's had LOF scores greater than 48 and cross validation correlations less
than 0.55 (data not shown). The QSAR analysis independently predicted with no
subjective bias that consideration of nonpolar and polar surface area burial is necessary to
improve the simulation. This result is consistent with previous studies on atomic solvation
potentials (16, 17). Further, simpler structural measures, such as number of buried atoms,
that reflect underlying principles such as hydrophobic solvation (18) were not deemed as

significant by the QSAR analysis. These results justify the cost of calculating actual
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surface areas, though in some studies simpler potentials have been shown to perform well
(19).

AApp and AAp were introduced into the simulation module to correct the cost
function. Contributions to surface burial from rotamer/template and rotamer/rotamer
contacts were calculated and used in the interaction potential. Independently counting
buried surface from different rotamer pairs, which is necessary in DEE, leads to
overestimation of burial because the radii of solvent accessible surfaces are much larger
than the van der Waals contact radii and hence can overlap greatly in a close packed protein
core. To account for this discrepancy, the areas used in the QSAR were recalculated using
the pairwise area method and a new EMc/AAnp/AAp QSAR equation was generated. The
ratios of the Eyc coefficient to the AApp and AAp coefficients are scale factors that are used
in the simulation module to convert buried surface area into energy, i.e., atomic solvation
parameters. Thermal stabilities are predicted well by this cost function (Figure 5B). In
addition, the improved cost function still predicts the naturally occurring GCN4-pl
sequence as the ground state. The surface area to energy scale factors, 16 cal/mol/A2
favoring nonpolar area burial and 86 cal/mol/A2 opposing polar area burial, are similar in
sign, scale and relative magnitude to solvation potential parameters derived from small

molecule transfer data (17).

A repressor mutants

To demonstrate the generality of the cost function, other proteins were examined
using the simulation module. A library of core mutants of the DNA binding protein A
repressor has been extensively characterized by Sauer and coworkers (20). Specifically, a
cluster of three buried residues, V36, M40 and V47, were randomly mutated to Val, Met,
Leu, Ile or Phe. Of the 125 possible combinations, 78 were generated. Also, this dataset
has been used to test several computational schemes and can serve as a basis for comparing

different forcefields (19, 21, 22). The simulation module, using the cost function found by
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QSAR, was used to find the optimal conformation and energy for each mutant sequence.
All hydrophobic residues within 5 A of the three mutation sites were also left free to be
relaxed by the algorithm. This 5 A sphere contained 12 residues, a significantly larger
problem than previous efforts (21, 22), that were rapidly optimized by the DEE component
of the simulation module. The rank correlation of the predicted energy to the combined
activity score proposed by Hellinga and Richards is shown in Figure 6. The wildtype has
the lowest energy of the 125 possible sequences and the correlation is essentially equivalent
to previously published results which demonstrates that the QSAR corrected cost function

is not specific for coiled coils and can model other proteins adequately.

Concluding remarks

A full circuit of the PDA cycle has been completed. The cores of stable peptides
that achieve the target fold have been designed by a largely automated computational design
procedure that includes specific tertiary interactions and systematically incorporates
experimental feedback. By using DEE, the simulation module can very rapidly find the
optimal sequence from the vast number of possibilities. Further, generating a list of
candidate sequences and synthesizing and experimentally characterizing them allowed a
quantitative analysis of properties important to successful design. A critical feature that had
been missing from the simulation, the effect of solvation, was derived from the data and
incorporated into the cost function. This feedback improved design performance and,
importantly, was not based on subjective interpretation of the data.

The PDA design cycle and its elements can be used in the future as part of de novo
protein design, protein redesign and mutation strategies. Significant challenges that lie
ahead include the generation of de novo backbone structures for use in the simulation
module, improvement of polar residue rotamer libraries and the treatment of partially buried

and non-buried positions. However, even with these obstacles, strategies such as PDA
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that address packing and specific tertiary interactions will be an important part of protein

design in the future.
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Methods and Materials

Sequence optimization: dead end elimination and Monte Carlo search

Our rotamer library is similar to that used by Desmet and coworkers (4). x1 and %2
angle values of rotamers for all amino acids except Met, Arg and Lys were expanded plus
and minus one standard deviation about the mean value from the Ponder and Richards
library in order to minimize possible errors that might arise from the discreteness bf the
library. x3 and x4 angles that were undetermined from the database statistics were
assigned values of 0° and 180° for Gln and 60°, -60° and 180° for Met, Lys and Arg. The
number of rotamers per amino acid is: Gly, 1; Ala, 1; Val, 9; Ser, 9; Cys, 9; Thr, 9; Leu,
36; Ile, 45; Phe, 36; Tyr, 36; Trp, 54; His, 54; Asp, 27; Asn, 54; Glu, 69; Gln, 90; Met,
21; Lys, 57; Arg, 55. The cyclic amino acid Pro was not included in the library. Further,
all rotamers in the library contained explicit hydrogen atoms. Rotamers were built with
bond lengths and angles from the Dreiding forcefield (23).

A Lennard-Jones 12-6 potential with radii and well depth parameters from the
Dreiding forcefield was used for van der Waals interactions. Non-bonded interactions for
atomns connected by one or two bonds were not considered. van der Waals radii for atoms
connected by three bonds were scaled by 0.5. Rotamer/rotamer pair energies and
rotamer/template energies were calculated in a manner consistent with the published DEE
algorithm (4). The template consisted of the protein backbone and the side chains of
residue positions not to be optimized. No intra-side-chain potentials were calculated. This
scheme scored the packing geometry and eliminated bias from rotamer internal energies.
Prior to DEE, all rotamers with template interaction energies greater than 25 kcal/mol were
eliminated. Also, any rotamer whose interaction was greater than 25 kcal/mol with all
other rotamers at another residue position was eliminated. A program called PDA_SETUP
was written that takes as input backbone coordinates, including side chains for positions

not optimized, a rotamer library, a list of positions to be optimized and a list of the amino
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acids to be considered at each position. PDA_SETUP outputs a list of rotamer/template
and rotamer/rotamer energies.

The pairwise solvation potential was implemented in two components to remain
consistent with the DEE methodology: rotamer/template and rotamer/rotamer burial. For
the rotamer/template buried area, the reference state was defined as the rotamer in question
at residue i with the backbone atoms only of residues i-1, i and i+1. The area of the side
chain was calculated with the backbone atoms excluding solvent but not counted in the
area. The folded state was defined as the area of the rotamer in question at residue i, but
now in the context of the entire template structure including non-optimized side chains.
The rotamer/template buried area is the difference between the reference and the folded
states. The rotamer/rotamer reference area is simply the sum of the areas of the isolated
rotamers. The folded state is the area of the two rotamers placed in their relative positions
on the protein scaffold but with no template atoms present. The Richards definition of
solvent accessible surface area (24) was used, with a probe radius of 1.4 A and Drieding
van der Waals radii. Carbon and sulfur, and all attached hydrogens, were considered
nonpolar. Nitrogen and oxygen, and all attached hydrogens, were considered polar.
Surface areas were calculated with the Connolly algorithm using a dot density of 10 A-2
(25). In more recent implementations of PDA_SETUP, the MSEED algorithm of
Scheraga has been used in conjunction with the Connolly algorithm to speed up the
calculation (26).

DEE was implemented with a novel addition to the improvements suggested by
Goldstein (6). As has been noted, exhaustive application of the R=1 rotamer elimination
and R=0 rotamer-pair flagging equations and limited application of the R=1 rotamer-pair
flagging equation routinely fails to find the global solution. This problem can be
overcome by unifying residues into "super residues" (4, 5, 6). However, unification can
cause an unmanageable increase in the number of super rotamers per super residue

position and can lead to intractably slow performance since the computation time for
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applying the R=1 rotamer-pair flagging equation increases as the fourth power of the
number of rotamers. These problems are of particular importance for protein design
applications given the requirement for large numbers of rotamers per residue position. In
order to limit memory size and to increase performance, we developed a heuristic that
governs which residues (or super residues) get unified and the number of rotamer (or
super rotamer) pairs that are included in the R=1 rotamer-pair flagging equation. A
manuscript detailing this implementation of DEE is in preparation. A program called
PDA_DEE was written that takes a list of rotamer energies from PDA_SETUP and outputs
the global minimum sequence in its optimal conformation with its energy.

The Monte Carlo search starts at the global minimum sequence found by DEE. A
residue was picked randomly and changed to a random rotamer selected from those
allowed at that site. A new sequence energy was calculated and, if it met the Boltzman
criteria for acceptance, the new sequence was used as the starting point for another jump.
If the Boltzman test failed, then another random jump was attempted from the previous
sequence. A list of the best sequences found and their energies was maintained
throughout the search. Typically 106 jumps were made, 100 sequences saved and the
temperature was set to 1000 K. After the search was over, all of the saved sequences
were quenched by changing the temperature to 0 K, fixing the amino acid identity and
trying every possible rotamer jump at every position. The search was implemented in a
program called PDA_MONTE whose input was a global optimum solution from
PDA_DEE and a list of rotamer energies from PDA_SETUP. The output was a list of the
best sequences rank ordered by their score.

PDA_SETUP, PDA_DEE and PDA_MONTE were implemented in the CERIUS2

software development environment (Biosym/Molecular Simulations, San Diego, CA).

Coiled coil sequence prediction
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Homodimeric coiled coils were modeled on the backbone coordinates of GCN4-p1,
PDB ascension code 2ZTA (9, 27). Atoms of all side chains not optimized were left in
their crystallographically determined positions. The program BIOGRAF
(Biosym/Molecular Simulations, San Diego, CA) was used to generate explicit hydrogens
on the structure which was then conjugate gradient minimized for 50 steps using the
Dreiding forcefield. The HP pattern was enforced by only allowing hydrophobic amino
acids into the rotamer groups for the optimized a and d positions. The hydrophobic group
consisted of Ala, Val, Leu, Ile, Met, Phe, Tyr and Trp for a total of 238 rotamers per
position. Homodimer symmetry was enforced by penalizing by 100 kcal/mol rotamer
pairs that violate sequence symmetry. Different rotamers of the same amino acid were
allowed at symmetry related positions. The asparagine that occupies the a position at
residue 16 was left in the template and not optimized. A 109 step Monte Carlo search run
at a temperature of 1000 K generated the list of candidate sequences rank ordered by their
score. To test reproducibility, the search was repeated three times with different random
number seeds and all trials provided essentially identical results. The Monte Carlo
searches took about 90 minutes. All calculations in this work were performed on a Silicon

Graphics 200 MHz R4400 processor.

Data analysis and design feedback

Properties were calculated using BIOGRAF and the Dreiding forcefield. Solvent
accessible surface areas were calculated with the Connolly algorithm (25) using a probe
radius of 1.4 A and a dot density of 10 A-2. Volumes were calculated as the sum of the
van der Waals volumes of the side chains that were optimized. The number of buried
polar and nonpolar heavy atoms were defined as atoms, with their attached hydrogens,
that expose less than 5 A2 in the surface area calculation. Electrostatic energies were

calculated using a dielectric of one and no cutoff was set for calculation of non-bonded
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energies. Charge equilibration charges (28) and Gasteiger (29) charges were used to
generate electrostatic energies. Charge equilibration charges were manually adjusted to
provide neutral backbones and neutral side chains in order to prevent spurious monopole
effects. The selection of properties was limited by the requirement that properties could
not be highly correlated. Correlated properties cannot be differentiated by QSAR
techniques and only create redundancy in the derived relations.

Genetic function approximation (GFA) was performed in the CERIUS?2 simulation
package version 1.6 (Biosym/Molecular Simulations, San Diego, CA). An initial
population of 300 equations was generated consisting of random combinations of three
properties. Only linear terms were used and initial coefficients were determined by least
squares regression for each set of properties. Redundant equations were eliminated and
10000 generations of random crossover mutations were performed. If a child had a better
score than the worst equation in the population, the child replaced the worst equation.
Also, mutation operators that add or remove terms had a 50% probability of being applied
each generation, but these mutations were only accepted if the score was improved. No
equation with greater than three terms was allowed. Equations were scored during
evolution using the lack of fit (LOF) parameter, a scaled least square error (LSE) measure
that penalizes equations with more terms and hence resists overfitting. LOF is defined as:

LSE
(-%)

where c is the number of terms in the equation and M is the number of data points. Five

LOF=

different randomized runs were done and the final equation populations were pooled.
Only equations containing the simulation energy, Epmc, were considered which resulted in
108 equations ranked by their LOF. General cross validation was performed by removing
each data point in turn and then fitting the properties of the equation to the remaining data

using least squares regression. The excluded data point was then predicted by the new
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equation. When all of the data points had been predicted in this way, a correlation

coefficient was calculated for the predicted versus the actual data.

A repressor simulation

Template coordinates were taken from PDB file 1ILMB (30). The subunit
designated chain 4 in the PDB file was removed from the context of the rest of the
structure (accompanying subunit and DNA) and using BIOGRAF explicit hydrogens were
added. The hydrophobic residues with side chains within 5 A of the three mutation sites
(V36 M40 V47) are Y22, L31, A37, M42, 150, F51, L64, L65, 168 and L69. All of
these residues are greater than 80% buried except for M42 which is 65% buried and L64
which is 45% buried. A37 only has one possible rotamer and hence was not optimized.
The other nine residues in the 5 A sphere were allowed to take any rotamer conformation
of their amino acid. The mutation sites were allowed any rotamer of the amino acid
sequence in question. Depending on the mutant sequence, 5 x 1016 to 7 x 10!8
conformations were possible. Rotamer energy and DEE calculation times were 2 to 4

minutes. The combined activity score is that of Hellinga and Richards (22).

Peptide synthesis and purification

Thirty-three residue peptides were synthesized on an Applied Biosystems Model
433A peptide synthesizer using Fmoc chemistry, HBTU activation and a modified Rink
amide resin from Novabiochem. Standard 0.1 mmol coupling cycles were used and
amino termini were acetylated. Peptides were cleaved from the resin by treating
approximately 200 mg of resin with 2 mL trifluoroacetic acid (TFA) and 100 uL water,
100 pL thioanisole, 50 uL ethanedithiol and 150 mg phenol as scavengers. The peptides
were isolated and purified by precipitation and repeated washing with cold methyl tert-

butyl ether followed by reverse phase HPLC on a Vydac C8 column (25 cm by 22 mm)
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with a linear acetonitrile-water gradient containing 0.1% TFA. Peptides were then
lyophilized and stored at -20 °C until use. Plasma desorption mass spectrometry found all

molecular weights to be within one unit of the expected masses.

Circular dichroism

CD spectra were measured on an Aviv 62DS spectrometer at pH 7.0 in 50 mM
phosphate, 150 mM NaCl and 40 uM peptide. A 1 mm pathlength cell was used and the
temperature was controlled by a thermoelectric unit. Thermal melts were performed in the
same buffer using two degree temperature increments with an averaging time of 10 s and
an equilibration time of 90 s. Ty, values were derived from the ellipticity at 222 nm
([8]222) by evaluating the minimum of the d[0]222/dT-! versus T plot (31). The Ty's
were reproducible to within one degree. Peptide concentrations were determined from the

tyrosine absorbance at 275 nm (32).

Size exclusion chromatography

Size exclusion chromatography was performed with a Synchropak GPC 100
column (25 ¢m by 4.6 mm) at pH 7.0 in 50 mM phosphate and 150 mM NacCl at 0 °C.
GCN4-pl and p-LI (10) were used as size standards. 10 pl injections of 1 mM peptide
solution were chromatographed at 0.20 ml/min and monitored at 275 nm. Peptide
concentrations were approximately 60 uM as estimated from peak heights. Samples were

run in triplicate.
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Table 1. Partial Monte Carlo list from coiled coil prediction consisting of the peptides
synthesized and characterized. Monte Carlo rank and score are listed and the a and d
positions are indicated by bold type to highlight the optimized positions. The fixed b-c and
e-f-g positions are also included in order to show the complete sequences that were

synthesized and tested.

Name Sequence Rank Energy

PDA-3H* RMKQLEDKVEELLSKNYHLENEVARLKKLVGER 1 -118.1
PDA-3A RMKQLEDKVEELLSKNYHLENEVARLKKLAGER 2 -115.3
PDA-3G RMKQLEDKVEELLSKNYHLENEMARLKKLVGER 5 -112.8
PDA-3B RLKOMEDKVEELLSKNYHLENEVARLKKLVGER 6 -112.6
PDA-3D RLKOMEDKVEELLSKNYHLENEVARLKKLAGER 13 -109.7
PDA-3C RMKOQWEDKAEELLSKNYHLENEVARLKKLVGER 14 -109.6
PDA-3F RMKQFEDKVEELLSKNYHLENEVARLKKLVGER 56 -103.9
PDA-3E RMKOLEDKVEELLSKNYHAENEVARLKKLVGER 70 -103.1

*Matches GCN4-pl wildtype sequence.



Table 2. CD data and calculated structural properties of the PDA peptides.
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Name -[6]222 Tm Emc* AApp AAp Vol Rb  EcQ EcG Evaw Npb Pb
£deg °C)  (kcal/ (A2) (AZ) (A3) (kcal/ (kcal/  (kcal/
cm”/dmol) mol) mol) mol) mol)
3H 33000 57 -118.1 2967 2341 1830 28 -234 -308 409 207 128
3A 30300 48 -115.3 2910 2361 1725 26 -232 -312 400 203 128
3B 28200 47  -112.6 2977 2372 1830 28 -242 -306 379 210 127
3G 30700 47 -112.8 3003 2383 1878 32 -240 -309 439 212 128
3F 28800 39  -103.9 3000 2336 1872 28 -188 -302 420 212 128
3D 27800 39 -109.7 2920 2392 1725 26 -240 -310 370 206 127
3C 24100 26 -109.6 2878 2400 1843 26 -149 -304 308 215 129
3E 27500 24 -103.1 2882 2361 1674 24 -179 -309 411 203 127

*Emc is the Monte Carlo energy; AApp and AA;, are the changes in solvent accessible non-

polar and polar surface areas upon folding, respectively; Ecq is the electrostatic energy

using equilibrated charges; Ecg is the electrostatic energy using Gasteiger charges; Eyqw is

the van der Waals energy; Vol is the side chain van der Waals volume; Rb is the number of

side chain rotatable bonds (excluding methyl rotors); Npb and Pb are the number of buried

non-polar and polar atoms, respectively.
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Table 3. Top five QSAR equations generated by GFA with LOF, correlation coefficient

and cross validation scores.

QSAR equation LOF r2 CV 2
-1.44*Epc + 0.14*AApp - 0.73*Npb 16.23 98 78
-1.78*Emc + 0.20*AAnp - 2.43*Rot 23.13 97 5
-1.59*Emc + O.l7*AAnp - 0.05*Vol 24.57 .97 .36
-1.54*Epmc + 0.1 l*AAnp 25.45 91 .80
-1.60*Epmc + 0.09*AAnp - O.lZ*AAp 33.88 .96 .90

AAnp and AAp are nonpolar and polar surface buried upon folding, respectively. Vol is
side chain volume, Npb is the number of buried nonpolar atoms and Rot is the number of
buried rotatable bonds.
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Figure 2-1. Protein design automation cycle.
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Figure 2-2. Schematic of actual versus theoretical potential energy surfaces. The
horizontal axis represents all of the possible solutions for the system (all sequences in
all possible conformations) and the vertical axis represents the energy of the solutions.
Note that the solution space is discrete; continuous lines are used for illustrative

purposes only.
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Figure 2-3. Helical wheel diagram of a coiled coil. One heptad repeat is shown viewed
down the major axes of the helices. The a and d positions define the solvent

inaccessible core of the molecule (8).
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Figure 2-4. Typical CD data. (A) Spectra of PDA-3A and PDA-3E show the minima at

222 and 208 nm and the maximum at 195 nm characteristic of o helices. (B) Thermal

melts of these peptides monitored at 222 nm were used to calculate T,'s from the

minima of plots of d[8]/dT-! versus T (inset).
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Figure 2-5. Comparison of simulation cost functions to experimental Ty,'s. (A) shows the
initial cost function which contains only a van der Waals term for the 8 PDA peptides.
(B) Improved cost function containing polar and nonpolar surface area terms weighted
by atomic solvation parameters derived from QSAR analysis. 16 cal/mol/A2 favors

nonpolar surface burial and 86 cal/mol/A2 opposes polar surface burial.
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Figure 2-6. Rank correlation of energy predicted by the simulation module versus the

combined activity score of A repressor mutants (20, 22).



Activity Rank

44

80

7 01

Spearman R = 0.88
p < 0.0001

30 40 50 6

Score Rank

0

70

80



45

Chapter 3

Probing The Role Of Packing Specificity In
Protein Design

The text of this chapter is adapted from a published manuscript that was
coauthored with Professor Stephen L. Mayo.
B. I. Dahiyat and S. L. Mayo, Proc. Natl. Acad. Sci., USA, 94, 10172, (1997).

Summary

Using a protein design algorithm that quantitatively considers side-chain
packing, the effect of specific steric constraints on protein design was assessed
in the core of the streptococcal protein G 1 domain. The strength of packing
constraints used in the design was varied, resulting in core sequences that
reflected differing amounts of packing specificity. The structural flexibility
and stability of several of the designed proteins were experimentally
determined and showed a trend from well-ordered to highly mobile
structures as the degree of packing specificity in the design decreased. This
trend both demonstrates that the inclusion of specific packing interactions is
necessary for the design of native-like proteins and defines a useful range of
packing specificity for the design algorithm. In addition, an analysis of the
modeled protein structures suggested that penalizing for exposed

hydrophobic surface area can improve design performance.
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The placement of hydrophobic amino acids into protein cores is critical for
maintaining the stable, highly ordered native structures of naturally
occurring proteins(l, 2, 3, 4). Many designed proteins have been constructed
to form a nonpolar core by simply selecting a suitable pattern of hydrophobic
and polar residues (HP pattern). While the correct secondary structure and
overall tertiary organization seem to have been attained in several cases,
most designs appear to lack the structural ordering of native proteins(5, 6, 7).
Several lines of evidence suggest that the omission of specific packing
interactions as a design criterion is a cause of disorder in designed proteins.
Computational design methods that systematically incorporate side-chain
packing have successfully redesigned the hydrophobic cores of proteins and
resulted in well-ordered structures(8, 9). Further, a coiled-coil design that
selected core residue packing arrangements to disfavor competing structures
resulted in a protein with greater native-like character than was achieved
with previous efforts(10). Conversely, lattice simulations suggest that
selection of an optimal HP pattern can result in uniquely folded
sequences(11). In this study, we seek to quantitatively assess both the degree
to which specific packing interactions are necessary for the design of well-
ordered proteins and the tolerance of native-like structure to variations in

core packing patterns.

Previous studies that have examined the role of core packing on protein
structure demonstrate that while some variation in the buried positions of a
protein is allowed, there are limits on the sequences that result in stable,
native-like folds(2, 12, 13, 14, 15). Though providing great insight on the
importance of core interactions, the conclusions from these studies are

difficult to generalize to other proteins and do not provide a framework to
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assess designed proteins. We propose the use of an automated side-chain
selection algorithm, which explicitly and quantitatively considers specific
side-chain packing interactions(9), as the basis of a method to define the need
for packing constraints in protein design. Our side-chain selection algorithm
screens all possible sequences and finds the optimal amino acid type and side-
chain orientation for a given backbone. In order to correctly account for the
torsional flexibility of side chains and the geometric specificity of side-chain
placement, we consider a discrete set of all allowed conformers of each side
chain, called rotamers(16, 17). The immense search problem presented by
rotamer sequence optimization is overcome by application of the Dead-End
Elimination (DEE) theorem(18, 19, 20). Our implementation of the DEE
theorem extends its utility to sequence design and rapidly finds the globally
optimal sequence in its optimal conformation. Scoring of sequence
arrangements includes an atomic van der Waals potential, which captures
the two main features of steric packing interactions: excluded volume and
the weakly attractive dispersive force. Protein cores designed with this and

with similar(8) algorithms result in stable, well-ordered proteins.

The referenced sequence prediction algorithms do not predict a wide variety
of packing arrangements for a given backbone, but rather select a single family
of closely related core sequences, indicating that designs produced by these
algorithms are highly determined by packing specificity. Two factors are
likely to be responsible for this stringency: the use of a fixed backbone and the
highly restrictive repulsive (excluded volume) component of the van der
Waals potential. The repulsive component, and the likelihood that different
side-chain arrangements cause packing clashes, can be modulated, however,

by scaling the van der Waals radii of the atoms in the simulation. We
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implement this modulation in the packing constraints by varying a radius
scale factor, o (Equation 1). Ry and Dy are the van der Waals radius and well

depth, respectively, and Evdw and R are the energy and interatomic distance.

Equation 1

E, =D q(=2) —2f =2
vdw 0 R R
By predicting core sequences with various radii scalings and then
experimentally characterizing the resulting proteins, a rigorous study of the

importance of packing effects on protein design is possible.

By using a protein design algorithm to assess the bounds of effective steric
constraints on core packing, these bounds can be readily incorporated back
into the algorithm to improve design performance, a critical advantage of the
approach, since an underlying goal of understanding packing constraints in
protein design is to use this information to develop better designs.
Specifically, a reduced van der Waals steric constraint can compensate for the
restrictive effect of a fixed backbone and discrete side-chain rotamers in the
simulation and could allow a broader sampling of sequences compatible with
the desired fold. The use of experimental data to test our designs and
subsequently to improve our design algorithm is the central feature of our
overall protein design strategy. In previous work, experimental feedback was
able to improve core design performance by suggesting the use of a
hydrophobic solvation potential to refine the selection of nonpolar residues
and by providing effective solvation parameters for use in the simulation(9).

Similarly, this study should provide practical improvements to our sequence
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scoring potential in addition to generally assaying the role of packing

specificity in protein structure.
Model system core sequence predictions

An ideal model system to study core packing is the B1 immunoglobulin-
binding domain of streptococcal protein G (GB1)(21) (Figure 1). Its small size,
56 residues, renders computations more tractable and simplifies production of
the protein by either synthetic or recombinant methods. Several crystal
structures(22) and a solution structure(21) are available to provide backbone
templates for the side-chain selection algorithm. In addition, the energetics
and structural dynamics of GB1 have been extensively characterized and can
serve as the reference point for a well-ordered native protein(23, 24, 25, 26).
GB1 is highly thermostable with a melting temperature of 87 °C. Perhaps
most critical for a core packing study, GB1 contains no disulfide bonds and
does not require a cofactor or metal ion to fold, but rather relies upon the
burial of its hydrophobic core for stability. Further, GB1 contains sheet, helix
and turn structures and is without the repetitive side-chain packing patterns
found in coiled coils or some helical bundles. This lack of periodicity reduces
the bias from a particular secondary or tertiary structure and necessitates the

use of an objective side-chain selection algorithm to examine packing effects.

Sequence positions that constitute the core were chosen by examining the
side-chain solvent accessible surface area of GB1. Any side chain exposing less
than 10% of its surface was considered buried (Figure 1). Eleven residues
meet this criteria, with seven from the B sheet (positions 3, 5, 7, 20, 43, 52 and
54), three from the helix (positions 26, 30, and 34) and one in an irregular

secondary structure (position 39). These positions form a contiguous core.
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The remainder of the protein structure, including all other side chains and
the backbone, was used as the template for sequence selection calculations at

the eleven core positions.

All possible core sequences consisting of alanine, valine, leucine, isoleucine,
phenylalanine, tyrosine or tryptophan (A, V, L, I, F, Y or W) were considered.
Our rotamer library was similar to that used by Desmet and coworkers(18). In
order to minimize possible errors that might arise from the discreteness of
the library, additional rotamers were created with y1 and 2 angle values
increased or decreased by one standard deviation about the mean value from
the Ponder and Richards library. Optimizing the sequence of the core of GB1
with 217 possible hydrophobic rotamers considered at all 11 positions results
in 21711, or 5x1025, rotamer sequences. Our scoring function consisted of two
components: a van der Waals energy term and an atomic solvation term
favoring burial of hydrophobic surface area. The van der Waals radii of all
atoms in the simulation were scaled by a factor o (Eqn. 1) to change the
importance of packing effects. Radii were not scaled for the buried surface
area calculations. Global optimum sequences for various values of the radius
scaling factor oo were found using the Dead-End Elimination theorem (Table
1). Optimal sequences, and their corresponding proteins, are named by the
radius scale factor used in their design. For example, the sequence designed

with a radius scale factor of o = 0.90 is called o90.

0100 was designed with o = 1.0 and hence serves as a baseline for full
incorporation of steric effects. The a100 sequence is very similar to the core
sequence of GB1 (Table 1) even though no information about the naturally
occurring sequence was used in the side-chain selection algorithm. Variation

of oo from 0.90 to 1.05 caused little change in the optimal sequence,
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demonstrating the algorithm's robustness to minor parameter perturbations.
Further, the packing arrangements predicted with o = 0.90 - 1.05 closely match
GpB1 with average y angle differences of only 4° from the crystal structure.
The homology and conformational similarity to GB1 imply that, when
packing constraints are used, backbone conformation strongly determines a
single family of well packed core designs. Nevertheless, the constraints on
core packing were being modulated by a as demonstrated by Monte Carlo
searches for other low energy sequences. Several alternate sequences and
packing arrangements are in the 20 best sequences found by the Monte Carlo
procedure when o = 0.90. These alternate sequences score much worse when
o = 0.95, and when o = 1.0 or 1.05 only strictly conservative packing
geometries have low energies, with low energy sequences consisting entirely
of point mutations to smaller residues. Therefore, o = 1.05 and o = 0.90 define
the high and low ends, respectively, of a range where packing specificity

dominates sequence design.

Position 7 is exceptional because the crystal structure has a leucine at this
position with a nearly eclipsed 2 of 111°. This strained ¥ is unlikely to be an
artifact of the structure determination since it is present in two crystal forms
and a solution structure(21, 22). Our rotamer library does not contain any
eclipsed rotamers and no staggered leucine rotamers pack well at this
position. Instead, the side-chain selection algorithm chose valine or
isoleucine rotamers that conserved the %1 dihedral and are still able to pack
well. We expect the removal of the strained leucine rotamer to stabilize the

protein, a prediction that is tested in the experimental section of this work.

For o < 0.90, extensive changes in the optimal sequence occur (Table 1). The

role of packing is reduced enough to let the hydrophobic surface potential
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begin to dominate, thereby increasing the size of the residues selected for the
core. A significant change in the optimal sequence appears between o = 0.90
and 0.85 with both 085 and a80 containing three additional mutations
relative to ®90. Also, a85 and 80 have a 15% increase in total side-chain
volume relative to GB1. As o drops below 0.80 an additional 10% increase in
side-chain volume and numerous mutations occur, showing that packing
constraints have been overwhelmed by the drive to bury nonpolar surface.
Though the jumps in volume and shifts in packing arrangement appear to
occur suddenly for the optimal sequences, examination of the suboptimal low
energy sequences by Monte Carlo sampling demonstrates that the changes are
not abrupt. For example, the 085 optimal sequence is the 11th best sequence
when o = 0.90, and similarly, the 90 optimal sequence is the 9th best

sequence when o = 0.85.

For o > 1.05 atomic van der Waals repulsions are so severe that most amino
acids cannot find any allowed packing arrangements, which results in the
selection of alanine for many positions. This stringency is likely an artifact of
the large atomic radii and does not reflect increased packing specificity
accurately. Rather, oo = 1.05 is the upper limit for the usable range of van der

Waals scales within our modeling framework.
Experimental characterization of core designs

Variation of the van der Waals scale factor o results in four regimes of
packing specificity: regime 1 where 0.9 < o < 1.05 and packing constraints
dominate the sequence selection; regime 2 where 0.8 £ o < 0.9 and the
hydrophobic solvation potential begins to compete with packing forces;

regime 3 where o < 0.8 and hydrophobic solvation dominates the design; and,
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regime 4 where o > 1.05 and van der Waals repulsions appear to be too severe
to allow meaningful sequence selection. Sequences that are optimal designs
were selected from each of the regimes for synthesis and characterization.
They are 090 from regime 1, a85 from regime 2, 70 from regime 3 and 107
from regime 4. For each of these sequences, the calculated amino acid
identities of the eleven core positions are shown in Table 1; the remainder of
the protein sequence matches GB1. The stability and structural order of each
of the four sequences were assessed. The goal was to study the relation
between the degree of packing specificity used in the core design and the

extent of native-like character in the resulting proteins.

Far UV circular dichroism (CD) spectra of the selected proteins are shown in
Figure 2A. 090 and 085 have ellipticities and spectra very similar to GB1 (not
shown), suggesting that their secondary structure content is comparable to
that of GB1. Conversely, 70 has much weaker ellipticity and a perturbed
spectrum, implying a loss of secondary structure relative to GB1. «107 has a
spectrum characteristic of a random coil. Thermal melts monitored by CD are
shown in Figure 2B. «85 and a90 both have cooperative transitions with
melting temperatures (Ty's) of 83 °C and at least 92 °C, respectively (Table 2).
107 shows no thermal transition, behavior expected from a fully unfolded
polypeptide, and 70 has a broad, shallow transition, centered at ~40 °C,
characteristic of partially folded structures. An accurate Ty could not be
measured for 090 because the transition was still incomplete at 99 °C.
Relative to GB1, which has a Ty, of 87 °C (23), a85 is slightly less thermostable
and o90 is more stable. Chemical denaturation measurements of the free
energy of unfolding (AGy) at 25 °C match the trend in Tpy,'s (Table 2). 090 has a
larger AGy than that reported for GB1(23) while a85 is slightly less stable. It
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was not possible to measure AGy, for 070 or 0107 because they lack discernible

transitions.

The extent of chemical shift dispersion in the proton NMR spectrum of each
protein was assessed to gauge each protein's degree of native-like character
(Figure 3). a90 possesses a highly dispersed spectrum, the hallmark of a well-
ordered native protein. 85 has diminished chemical shift dispersion and
peaks that are somewhat broadened relative to @90, suggesting a moderately
mobile structure that nevertheless maintains a distinct fold. «70's low
solubility limited NMR sample concentrations to ~100 uM and its NMR
spectrum has almost no dispersion. The broad peaks are indicative of a
collapsed but disordered and fluctuating structure. 0107 has a spectrum with

sharp lines and no dispersion, which is indicative of an unfolded protein.

Amide hydrogen exchange kinetics are consistent with the conclusions
reached from examination of the proton NMR spectra. Figure 4 shows the
average number of unexchanged amide protons as a function of time for each
of the designed proteins (see Methods). a90 protects ~13 protons for over 20
hours of exchange at pH 5.5 and 25 °C. The a90 exchange curve is
indistinguishable from GP1's (not shown). 085 also maintains a well-
protected set of amide protons, a distinctive feature of ordered native-like
proteins. The number of protected protons, however, is only about half that
of @90. The difference is likely due to higher flexibility in some parts of the
a85 structure. In contrast, 70 and 0107 were fully exchanged within the
three minute dead time of the experiment, indicating highly dynamic

structures.



55

In addition to NMR experiments, near UV CD spectra and the extent of 8-
anilino-1-naphthalene sulfonic acid (ANS) binding were used to assess the
structural ordering of the proteins. Figure 5 shows that the near UV CD
spectra of 085 and a90 have the strong peaks expected for proteins with
aromatic residues fixed in a unique tertiary structure. ®70 and o107 have the
featureless spectra indicative of proteins with highly mobile aromatic
residues, such as non-native collapsed states or unfolded proteins. @70 also
binds ANS well, as indicated by a three-fold intensity increase and blue shift
of the ANS emission spectrum (Figure 6). This strong binding suggests that
a70 possesses a cluster of hydrophobic residues accessible to ANS, possibly
due to loose packing or partial exposure of the core to solvent. ANS binds
a85 weakly, with only a 25% increase in emission intensity, similar to the
association seen for some native proteins(27). ®90 and 0107 cause no change
in ANS fluorescence. Finally, size exclusion chromatography was used to
assure that the proteins were not forming aggregates. All of the designed
proteins elute at the expected time for a 6 kDa protein confirming their

monomeric states.

In summary, by integrating the data from a variety of different techniques, we
assessed the stability and structural ordering of the optimal sequence designs
from the four packing specificity regimes. a90 is a well-packed native-like
protein by all criteria, and it is more stable than the naturally occurring GB1
sequence, possibly because of reduced torsional strain at position 7 and
increased hydrophobic surface burial. «85 is also a stable, ordered protein,
albeit with greater motional flexibility than 90, as evidenced by its NMR
spectrum and hydrogen exchange behavior. 70 has all the features of a

disordered collapsed globule: a non-cooperative thermal transition, no NMR
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spectral dispersion or amide proton protection, reduced secondary structure
content and strong ANS binding. ®107 is a completely unfolded chain, likely
due to its lack of large hydrophobic residues to hold the core together. The

clear trend is a loss of protein ordering as o decreases below 0.90.
Design feedback and scoring function improvement

The effectiveness of the different packing regimes for protein design can be
evaluated in light of the experimental data. In regime 1, with 0.9 < o € 1.05,
the design is dominated by packing specificity resulting in well-ordered
proteins as evidenced by a90. In regime 2, with 0.8 < o < 0.9, packing forces
are weakened enough to let the hydrophobic force drive larger residues into
the core which produces a stable well-packed protein with somewhat
increased structural motion. In regime 3, o < 0.8, packing forces are reduced
to such an extent that the hydrophobic force dominates, resulting in a
fluctuating, partially folded structure with no stable core packing. In regime 4,
o > 1.05, the steric forces used to implement packing specificity are scaled too
high to allow reasonable sequence selection and hence produce an unfolded
protein. These results indicate that effective protein design requires a
consideration of packing effects. Within the context of a protein design
algorithm, we have quantitatively defined the range of packing forces
necessary for successful designs. Also, we have demonstrated that reduced
specificity can be used to design protein cores with alternative packings,
presumably by relaxing the dependence of sequence selection on the fixed

backbone and discrete rotamers used in the simulation.

To take advantage of the benefits of reduced packing constraints, protein cores

should be designed with the smallest o that still results in structurally
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ordered proteins. The optimal protein sequence from regime 2, a85, is stable
and well packed, suggesting 0.8 < o < 0.9 as a good range. NMR spectra and
hydrogen exchange kinetics, however, clearly show that a85 is not as
structurally ordered as 90. The packing arrangements predicted by our
algorithm for W43 in 085 and a90 present a possible explanation (Figure 7).
For 090, W43 is predicted to pack in the core with the same conformation as
in the crystal structure of GB1. In a85, the larger side chains at positions 34
and 54, leucine and phenylalanine respectively, compared to alanine and
valine in 90, force W43 to expose 91 A2 of nonpolar surface compared to 19
A2 in 090. The hydrophobic driving force this exposure represents seems
Vlikely to stabilize alternate conformations that bury W43 and thereby could
contribute to a85’s conformational flexibility. In contrast to the other core
positions, a residue at position 43 can be mostly exposed or mostly buried
depending on its side-chain conformation. We designate positions with this
characteristic as boundary positions, which pose a difficult problem for
protein design because of their potential to either strongly interact with the

protein's core or with solvent.

A scoring function that peﬁalizes the exposure of hydrophobic surface area
might assist in the design of boundary residues. Dill and coworkers used an
exposure penalty to improve protein designs in a theoretical study(11). A
nonpolar exposure penalty would favor packing arrangements that either
bury large side chains in the core or replace the exposed amino acid with a
smaller or more polar one. We implemented a side-chain nonpolar exposure
penalty in our optimization framework and used a penalizing solvation

parameter with the same magnitude as the hydrophobic burial parameter.
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The results of adding a hydrophobic surface exposure penalty to our scoring
function are shown in Tables 3 A-D. When o = 0.90, the optimal sequence
does not change and the next 14 best sequences, found by Monte Carlo
sampling, change very little, except to penalize those that expose W43,
namely the 11th, 12th 14th and 15th ranked sequences (Table 3 A and B). This
minor effect is not surprising, since steric forces still dominate for o = 0.90 and
most of these sequences expose very little surface area. In contrast, when o =
0.85 the nonpolar exposure penalty dramatically alters the ordering of low
energy sequences (Table 3 C and D). The a85 sequence, the former ground
state, drops to 7th and the rest of the 15 best sequences expose far less
hydrophobic area because they bury W43 in a conformation similar to a90
(Figure 7). The exceptions are the 8th and 14th best sequences, which reduce
the size of the exposed boundary residue by replacing W43 with an isoleucine,
and the 13th best sequence which replaces W43 with a valine. The new
ground state sequence is very similar to 90, with a single valine to isoleucine
mutation, and should share a90’s stability and structural order. Burying W43
restricts sequence selection in the core somewhat, but the reduced packing
forces for oo = 0.85 still produce more sequence variety than o = 0.90 (Table 3 B
and D). The exposure penalty complements the use of reduced packing
specificity by limiting the gross overpacking and solvent exposure that occurs
when the core’s boundary is disrupted. Adding this constraint should allow
lower packing forces to be used in protein design, resulting in a broader range
of high-scoring sequences and reduced bias from fixed backbone and discrete
rotamers. Both of these benefits are critical for the success of de novo design
algorithms because they ease the requirement for accurate backbone

specification and provide a greater variety of candidate sequences.
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To examine the effect of substituting a smaller residue at a boundary position,
we selected the 13th best sequence of the o = 0.85 optimization with exposure
penalty (Table 3 D) for synthesis and characterization. This sequence,
0.85W43V, replaces W43 with a valine but is otherwise identical to a85.
Though the 8th and 14th sequences also have a smaller side chain at position
43, additional changes in their sequences relative to a85 would complicate
interpretation of the effect of the boundary position change. Also, a85W43V
has a significantly different packing arrangement compared to GB1, with 7 out
of 11 positions altered, but only an 8% increase in side-chain volume. Hence,
0.85W43V is a test of the tolerance of this fold to a different, but nearly
volume conserving, core. The far UV CD spectrum of a85W43V is very
similar to that of GB1 with an ellipticity at 218 nm of -14000 deg cm2/dmol.
While the secondary structure content of a85W43V is native-like, its Ty is 65
°C, nearly 20 °C lower than a85. In contrast to 0a85W43V's decreased stability,
its NMR spectrum has greater chemical shift dispersion than a85 (Figure 3).
The amide hydrogen exchange kinetics show a well protected set of about four
protons after 20 hours (Figure 4). This faster exchange relative to a85 is
explained by a85W43V's significantly lower stability(28). o85W43V appears
to have improved structural specificity at the expense of stability, a
phenomenon observed previously in coiled coils(29). By using an exposure
penalty, the design algorithm produced a protein with greater native-like

character.
Conclusion

We have quantitatively defined the role of packing specificity in protein
design and have provided practical bounds for the role of steric forces in our

protein design algorithm. This study differs from previous work because of
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the use of an objective, quantitative algorithm to vary packing forces during
design. Further, by using the minimum effective level of steric forces, we
were able to design a wider variety of packing arrangements that were
compatible with the GB1 fold. This broader sampling of sequences reflects a
reduction in the bias arising from the fixed backbone and discrete rotamers
used in our side-chain selection algorithm. Finally, we have identified a
difficulty in the design of side chains that lie at the boundary between the core
and the surface of GB1, and we have implemented a nonpolar surface
exposure penalty in our sequence design scoring function that addresses this

problem.
Methods

Sequence optimization: DEE and Monte Carlo. The protein structure was
modeled on the backbone coordinates of GB1, PDB record 1pga(22, 30). Atoms
of all side chains not optimized were left in their crystallographically
determined positions. The program BIOGRAF (Molecular Simulations
Incorporated, San Diego, CA) was used to generate explicit hydrogens on the
structure which was then conjugate gradient minimized for 50 steps using the
Dreiding forcefield(31). The rotamer library, DEE optimization and Monte
Carlo search followed the methods of our previous work(9). A Lennard-Jones
12-6 potential was used for van der Waals interactions, with atomic radii
scaled for the various cases as discussed in the text. The Richards definition
of solvent-accessible surface area(32) was used and areas were calculated with
the Connolly algorithm(33). An atomic solvation parameter, derived from
our previous work, of 23 cal/mol/A2 was used to favor hydrophobic burial
and to penalize solvent exposure. To calculate side-chain nonpolar exposure

in our optimization framework, we first consider the total hydrophobic area
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exposed by a rotamer in isolation. This exposure is decreased by the area
buried in rotamer/template contacts, and the sum of the areas buried in
rotamer/rotamer contacts, quantities that are calculated as pairwise
interactions between rotamers as is required for DEE. The remaining exposed
area is then converted to a penalty energy using a solvation parameter with

the same magnitude as for hydrophobic burial but with opposite sign.

Peptide synthesis and purification. With the exception of the eleven core
positions designed by the sequence selection algorithm, the sequences
synthesized match Protein Data Bank entry 1pga. Peptides were synthesized
on an Applied Biosystems 433A automated peptide synthesizer using Fmoc
chemistry, HBTU activation and pre-derivatized HMP resin. Modified 0.25
mmol coupling cycles were used with extended reaction and deprotection
times. Peptides were cleaved by treating approximately 200 mg of resin with 2
mL of trifluoroacetic acid (TFA) and 100 pl water, 100 pl thioanisole, 50 pl
ethanedithiol and 150 mg phenol as scavengers. The peptides were isolated
by precipitation into cold methyl t-butyl ether and purified by reverse-phase
HPLC on a Vydac C8 column (25 cm x 22 mm) with a linear acetonitrile-water
gradient containing 0.1% TFA. Peptides were then lyophilized and stored at
-20 °C. Matrix assisted laser desorption mass spectrometry found all

molecular weights to be within one unit of the expected masses.

CD and fluorescence spectroscopy and size exclusion chromatography. The
solution conditions for all experiments were 50 mM sodium phosphate buffer
at pH 5.5 and 25 °C unless otherwise noted. Circular dichroism spectra were
acquired on an Aviv 62DS spectrometer. A 1 mm pathlength cell was used
and the temperature was controlled by a thermoelectric unit. Peptide

concentration was approximately 20 uM and spectra were baseline corrected
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with a buffer blank. Thermal melts were monitored at 218 nm using 2°
increments with an averaging time of 10 s and an equilibration time of 120 s.
Tm's were defined as the maxima of the derivative of the melting curve.
Reversibility for each of the proteins was confirmed by comparing room
temperature CD spectra from before and after heating. Guanidinium chloride
denaturation measurements followed published methods(34). Samples were
equilibrated for at least four hours and the signal was monitored at 218 nm
with an averaging time of 60 s. Protein concentrations were determined by

UV spectrophotometry.

Fluorescence experiments were performed on a Hitachi F-4500 in a 1 ¢m
pathlength cell. Both peptide and ANS concentrations were 50 uM. The
excitation wavelength was 370 nm and emission was monitored from 400 to
600 nm at a resolution of 0.2 nm. Spectra were baseline corrected with blank

buffer samples.

Size exclusion chromatography was performed with a PolyLC hydroxyethyl A
column (20 cm x 9 mm) at pH 5.5 in 50 mM sodium phosphate at 0 °C.
Ribonuclease A, carbonic anhydrase and GB1 were used as molecular weight
standards. 10 ul injections of 1 mM peptide were made, except 070 for which
100 pl injections of 100 uM solution were made. The flowrate was 0.2
ml/min. Peptide concentrations during the separation were approximately 15

UM as estimated from peak heights monitored at 275 nm.

Nuclear magnetic resonance spectroscopy. NMR samples were prepared in
90/10 HoO/D20 and 50 mM sodium phosphate buffer at pH 5.5. Spectra were
acquired on a Varian Unityplus 600 MHz spectrometer at 25 °C. 32 transients

were acquired with 1.5 seconds of solvent presaturation used for water
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suppression. Samples were approximately 1 mM, except for a70 which had
limited solubility of about 100 pM. For hydrogen exchange studies, an NMR
sample was prepared, the pH was adjusted to 5.5 and a spectrum was acquired
to serve as an unexchanged reference. This sample was lyophilized,
reconstituted in D20 and repetitive acquisition of spectra was begun
immediately at a rate of 75 s per spectrum. Data acquisition continued for
approximately 20 hours, then the sample was heated to 99 °C for three
minutes to fully exchange all protons. After cooling to 25 °C, a final spectrum
was acquired to serve as the fully exchanged reference. All spectra were
processed with identical phase and baseline slope corrections and integrated.
The areas of all exchangeable amide peaks were normalized by a set of non-
exchanging aliphatic peaks, and the fraction of total amide exchange was
calculated using the unexchanged and fully exchanged reference spectra. pH
values, uncorrected for isotope effects, were measured for all the samples after
data acquisition and the time axis was normalized to correct for minor

differences in pH(35).
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Table 1

GB1 sequence
o vol TYR LEU LEU ALA ALA PHE ALA VAL TRP PHE VAL
3 5 7 20 26 30 34 39 43 52 54

0.60 1.40 TRP TRP PHE ILE PHE TRP ILE LEU PHE TRP TYR
0.70 1.28 TRP TYR ILE ILE PHE TRP LEU ILE PHE LEU ILE

0.75 1.23 PHE ILE PHE ILE VAL TRP VAL LEU I ! ILE
0.80 1.13 PHE ! ILE I I I ILE ILE I TRP ILE
0.85 1.15 PHE ! ILE | | | LEU ILE I TRP PHE
090 1.01 PHE ! ILE | | I [ ILE I I |
095 1.01 PHE I ILE I I I l ILE ! ! !
1.0 0.99 PHE I VAL I I | | ILE I l !
1.05 0.93 PHE | ALA I | | I [ [ ! I
1.075 0.83 ALA ALA ILE | I ILE [ I | ILE ILE
1.10 0.77 ALA ! ALA I ! ALA ! | I ILE ILE
1.15 0.68 ALA ALA ALA I I ALA I | ! LEU !
1.25 0.64 ALA ALA ALA ! I ALA I I I LEU ALA

DEE was used to determine optimal sequences for the core positions of GB1 as
a function of van der Waals radius scale factor o. The GP1 sequence and
position numbers are shown at the top. Vol is the fraction of core side-chain
volume relative to the GB1 sequence. A vertical bar indicates identity with
the GB1 sequence. Both a van der Waals potential and a hydrophobic
solvation potential (23 cal/mol/A2 favoring burial) were used to score

sequences(9).
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Table 2
Tm AGy m Cm [6]o18 Protected
(kcal/  (kcal/ (deg cm2 protons
(°C) mol) mol/M) M) /dmol)
90 >92 7.2 1.7 4.2 -15500 13
85 83 -6.1 1.6 3.8 -13700 6
70 40 - - - -6800 0
o107 - - - - -3000 0

Stability of designed proteins. Ty, is the melting temperature

measured by circular dichroism. AGy is the unfolding free

energy determined using guanidinium chloride as the

denaturant, m is the free energy dependence on denaturant

concentration and Cp, is the denaturation midpoint. [6]21g is

the ellipticity at 218 nm. Protected protons are the number of

unexchanged protons after 20 hours of hydrogen deuterium

exchange at pH 5.5 and 25 °C.
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Table3 A
a=0.90
Rank App TYR LEU LEU ALA ALA PHE ALA VAL TRP PHE VAL
3 5 7 20 26 30 34 39 43 52 54
1 30 PHE | ILE | | | | ILE | | |
2 30 | | ILE | | | | ILE | | |
3 30 PHE I ILE | | | | ILE | TYR |
4 38 PHE | ILE | | | | ILE |  TRP |
5 30 | I ILE | l | | ILE | TYR |
6 38 | | ILE I | | | ILE | TRP |
7 30 PHE | VAL | | | | ILE | | |
8 30 l | VAL | l I | ILE l [ |
9 29 PHE | ILE | | | 1 | | I |
10 29 1 | ILE | | | | | | | 1
11 109 PHE | ILE | | | LEU ILE | TRP PHE
12 104 PHE I ILE | | | LEU ILE I | PHE
13 30 PHE | VAL | | | | ILE I TYR |
14 109 | | ILE | | | LEU ILE |  TRP PHE
15 104 | | ILE | | | LEU ILE l |  PHE

The 15 best sequences for the core positions of GB1 using o = 0.90 without an
exposure penalty. App is the amount of exposed hydrophobic surface area of
the core residues. The naturally occurring GB1 sequence is shown at the top
of each table with residue numbers. DEE was used to find the optimum and

a Monte Carlo search to find the other sequences.
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Table 3 B

o =0.90 exposure penalty

Rank Anp TYR LEU LEU ALA ALA PHE ALA VAL TRP PHE VAL
3 5 7 20 26 30 34 39 43 52 54

1 30 PHE I ILE I | I I ILE I I !
2 30 I I ILE I I I I ILE I ! |
3 30 PHE I ILE I I I I ILE ! TYR I
4 30 ! I ILE I I I I ILE ! TYR !
5 30 PHE I VAL I I I I ILE I f !
6 38 PHE I ILE I | I I ILE ! TRP !
7 30 I [ VAL I I I I ILE ! I I
8 29 PHE [ ILE I | I I I I I I
9 38 | I ILE I I I | ILE I TRP I
10 29 | I ILE ! I ! ! I | I I
11 29 | I ILE ! I I | I I I I
12 30 PHE I VAL | I | ! ILE | TYR |
13 30 | I VAL | I ! I ILE I TYR I
14 29 PHE I ILE I I | | I I TYR I
15 104 PHE | ILE | [ I LEU ILE PHE

The 15 best sequences for the core positions of GB1 using o = 0.90 with an

exposure penalty.
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Table 3 C
o=0.85

Rank Anp TYR LEU LEU ALA ALA PHE ALA VAL TRP PHE VAL
3 5 7 20 26 30 34 39 43 52 54
1 109 PHE | ILE I I | LEU ILE | TRP PHE
2 109 | | ILE ! I | LEU ILE | TRP PHE
3 104 PHE | ILE I | | LEU ILE | |  PHE
4 104 ! I ILE | | | LEU ILE I | PHE
5 108 PHE | ILE | | | LEU | | TRP PHE
6 62 PHE | ILE | | | LEU ILE VAL TRP PHE
7 103 PHE | ILE | | | LEU ILE | TYR PHE
8 109 PHE | VAL | | | LEU ILE | TRP PHE
9 30 PHE | ILE | | i | ILE | | l
10 38 PHE I ILE | | | | ILE | TRP I
11 108 ! | ILE | | | LEU | | TRP PHE
12 62 I 1 ILE | | | LEU ILE VAL TRP PHE
13 109 PHE | ILE | | TYR LEU ILE |  TRP PHE
14 103 | 1 ILE ! | | LEU ILE | TYR PHE
15 109 | | VAL | | | LEU ILE | TRP PHE

The 15 best sequences for the core positions of GB1 using o = 0.85 without an

exposure penalty.
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Table3 D

o = 0.85 exposure penalty

Rank Anp TYR LEU LEU ALA ALA PHE ALA VAL TRP PHE VAL
3 5 7 20 26 30 34 39 43 52 54

1 30 PHE I ILE | ! I I ILE I ! ILE

2 29 PHE I ILE I ! I ILE ILE | ! !

3 29 PHE |ILE PHE | I I [ ILE I ! !

4 30 I I ILE J ! I ! ILE | ! ILE

5 29 | I ILE | I I ILE ILE | | !

6 29 | ILE PHE I I ! ! ILE ! I |

7 109 PHE I ILE I I ! LEU ILE | TRP PHE

8 52 PHE I ILE I [ I LEU ILE ILE I PHE

9 29 ! | ILE | | ! | ILE | | |
10 29 PHE I ILE | [ | I ILE | | I
11 109 I | ILE | | | LEU ILE | TRP PHE
12 38 PHE | ILE | | I I ILE I TRP ILE
13 62 PHE I ILE I I I LEU ILE VAL TRP PHE
14 52 I I ILE | | I LEU ILE ILE I PHE
15 30 PHE [ ILE ! I | ! ILE ! TYR ILE

The 15 best sequences for the core positions of GB1 using o = 0.85 with an

exposure penalty.
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Figure 3-1. Ribbon diagram of GB1 (PDB code 1pga) showing the side chains
of the 11 core positions used in this study. Carbon atoms are gray, oxygen
atoms are red and nitrogen atoms are blue. The core positions (residues 3,
5,7,20, 26,30, 34, 39, 43, 52 and 54) bury greater than 90% of their side-
chain surface area in the GB1 structure. Y3, A26 and F30 are obscured by

the helix. Figures were produced with MOLMOL(36).
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Figure 3-2. Secondary structure and thermal stability of 90, a85, 70 and
al07. A) Far UV CD spectra. 090 and a85 have large ellipticities
indicative of high secondary structure content. 70 displays much less
secondary structure and o107 has the spectrum of a random coil. B)
Thermal denaturation monitored by CD. «a90 and a85 have sharp
transitions at > 92° and 83° C, respectively, indicative of cooperative
unfolding, while 070 had a broad transition centered ~40° C and «107 had

no detectable unfolding transition.
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Figure 3-3. Proton NMR spectra of 090, a85, 070, 107 and a:85W43V. The
decrease in dispersion from a90 to 85 to 070 reflects a graded decrease in
protein structural order, from the highly ordered a90 structure to the
fluctuating, mobile @70 structure. 107 appears unfolded. o85W43V has
narrower lines and greater dispersion than 85, indicating that the single
W to V mutation reduced conformational flexibility relative to «85. The

sharp peaks at 8.45 and 0.15 ppm in the a70 spectrum are impurities.
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Figure 3-4. Amide hydrogen-deuterium exchange kinetics of 090, a85, 070,
@107 and o85W43V. Total area of exchangeable peaks, expressed as
number of protons, as a function of exchange time at 25 °C and pH 5.5.
Exchange times were corrected for slight pH differences between the
samples. Areas were normalized to non-exchanging peak areas and fully
exchanged and non-exchanged spectra were used as references for 0 and 55
protons, respectively. «90, a85 and a85W43V protect ~13, ~6 and ~5
protons, respectively, for at least 20 hours. 070 and a107 are fully

exchanged in the 3 minute deadtime of the experiment.
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Figure 3-5. Near UV CD spectra of 090, a85, a70 and a107. Strong peaks in
the spectra of 090 and @85 indicate distinct tertiary environments for their
aromatic residues, while the featureless spectra of a70 and al07 are

consistent with highly mobile aromatic residues in fluctuating structures.
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Figure 3-6.  ANS flourescence alone and in the presence of ®90, 085, a70 and
a107. The lack of fluorescence enhancement for ®90 and o107 indicate no
ANS binding, and the moderate increase in fluorescence for o85 is
consistent with weak interaction. The three-fold enhancement for a70,
however, indicates strong binding and is consistent with a hydrophobic

cluster accessible to ANS, such as in a collapsed globule.
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Figure 3-7. Core packing arrangements predicted by DEE for a90 (top) and
o85 (bottom). For clarity only side chains for residues 34, 39, 43, 52 and 54
are shown. In 90, W43 has a conformation that results in over 90%
burial of its surface area. In a85, W43 is only 46% buried and is rotated
into solvent to avoid steric clashes with L34 and F52, which occupy a
much larger volume than A34 and V52 in 90. The reduced packing
forces used to design a85 allow larger residues into the core which disrupt

the packing at the core's boundary.
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Chapter 4

Automated Design of the Surface Positions of
Protein Helices

The text of this chapter is adapted from a published manuscript that was
coauthored with Professor Stephen L. Mayo and D. Benjamin Gordon.
B. L. Dahiyat, D. B. Gordon, and S. L. Mayo, Protein Sci., 6, 1333 (1997).

Abstract

Using a protein design algorithm that quantitatively considers side-chain
interactions, the design of surface residues of o helices was examined. Three
scoring functions were tested: a hydrogen-bond potential, a hydrogen-bond
potential in conjunction with a penalty for uncompensated burial of polar
hydrogens, and a hydrogen-bond potential in combination with helix
propensity. The solvent exposed residues of a homodimeric coiled coil based
on GCN4-pl were designed by using the Dead-End Elimination Theorem to
find the optimal amino acid sequence for each scoring function. The
corresponding peptides were synthesized and characterized by circular
dichroism spectroscopy and size exclusion chromatography. The designed
peptides were dimeric and nearly 100% helical at 1 °C, with melting
temperatures from 69-72 °C, over 12 °C higher than GCN4-p1, while a
random hydrophilic sequence at the surface positions produced a peptide that
melted at 15 °C. Analysis of the designed sequences suggests that helix

propensity is the key factor in sequence design for surface helical positions.
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Several groups have proposed and tested systematic, quantitative methods for
protein design that screen possible sequences for compatibility with the
desired protein fold (1, 2, 3, 4, 5, 6, 7, 8). These algorithms consider the spatial
positioning and steric complementarity of side chains by explicitly modeling
the atoms of sequences under consideration. To date, such techniques have
typically focused on designing the cores of proteins and have scored sequences
with van der Waals and sometimes hydrophobic solvation potentials. We
seek to extend this sequence selection approach to the design of the solvent
exposed residues of proteins as part of an effort to develop a complete de
novo design algorithm. In this study, we consider the design of the surface

positions of o helices.

Although mutagenesis studies suggest that surface positions are more
tolerant of substitutions than core positions (9, 10), surface residues can still
have a significant effect on protein structure and stability. To assess the
importance of surface residue selection for protein design, we used several
scoring functions to compute sequences for the surface positions of our model
helical protein, the coiled coil GCN4-p1 (11). By experimentally characterizing
the resulting proteins, the performance of each scoring function was assessed
and the effect of surface sequence changes on the protein's stability was

determined.

GCN4-pl, a homodimeric coiled coil, was selected as the model system
because it can be readily synthesized by solid phase techniques and its helical
secondary structure and dimeric tertiary organization ease characterization.
The sequences of homodimeric coiled coils display a seven residue periodic
hydrophobic and polar pattern called a heptad repeat (a-b-c:d-e-f-g) (12). The a
and d positions are buried at the dimer interface and are usually hydrophobic,

whereas the b, ¢, e, f, and g positions are solvent exposed and usually polar
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(Figure 1). Examination of the crystal structure of GCN4-p1 (11) shows that
the b, ¢, and f side chains extend into solvent and expose at least 55% of their
surface area. In contrast, the e and g residues bury from 50 to 90% of their
surface area by packing against the a and d residues of the opposing helix. We
selected the 12 b, ¢, and f residue positions for surface sequence design:
positions 3, 4, 7, 10, 11, 14, 17, 18, 21, 24, 25, and 28 using the numbering from
PDB entry 2zta (13). The remainder of the protein structure, including all
other side chains and the backbone, was used as the template for sequence
selection calculations. The symmetry of the dimer and lack of interactions of
surface residues between the subunits allowed independent design of each
subunit, thereby significantly reducing the size of the sequence optimization

problem.

All possible sequences of hydrophilic amino acids (D, E, N, Q, K, R, S, T,
A, and H) for the 12 surface positions were screened by our design algorithm.
The torsional flexibility of the amino acid side chains was accounted for by
considering a discrete set of all allowed conformers of each side chain, called
rotamers (14, 15). Optimizing the 12 b, ¢, and f positions each with 10 possible
amino acids results in 1012 possible sequences which corresponds to ~1028
rotamer sequences when using the Dunbrack and Karplus backbone-
dependent rotamer library. The immense search problem presented by
rotamer sequence optimization is overcome by application of the Dead-End
Elimination (DEE) theorem (16, 17, 18). Our implementation of the DEE
theorem extends its utility to sequence design and rapidly finds the globally

optimal sequence in its optimal conformation.

We examined three potential-energy functions for their effectiveness
in scoring surface sequences. Each candidate scoring function was used to

design the b, ¢, and f positions of the model coiled coil and the resulting
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peptide was synthesized and characterized to assess design performance. A
hydrogen-bond potential was used to check if predicted hydrogen bonds can
contribute to designed protein stability, as expected from studies of hydrogen
bonding in proteins and peptides (19, 20). Optimizing sequences for hydrogen
bonding, however, often buries polar protons that are not involved in
hydrogen bonds. This uncompensated loss of potential hydrogen-bond
donors to water prompted examination of a second scoring scheme consisting
of a hydrogen-bond potential in conjunction with a penalty for burial of polar
protons (21). We tested a third scoring scheme which augments the hydrogen
bond potential with the empirically derived helix propensities of Baldwin
and coworkers (22). Although the physical basis of helix propensities is
unclear, they can have a significant effect on protein stability and can
potentially be used to improve protein designs (23, 24, 25, 26, 27). A van der
Waals potential was used in all cases to account for packing interactions and

excluded volume.

Several other sequences for the b, c and f positions were also
synthesized and characterized to help discern the relative importance of the
hydrogen-bonding and helix-propensity potentials. The sequence designed
with the hydrogen-bond potential was randomly scrambled, thereby
disrupting the designed interactions but not changing the helix propensity of
the sequence. Also, the sequence with the maximum possible helix
propensity, all positions set to alanine, was made. Finally, to serve as
undesigned controls, the naturally occurring GCN4-pl sequence and a
sequence randomly selected from the hydrophilic amino acid set were

synthesized and studied.

Results
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The surface sequences of all of the peptides examined in this study are shown
in Table 1. Sequence 6A, designed with a hydrogen-bond potential, has a
preponderance of Arg and Glu residues that are predicted to form numerous
hydrogen bonds to each other. These long chain amino acids are favored
because they can extend across turns of the helix to interact with each other
and with the backbone. When the optimal geometry of the scrambled 6A
sequence, 6D, was found with DEE, far fewer hydrogen bonding interactions
were present and its score was much worse than 6A's. 6B, designed with a
polar hydrogen burial penalty in addition to a hydrogen-bond potential, is
still dominated by long residues such as Lys, Glu and Gln but has fewer Arg.
Because Arg has more polar hydrogens than the other amino acids, it more
often buries nonhydrogen-bonded protons and therefore is disfavored when
using this potential function. 6C was designed with a hydrogen-bond
potential and helix propensity in the scoring function and consists entirely of
Ala and Arg residues, the amino acids with the highest helix propensities
(22). The Arg residues form hydrogen bonds with Glu residues at nearby e
and g positions. The random hydrophilic sequence, 6E, possesses no
hydrogen bonds and scores very poorly with all of the potential functions

used. The scrambled GCN4-p1 sequence, 6G, exposes a tyrosine residue.

The secondary structures and thermal stabilities of the peptides were
assessed by circular dichroism (CD) spectroscopy. The CD spectra of the
peptides at 1 °C and 40 uM are characteristic of o helices, with minima at 208
and 222 nm, except for the random surface sequence peptides 6E and 6G (Fig.
2A). 6E and 6G have spectra suggestive of a mixture of o helix and random
coil with [6]222 of -12000 deg cm2/dmol and -14000 deg cm?/dmol respectively,
while all the other peptides are greater than 90% helical with [08]222 of less

than -30000 deg cm?/dmol. The melting temperatures (Tm's) of the designed
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peptides are 12-16 °C higher than the Tr, of GCN4-p1, except for 6E which has
a Ty of 15 °C and 6G which has a Ty, of 22 °C (Fig. 2B). CD spectra taken before
and after melts were identical indicating reversible thermal denaturation.
The redesign of surface positions of this coiled coil produces structures that
are much more stable than wildtype GCN4-p1, while a random hydrophilic
sequence largely disrupts the peptide's stability. A random sequence with
wildtype composition is also greatly destabilized, suggesting specific

interactions are present in the naturally occurring sequence.

Size exclusion chromatography (SEC) showed that all the peptides were
dimers except for 6F, the all Ala surface sequence, which migrated as a
tetramer. These data show that surface redesign did not change the tertiary
structure of these peptides, in contrast to some core redesigns (28). In
addition, nuclear magnetic resonance (NMR) spectra of the peptides at ~1 mM

showed chemical shift dispersion similar to GCN4-p1 (data not shown).

Discussion

Peptide 6A, designed with a hydrogen-bond potential, melts at 71 °C
versus 57 °C for GCN4-pl, demonstrating that rational design of surface
residues can produce structures that are markedly more stable than naturally
occurring coiled coils. This gain in stability is probably not due to improved
hydrogen bonding since 6D, which has the same surface amino acid
composition as 6A but a scrambled sequence and no predicted hydrogen
bonds, also melts at 71 °C. Further, 6B was designed with a different scoring
function and has a different sequence and set of predicted hydrogen bonds but

a very similar T, of 72 °C.

An alternative explanation for the increased stability of these sequences

relative to GCN4-p1 is their higher helix propensity. The long polar residues
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selected by the hydrogen bond potential, Lys, Glu, Arg and GlIn, are also
among the best helix formers (22). Since the effect of helix propensity is not as
dependent on sequence position as that of hydrogen bonding, especially far
from the helix ends, little effect would be expected from scrambling the
sequence of 6A. A rough measure of the helix propensity of the surface
sequences, the sum of the standard free energies of helix propagation (£AG°)
(22), corresponds to the pepﬁdes' thermal stabilities (Table 1). Though >AG°
matches the trend in peptide stability, it is not quantitatively correlated to the

increased stability of these coiled coils.

Peptide 6C was designed with helix propensity as part of the scoring
function and it has a XAG® of -2.041 kcal/mol. Though 6C is more stable than
GCN4-pl, its Ty of 69 °C is slightly lower than 6A and 6B, in spite of 6C's
higher helix propensity. Similarly, 6F has the highest helix propensity
possible with an all Ala sequence and a XAG® of -3.096 kcal/mol, but its Ty, of
73 °C is only marginally higher than that of 6A or 6B. 6F also migrates as a
tetramer during SEC, not a dimer, likely because its poly(Ala) surface exposes
a large hydrophobic patch that could mediate association. Though the results
for 6C and 6F support the conclusion that helix propensity is important for
surface design, they point out possible limitations in using propensity
exclusively. Increasing propensity does not necessarily confer the greatest
stability on a structure, perhaps because other factors are being effected
unfavorably. Also, as is evident from 6F, changes in the tertiary structure of
the protein can occur. The destabilization of peptide 6G relative to GCN4-p1
suggests that specific interactions, such as the hydrogen bond formed by Asp
7, play an important role in the stabilization of GCN4-pl. The similar
stabilities for 6D and 6A imply that no specific interactions are present in 6A

which suggests that multiple mechanisms can greatly effect helical stability.
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The characterization of these peptides clearly shows that surface
residues have a dramatic impact on the stability of a-helical coiled coils. The
wide range of stabilities displayed by the different surface designs is notable,
with greater than a 50 °C spread between the random hydrophilic sequence
(Tm 15 °C) and the designed sequences (T, 69 - 72 °C). This result is consistent
with studies on other proteins that demonstrated the importance of solvent
exposed residues (23, 24, 29, 30). Further, these designs have significantly
higher Tr's than the wildtype GCN4-p1 sequence, demonstrating that surface
residues can be used to improve stability in protein design (26). Though helix
propensity appears to be more important than hydrogen bonding in
stabilizing the designed coiled coils, hydrogen bonding could be important in

the design and stabilization of other types of secondary structure.

Methods and materials
Sequence design: Scoring functions and DEE

The protein structure was modeled on the backbone coordinates of GCN4-p1,
PDB record 2zta (11, 13). Atoms of all side chains not optimized were left in
their crystallographically determined positions. The program BIOGRAF
(Molecular Simulations Incorporated, San Diego, CA) was used to generate
explicit hydrogens on the structure which was then conjugate gradient
minimized for 50 steps using the DREIDING forcefield (31). The symmetry of
the dimer and lack of interactions of surface residues between the subunits
allowed independent design of each subunit. All computations were done
using the first monomer to appear in 2zta (chain A). A backbone-dependent
rotamer library was used (15). y3 angles that were undetermined from the
database statistics were assigned the following values: Arg, -60°, 60°, and 180°;

Gln, -120°, -60°, 0°, 60°, 120°, and 180°; Glu, 0°, 60°, and 120°; Lys, -60°, 60°, and



95

180°. x4 angles that were undetermined from the database statistics were
assigned the following values: Arg, -120°, -60°, 60°, 120°, and 180°; Lys, -60°,
60°, and 180°. Rotamers with combinations of y3 and 4 that resulted in
sequential g*/g" or g"/g* angles were eliminated. Uncharged His rotamers
were used. A Lennard-Jones 12-6 potential with van der Waals radii scaled by
0.9 (Dahiyat & Mayo, submitted) was used for van der Waals interactions.
The hydrogen bond potential consisted of a distance-dependent term and an

angle-dependent term:

b - 2 8 ) oo

where Rg (2.8 A) and Dy (8 kcal/mol) are the hydrogen-bond equilibrium
distance and well-depth, respectively, and R is the donor to acceptor distance.
This hydrogen bond potential is based on the potential used in DREIDING,
with more restrictive angle-dependent terms to limit the occurrence of
unfavorable hydrogen bond geometries. The angle term varies depending on

the hybridization state of the donor and acceptor:

2 2
sp3 donor - sp3 acceptor F = cos 6 cos ( $—109.5 ) ,
2 2
sp3 donor - sp? acceptor F = cos 6Ocos ¢,
4
sp? donor - sp3 acceptor F =cos 0,
2 2
sp? donor - sp? acceptor F = cos 6 cos ( max[ ¢, ] ) ,

where 6 is the donor-hydrogen-acceptor angle, ¢ is the hydrogen-acceptor-base
angle (the base is the atom attached to the acceptor, for example the carbonyl
carbon is the base for a carbonyl oxygen acceptor), and ¢ is the angle between

the normals of the planes defined by the six atoms attached to the sp? centers
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(the supplement of ¢ is used when ¢ is less than 90°). The hydrogen-bond
function is only evaluated when 2.6 A <R <32 A, 6> 90°, ¢ - 109.5° < 90° for
the sp3 donor - sp3 acceptor case, and ¢ > 90° for the sp3 donor - sp2 acceptor
case; no switching functions were used. Template donors and acceptors that
were involved in template-template hydrogen bonds were not included in
the donor and acceptor lists. For the purpose of exclusion, a template-
template hydrogen bond was considered to exist when 2.5 A <R<3.3 A and 6
2 135°. A penalty of 2 kcal/mol for polar hydrogen burial, when used, was
only applied to buried polar hydrogens not involved in hydrogen bonds,
where a hydrogen bond was considered to exist when Eyp was less than -2
kcal/mol. This penalty was not applied to template hydrogens. The
hydrogen-bond potential was also supplemented with a weak coulombic term
that included a distance-dependent dielectric constant of 40R, where R is the
interatomic distance. Partial atomic charages were only applied to polar
functional groups. A net formal charge of +1 was used for Arg and Lys and a
net formal charge of —1 was used for Asp and Glu. Energies associated with a-

helical propensities were calculated using the following equation:

Nss (AG:za _AG;la )
E =10 — 1,

04

where AG® is the standard free energy of helix propagation (22), and Ng; is the
propensity scale factor which was set to 3.0. This potential was selected in
order to scale the propensity energies to a similar range as the other terms in
the scoring function. The DEE optimization followed the methods of our
previous work (1). Calculations were performed on either a 12 processor,

R10000-based Silicon Graphics Power Challenge or a 512 node Intel Delta.

Peptide synthesis and purification
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Thirty-three residue peptides were synthesized on an Applied Biosystems
Model 433A peptide synthesizer using Fmoc chemistry, HBTU activation and
a modified Rink amide resin from Novabiochem. Standard 0.1 mmol
coupling cycles were used and amino termini were acetylated. Peptides were
cleaved from the resin by treating approximately 200 mg of resin with 2 mL
trifluoroacetic acid (TFA) and 100 pL water, 100 pL thioanisole, 50 pL
ethanedithiol and 150 mg phenol as scavengers. The peptides were isolated
and purified by precipitation and repeated washing with cold methyl tert-
butyl ether followed by reverse phase HPLC on a Vydac C8 column (25 cm by
22 mm) with a linear acetonitrile-water gradient containing 0.1% TFA.
Peptides were then lyophilized and stored at -20 °C until use. Matrix assisted
laser desorption mass spectrometry found all molecular weights to be within

one unit of the expected masses.
CD and NMR

CD spectra were measured on an Aviv 62DS spectrometer at pH 7.0 in 50 mM
phosphate, 150 mM NaCl and 40 uM peptide. A 1 mm pathlength cell was
used and the temperature was controlled by a thermoelectric unit. Thermal
melts were performed in the same buffer using two degree temperature
increments with an averaging time of 10 s and an equilibration time of 90 s.
Tm values were derived from the ellipticity at 222 nm ([6]222) by evaluating
the minimum of the d[8]222/dT-1 versus T plot (32). The Ty's were
reproducible to within one degree. Peptide concentrations were determined
by quantitative amino acid analysis. NMR samples were prepared in 90/10
H20/D20 and 50 mM sodium phosphate buffer at pH 7.0. Spectra were
acquired on a Varian Unityplus 600 MHz spectrometer at 25 °C. 32 transients
were acquired with 1.5 seconds of solvent presaturation used for water

suppression. Samples were ~1 mM.
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Size exclusion chromatography

Size exclusion chromatography was performed with a PolyLC hydroxyethyl A
column (20 cm x 9 mm) at pH 7.0 in 50 mM phosphate and 150 mM NaCl at 0
°C. GCN4-pl and p-LI (28) were used as size standards for dimer and tetramer,
respectively. 5 ul injections of ~1 mM peptide solution were
chromatographed at 0.50 ml/min and monitored at 214 nm. Samples were

run in triplicate.
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Table 1. Sequences and properties of synthesized peptides

Peptide Design method  Surface Sequence Tm 2AGe N
bcf bef bef bef (°C)  (kcal/mol)
GCN4-pl none KQD EES YHN ARK 57 3.831 2
6A HB EKD RER RRE RRE 71 2.193 2
6B HB + PB EKQ KER ERE ERQ 72 2.868 2
6C HB + HP ARA AAA RRR ARA 69 -2.041 2
6D scrambled HB REE RRR EDR KRE 71 2.193 2
6E random polar NTR AKS ANH NTQ 15 4.954 2
6F poly(Ala) AAA AAA AAA AAA 73 -3.096 4
6G random GCN4  ENQ AKE RSH KDY 22 3.831 -

For clarity only the designed surface residues are shown and they are grouped
by position (b, ¢, and f). The sequence numbers of the designed positions are:
3,4,7,10,11, 14, 17, 18, 21, 24, 25, and 28. Melting temperatures (Tny's) were
determined by circular dichroism and oligomerization states (N) were
determined by size exclusion chromatography. XAG® is the sum of the
standard free energy of helix propagation of the 12 b, ¢, and f positions (22).
Abbreviations for design methods are: hydrogen bonds (HB), polar hydrogen
burial penalty (PB), and helix propensity (HP).
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Figure 4-1. Helical wheel diagram of a dimeric coiled coil (12). One heptad
repeat is shown viewed down the major axes of the helices. The b, ¢, and £
positions define the solvent-exposed surface of the molecule, as determined

by accessible surface area calculations.
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Figure 4-2.  Typical CD data. A: Spectra of 6A, 6E and wildtype GCN4-p1. The
spectra of 6A and GCN4-pl are nearly identical and are consistent with 100%
o helix while the spectrum of 6E is a mixture of o helix and random coil. B:
Thermal melts of peptides 6A, 6E and GCN4-p1 monitored at 222 nm were
used to calculate Ty's from the minima of plots of d[6]/dT-! versus T (Table

1).
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Chapter 5

De novo Protein Design:
Fully Automated Sequence Selection

The text of this chapter is adapted from a published manuscript that was
coauthored with Professor Stephen L. Mayo.
B. I. Dahiyat and S. L. Mayo, Science, 278, 82 (1997).

Abstract

We report the first fully automated design and experimental validation of a
novel sequence for an entire protein. Using a computational design
algorithm based on physical chemical potential functions, we screened a
virtual combinatorial library of 1.9 x 1027 possible amino acid sequences for
compatibility with the design target, a ffa protein motif. A BLAST search
shows that the designed sequence, Full Sequence Design 1 (FSD-1), has very
low identity to any known protein sequence. The solution structure of FSD-1
was solved using nuclear magnetic resonance spectroscopy and indicates that
FSD-1 forms a compact, well ordered structure that is in excellent agreement

with the design target structure.
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De novo protein design has received considerable attention recently, and
significant advances have been made toward the goal of producing stable,
well-folded proteins with novel sequences (1). These efforts have generated
insight into the factors that control protein folding. In addition, the design of
proteins with novel structures and functions heralds new approaches to
biotechnology (2). In order to broaden the scope and power of protein design
techniques, several groups have developed and experimentally tested
systematic, quantitative methods for protein design with the goal of
developing general design algorithms (3, 4). To date, these techniques, which
screen possible sequences for compatibility with the desired protein fold, have
focused mostly on the redesign of protein cores.

We have sought to expand the range of computational protein design
by developing quantitative design methods for residues of all parts of a
protein: the buried core, the solvent exposed surface, and the boundary
between core and surface (4, 5, 6). Our goal is an objective, quantitative design
algorithm that is based on the physical properties that determine protein
structure and stability and which is not limited to specific folds or motifs.
Such a method should escape the lack of generality that has resulted from
design approaches based on system-specific heuristics and/or subjective
considerations. A critical component of the development of our methods has
been their experimental testing and validation. The use of a design cycle
coupling theory, computation, and experiment has improved our
understanding of the physical chemistry governing protein design and hence
enhanced the performance of the design algorithm (4). This work reports the
first successful automated design and experimental validation of a novel

sequence for an entire protein.
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Sequence selection. Our design methodology consists of an automated
side-chain selection algorithm that explicitly and quantitatively considers
specific side-chain to backbone and side-chain to side-chain interactions (4).
The side-chain selection algorithm screens all possible sequences and finds
the optimal sequence of amino acid types and side-chain orientations for a
given backbone. In order to correctly account for the torsional flexibility of
side chains and the geometric specificity of side-chain placement, we consider
a discrete set of all allowed conformers of each side chain, called rotamers (7).
The immense search problem presented by rotamer sequence optimization is
overcome by application of the Dead-End Elimination (DEE) theorem (8). Our
implementation of the DEE theorem extends its utility to sequence design and
rapidly finds the globally optimal sequence in its optimal conformation (4).

In previous work we determined the different contributions of core,
surface, and boundary residues to the scoring of a sequence arrangement. We
assessed the accuracy of a scoring function or combination of scoring
functions by experimentally testing their sequence predictions.
Improvements to the scoring function were derived from the experimental
data and incorporated into the design algorithm. The core of a coiled coil and
of the streptococcal protein G 1 (GB1) domain were successfully redesigned
using a van der Waals potential to account for steric constraints and an
atomic solvation potential favoring the burial and penalizing the exposure of
nonpolar surface area (4, 6). Effective solvation parameters and the
appropriate balance between packing and solvation terms were found by
systematic analysis of experimental data and feedback into the simulation.
Solvent exposed residues on the surface of a protein were designed using a
hydrogen-bond potential and secondary structure propensities in addition to a

van der Waals potential. Coiled coils designed with such a scoring function
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were 10-12 °C more thermally stable than the naturally occurring analogue
(5). Residues that form the boundary between the core and surface require a
combination of the core and the surface scoring functions. The algorithm
considers both hydrophobic and hydrophilic amino acids at boundary
positions, while core positions are restricted to hydrophobic amino acids and
surface positions are restricted to hydrophilic amino acids.

In order to assess the capability of our design algorithm, we have
computed the entire amino acid sequence for a small protein motif. We
sought a protein fold that would be small enough to be both computationally
and experimentally tractable, yet large enough to form an independently
folded structure in the absence of disulfide bonds or metal binding. We chose
the BPa motif typified by the zinc finger DNA binding module (9). Though it
consists of less than 30 residues, this motif contains sheet, helix, and turn
structures. Recent work has demonstrated the ability of this fold to form in
the absence of metal ions or disulfide bonds. Imperiali and coworkers
designed a 23 residue peptide, containing an unusual amino acid (D-proline)
and a non-natural amino acid (3-[1,10-phenanthrol-2-yl]-L-alanine), that
achieved this fold (10); our initial characterization of a partially computed
sequence indicated that it also forms this fold (11). In computing the full
sequence for this target fold, we use the scoring functions from our previous
work without modification in order to provide a test of the algorithm's
generality (12). The BBo motif was not used in any of our prior work to
develop the design methodology.

The sequence selection algorithm requires structure coordinates that
define the target motif's backbone (N, Ca, C and O atoms and Ca-Cp vectors).
The Brookhaven Protein Data Bank (PDB) (13) was examined for high

resolution structures of the BBa motif, and the second zinc finger module of
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the DNA binding protein Zif268 was selected as our design template (9, 14). In
order to assign the residue positions in the template structure into core,
surface or boundary classes, the orientation of the Co-CP vectors was assessed
relative to a solvent accessible surface computed using only the template Ca
atoms (15). The small size of this motif limits to one (position 5) the number
of residues that can be assigned unambiguously to the core while seven
residues (positions 3, 7, 12, 18, 21, 22, and 25) were classified as boundary and
the remaining 20 residues were assigned to the surface. Interestingly, while
three of the zinc binding positions of Zif268 are in the boundary or core, one
residue, position 8, has a Ca-CP vector directed away from the protein's
geometric center and is classified as a surface position. As in our previous
studies, the amino acids considered at the core positions during sequence
selection were A, V, L, I, F, Y, and W; the amino acids considered at the
surface positions were A, S, T, H, D, N, E, Q, K, and R; and the combined core
and surface amino acid sets (16 amino acids) were considered at the boundary
positions. Two of the residue positions (9 and 27) have ¢ angles greater than
0° and are set to Gly by the sequence selection algorithm to minimize
backbone strain.

The total number of amino acid sequences that must be considered by
the design algorithm is the product of the number of possible amino acid
types at each residue position. The BBa motif residue classification described
above results in a virtual combinatorial library of 1.9 x 1027 possible amino
acid sequences (16). A corresponding peptide library consisting of only a
single molecule for each 28 residue sequence would have a mass of 11.6
metric tons (17). In order to accurately model the geometric specificity of side-
chain placement, we explicitly consider the torsional flexibility of amino acid

side chains in our sequence scoring by representing each amino acid with a
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discrete set of allowed conformations, called rotamers (18). As a result, the
design algorithm must consider all rotamers for each possible amino acid at
each residue position. The total size of the search space for the BBa motif is
therefore 1.1 x 1062 possible rotamer sequences. We use a search algorithm
based on an extension of the DEE theorem to solve the rotamer sequence
optimization problem (4, 8). Efficient implementation of the DEE theorem
has made complete protein sequence design tractable for about 50 residues on
current parallel computers in a single calculation. The rotamer optimization
problem for the BBo motif required 90 CPU hours to find the optimal
sequence (19, 20).

The optimal sequence, shown in Figure 1, is called Full Sequence
Design-1 (FSD-1). Even though all of the hydrophilic amino acids were
considered at each of the boundary positions, the algorithm selected only
nonpolar amino acids. The eight core and boundary positions are predicted to
form a well-packed buried cluster. The Phe side chains selected by the
algorithm at the zinc binding His positions of Zif268, positions 21 and 25, are
over 80% buried and the Ala at position 5 is 100% buried while the Lys at
position 8 is greater than 60% exposed to solvent (Figure 2). The other
boundary positions demonstrate the strong steric constraints on buried
residues by packing similar side chains in an arrangement similar to that of
Zif268 (Figure 2). The calculated optimal configuration for core and boundary
residues buries ~1150 A2 of nonpolar surface area. On the helix surface, the
algorithm positions Asn 14 as a helix N-cap with a hydrogen bond between its
side-chain carbonyl oxygen and the backbone amide proton of residue 16. The
eight charged residues on the helix form three pairs of hydrogen bonds,
though in our coiled coil designs helical surface hydrogen bonds appeared to

be less important than the overall helix propensity of the sequence (5).
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Positions 4 and 11 on the exposed sheet surface were selected to be Thr, one of
the best B-sheet forming residues (21).

Figure 1 shows the alignment of the sequences for FSD-1 and Zif268.
Only 6 of the 28 residues (21%) are identical and only 11 (39%) are similar.
Four of the identities are in the buried cluster, which is consistent with the
expectation that buried residues are more conserved than solvent exposed
residues for a given motif (22). A BLAST (23) search of the FSD-1 sequence
against the non-redundant protein sequence database of the National Center
for Biotechnology Information did not find any zinc finger protein sequences.
Further, the BLAST search found only low identity matches of weak statistical
significance to fragments of various unrelated proteins. The highest identity
matches were 10 residues (36%) with p values ranging from 0.63 - 1.0.
Random 28 residue sequences that consist of amino acids allowed in the BBo
position classification described above produced similar BLAST search results,
with 10 or 11 residue identities (36 - 39%) and p values ranging from 0.35 - 1.0,
further suggesting that the matches found for FSD-1 are statistically
insignificant. The very low identity to any known protein sequence
demonstrates the novelty of the FSD-1 sequence and underscores that no
sequence information from any protein motif was used in our sequence
scoring function.

In order to examine the robustness of the computed sequence, the
sequence of FSD-1 was used as the starting point of a Monte Carlo simulated
annealing run. The Monte Carlo search finds high scoring, suboptimal
sequences in the neighborhood of the optimal solution (4). The energy spread
from the ground-state solution to the 1000th most stable sequence is about 5
kcal/mol indicating that the density of states is high. The amino acids

comprising the core of the molecule, with the exception of position 7, are
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essentially invariant (Figure 1). Almost all of the sequence variation occurs at
surface positions, and typically involves conservative changes. Asn 14, which
is predicted to form a helix N-cap, is among the most conserved surface
positions. The strong sequence conservation observed for critical areas of the
molecule suggests that if a representative sequence folds into the design target
structure, then perhaps thousands of sequences whose variations do not
disrupt the critical interactions may be equally competent. Even if billions of
sequences would successfully achieve the target fold, they would represent
only a vanishingly small proportion of the 1027 possible sequences.

Experimental validation. FSD-1 was synthesized in order to
characterize its structure and assess the performance of the design algorithm
(24). The far UV circular dichroism (CD) spectrum of FSD-1 shows minima at
220 nm and 207 nm, which is indicative of a folded structure (Figure 3a) (25).
The thermal melt is weakly cooperative, with an inflection point at 39 °C
(Figure 3b), and is completely reversible (data not shown). The broad melt is
consistent with a low enthalpy of folding which is expected for a motif with a
small hydrophobic core. This behavior contrasts the uncooperative thermal
unfolding transitions observed for other folded short peptides (26). FSD-1 is
highly soluble (greater than 3 mM) and equilibrium sedimentation studies at
100 uM, 500 uM and 1 mM show the protein to be monomeric (27). The
sedimentation data fit well to a single species, monomer model with a
molecular mass of 3630 at 1 mM, in good agreement with the calculated
monomer mass of 3488. Also, far UV CD spectra showed no concentration
dependence from 50 uM to 2 mM, and nuclear magnetic resonance (NMR)
COSY spectra taken at 100 uM and 2 mM were essentially identical.

The solution structure of FSD-1 was solved using homonuclear 2D H

NMR spectroscopy (28). NMR spectra were well dispersed indicating an
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ordered protein structure and easing resonance assignments. Proton
chemical shift assignments were determined with standard homonuclear
methods (29). Unambiguous sequential and short-range NOEs are shown in
Figure 4 and indicate helical secondary structure from residues 15 to 26 in
agreement with the design target.

The structure of FSD-1 was determined using 284 experimental
restraints (10.1 restraints per residue) that were non-redundant with covalent
structure including 274 NOE distance restraints and 10 hydrogen bond
restraints involving slowly exchanging amide protons (30). Structure
calculations were performed using X-PLOR (31) with standard protocols for
hybrid distance geometry-simulated annealing (32). An ensemble of 41
structures converged with good covalent geometry and no distance restraint
violations greater than 0.3 A (Figure 5 and Table 1). The backbone of FSD-1 is
well defined with a root-mean-square (rms) deviation from the mean of 0.54
A (residues 3-26). Considering the buried side chains (residues 3, 5, 7, 12, 18,
21, 22, and 25) in addition to the backbone gives an rms deviation of 0.99 A,
indicating that the core of the molecule is well ordered. The stereochemical
quality of the ensemble of structures was examined using PROCHECK (33).
Not including the disordered termini and the glycine residues, 87% of the
residues fall in the most favored region and the remainder in the allowed
region of ¢,y space. Modest heterogeneity is present in the first strand
(residues 3-6) which has an average backbone angular order parameter (34) of
<5> = 0.96 + 0.04 compared to the second strand (residues 9-12) with an <S> =
0.98 £ 0.02 and the helix (residues 15-26) with an <S> = 0.99 £ 0.01. Overall,
FSD-1 is notably well ordered and, to our knowledge, is the shortest sequence

consisting entirely of naturally occurring amino acids that folds to a unique
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structure without metal binding, oligomerization or disulfide bond
formation (35).

The packing pattern of the hydrophobic core of the NMR structure
ensemble of FSD-1 (Tyr 3, Ile 7, Phe 12, Leu 18, Phe 21, Ile 22, and Phe 25) is
similar to the computed packing arrangement. Five of the seven residues
have y1 angles in the same gauchet, gauche or trans category as the design
target, and three residues match both y1 and 2 angles. The two residues that
do not match their computed yx; angles are Ile 7 and Phe 25, which is
consistent with their location at the less constrained, open end of the
molecule. Ala 5 is not involved in its expected extensive packing interactions
and instead exposes about 45% of its surface area because of the displacement
of the strand 1 backbone relative to the design template. Conversely, Lys 8
behaves as predicted by the algorithm with its solvent exposure (60%) and %1
and y2 angles matching the computed structure. Most of the solvent exposed
residues are disordered which precludes examination of the predicted surface
residue hydrogen bonds. Asn 14, however, forms a helix N-cap from its
sidechain carbonyl oxygen as predicted, but to the amide of Glu 17, not Lys 16
as expected from the design. This hydrogen bond is present in 95% of the
structure ensemble and has a donor-acceptor distance of 2.6 = 0.06 A. In
general, the side chains of FSD-1 correspond well with the design algorithm
predictions, but further refinement of the scoring function and rotamer
library should improve side-chain placement.

In Figure 6, we compare the average restrained minimized structure of
FSD-1 and the design target. The overall backbone rms deviation of FSD-1
from the design target is 1.98 A for residues 3-26 and only 0.98 A for residues
8-26 (Table 2). The largest difference between FSD-1 and the target structure

occurs from residues 4-7, with a displacement of 3.0-3.5 A of the backbone



117

atom positions of strand 1. The agreement for strand 2, the strand to helix
turn, and the helix is remarkable, with the differences nearly within the
accuracy of the structure determination. For this region of the structure, the
rms difference of ¢,y angles between FSD-1 and the design target is only 14 +
9°. In order to quantitatively assess the similarity of FSD-1 to the global fold
of the target, we calculated their supersecondary structure parameters (Table
1) (36, 37), which describe the relative orientations of secondary structure
units in proteins. The values of 6, the inclination of the helix relative to the
sheet, and €, the dihedral angle between the helix axis and the strand axes, are
nearly identical. The height of the helix above the sheet, , is only 1 A greater
in FSD-1. A study of protein core design as a function of helix height for GB1
variants demonstrated that up to 1.5 A variation in helix height has little
effect on sequence selection (37). The comparison of secondary structure
parameter values and backbone coordinates highlights the excellent
agreement between the experimentally determined structure of FSD-1 and the
design target, and demonstrates the success of our algorithm at computing a
sequence for this Bfo motif.

The quality of the match between FSD-1 and the design target
demonstrates the ability of our algorithm to design a sequence for a fold that
contains the three major secondary structure elements of proteins: sheet,
helix, and turn. Since the BB fold is different from those used to develop the
sequence selection methodology, the design of FSD-1 represents a successful
transfer of our algorithm to a new motif. We are currently testing the
performance of the algorithm on several different motifs, with the hope that
its basis in physical chemistry and the absence of heuristics and subjective
considerations will allow further generalization. Also, we are exploring the

generation of novel backbone templates for use as input to our fully
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automated sequence selection algorithm to enable the design of new protein
folds. Recent results indicate that the sequence selection algorithm is not
sensitive to even fairly large perturbations in backbone geometry and should
be robust enough to accommodate computer-generated backbones (37).

By using an optimization technique based on the DEE theorem, we
were able to circumvent the combinatorial size and complexity of protein
design and apply objective criteria for amino acid sequence selection. The key
to using a computational optimization technique for the FSD-1 design, and
for the continued development of the methodology in the future, is the tight
coupling of theory, computation, and experiment used to develop a better
understanding of the factors controlling protein structure and stability. By
using a quantitative design method and improving the accuracy of the
physicochemical description of protein systems, we are able to apply the
power of computational approaches to protein design. Given that the
reported sequence was computed with only a four GigaFLOPS computer (19),
and that TeraFLOPS computers are now available with PetaFLOPS computers
on the drawing board, the prospect for pursuing larger and more complex

designs is excellent.
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E(i,)— E(i,)+ Y min{ E(i, j;)— E(i; j)} > 0
j N

where E(i;) and E(it) are rotamer/template energies, E(i,js) and E( itfs)
are rotamer/rotamer energies for rotamers on residues i and j, and the
function mins selects the rotamer s on residue j that minimizes the
function’'s argument. Iterative application of the above elimination
criterion results in a rapid and substantial reduction in the
combinatorial size of the problem; however, this rarely results in
finding the ground state solution and application of similar but higher
order elimination criteria are required. Application of the higher order
elimination criteria are computationally intensive and dominate the
total computation time because they involve interactions between
three or more residue positions.
N. P. Pavletich and C. O. Pabo, Science 252, 809 (1991).
M. D. Struthers, R. P. Cheng, B. Imperiali, ibid 271, 342 (1996).
B. I. Dahiyat and S. L. Mayo, unpublished results.
A Lennard-Jones 12-6 potential with van der Waals radii scaled by 0.9
(6) was used for van der Waals interactions for all residues. An atomic
solvation parameter of 23.2 cal/mol/A2 was used to favor hydrophobic
burial and to penalize solvent exposure for core and boundary residues
(4, 6). The Richards definition of solvent-accessible surface area [B. Lee
and F. M. Richards, |. Mol. Biol. 55, 379 (1971)] was used and areas were
calculated with the Connolly algorithm (40). All residues with
hydrogen bond donor and/or acceptors used a hydrogen bond potential
based on the potential used in Dreiding (41) but with more restrictive
angle-dependent terms to limit the occurrence of unfavorable

hydrogen bond geometries (5). A secondary structure propensity



13.
14.

15.

121

potential was used for surface B sheet positions where the i-1 and i+1
residues were also in f§ sheet conformations (5). Propensity values
from Serrano and coworkers were used [V. Munoz and L. Serrano,
Proteins: Struct. Funct. Genet. 20, 301 (1994)].

F. C. Bernstein et al., ]. Mol. Biol. 112, 535 (1977).

The coordinates of PDB record 1zaa (9, 13) from residues 33-60 were
used as the structure template. In our numbering, position 1
corresponds to 1zaa position 33. The program BIOGRAF (Molecular
Simulations, Incorporated, San Diego, CA) was used to generate explicit
hydrogens on the structure which was then conjugate gradient
minimized for 50 steps using the Dreiding force field (41).

A solvent accessible surface for only the Ca atoms of the target fold was
generated using the Connolly algorithm (40) with a probe radius of 8.0
A, a dot density of 10 A-2 and a Ca radius of 1.95 A. A residue was
classified as a core position if the distance from its Ca, along its Ca-CB
vector, to the solvent accessible surface was greater than 5.0 A, and if
the distance from its CB to the nearest surface point was greater than 2.0
A. The remaining residues were classified as surface positions if the
sum of the distances from their Ca, along their Ca-Cp vector, to the
solvent accessible surface plus the distance from their CB to the closest
surface point was less than 2.7 A. All remaining residues were
classified as boundary positions. The classifications for Zif268 were
used as computed except that positions 1, 17, and 23 were converted
from the boundary to the surface class to account for end effects from
the proximity of chain termini to these residues in the tertiary

structure and inaccuracies in the assignment.
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One core position (7 possible amino acids), 7 boundary positions (16
possible amino acids), 18 surface positions (10 possible amino acids) and
2 positions with ¢ greater than 0° (1 possible amino acid) result in 7 *
167 * 1018 * 12= 1.88 x 1027 possible amino acid sequences.

1.88 x 1027 peptide molecules, with an average mass of 3712 daltons for
the possible compositions allowed by the residue position classification,
would weigh (1.88 x 1027 * 3712 daltons ) / 6.02 x 1023 daltons/gram =
1.159 x 107 grams = 11.6 metric tons.

As in our previous work (5), a backbone-dependent rotamer library was
used [R. L. Dunbrack and M. Karplus, J]. Mol. Biol. 230, 543 (1993)]. %1
and 2 angle values of rotamers for all aromatic amino acids, and %1
angle values for all other hydrophobic amino acids were expanded *1
standard deviation about the mean value reported in the Dunbrack
and Karplus library. %3 angles that were undetermined from the
database statistics were assigned the following values: Arg, -60°, 60°,
and 180°; Gln, -120°, -60°, 0°, 60°, 120°, and 180°; Glu, 0°, 60°, and 120°;
Lys, -60°, 60°, and 180°. x4 angles that were undetermined from the
database statistics were assigned the following values: Arg, -120°, -60°,
60°, 120°, and 180°; Lys, -60°, 60°, and 180°. Rotamers with
combinations of y3 and y4 that resulted in sequential g+/g- or g/g*
angles were eliminated. All rotamers contained explicit hydrogen
atoms and were built with bond lengths and angles from the Dreiding
force field (41). All His rotamers were protonated on both N& and Ne.
All calculations were performed on a Silicon Graphics Power
Challenge server with 10 R10000 processors running in parallel. Peak
performance is 3.9 GigaFLOPS (FLOPS = floating point operations per

second).
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The sequence optimization consists of two phases: pairwise rotamer
energy calculations and DEE searching. The DEE optimization was
initially run with control parameters set for optimal speed followed by
a DEE-based, residue pairwise, round robin optimization. The energy
calculations took 53 CPU hours and sequence optimizations took 37
CPU hours.

C. W. A, Kim and J. M. Berg, Nature 362, 267 (1993); D. L. Minor and P.
S. Kim, ibid 367, 660 (1994); C. K. Smith, J. M. Withka, L. Regan,
Biochemistry 33, 5510 (1994).
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1306 (1990).

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, |. Mol.
Biol. 215, 403 (1990).

FSD-1 was synthesized using standard solid phase Fmoc chemistry on
an Applied Biosystems 433A automated peptide synthesizer. The
peptide was cleaved from the resin with TFA and purified by reversed
phase high performance liquid chromatography on a Vydac C8 column
(25 cm x 10 mm) with a linear acetonitrile-water gradient containing
0.1% TFA. Peptide was lyophilized and stored at -20 °C. Matrix assisted
laser desorption mass spectrometry yielded a molecular weight of
3489.7 daltons (3489.0 calculated).

Protein concentration was 50 uM in 50 mM sodium phosphate at pH
5.0. The spectrum was acquired at 1 °C in a 1 mm cuvette and was
baseline corrected with a buffer blank. The spectrum is the average of 3
scans using a 1 s integration time and 1 nm increments. All CD data
were acquired on an Aviv 62DS spectrometer equipped with a

thermoelectric temperature control unit. Thermal unfolding was
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monitored at 218 nm in a 1 mm cuvette using 2° increments with an
averaging time of 40 s and an equilibration time of 120 s per increment.
Reversibility was confirmed by comparing 1 °C CD spectra from before
and after heating to 99 °C. Peptide concentrations were determined by
UV spectrophotometry.

J. M. Scholtz et al., Proc. Natl. Acad. Sci. USA 88, 2854 (1991); M. A.
Weiss and H. T. Keutmann, Biochemistry 29, 9808 (1990); M. D.
Struthers, R. P. Cheng, B. Imperiali, ]. Am. Chem. Soc. 118, 3073 (1996).
Sedimentation equilibrium studies were carried out on a Beckman XL-
A ultracentrifuge equipped with an An-60 Ti analytical rotor at a rotor
speed of 40,000 rpm. Protein concentration was 100 uM, 500 uM or 1
mM in 50 mM sodium phosphate at pH 5.0 and 7 °C. Absorption was
monitored at 286 nm (500 uM and 1 mM) or 234 nm (100 uM).
Concentration profiles were fit to an ideal single species model which
resulted in randomly distributed residuals.

NMR data were collected on a Varian Unityplus 600 MHz spectrometer
equipped with a Nalorac inverse probe with a self-shielded z-gradient.
NMR samples (~2mM) were prepared in 90/10 HoO/D>O or 99.9% DO
with 50 mM sodium phosphate at pH 5.0 (uncorrected glass electrode).
All spectra were collected at 7 °C. DQF-COSY [U. Piantini, O. W.
Sorensen, R. R. Ernst, . Am. Chem. Soc. 104, 6800 (1982)], TOCSY [A.
Bax and D. G. Davis, . Magn. Reson. 65, 355 (1985)] and NOESY [J.
Jeener, B. H. Meier, P. Bachmann, R. R. Ernst, J. Chem. Phys. 71, 4546
(1979)] spectra were acquired to accomplish resonance assignments and
structure determination. NOESY spectra were recorded with mixing
times of 200 ms for use during resonance assignments and 100 ms to

derive distance restraints. Water suppression was accomplished either
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with presaturation during the relaxation delay or pulsed field gradients
[M. Piotto, V. Saudek, V. Sklenar, J. Biomol. NMR 2, 661 (1992)].
Spectra were processed using VNMR (Varian Associates, Palo Alto
California) and spectra were assigned using ANSIG [P. J. Kraulis, .
Magn. Reson. 24, 627 (1989)].

K. Wuthrich, NMR of Proteins and Nucleic Acids (John Wiley and
Sons, New York, 1986).

NOEs were classified into three distance-bound ranges based on
crosspeak intensity calibrated to the Tyr 3 Hé-He crosspeak: strong (1.8
to 2.7 A), medium (1.8 to 3.3 fo\) and weak (1.8 to 5.0 A). Upper bounds
for restraints involving methyl protons were increased by 0.5 A to
account for the increased intensity of methyl resonances. All partially
overlapped NOEs were set to weak restraints. Hydrogen bond
restraints were derived from hydrogen deuterium exchange kinetics
measurements followed by 1D 'H spectroscopy. Unambiguously
assigned amide peaks for Tyr 3, Phe 12, Leu 18, Phe 21 and Phe 25 were
protected from exchange at 7 °C, pH* 5.0. Hydrogen bond restraints
(two per hydrogen bond) were only included at the late stages of
structure refinement when initial calculations indicated the donor-
acceptor pairings.

A. T. Brunger, X-PLOR Version 3.1 A system for X-ray Crystallography
and NMR (Yale University Press, New Haven, 1992).

Standard hybrid distance geometry-simulated annealing protocols were
followed [M. Nilges, G. M. Clore, A. M. Gronenborn, FEBS Lett. 229, 317
(1988); M. Nilges, ]J. Kuszewski, A. T. Brunger, in Computational
Aspects of the Study of Biological Macromolecules by NMR J. C. Hoch,
Ed. (Plenum Press, New York, 1991); J. Kuszewski, M. Nilges, A. T.
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Brunger, J. Biomol. NMR 2, 33 (1992)]. Following substructure
embedding, 18 ps of high temperature (2000 K) dynamics followed by 75
ps of cooling to 100 K produced an ensemble of regularized structures.
This ensemble was then refined for six cycles of 50 ps cooling to 10 K,
starting at 1000 K (first four cycles) or 500 K (last two cycles), followed by
500 steps of conjugate gradient minimization. A quartic repulsive
potential was used for nonbonded contacts and the final REPEL radius
scale was 0.8. The force constant for NOE-derived distance restraints
was 50 kcal mol-l A-2. 100 distance geometry structures were generated
and, following regularization and refinement, resulted in an ensemble,
<SA>, of 41 structures with no restraint violations greater than 0.3 A,
rms deviations from idealized bond lengths less than 0.01 A and rms
deviations from idealized bond angles and impropers less than 1°. An
average structure, SA, was generated by superimposing and then
averaging the coordinates of <SA>. The restrained minimized
structure was generated by regularizing the structure of SA as described
above followed by one cycle of 500 K refinement and 500 steps of
conjugate gradient minimization.
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Table 1. NMR structure determination: distance restraints, structural statistics
and atomic root-mean-square (rms) deviations. <SA> are the 41 simulated
annealing structures, SA is the average structure before energy minimization,
(SA); is the restrained energy minimized average structure, and SD is the

standard deviation.

Distance restraints

Intraresidue 97
Sequential 83
Short range (|i-j| = 2-5 residues) 59
Long range (li-j| > 5 residues) 35
Hydrogen bond 10
Total 284

Structural statistics

<SA> + SD (SA),
Rms deviation from distance
restraints (A) 0.043 +0.003 0.038
Rms deviation from idealized

geometry

Bonds (A) 0.0041 + 0.0002 0.0037

Angles (degrees) 0.67 £0.02 0.65

Impropers (degrees) 0.53£0.05 0.51

Atomic rms deviations (A)*
<SA> vs.SA £SD  <SA> vs. (SA); £SD

Backbone 0.54 £0.15 0.69£0.16
Backbone + nonpolar side chainst 0.99 +0.17 1.16 £0.18
Heavy atoms 1.43+0.20 1.90+0.29

*Atomic rms deviations are for residues 3 to 26, inclusive. Residues 1, 2, 27
and 28 were disordered (¢,y angular order parameters (34) < 0.78) and had
only sequential and |i-j|=2 NOEs. *Nonpolar side chains are from residues 3,
5,7,12,18, 21, 22, and 25 which constitute the core of the protein.
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Table 2. Comparison of the FSD-1 experimentally determined structure and
the design target structure. The FSD-1 structure is the restrained energy
minimized average from the NMR structure determination. The design

target structure is the second DNA binding module of the zinc finger Zif268
(©)-

Atomic rms deviations (A)

Backbone, residues 3-26 1.98
Backbone, residues 8-26 0.98

Super-secondary structure parameters*

FSD-1 Design target
I (A) 9.9 8.9
6 (degrees) 14.2 16.5
{2 (degrees) 13.1 13.5

*h, 6, 2 are calculated as previously described (36, 37). I is the distance
between the centroid of the helix Ca coordinates (residues 15-26) and the
least-squares plane fit to the Co coordinates of the sheet (residues 3-12). 8 is
the angle of inclination of the principal moment of the helix Ca atoms with
the plane of the sheet. (2 is the angle between the projection of the principal
moment of the helix onto the sheet and the projection of the average least-
squares fit line to the strand Co coordinates (residues 3-6 and 9-12) onto the
sheet.
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Figure 5-1. Sequence of FSD-1 aligned with the second zinc finger of Zif268.
The bar at the top of the figure shows the residue position classifications: solid
bars indicate core positions, hatched bars indicate boundary positions and
open bars indicate surface positions. The alignment matches positions of
FSD-1 to the corresponding backbone template positions of Zif268. Of the six
identical positions (21%) between FSD-1 and Zif268, four are buried (Ile 7, Phe
12, Leu 18, and Ile 22). The zinc binding residues of Zif268 are boxed.
Representative non-optimal sequence solutions determined using a Monte
Carlo simulated annealing protocol are shown with their rank. Vertical lines
indicate identity with FSD-1. The symbols at the bottom of the figure show
the degree of sequence conservation for each residue position computed
across the top 1000 sequences: filled circles indicate greater than 99%
conservation, half-filled circles indicate conservation between 90 and 99%,
open circles indicate conservation between 50 and 90%, and the absence of a
symbol indicates less than 50% conservation. The consensus sequence
determined by choosing the amino acid with the highest occurrence at each

position is identical to the sequence of FSD-1.
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Figure 5-2. Comparison of Zif268 (9) and computed FSD-1 structures. (A)
Stereoview of the second zinc finger module of Zif268 showing its buried
residues and zinc binding site. (B) Stereoview of the computed orientations
of buried side chains in FSD-1. For clarity, only side chains from residues 3, 5,
8,12, 18, 21, 22, and 25 are shown. Color figures were created with MOLMOL
(38).
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Figure 5-3. Circular dichroism (CD) measurements of FSD-1. (A) Far UV CD
spectrum of FSD-1 at 1 °C. The minima at 220 nm and 207 nm indicate a
folded structure. (B) Thermal unfolding of FSD-1 monitored by CD. The
melting curve has an inflection point at 39 °C. To illustrate the cooperativity
of the thermal transition, the melting curve was fit to a two state model (39)
and the derivative of the fit is shown (inset). The melting temperature

determined from this fit is 42 °C.



135

4000
g :
© O:
o~
e
© [
S -4000¢
E L
D

-8000}

200 220 240
Wavelength (nm)

-3500 | B
3
2 i
O
~
&
C -5500F
l®)] S
Q 5
S g

© 2
N i :
-7500 r N 0 210 z;o éo éo 100
A T(C)
0 20 40 60 80



136

Figure 5-4. Sequential and short-range NOE connectivities of FSD-1. All
adjacent residues are connected by Ho-HN, HN-HN and/or HB-HN NOE
crosspeaks. The helix (residues 15-26) is well defined by short-range

connections, as is the hairpin turn at residues 7 and 8.
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Figure 5-5. Solution structure of FSD-1. Stereoview showing the best fit
superposition of the 41 converged simulated annealing structures from X-
PLOR (31). The backbone Ca trace is shown in blue and the sidechain heavy
atoms of the hydrophobic residues (Tyr 3, Ala 5, Ile 7, Phe 12, Leu 18, Phe 21,
Ile 22, and Phe 25) are shown in magenta. The amino terminus is at the
lower left of the figure and the carboxy terminus is at the upper right of the
figure. The structure consists of two anti-parallel strands from positions 3-6
(back strand) and 9-12 (front strand), with a hairpin turn at residues 7 and 8,
followed by a helix from positions 15-26. The termini, residues 1, 2, 27, and

28, have very few NOE restraints and are disordered.
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Figure 5-6. Comparison of the FSD-1 structure (blue) and the design target
(red). Stereoview of the best fit superposition of the restrained energy
minimized average NMR structure of FSD-1 and the backbone of Zif268.

Residues 3 to 26 are shown.
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Appendix A
Supplemental Experimental Techniques

Appendix A-1. Guanidinium Chloride Protein Denaturation

Denaturation measurements were performed on an Aviv 62A DS
spectrometer. High concentration, > 1 mM, protein stock solutions were
titrated to the desired pH. Approximately 8 M guanidinium chloride
(GdmCl) solutions were titrated to the desired pH and filtered to 0.45 pm.
Concentrated GdmCl solutions were not stored cold to prevent precipitation.
Typical denaturation experiments required 18 samples to adequately define
pre- and post-transition baselines and the transition region. Measurements
were done in a 0.1 cm pathlength cuvette to minimize signal loss from
GdmCl absorption.

1. Prepared a stock peptide solution in desired buffer, usually 50 mM

sodium phosphate pH 5.0, at about 50 uM peptide concentration.

Prepared enough peptide stock to make all samples.

2. Prepared a stock peptide solution in the concentrated GdmCl

solution containing the same buffer as step 1. The peptide

concentrations in the buffer and GdmCl stocks were exactly the same.

3. Mixed the buffer and GdmCl peptide stocks in the appropriate ratios

to make samples at each GdmCl concentration. This procedure

reduced error from peptide concentration in the denaturation
measurement. Effects from non-ideal partial volumes of mixing are
less than 1 percent and can be ignored.

4. Equilibrated samples at the desired temperature for at least 4 hours.
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5. Measured sample ellipticity at the desired wavelength with at least 2
minutes of signal averaging and 30 seconds of equilibration prior to
measurement.

6. GdmCl stock solution concentration was determined by
measurement of refractive index in triplicate. Refractive index was
converted to concentration following the method of Pace [Pace, 1986

#751.

Appendix A-2.  Protein Oligomerization State By Pulsed-Field

Gradient Diffusion Coefficient Measurements

Diffusion coefficient (D) measurements were done using Water-sLED
experiments according to the method of Altieri. Experiments were run at 25
°C in 99.9% D0 with 50 mM sodium phosphate at pH 5.0. Diffusion
coefficients could not be accurately measured at low temperature (7 °C) as
confirmed by tests on molecular species of various sizes that all gave very
similar diffusion coefficients. Axial gradient field strength was varied from
3.26 to 53.1 G/cm and a diffusion time of 50 ms was used. Spectra were
processed with 2 Hz line broadening and integrals of the aromatic and high
field aliphatic protons were calculated and fit to an equation relating
resonance amplitude to the square of gradient strength in order to extract
diffusion coefficients fAltieri, 1995 #99]. VNMR pulse sequence watersled
was run without RAW water suppression. The diffusion coefficient for a zinc
finger monomer control (28 residues) was 1.72 x 107 cm?2/s and for protein
GpB1 (56 residues) was 1.49 x 107 cm2/s. Diffusion coefficients showed modest

concentration dependence (about 10 percent) from 100 uM to 2 mM probably
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due to viscosity effects. Reproducibility of measurements was typically better

than 10 percent.

Appendix A-3. Peptide Synthesis Variations For Long Sequences

Modifications were made to the standard synthesis protocol provided
for the Applied Biosystems 433A, 0.25 QMonPrevPeak. The 40 ml reaction
vessel was used and only 0.18 mmol of resin was added to increase the
reagent excess favoring coupling. Both increased deprotection times and
increased coupling times were used to improve the yield of difficult coupling
cycles. Coupling cycles were increased to a minimum time of 30 minutes (60
coupling loops in module F) with an increase of 5 minutes every 10 cycles
(add time of 10 in module F). Double coupling, with these long coupling
times, was used for particularly difficult cycles. At least 4 deprotection loops
were done for 4 minutes each. All extended cycles are in SynthAssist
chemistry file LongFastMoc2 0.25 MonPrevPeak.

The extended reaction times tremendously increase cycle times and
slow the synthesis. Observation of several synthesis suggests that the
extended deprotection times did not have any impact on synthesis quality,
and that extended coupling times and double coupling only assisted
particularly difficult couplings. A strategy in the future might limit extended
reaction times to just hard coupling cycles and use rapid coupling cycles for

other steps.
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Appendix B

NMR Data Analysis Scripts And Programs

Appendix B-1. Restraint Processing Macro Ovpeakfix.Tcl

#1!

/usr/local/bin/tclsh

This routine has four functions:
1)

Set all specified NOE distance restraints to weak class for a

given X-PLOR restraints file. The NOE's are specified in a
file that contains the nuclei assignments. The format of the
file must be

res# nuc res# nuc with the smaller res# of a pair coming first.
Weak distance restraints are 4.0 2.2 1.0 (1.8 - 5.0 Ang).
The X-PLOR restraints file is argument O.

The input file is expected as argument 1.

2)

Set all specified NOE distraints to specified class for
the given X-PLOR restraints file. Serves to correct for
bad integral values from the splitting of peaks in the
first 8 residues in the structure.

The input file is expected as argument 2.

3)

Add specified hbond restraints to the end of the restraints

file. Simply cats hbond.restraints to end. Note, hbond.restraints
also contains extra restraints from the split peaks that aren't

labeled in the main NOE spectrum due to overlap but are
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expected to be there. This was simpler than duplicating peaks

in ANSIG.

4)

Add 0.5 A to all restraints involving methyl protons

Reads file methlist.dat for all methyl groups.

Bassil Dahiyat

1 May 1997

ovpeakfix.tcl

if { Sargec > 3 } {

}

puts stderr "ovpeakfix.tcl: Too few arguments.
file, ovpeaks file and split peak file."
exit
}
set ovfile [open [lindex $Sargv 1] r]
set spltfile [open [lindex Sargv 2] r]
set restrfile [open [lindex Sargv 0] r]
set newfile [open tmprestraints w]
set methfile [open methlist.dat r]
#
# Load ovdat arrays, ignoring comments
#
set 11

puts stderr “"ovpeakfix.tcl: Too many arguments”

exit

elseif { Sargc < 3} {

gets Sovfile ovdat ($i)

while {![eof Sovfile] } {

Specify restraints
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if { [string index [lindex Sovdat($i) 0] 0 ] != "I" g& Sovdat ($i)
}oA
incr i

}

gets Sovfile ovdat ($1i)

# note: i 1s the number of ovpeaks plus 1!!

puts stderr ""

puts stderr "[expr $i1 - 1] restraints read"

puts stderr ""

puts stderr "Generating modified restraints file."

puts stderr "

for {set 7 1} {$j < $i} {incr jJ} {

#

#

set ovindexl1($j) [lindex S$ovdat($j) 0]
set ovindex2($3j) [lindex S$Sovdat($3) 2]
set ovnucl($3) [lindex S$ovdat ($j) 1]

set ovnuc2($3j) [lindex Sovdat ($3) 3]

Scan restraints file and echo lines until a peak needs
to be fixed. Fix the peak, output the fixed line
and continue. The scan is independent of the order of the

ovdat array which slows it down somewhat.

note for format statement usage. To get left justified

fields use the - specifier as shown below.

gets Srestrfile restrline

set ov 0

while {![eof Srestrfile] } {
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regsub -all {\)} Srestrline " & " restrline

for {set j 1} {$j < $i} {incr j} {

if { [lindex S$restrline 2] == S$Sovindexl{($j)} {
if { [lindex Srestrline 8] == S$Sovindex2($j)} {
if { [lindex $restrline 5] == Sovnucl($j)} {
if {{lindex S$restrline 11] == S$Sovnuc2(s$j)} {

puts $newfile "[format "assi (resi%3d and name %-4s)
(resi%3d and name %-4s) 4.00 2.20 1.00" Sovindex1l($3j) Sovnucl($3)
Sovindex2 ($3j) Sovnuc2($j)]1*"
if {{lindex S$restrline 13] == "4.00" } {
puts stderr "Already weak restraint Sovindexl($3)
Sovnucl($3j) to $Sovindex2($3) Sovnuc2($j) *
} else {
puts stderr "Adjusted restraint Sovindexl($3j) $ovnucl($3)
to Sovindex2($j) Sovnuc2($j) to weak class, 4.0 2.2 1.0."
}

set ov 1

}
if { t(Sov) 1} |
puts $newfile S$restrline
}
set ov O
gets Srestrfile restrline
}
close Srestrfile
close Snewfile
set restrfile lopen tmprestraints r]

set newfile [open tmprestraints2 w]
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#
# Load spltdat arrays, ignoring comments
#
set i 1
gets Sspltfile spltdat($i)
while {![eof $spltfile] } {

if { [string index [lindex $spltdat($i) 0] 0 ] != "!" && $spltdat($i)
A

incr i
}

gets Sspltfile spltdat($i)

}

# note: 1 is the number of spltpeaks plus 1!!
puts stderr "*"

puts stderr "[expr $i1 - 1] restraints read"

puts stderr ""

puts stderr "Generating modified restraints file.®
puts stderr ""

for {set j 1} {$j < $i} {incr j} ¢

set spltindexl($j) [lindex S$spltdat($j) 0]

set spltindex2($j) [lindex S$spltdat($ji) 2]

set spltnucl($j) [lindex $spltdat($j) 1]
set spltnuc2($j) [lindex $spltdat ($j) 3]
set spltdist($3) [lindex $spltdat($j) 4]
set spltmin($3j) [lindex $spltdat ($3j) 51
set spltplus($3j) [lindex S$spltdat($3) 6]

gets Srestrfile restrline
set splt O

while {![eof S$restrfile] } {
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for {set j 1} {$3j < $i} {incr j} {
if { [lindex Srestrline 2] == $spltindex1($j)} {
if { [lindex Srestrline 8] == $spltindex2($3)} {
if { [lindex S$restrline 5] == $spltnucl($j)} {
if {[lindex Srestrline 11] == $spltnuc2($3)} {

puts Snewfile "[format "assi (resi%3d and name %-4s)

&
o

(resi%3d and name %-4s) -4s %-4s %-4s¥ Sspltindexl($3)
Sspltnucl($]) S$spltindex2($3j) $spltnuc2($j) Sspltdist($j) Sspltmin($j)
Sspltplus (Sl

1if {[lindex $restrline 13] == $spltdist($j) } {

puts stderr "Already correct restraint S$spltindexl($3)

$spltnucl{$j) to $spltindex2($j) $spltnuc2(Sj) "

} else {

puts stderr "Adjusted restraint $spltindexl($3)
$spltnucl($j) to $spltindex2($j) S$spltnuc2(s3i) *

}

set splt 1

)
1f { {$splt) } |
puts Snewfile Srestrline
)
set split O
gets Srestrfile restrline
}
close Snewfile
close S$Srestrfile
#

# Reopen restraints modified restraints file for read and
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# open new tmprestraints file for write
#
set restrfile [open tmprestraints2 r)
set newfile [open tmprestraintsd w]
#
# Load methdat arrays, ignoring comments
#
set 11
gets S$methfile methdat ($1i)
while {![eof Smethfile] } ({
if { [string index [lindex S$methdat($i) 0] 0 ] != "!" && S$methdat ($i)
b=ty o
incr i
}
gets Smethfile methdat ($1)
}
# note: 1 is the number of methpeaks plus 1!!
puts stderr "*"
puts stderr "[expr $i - 1] methyls read"
puts stderr ""
puts stderr "Generating modified restraints file."
puts stderr "*"
for {set j 1} {$j < $i} {incr j} {
set methindex($j) (lindex Smethdat ($3) 0]
set methnuc($j) [lindex S$methdat($j) 1]
}
gets Srestrfile restrline
set meth 0
while {![eof S$restrfile] } ({

for {set J 1} {$j < $1i} {incr 3} {
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if { ([lindex S$restrline 2] == Smethindex($3j) && [lindex S$restrline
5] == $methnuc($3j)) || ( [lindex $restrline 8] == $methindex($3) &s&
[lindex S$restrline 11] == $methnuc($j))} {

set upper [expr [lindex Srestrline end] + 0.5]

puts stderr "Incremented upper bound 0.5 A, [lindex $restrline
2] [lindex S$restrline 5] [lindex Srestrline 8] [lindex S$restrline 111"

puts $newfile "{lreplace S$restrline end end Supper]"

set meth 1

}
if {!(Smeth)} ¢
puts S$newfile S$restrline

}

set meth O

gets Srestrfile restrline
}
close Snewfile

close Srestrfile

exec cat tmprestraints4 hbond.restraints > tmprestraints3
puts stderr "

puts stderr "New restraints file name [lindex $argv 0].fix"
eval exec cp tmprestraints3 [lindex $argv 0].fix

exec rm tmprestraints tmprestraints2 tmprestraintsl3 tmprestraintsd

Appendix B-2.  Restraint Processing Macro Noecount.Tcl

#! /usr/local/bin/tclsh
#
# Count NOE restraints in an X-PLOR restraints file

# by category including Hbond restraints
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# must use standard distance ranges for accurate counting!!!

#

set noefile [open [lindex $argv 0] r]

set totnoe 0
set strongnoe 0
set mednoe 0
set weaknoe 0
set hbond 0
set intra 0
set iplusl O
set iplus2 O
set iplus3 0
set iplusd O
set iplus5 0
set long O
set bad 0

set hb 0

set hb0 0

set hbl 0

set hb2 0

set hb3 O

set hbd O

set hb5 0

set hbl O
gets Snoefile noeline

while {![eof Snoefile] } {

if { [string index {lindex S$noeline 0] ¢ ]

= "I" && S$noeline != "*

incr totnoe

set ecount 0



154

foreach elem S$noeline [

if {([regexp {[0-9]1+} Selem ] || [regexp {[0-9]1+.[0-9]+} Selem])

&& ! [regexp ([A-Z]} Selem ]} {
incr ecount

set nums(Secount) Selem

}

switch -regexp S$nums(3) {

4.0 {incr weaknoe}
2.5 {incr strongnoe}
3.0 {if {[regexp (0.5} $nums(4)]} {incr hbond;set hb 13

else {incr mednoe}}
2.0 {incr hbond; set hb 1}
default {incr bad}
}
switch [expr abs($Snums(2) - S$nums(1))] {
0 {incr intra;if {$hb} {incr hbO;set hb 0}}

1 {incr iplusl;if {Shb} {incr hbl;set hb 0}}

2 {incr iplus2;if {$hb} {incr hb2;set hb 0}}
3 {incr iplus3;if {$hb} {incr hb3;set hb 0})
4 {incr iplus4;if {$hb} {incr hb4;set hb 0}}
5 {incr iplus5;if {$hb} {incr hb5;set hb 0})

default {incr long;if {$hb} {incr hbl;set hb 0}}

}

gets S$noefile noeline

puts stdout "*

puts stdout "Restraints file name: [lindex Sargv 0"
puts stdout “Total : Stotnoe"
puts stdout "li-j| = 0 : Sintra\t\tShb0"

puts stdout "li-j| = 1 : S$iplusl\t\tShbl"
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puts stdout "li-j| = 2 : $iplus2\t\tShb2"
puts stdout "li-ji| = 3 : $iplu53\t\téhb3"
puts stdout "li-jl| = 4 : S$iplus4\t\tS$Shbd"
puts stdout "li-jl = 5 : S$iplusS5\t\tShbs"
puts stdout "li-jl > 5 : $long\t\tShbl"

puts stdout ""

puts stdout "Restraint class count®

puts stdout "$strongnoe strong "

puts stdout "S$mednoe medium "

puts stdout "Sweaknoe weak"

puts stdout "S$hbond hbond"

1f {$bad > 0} { puts stdout “"unknown?? $bad"}

puts stdout "*"

Appendix B-3.  X-PLOR Output Processing Macro Noeviol2.Tcl

#!

/usr/local/bin/tclsh

Scan X-PLOR output file from dgsa.inp, refine.inp
and/or accept.inp looking
for NOE restraint violation entries. Grabs violations

and outputs them to a file.

Arguments:

Requires name of xplor output file as first argument.
Optional second argument: if set to "filename", names of
pdb files that have each violation are echoed also.

Outputs to standard out.

Bassil Dahivyat

29 May 1997
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#
# noeviol2.tcl
#
if { Sargc > 2 } {
# remember, argc is zero if only argument is the tcl routine
puts stderr "noeviol.tcl: Too many arguments"
exit
} elseif { $Sargc < 1 } {
puts stderr "noeviol.tcl: Too few arguments. Specify input file and
# strucs”
exit
} elseif {Sargc == 2} {
puts stderr " *
puts stderr "noeviol2.tcl: Echoing pdb filenames with violations."
} else {
puts stderr " *
puts stderr "noeviol2.tcl: Not echoing pdb filenames with violations."
puts stderr "noeviol2.tcl: To echo filenames add 'filename' as second
arg."
}
#
# open input and output files
#
set xplorfile [open [lindex S$Sargv 0] r]
#
# Scan input file until NOE viol trigger reached

#

gets S$Sxplorfile chkline
set noeviolcount 0
while { ![eof $xplorfile] } {

if {[lindex $chkline 0] == "ASSFIL:" } ({
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set fname [lindex $chkline 2]

if { [lindex S$chkline 0] == "set-i-atoms" } {
incr noeviolcount
if {[lindex S$Sargv 1] == "filename"} {set fnam($noeviolcount) $fname}
set noefrom($noeviolcount) {from}
set noeto(Snoeviolcount) {to }

gets S$xplorfile chkline

while {![eof S$xplorfile] && ([lindex $chkline 0] != “set-j-atoms")}
{
set noefrom(Snoeviolcount) {[lappend noefrom($noeviolcount)
$chkline]
gets S$Sxplorfile chkline
}
}
if { [lindex Schkline 0] == "set-j-atoms" } {

gets S$xplorfile chkline

while {![eof S$xplorfile] && ([lindex S$chkline 0] != "R<average>="))}

set noeto($noeviolcount) [lappend noetc($noeviolcount) $chkline]

gets S$xplorfile chkline

}

1f { [lindex $chkline 0] == "R<average>=" !} {
set ravg(Snoeviolcount) S$chkline

}

gets Sxplorfile chkline



158

puts stdout "*
puts "Total violators in file: $noeviolcount®
puts stdout "*
for {set 1 1} { $i <= S$noeviolcount } {incr i} {
set violnum($i) 1
set avgravg [lindex Sravg($i) 1]
set avgravgd [lindex S$ravg($i) 8]
set avgravgE {lindex S$ravg($i) 10}
for {set j [expr $1 + 1]} { $j <= $noeviolcount} {incr j} {
if { ($noeto($j) == S$noeto($i)) && ($noefrom($j) ==
$noefrom($i))} {
incr violnum($i)
set noeto($j) "x°
set noefrom($j) "x"
set avgravg [expr Savgravg + [lindex Sravg($j) 11 1
set avgravgd [expr Savgravgd + [lindex Sravg($j) 81 1
set avgravgE [expr SavgravgE + {lindex Sravg($3j) 101 ]
if {[lindex Sargv 1] == "filename")} {set fnam($i) [lappend
fnam(s$i) $fnam($3)1}
}
}
set avgravg [expr Savgravg / Sviolnum($i) ]
set avgravgd [expr Savgravgd / S$violnum($i) ]
set avgravgE [expr $SavgravgE / Sviolnum($i) ]
if { Snoeto($i) 1= "x" } {
if {$violnum($i) > 20 } {
puts stdout "iltirilibbtrterpprEerrrnrrrr
puts stdout "!!!!1!!10OCCURS $violnum($i) TIMES!!t1i1e
puts stdout "IIitirlrinre e p i n e
} else {puts stdout "Occurs S$viclnum($i) times"}

puts stdout Snoefrom($i)
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puts stdout " Snoeto($i)"
puts stdout "Avg R<average> $avgravg [lrange Sravg($i) 2 6]
Savgravgd Avg E(NOE)= S$avgravgk"
puts stdout " "
if {[lindex S$argv 1] == "filename"} {
set cnt 0
foreach name $fnam($i) {
puts -nonewline stdout "S$name\t"”
incr cnt

if { [expr Scnt % 4 ] == 0 } {puts stdout " "}

}
puts stdout "
puts stdout " "

}

Appendix B-4. X-PLOR Output Processing Macro Sort_pdb.Tcl

#! /usr/local/bin/tclsh
# sort_pdb.tcl

# Bassil Dahivat

# 12 May 1997

# gets the total energy, noe energy and number of violations
# from all the files in the directory called refine*.pdb.

# Expects X-PLOR format files generated by refine.inp or

# similar. Outputs sorted (by noe energy) list of file

# names in a .nam file and a list of file names with
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# the energies in a .E file. Give name of output file.
#
# generate the egrep output to do sorting on
#
set type [lindex Sargv 1]
eval exec egrep violation {glob ${typel}*.pd[lindex $argv 2]] > tmplist
eval exec egrep energies: {glob S${type}*.pd[lindex $argv 2]] > tmplist2
set outfile [open tmpfinal w]
#
#
#
set noelist [open tmplist r]
gets Snoelist line
while { ![eof $noelist]} {
set filename [lindex $line 0]
set noeviol [string trimright [lindex $line 2] {,}]
set endname [expr [string first . Sfilename ] - 1]
set filename [string range S$filename 0 S$endname]
set masterl [lappend masterl [list $noeviol $filename]]
set masterlindex [lappend masterlindex $filename]

gets S$noelist line

3

close S$noelist

set noelist [open tmplist2 r]

gets Snoelist line

while { !{eof Snoelist]} {
set filename ({lindex $line 0]
set noeenergy [(string trimright [lindex $line 7} {,}]
set totalenergy ([string trimright {lindex $line 2] {,}]
set endname [expr [string first . $filename ] - 1]

set filename |[string range S$filename 0 S$endname]



161

set master2 [lappend master2 [list $noeenergy S$filename Stotalenergy]]
set master2index [lappend master2index $noeenergy]

gets Snoelist line

}
close $noelist
foreach file Smaster2 {
set index [lsearch -exact Smasterlindex [ lindex $file 1]

set noeviol [lindex {lindex S$masterl $index] 0]

puts Soutfile "[format "%9.3f %44 %-12s %9.3f" [lindex S$file 0]
Snoeviol [lindex $file 1] [lindex $file 2] ]
}
close Soutfile
exec sort -kl -n tmpfinal > [lindex S$argv 0].E
exec sort -k4 -n tmpfinal > [lindex S$argv 0].Etot
eval exec rm -fr tmpfinal tmplist tmplist2
set extractfile [open [lindex S%Sargv 0].Etot r]
set namfile [open [lindex Sargv 0] .nam w]
gets Sextractfile line
while {![eof $extractfile])} {

puts S$namfile "[lindex $line 2] .pdb"
gets S$extractfile line
}
close S$namfile

close Sextractfile

Appendix B-5. X-PLOR Output Processing Macro Chkrms.Tcl

#!/usr/local/bin/tclsh

exec cat [lindex $argv 0].nam | xargs egrep rms-d > junk.rms
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set rmsfile [open junk.rms r)

set outfile [open [lindex $argv 0].rmsE w]

gets $Srmsfile rmsline

puts Soutfile "\t\tbond\t\tangle\t\timproper\tnoe"

set sumbond 0

set sumang 0

set sumimp 0

set sumnoe 0

set sumbondsqg 0

set sumangsg 0

set sumimpsqg 0

set sumnoesqg 0

set count 0

while {![eof Srmsfilel)} {
incr count
set rmslist [split [lindex S$rmsline 21 {,}])
set namend [string first ":" [lindex $rmsline 0] ]
set filename [string range [lindex $rmsline 0] 0 $namend]
puts -nonewline Soutfile "$filename\t"”
set sumbond [expr $sumbond + [lindex S$rmslist 0]]
set sumang [expr $sumang + [lindex S$rmslist 11]
set sumimp [expr $sumimp + [lindex Srmslist 2]]

set sumnoe [expr $sumnoe + [lindex Srmslist 3]}

set sumbondsqg [expr $sumbondsg + [lindex S$rmslist 0]*([lindex $rmslist

011
set sumangsg [expr $sumangsqg + [lindex $rmslist 1]*[lindex S$rmslist
1]]

set sumimpsqg [expr S$sumimpsqg + [lindex $rmslist 2]*[lindex S$rmslist

set sumnoesq [expr S$sumnoesq + [lindex S$rmslist 3]1*[lindex S$rmslist

puts -nonewline $Soutfile "[format "%-8.4g" [lindex S$rmslist 0]]\t"



puts -nonewline $outfile "[format "%-8.4g"
puts -nonewline $outfile "[format "%-8.4g"
puts $outfile "[format "%-8.4g"
gets Srmsfile rmsline
}
puts Soutfile "*
puts -nonewline Soutfile "Average rms-d\t"
puts -nonewline $outfile " [format "$%-8.4g"
e
puts -nonewline $outfile "[format "%-8.4g"
puts -nonewline $outfile "[format "%-8.4g"
puts $outfile "[format "%-8.4g"

set sumbondsg [expr sqrt{[expr

Scount) * ($sumbond / $Scount)]) ]

set sumangsg
Scount) * (Ssumang /
set sumimpsqg [expr sqrt([expr
Scount) * (Ssumimp /
set sumnoesqg [expr

$count) * (Ssumnoe /

puts
puts
puts
puts
puts

puts

-nonewline Soutfile
-nonewline $outfile
-nonewline Soutfile
-nonewline Soutfile

Soutfile

Soutfile "

close Srmsfile

exec rm -fr junk.rms

exec

set rmsfile

gets

[expr sqrt(({expr

sqgrt ( [expr

Scount) )]

Scount)])]

Scount) 1) ]
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($sumbondsg

($sumangsq /

($sumimpsqg /

($sumnoesqg /

"Stddev rms-d\t"

"[format
"[format
" [format

"[format

"%—8.49"
"$-8.4g"

%-8.4g"

n%_8.4gu

{expr $sumbond / $count ]

[expr S$sumang / Scount
[expr Ssumimp / $Scount

[expr S$sumnoe / $count

/ $count) - ($sumbond /
$count) - ($sumang /
$count) - ($sumimp /
$count) - ($sumnoe /

Ssumbondsgl \t"
Ssumangsqgl \t"
Ssumimpsgl\t"

$sumnoesg]l \t "

cat [lindex $argv 0].nam | xargs egrep energies > junk.E

Srmsfile rmsline

[open junk.E rl

[lindex S$rmslist 1]]\t"
[lindex S$rmslist 27]\t"

[lindex S$rmslist 3]]\t"

]
]
]

]\t"
]\t"
]\tu



164

puts Soutfile "\t\ttot\tbond\tangle\timprop\tvdw\tnoe"

set sumtot 0

set sumbond 0

set sumang 0

set sumimp O

set sumvdw 0

set sumnoe 0

set count 0

while {![eof Srmsfilel} {
incr count
set namend [string first ":* [lindex Srmsline 0]

set
put
set
set
set
set
set
set
put
put
put
put
put
put

get

puts
puts
puts
puts

puts

filename [string range [lindex S$rmsline 0]

s -nonewline Soutfile

sumtot [expr S$sumtot +

"Sfilename\t"

]

$Snamend]

[string trim {lindex S$rmsline 2]

1]

sumbond [expr $sumbond + [string trim [lindex $rmsline 3] ,] ]

sumang [expr S$sumang +

[string trim

sumimp [expr S$sumimp + [string trim

sumvdw [expr S$sumvdw + [string trim

sumnoe [expr S$sumnoe + [string trim

S -nonewline Soutfile
s -nonewline Soutfile
s -nonewline Soutfile
s -nonewline Soutfile
s -nonewline Soutfile

s Soutfile

s Srmsfile rmsline

Soutfile "

-nonewline Soutfile
-nonewline Soutfile
-nonewline $outfile

-nonewline $outfile

"Average
"[format
"[(format

*"[{format

"[string trim
"[string trim
"[string trim
"[string trim
"[string trim

"[string trim

E\t“
"§-7.2f"
“§-7.2f"

"§-7.2f"

[lindex Srmsline 4]

[lindex
[lindex
[lindex
{lindex
[lindex
[lindex
[lindex
[lindex

[lindex

Srmsline
Srmsline
Srmsline
Srmsline
Srmsline
Srmsline
Srmsline
Srmsline

Srmsline

5]
6]

» 1]

[expr S$sumtot / Scount ]]

[expr S$sumbond / Scount 1]

[expr S$sumang / Scount 1]
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puts -nonewline $outfile "[format "%-7.2f" [expr $sumimp / S$count ]] "
puts -nonewline $outfile "[format "%-7.2f" [expr $sumvdw / Scount ]] "
puts Soutfile "[format "%$-7.2f" [expr $sumnoe / Scount ]]"

close Srmsfile

exec rm -fr junk.E

Appendix B-6. Operation Of Automatic Spectrum Assignment

Program Asgnmr.Exe

Asgnmr.exe operates on an ANSIG crosspeaks export file and outputs
an X-PLOR distance restraints file and a modified ANSIG crosspeaks export

file. Input to the program consists of an input parameter file containing:

Crosspeak filename

Noesy spectrum name (must match ANSIG name exactly)

NOE distance limit (use decimal):"

PDB coordinate file name (nuclei names must match ANSIG names)"
NOE class minimum intensities, one per line

Minimum distance assignment only? (T or F)

and an ANSIG crosspeaks export file and a PDB coordinate file where the
atom names have been converted to match the entries in the ANSIG residue
dictionary. Asgnmr.exe extracts nuclei chemical shifts from all spectra in the
crosspeaks file and averages them over all instances of that nucleus, and
generates distance restraints for the crosspeaks from the spectrum designated
by the second input parameter. The program does not consider symmetry in

the spectrum. Crosspeak assignments are made with the following priority:
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intraresidue, sequential, then all others that meet the distance cutoff. <R-6>
distance averaging is done for all nuclei groups. The program will either
output all possible assignments that meet the distance limit for a given
crosspeak (last input argument F) or only use the assignment with the
shortest distance (T). This switch only acts for non-intraresidue and non-
sequential crosspeaks; if a crosspeak has any possible intraresidue or
sequential assignments, it will take only that one in all cases. If multiple
intraresidue or multiple sequential assignments exist for a peak, an error
message is generated. The threshold for peak matching is 0.015 ppm. Output
consists of numerous diagnostic messages sent to standard output, a file called
xplor.noe containing the distance restraints in X-PLOR readable format, and a
file called ansig.cpeak containing the new assignments for the noesy spectrum
and all old assignments for the other spectra in ANSIG import format.

This automated approach to NOE assignments requires either a
preliminary structure or the structure of a close structural homologue to
work. The approach is fairly robust at generating structures with the correct
global fold. In order to complete a high resolution structure, however, large
numbers of inconsistent restraints are introduced that must be removed
manually by inspection of the spectra. Given the relative simplicity of
manually assigning NOE spectra of small proteins where spectral overlap is
not a major problem, it is not clear that automatically assigning the spectra
eases or speeds the process of structure solution. Typically, far fewer bad
assignments are made during the manual procedure so refinement proceeds
rapidly.  Automatically assigned spectra require far more effort to
deconvolute the inconsistent restraints, and often numerous peaks need to be
manually reassigned. Perhaps improvements in the method that accounts

for peak overlap, or that use the information about linewidth, peak shape,
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peak fine structure and peak position obvious to a human observer, will

improve the technique in the future.





