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Abstract

We look at one-factorizations of complete k-uniform hypergraphs, and investigate the problem of de-

termining when, for U ⊂ V, one can embed a one-factorization of the complete k-uniform hypergraph

on U in a one-factorization of the complete k-uniform hypergraph on V. We give a brief history of

the problem, and find our own independent results for specific values of k and v = |V |, in the process

making explicit a theorem implicitly used by Häggkvist and Hellgren in their solution to the problem

in general. We provide our own independent proof of this theorem, and subsequently use it to extend

our results to certain nonuniform hypergraphs. This, in particular, allows us to find alternate proofs

about two results involving the extension of symmetric Latin squares, originally shown by Cruse

and by Hoffman. We then explain the connection between the hypergraph-embedding problem and

a problem involving the decomposition of partitions of an integer N into subpartitions of an integer

n, where n divides N. This in turn leads to a problem involving the cone generated by a subset V

of Rn, the properties of which we investigate thoroughly.
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Chapter 1

Embeddings of One-Factorizations
of Hypergraphs

1.1 Preliminary Definitions

Given a finite set V, let
(
V
k

)
denote the complete k-uniform hypergraph with vertex set V. We will

refer to V as the set of vertices, and the k-element subsets of V as the k-edges. Then, by a one-factor

of
(
V
k

)
, we mean a collection of k-edges that are disjoint and partition the set of vertices. A one-

factorization of
(
V
k

)
will be a collection of one-factors of

(
V
k

)
such that each k-edge occurs in precisely

one such one-factor. When dealing with finite sets labeled U and V, unless stated otherwise, we will

let u = |U | and v = |V |.

For a given natural number n and partition π of n (given by π1 + π2 + · · ·+ πN = n) we define

vπ ∈ Zn by vπ = (a1, a2, . . . , an), where ai is the number of parts of π of size i. Then, for k,m ∈ N

with 1 ≤ k,m ≤ n we define the following:

Vn = {vπ : π is a partition of n}

Vn,k,m = {vπ : π is a partition of n into at most m parts of size at most k}.

Also, we define [n] = {1, 2, . . . , n}.
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1.2 One-Factorizations of
(V

k

)
Clearly, a necessary condition for the existence of a one-factorization of

(
V
k

)
is that k divides v; the

following theorem of Baranyai (one proof is given, for example, in [1]) shows that this condition is,

in fact, sufficient as well:

Theorem 1.2.1 If k divides v, there exists a one-factorization of
(
V
k

)
.

Note that each one-factor of
(
V
k

)
must contain v

k k-edges, and as there are a total of
(
v
k

)
k-edges

in
(
V
k

)
, it follows that any given one-factorization of

(
V
k

)
must contain exactly k

v

(
v
k

)
=
(
v−1
k−1

)
one-

factors. We will denote such a one-factorization by (V, k,P) where P = {Pi : i = 1, 2, . . . ,
(
v−1
k−1

)
} is

the corresponding set of one-factors. Also, given one-factorizations (U, k,Q) and (V, k,P), we say

that (U, k,Q) is a subsystem of (V, k,P) if U ⊆ V and if there is a labeling of P and Q such that

Qi ⊆ Pi for each i with 1 ≤ i ≤
(
u−1
k−1

)
. If (U, k,Q) is a subsystem of (V, k,P), we will also say that

we can embed (U, k,Q) in (V, k,P). The following result is shown, in particular, in [2]: we present

our own proof for completeness.

Theorem 1.2.2 If (U, k,Q) is a subsystem of (V, k,P) and U 6= V, then v ≥ 2u.

Proof. Suppose that (U, k,Q) is a subsystem of (V, k,P) with U 6= V. Consider the labeling of P

and Q such that Qi ⊆ Pi for each i with 1 ≤ i ≤
(
u−1
k−1

)
and for each such i let Ri = Pi \ Qi. Let

W = V \U. Then, it follows that each Ri is a one-factor of
(
W
k

)
and thus |Ri| = |W |

k . Further, since

each of the Pi are pairwise disjoint, it follows that each of the Ri are pairwise disjoint. Thus

(
|W |
k

)
≥

(u−1
k−1)∑
i=1

|Ri| =
(u−1

k−1)∑
i=1

|W |
k

=
(
u− 1
k − 1

)
|W |
k
.

This implies that

(
u− 1
k − 1

)
≤ k

|W |

(
|W |
k

)
=
(
|W | − 1
k − 1

)
,

which implies that u− 1 ≤ |W | − 1 and thus u ≤ |W | = v − u. But this implies that 2u ≤ v. �
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This leads to the following question: given a one-factorization (U, k,Q) and v ≥ 2u such that k

divides v, can we always find a V with a one-factorization (V, k,P) that has (U, k,Q) as a subsystem?

First, note that it is easy to see that the answer is independent of the one-factorization of U that

we choose; simply permute the k-sets of U in the first
(
u−1
k−1

)
elements of P accordingly. It follows

that the answer depends only on the cardinalities of the sets, i.e., u and v. So if there exists a U, V ,

Q and P with the one-factorization (U, k,Q) embeddable in the one-factorization (V, k,P), we will

simply say that we can embed U in V and that (u, v) is an embeddable pair of order k. To avoid

trivialities, we require that u < v for (u, v) to be considered an embeddable pair. Let the set of all

embeddable pairs of order k be denoted by EPk. Thus, the question can be reworded: is it true that

EPk = {(u, v) : v ≥ 2u, and k | u, v}?

In fact, the answer is yes, and the following theorem is proven in [3]:

Theorem 1.2.3 For all k ∈ N, (u, v) is in EPk if and only if v ≥ 2u and k divides u and v.

We provide our own independent proofs that for any u, v with k | u, v and either v ≥ ku or v = 2u,

we have (u, v) ∈ EPk. We will also provide independent proofs of theorem 1.2.3 for small k (in

particular, for 2 ≤ k ≤ 5). First, we need one more definition.

By an m-partition of V, we mean a multiset A of m pairwise disjoint subsets of V, some of which

may be empty, whose union is V. Note that this definition implies that the only set that may be

repeated in A is the empty set. Note that if (V, k,P) is a one-factorization, and U ⊆ V, if we let Q

be the restriction of P to U, i.e., let Q = {Qi : i = 1, 2, . . . ,
(
v−1
k−1

)
}, where Qi = {P ∩U : P ∈ Pi}, it

follows that each Qi is an m-partition of U, where m = v
k . Further, as each j element subset (which

we will hereby refer to as a j-subset) of U is the restriction of exactly
(
v−u
k−j
)
k-subsets of V to U, it

follows that each j-subset of U occurs exactly
(
v−u
k−j
)

times in the Qi, for 0 ≤ j ≤ u (with the usual

convention that
(
n
k

)
= 0 if k < 0). The following theorem, which again can be found in [1], in the

proof of their theorem 38.1 (which is equivalent to our theorem 1.2.1), shows the converse of this:
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Theorem 1.2.4 Given U ⊆ V and a set A = {Ai : i = 1, 2, . . . ,
(
v−1
k−1

)
}, where each Ai is a v

k -

partition of U, such that, for 0 ≤ j ≤ u, every j-subset of U occurs precisely
(
v−u
k−j
)

times in the Ai,

then A can be extended to a one-factorization (V, k,P) of V (meaning that A is the restriction of P

to U).

Thus, to determine whether (u, v) ∈ EPk, it remains to find a systemA = {Ai : i = 1, 2, . . . ,
(
v−1
k−1

)
}

of v
k -partitions of U such that each j-subset of U occurs exactly

(
v−u
k−j
)

times in the Ai and such

that, for 1 ≤ i ≤
(
u−1
k−1

)
we have Ai equal to Qi (for some Q such that (U, k,Q is a one-factorization)

unioned with v−u
k copies of the empty set, so that the Qi become v

k -partitions. We now prove the

following result, which will be useful in applying this technique:

Theorem 1.2.5 Given a set A = {Ai : i = 1, 2, . . . N}, where each Ai is a v
k -partition of U, for

some natural numbers N and v, with v ≥ u, such that for 1 ≤ j ≤ u each j-subset of U occurs

exactly
(
v−u
k−j
)

times in the Ai, it follows that N =
(
v−1
k−1

)
and the empty set occurs exactly

(
v−u
k

)
times in the Ai.

Proof. We will be using the following combinatorial identity (and some trivial variations of it):

k∑
i=0

(
n− j
k − i

)(
j

i

)
=
(
n

k

)
.

To see that this is true, we count the number of k-subsets of an n-set by first breaking that n-set

into two parts; one of size j and the other of size n − j. Then, we choose i of the elements in the

k-subset to be in the chosen j-subset, and the other k− i to be among the remaining n− j elements

of the n-set. There are clearly
(
n−j
k−i
)(
j
i

)
ways to do this, and thus as we sum over all i from i = 0

to i = k we count each k-subset of the n-set exactly once, implying that the left-hand side is in fact

equal to the right-hand side, and thus the identity is true.

So, returning to the notation specified in the statement of theorem 1.2.5, let xi,j be the number

of times an j-subset of U occurs in Ai and let m = v
k . Note also that the conditions given above

imply that for j > k, no j-subset occurs in any of the Ai. Then, it follows that, since each Ai is an

m-partition of U, that for 1 ≤ i ≤ N, we have
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k∑
j=1

jxi,j =
k∑
i=0

jxi,j = u.

Further, by the property given above, and the fact that there are
(
u
j

)
j-subsets of U, we have, for

1 ≤ j ≤ u

N∑
i=1

xi,j =
(
v − u
k − j

)(
u

j

)
.

Thus, putting these together, we have

Nu =
N∑
i=1

u =
N∑
i=1

k∑
j=1

jxi,j =
k∑
j=1

j

N∑
i=1

xi,j =
k∑
j=1

j

(
v − u
k − j

)(
u

j

)

=
k∑
j=1

(
v − u
k − j

)
j

(
u

j

)
=

k∑
j=1

(
v − u
k − j

)
u

(
u− 1
j − 1

)

= u

k∑
j=1

(
v − u
k − j

)(
u− 1
j − 1

)
= u

(
v − 1
k − 1

)
,

and thus N =
(
v−1
k−1

)
. As for the empty set, note that, as each Ai is an m partition of U , it follows

that, for 1 ≤ i ≤ N,

xi,0 +
k∑
j=1

xi,j = m,

so we must have

N∑
i=1

xi,0 +
N∑
i=1

k∑
j=1

xi,j =
N∑
i=1

m,

which implies
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N∑
i=1

xi,0 =
N∑
i=1

m−
N∑
i=1

k∑
j=1

xi,j = Nm−
k∑
j=1

N∑
i=1

xi,j = Nm−
k∑
j=1

(
v − u
k − j

)(
u

j

)

=
(
v − 1
k − 1

)
v

k
−

k∑
j=1

(
v − u
k − j

)(
u

j

)
=
(
v

k

)
−

k∑
j=1

(
v − u
k − j

)(
u

j

)

=
(
v − u
k

)(
u

0

)
=
(
v − u
k

)
.

But as
∑N
i=1 xi,0 is precisely the number of times the empty set occurs in the Ai, this proves our

result. �

Thus, to check whether a collection of m-partitions satisfy the conditions of theorem 1.2.4, it

suffices to only consider the case 1 ≤ j ≤ k and to show that no j-subset of U occurs at all for j > k.

1.3 The Cases v ≥ ku and v = 2u

We first give our proof for the case v ≥ ku:

Theorem 1.3.1 If k | u, v, and v ≥ ku then (u, v) ∈ EPk.

Proof. Let U = [u], V = [v], with v ≥ ku. For 1 ≤ i ≤ k, let ji be the smallest nonnegative integer

such that ji + u is divisible by i, and let Ui = U if ji = 0 and Ui = U ∪ {x1, . . . , xji} where the xj

are points distinct from the elements of U , so that |Ui| is divisible by i. Then, let T (i) be such that

(Ui, i, T (i)) is a one-factorization of
(
Ui

i

)
(we know such a T (i) exists by theorem 1.2.1). Note that,

since k | u, we must have Uk = U. Let Q = T (k). Then, let m = v
k and let A(i) be a collection of

m-partitions defined as follows: A(i) = {A(i)
j : j = 1, 2, . . . ,

(|Ui|−1
i−1

)
} where

A(i)
j = {T ∩ U : T ∈ T (i)

j } ∪Ri,

where Ri is m− |T (i)
j | copies of the empty set (this is to ensure A(i)

j is an m-partition). Note that

for 1 ≤ i ≤ k, we always have m − |T (i)
j | ≥ 0 because of our condition requiring v ≥ ku. Thus, it

follows that, for 1 ≤ s ≤ i, as each s-subset of U is contained in
(
ji
i−s
)
i-subsets of Ui, it follows that
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each s-subset of U occurs
(
ji
i−s
)

times in the A(i)
j (and of course each s-subset of U with s > i does

not occur at all in the A(i)
j by construction).

Now, we define a sequence of integers αi for 1 ≤ i ≤ k inductively. First, let αk = 1. Then,

assuming we have defined αs+1, αs+2, . . . , αk for some s with 1 ≤ s < k, we define αs by

αs =
(
v − u
k − s

)
−

k∑
i=s+1

αi

(
ji
i− s

)
.

We now claim that each of the αs is in fact nonnegative. We prove this by induction. Note that

we already have αk > 0, so assume that, for some s with 1 ≤ s < k, each of αs+1, αs+2, . . . , αk

is nonnegative. Further, note that this implies that αi ≤
(
v−u
k−i
)

for s < i ≤ k, since in our above

construction of αi all terms in the sum will be nonnegative. Also, note that, by definition, ji ≤ i−1.

So, note that

αs =
(
v − u
k − s

)
−

k∑
i=s+1

αi

(
ji
i− s

)
=
(
v − u
k − s

)
− αs+1js+1 −

k∑
i=s+2

αi

(
ji
i− s

)

≥
(
v − u
k − s

)
− s
(

v − u
k − s− 1

)
−

k∑
i=s+2

αi
ji − i+ s+ 1

i− s

(
ji

i− s− 1

)
.

But note that ji − i+ s+ 1 ≤ i− 1− i+ s+ 1 = s. Also, for i ≥ s+ 2, i− s ≥ 2 and thus for such i

we have ji−i+s+1
i−s ≤ s

2 . Thus

αs ≥
(
v − u
k − s

)
− s
(

v − u
k − s− 1

)
− s

2

k∑
i=s+2

αi

(
ji

i− s− 1

)
.

But note that by our induction assumption as+1 ≥ 0 and thus, using its definition

k∑
i=s+2

αi

(
ji

i− s− 1

)
≤
(

v − u
k − s− 1

)
,

which, when applied to our above inequality, yields
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αs ≥
(
v − u
k − s

)
− s
(

v − u
k − s− 1

)
− s

2

(
v − u

k − s− 1

)
=
(
v − u
k − s

)
− 3s

2

(
v − u

k − s− 1

)
≥ v − u− k + s+ 1

k − s

(
v − u

k − s− 1

)
− 3s

2

(
v − u

k − s− 1

)
≥
(

v − u
k − s− 1

)
(
v − u− k + s+ 1

k − s
− 3s

2
).

But note that as per our assumptions above, we have v ≥ ku. Also, theorem 1.3.1 is trivially true

in the case u = k, so we can also assume that u ≥ 2k. Using these facts, we have

v − u− k + s+ 1
k − s

=
v − u+ 1
k − s

− 1 ≥ v − u
k − s

− 1 ≥ 2k(k − 1)
k − s

− 1

≥ 2k(k − s)
k − s

− 1 = 2k − 1 =
3k
2

+
k

2
− 1 ≥ 3k − 1

2
≥ 3s

2
.

Thus, it follows that αs ≥ 0.

So, each αi is a nonnegative integer. Now, to form our collection of m-partitions, we simply

take the union of αi copies of A(i), for 1 ≤ i ≤ k. Call this collection A. Note that this will include

taking one copy of A(k) (since αk = 1), which is just the one-factorization Q with the appropriate

number of empty sets added to make it into a collection of m-partitions, so if we can extend A to be

a one-factorization (V, k,P) we will be done, as such a (V, k,P) will have (U, k,Q) as a subsystem

of it. Note that by theorem 1.2.4 and theorem 1.2.5, it follows that to show this we must show that

each s-subset of U, for 1 ≤ s ≤ u, occurs
(
v−u
k−s
)

times in the m-partitions contained in A. Note that

for k < s ≤ u this is trivial, as we constructed the m-partitions such that no such s-subset of U is

contained in any of them. Also, each k-subset can only be contained in the m-partitions contained

in A(k), and as they are contained once in it, it follows that they occur once in A, and as 1 =
(
v−u
k−k
)
,

this is the required value. So it remains to consider 1 ≤ s ≤ k − 1. Note that each s-subset of U

can only be contained in one of the A(i) with i ≥ s and are contained exactly
(
ji
i−s
)

times in it, by

above. So thus, as we have αi copies of A(i) in A, each s-subset occurs exactly
∑k
i=s αi

(
ji
i−s
)

times
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in A. But note that

k∑
i=s

αi

(
ji
i− s

)
= αs

(
ji

s− s

)
+

k∑
i=s+1

αi

(
ji
i− s

)
= αs +

k∑
i=s+1

αi

(
ji
i− s

)

=
(
v − u
k − s

)
−

k∑
i=s+1

αi

(
ji
i− s

)
+

k∑
i=s+1

αi

(
ji
i− s

)
=
(
v − u
k − s

)
,

and thus each s-subset occurs the proper amount of times, showing that A can be extended to

being a one-factorization of V, which, by definition, has (U, k,Q) as a subsystem, implying that

(u, v) ∈ EPk. �

Now, before considering v = 2u in general, consider the special case when k! (and not just k)

divides u:

Theorem 1.3.2 If k! | u and v = 2u, then (u, v) ∈ EPk.

Proof. Let U = [u], V = [v]. For each integer r with u
2 ≤ r < k, as r divides u, let T (r) be such that

(U, r, T (r)) is a one-factorization of
(
U
r

)
. Then, for each s with 1 ≤ s ≤

(
u−1
r−1

)
, using T (r)

s , we will

construct a collection Ar,s of m-partitions, where m = v
k as before. Each m-partition constructed

in this way will contain precisely u
k r-subsets of U and u

k (k − r)-subsets of U. Let σ1, σ2, . . . , σmr
,

where mr = u
r , be the r-subsets of U that are contained in T (r)

s . Then, for i with 1 ≤ i ≤ k, if we

let t = u
rk , let

Bi = {σ(i−1)t+1, σ(i−1)t+2, . . . , σit},

and let

Ci =
⋃
σ∈Bi

σ,

so Bi is a collection of t different r-subsets of U and Ci is the union of those r-subsets, making it a

collection of u
k elements of U. Then, let X be any (k− r)-subset of [k] and let X1, . . . , Xn (for some
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n with 1 ≤ n ≤ k − r) be any partition of X, where here we mean partition in the usual sense, i.e.,

each element of X is in exactly one of the Xi and each Xi is nonempty. Then, let xi = |Xi|. Then,

for any j ∈ Xi, let S(j) be such that (Cj , xi,S(j)) is a one-factorization (such an S(j) exists because

of the fact that |Cj | = u
k and as k! divides u and we have that xi ≤ k − r < k it follows that xi

divides |Cj |). Then, fix a given one factor Sj in each of the S(j) and let

Ti =
⋃
j∈Xi

Sj .

Each Ti will thus be a collection of xi-subsets of U, and by construction |Ti| = u
k . Then, consider a

fixed labeling of the elements of each Ti as

Ti = {y(i)
1 , y

(i)
2 , . . . , y

(i)
u
k
}.

Finally, for that labeling, for each integer j with 1 ≤ j ≤ u
k let

Yj =
n⋃
i=1

y
(i)
j .

Note that this implies that

|Yj | =
n∑
i=1

|y(i)
j | =

n∑
i=1

xi = |X| = k − r.

Finally, let W be the following m-partition of U :

W = {Y1, Y2, . . . , Yu
k
} ∪ {Bi : i ∈ [k] \X}.

One can easily check that such a W is in fact an m-partition of U. Also, it is clear that W consists

u
k sets of size r and u

k sets of size k − r. Further, we take a{x1,...,xn} copies of W , where

a{x1,...,xn} =
u(x1 − 1)! . . . (xn − 1)!(r − 1)!

(k − n)!
.



11

Note that this is an integer, as u is divisible by k! and thus is divisible by (k − n)! Then, we

repeat this process for every possible ordering of each of the Ti, and consider the collection of

(a{x1,...,xn})(x1!) . . . (xn!) different m-partitions. Note that by our construction, each (k − r)-subset

of U that, for each i with 1 ≤ i ≤ n contains precisely xi elements in one of the Cj with j ∈ Xi will

occur in exactly one of the above W and thus will occur a{x1,...,xn} times in this collection.

Now, we repeat the above construction for every possible (k− r)-set X in [k] and every possible

partition of such an X and let the collection of all of these m-partitions be Ar,s. Now, consider Y,

any arbitrary (k− r)-subset of U. Let zi = |Y ∩Ci| and let D = {i : zi > 0}, say D = {i1, . . . , in} for

some n with 1 ≤ n ≤ k− r. Then, by our above construction, Y will occur a{zi1 ,...,zin} times in Ar,s

for each possible (k − r)-subset X of [k] and partition of X into n sets X1, . . . Xn with |Xj | = zij

and ij ∈ Xj . Note that such an X1, . . . , Xn is equivalent to choosing zij −1 elements out of the k−n

element set [k] \D to put in the set Xj with each ij (and also choosing r elements not to included

in X). Thus, there are

(
k − n

zi1 − 1, . . . , zin − 1, r

)

ways to pick the X1, . . . , Xn. This implies that Y will occur precisely

a{zi1 ,...,zin}

(
k − n

zi1 − 1, . . . , zin − 1, r

)
=

u(zi1 − 1)! . . . (zin − 1)!(r − 1)!
(k − n)!

∗ (k − n)!
(zi1 − 1)! . . . (zin − 1)!r!

=
u

r

times in Ar,s. Further, if we let

Ar =
(u−1

r−1)⋃
s=1

Ar,s,

it follows that each (k − r)-subset of U occurs exactly

u

r

(
u− 1
r − 1

)
=
(
u

r

)
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times in Ar. As each m-partition contained in Ar contains exactly u
k (k− r)-subsets of U, and there

are
(
u
k−r
)

such subsets, it follows that there must have been precisely

(
u
r

)(
u
k−r
)

u
k

m-partitions in Ar. Further, it is clear by our above construction that every r-subset of U must

occur the same number of times in Ar and thus, as there were u
k in each m-partition, and

(
u
r

)
of

them total, it follows that each of them occurred precisely

(
u
r

)(
u
k−r
)

u
k

∗
u
k(
u
r

) =
(

u

k − r

)

times in Ar. Thus, for both i = r and i = k− r, each i-subset of U occurs exactly
(
u
k−i
)

times in Ar

(and no sets of any other size occur in Ar by construction).

Thus, if we let R be u
k copies of the empty set, and let

Ak = {Q ∪R : Q ∈ Q},

and let

A =
k⋃

r=bu
2 c

Ar,

it follows that each i-subset of U, for 1 ≤ i ≤ k, occurs exactly
(
u
k−i
)

times in A and thus by our

above theorems, we can embed U in V so (u, v) ∈ EPk. �

To prove the result when k! does not divide u requires us to first prove a generalization of theorem

1.2.1. First, we give the following definition:

Definition Given an m-partition A of U, and nonnegative integers t0, t1, . . . , tu such that∑u
i=0 ti = m and

∑u
i=0 iti = u, we say A is of type (t0, t1, . . . , tu) if and only if A contains precisely

ti elements of size i for 0 ≤ i ≤ u.
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Note the original problem of finding a (V, k,P) that contained (U, k,Q) as a subsystem could be

reduced to finding a collection of m-partitions of U such that each j-subset occurred a fixed number

of times. In our theorem below, we further reduce that problem to a problem of considering a certain

partition π of u(
(
v−1
k−1

)
−
(
u−1
k−1

)
) into parts of size at most k−1 and finding a decomposition of π into

partitions of u each of which has at most m parts. We note that this theorem is in fact an implicit

consequence of theorem 1 in [3], though the authors never explicitly describe it as such. Our proof

was found independently of theirs. Further, the result in [3] is incredibly general, whereas ours is

specifically formulated to fit this investigation. As such, the following proof is simpler then the proof

of their theorem 1, and uses terminology that is consistent with our above work.

Theorem 1.3.3 If there exist nonnegative integers ai for 1 ≤ i ≤ u, natural number N, and non-

negative integers ti,j for 1 ≤ i ≤ u and 1 ≤ j ≤ N such that, for each i ∈ [u] we have

ai

(
u

i

)
=

N∑
j=1

ti,j ,

and, for each j ∈ [N ], we have

u∑
i=1

ti,j ≤ m,

u∑
i=1

iti,j = u,

then there exists m-partitions A1,A2, . . . ,AN , of U = [u] where, for all j ∈ [n], Aj is of type

(t0,j , t1,j , . . . , tu,j), where t0,j = m −
∑u
i=1 ti,j . Further, it will be the case that each S ⊆ U with

S 6= ∅ occurs exactly a|S| times in the Aj .

Proof. This proof in fact is a generalization of the proof of theorem 38.1 in [1]. First, we let

a0 =
∑N
j=1 t0,j , since then it will be trivially true that the equation ai

(
u
i

)
=
∑N
j=1 ti,j holds for

i = 0. Also, we have

u∑
i=0

ti,j = t0 +
u∑
i=1

ti,j =

(
m−

u∑
i=1

ti,j

)
+

u∑
i=1

ti,j = m,
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u∑
i=0

iti,j = 0 +
u∑
i=1

iti,j = u.

Now, we will inductively show, for any integer w with 0 ≤ w ≤ u, that we can find m-partitions

Aw1 ,Aw2 , . . . ,AwN of the set [w] (when w = 0 this is just the empty set) and functions cw1 , c
w
2 , . . . , c

w
N

with

cwj : Awj → {0, 1, . . . u},

such that for each S ⊆ [u] and for each i with 0 ≤ i ≤ u, there are exactly ai
(
u−w
i−|S|

)
values of

j ∈ {1, 2, . . . , N} such that S ∈ Awj and cwj (S) = i (for S = ∅ we count each j with multiplicity

the number of times S appears in Aj and has cwj map it to i). Also, for each j ∈ [N ], there will be

exactly ti,j elements of Awj that map to i under cwj for each i ∈ {0, 1, . . . , u}.

For w = 0, for each j ∈ [N ], let A0
j contain m copies of the empty set, and arbitrarily choose ti,j

of them to have the function c0i take the value i (this can be done since
∑u
i=0 ti,j = m). Then, the

empty set will be sent to the value i a total of
∑N
j=1 ti,j times (counting multiplicities), but, as

N∑
j=1

ti,j = ai

(
u

i

)
= ai

(
u− w
i− 0

)
,

this shows our conditions are satisfied.

So assume for some w with 0 ≤ w < u we have Aw1 ,Aw2 , . . . ,AwN and cw1 , c
w
2 , . . . , c

w
N with our

above conditions being satisfied. Then, we form a transportation network as follows. The vertex set

will be

{σ} ∪ {τ} ∪A ∪
u⋃
i=0

Bi,

where

A = {Awj : 1 ≤ j ≤ N},
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Bi = {(S, i) : S ⊆ {1, 2, . . . , w}}.

The source will be σ and there will be a directed edge from σ to each Awj with capacity 1. There

will be a directed edge from Awj to (S, i) with capacity 1 if and only if S ∈ Awj and cwj (S) = i (if

S = ∅, there will be p such edges, where p is the number of copies of ∅ contained in Awj ). The sink

will be τ and there will be a directed edge from each pair (S, i) to τ with capacity ai
(
u−w−1
i−|S|−1

)
.

We define a flow f on this network as follows:

f(σ,Awj ) = 1 for 1 ≤ j ≤ N,

f(Awj , (S, i)) =
i− |S|
u− w

for each S ∈ Awj with cwj (S) = i,

f((S, i), τ) = ai

(
u− w − 1
i− |S| − 1

)
for each S ⊆ {1, 2, . . . , w} and 0 ≤ i ≤ u.

To see that this is a flow, it suffices to check on each Awj and each (S, i). So note that the value of

f into Awj is 1 and the value out of Awj is

∑
S∈Aw

j

cwj (S)− |S|
u− w

=
1

u− w

 ∑
S∈Aw

j

cwj (S)−
∑
S∈Aw

j

|S|

 =
1

u− w

((
u∑
i=0

iti,j

)
− w

)

∑
S∈Aw

j

cwj (S)− |S|
u− w

=
1

u− w
(u− w) = 1.

The value of f out of (S, i) is ai
(
u−w−1
i−|S|−1

)
and, since S takes the value i on precisely ai

(
u−w
i−|S|

)
of the

cwj , the value into (S, i) is

i− |S|
u− w

ai

(
u− w
i− |S|

)
= ai

(i− |S|)(u− w)!
(u− w)(i− |S|)!(u− w − i+ |S|)!

= ai

(
u− w − 1
i− |S| − 1

)
.

Thus f is a flow, and furthermore, it is maximal, since each edge out of σ and each edge into τ is

saturated (and thus each such edge is saturated in any maximal flow). Thus, by theorem 7.2 in [1], it

follows there is an integer-valued maximal flow f ′. Since each edge leaving σ is saturated, f ′ assigns

value 1 to exactly one of the edges leaving each Awj , which distinguishes one of the elements S ∈ Awj
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(corresponding to the unique (S, i) with f(Awj , (S, i)) = 1). Call it Sj and let S′j = Sj ∪ {w + 1}.

Then, define Aw+1
j and cw+1

j as follows:

Aw+1
j = Awj \ {Sj} ∪ {S′j},

cw+1
j (S) = cwj (S) if S 6= S′j ,

cw+1
j (S′j) = cwj (Sj).

Immediately it follows that cw+1
j takes the value i exactly as many times as cwj takes the value

i, which is ti,j . Also, it is clear that each Aw+1
j is an m-partition of {1, 2, . . . , w + 1}. Now, each

S ⊆ {1, 2, . . . , w + 1} that contains (w + 1) will have cw+1
j (S) = i whenever cwj (S \ {w + 1}) = i

and the edge entering (S \ {w + 1}, i) takes flow value 1. This is precisely the total flow leaving

(S \ {w + 1}, i), which, since each edge into τ must be saturated, is

ai

(
u− w − 1

i− |S \ {w + 1}| − 1

)
= ai

(
u− (w + 1)
i− |S|

)
,

and thus such an S satisfies our conditions. It remains to consider S with (w+ 1) 6∈ S. Then, S will

have cw+1
j (S) = i once for each time an edge entering (S, i) takes flow value 0. This will be the total

number of edges into (S, i) minus the flow value leaving (S, i), which is

ai

(
u− w
i− |S|

)
− ai

(
u− w − 1
i− |S| − 1

)
= ai

(
u− (w + 1)
i− |S|

)
,

and thus all S satisfy our condition.

Thus our induction is complete and it follows that the above result holds for w = u. Let Aj = Auj .

Then, each set S will have cuj (S) = i precisely ai
(
u−u
i−|S|

)
= ai

(
0

i−|S|
)

times. But
(

0
i−|S|

)
is nonzero

only when i = |S|, in which case it is 1. So each set |S| will occur precisely a|S| times in the Aj .

Further, each Aj has ti,j elements taking value i under cuj , and the only elements that can take value

i are i element sets. Thus Aj contains precisely ti,j elements of size i. But that means that Aj has
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type (t0,j , t1,j , . . . , tu,j). �

Note that, in theorem 1.3.3, if we consider the set V instead of U, let N =
(
v
k

)
, let m = v

k , let

tk,j = m for 1 ≤ j ≤ N, let ak = 1 and let ti,j = ai = 0 for 1 ≤ j ≤ N and all i 6= k, it is easily

checked that this gives us precisely theorem 1.2.1. In addition, if we let U be the set W in any one

of the intermediate steps in the above proof (with each of the terms interpreted in the same way),

and let each cUj for 1 ≤ j ≤ N be the constant function that sends each element to k, one can check

that we have the exact result of theorem 1.2.4.

However, theorem 1.3.3 does more than just give alternate proofs of our above results; to see

this, we first apply it to the case v = 2u. We need the following lemma:

Lemma 1.3.4 For all nonnegative integers u, k, i with u 6= 0, ku
(
u
i

)(
u
k−i
)

is an integer.

Proof. Consider two sets U1, U2 with |U1| = |U2| = u. Then, let A be the number of k element sets

containing i elements from U1, k − i elements from U2 and consisting of one distinguished element.

Clearly, the number of such k-sets is
(
u
i

)(
u
k−i
)

and the number of ways to pick a distinguished element

from this k-set is k and thus A = k
(
u
i

)(
u
k−i
)
. However, if we choose the distinguished element first,

it can either be chosen from U1 or U2. If it is chosen in U1, there are u ways to choose it,
(
u−1
i−1

)
ways

to choose the rest of the elements from U1 and
(
u
k−i
)

ways to choose the elements from U2. If the

distinguished element is in U2, there are u ways to choose it,
(
u−1
k−i−1

)
ways to choose the rest of the

elements from U2 and
(
u
i

)
ways to choose the elements from U1. Thus,

A = u

(
u− 1
i− 1

)(
u

k − i

)
+ u

(
u

i

)(
u− 1

k − i− 1

)
,

and it follows that

k

u

(
u

i

)(
u

k − i

)
=
A

u
=

1
u

(
u

(
u− 1
i− 1

)(
u

k − i

)
+ u

(
u

i

)(
u− 1

k − i− 1

))
=
(
u− 1
i− 1

)(
u

k − i

)
+
(
u

i

)(
u− 1

k − i− 1

)
,
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which is certainly an integer. �

We are now ready to deal with the case v = 2u in full generality.

Theorem 1.3.5 If k|u and v = 2u, then (u, v) ∈ EPk.

Proof. Let U = [u], V = [v]. We use a similar technique to the one used earlier in this section, which

involves finding a collection A of m = v
k partitions of Usuch that each r-element-subset occurs

exactly
(
v−u
k−r
)

=
(
u
k−r
)

times, for 1 ≤ r ≤ k − 1 (as, again, adding an appropriate number of copies

of the empty set to each element of Q will insure every k-subset occurs once). First, note that if k
2

is an integer, we can simply take a one-factorization (U, k2 , T ), add an appropriate number of empty

sets, and take
(
u
k
2

)
copies of it. So it remains to consider r 6= k

2 . We will in fact take m-partitions

that contain r-sets and (k − r)-sets, for 1 ≤ r < k
2 . So, for such an r, first let N = k

u

(
u
r

)(
u
k−r
)
,

which, by lemma 1.3.4, is an integer (further it is clearly positive as 0 < r < k ≤ u).Then, for all

j ∈ {1, 2, . . . , N} let t0,j , t1,j , . . . , tu,j be defined by tr,j = tk−r,j = u
k (note that k must divide u for

a one-factorization to exist) and ti,j = 0 if i is not equal to either r or k − r. Then we have

u∑
i=0

ti,j =
2u
k

= m,

u∑
i=0

iti,j = (r)(
u

k
) + (k − r)(u

k
) =

(r + k − r)(u)
k

=
ku

k
= u.

Further, let a0, a1, . . . , au be defined by ar =
(
u
k−r
)

and ak−r =
(
u
r

)
, and ai = 0 for i not equal to r

or k − r. Also, for i not equal to r or k − r we trivially have

ai

(
u

i

)
=

N∑
j=1

ti,j ,

as ai = 0 and for any j ∈ {1, 2, . . . , N} we have ti,j = 0. Also,

ar

(
u

r

)
=
(

u

k − r

)(
u

r

)
=
u

k
N =

N∑
j=1

tr,j ,
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ak−r

(
u

k − r

)
=
(
u

r

)(
u

k − r

)
=
u

k
N =

N∑
j=1

tk−r,j .

Thus, by theorem 1.3.3, it follows that we can find a collection Ar of m-partitions that have each

r-subset of U occur
(
u
k−r
)

times and each (k − r)-subset of U will occur
(
u
r

)
times (and every other

subset will not occur). So simply by taking the union of the Ar for 1 ≤ r < k
2 we will have our

desired collection of m-partitions, finishing the proof. �

Before proving theorem 1.2.3 for k ∈ {3, 4, 5}, we provide an application of theorem 1.3.3 to the

problem of completing Latin squares.

1.4 An Application of Theorem 1.3.3 to Symmetric Latin

Squares and Nonuniform Hypergraphs

We will use theorem 1.3.3 to give alternate proofs of a theorem of Cruse’s (which can be found in

[4]) and a theorem of Hoffman’s (which can be found in [5]), both of which talk about extending

incomplete symmetric Latin squares. First, we point out that in [3], the authors noticed the connec-

tion between their theorem 1 (of which our theorem 1.3.3 is a special case) and the results in [4] and

[5], but did not explicitly give an alternate proof of either result. Also, it was shown by the authors

in [3] that the result in [4] was a corollary of their result. However, we provide separate proofs of

each result for completeness and to show the different ways in which theorem 1.3.3 can be applied.

We remind the reader that a (possibly incomplete) Latin square L can be defined as a function

L : R × C → S, where |R| = |C| = k and |S| = n for some k, n ∈ N with k ≤ n, such that

L(x, y) = L(x, y′) implies y = y′ and L(x, y) = L(x′, y) implies x = x′. A symmetric Latin square is

a Latin square where L(x, y) = L(y, x) for all x ∈ R, y ∈ C. If k < n, then we say L is incomplete,

otherwise we say L is complete. Unless stated otherwise, we will assume that R = C = [k] and

S = [n]. We say that the Latin square L′ : R′ × C ′ → S is an extension of the Latin square

L : R× C → S if R ⊂ R′, C ⊂ C ′ and L′ restricted to R× C is equal to L.

Consider a fixed Latin square L : [k]× [k]→ [n]. For any j ∈ [n], define NL(j) = |L−1(j)|, define
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dL(x) = |L−1(j)∩D| where D = {(i, i) : i ∈ [k]} and define eL(j) = NL(j)−dL(j). So NL(j) counts

the number of times j occurs as a symbol in L, dL(j) counts the number of times j occurs on the

diagonal of L, and eL(j) counts the number of times j occurs off of the diagonal in L (where R, C,

and S have the common interpretations as the row, column, and symbol set of L, respectively).

We are now ready to give our alternate proof of Cruse’s theorem, using our theorem 1.3.3.

Theorem 1.4.1 Let k, n ∈ N with k < n. Then, let L : [k]× [k]→ [n] be an incomplete symmetric

Latin square. L is extendible to a complete symmetric Latin square L′ if and only if NL(j) ≥ 2k−n

for each j ∈ [n] and NL(j) ≡ n (mod 2) for at least k different j ∈ [n].

Proof. For j ∈ [n], we define the set Bj by, for x ∈ [k], {x} ∈ Bj if and only if L(x, x) = j and,

for x, y ∈ [k] with x 6= y, {x, y} ∈ Bj if and only if L(x, y) = j. Note that each 1-element subset of

[k] corresponds to an occurrence of j on the diagonal of L, so there are dL(j) 1-element sets in Bj .

Since L is symmetric, if x 6= y, {x, y} ∈ Bj implies that L(x, y) = L(y, x) = j. Thus, each 2-element

subset of [k] in Bj corresponds to two different off-diagonal occurrences of j in L and thus 1
2eL(j)

is the number of 2-element sets in Bj (and thus eL(j) must be even). Thus |Bj | = dL(j) + 1
2eL(j).

Further, define Cj in the following way:

Cj = {{x} : x ∈ [k] \
⋃
S∈Bj

S}.

Then, note that Bj ∪ Cj is a partition of [k] into 1- and 2-element subsets. We can thus define

n-partitions D1,D2, . . . ,Dn of [k] by taking Bj ∪Cj and adding an appropriate number of copies of

the empty set to obtain Dj .

Now, suppose that a complete symmetric L′ exists that is an extension of L. Then, we let B′j

be defined (similar to Bj above) by, for x ∈ [n], {x} ∈ B′j if and only if L′(x, x) = j and, for

x, y ∈ [n] with x 6= y, {x, y} ∈ B′j if and only if L′(x, y) = j. Note that, by definition, we must have

Bj ⊂ B′j . Also, by a well-known property of complete Latin squares (see, for example, [1]), each

symbol must appear once in each row (and column). This implies that each symbol occurs exactly

n times in L and thus NL′(j) = n for all j ∈ [n] and that that each B′j must be a partition of [n]
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into 1- and 2-element sets. Further, for any j ∈ [n], the number of 1-element sets in B′j is just dL′(j)

and the number of two element sets in B′j is 1
2eL′(j), which implies (as above) that eL′(j) is even.

Thus, since n = NL′(j) = dL′(j) + eL′(j), it follows that dL′(j) ≡ n (mod n). Now, consider any

j ∈ [n] with NL(j) 6≡ n (mod 2); thus NL(j) 6≡ dL′(j) (mod 2). Since NL(j) = dL(j) + eL(j) we

have NL(j) ≡ dL(j) (mod 2) so dL(j) 6≡ dL′(j) (mod 2). Thus, there is at least one y ∈ [n] \ [k]

with L′(y, y) = j. Since there are only n− k such y, it follows that there can be at most n− k such

j, and thus, for at least k choices of j, we have N(j) ≡ n (mod 2).

Further, consider any j ∈ [n] and any x ∈ [k] with x ∈ Cj . There must be some y ∈ [n] with

L′(x, y) = j but since x 6∈ ∪S∈BjS, we must have y ∈ [n] \ [k]. Further, by definition, for each

x ∈ Cj , we must have a unique such y, implying that n− k ≥ |Cj |. But |Cj | just counts the number

of rows (or columns) of L that do not contain the symbol j, and thus |Cj | = k − NL(j). Thus we

have n− k ≥ k −NL(j) implying that NL(j) ≥ 2k − n.

Conversely, assume that, for our incomplete symmetric Latin square L, we have NL(j) ≥ 2k− n

for each j ∈ [n] and NL(j) ≡ n (mod 2) for at least k different j ∈ [n]. Below, we show how to

choose ai, ti,j and ckj for 1 ≤ j ≤ n and 0 ≤ i ≤ n to satisfy both the initial conditions and one of

the inductive steps of theorem 1.3.3. First, we let ai = ti,j = 0 for i > 2, a2 = a1 = 1, and a0 =
(
n
2

)
.

Now, we define functions cj , ckj : Dj → {0, 1, 2} for all j ∈ [n].

For any S ∈ Di with |S| = 2 we define cj(S) = ckj (S) = 2. Then, for any S ∈ Di with |S| = 1

and S ∈ Bj , we define cj(S) = ckj (S) = 1. Further, for any S ∈ Di with |S| = 1 and S ∈ Cj ,

we define cj(S) = ckj (S) = 2. This defines cj(S) and ckj (S) for all nonempty S. We are left with

n −NL(j) − |Cj | copies of the empty set (this is nonnegative since |Cj | = k −NL(j) by above). If

NL(j) ≡ n (mod 2), for 1
2 (n − NL(j)) − |Cj | copies of the empty set, we define cj(∅) = 2, and for

the other 1
2 (n −NL(j)) copies we define cj(∅) = 0. Now, to see that 1

2 (n −NL(j)) − |Cj | is in fact

nonnegative, just note that by assumption, we have NL(j) ≥ 2k − n, and thus
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1
2

(n−NL(j))− |Cj | =
1
2

(n−NL(j))− (k −NL(j)) =
1
2
n+

1
2
NL(j)− k

≥ 1
2
n+

1
2

(2k − n)− k = 0.

If NL(j) 6≡ n (mod 2), we define cj(∅) = 1 for one copy of the empty set, cj(∅) = 2 for 1
2 (n −

NL(j) − 1) − |Cj | copies of the empty set, and cj(∅) = 0 for the other 1
2 (n − NL(j) − 1) copies of

the empty set. Again, all these numbers are nonnegative: since 1
2 (n − NL(j)) − |Cj | ≥ 0, we have

1
2 (n−NL(j)− 1)− |Cj | ≥ − 1

2 , and since this quantity must be an integer, it is nonnegative.

Note that in either case, for a fixed j ∈ [n] we have at least as many copies of the empty set in

Dj satisfying cj(∅) = 0 as those satisfying cj(∅) = 2. Then, let R be the set of all j ∈ [n] such that

NL(j) 6≡ n (mod 2). Thus, if r = |R| there are precisely r copies of the empty set with cj(∅) = 1 for

some j. If we let p be the number of copies of the empty set such that cj(∅) = 2, we have

p =
∑
j∈R

(
1
2

(n−NL(j)− 1)− |Cj |) +
∑

j∈[n]\R

(
1
2

(n−NL(j))− |Cj |)

=
∑
j∈R

(
1
2

(n−NL(j))− |Cj |) +
∑

j∈[n]\R

(
1
2

(n−NL(j))− |Cj |)−
∑
j∈R

1
2

=
∑
j∈[n]

(
1
2

(n−NL(j))− |Cj |)−
r

2

= 2
1
2

∑
j∈[n]

n− 1
2

∑
j∈[n]

NL(j)−
∑
j∈[n]

|Cj | −
r

2
.

Further, note that
∑
j∈[n] |NL(j)| simply counts the number of entries in L, which is k2. By above,

we have |Cj | = k −NL(j) and thus

∑
j∈[n]

|Cj | =
∑
j∈[n]

|Cj |(k −NL(j)) = kn−
∑
j∈[n]

NL(j) = kn− k2.

Thus, it follows that
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p =
1
2
n2 − 1

2
k2 − (kn− k2)− r

2
=

1
2

(n2 + k2 − r − 2kn) =
1
2

((n− k)2 − r).

Further, since p is an integer, we must have r ≡ (n − k)2 (mod 2), and since (n − k)2 ≡ (n − k)

(mod 2), we have r ≡ n− k (mod 2), implying that n− k − r is even (it must be nonnegative since

by assumption m ≤ n− k). Thus, choose 1
2 (n− k − r) copies of the empty set with cj(∅) = 2, and

for each, choose a unique copy of the empty set also in Dj with cj(∅) = 0 (such unique copies exist

by above). Then, for all such copies of the empty set, let ckj (∅) = 1. For all other copies of the empty

set, simply let ckj (∅) = cj(∅).Note that, for each pair of copies of the empty set with cj(∅) 6= ckj (∅)

we have (if ∅1 and ∅2 denote the two copies)

ckj (∅1) + ckj (∅2) = 1 + 1 = 2 = cj(∅1) + cj(∅2).

So, it follows that, for all j ∈ [n],

∑
S∈Dj

ckj (S) =
∑
S∈Dj

cj(S).

Now, there will be

r + 2(
1
2

)(n− k − r) = r + n− k − r = n− k =
(
n− k

1

)

copies of the empty set with ckj (∅) = 1, and

p− 1
2

(n− k − r) =
1
2

((n− k)2 − r)− 1
2

(n− k − r) =
1
2

((n− k)2 − (n− k)) =
(
n− k

2

)

copies of the empty set with ckj (∅) = 2. Finally, if q is the number of copies of the empty set with

ckj (∅) = 0, q is simply
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q =
∑
j∈R

1
2

(n−NL(j)− 1) +
∑

j∈[n]\R

1
2

(n−NL(j))− 1
2

(n− k − r)

=
1
2

∑
j∈[n]

(n−NL(j))− 1
2

∑
j∈R

1− 1
2

(n− k − r)

=
1
2

(n2 − k − r − (n− k − r)) =
1
2

(n2 − n) =
(
n

2

)
.

Now, for each j ∈ [n], for i ∈ {0, 1, 2} simply let ti,j be the number of S ∈ Dj with ckj (S) = i (and

then let all other values of ti,j = 0). Then, for any j ∈ [n], we trivially have
∑n
i=0 ti,j = |Dj | = n

and

n∑
i=0

iti,j =
∑
S∈Dj

ckj (S) =
∑
S∈Dj

cj(S)

=
∑

S∈Dj ,|S|=0

cj(S) +
∑

S∈Dj ,|S|=1

cj(S) +
∑

S∈Dj ,|S|=2

cj(S)

=
∑

S∈Dj ,|S|=0

cj(S) + dL(j) + 2(
1
2
eL(j) + |Cj |)

= dL(j) + eL(j) + 2|Cj |+
∑

S∈Dj ,|S|=0

cj(S)

= NL(j) + 2|Cj |+
∑

S∈Dj ,|S|=0

cj(S).

Now, note that if NL(j) ≡ n (mod 2), we have

∑
S∈Dj ,|S|=0

cj(S) = 2(
1
2

(n−NL(j))− |Cj |) = n−NL(j)− 2|Cj |.

Otherwise, we have

∑
S∈Dj ,|S|=0

cj(S) = 2(
1
2

(n−NL(j)− 1)− |Cj |) + 1 = n−NL(j)− 2|Cj |.

Thus, in either case, we have
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n∑
i=0

iti,j = NL(j) + 2|Cj |+ n−NL(j)− 2|Cj | = n.

Finally, note that for i ∈ {0, 1, 2},
∑n
j=1 ti,j simply counts the total number of S ∈ Dj with ckj (S) = i

as j ranges from 1 to n. Thus,

n∑
j=1

t0,j = q =
(
n

2

)
= a0

(
n

0

)
,

n∑
j=1

t1,j = k + n− k = n = a1

(
n

1

)
,

n∑
j=1

t2,j =
(
k

2

)
+ kn− k2 +

1
2

((n− k)2 − (n− k))

=
1
2

(k2 − k + 2kn− 2k2 + n2 − 2kn+ k2 − n+ k)

=
1
2

(n2 − n) = a2

(
n

2

)
,

n∑
j=1

ti,j = 0 = ai

(
n

i

)
,

for i > 2. Thus, we satisfy all of the initial conditions for theorem 1.3.3 (with U = [n] and m = N =

n). Further, let w = k and let Awj = Dj for j ∈ [n]. Then, by construction, we have ti,j elements of

Dj that map to i under ckj for i, j ∈ [n]. Further, consider any S ⊆ [k]. If |S| > 2, S does not appear

in any Dj . Otherwise, if |S| = 2, S is in exactly one of the Dj and maps to 2 under ckj . If |S| = 1, there

is one j where S ∈ Bj and thus ckj (S) = 1, and there are n− k such j with S ∈ Cj with ckj (S) = 2.

For the empty set, by above, with multiplicity, there are
(
n−k

2

)
copies that map to 2 under some ckj ,

there are
(
n−k

1

)
copies that map to 1, and there are

(
n
2

)
copies that map to 0. Thus, in all cases,

for any S ⊆ [k] and i ∈ [n], there are ai
(
n−k
i−|S|

)
values of j (with multiplicity) with ckj (S) = i. So we

satisfy the induction hypothesis at this step of the proof of theorem 1.3.3, and we can follow the

method of the proof to obtain n-partitions A1,A2, . . . ,An of [n] such that each 1 or 2 element subset

of [n] occurs in exactly one of the Aj . We now define the complete Latin square L′ : [n]× [n]→ [n]

by letting L′(x, x) = j where {x} ∈ Aj for x ∈ [n], and by letting L′(x, y) = L′(y, x) = j where
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{x, y} ∈ Aj for x, y ∈ [n] with x 6= y. Consider any j ∈ [n] and any S ∈ Bj . By above, we have

ckj (S) = |S|. Then, the directed edge from Dj to (S, i) (in the transportation network defined in the

proof of theorem 1.3.3) with capacity 1 must have i = |S|. But we know that the edge from (S, |S|)

to the sink has capacity 0 by definition. Thus, such an S can never be the distinguished element in

Dj , and from our construction, we will have S ∈ Ak+1
j and ck+1

j (S) = ckj (S) = |S|. So, by a simple

induction, it follows that S ∈ Aj . Therefore, given x, y ∈ [k], if L(x, y) = j, we have {x, y} ∈ Bj ,

which implies that {x, y} ∈ Aj and thus L′(x, y) = j. And thus we conclude that L′ (which by

construction is symmetric) is an extension of L. �

We now prove Hoffman’s theorem, again using theorem 1.3.3.

Theorem 1.4.2 Let k, n ∈ N with k < n. Then, let L : [k]× [k]→ [n] be an incomplete symmetric

Latin square and let fk+1, fk+2, . . . , fn ∈ [n]. Further, for j ∈ [n], let Fj be defined by

Fj = |{i ∈ [n] \ [k] : fi = j}|.

Then, L is extendible to a complete symmetric Latin square L′ with L′(i, i) = fi for i ∈ [n] \ [k] if

and only if, for each j ∈ [n], we have dL(j) + Fj ≡ n (mod 2) and NL(j) ≥ 2k − n+ Fj .

Proof. First, for each j ∈ [n], we define Bj , Cj and Dj as in the proof of theorem 1.4.1. Now,

assume that such an L′ as described in the statement of theorem 1.4.2 exits. Then, for each j ∈ [n],

define B′j as in the proof of theorem 1.4.1. Then, note that dL′(j) = dL(j) + Fj , and further

eL′(j) + dL′(j) = NL′(j) = n, and, since eL′(j) must be even (by above) we have:

dL′(j) ≡ n (mod 2),

dL(j) + Fj ≡ n (mod 2).

Also, as in our proof of theorem 1.4.1, for any j ∈ [n], for each x ∈ Cj , we must have a unique

y ∈ [n] \ [k] with L′(x, y) = j. Further, by assumption, if we have fy = j, we must also have
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L′(y, y) = j, which implies that L′(x, y) 6= j. Thus, it follows that each such y must also have fy 6= j.

So we must have |Cj | ≤ n − k − Fj . But, as above, we have |Cj | = k − NL(j), and it follows that

n− k − Fj ≤ k −NL(j) implying that NL(j) ≥ 2k − n+ Fj .

Conversely, assume that for each j ∈ [n] we have dL(j)+Fj ≡ n (mod 2) and NL(j) ≥ 2k−n+Fj .

As before, let ai = 0 for i > 2, let a2 = a1 = 1, and let a0 =
(
n
2

)
. Then, for each j ∈ [n], let ti,j = 0

for i > 2, and let

t1,j = dL(j) + Fj ,

t2,j =
1
2

(n− dL(j)− Fj),

t0,j = t2,j .

Note that t2,j is an integer, since dL(j) + Fj ≡ n (mod 2), and nonnegative, since dL(j) ≤ k and

Fj ≤ n− k by definition. Further,

n∑
i=0

ti,j = dL(j) + Fj + n− dL(j)− Fj = n,

n∑
i=0

iti,j = dL(j) + Fj + 2(
1
2

(n− dL(j)− Fj)) = n.

Also, note that
∑n
j=1 dL(j) = k and

∑n
j=1 Fj = n− k, which implies that
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n∑
j=1

t1,j =
n∑
j=1

(dL(j) + Fj) =
n∑
j=1

dL(j) +
n∑
j=1

Fj

= k + n− k = n = a1

(
n

1

)
,

n∑
j=1

t2,j =
n∑
j=1

1
2

(n− dL(j)− Fj)

=
1
2

n∑
j=1

n− 1
2

n∑
j=1

dL(j)− 1
2

n∑
j=1

Fj

=
n2 − k − (n− k)

2
=
n2 − n

2
=
(
n

2

)
= a2

(
n

2

)
,

n∑
j=1

t0,j =
n∑
j=1

t2,j =
(
n

2

)
= a0

(
n

0

)
,

and, for i > 2,

n∑
j=1

ti,j = 0 = ai

(
n

i

)
.

So if U = [n] and m = N = n, we again satisfy the initial conditions for theorem 1.3.3. We now

define functions ckj : Dj → {0, 1, 2} for j ∈ [n]. Consider any S ∈ Dj . If |S| = 2, let ckj (S) = 2. If

|S| = 1, if S ∈ Bj , let ckj (S) = 1; if S ∈ Cj , let ckj (S) = 2. Further, for Fj copies of the empty set, let

ckj (∅) = 1. Then, for t0,j copies of the empty set, let ckj (∅) = 0. And for all remaining copies of the

empty set, let ckj (∅) = 2. Let Ej be equal to the number of copies of the empty set in Dj . Note that

Ej = n− |Bj | − |Cj |. And since, by above, |Bj | = dL(j) + 1
2eL(j) and |Cj | = n−NL(j), we have:

Ej = n− |Bj | − |Cj | = n− (dL(j) +
1
2
eL(j) + k −NL(j))

= n− k +NL(j)− 1
2
eL(j)− dL(j)

= n− k + dL(j) + eL(j)− 1
2
eL(j)− dL(j)

= n− k +
1
2
eL(j).
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Now, note that:

Ej − Fj − t0,j = n− k +
1
2
eL(j)− Fj −

1
2

(n− dL(j)− Fj)

=
1
2

(n− Fj + dL(j) + eL(j))− k

=
1
2

(n+NL(j)− Fj − 2k),

and, since by our assumption we have NL(j) ≥ 2k− n+Fj , it follows that n+NL(j)−Fj − 2k ≥ 0

and thus Ej−Fj− t0,j ≥ 0. So our function ckj is well defined. By definition, the number of elements

of Dj that map to 0 under ckj is t0,j . The number of elements of Dj that map to 1 under ckj is

dL(j) + Fj = t1,j . Thus, since Dj contains n elements, the number of elements that map to 2 must

be

n− t0,j − t1,j = n− 1
2

(n− dL(j)− Fj)− dL(j)− Fj

=
1
2

(n− dL(j)− Fj) = t2,j .

Now, much like in the proof of theorem 1.4.1, let w = k and let Awj = Dj for j ∈ [n]. Consider

any S ⊆ [k] with |S| > 0. Since, for any i, j ∈ [n] we define ckj (S) and ai precisely the same as in

the proof of theorem 1.4.1, it follows that each such S has precisely ai
(
n−k
i−|S|

)
values of j ∈ [n] with

S ∈ Dj and ckj (S) = i. So it remains to consider the empty set. For each j ∈ [n], there are Fj copies

of the empty set with ckj (∅) = 1, and thus there are a total of

n∑
j=1

Fj = n− k =
(
n− k

1

)

copies of the empty set mapping to 1 under some ckj . Similarly, for j ∈ [n] there are t0,j copies of

the empty set with ckj (∅) = 0 and thus there are a total of
∑n
j=1 t0,j =

(
n
2

)
(by above) copies of the

empty set mapping to 0 under some ckj . Finally, for j ∈ [n], by above, there are 1
2 (n+NL(j)−Fj−2k)
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copies of the empty set with ckj (∅) = 2. Thus, if we let q be the total number of copies of the empty

set mapping to 2 under some ckj , we have

q =
n∑
j=1

1
2

(n+NL(j)− Fj − 2k)

=
1
2

n∑
j=1

n+
1
2

n∑
j=1

NL(j)− 1
2

n∑
j=1

Fj −
n∑
j=1

k

=
1
2
n2 +

1
2
k2 − 1

2
(n− k)− nk =

1
2
(
n2 − 2nk + k2 − (n− k)

)
=

1
2
(
(n− k)2 − (n− k)

)
=
(
n− k

2

)
.

Thus, the induction hypothesis found in the proof of theorem 1.3.3 is satisfied. Let N be the network

described in that proof. Recall, the vertices in N will either be σ (the source), τ (the sink), Dj

for j ∈ [n] or (S, i) with S ⊆ [n] and i ∈ [n]. Let f be the maximal flow explicitly described in

that proof. Then, let M be the induced subnetwork of N formed by removing vertices Dfk+1 and

(∅, 1). We now describe a flow g onM. First, for all directed edges inM of the form (Dj , (S, i)) for

some i, j ∈ [n], S ⊆ [k], let g(Dj , (S, i)) = f(Dj , (S, i)). Since all capacities in M are the same as

in N , this is allowed. For notational purposes, let g(Dj , (S, i)) = 0 for any i, j ∈ [n], S ⊆ [k] where

(Dj , (S, i)) is not an edge in M. Now, we simply define g on all remaining edges to insure that it is

a flow. For all j ∈ [n] \ {fk+1}, let

g(σ,Dj) =
∑

S⊆[k],i∈[n]

g(Dj , (S, i)),

and for all S ⊆ [k], i ∈ [n], let

g((S, i), τ) =
∑
j∈[n]

g(Dj , (S, i)).

It is clear from the way we define g that it in fact is a flow onM. Now, let v(f) and v(g) denote the

values of the flows f and g, respectively. Again, for notational purposes, we define f(Dj , (S, i)) = 0
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for all i, j ∈ [n], S ⊆ [k] where (Dj , (S, i)) is not an edge in N . Since for any j ∈ [n] \ {fk+1}, the

only edges of the form (Dj , (S, i)) that are in N but not in M are those with i = 1 and S = ∅ with

ckj (S) = 1. By above, there are precisely Fj such copies of the empty set. Thus, we have

g(σ,Dj) =
∑

S⊆[k],i∈[n]

g(Dj , (S, i)) =
∑

S⊆[k],i∈[n]

f(Dj , (S, i))− Fjf(Dj , (∅, 1))

= f(σ,Dj)− Fjf (Dj , (∅, 1)) = 1− Fjf(Dj , (∅, 1)).

Further, by the construction given in theorem 1.3.3, we have f(Dj , (∅, 1)) = 1
n−k , and it follows that

g(σ,Dj) = 1− Fj

n−k . So

v(g) =
∑

j∈[n]\{fk+1}

g(σ,Dj) =
∑

j∈[n]\{fk+1}

(
1− Fj

n− k

)

=
∑

j∈[n]\{fk+1}

1−
∑

j∈[n]\{fk+1}

Fj
n− k

= n− 1− 1
n− k

∑
j∈[n]\{fk+1}

Fj .

Further, by definition
∑
j∈[n] Fj = n − k by above, so, since Ffk+1 ≥ 1 by definition, we have∑

j∈[n]\{fk+1} Fj < n− k. Thus

v(g) = n− 1− 1
n− k

∑
j∈[n]\{fk+1}

Fj > n− 1− n− k
n− k

= n− 2.

Thus, since all capacities of edges in M are integers, there must be some integer-valued maximal

flow h on M with value v(h) ≥ v(g) > n − 2 so v(h) ≥ n − 1. And since there are precisely n − 1

edges of the form (σ,Dj), each with capacity 1, v(h) ≤ n− 1 so v(h) = n− 1. Then, we define a flow

h′ on N by letting h′ = h on all edges that are in M, h′(σ,Dfk+1) = 1, h′(Dfk+1 , (∅, 1)) = 1 for one

of those such edges, h′((∅, 1), τ) = 1. This is clearly a flow, provided that the capacity of ((∅, 1), τ)

is at least 1. But note that this capacity is equal to
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(
n− k − 1
1− |∅| − 1

)
=
(
n− k − 1

0

)
= 1,

ensuring that h′ is a well-defined flow. Further, the value v(h′) of this flow is v(h′) = v(h) + 1 = n.

Thus, since all edges leaving σ are saturated, h′ is a maximal, integer flow on N . So, as in the proof

of theorem 1.3.3, for each j ∈ [n] there exists a distinguished Sj in Dj . Consider {x} for any x ∈ [k].

Since

h′(({x}, 1), τ) = a1

(
n− k − 1

1− |{x}| − 1

)
=
(
n− k − 1
−1

)
= 0,

h′(({x}, 2), τ) = a2

(
n− k − 1

2− |{x}| − 1

)
=
(
n− k − 1

0

)
1,

there must be precisely one j with Sj = {x}; call this jx. Then, we define Lk+1 : [k+1]× [k+1]→ [n]

as follows:

Lk+1(x, y)



L(x, y) if x ∈ [k], y ∈ [k],

jx if x ∈ [k], y = k + 1,

jy if x = k + 1, y ∈ [k],

fk+1 if x = k + 1, y = k + 1.

Note that it immediately follows that Lk+1(x, y) = Lk+1(y, x) for all x, y ∈ [k+ 1]. Further, suppose

we have Lk+1(x, y) = Lk+1(x, y′) for some x, y, y′ ∈ [k + 1]. Note that if x, y, y′ ∈ [k], the fact

that L is a Latin square implies that y = y′. Consider the case when x = k + 1. Then, if both

y, y′ ∈ [k], we have jy = jy′ . But then, since each Dj has only one distinguished subset, we must

have y = y′. So, consider the case x = y′ = k + 1, y ∈ [k]. Then, we have jy = fk+1. But note

that, by above, we have h′(Dfk+1 , (∅, 1)) = 1, it follows that the empty set is the distinguished set

in Dfk+1 , contradicting the fact that {y} is the distinguished set in Djy = Dfk+1 . The remaining

case (without loss of generality) is when x, y ∈ [k] and y′ = k + 1. In this case, we must have

L(x, y) = jx. This implies that {x, y} ∈ Bjx , and thus {x} 6∈ Cjx . Note that, by above, for any
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S ⊆ [k] with |S| = 1, the only way that S can be the distinguished subset of Djx is if ckjx(S) = 2.

This can only happen, by definition, if S ∈ Cjx . Thus, {x} cannot be the distinguished subset of Djx ,

a contradiction. As this covers all cases, we must have y = y′. Further, since Lk+1 is symmetric, it

follows that Lk+1(x, y) = Lk+1(x′, y) implies that x = x′. Thus Lk+1 is a symmetric Latin square,

and, by construction, it is an extension of L such that Lk+1(k + 1, k + 1) = fk+1. Further, consider

the numbers fk+2, fk+3, . . . , fn and let

F ′j = |{i ∈ [n] \ [k + 1] : fi = j}|.

Then, for any j 6= fk+1, we have dLk+1(j) = dL(j) and F ′j = Fj , so

dLk+1(j) + F ′j = dL(j) + Fj ≡ n (mod 2).

And if j = fk+1 we have dLk+1(j) = dL(j) + 1, and F ′j = Fj − 1, so

dLk+1(j) + F ′j = dL(j)− 1 + Fj + 1 = dL(j) + Fj ≡ n (mod 2).

Thus, Lk+1 satisfies the first condition of theorem 1.4.2. Now, suppose there is some j 6= fk+1 with

NLk+1(j) < 2(k + 1)− n+ F ′j . Then, it follows that

NLk+1(j) < 2(k + 1)− n+ F ′j = 2k − n+ Fj + 2 ≤ NL(j) + 2.

Thus, we must have NLk+1(j) ≤ NL(j) + 1. But, since Lk+1(k+ 1, k+ 1) = fk+1 6= j, if NLk+1(j) >

NL(j) there must be some x ∈ [k] with Lk+1(x, k + 1) = Lk+1(k + 1, x) = j and thus NLk+1(j) =

NL(j) + 2. But by above, NLk+1(j) ≤ NL(j) + 1, implying that NLk+1(j) = NL(j). This implies that

Sj , the distinguished set in Dj must be equal to the empty set (if we had |Sj | = 1, by above, the

symbol j must occur in the k + 1 row and column, contradicting the fact that NLk+1(j) = NL(j)).

Further, the empty set is chosen as the distinguished set in Dfk+1 and this copy has ckfk+1
(∅) = 1,

and, by above, this is the only such copy of the empty set. Thus, not only must the empty set be
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chosen as the distinguished set in Dj , it must be some copy with ckj (∅) = 2. By above, there must

be

Ej − Fj − t0,j =
1
2

(n+NL(j)− Fj − 2k)

such copies of the empty set, and thus 1
2 (n + NL(j) − Fj − 2k) ≥ 1. But this implies that 2 ≤

n+NL(j)− Fj − 2k, which in turn implies that

NLk+1(j) = NL(j) ≥ 2 + 2k − n+ Fj = 2(k + 1)− n+ F ′j ,

contradicting our above assumption that NLk+1(j) < 2(k + 1) − n + F ′j . Thus, no such j exists. It

follows that Lk+1 satisfies the conditions of theorem 1.4.2 as well, and if we let Lk = L, we can

inductively construct Lk, Lk+1, Lk+2, . . . , Ln such that, for k + 1 ≤ i ≤ n, Li is symmetric, Li is an

extension of Li−1 and Li(i, i) = fi. Thus, if we simply let L′ = Ln, L′ is symmetric, L′(i, i) = fi for

k + 1 ≤ i ≤ n and L′ is an extension of L, thus completing our proof. �

Note that the collection of n-partitions associated with a complete symmetric Latin square L :

[n] × [n] → [n] are such that each 1-subset and 2-subset of [n] occur exactly once. For N ∈ N and

j1, j2 . . . , jN , α1, α2, . . . , αN ∈ N, we define the hypergraph
⋃N
i=1 αi

(
V
ji

)
to be the edge-disjoint union

of each αi
(
V
ji

)
, where αi

(
V
ji

)
denotes the hypergraph formed by taking αi edge-disjoint copies of

(
V
ji

)
.

Then, a complete symmetric Latin square is equivalent to a one-factorization of
(
[n]
1

)
∪
(
[n]
2

)
. We now

prove a theorem that gives necessary and sufficient conditions for the existence of a one-factorization

of α
(
V
r

)
∪ β
(
V
s

)
for arbitrary α, β ∈ N and r, s ∈ [v] with r 6= s. First, let n = n(r, s) be the number

of pairs (a, b) where a, b are nonnegative integer solutions to the equation ar + bs = v, and let

(a1, b1), (a2, b2), . . . , (an, bb) be such that air + bis = v for each i ∈ [n] and a1 > a2 > · · · > an (and

thus b1 < b2 · · · < bn). Next, we give a preliminary lemma.

Lemma 1.4.3 Given v, α, β ∈ N and r, s ∈ [v] with n = n(r, s) as above, let d = gcd(r, s). If there

exists some j0 ∈ [n] with v
d dividing aj0β

(
v
s

)
−bj0α

(
v
r

)
, then for all j ∈ [n], vd divides ajβ

(
v
s

)
−bjα

(
v
r

)
.
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Proof. Suppose such a j0 exists, and let j ∈ [n] with j 6= j0. Then, note that by definition we have

aj0r + bj0s = v = ajr + bjs, and thus (aj − aj0)r = (bj0 − bj)s, which implies that aj−aj0
s = bj0−bj

r .

Then,

ajβ

(
v

s

)
− bjα

(
v

r

)
= (aj − aj0 + aj0)β

(
v

s

)
− (bj − bj0 + bj0)α

(
v

r

)
= (aj − aj0)β

(
v

s

)
+ (bj0 − bj)α

(
v

r

)
+ aj0β

(
v

s

)
− bj0α

(
v

r

)
.

Further, since v
d divides aj0β

(
v
s

)
− bj0α

(
v
r

)
by assumption, it remains to show that v

d divides (aj −

aj0)β
(
v
s

)
+ (bj0 − bj)α

(
v
r

)
. If we let A = (aj − aj0)β

(
v
s

)
+ (bj0 − bj)α

(
v
r

)
, note that

A = (aj − aj0)β
v

s

(
v − 1
s− 1

)
+ (bj0 − bj)α

v

r

(
v − 1
r − 1

)
= v

(
aj − aj0

s
β

(
v − 1
s− 1

)
+
bj0 − bj

r
α

(
v − 1
r − 1

))
= v

(
aj − aj0

s
β

(
v − 1
s− 1

)
+
aj − aj0

s
α

(
v − 1
r − 1

))
=
v

s
(aj − aj0)

(
β

(
v − 1
s− 1

)
+ α

(
v − 1
r − 1

))
.

Thus, it follows that

A÷ v

d
=
d

s
(aj − aj0)

(
β

(
v − 1
s− 1

)
+ α

(
v − 1
r − 1

))
.

Further, by above, r
d (aj − aj0) = s

d (bj0 − bj) . But, by definition, s
d and r

d are relatively prime, and

thus it follows that s
d divides (aj − aj0). So d

s (aj − aj0) is an integer, which implies that v
d divides

A, which in turn implies that v
d divides ajβ

(
v
s

)
− bjα

(
v
r

)
. �

We are now ready to state our theorem.

Theorem 1.4.4 Given v, α, β ∈ N and r, s ∈ [v] with n = n(r, s) as defined above, if V = [v], there
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exists a one-factorization of α
(
V
r

)
∪ β
(
V
s

)
if and only if one of the following holds:

(1) n = 1, a1 divides α
(
v
r

)
, b1 divides β

(
v
s

)
, and b1α

(
v
r

)
= a1β

(
v
s

)
(2) n > 1, b1α

(
v
r

)
≤ a1β

(
v
s

)
, anβ

(
v
r

)
≤ bnα

(
v
s

)
, and there exists some j ∈ [n] such that v

d divides

ajβ
(
v
s

)
− bjα

(
v
r

)
, where d = gcd(r, s).

Proof. First, note that the existence of such a one-factorization is equivalent to a collection of

v-partitions A1,A2, . . . ,AN (for some N ∈ N) of V such that each r-subset occurs α times, each

s-subset occurs β times, and no other nonempty subset occurs at all in the Ai. theorem 1.3.3 shows

that this is equivalent to the existence of nonnegative integers ti,j for i ∈ [v], j ∈ [N ] such that

ti,j = 0 unless i ∈ {0, r, s}, α
(
v
r

)
=
∑N
j=1 tr,j , β

(
v
s

)
=
∑N
j=1 ts,j , and

v∑
i=1

ti,j =
v∑
i=1

iti,j = v,

for all j ∈ [N ]. Note that this last conditions will be true if and only if, for each j ∈ [N ], there exists

some i ∈ [n] such that tr,j = ai, ts,j = bi and t0,j = v − ai − bi, where (ai, bi) are defined as above.

Thus, we can define mi to be the number of times this occurs for each i ∈ [n], and the condition

from theorem 1.3.3 is equivalent to the existence of nonnegative integers m1,m2, . . . ,mn such that

α
(
v
j

)
=
∑n
i=1 aimi and β

(
v
k

)
=
∑n
i=1 bimi.

So assume that such m1,m2, . . . ,mn exist. Then, if n = 1, we must have a1m1 = α
(
v
r

)
and

b1m1 = β
(
v
s

)
and thus m1 =

α(v
r)
a1

=
β(v

s)
b1

. Since m1 must be an integer, this implies that a1 divides

α
(
v
r

)
and b1 divides β

(
v
s

)
, and we also have b1α

(
v
r

)
= a1β

(
v
s

)
. This gives condition (1). If n > 1,

then, since a1 > a2 > · · · > an, and b1 < b2 < · · · < bn, we have

a1β

(
v

s

)
− b1α

(
v

r

)
= a1

n∑
i=1

bimi − b1
n∑
i=1

aimi =
n∑
i=1

a1bimi −
n∑
i=1

aib1mi

=
n∑
i=1

(a1bi − aib1)mi ≥
n∑
i=1

(a1b1 − a1b1)mi = 0,

and thus a1β
(
v
s

)
≥ b1α

(
v
r

)
. Similarly,
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bnα

(
v

r

)
− anβ

(
v

s

)
= bn

n∑
i=1

aimi − an
n∑
i=1

bimi =
n∑
i=1

aibnmi −
n∑
i=1

anbimi

=
n∑
i=1

(aibn − anbi)mi ≥
n∑
i=1

(anbn − anbn)mn = 0,

and thus anβ
(
v
r

)
≤ bnα

(
v
s

)
. Further, consider any j ∈ [n]. Then, note that

ajβ

(
v

s

)
− bjα

(
v

r

)
= aj

n∑
i=1

bimi − bj
n∑
i=1

aimi =
n∑
i=1

ajbimi −
n∑
i=1

aibjmi

=
n∑
i=1

(ajbi − aibj)mi.

It is an elementary consequence of Bezout’s identity (see Proposition 5 in [6]) that there exists k ∈ Z

such that ai = aj − k sd and bi = bj + k rd . Thus,

ajbi − aibj = aj(bj + k
r

d
)− (aj − k

s

d
)bj = ajbj +

kajr

d
− ajbj +

kbjs

d

=
kajr + kbjs

d
=
k(ajr + bjs)

d
=
kv

d
,

and thus v
d divides ajbi− aibj for all i ∈ [n]. This implies, by above, that v

d divides ajβ
(
v
s

)
− bjα

(
v
r

)
,

which shows that condition (2) holds.

Conversely, assume that either condition (1) or (2) holds. If we have condition (1), we can

simply let m1 =
α(v

r)
a1

=
β(v

s)
b1

and it follows that a1m1 = α
(
v
r

)
and b1m1 = β

(
v
s

)
, implying a one-

factorization of α
(
V
r

)
∪β
(
V
s

)
exists. So assume that condition (2) holds. Then, choose j ∈ [n−1] such

that bjα
(
v
r

)
≤ ajβ

(
v
s

)
and bj+1α

(
v
r

)
≥ aj+1β

(
v
s

)
. Since condition (2) insures us that b1α

(
v
r

)
≤ a1β

(
v
s

)
and bnα

(
v
r

)
≥ anβ

(
v
s

)
, such a j must exist. Then, let

mj =
d

v

(
bj+1α

(
v

r

)
− aj+1β

(
v

s

))
,
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mj+1 =
d

v

(
ajβ

(
v

s

)
− bjα

(
v

r

))
,

and let mi = 0 for all i ∈ [n] \ {j, j + 1}. Condition (2) and lemma 1.4.3 insure that both mj and

mj+1 are integers. Now, again, Proposition 5 in [6] states that, for any i ∈ [n], there exists some

k ∈ Z such that ai = aj − k sd and bi = bj + k rd . Proposition 5 also states that this condition is

sufficient, i.e., if we let a = aj − k sd and b = bj + k rd then ar+ bs = v. Thus, since the ai are indexed

in decreasing order, aj+1 is the next smallest ai after aj , and it follows that aj+1 = aj − s
d and thus

bj+1 = bj + r
d . Thus

n∑
i=1

aimi = ajmj + aj+1mj+1

= aj
d

v

(
bj+1α

(
v

r

)
− aj+1β

(
v

s

))
+ aj+1

d

v

(
ajβ

(
v

s

)
− bjα

(
v

r

))
=
d

v

(
α

(
v

r

)
(ajbj+1 − aj+1bj) + β

(
v

s

)
(ajaj+1 − ajaj+1)

)
=
dα

v

(
v

r

)(
aj(bj +

r

d
)− (aj −

s

d
)bj
)

=
dα

v

(
v

r

)(
ajbj − ajbj +

ajr + bjs

d

)
=
dα

v

(
v

r

)
v

d
= α

(
v

r

)
,

n∑
i=1

bimi = bjmj + bj+1mj+1

= bj
d

v

(
bj+1α

(
v

r

)
− aj+1β

(
v

s

))
+ bj+1

d

v

(
ajβ

(
v

s

)
− bjα

(
v

r

))
=
d

v

(
α

(
v

r

)
(bjbj+1 − bjbj+1) + β

(
v

s

)
(ajbj+1 − aj+1bj)

)
=
dβ

v

(
v

s

)(
aj(bj +

r

d
)− (aj −

s

d
)bj
)

=
dβ

v

(
v

s

)(
ajbj − ajbj +

ajr + bjs

d

)
=
dβ

v

(
v

s

)
v

d
= β

(
v

s

)
.

This, by above, shows that a one-factorization of α
(
v
r

)
∪ β
(
v
s

)
exists. �
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In the next section we show how theorem 1.2.3, for the case k = 3, is a direct consequence of

theorem 1.4.4. We will then use a modified form of that argument, along with theorem 1.3.3, to

prove theorem 1.2.3 for k = 4 and k = 5.

1.5 Proving Theorem 1.2.3 for k=3 and k=4

We begin by considering the case k = 3.

Theorem 1.5.1 For any u, v ∈ N such that 3 divides both u and v, (u, v) ∈ EP3 if and only if

v ≥ 2u.

Proof. Note that theorem 1.3.5 takes care of the case v = 2u. So, consider any u, v ∈ N such that 3

divides both u and v, and such that v > 2u; since 3 divides both u and v, we must have v ≥ 2u+ 3.

Now, consider the hypergraph H = α
(
U
1

)
∪ β
(
U
2

)
, where α =

(
v−u

2

)
and β =

(
v−u

1

)
. Then, defining

n = n(1, 2) as in theorem 1.4.4, it is clear that n = bu2 c+1, since if we define ai and bi as in theorem

1.4.4, for 1 ≤ i ≤ bu2 c + 1, it is clear that bi = i − 1, ai = u − 2i + 2, and these are the only such

solutions to a+ 2b = u. Note that, since a1 = u and b1 = 0, we have

a1β

(
u

2

)
− b1α

(
u

1

)
= u

(
v − u

1

)(
u

2

)
,

which is obviously divisible by u. Further,

b1α

(
u

1

)
= 0 ≤ a1β

(
u

2

)
,

so, to satisfy condition (2) of theorem 1.4.4, it remains to check whether anβ
(
u
2

)
≤ bnα

(
u
1

)
is true or

not. Note that if u is even, then an = 0, making this statement trivially true. So consider the case

when u is odd. Then, an = 1 and bn = u−1
2 . So
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anβ

(
v

r

)
= (v − u)

(
u

2

)
= (v − u)

u(u− 1)
2

= bnu(v − u)

≤ bnu(v − u)
v − u− 1

2
= bnu

(
v − u

2

)
= bnα

(
u

1

)
.

This shows that condition (2) is satisfied, which implies that there exists a one-factorization of

α
(
U
1

)
∪ β
(
U
2

)
. Further, the proof of theorem 1.4.4 shows that this one-factorization can be taken to

only contain two types of one-factors: those that contain aj 1-subsets bj 2-subsets of U, and those

that contain aj+1 1-subsets and bj+1 2-subsets of U, for some j ∈ [n]. Further, it is implied that the

number of the first type of one-factors occurring in our one-factorization is mj and the number of

the second type of one-factors occurring in our one-factorization is mj+1, where, as in that proof,

mj =
1
u

(
bj+1α

(
u

1

)
− aj+1β

(
u

2

))
,

mj+1 =
1
u

(
ajβ

(
u

2

)
− bjα

(
u

1

))
.

Thus, in particular, we must have bj+1α
(
u
1

)
≥ aj+1β

(
u
2

)
. Further, since aj = u−2j+2, aj+1 = u−2j,

bj = j − 1 and bj+1 = j, as well as α =
(
v−u

2

)
and β =

(
v−u

1

)
, it follows that:

j

(
v − u

2

)(
u

1

)
≥ (u− 2j)

(
v − u

1

)(
u

2

)
,

j
(v − u)(v − u− 1)

2
u ≥ (u− 2j)(v − u)

u(u− 1)
2

,

j(v − u− 1) ≥ (u− 2j)(u− 1),

j(v − u− 1) ≥ u2 − u− j(2u− 2),

j(v + u− 3) ≥ u2 − u,

and thus, j ≥ u2−u
v+u−3 . Note that the number of elements in the first type of one-factor is aj + bj =

u − 2j + 2 + j − 1 = u − j + 1 and the number of elements in the second type of one-factor is
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aj+1 + bj+1 = u− 2j + j = u− j. Thus, all one-factors in our one-factorization have cardinality less

than or equal to

u− j + 1 ≤ u− u2 − u
v + u− 3

+ 1 =
vu+ u2 − 3u− u2 + u+ v + u− 3

v + u− 3

=
v + vu− u− 3
v + u− 3

.

We claim this last quantity is strictly less than v+3
3 . To see this, note that

v + 3
3
− v + vu− u− 3

v + u− 3
=
v2 + vu− 3v + 3v + 3u− 9

3(v + u− 3)
− 3v + 3vu− 3u− 9

3(v + u− 3)

=
v2 − 2vu− 3v + 6u

3(v + u− 3)
=
v(v − 2u− 3) + 6u

3(v + u− 3)

≥ 6u
3(v + u− 3)

> 0,

since v−2u−3 ≥ 0 by above. Thus, our claim is proven, and it follows that u−j+1 < v+3
3 . Further,

since u− j + 1 must be an integer, we have u− j + 1 ≤ v
3 , and it follows that each one-factor in our

one-factorization has cardinality at most m = v
3 . We can thus add an appropriate number of copies

of the empty set to each one-factor so that it becomes an m-partition of U. Thus, we have found

a collection of m-partitions of U such that each 1-subset of U occurs α =
(
v−u

2

)
times, and each

2-subset of U occurs β =
(
v−u

1

)
times. It follows, by the methods used above, that (u, v) ∈ EP3. �

Next, we consider the case when k = 4.

Theorem 1.5.2 For any u, v ∈ N such that 4 divides both u and v, (u, v) ∈ EP4 if and only if

v ≥ 2u.

Proof. Note that theorem 1.3.5 deals with the case v = 2u, and theorem 1.3.1 deals with the case

v ≥ 4u. So consider any v, u such that 4 divides both u and v and such that 2u < v < 4u. We will

consider three different types of m-partitions of u, where m = v
4 . One will consist of u

4 3-subsets of
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U, u4 1-subsets of U and v−2u
4 copies of the empty set. The second type will consist of u

2 2-subsets

of U and v−2u
4 copies of the empty set. The last type of m-partition will consist of a 3-subsets of

U, b 2-subsets of U, c 1−subsets of U and v
4 − a − b − c copies of the empty set, where a, b and c

depend on u and v. Obviously, we must have 3a+ 2b+ c = u and a+ b+ c ≤ v
4 . Then, let

m1 =
4
u

((
v − u

1

)(
u

3

)
− a

(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

)
,

m2 =
2
u

((
v − u

2

)(
u

2

)
− b
(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

)
,

m3 =

(
u
1

)(
v−u

3

)
−
(
u
3

)(
v−u

1

)
c− a

.

We claim that there exist suitable natural numbers a, b, c such that each mi is a nonnegative integer

and such that 3a+ 2b+ c = u and a+ b+ c ≤ v
4 . Then, note that

m1
u

4
+m3a =

(
v − u

1

)(
u

3

)
− a

(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

+ a

(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

=
(
v − u

1

)(
u

3

)
,

m2
u

2
+m3b =

(
v − u

2

)(
u

2

)
− b
(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

+ b

(
u
1

)(
v−u

3

)
−
(
u
3

)(
v−u

1

)
c− a

=
(
v − u

2

)(
u

2

)
,
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m1
u

4
+m3c =

(
v − u

1

)(
u

3

)
− a

(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

+ c

(
u
1

)(
v−u

3

)
−
(
u
3

)(
v−u

1

)
c− a

=
(
v − u

1

)(
u

3

)
+ (c− a)

(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
c− a

=
(
v − u

1

)(
u

3

)
+
(
v − u

3

)(
u

1

)
−
(
v − u

1

)(
u

3

)
=
(
v − u

3

)(
u

1

)
.

So, by theorem 1.3.3, we can find a collection of m1, m2 and m3 m-partitions of U of the first, second

and third type, respectively, described above, such that each 3-subset of U occurs
(
v−u

1

)
times, each

2-subset of U occurs
(
v−u

2

)
times and each 1-subset of U occurs

(
v−u

3

)
times. Thus (u, v) ∈ EP4.

All that is left to do is determine a, b, and c. First, let S =
(
v−u

3

)(
u
1

)
−
(
v−u

1

)(
u
3

)
. Then,

S =
(
v − u

3

)(
u

1

)
−
(
v − u

1

)(
u

3

)
=

1
6
u(v − u)(v − u− 1)(v − u− 2)(u)− 1

6
u(v − u)(u− 1)(u− 2)

=
u(v − u)

6
(
v2 − (2u+ 3)v + (u+ 1)(u+ 2)− (u− 1)(u− 2)

)
=
u(v − u)

6
(
v2 − (2u+ 3)v + 6u

)
=
u(v − u)(v − 2u)(v − 3)

6
.

Now, we will consider three different cases.

Case 1: v ≡ 2u (mod 3).

Note that this implies that v−2u
3 is a nonnegative integer, and, in fact, it is even, since both u

and v are. Let c = v−2u
3 + a and b = u−3a−c

2 = 5u−v−12a
6 , where a will be a nonnegative integer

determined below. Note that by construction, we have 3a+ 2b+ c = u. Trivially, c is a nonnegative

integer and, because v−2u
3 is even a and c have the same parity. This implies that 3a + c is even,

and thus b is an integer. Since b must nonnegative as well, we must have 5u− v− 12a ≥ 0, which is

equivalent to
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a ≤ 5u− v
12

.

Also,

a+ b+ c = a+
5u− v − 12a

6
+
v − 2u

3
+ a =

v + u

6

≤
v + v

2

6
=

3v
12

=
v

4
,

which is one of our requirements. Further, note that

m1 =
4
u

((
v − u

1

)(
u

3

)
− a S

c− a

)
=

4
u

(
u(v − u)(u− 1)(u− 2)

6
− au(v − u)(v − 2u)(v − 3)

2(v − 2u)

)
=

2(v − u)
3

((u− 1)(u− 2)− 3a(v − 3)) ,

m2 =
2
u

((
v − u

2

)(
u

2

)
− b S

c− a

)
=

2
u

(
u(v − u)(u− 1)(v − u− 1)

4
− bu(v − u)(v − 2u)(v − 3)

2(v − 2u)

)
=

(v − u)
2

((u− 1)(v − u− 1)− 2b(v − 3)) ,

m3 =
S

c− a
=
u(v − u)(v − 3)

2
.

Since v − u is divisible by 2, it follows that m2 and m3 are integers, and clearly m3 is nonnegative.

If v− u is not divisible by 3, since v− 2u is, it follows that u = (v− u)− (v− 2u) is not divisible by

3 either, implying either u ≡ 1 (mod 3) or u ≡ 2 (mod 3). So one of (v−u), (u− 1) or (u− 2) must

be divisible by 3, which implies that m1 is an integer. It remains to find sufficient conditions for a

such that m1 and m2 are nonnegative (and such that b is nonnegative). Note that m1 is nonnegative
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if and only if a ≤ (u−1)(u−2)
3(v−3) . Further, m2 is nonnegative if and only if

0 ≤ (u− 1)(v − u− 1)− 2
5u− v − 12a

6
(v − 3)

= vu− u2 − u− v + u+ 1− (v − 3)(5u− v)
3

+ 4a(v − 3)

=
−3u2 + 3vu− 3v + 3− 5vu+ v2 + 15u− 3v

3
+ 4a(v − 3)

=
v2 − 2vu− 3u2 − 6v + 15u+ 3

3
+ 4a(v − 3),

which is true if and only if

a ≥ −v
2 + 2uv + 3u2 + 6v − 15u− 3

12(v − 3)
.

To insure that both b and m1 are nonnegative, we simply let a be the minimum of 5u−v
12 and

b (u−1)(u−2)
3(v−3) c. Note that, since v ≤ 4u, 5u−v

12 is nonnegative, and, since v and u are divisible by 4 and

5u− v ≡ 3u+ 2u− v ≡ 2u− v ≡ 0 (mod 3),

5u− v is divisible by 3 and 4, implying that 5u−v
12 is an integer. So, if a = 5u−v

12 , a is a nonnegative

integer. Further, by above, b = 0, implying immediately that m2 is nonnegative, and we are done.

Otherwise, a = b (u−1)(u−2)
3(v−3) c, which of course is a nonnegative integer. So we need only check that

m2 is nonnegative. If we let

Y =
−v2 + 2vu+ 3u2 + 6v − 15u− 3

12(v − 3)
,

we have
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a− Y ≥ (u− 1)(u− 2)
3(v − 3)

− 1− Y

=
(u− 1)(u− 2)− 3(v − 3)

3(v − 3)
− −v

2 + 2vu+ 3u2 + 6v − 15u− 3
12(v − 3)

=
v2 − 2vu+ u2 − 18v + 3u+ 47

12(v − 3)

=
v2 − 2vu− 12v − 6v + 12u+ 72 + u2 − 9u− 25

12(v − 3)

=
(v − 6)(v − 2u− 12) + (u− 12)(u+ 3) + 11

12(v − 3)
.

Note that v−2u must be a multiple of 3 and it must be a multiple of 4, which implies that v−2u ≥ 12,

and, of course, v ≥ 6. Thus, if u ≥ 12, m2 is nonnegative. This just leaves us to consider u = 8

(since u = 4, and, in general, u = k, is trivial) but the only v ≤ 32 that also has v − 2u a multiple

of 12 is v = 28. In that case, it is trivial to check that a = 0, b = 2, c = 4, m1 = 560, m2 = 330, and

m3 = 2000, all nonnegative integers. This finishes the u ≡ 2v (mod 3) case.

Case 2: v 6≡ 2u (mod 3) and u 6≡ 0 (mod 3).

Here we let c = v−2u
2 + a and b = u−3a−c

2 = 4u−v−4a
4 , where a again will be determined below.

Since 4 divides u and v, it follows that c is a nonnegative integer with the same parity as a and thus

b is also an integer. We will have b nonnegative if and only if a ≤ u − v
4 . It is again clear that by

construction 3a+ 2b+ c = u and in this case we have

a+ b+ c = a+
4u− v − 4a

4
+
v − 2u

2
+ a =

v

4
.

So it remains to check m1,m2 and m3 for our other conditions on a.
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m1 =
4
u

((
v − u

1

)(
u

3

)
− a S

c− a

)
=

4
u

(
u(v − u)(u− 1)(u− 2)

6
− au(v − u)(v − 2u)(v − 3)

3(v − 2u)

)
=

2(v − u)
3

((u− 1)(u− 2)− 2a(v − 3)) ,

m2 =
2
u

((
v − u

2

)(
u

2

)
− b S

c− a

)
=

2
u

(
u(v − u)(u− 1)(v − u− 1)

4
− bu(v − u)(v − 2u)(v − 3)

3(v − 2u)

)
=

(v − u)
6

(3(u− 1)(v − u− 1)− 4b(v − 3)) ,

m3 =
S

c− a
=
u(v − u)(v − 3)

3
.

If v−u is divisible by 3, all three mi are integers. Otherwise, since v−2u and u are also not divisible

by 3, it follows that v−2u 6≡ v−u (mod 3), and thus v−2u+v−u ≡ 0 (mod 3), which implies that

2v ≡ 0 (mod 3) and thus v ≡ 0 (mod 3). This shows that v− 3 is divisible by 3, which immediately

shows that m2 and m3 are integers. Further, since u 6≡ 0 (mod 3), it follows that (u− 1)(u− 2) is

divisible by 3, and this now shows that m1 is an integer as well. Thus, all we need do is insure that

m1 and m2 are nonnegative. Note that m1 is nonnegative if and only if a ≤ (u−1)(u−2)
2 , and m2 is

nonnegative if and only if

0 ≤ 3(u− 1)(v − u− 1)− 4b(v − 3)

= 3(u− 1)(v − u− 1)− (4u− v − 4a)(v − 3)

= 3vu− 3u2 − 3v + 3− (4u− v)(v − 3) + 2a(v − 3)

= v2 − uv − 3u2 − 6v + 12u+ 3 + 2a(v − 3),
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which is true if and only if

a ≥ −v
2 + vu+ 3u2 + 6v − 12u+ 3

2(v − 3)
.

Similar to the first case, we let a be the minimum of u− v
4 and b (u−1)(u−2)

2(v−3) c. It is clear that either

way a is a nonnegative integer. If a = u− v
4 , again, we have b = 0, implying that m2 is nonnegative

and we are done. Otherwise, a = b (u−1)(u−2)
2(v−3) c. Then, if Y ′ = −v2+vu+3u2+6v−12u+3

2(v−3) , we have

a− Y ′ ≥ (u− 1)(u− 2)
2(v − 3)

− 1− Y ′

=
u2 − 3u+ 2

2(v − 3)
− −v

2 + vu+ 3u2 + 6v − 12u+ 3
2(v − 3)

=
v2 − uv − 2u2 − 6v + 9u− 1

2(v − 3)

=
v2 − 2uv − 4v + uv − 2u2 + 8u− 2v + u− 1

2(v − 3)

=
v(v − 2u− 4) + u(v − 2u) + 2(4u− v) + (u− 1)

2(v − u)
≥ 0,

since v ≥ 2u+ 4, 4u ≥ v (and of course u ≥ 1). Thus, m2 is nonnegative.

Case 3: v 6≡ 2u (mod 3) and u ≡ 0 (mod 3).

In this case, we let a, b, and c be defined precisely the same as in the previous case. Note that

if m1 and m2 are integers, the same analysis holds as in that case, and we are done. Otherwise,

let m′1 = bm1c and let m′2 = bm2c. Then, let εi = mi −m′i for i = 1, 2. Further, let ni = 3mi for

i = 1, 2. Then

n1 = 2(v − u) ((u− 1)(u− 2)− 2a(v − 3))

= 2(v − u)(u− 1)(u− 2)− 4a(v − u)(v − 3),
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n2 =
(v − u)

2
(3(u− 1)(v − u− 1)− 4b(v − 3))

=
3
2

(v − u)(u− 1)(v − u− 1)− 2b(v − u)(v − 3),

and, since v − u is even, it follows that both ni are integers. This implies that εi ∈ { 1
3 ,

2
3}. Further,

since u ≡ 0 (mod 3) and v 6≡ 0 (mod 3), which in turn implies that v2 ≡ 1 (mod 3),

n1 ≡ 2(v − u)(u− 1)(u− 2)− 4a(v − u)(v − 3) ≡ 4v − 4av2 ≡ v − a (mod 3),

n2 ≡
3
2

(v − u)(u− 1)(v − u− 1)− 2b(v − u)(v − 3) ≡ −2bv2 ≡ b (mod 3).

Note that b = u − v
4 − a, so b ≡ −v − a (mod 3), and thus n1 6≡ n2 (mod 3), which implies that

either ε1 = 1
3 and ε2 = 2

3 or ε1 = 2
3 and ε2 = 1

3 . Note that either way,

3ε1
u

4
+ 2ε2

u

2
+ ε1

u

4
= ε1u+ ε2u = u,

ε1
u

4
+ ε2

u

2
+ ε3

u

4
= ε1

u

2
+ ε2

u

2
=
u

2
≤ v

4
,

which shows that we can find an m-partition of u with ε1
u
4 parts of size 1 and 3, and ε2

u
2 parts of

size 2. Finally, we see that

m′1
u

4
+m3a+ ε1

u

4
= (m′1 + ε1)

u

4
+m3a = m1

u

4
+m3a =

(
v − u

1

)(
u

3

)
,
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m′2
u

2
+m3b+ ε2

u

2
= (m′1 + ε2)

u

2
+m3b = m2

u

2
+m3b =

(
v − u

2

)(
u

2

)
,

m′1
u

4
+m3c+ ε1

u

4
= (m′1 + ε1)

u

4
+m3c = m1

u

4
+m3c =

(
v − u

3

)(
u

1

)
,

which, using theorem 1.3.3 again, shows that we can find a suitable collection of m-partitions of u

(this time including the single m-partition with ε1
u
4 parts of size 1 and 3 and ε2

u
2 parts of size 2)

such that each subset of u occurs the correct number of times. Thus, in all cases, (u, v) ∈ EP4. �

1.6 Proving Theorem 1.2.3 for k=5

Before considering the case k = 5, we will describe a new method of constructing our collection of

m-partitions of U (where m = v
k ). We will construct each m-partition A by first partitioning U

into u
k parts of size k, and then partitioning each such k-subset into parts of size 2 or more. To do

this, we will find positive integers pi,j for 1 ≤ i ≤ N =
(
v−1
k−1

)
−
(
u−1
k−1

)
and 1 ≤ j ≤ u

k , and positive

integers qi,j,t for 1 ≤ i ≤ N, 1 ≤ j ≤ u
k , and 1 ≤ t ≤ pi,j , satisfying the following properties: for all

(i, j) ∈ [N ]× [uk ] we have

pi,j ≥ 2 and
pi,j∑
t=1

qi,j,t = k,

and we also have

u
k∑
j=1

pi,j ≤ m for all i ∈ [N ],

|{(i, j, t) : qi,j,t = s}| =
(
v − u
k − s

)(
u

s

)
for all s ∈ [k − 1].
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Then, it will follow from theorem 1.3.3 that there exists a collection of m-partitions A1,A2, . . . ,AN

of U such such that each s-subset of U occurs
(
v−u
k−s
)(
u
s

)
, for 1 ≤ s ≤ k − 1. Further, for i ∈ [N ],

there will exist pairwise disjoint k-subsets Ai,1, Ai,2, . . . , Ai,u
k

of U and, for j ∈ [uk ], partitions

{Bi,j,1, Bi,j,2, . . . , Bi,j,pi,j
} of Ai,j into pi,j parts, with qi,j,t = |Bi,j,t| for 1 ≤ t ≤ pi,j , such that

Ai = {Bi,j,pi,j
: (i, j) ∈ [N ]× [

u

k
]} ∪ Ri,

where Ri consists of an appropriate number of copies of the empty set. Below we show how to apply

this method to the case k = 5; it is our hope that it can be generalized for k > 5. We in fact break

this up into two theorems.

Theorem 1.6.1 For any u, v ∈ N such that 5 divides both u and v, and such that v ≤ 3u + 5,

(u, v) ∈ EP5 if and only if v ≥ 2u.

Proof. Suppose we have u, v with 5 dividing both u and v and v ≤ 3u. As above, we need only

consider v > 2u. Further, as the case u = 5 is trivial, we will assume u ≥ 10. We will show how to

construct pi,j , qi,j,t as above. First, we consider the case 2u+ 5 ≤ v ≤ 3u. To simplify notation, we

let w = v − u; thus, it follows that u+ 5 ≤ w ≤ 2u Let n1, n2, n3 and n4 be defined as follows:

n1 =
(
w

1

)(
u

4

)
,

n2 =
1
5

(
2
(
w

1

)(
u

4

)
+ 4
(
w

2

)(
u

3

)
+
(
w

3

)(
u

2

)
− 2
(
w

4

)(
u

1

))
,

n3 =
1
5

(
−2
(
w

1

)(
u

4

)
+
(
w

2

)(
u

3

)
−
(
w

3

)(
u

2

)
+ 2
(
w

4

)(
u

1

))
,

n4 =
1
5

(
−
(
w

1

)(
u

4

)
− 2
(
w

2

)(
u

3

)
+ 2
(
w

3

)(
u

2

)
+
(
w

4

)(
u

1

))
.

Note that each ni is an integer, since
(
u
i

)
is divisible by 5 for 1 ≤ i ≤ 4. Now, obviously n1 ≥ 0.

Further, since w ≥ u+ 5,
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(
w

1

)(
u

4

)
=
wu

24
(u− 1)(u− 2)(u− 3) ≤ wu

24
(w − 1)(w − 2)(w − 3)

≤
(
w

4

)(
u

1

)
,

(
w

2

)(
u

3

)
=
wu(u− 1)(w − 1)

12
(u− 2) ≤ wu(u− 1)(w − 1)

12
(w − 2)

≤
(
w

3

)(
u

2

)
.

This shows that n4 ≥ 0. Also, note that

(
w

2

)(
u

3

)
− 2
(
w

1

)(
u

4

)
= wu(u− 1) (u− 2)

(
w − 1

12
− 2(u− 3)

24

)
=
uw(u− 1)(u− 2)

12
(w − u+ 2) ≥ 0,

2
(
w

4

)(
u

1

)
−
(
w

3

)(
u

2

)
= wu(w − 1)(w − 2)

(
2(w − 3)

24
− u− 1

12

)
=
uw(u− 1)(u− 2)

12
(w − u− 2)

=
uw(u− 1)(u− 2)

12
(w − (u+ 2)) ≥ 0,

which shows that n3 ≥ 0. Further, note that if we expand n2 out as a polynomial in u and w, and

then simplify it, using, for example, Mathematica, we get

n2 =
uw

60
(
−w3 + (u+ 5)w2 + (4u2 − 15u)w + (u3 − 10u2 + 25u− 10)

)
.

Define f : R→ R by
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f(x) = −x3 + (u+ 5)x2 + (4u2 − 15u)x+ (u3 − 10u2 + 25u− 10).

Then, we have

f ′(x) = −3x2 + (2u+ 10)x+ 4u2 − 15u,

f ′′(x) = −6x+ (2u+ 10).

Thus the only solution to f ′′(x) = 0 is x = u+5
3 . Since u+5

3 < 2u
3 < u, this implies that f is concave

down on the interval [u, 2u+ 5]. Further, we have

f(u) = −u3 + u3 + 5u2 + 4u3 − 15u2 + u3 − 10u2 + 25u− 10

= 5u3 − 20u2 + 25u− 10 = 5(u− 1)(u− 1)(u− 2) > 0,

f(2u+ 5) = 5u3 − 40u2 − 75u− 10 = 5u3 − 40u2 − 75u− 250 + 240

= 5(u− 10)(u2 + 2u+ 5) + 240 > 0,

since u ≥ 10. By an elementary calculus result, it follows that f is positive on the interval [u, 2u+5].

So, since u < w ≤ 2u+ 5, we must have f(w) > 0, which, in turn, implies that n2 > 0.

Now, for i ∈ [N ], j ∈ [u5 ] (where N =
(
v−1
4

)
−
(
u−1

4

)
, the total number of m-partitions of U we

need to construct) we will define our pi,j . For any (i, j) ∈ [N ] × [u5 ], it will either be the case that

pi,j = 2 or pi,j = 3. We will choose n1 + n2 of the pi,j to be equal to 2 and n3 + n4 of the pi,j to be

equal to 3. To see that this is possible, note that,



54

4∑
i=1

ni =
1
5

(
4
(
w

1

)(
u

4

)
+ 3
(
w

2

)(
u

3

)
+ 2
(
w

3

)(
u

2

)
+
(
w

4

)(
u

1

))

=
u

5

((
w

1

)(
u− 1

3

)
+
(
w

2

)(
u− 1

2

)
+
(
w

3

)(
u− 1

1

)
+
(
w

4

))
,

and, by applying the combinatorial identity described in the proof of theorem 1.2.5, we have

4∑
i=1

ni =
u

5

((
w + u− 1

4

)
−
(
u− 1

4

))
=
u

5

((
v − 1

4

)
−
(
u− 1

4

))
=
Nu

5
.

And this is, of course, the cardinality of [N ]×[u5 ], which is precisely the total number of pi,j . However,

we also need to ensure that, for any i ∈ [N ], we have
∑u

5
j=1 pi,j ≤ v

5 . If we let mi be the number of

pi,j that are equal to 3, with the rest equal to 2, the required inequality will be true if and only if

v

5
≥ 3mi + 2(

u

5
−mi) =

2u
5

+mi,

which is true if and only if mi ≤ v−2u
5 . So, the number of pi,j that are equal to 3 can be 0 (if all

mi = 0). Also, the number of pi,j that are equal to 3 will be maximized if each mi = v−2u
5 = w−u

5 .

Then, it will be the case that N(w−u)
5 of the pi,j are equal to 3. Note thatN(w−u)

5 = 1
5 (wN − uN),

and

wN = w

((
w − u− 1

4

)
−
(
u− 1

4

))
= w

(
u

4

)
+ w

(
w − 1

1

)(
u

3

)
+ w

(
w − 1

2

)(
u

2

)
+ w

(
w − 1

3

)(
u

1

)
+ w

(
w − 1

4

)
− w

(
u− 1

4

)
=
(
w

1

)(
u

4

)
+ 2
(
w

2

)(
u

3

)
+ 3
(
w

3

)(
u

2

)
+ 4
(
w

4

)(
u

1

)
+ w

((
w − 1

4

)
−
(
u− 1

4

))
,
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uN = u

((
w − u− 1

4

)
−
(
u− 1

4

))
= u

(
w

1

)(
u− 1

3

)
+ u

(
w

2

)(
u− 1

2

)
+ u

(
w

3

)(
u− 1

1

)
+ u

(
w

4

)
= 4
(
w

1

)(
u

4

)
+ 3
(
w

2

)(
u

3

)
+ 2
(
w

3

)(
u

2

)
+
(
w

4

)(
u

1

)
,

and thus, since w ≥ u,

wN − uN ≥ −3
(
w

1

)(
u

4

)
−
(
w

2

)(
u

3

)
+
(
w

3

)(
u

2

)
+ 3
(
w

4

)(
u

1

)
= 5(n3 + n4).

This shows that 0 ≤ n3 + n4 ≤ N(w−u)
5 , which implies that, since we can change the values of pi,j

from 3 to 2 one at a time, we can find values of mi such that exactly n3 + n4 of the pi,j are equal

to 3 and the other n1 + n2 must be equal to 2. Consider the n1 + n2 ordered pairs (i, j) ∈ [N ]× [u5 ]

such that pi,j = 2. For n1 of these pairs, let qi,j,1 = 4 and qi,j,2 = 1, and for the other n2 such

pairs, let qi,j,1 = 3 and qi,j,2 = 2. Then, for n3 of the pairs (i, j) with pi,j = 3, let qi,j,1 = 3 and

qi,j,2 = qi,j,3 = 1. For the other n4 such pairs, let qi,j,1 = qi,j,2 = 2 and let qi,j,3 = 1. Then, note first

for each (i, j) ∈ [N ]× [u5 ], it is the case that
∑pi,j

t=1 qi,j,t = 5. Further, it is easy to check that

|{(i, j, t) : qi,j,t = 4}| = n1 =
(
v − u

1

)(
u

4

)
,

|{(i, j, t) : qi,j,t = 3}| = n2 + n3 =
(
v − u

2

)(
u

3

)
,

|{(i, j, t) : qi,j,t = 2}| = n2 + 2n4 =
(
v − u

3

)(
u

2

)
,

|{(i, j, t) : qi,j,t = 1}| = n1 + 2n3 + n4 =
(
v − u

4

)(
u

1

)
.
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Thus, by our above discussion, we can apply theorem 1.3.3 to find a collection of m-partitions of U

that satisfies theorems 1.2.4 and 1.2.5, showing that (u, v) ∈ EP5. �

Theorem 1.6.2 For any u, v ∈ N such that 5 divides both u and v, and such that v ≥ 3u + 10,

(u, v) ∈ EP5.

Proof. Our proof will be similar to the proof of theorem 1.6.1. Again, let w = v − u. Further,

again by theorem 1.3.1, we need only consider v < 5u, so we have 2u + 10 ≤ w ≤ 4u − 5. Let

N =
((
v−1
4

)
−
(
u−1

4

))
and let

n1 =
(
w

1

)(
u

4

)
, n2 =

(
w

2

)(
u

3

)
.

Further, let

n′3 =
1
2

(
−
(
w

2

)(
u

3

)
+
(
w

3

)(
u

2

))
,

n′4 =
1
10

(
−2
(
w

1

)(
u

4

)
+
(
w

2

)(
u

3

)
−
(
w

3

)(
u

2

)
+ 2
(
w

4

)(
u

1

))
,

and let n3 = bn′3c, n4 = bn′4c, and n5 = n′3 + n′4 − n3 − n4. Note that n′3 is nonnegative because

(similar to above) w > u. Further, in theorem 1.6.1, it was shown that

−2
(
w

1

)(
u

4

)
+
(
w

2

)(
u

3

)
−
(
w

3

)(
u

2

)
+ 2
(
w

4

)(
u

1

)
≥ 0,

and since proof of this never used the fact that w < 2u, it follows that the same proof shows that

n4 ≥ 0. Also, since u is divisible by 5, 2n′4 must be an integer, implying that n′4 − n4 ∈ {0, 1
2}.

Clearly, n′3 − n3 ∈ {0, 1
2} as well. Further, note that

2n′4 ≡ 10n′4 ≡
(
w

2

)(
u

3

)
−
(
w

3

)(
u

2

)
≡ 2n′3 (mod 2),

which implies that either n′3 − n3 = n′4 − n4 = 0, and thus n5 = 0, or n′3 − n3 = n′4 − n4 = 1
2 , and

thus n5 = 1. Either way n5 is a nonnegative integer, which shows that each of the ni are nonnegative

integers, for i ∈ [5].
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We now show how to choose pi,j for (i, j) ∈ [N ]× [u5 ] (where N =
(
v−1
4

)
−
(
u−1

4

)
as above) and

qi,j,t for 1 ≤ t ≤ pi,j satisfying the above inequalities. We will let n1 + n2 of the pi,j be equal to 2,

n3 of the pi,j, be equal to 3, n5 of the pi,j be equal to 4, and n4 of the pi,j be equal to 5. First, note

that:

5∑
i=1

ni = n1 + n2 + n3 + n4 + n′3 + n′4 − n3 − n4 = n1 + n2 + n′3 + n′4

=
1
10

(
8
(
w

1

)(
u

4

)
+ 6
(
w

2

)(
u

3

)
+ 4
(
w

3

)(
u

2

)
+ 2
(
w

4

)(
u

1

))
=
u

5

((
w

1

)(
u− 1

3

)
+
(
w

2

)(
u− 1

2

)
+
(
w

3

)(
u− 1

1

)
+
(
w

4

))
=
u

5

((
w + u− 1

4

)
−
(
u− 1

4

))
=
Nu

5
,

implying that it is possible to assign the above values to the pi,j . Next, we show how to assign these

values in such a way that
∑u

5
j=1 pi,j ≤ v

5 for all i ∈ [N ]. Let a = d w60e and let b = d w36e. We claim

that the following are all true:

a+ b ≤ u

5
, 3a+ b ≤ w − u

5
,

aN ≥ n4 + n5, bN ≥ n3.

First, note that for u < 155, we can simply check each of the above inequalities for each pair (u,w)

where 2u+ 10 ≤ w 4u− 5 (and of course 5 divides both u and w). This can be done in fractions of

a second on Mathematica. So assume that u ≥ 155. Then, note that

a+ b ≤ w

60
+ 1 +

w

36
+ 1 =

8w + 360
180

≤ 8(4u− 5) + 360
180

=
32u+ 320

180
≤ 36u

180
=
u

5
,
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3a+ b ≤ 3(
w

60
+ 1) +

w

36
+ 1 =

14w + 720
180

≤ 14w + 8u+ 80
180

=
36w − 22w + 8u+ 80

180
≤ 36w − 22(2u+ 10) + 8u+ 80

180

≤ 36w − 36u
180

=
w − u

5
.

Also, similar to above,

wN = w

((
w + u− 1

4

)
−
(
u− 1

4

))
= w

(
w − 1

4

)
+ w

(
w − 1

3

)(
u

1

)
+ w

(
w − 1

2

)(
u

2

)
+ w

(
w − 1

1

)(
u

3

)
+ w

((
u

4

)
−
(
u− 1

4

))
= 5
(
w

5

)
+ 4
(
w

4

)(
u

1

)
+ 3
(
w

3

)(
u

2

)
+ 2
(
w

2

)(
u

3

)
+
(
w

1

)(
u− 1

3

)
.

Thus,

aN − n4 − n5 ≥
w

60
N − 1

2

− 1
10

(
−2
(
w

1

)(
u

4

)
+
(
w

2

)(
u

3

)
−
(
w

3

)(
u

2

)
+ 2
(
w

4

)(
u

1

))
=

1
12

(
w

5

)
− 2

15

(
w

4

)(
u

1

)
+

3
20

(
w

3

)(
u

2

)
− 1

15

(
w

2

)(
u

3

)
+

1
5

(
w

1

)(
u

4

)
+

1
60

(
w

1

)(
u− 1

3

)
− 1

2
.

We will show this last quantity to be nonnegative. Since u ≥ 155, we obviously have 1
60

(
w
1

)(
u−1

3

)
− 1

2 ≥

0, so it remains to show that, if we let
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f1(x) =
1
12

(
w

5

)
− 2

15

(
w

4

)(
x

1

)
+

3
20

(
w

3

)(
x

2

)
− 1

15

(
w

2

)(
x

3

)
+

1
5

(
w

1

)(
x

4

)

we have f1(u) ≥ 0. We will in fact prove the stronger statement that f(x) ≥ 0 for integer values of

x such that x ≥ w
4 . Let

g1(x) = − 2
15

(
w

4

)
+

3
20

(
w

3

)(
x

1

)
− 1

15

(
w

2

)(
x

2

)
+

1
5

(
w

1

)(
x

3

)
,

h1(x) =
3
20

(
w

3

)
− 1

15

(
w

2

)(
x

1

)
+

1
5

(
w

1

)(
x

2

)
.

First, note that

h1(x) =
w

60
(
6x2 − (2w + 4)x+ 15w2 − 45w + 30

)
,

and if we let D1 denote the discriminant of 6x2 − (2w + 4)x+ 15w2 + 45w − 30, we have

D1 = (2w + 4)2 − 4(6)(15w2 − 45w + 30) = −356w2 + 1096w − 704

= −356(w2 − 4w + 3)− 328w + 364

= −356(w − 3)(w − 1)− 328(w − 2)− 292 < 0,

since w > 3 is of course true. Thus, h1(x) has no real roots, and, since h1(0) = 3
20

(
w
3

)
> 0, it follows

that h1(x) > 0 for all x ∈ R. Next, we show, via induction, that g1(x) > 0 for all integers x with

x ≥ w
4 . Let x0 = dw4 e. Then, w

4 ≤ x0 ≤ w
4 + 1, so

g1(x0) ≥ − 2
15

(
w

4

)
+

3
20

(
w

3

)(w
4

1

)
− 1

15

(
w

2

)(w
4 + 1

2

)
+

1
5

(
w

1

)(w
4

3

)
=

w

5760
(
w2 + 32w − 96

)
(w − 2) =

w

5760
(w2 + 32w − 96)(w − 2)

=
w

5760
((w − 3)(w + 35) + 9) (w − 2) > 0.
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Now, assume g1(x) > 0 for some x ≥ x0. Then, note that the recursion

(
x+ 1
t

)
=
(
x

t

)
+
(

x

t− 1

)

implies that g1(x + 1) = g1(x) + h1(x) > 0, and thus if follows that g1(x) > 0 for all x ∈ Z with

x ≥ w
4 . Now, we will use a similar induction to show that f1(x) > 0 for all x ∈ Z with x ≥ w

4 . We

have

f1(x0) ≥ 1
12

(
w

5

)
− 2

15

(
w

4

)(w
4 + 1

1

)
+

3
20

(
w

3

)(w
4

2

)
− 1

15

(
w

2

)(w
4 + 1

3

)
+

1
5

(
w

1

)(w
4

4

)
=

w

92160
(
3w4 − 952w3 + 5568w2 − 9920w + 4608

)
=

w

92160
(
3w3(w − 318) + 2w3 + 5569w(w − 2) + 1216w + 4608

)
.

Since u ≥ 155 and w ≥ 2u + 10, w ≥ 310, which implies that f1(x0) > 0. Assume f1(x) > 0 for

some x ≥ x0. Using the above recursion again, it is easy to see that f1(x+ 1) = f1(x) + g1(x) > 0,

implying that f1(x) > 0 for all x ∈ Z with x ≥ x0. Thus, in particular, f1(u) > 0, showing that

aN ≥ n4 + n5. To see that bN ≥ n3, note that

bN − n3 ≥
w

36
N − 1

2

(
−
(
w

2

)(
u

3

)
+
(
w

3

)(
u

2

))
=

5
36

(
w

5

)
+

1
9

(
w

4

)(
u

1

)
− 5

12

(
w

3

)(
u

2

)
+

5
9

(
w

2

)(
u

3

)
+

1
36

(
w

1

)(
u− 1

3

)
.

We let

f2(x) =
5
36

(
x

5

)
+

1
9

(
x

4

)(
u

1

)
− 5

12

(
x

3

)(
u

2

)
+

5
9

(
x

2

)(
u

3

)
+

1
36

(
x

1

)(
u− 1

3

)
,
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and it will be sufficient to show that f2(w) ≥ 0. Let

g2(x) =
1
36

(
x

4

)
+

1
36

(
x

3

)(
u

1

)
− 5

36

(
x

2

)(
u

2

)
+

5
18

(
x

1

)(
u

3

)
+

1
36

(
u− 1

3

)
,

h2(x) =
1
36

(
x

3

)
+

1
36

(
x

2

)(
u

1

)
− 5

36

(
x

1

)(
u

2

)
+

5
18

(
u

3

)
,

p2(x) =
1
36

(
x

2

)
+

1
36

(
x

1

)(
u

1

)
− 5

36

(
u

2

)
.

Then, note that

p2(x) =
1
72

(x2 + (2u− 1)x− 5u2 + 5u) =
1
72
(
(x− 2u)(x+ 4u− 1) + 3u2 + 3u

)
,

so, in particular, p2(x) > 0 if x ≥ 2u. Further,

h2(2u+ 9) =
1
36

(
2u+ 9

3

)
+

1
36

(
2u+ 9

2

)(
u

1

)
− 5

36

(
2u+ 9

1

)(
u

2

)
+

5
18

(
u

3

)
=

7
24
u2 +

251
72

u+
7
2
> 0.

And since, similar to above, h2(x+ 1) = h2(x) + p2(x), if, for x ≥ 2u+ 9, we have h2(x) > 0, then

h2(x+ 1) > 0. Thus, h2(x) > 0 for all integer values of x ≥ 2u+ 9. Also,

g2(2u+ 9) =
1
36

(
2u+ 9

4

)
+

1
36

(
2u+ 9

3

)(
u

1

)
− 5

36

(
2u+ 9

2

)(
u

2

)
+

5
18

(
2u+ 9

1

)(
u

3

)
+

1
36

(
u− 1

3

)
=

1
108

(u4 − 19u3 + 98u2 + 1030u+ 375)

=
1

108
(u3(u− 19) + 98u2 + 1030u+ 375) > 0.
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Since g2(x + 1) = g2(x) + h2(x), it is again true by induction that g2(x) > 0 for all integer values

of x ≥ 2u + 9. Finally, f2(w) = g2(w−1)
w > 0, since w − 1 ≥ 2u + 10 − 1 = 2u + 9. This proves that

bN ≥ n3.

Now, for each i ∈ [N ], let pi,j = 5 for a values of j ∈ [u5 ], pi,j = 3 for b values of j ∈ [u5 ] and

pi,j = 2 for u
5 − a− b values of j ∈ [u5 ]. Note that

u
5∑
j=1

pi,j = 5a+ 3b+ 2
(u

5
− a− b

)
= 5a+ 3b+

2u
5
− 2a− 2b = 3a+ b+

2u
5

≤ w − u+ 2u
5

=
w + u

5
=
v

5
.

Then, we simply choose n5 of the pi,j to switch from 5 to 4, aN − n4 − n5 of the pi,j to switch from

5 to 2, and bN −n3 of the pi,j to switch from 3 to 2. There will be exactly n5 of the pi,j, equal to 4,

n4 of the pi,j equal to 5, and n3 of the pi,j equal to 3. This will imply that Nu
5 −

∑
i=2 5ni of the pi,j

will be equal to 2, but, by above, this number is equal to n1 +n2. Note that since we only decreased

the value of any particular pi,j , it will still be the case, for all i ∈ [N ], that
∑u

5
j=1 pi,j ≤ v

5 . Now, we

finish by choosing n1 of the (i, j) ∈ [N ]× [u5 ] with pi,j = 2 and let qi,j,1 = 4 and qi,j,2 = 1. For the

other n2 such (i, j), we let qi,j,1 = 3 and qi,j,2 = 2. For the n3 values of (i, j) with pi,j = 3, we let

qi,j,1 = qi,j,2 = 2 and qi,j,3 = 1. For the n4 values of (i, j) with pi,j = 5, let qi,j,t = 1 for 1 ≤ t ≤ 5.

Finally, for the n5 values of (i, j) with pi,j = 4, let qi,j,1 = 2 and let qi,j,2 = qi,j,3 = qi,j,4 = 1. It is

the case that, for all (i, j) ∈ [N ]× [u5 ],
∑pi,j

t=1 qi,j,t = 5 and it is easy to check that

|{qi,j,t = 4}| = n1 =
(
v − u

1

)(
u

4

)
,

|{qi,j,t = 3}| = n2 =
(
v − u

2

)(
u

3

)
,

|{qi,j,t = 2}| = n2 + 2n3 + n5 =
(
v − u

3

)(
u

2

)
,

|{qi,j,t = 1}| = n1 + n3 + 5n4 + 3n5 =
(
v − u

4

)(
u

1

)
.
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Thus, just like the proof above of theorem 1.6.1, it follows that (u, v) ∈ EP5. �
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Chapter 2

Decompositions of Partitions

2.1 The Connection between Partitions and One-Factorizations

Note that for each case illustrated in chapter 1, our strategy has been essentially the same: we must

find a collection of m-partitions of U (where m = v
k ) such that each i-subset of U occurs

(
v−u
k−i
)

times, for 1 ≤ i ≤ k − 1. To accomplish this, we simply use theorem 1.3.3, setting ai =
(
v−u
k−i
)

for

1 ≤ i ≤ k − 1, a0 =
(
v−u
k

)
− v−u

k

(
u−1
k−1

)
(since the empty set occurs v−u

k times in each of the
(
u−1
k−1

)
one-factors in our given one-factorization of

(
U
k

)
) and ai = 0 for i ≥ k. Then, it suffices to find a

collection {ti,j} for 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ N (where N =
(
v−1
k−1

)
−
(
u−1
k−1

)
as that is precisely

the number of m-partitions we need in addition to the
(
u−1
k−1

)
used for our given one-factorization of(

U
k

)
) that satisfy the following sets of equations:

(1)
(
v − u
k − i

)(
u

i

)
=

N∑
j=1

ti,j for 1 ≤ i ≤ k − 1 ,

(1′)
(
v − u
k

)
− v − u

k

(
u− 1
k − 1

)
=

N∑
j=1

t0,j ,

(2)
k−1∑
i=0

ti,j = m for 1 ≤ j ≤ N,

(3)
k−1∑
i=0

iti,j = u for 1 ≤ j ≤ N.
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To see this in a different light, first, assume we have such a collection {ti,j}. Then, let πj be the

partition of u such that it has ti,j parts of size i (it must be a partition of u because of (3)), with

each part of size at most k − 1; note that (2) implies that it must have less than or equal to m

parts. Further, (1) implies that if we take the partition π generated by summing up each of the πj

we obtain a partition of uN such that there are precisely
(
v−u
k−i
)(
u
i

)
parts of size i for 1 ≤ i ≤ k − 1.

Conversely, assume that the partition π of uN with
(
v−u
k−i
)(
u
i

)
parts of size i for 1 ≤ i ≤ k − 1 is

decomposable into N partitions of U, each having less than or equal to m parts; denote them as πj

for 1 ≤ j ≤ N. Then, for 1 ≤ i ≤ k − 1, let ti,j be equal to the number of parts of size i in πj and

let t0,j = m−
∑k−1
i=1 ti,j ; it follows immediately that we have equations (2) and (3), and (1). To see

that we have (1′), note that

N∑
j=1

t0,j =
N∑
j=1

(m−
k−1∑
i=1

ti,j) =
N∑
j=1

m−
N∑
j=1

k−1∑
i=1

ti,j = mN −
k−1∑
i=1

N∑
j=1

ti,j

=
v

k
(
(
v − 1
k − 1

)
−
(
u− 1
k − 1

)
)−

k−1∑
i=1

(
v − u
k − i

)(
u

i

)

=
(
v

k

)
− v

k

(
u− 1
k − 1

)
−
k−1∑
i=1

(
v − u
k − i

)(
u

i

)

=
(
v

k

)
− v

k

(
u− 1
k − 1

)
− (
(
v

k

)
−
(
u

k

)
−
(
v − u
k

)
)

=
(
v − u
k

)
+
(
u

k

)
− v

k

(
u− 1
k − 1

)
=
(
v − u
k

)
+
u

k

(
u− 1
k − 1

)
− v

k

(
u− 1
k − 1

)
=
(
v − u
k

)
− v − u

k

(
u− 1
k − 1

)
,

which is precisely (1′).

Thus, to determine if (u, v) ∈ EPk, it suffices to find a decomposition of the above partition π

into N partitions of u, each with at most m parts. This leads to the problem of determining when

a given partition can be decomposed into smaller partitions (all of the same number). Note that,

using the notation defined in section 1.1, a partition π of nt (where n and t are arbitrary positive

integers) can be decomposed into t partitions of n if and only if vπ can be written as a nonnegative
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integer linear combination of elements of Vn. Further, π can be decomposed into t partitions of n,

each having less than or equal to m parts, each of which is of size less than or equal to k if and only

if vπ can be written as a nonnegative integer linear combination of elements in Vn,k,m. We will use

the term integer cone generated by S to denote the set of all nonnegative integer linear combinations

of elements of S, where S is any arbitrary subset of Zn. Thus, a one-factorization (V, k,P) that

contains (U, k,Q) as a subsystem exists if and only if w is in the integer cone generated by Vu,k−1, v
k
,

where wi =
(
v−u
k−i
)(
u
i

)
for 1 ≤ i ≤ k−1 and wi = 0 for i > k−1. In fact, [3] shows that such a w is in

always in the integer cone generated by Vu,k−1, v
k

(when v ≥ 2u and k divides v), through a long and

complicated construction. It is our hope that instead, a general theorem about membership in the

integer cone generated by Vu,k−1,m will be found that will apply to both this case and many others.

Thus we state the following conjecture:

Conjecture 2.1.1 There exists an easily describable set Su,v,k that is in the integer cone generated

by Vu,k−1, v
k

such that w ∈ Su,v,k (for w defined above).

However, this in general seems to be a difficult question, and thus we, for the time being,

focus our efforts on the integer cone generated by Vn. One can ask what happens if we remove the

nonnegativity requirement, and instead ask what is the span of Vn over Z.

Theorem 2.1.2 If we let

S = {v ∈ Zn :
n∑
i=1

ivi = tn for some t ∈ Z},

then S is the span of Vn over Z.

Proof. First, note that if v is in the span of Vn over Z, then v =
∑M
j=1 αjv

j with αj ∈ Z and vj ∈ Vn

so

n∑
i=1

ivi =
n∑
i=1

i

M∑
j=1

αjv
j
i =

M∑
j=1

αj

n∑
i=1

ivji =
M∑
j=1

αjn,

so if we let t =
∑M
j=1 αj (which is clearly in Z)we see that

∑n
i=1 ivi = tn and thus v ∈ S.
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For the other direction, we first show that if we define S′ by

S′ = {v ∈ Zn :
n∑
i=1

ivi = 0},

then S′ is contained in the span of Vn over Z. To see this, for 2 ≤ j ≤ n, let uj ∈ Zn be defined by

letting ujj = 1, uj1 = −j and uji = 0 for all other i. Then, clearly each uj is in S′ and further, for any

v ∈ S′, consider the vector y =
∑n
j=2 vju

j , it is clear that, for 2 ≤ j ≤ n, yj = vj (since the only ui

with nonzero j coordinate is uj). Further, note that:

y1 =
n∑
j=2

vju
j
1 =

n∑
j=2

vj(−j) = −
n∑
j=1

jvj + v1 = 0 + v1 = v1,

and thus y = v, which shows that the uj form a basis for S′ over Z. Then, if we let z1 = (n, 0, . . . , 0)

and for 2 ≤ j ≤ n let zjj = 1, zj1 = n− j, and let all other coordinates of zj be zero, it is clear that

zj ∈ Vn for 1 ≤ j ≤ n and further uj = zj − z1. This implies that each of the uj are in the span of

Vn over Z and thus so is S′. So, now consider any v ∈ S. Then, if we consider w = v− tz1, note that:

n∑
i=1

iwi =
n∑
i=1

i(vi − tz1
i ) =

n∑
i=1

ivi − t
n∑
i=1

iz1
i = tn− tn = 0,

which shows that w is in S′ and thus is in the span of Vn over Z, which implies that v = w + tz1 is

also in the span of Vn over Z, which completes the proof. �

This implies that if π is any partition of tn into parts of size at most n, that vπ is contained

in the span of Vn over Z. Thus, since there clearly are partitions of tn that are not decomposable

into t partitions of n, removing the nonnegativity constraint does not seem helpful to the process at

hand. One other way of modifying the above conditions is to, instead of removing the nonnegativity

constraint, we can look at what happens when we remove the integer constraint, and look at the

nonnegative span of Vn over R, which we refer to simply as the cone generated by Vn. This condition

appears much more restrictive, and thus this approach seems more fruitful. It in fact led us to the

following conjecture relating the cone generated by Vn to the integer cone generated by Vn:
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Conjecture 2.1.3 If C is the cone generated by Vn, and C ′ is the integer-cone generated by Vn,

then

C ′ = {v ∈ C :
n∑
i=1

ivi ∈ nN} ∩ Zn.

If we let C ′′ = {v ∈ C :
∑n
i=1 ivi ∈ nN} ∩ Zn, it is clear that C ′ ⊆ C ′′, so to prove Conjecture

2.1.3, it would be sufficient that C ′′ ⊆ C ′. One tool that could be used to settle conjecture 2.1.3

in general involves the notion of discrete convexity. We give the following definition, which can be

found in [7]:

Definition Given a finite subset S of Zn, we say that S is pseudoconvex if S = S ∩Zn, where S

denotes the convex hull of S (in Rn).

Note that under this definition, Vn is pseudoconvex. Consider any v ∈ Vn ∩ Zn. There exists

N ∈ N with v =
∑N
j=1 αjv

j , with each vj ∈ Vn and each αj ≥ 0. Further, by definition, we have∑n
i=1 v

j
i = n. Thus,

n∑
i=1

ivi =
n∑
i=1

N∑
j=1

iαjv
j
i =

N∑
j=1

αj

n∑
i=1

ivji = n

N∑
j1

αj = n.

Thus, since it follows that each coordinate of v is a nonnegative integer, it must be the case that

v ∈ Vn, showing Vn is pseudoconvex.

We now let [m]S, for any m ∈ N, denote the Minkowski sum of m copies of S, i.e.,

[m]S = {v ∈ Zn : v =
m∑
i=1

vi, vi ∈ S for 1 ≤ i ≤ m}.

Note that this implies that [m]Vn is the set of all vπ, where π is a partition of nm that can be

decomposed into m partitions of n, and thus
⋃
m∈N[m]Vn is the integer cone generated by Vn. So

consider any v ∈ C ′′, and let M =
∑n
i=1 ivi. By definition, n divides M, so we have m ∈ N with

M = nm. Further, we must also have some N ∈ N such that v =
∑N
j=1 αjv

j , where αj ≥ 0 and

vj ∈ Vn for 1 ≤ j ≤ N. Thus, we have



69

M = mn =
n∑
i=1

ivi =
n∑
i=1

N∑
j=1

iαjv
j
i =

N∑
j=1

αj

n∑
i=1

ivji = n

n∑
j=1

αj .

Then, letting βj = αj

m for 1 ≤ j ≤ N, we have
∑N
j=1 βj = 1. Note that, for 1 ≤ j ≤ N, we have

mvj =
∑m
i=1 v

j , and thus mvj ∈ [m]Vn. Further,

v =
N∑
j=1

αjv
j =

N∑
j=1

mβjv
j =

N∑
j=1

βj(mvj),

showing that v is in the convex hull of [m]Vn. So, if we could show that [m]Vn is pseudoconvex,

it would follow that v ∈ [m]Vn. Unfortunately, though it is true that convex sets are closed under

Minkowski sums, this need not be the case for pseudoconvex sets, as the following simple example

from [8] shows:

Example Let

A = {(0, 0), (1, 1)},

B = {(0, 1), (1, 0)}.

It is trivial to check that both A and B are pseudoconvex. However, A+B is not, since (1, 1) is in

A+B but not A+B.

Note that we have reduced Conjecture 2.1.3 to the following:

Conjecture 2.1.4 For all m,n ∈ N, [m]Vn is pseudoconvex.

Unfortunately, Conjecture 2.1.4 is not true. Define vi for i ∈ {1, 2, 3, 4} by

v1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v2 = (0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v3 = (0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

v4 = (0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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It is immediately checked that each vi ∈ V20. Then, let x = v1 + v2, y = v3 + v4. It follows by

definition that x, y ∈ [2]V20. However, if

w =
1
2
x+

1
2
y = (0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

it is not hard to see that w 6∈ [2]V20.

This does lead to the problem of determining when, for m,n ∈ N, [m]Vn is pseudoconvex, but

this seems like a difficult problem in general. Instead, we turn our attention directly to the cone

generated by Vn, which is is interesting in its own right, as is seen in the next section.

2.2 The Cone Generated by Vn

For any arbitrary S ⊆ Rn, we define the dimension of S to simply be the dimension of subspace of

Rn spanned by S. Since we are motivated by the case of Vn, which is finite, we will only consider

finite such S. Also, note that, by our above result, Vn has dimension n. Returning to arbitrary finite

S ⊆ Rn, if we let m be the dimension of S we define a facet of S to be a nonzero linear functional

f such that f(v) ≥ 0 for all v ∈ S and such that f vanishes on some m − 1 dimensional subset of

S. Note that for any v in the cone generated by S, since v is a nonnegative linear combination of

elements of S, it follows that f(v) ≥ 0 for any facet f of S. The converse is also true, which we will

show below. First, we remind the reader of the Minkowski-Farkas lemma (a proof can be found, for

example, in [9])

Lemma 2.2.1 (Minkowski-Farkas) For any finite S ⊆ Rn, v ∈ Rn, either v is in the cone generated

by S or there exists a λ ∈ Rn such that λ · x ≥ 0 for all x ∈ S but λ · v < 0.

This in fact implies a stronger result, which is well known but whose proof we add for completeness

Theorem 2.2.2 For any finite S ⊆ Rn, if v is not in the cone generated by S, there exists a facet

f of S such that f(v) < 0.
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Proof. Assume v is not in the cone generated by S. Let λ be such that λ · x ≥ 0 for all x ∈ S but

λ · v < 0; such an λ exists by lemma 2.2.1. In fact, we may assume that λ · v = −1; otherwise, we

simply take the appropriate scalar multiple of λ. Define the linear functional g on Rn by g(x) = λ ·x.

Let T ⊆ S be defined by

T = {x ∈ S : g(x) = 0}.

Then, if we let m be the dimension of S, if T has dimension m− 1 or m, g is a facet of S (if it has

dimension m then it vanishes on all of S and in particular it vanishes on some m − 1 dimensional

subset of S) and we are done. Otherwise, let r be the dimension of T ; thus r ≤ m− 2. We then will

construct a nonzero linear functional g′ such that g′ is nonnegative on S, g′ vanishes on a subset

of S of dimension at least r + 1 and g′(v) < 0; then, if the dimension of the subspace of S that g′

vanishes on is less than m−1, we repeat the process. As the dimension of the intersection of the null

space of these functionals with S continues to strictly increase, this process must terminate with us

finding a facet f of S with f(v) < 0.

Thus, it remains to find such a g′. Let B = {z1, . . . , zr} be a basis of T. Note that g(v) 6= 0

implies that v is not in the span of B and thus B ∪ {v} is a linearly independent set of dimension

r + 1 ≤ m− 1. Thus, since S has dimension m, it follows that there exists at least one x1 ∈ S such

that B ∪ {v, x1} is also an independent set. Then, define the linear functional h by h(zi) = 0 for

1 ≤ i ≤ r, h(v) = −1 and h(x1) = 0, and extend h in any arbitrary way to the rest of Rn. Then,

note that since g(x1) 6= 0 and h(x1) = 0, h is a nonzero linear functional that vanishes on T but

is linearly independent from g. Now, if h happens to be nonnegative on all of S, we can simply

let g′ = h and are done, as g′ will vanish on T ∪ {x1}, a set of dimension r + 1. So assume there

is at least one x ∈ S with h(x) < 0. Further note that, since h vanishes on T, if h(x) < 0, x is

not in the span of T and thus g(x) > 0. Then, for any x with h(x) < 0, define αx by αx = −h(x)
g(x)

and let α be the maximum over all such αx (such a maximum exists of course since S is finite). It

follows that, since each αx > 0, α > 0. Then, let g′ = αg + h; it follows that g′ vanishes on T and
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g′(v) = αg(v) + h(g) = −α− 1 < 0. Further, for any x ∈ S, by definition g(x) ≥ 0, so if h(x) ≥ 0 we

have g′(x) ≥ 0. If h(x) < 0, by construction we have α ≥ αx, which implies that

g′(x) = αg(x) + h(x) ≥ αxg(x) + h(x) =
−h(x)
g(x)

g(x) + h(x) = 0,

and thus g′ is nonnegative on all of S. Further, we constructed α such that there is at least one x

such that αx = α (call it x2) that has

g′(x2) = αg(x2) + h(x2) = αx2g(x2) + h(x2) =
−h(x2)
g(x2)

g(x2) + h(x2) = 0.

Also, g(x2) 6= 0 so x2 is not in the span of T, which implies that T ∪{x2} is a subset of S of dimension

r + 1 where g′ vanishes. Thus, g′ has the required properties, which finishes the proof. �

Thus, to determine the cone of Vn we only need to determine each of the facets of Vn. Also,

note that any facet f of Vn can be represented by a unique d ∈ Rn such that f(v) = d · v. If

d = (d1, d2, . . . , dn), for any v = (v1, v2, . . . , vn) ∈ Vn, this yields the following inequality

d1v1 + d2v2 + · · ·+ dnvn ≥ 0,

which is true for all v ∈ Vn with equality holding for some n − 1 dimensional subset of Vn if and

only if d corresponds to a facet of Vn. We will henceforth use the term facet to refer to either the

functional, the associated vector, or the associated inequality; it will be clear by context to which of

these we are referring. We have the following simple result:

Theorem 2.2.3 For any integer i with 2 ≤ i ≤ n, vi ≥ 0 is a facet of Vn, while v1 ≥ 0 is not.

Proof. Note that vi ≥ 0 is trivially true for all v ∈ Vn so it remains to show that we have vi = 0

true for some n − 1 dimensional subset of Vn when 2 ≤ i ≤ n and that no such n − 1 dimensional

subset exists when i = 1. First, consider the case 2 ≤ i ≤ n. Then, for 1 ≤ j ≤ n and j 6= i, let vj be

defined by vjj = 1, vj1 = n− j and all other coordinates of vj are zero. Then, it is clear that vj ∈ Vn.

Now, let
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U = {vj : 1 ≤ j ≤ n, i 6= j}.

It is easy to see that U has dimension n − 1; also, by definition vji = 0. Thus, we have equality on

the n− 1 dimensional subset W, which shows that vi ≥ 0 is a facet.

So it remains to consider the case where i = 1. Note that the only v ∈ Vn such that vn−1 6= 0

must have vn−1 = 1 and thus v1 = 1. Thus, any v ∈ Vn with v1 = 0 must also have vn−1 = 0. So

the set of all v ∈ Vn that satisfy v1 = 0 is contained in the set

W = {v ∈ Rn : v1 = vn−1 = 0},

which has dimension n − 2. Thus, there does not exist any n − 1 dimensional subset of Vn where

v1 = 0 and it follows that v1 ≥ 0 is not a facet of Vn. �

Note that any positive scalar multiple of a facet is a facet. We will refer to any facet corresponding

to αvi ≥ 0 for α > 0 a trivial facet. We now prove a theorem about nontrivial facets.

Theorem 2.2.4 Suppose d ∈ Rn is a nontrivial facet of Vn, and consider any i with 2 ≤ i ≤ n.

Then, the following are true:

(a) d1 > 0,

(b) There exists some u ∈ Vn with ui > 0 and d · u = 0,

(c) di ≤ id1.

Proof.

(a) Consider any facet d of Vn. Note first that the vector v = (n, 0, 0, . . . , 0) is in Vn and since

0 ≤ d · v = d1v1 = nd1 we must have d1 ≥ 0. Suppose d1 = 0. Then, for 2 ≤ j ≤ n let vj be defined

as above. Note that

d · vj = djv
j
j + d1v

j
1 = dj ∗ 1 + 0 ∗ (n− j) = dj .
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Thus, we must have dj ≥ 0 for all such j. Now, suppose there exist j 6= k with dj and dk both not

equal to zero, and thus positive. Then, for any vector v with d · v = 0 we must have

0 = d · v = d1v1 + d2v2 + · · ·+ dnvn ≥ djvj + dkvk ≥ 0,

and thus it follows that djvj + dkvk = 0, which implies that vj = vk = 0. Thus, the set of all v ∈ Vn

that satisfy d · v = 0 must be contained in the set

U = {v ∈ Rn : vi = vj = 0},

which has dimension n−2. This contradicts our assumption that d is a facet, and thus d has at most

one nonzero coordinate. But that in turn contradicts our assumption that d is nontrivial. Thus, we

must have d1 6= 0, which implies d1 > 0.

(b) Assume that for any v ∈ Vn with d · v = 0, we must have vi = 0. Then, it follows that the

set of all v ∈ Vn with d · v = 0 must be a subset of

W = {v ∈ Rn : vi = 0}.

However, since this set has dimension n−1, it follows that any vector v ∈W ∩Vn must have d ·v = 0.

So, in particular,

0 = d · (n, 0, . . . , 0) = d1n > 0,

which is a contradiction. Thus, we must have some u ∈ Vn with d · u = 0 and ui > 0.

(c) Suppose for some i we have di > id1. Then, by part (b), there exists some u with d · u = 0

and ui > 0. Consider the vector u′ with u′i = ui − 1, u′1 = u1 + i, and u′j = uj for any j satisfying

j 6= 1 and j 6= i. Note that
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n∑
j=1

ju′j = u′1 + iu′i +
i−1∑
j=2

u′j +
n∑

j=i+1

u′j = u1 + i+ i(ui − 1) +
i−1∑
j=2

uj +
n∑

j=i+1

uj

= u1 + iui +
i−1∑
j=2

uj +
n∑

j=i+1

uj =
n∑
j=1

juj = n,

which shows that u′ ∈ Vn and thus d · u′ ≥ 0. So

0 ≤ d · u′ =
n∑
j=1

dju
′
j = d1u

′
1 + diu

′
i +

i−1∑
j=2

dju
′
j +

n∑
j=i+1

dju
′
j

≤ d1(u1 + i) + di(ui − 1) +
i−1∑
j=2

djuj +
n∑

j=i+1

djuj = d1i− di +
n∑
j=1

djuj

≤ d1i− di + d · u = d1i− di

< d1i− id1 = 0,

a contradiction. Thus, di ≤ id1. �

Now, for any vector v ∈ Vn we have, by definition,
∑n
i=1 ivi = n. So, consider any nontrivial

facet d of Vn. Then, for i with 1 ≤ i ≤ n, let ci = id1 − di. By above, each ci ≥ 0. Also, note that,

for v ∈ Vn, we have

n∑
i=1

civi =
n∑
i=1

(id1 − di)vi =
n∑
i=1

id1vi −
n∑
i=1

divi = d1

n∑
i=1

ivi −
n∑
i=1

divi

= d1n− d · v ≤ d1n,

and we have equality if and only if we have d · v = 0, which occurs on some n − 1 dimensional

subspace of Vn. Also, note that c1 = d1− d1 = 0. Conversely, assume we have some affine inequality

of the form
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n∑
i=1

civi ≤ b,

for some b > 0, which holds on all of Vn and has equality on some n− 1 dimensional subspace of Vn

and additionally has c1 = 0. Then, by letting d1 = b
n and let di = id1 − ci, it is clear by a similar

method to the above that d is a nontrivial facet of Vn. Thus, there is a one-to-one correspondence

between nontrivial facets of Vn and affine inequalities of the form

n∑
i=1

civi ≤ b,

for some b > 0 with c1 = 0, and which hold on an n− 1 dimensional subset of Vn. We will call such

inequalities affine-facet inequalities or AF-inequalities for short. Then, we have the following rather

technical-looking theorem:

Theorem 2.2.5 Suppose
∑n
i=1 civi ≤ b is an AF-inequality. Assume for some k with 2 ≤ k ≤ n

we have N ∈ N with k1, k2, . . . , kN , a1, a2, . . . , aN ∈ N such that
∑N
j=1 ajkj = k. Then, it must be

true that
∑N
j=1 ajckj

≤ ck.

Proof. Suppose we have positive integers satisfying the assumptions of the theorem 2.2.5. Let

S = {i ∈ N : i ≤ n, i 6= k, i 6= k1, i 6= k2, . . . , i 6= kN}.

Now, by theorem 2.2.4 part (b), there must be some u ∈ Vn with
∑n
i=1 ciui = b and uk > 0 (since

there must be some such u with equality in the corresponding facet). Define u′ by letting u′k = uk−1,

u′kj
= ukj

+ aj for 1 ≤ j ≤ N and u′i = ui for any i ∈ S.

n∑
i=1

iu′i = ku′k +
N∑
j=1

kju
′
kj

+
∑
i∈S

iu′i = k(uk − 1) +
N∑
j=1

kj(ukj
+ aj) +

∑
i∈S

iui

= −k +
N∑
j=1

ajkj +
n∑
i=1

iui = 0 +
n∑
i=1

iui = n,
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showing that u′ ∈ Vn. Thus, we must have:

b ≥
n∑
i=1

ciu
′
i = cku

′
k +

N∑
j=1

ckj
u′kj

+
∑
i∈S

ciu
′
i = ck(uk − 1) +

N∑
j=1

ckj
(ukj

+ aj) +
∑
i∈S

ciui

≥ −ck +
N∑
j=1

ckj
aj +

n∑
i=1

ciui = −ck +
N∑
j=1

ckj
aj + b.

This implies that

ck ≥
N∑
j=1

ckjaj ,

which is our desired result. �

This has the following corollary:

Corollary 2.2.6 Suppose
∑n
i=1 civi ≤ b is an AF-inequality. Then:

(a) If 1 ≤ i ≤ n− 1, then ci ≤ ci+1,

(b) If 1 ≤ i ≤ n
2 , then ci + cn−i = b.

Proof.

(a) Let k = i+ 1, let k1 = i, let k2 = 1, and let a1 = a2 = 1. Then,

a1k1 + a2k2 = i+ 1 = k,

so by theorem 2.2.5 we have a1c1 + a2ci ≤ ci+1 and since c1 = 0 we have ci ≤ ci+1.

(b) By theorem 2.2.4 part (b), there exists some u with un−i 6= 0 and
∑n
j=1 cjuj = b. Then, since

2(n− i) ≥ n, either ui = 2, which implies that n is even and i = n
2 , or we must have un−i = 1. Now,

if we are in the first case, by assumption we have 2ci = b = ci + cn−i since i = n − i in this case.

Otherwise, we have un−i = 1. Let k = i and let k1, k2, . . . , kN be the indices of the other coordinates

of u that are nonzero, and let ai = uki
. Then, by definition we have
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n =
n∑
j=1

juj = (n− i)un−i +
N∑
j=1

kjukj = n− k +
N∑
j=1

ajkj .

This implies that k =
∑N
j=1 ajkj , so by theorem 2.2.5 we have

ci = ck ≥
N∑
j=1

ajckj =
N∑
j=1

ujckj =
n∑
j=1

cjuj − cn−iun−i = b− cn−i,

which implies that c1 +cn−i ≥ b. However, note that the vector v defined by vn−i = vi = 1 (all other

coordinates zero) is in Vn, which implies that ci + cn−i ≤ b and thus ci + cn−i = b. �

Note that we can also consider the nontrivial facet d corresponding to any AF-inequality, yielding

another corollary:

Corollary 2.2.7 Suppose d ∈ Rn is a nontrivial facet of Vn. Then:

(a) If 1 ≤ i ≤ n− 1, then di+1 ≤ d1 + di,

(b) If 1 ≤ i ≤ n
2 , then di = −dn−i.

Proof. Consider the AF-inequality defined by letting ci = id1 − di.

(a) By Corollary 2.2.6 part (a) we have ci ≤ ci+1, which implies that

id1 − di ≤ (i+ 1)d1 − di+1,

di+1 ≤ (i+ 1)d1 − id1 + di = d1 + di.

(b) By Corollary 2.2.6 part (b) we have

b = ci + cn−i = id1 − di + (n− i)d1 − dn−i = nd1 − di − dn−i.

But, since by above we have b = d1n, this simplifies to 0 = −di−dn−i, which implies that di = −dn−i.

�
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Now, to find every facet of Vn, we simply check every n − 1 element subset of Vn, determine if

it has dimension n − 1, and, if it does, find the unique (up to scalar multiplication) vector d ∈ Rn

perpendicular to it, and check whether or not d is a facet. However, if we let P (n) denote the number

of partitions of n, there are
(P(n)
n−1

)
different such subsets to check. Since P (n) grows exponentially,

this becomes quite difficult for relatively small values of n. In the next section, we will show how to

narrow our search considerably.

2.3 Narrowing the Search for Facets

We first prove two related lemmas:

Lemma 2.3.1 If π is a partition of n into m ≥ 4 parts, there exists partitions σ, τ, and ρ of n,

where σ has m− 1 parts, τ has three parts and ρ has two parts, such that vπ = vσ + vτ − vρ.

Proof. Let π be given by π1 + π2 + · · · + πm = n; without loss of generality, we can assume

π1 ≤ π2 ≤ · · · ≤ πm. Note that this implies that π1 + π2 ≤ n
2 . Further, define σ by σ1 = π1 + π2 and

σi = πi+1 for 2 ≤ i ≤ m− 1; it is clear that by this definition σ is a partition of n into m− 1 parts.

Then, define τ by τ1 = π1, τ2 = π2 and τ3 = n− σ1, and since

π1 + π2 + n− σ1 = π1 + π2 + n− π1 − π2 = n,

it follows that τ is a partition of n into three parts. Finally, define ρ by ρ1 = σ1, ρ2 = n−σ1, so ρ is

a partition of n into two parts. Then, let φ1 be the partition of 2n defined by φ1
i = πi for 1 ≤ i ≤ m

and φ1
m+j = ρj for 1 ≤ j ≤ 2, and let φ2 be the partition of 2n defined by φ2

i = σi for 1 ≤ i ≤ m− 1

and φ2
m+j−1 = τj for 1 ≤ j ≤ 3 (so φ1 is formed by concatenating π and ρ and φ2 is formed by

concatenating σ and τ). Then, we claim that φ1 and φ2 are in fact the same partition. To see this,

just note that

φ1
1 = π1 = τ1 = φ2

m, φ
1
2 = π2 = φ2

m+1,
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φ1
i = πi = σi−1 = φ2

i−1 for 3 ≤ i ≤ m,

φ1
m+1 = ρ1 = σ1 = φ2

1, and φ1
m+2 = ρ2 = n− σ1 = τ3 = φ2

m+2.

Thus φ1 and φ2 have precisely the same parts. This implies that vφ1 = vφ2 , and since vφ1 = vπ + vρ

and vφ2 = vσ + vτ , we have vπ + vρ = vσ + vτ , which implies that vπ = vσ + vτ − vρ. �

Lemma 2.3.2 If π is a partition of n into m parts, where m ≥ 4, there exists v1, v2, . . . , vm−2 ∈

Vn,n,3 \ Vn,n,2 and w1, w2, . . . , wm−3 ∈ Vn,n,2 such that

vπ =
m−2∑
i=1

vi −
m−3∑
i=1

wi.

Proof. We prove this by induction on m. When m = 4, by lemma 2.3.1, we can find σ, τ and

ρ, partitions of n into three, three and two parts, respectively, with vπ = vσ + vτ − vρ, and since

vσ, vt ∈ Vn,n,3 \ Vn,n,2 and vρ ∈ Vn,n,2, our result is proven by letting v1 = vσ, v
2 = vτ , and

w1 = vρ. So now, assume lemma 2.3.2 is true for all partitions of n into m parts, and consider

the case when π is a partition of n into m + 1 parts. Then, again choose σ, τ, and ρ as in lemma

2.3.1; in this case, σ is a partition of n into m parts, so by our induction hypothesis, we have

vσ =
∑m−2
i=1 vi −

∑m−3
i=1 wi with v1, v2, . . . , vm−2 ∈ Vn,n,3 \ Vn,n,2 and w1, w2, . . . , wm−3 ∈ Vn,n,2.

Then, simply let vm−1 = vτ ∈ Vn,n,3 \ Vn,n,2 and let wm−2 = vρ ∈ Vn,n,2, and note that:

vπ = vσ + vτ − vρ =
m−2∑
i=1

vi −
m−3∑
i=1

wi + vm−1 − wm−2 =
m−1∑
i=1

vi −
m−2∑
i=1

wi,

which is our desired result. Thus, lemma 2.3.2 is true for all m ≥ 4. �

Note that an immediate consequence of lemma 2.3.2 is that Vn,n,3 spans Vn, and since Vn has

dimension n, Vn,n,3 must have dimension n as well.

Corollary 2.3.3 Vn,n,3 has dimension n. �

We now show the result that narrows our search for facets from Vn to Vn,n,3.
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Theorem 2.3.4 If f is a nontrivial facet of Vn, it follows that f vanishes on all of Vn,n,2 and f

vanishes on some n− 1 dimensional subset of Vn,n,3.

Proof. Let f be any nontrivial facet of Vn, and let d be the vector associated with it. Now, note

that the only elements of Vn,n,2 are either un = (0, 0, . . . , 0, 1) or uj defined by ujj = ujn−j = 1 and

the rest of the coordinates of uj are zero for 1 ≤ n−1
2 or, if n is even, u

n
2 = 2 and the rest of the

coordinates of u
n
2 are zero. Since Vn \{un} is orthogonal to un it follows that any n−1 dimensional

subspace of Vn that does not contain un must span Vn \ {un}. This implies that any facet that is

not zero on un must be zero on the rest of Vn. Thus, since theorem 2.2.4 part (a) tells us d1 > 0, it

follows that f(n, 0, 0, . . . , 0) = nd1 6= 0. So f does not vanish on all of Vn \ {un}, which implies that

f(un) = 0. Further, for 1 ≤ j ≤ n
2

f(uj) = d · uj = dj + dn−j = 0,

by Corollary 2.2.7 part (b). Thus, f vanishes on all of Vn,n,2.

Suppose that f does not vanish on any n− 1 dimensional subset of Pn,n,3. Let

T = {v ∈ Vn : f(v) = 0},

and let W = T ∩ Pn,n,3. Note that W has dimension less than n − 1, by definition but T has

dimension n − 1. Thus, there is some v ∈ T that is not in the subspace of Rn spanned by W. If

m is the number of parts in the partition of n that corresponds to v, we have, by lemma 2.3.2,

v1, v2, . . . , vm−2 ∈ Vn,n,3 \Vn,n,2 and w1, w2, . . . , wm−3 ∈ Vn,n,2 such that v =
∑m−2
i=1 vi−

∑m−3
i=1 wi.

In particular, by above, each wi ∈ Pn,n,2 implies that f(wi) = 0. Also, note that v ∈ T means that

f(v) = 0. So

0 = f(v) =
m−2∑
i=1

f(vi)−
m−3∑
i=1

f(wi) =
m−2∑
i=1

f(vi)−
m−3∑
i=1

0 =
m−2∑
i=1

f(vi).
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But f is a facet, which implies that f(vi) ≥ 0 for 1 ≤ i ≤ m − 2, so for the sum to vanish, we

must have each term equal to zero, so f(vi) = 0 for 1 ≤ i ≤ m − 2. But then, each vi ∈ W and,

by above, each wi ∈ W, implying that v is in fact in the subspace of Rn spanned by W, which is a

contradiction. Thus, no such v exists, which implies that f does vanish on some n− 1 dimensional

subspace of Pn,n,3. �

Since any nontrivial facet of Vn is completely determined (up to scalar multiplication) by any

n− 1 dimensional subset it vanishes on, it follows that each such facet is completely determined by

its action on Vn,n,3. Thus, instead of checking all n − 1 element subsets of Vn, we need only check

all n − 1 element subsets of Vn,n,3. Further, since each nontrivial facet must vanish on Vn,n,2, we

need only check the n− 1 element subsets that contain all of Vn,n,2. In other words, we just need to

check each of the n− 1− |Vn,n,2| element subsets of Vn,n,3 \ Pn,n,2. Note that |Vn,n,2| is simply the

number of partitions of n into one or two parts, and |Vn,n,3 \ Vn,n,2| is the number of partitions of

n into exactly three parts. These numbers are well known (for example, see [1]) to be bn2 c+ 1 and

[ 1
12n

2], respectively, where [x] is the integer nearest to x. Thus, as n− 1− |Vn,n,2| = bn−3
2 c, we have

reduced the number of subsets of Vn we need to check to
([ 1

12n
2]

bn−3
2 c

)
. To get some perspective, when

n = 20, this is the difference between
(
627
19

)
, which is roughly 8.78× 1035 and

(
30
8

)
, which is roughly

5.85× 106. At the end of this paper, in appendix A, we list An for n = 3 to n = 16, where the rows

of An correspond to each of the distinct (up to scalar multiplication) nontrivial facets of the cone

generated by Vn.

Thus, the procedure is clear. To find each nontrivial facet of Vn, we simply choose some n − 1

element subset S of Vn,n,3 that contains Vn,n,2, check that it in fact has dimension n− 1, then find

the unique (up to scalar multiplication) functional f that vanishes on S and is positive on at least

one element of Vn. We then check whether or not it is nonnegative on all of Vn; if so, it is a facet.

We then repeat this process over all such S. theorem 2.3.4 insures that all such facets can be found

this way. However, the following theorem shows that we only need check whether f is nonnegative

on Vn,n,3:
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Theorem 2.3.5 If f is a nonzero linear functional on Rn such that f vanishes on some n − 1

dimensional subset of Vn,n,3 that contains Vn,n,2, and f is nonnegative on Vn,n,3, then f is a nontrivial

facet of Vn.

Proof. Let f be any nonzero linear functional on Rn that vanishes on an n − 1 dimensional subset

of Vn,n,3 that contains Vn,n,2 and f is nonnegative on Vn,n,3. Then, suppose that f(v) < 0 for some

v ∈ Vn and let

S = {π : π is a partition of n such that f(vπ) < 0},

and choose a π ∈ S with the minimum number of parts. Note that, by assumption, if we let m be

the number of parts of π, m ≥ 4. So then, by lemma 2.3.1, there exists partitions σ, τ, and ρ of n

into m−1, three and two parts, respectively, with vπ = vσ +vτ −vρ. Further, since σ has m−1 < m

parts, f(σ) ≥ 0 by the minimality of m. Also, vτ ∈ Pn,n,3 and vρ ∈ Pn,n,2, which implies f(vτ ) ≥ 0

and f(vρ) = 0, respectively. Thus,

0 > f(vπ) = f(vσ) + f(vτ )− f(vρ) = f(vσ) + f(vτ ) ≥ 0,

which is a contradiction. Thus, f is nonnegative on all of Vn, which implies that f is a facet of

Vn. Further, if f is a trivial facet, then there exists some j, such that, if d ∈ Rn is the vector

associated with f, then dj 6= 0 and di = 0 for i 6= j. But then, consider the vector u ∈ V such that

uj = un−j = 1 if j 6= n
2 and uj = 2 if j = n

2 . Then, f(u) = dj or f(u) = 2dj , respectively. But in

either case, f(u) 6= 0, but u ∈ Vn,n,2. This is a contradiction, so f is in fact a nontrivial facet of Vn.

�

We now define the linear transformation Tn : Rn → Rm, where m = bn−1
2 c for the rest of this

section, as follows. Let e1, e2, . . . , en denote the standard basis of Rn, with ejj = 1 and eji = 0 for

i 6= j, and, similarly, let b1, b2, . . . , bm be the standard basis of Rm. Then, let
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Tn(ej) =


bj if j < n

2 ,

0 if j = n
2 ,

−bn−j if j > n
2 ,

and we extend Tn linearly. We note the following:

Lemma 2.3.6 Tn(Vn,n,2) = {0} and Tn restricted to Vn,n,3 \ Vn,n,2 is one-to-one.

Proof. If v ∈ Vn,n,2 then either there exists some j with vj = vn−j = 1, and all other coordinates

of v are zero, so Tn(v) = bj − bn−(n−j) = bj − bj = 0, or vn
2

= 2 and all other coordinates of v are

zero, so Tn(v) = 0.

Now, suppose that we have v, w ∈ Vn,n,3\Vn,n,2 with Tn(v) = Tn(w) but w 6= v. Then, Tn(v−w) =

0, which implies that, if y = v − w, yj = yn−j for 1 ≤ j ≤ n. Further, if vi = wi for all i 6= n
2 , it

follows that, since both represent partitions of n, v = w. Since this is not true, there must be some j

with j 6= n
2 and vj 6= wj so yj 6= 0. But then, yn−j 6= 0 as well, so, without loss of generality, j > n

2 .

So either vj = 1 or wj = 1; without loss of generality, vj = 1, which implies that wj = 0 so yj = 1.

Thus, yn−j = 1, but since v 6∈ Vn,n,2, we must have vn−j = 0. But this implies that wn−j = −1, an

impossibility. So no such v, w exist implying that Tn restricted to Vn,n,3 \ Vn,n,2 is one-to-one. �

Let Qn = Tn(Vn,n,3). Now, we show that Qn has full dimension:

Theorem 2.3.7 Qn has dimension m.

Proof. Define vj , for 1 ≤ j ≤ m as follows (all coordinates not specifically mentioned are zero)

v1
1 = 2, v1

n−2 = 1,

vj1 = 1, vjj = 1, vjn−j−1 = 1 for 2 ≤ j ≤ m− 1,

vm1 = 1, vmm = 2 if n is odd,

vm2 = 1, vmm = 2 if n is even.
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It is easy to see that each vj ∈ Vn,n,3 \ Vn,n,2 and thus Tn(vj) ∈ Qn. Further, if wj = Tn(vj), we

have

w1
1 = 2, w1

2 = −1,

wj1 = 1, wjj = 1, wjj+1 = −1 for 2 ≤ j ≤ m− 1,

wm1 = 1, wmm = 2 if n is odd,

wm2 = 1, wmm = 2 if n is even.

Thus, for 1 ≤ j ≤ m − 1, we have wjj+1 = −1 and wji = 0 for i > j + 1. This implies that

{w1, w2, . . . , wm−1} is a linearly independent set. Further, note that
∑m
i=1 iv

j
i = 0 for 1 ≤ j ≤

m − 1 and
∑m
i=1 iv

m
i 6= 0, which implies that vm is not in the subspace of Rm spanned by

{w1, w2, . . . , wm−1}, showing that {w1, w2, . . . , wm−1, wm} is in fact a linearly independent set. But

this implies that the dimension of Qn is at least m, and since Qn ⊂ Rm, the dimension of Qn is

exactly m. �

Now, note that if g is any linear functional on Rm, f = g ◦ Tn is a linear functional on Rn, and

the fact that Tn vanishes on Vn,n,2 shows that f must vanish on Vn,n,2. For the converse, we have

the following lemma:

Lemma 2.3.8 If f is any linear functional on Rn that vanishes on Vn,n,2, then there exists a unique

linear functional g on Rm such that f = g ◦ Tn.

Proof. Note that if such a g exists, it must be unique. Assume we have f = g1 ◦ Tn = g2 ◦ Tn, for

linear functionals g1, g2 on Rm. Then, it is clear that by definition Tn is onto, so for any x ∈ Rm we

have some y ∈ Rn with T (y) = x and thus g1(x) = g1(T (y)) = f(y) = g2(T (y)) = g2(x) showing

that g1 = g2.

Conversely, let e1, e2, . . . , en and b1, b2, . . . , bm be the standard bases for Rn and Rm, respectively,

as above. Then, let g be defined by g(bj) = f(ej) for 1 ≤ j ≤ m and extending linearly. Then, for
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1 ≤ j ≤ n − 1, let uj ∈ Vn,n,2 be defined as before, with ujj = ujn−j = 1 and all other coordinates

are zero if j 6= n
2 and ujj = 2 with all other coordinates zero if j = n

2 . Then, for any x ∈ Rn, define

w ∈ Rn by:

w =


x−

∑n
i=m+1 xiu

i if n is odd,

x− xm+1
2 um+1 −

∑n
i=m+2 xiu

i if n is even.

Note that by construction, wi = 0 for i > m. This shows that Tn(w) =
∑m
i=1 wib

i. Also, the fact that

f vanishes on Vn,n,2 implies that f(x) = f(w). Further, lemma 2.3.6 shows us that Tn(x) = Tn(w).

Putting this all together, we have:

g ◦ Tn(x) = g ◦ Tn(w) = g(
m∑
i=1

wib
i) =

m∑
i=1

wig(bi) =
m∑
i=1

wif(ei)

= f(
m∑
i=1

wie
i) = f(w) = f(x),

and thus f = g ◦ Tn. �

We now prove a theorem showing a one-to-one correspondence between nontrivial facets of Vn

and facets of Qn.

Theorem 2.3.9 Let f be a nonzero linear functional on Rn that vanishes on Vn,n,2 and let g be the

unique linear functional on Rm such that f = g ◦ Tn. Then, f is a nontrivial facet of Vn if and only

if g is a facet of Qn.

Proof. First, note that f is nonnegative on Vn,n,3 if and only if g is nonnegative on Qn. To see this,

first assume that f is nonnegative on Vn,n,3. Then, for any y ∈ Qn we have y = Tn(x) for some

x ∈ Vn,n,3 and thus

g(y) = g(Tn(x)) = f(x) ≥ 0.
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Conversely, assume g is nonnegative on Qn. Then, since f vanishes on Vn,n,2, it remains to consider

any x ∈ Vn,n,3 \ Vn,n,2. We have f(x) = g(T (x)) ≥ 0, which proves our result.

Thus, we are ready to prove theorem 2.3.9. Assume f is a facet of Vn. Then, let

S = {x ∈ Vn,n,3 : f(x) = 0}.

By theorem 2.3.5, S has dimension n − 1. Then, since Vn,n,3 has dimension n, let v ∈ Vn,n,3 with

v not in the span of S (so, as a consequence, since f is nonzero, f(v) 6= 0). Thus, S′ = S ∪ {v}

has dimension n. Since S′ has dimension n and Tn is onto, Tn(S′) spans Rm. For any x ∈ S′, note

that either x ∈ Vn,n,2 and Tn(x) = 0 or x ∈ Vn,n,3 \ Vn,n,2, in which case Tn(x) ∈ Qn. Thus, the

nonzero elements of Tn(S′) are in Qn, and since they span Rm, they form a set of dimension m

in Qn. This implies that the removal of one element results in a set of dimension at least m − 1,

and thus Tn(S) \ {0} is a subset of Qn of dimension at least m − 1. For any y ∈ Tn(S) \ {0}, we

have y = Tn(x), where x ∈ S implies f(x) = 0 and thus g(y) = g(Tn(x)) = f(x) = 0. And, since

g(Tn(v)) = f(v) 6= 0, which shows g is a nonzero linear functional on Rm that vanishes on an m− 1

dimensional subset of Qn, and, since f is a facet, f is nonnegative on Vn,n,3. This shows, by above,

that g is nonnegative on Qn. Thus, g is a facet of Qn.

Conversely, assume g is a facet of Qn. Then, let

R = {y ∈ Qn : g(y) = 0},

and let R′ = R ∪ {z}, where z is some element of Qn with g(z) 6= 0 (such a z exists because g is

nonzero and Qn has dimension m). is Then, note that R has dimension m − 1 (since g is a facet)

and R′ thus has dimension m. Further, let

A = {x ∈ Vn,n,3 : Tn(x) ∈ R},
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and let v be the unique element of Vn,n,3 \ Vn,n,2 such that Tn(v) = z (such a v exists by the fact

that Tn is onto and by lemma 2.3.6). Then, let B = A ∪ Vn,n,2 ∪ {v}. We claim B has dimension n.

If it does not, there must be some u ∈ Vn,n,3 that is not in the span of B, and thus u 6∈ Vn,n,2. This

implies that Tn(u) ∈ Qn. But note that the elements of R′ span Rm so in particular, Tn(u) is in the

span of R′. Thus, if R = {y1, y2, . . . , yN} for some N ∈ N, we must have:

Tn(u) =
N∑
i=1

αiy
i + βz,

for some α1, α2, . . . , αN , β ∈ R. But then, if we let xi be the unique element of Vn,n,3 \ Vn,n,2 such

that Tn(xi) = yi for 1 ≤ i ≤ N, we have:

Tn(u) =
N∑
i=1

αiTn(xi) + βTn(v) = Tn(
N∑
i=1

αi(xi) + β(v)).

By lemma 2.3.6, this implies u =
∑N
i=1 αi(x

i) + β(v) and since each xi ∈ A ⊂ B and v ∈ B, we

have u is in the span of B, a contradiction. Thus, B has dimension n. This implies that B \ {v} has

dimension at least n−1. Further, for x ∈ A, f(x) = g(Tn(x)) = 0 by construction, and for x ∈ Vn,n,2

f(x) = 0 by assumption, so A ∪ Vn,n,2 = B \ {v} is a set of dimension n − 1 in Vn,n,3 containing

Vn,n,2 that f vanishes on. And since f(v) = g(Tn(v)) = g(z) 6= 0, f is in fact nonzero. Further, by

above, g being a facet implies g is nonnegative on Qn, which, in turn, implies f is nonnegative on

Vn,n,3. Thus, by theorem 2.3.5, f is a nontrivial facet of Vn. �

So we have again reduced the problem of finding all facets of Vn further, this time to finding

facets of Qn. However, the problem of classifying all facets seems difficult. An inspection of the

facets in appendix A yields some patterns, but many facets appear fairly random. We will show

below some infinite families of facets, writing them in inequality form. First, we describe Qn in more

detail.

Theorem 2.3.10 For any x ∈ Rm, x ∈ Qn if and only if one of the following conditions holds:

(a)
∑m
i=1 ixi = 0,

∑n
i=1 |xi| = 3 and there exists some j with xj = −1, xi ≥ 0 for i < j and
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xi = 0 for i > j,

(b) x = vπ for some partition π of n into exactly three parts, each of size at most m,

(c) n is even and v = π for some partition π of n
2 into exactly two parts.

Proof. First, consider any v ∈ Vn,n,3 \ Vn,n,2 such that there exists some j > n
2 with vj 6= 0. Since v

corresponds to a partition of n into three parts, it follows that any other nonzero coordinate of v must

have index less than n− j. Thus, if x = Tn(v), we have xi = 0 if i > n− j, xj = −1 and xi ≥ 0 for

all other coordinates, so in particular for i < n− j. Also, note that we have
∑n
i=1 |xi| =

∑n
i=1 vi = 3

(since vn−j = 0 and vn−i = 0 for i ≤ m with i 6= j). Thus, x satisfies condition (a). Conversely,

for any x satisfying condition (a), if we let v be defined by vn−j = 1, and vi = xi for i < j (and all

other coordinates of v be zero) we have Tn(v) = x and

n∑
i=1

ivi = (n− j)vn−j +
j−1∑
i=1

ivi = n− j +
j−1∑
i=1

ixi = n− j +
m∑
i=1

ixi − jxj

= n− j + j = n,

showing v ∈ Vn. Further,
∑n
i=1 vi =

∑n
i=1 |xi| = 3 by construction, showing that v ∈ Vn,n,3 \ Qn,

and thus x ∈ Qn.

Now consider any v ∈ Vn,n,3 \ Vn,n,2 with vi = 0 for i ≥ n
2 . Then, we simply have Tn(v) is equal

to the first m coordinates of v, and thus Tn(v) = vπ (in Rm) where π is the partition corresponding

to v; it thus has 3 parts, and all parts less than or equal to m, showing x satisfies condition (b).

Conversely, if x satisfies condition (b), by simply defining v by letting vi = xi for i ≤ m and vi = 0

for i > m, we have Tn(v) = x and clearly v ∈ Vn,n,3 \ Vn,n,2, showing x ∈ Qn.

The only other case is when n is even, and we have some v ∈ \Vn,n,2 with vn
2

= 1 (since if

vn
2

= 2, then v ∈ Vn,n,2). Thus, vi = 0 for i > n
2 and we also have x = Tn(v) satisfying xi = vi for

i ≤ m. This shows that
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m∑
i=1

ixi =
m∑
i=1

ivi =
n∑
i=1

ivi −
n

2
vn

2
= n− n

2
=
n

2

=
m∑
i=1

yi =
n∑
i=1

vi − vn
2

= 3− 1 = 2.

Thus, x satisfies condition (c) and x ∈ Qn. Conversely, if x satisfies condition (c), we can simply

define v by vn
2

= 1, vi = xi for i ≤ m, and vi = 0 for i > n
2 . Then, Tn(v) = x by construction, and

n∑
i=1

ivi =
m∑
i=1

ivi +
n

2
vn

2
=

m∑
i=1

ixi =
n

2
=
n

2
+
n

2
= n

=
m∑
i=1

vi + vn
2

=
m∑
i=1

xi + 1 = 2 + 1 = 3,

showing that v ∈ Vn,n,3 \ Vn,n,2, which implies that x ∈ Qn.

Now, if x ∈ Qn, it is the case that for some v ∈ Vn,n,3 \ Vn,n,2 we have Tn(v). Since the above

exhausts all possibilities of such v, we must have x satisfying one of the above conditions. And since

we showed that any x satisfying the above conditions is in Qn, we are done. �

We now describe four infinite families of facets of Vn.

Theorem 2.3.11 The following all are facets of Vn (for n ≥ 3):

(a)
∑m
i=1 ivi −

∑n−1

i=bn+2
2 c

(n− i)vi ≥ 0,

(b) v1 − vn−1 ≥ 0 if n 6= 5, 7,

(c)
∑bn

4 c
i=1 v2i−1 −

∑n−1

i=bn+2
4 c

v2i+1 if n is even,

(d)
∑m−1
i=1 2ivi − vm + vm+1 −

∑n−1
i=m+2 2ivi ≥ 0 if n is odd and n > 3.

Proof. Let f1, f2, f3 and f4 be the linear functionals on Rn associated with the inequalities in

parts (a), (b), (c) and (d), respectively. It it easy to check that in each of the above inequalities, the

coefficient of vi is equal to the negation of coefficient of vn−i for 1 ≤ i ≤ n. Thus, each f i vanishes

on Vn,n,2. Then, let gi be the unique linear functional on Rm such that f i = gi ◦ Tn for 1 ≤ i ≤ 4.



91

We will then prove that each gi is a facet of Qn. By theorem 2.3.9, this will prove that each of the

fi is a facet of Vn.

First, we consider g1. Note that the proof of theorem 2.3.9 shows that g1(bj) = j for 1 ≤ j ≤ m

(where bj is the jth basis element of Rm described above). Thus, g1 is nonnegative on any element

of Qn that is nonnegative. Further, for any element x of Qn satisfying
∑m
i=1 ixi will have g1(x) = 0.

By theorem 5.17, this shows that g1 is nonnegative on Qn. Further, for 1 ≤ i ≤ m− 1, we define ui

as follows. Let u1
1 = 2 and u1

2 = −1, and let all other coordinates of u1 be zero. Then, let ui1 = 1,

uii = 1 and uii+1 − 1, for 2 ≤ i ≤ m− 1. It is easy to see each ui ∈ Qn, since they satisfy condition

(a) of theorem 5.17. Further, if S = {ui : 1 ≤ i ≤ m− 1}, since each ui has uii+1 6= 0 but uij = 0 for

j > i+ 1, the elements of S are linearly independent. And since

g1(ui) =
m∑
j=1

uijg
1(bj) =

m∑
j=1

juij = 0

(as can easily be checked), it follows that g1 vanishes on S, a set of dimension m− 1, and thus g1 is

a facet of Qn.

Now, note that g2 has g2(b1) = 1 and g2(bj) = 0 for 2 ≤ j ≤ m. This implies that g2 is

nonnegative on Qn, since by theorem 2.3.10, it is impossible for x ∈ Qn to have x1 < 0 (since either

x corresponds to some partition, or we would have
∑m
i=1 ixi = x1 6= 0). Further, an inspection of

appendix A (and any computer search) shows us theorem 2.3.11 part (b) is true in particular for

n ≤ 12 and thus we need only consider n > 13. So, we now define ui for 1 ≤ i ≤ m − 2 as follows

(all coordinates not specifically mentioned are zero): first, let u1
3 = 2 and u1

6 = −1. Then, let u2
2 = 2

and u2
4 = −1. For 3 ≤ j ≤ m − 2, let uj2 = 1, ujj = 1, and ujj+2 = −1. Note that by construction,

each uj ∈ Qn. It is easy to see that S = {ui : 2 ≤ i ≤ m − 2} is an independent set, since for

2 ≤ j ≤ m− 2 we have ujj+2 6= 0 but uji = 0 for i > j + 2. Further, u1 is not in the span of S. For if

it were, we would have α2, . . . , αm−2 such that u1 =
∑m−2
i=2 αiu

i. But u3 is the only uj with uj3 6= 0,

so α3 = 2. Similarly, u5 is the only uj other than u3 with uj5 6= 0, so since u3
5 = −1 and u5

5 = 1, we

must have a5 = 2. Similarly, by induction, for odd i > 3, we must have ai = 2 since u1
i = 0, and
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ui−2
i = −1 and uii = 1. But then, for either i = m−2 or i = m−3, whichever is odd, we have ai = 2,

and since ui is the only such j with uji+2 6= 0, we would have u1
i+2 = aiuii+2 = −2, contradicting the

fact that we must have u1
i+2 = 0. Thus, u1 is not in the span of S, implying that S′ = S ∪ {u1} has

dimension m − 2. Further, let v be defined by vm = vm−1 = 1, and, if n is odd, v2 = 1, and if n is

even, v3 = 1. Either way, v ∈ Qn. Further, since g1(uj) = 0 for 1 ≤ j ≤ m − 2 and g1(v) = n 6= 0,

v is not in the span of S′, implying that S′′ = S′ ∪ {v} has dimension m − 1. Further, since each

x ∈ S′′ has x1 = 0, g2(x) = 0 and thus g2 vanishes on S′′, showing g2 is a facet of Qn.

Now, assume that n is even. Again, it can be checked that theorem 2.3.11 part (c) is true for

n ≤ 12 so assume n ≥ 14. Note that g3(bj) = 1 if j is odd and g3(bj) = 0 if j is even, for 1 ≤ j ≤ m.

Since g3(bj) ≥ 0 in any case, g3(x) ≥ 0 for x ∈ Qn satisfying conditions (b) or (c) of theorem 2.3.10

(since such x has nonnegative coordinates). Further, for any x ∈ Qn satisfying condition (a) of

theorem 2.3.10, we either have the j with xj = −1 even, in which case g3(x) trivially is greater than

or equal to zero, or we such a j odd, in which case there must be some i < j with xi ≥ 1 and i odd,

since we must have
∑j−1
i=1 ixi = 0− jxj = j, an odd number. Then, since all other coordinates of x

are nonnegative, we have

g3(x) ≥ g3(bj) + g3(bi) = −1 + 1 = 0,

showing g3 in fact is nonnegative on Qn. Further, we define, in this case, for 1 ≤ j ≤ m− 2, uj by

uj1 = ujj+1 = 1 and ujj+2 = −1 if j is odd, and u2
2 = 2, u2

4 = −1, and uj2 = ujj = 1 and ujj+2 = −1 if j

is even and j > 2. It is easy to see tht each uj ∈ Qn. Further, it follows that S = {uj : 1 ≤ j ≤ m−2}

is independent, by reasons similar to those described above. Further, if j is even, uji = 0 for odd i,

implying that g3(uj) = 0. If j is odd, then

g3(uj) = g3(b1) + g3(bj+1)− g3(bj+2) = 1 + 0− 1 = 0.

Thus, g3 vanishes on S. Now, if we let v be defined by vm = 2, v2 = 1 if m is even and vm−1 = 2,

v4 = 1 if m is odd. Either way, we have v ∈ Qn and vi = 0 if i is odd, so g3(v) = 0. Further,
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similar to above, g1(uj) = 0 for 1 ≤ j ≤ m − 2 and g1(v) 6= 0 imply that S′ = S ∪ {v} is linearly

independent. Thus, S′ is a subset of Qn of dimension m − 1 that g3 vanishes on, implying that g3

is a facet of Qn.

Finally, we assume that n is odd and consider g4. We first note that g4(bj) = 2j if j < m and

g4(bm) = −1. So, for any v ∈ Qn such that v satisfies condition (a) of theorem 2.3.10 with vm = 0,

we have g4(v) = 2g1(v) = 0. Further, for any v ∈ Qn satisfying condition (a) with vm 6= 0, we must

have vm = −1, and vi ≥ 0 for i < m. Then, we have

g4(v) =
m∑
i=1

vig
4(bi) =

m−1∑
i=1

vig
4(bi) + g4(bm)vm ≥ 0 + (−1)(−1) = 1,

so g4 is nonnegative on all v ∈ Qn satisfying condition (a) of theorem 2.3.10. The only other v ∈ Qn

are those that correspond to partitions of n. Either vm = 0, in which case g4(v)geq0 or vm = 1 or

vm = 2 (since 3m > n). If vm = 2, then v1 = 1 and the rest of the coordinates of v are zero, and

thus

g4(v) = g4(b1) + 2g4(bm) = 2− 2 = 0.

Otherwise, vm = 1 and there must be at least one i < m with vi > 0. Then

g4(v) ≥ g4(bm) + vig
4(bi) = −1 + 2i > 0.

This exhausts all cases, implying g4 is nonnegative on Qn. Further, in this case, let uj for 1 ≤ j ≤

m − 2 be defined by u1
1 = 2, u1

2 = −1, and uj1 = ujj = 1, ujj+1 = −1 for 2 ≤ j ≤ m − 2. Then,

each uj has ujm = 0 and each satisfies condition (a) of theorem 2.3.10, showing each uj ∈ Qn and

g4(uj) = 0. Further, we again have S = {uj : 1 ≤ j ≤ m − 2 is an independent set. So if we let v

have vm = 2 and v1 = 1, our above analysis shows that v ∈ Qn and g4(v) = 0. And again, g1(v) 6= 0,

g1(uj) = 0 for 1 ≤ j ≤ m− 2, and thus we have S′ = S ∪ {v} is an independent set. And again, S′

has dimension m− 1 and g4 vanishes on S′. Thus g4 is a face of Qn. �
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Appendix A

The Matrices An for n = 3 to n = 16

A3 =
[

1 −1 0

]
, A4 =

[
1 0 −1 0

]
, A5 =

 2 −1 1 −2 0

1 2 −2 −1 0

 ,

A6 =

1 2 0 −2 −1 0

1 0 0 0 −1 0

 , A7 =



4 1 −2 2 −1 −4 0

3 −1 2 −2 1 −3 0

2 4 −1 1 −4 −2 0

1 2 3 −3 −2 −1 0


,

A8 =



1 2 3 0 −3 −2 −1 0

1 2 −1 0 1 −2 −1 0

1 0 1 0 −1 0 −1 0

1 0 0 0 0 0 −1 0


,
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A9 =



4 −1 3 −2 2 −3 1 −4 0

2 4 6 −1 1 −6 −4 −2 0

2 4 0 −1 1 0 −4 −2 0

2 1 0 2 −2 0 −1 −2 0

2 1 0 −1 1 0 −1 −2 0

1 2 3 4 −4 −3 −2 −1 0

1 2 0 1 −1 0 −2 −1 0

1 0 0 0 0 0 0 −1 0



,

A10 =



3 6 −1 2 0 −2 1 −6 −3 0

3 1 −1 2 0 −2 1 −1 −3 0

2 4 1 −2 0 2 −1 −4 −2 0

1 2 3 4 0 −4 −3 −2 −1 0

1 2 3 −1 0 1 −3 −2 −1 0

1 0 1 0 0 0 −1 0 −1 0

1 0 0 0 0 0 0 0 −1 0



,
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A11 =



12 2 3 4 −6 6 −4 −3 −2 −12 0

8 16 2 −1 −4 4 1 −2 −16 −8 0

8 5 2 10 −4 4 −10 −2 −5 −8 0

8 5 2 −1 −4 4 1 −2 −5 −8 0

7 3 −1 6 2 −2 −6 1 −3 −7 0

6 1 7 2 −3 3 −2 −7 −1 −6 0

5 −1 4 −2 3 −3 2 −4 1 −5 0

4 8 1 5 −2 2 −5 −1 −8 −4 0

3 6 −2 1 4 −4 −1 2 −6 −3 0

2 4 6 8 −1 1 −8 −6 −4 −2 0

2 4 6 −3 −1 1 3 −6 −4 −2 0

1 2 3 4 5 −5 −4 −3 −2 −1 0

1 0 0 0 0 0 0 0 0 −1 0



,



97

A12 =



4 2 0 4 −1 0 1 −4 0 −2 −4 0

2 1 0 2 1 0 −1 −2 0 −1 −2 0

1 2 3 4 5 0 −5 −4 −3 −2 −1 0

1 2 3 4 −1 0 1 −4 −3 −2 −1 0

1 2 3 0 1 0 −1 0 −3 −2 −1 0

1 2 3 0 −1 0 1 0 −3 −2 −1 0

1 2 1 0 −1 0 1 0 −1 −2 −1 0

1 2 0 1 2 0 −2 −1 0 −2 −1 0

1 2 0 1 −1 0 1 −1 0 −2 −1 0

1 2 0 0 1 0 −1 0 0 −2 −1 0

1 2 0 0 0 0 0 0 0 −2 −1 0

1 1 0 0 1 0 −1 0 0 −1 −1 0

1 0 1 0 1 0 −1 0 −1 0 −1 0

1 0 1 0 0 0 0 0 −1 0 −1 0

1 0 0 0 0 0 0 0 0 0 −1 0



,
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A13 =



15 4 6 8 −3 12 −12 3 −8 −6 −4 −15 0

10 20 4 1 −2 8 −8 2 −1 −4 −20 −10 0

10 20 4 1 −2 −5 5 2 −1 −4 −20 −10 0

10 7 4 14 −2 8 −8 2 −14 −4 −7 −10 0

10 7 4 1 −2 8 −8 2 −1 −4 −7 −10 0

10 7 4 1 −2 −5 5 2 −1 −4 −7 −10 0

9 18 1 −3 6 2 −2 −6 3 −1 −18 −9 0

9 5 1 −3 6 2 −2 −6 3 −1 −5 −9 0

8 16 −2 6 1 −4 4 −1 −6 2 −16 −8 0

8 3 −2 6 1 −4 4 −1 −6 2 −3 −8 0

7 1 8 2 −4 3 −3 4 −2 −8 −1 −7 0

6 12 18 −2 4 −3 3 −4 2 −18 −12 −6 0

6 12 5 −2 4 10 −10 −4 2 −5 −12 −6 0

6 12 5 −2 4 −3 3 −4 2 −5 −12 −6 0

6 −1 5 −2 4 −3 3 −4 2 −5 1 −6 0

5 10 2 7 −1 4 −4 1 −7 −2 −10 −5 0

4 8 12 3 −6 −2 2 6 −3 −12 −8 −4 0

4 8 −1 3 7 −2 2 −7 −3 1 −8 −4 0

3 6 9 −1 2 5 −5 −2 1 −9 −6 −3 0

2 4 6 8 10 −1 1 −10 −8 −6 −4 −2 0

2 4 6 8 −3 −1 1 3 −8 −6 −4 −2 0

1 2 3 4 5 6 −6 −5 −4 −3 −2 −1 0

1 2 0 0 0 0 0 0 0 0 −2 −1 0

1 0 0 0 0 0 0 0 0 0 0 −1 0



,
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A14 =



9 4 −1 8 3 −2 0 2 −3 −8 1 −4 −9 0

8 2 3 4 −2 6 0 −6 2 −4 −3 −2 −8 0

5 10 1 6 −3 2 0 −2 3 −6 −1 −10 −5 0

5 3 1 6 −3 2 0 −2 3 −6 −1 −3 −5 0

5 3 1 −1 4 2 0 −2 −4 1 −1 −3 −5 0

4 8 12 2 −1 −4 0 4 1 −2 −12 −8 −4 0

4 8 5 2 −1 −4 0 4 1 −2 −5 −8 −4 0

4 1 5 2 −1 3 0 −3 1 −2 −5 −1 −4 0

3 6 9 −2 1 4 0 −4 −1 2 −9 −6 −3 0

3 6 2 −2 1 4 0 −4 −1 2 −2 −6 −3 0

2 4 6 1 3 −2 0 2 −3 −1 −6 −4 −2 0

2 4 −1 1 3 −2 0 2 −3 −1 1 −4 −2 0

1 2 3 4 5 6 0 −6 −5 −4 −3 −2 −1 0

1 2 3 4 5 −1 0 1 −5 −4 −3 −2 −1 0

1 2 3 4 −2 −1 0 1 2 −4 −3 −2 −1 0

1 2 0 0 0 0 0 0 0 0 0 −2 −1 0

1 0 1 0 1 0 0 0 −1 0 −1 0 −1 0

1 0 1 0 0 0 0 0 0 0 −1 0 −1 0

1 0 0 0 0 0 0 0 0 0 0 0 −1 0



,
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A15 =



16 2 3 4 5 6 −8 8 −6 −5 −4 −3 −2 −16 0
11 7 3 −1 10 6 2 −2 −6 −10 1 −3 −7 −11 0
8 16 9 2 10 18 −4 4 −18 −10 −2 −9 −16 −8 0
8 1 9 2 10 3 −4 4 −3 −10 −2 −9 −1 −8 0
8 1 9 2 0 3 −4 4 −3 0 −2 −9 −1 −8 0
8 1 4 2 0 3 −4 4 −3 0 −2 −4 −1 −8 0
7 14 6 −2 5 12 4 −4 −12 −5 2 −6 −14 −7 0
7 14 6 −2 5 −3 4 −4 3 −5 2 −6 −14 −7 0
7 −1 6 −2 5 −3 4 −4 3 −5 2 −6 1 −7 0
6 12 3 −1 0 6 2 −2 −6 0 1 −3 −12 −6 0
6 7 3 −1 0 6 2 −2 −6 0 1 −3 −7 −6 0
6 2 8 4 0 6 −3 3 −6 0 −4 −8 −2 −6 0
6 2 3 4 0 6 2 −2 −6 0 −4 −3 −2 −6 0
6 2 3 4 0 6 −3 3 −6 0 −4 −3 −2 −6 0
4 8 12 1 5 9 −2 2 −9 −5 −1 −12 −8 −4 0
4 8 12 1 5 −6 −2 2 6 −5 −1 −12 −8 −4 0
4 8 12 1 0 4 −2 2 −4 0 −1 −12 −8 −4 0
4 8 12 1 0 −1 −2 2 1 0 −1 −12 −8 −4 0
4 8 2 6 0 −1 −2 2 1 0 −6 −2 −8 −4 0
4 8 2 1 0 4 −2 2 −4 0 −1 −2 −8 −4 0
4 8 2 1 0 −1 3 −3 1 0 −1 −2 −8 −4 0
4 8 2 1 0 −1 −2 2 1 0 −1 −2 −8 −4 0
4 8 0 1 5 0 −2 2 0 −5 −1 0 −8 −4 0
4 8 0 1 2 0 −2 2 0 −2 −1 0 −8 −4 0
4 5 0 1 5 0 −2 2 0 −5 −1 0 −5 −4 0
4 3 7 1 0 4 −2 2 −4 0 −1 −7 −3 −4 0
4 3 7 1 0 −1 −2 2 1 0 −1 −7 −3 −4 0
4 3 2 6 0 4 3 −3 −4 0 −6 −2 −3 −4 0
4 3 2 6 0 4 −2 2 −4 0 −6 −2 −3 −4 0
4 3 2 6 0 −1 3 −3 1 0 −6 −2 −3 −4 0
4 3 2 6 0 −1 −2 2 1 0 −6 −2 −3 −4 0
4 3 2 1 5 4 −2 2 −4 −5 −1 −2 −3 −4 0
4 3 2 1 5 −1 −2 2 1 −5 −1 −2 −3 −4 0
4 3 2 1 0 4 3 −3 −4 0 −1 −2 −3 −4 0
4 3 2 1 0 4 −2 2 −4 0 −1 −2 −3 −4 0
4 3 2 1 0 −1 3 −3 1 0 −1 −2 −3 −4 0
4 3 2 1 0 −1 −2 2 1 0 −1 −2 −3 −4 0
4 2 0 1 2 0 −2 2 0 −2 −1 0 −2 −4 0
3 1 4 2 0 3 1 −1 −3 0 −2 −4 −1 −3 0
3 1 4 2 0 −2 1 −1 2 0 −2 −4 −1 −3 0
2 4 6 8 10 12 −1 1 −12 −10 −8 −6 −4 −2 0
2 4 6 8 10 −3 −1 1 3 −10 −8 −6 −4 −2 0
2 4 6 8 0 2 −1 1 −2 0 −8 −6 −4 −2 0
2 4 6 8 0 −3 −1 1 3 0 −8 −6 −4 −2 0
2 4 6 3 0 −3 −1 1 3 0 −3 −6 −4 −2 0
2 4 1 3 0 2 4 −4 −2 0 −3 −1 −4 −2 0
2 4 1 3 0 2 −1 1 −2 0 −3 −1 −4 −2 0
2 4 0 2 4 0 −1 1 0 −4 −2 0 −4 −2 0
2 4 0 2 1 0 −1 1 0 −1 −2 0 −4 −2 0
2 1 0 2 1 0 2 −2 0 −1 −2 0 −1 −2 0
2 1 0 2 1 0 −1 1 0 −1 −2 0 −1 −2 0
2 1 0 2 0 0 1 −1 0 0 −2 0 −1 −2 0
2 1 0 2 0 0 0 0 0 0 −2 0 −1 −2 0
1 2 3 4 5 6 7 −7 −6 −5 −4 −3 −2 −1 0
1 2 3 4 0 1 2 −2 −1 0 −4 −3 −2 −1 0
1 2 3 −1 0 1 2 −2 −1 0 1 −3 −2 −1 0
1 2 0 1 2 0 1 −1 0 −2 −1 0 −2 −1 0
1 2 0 1 0 0 1 −1 0 0 −1 0 −2 −1 0
1 2 0 1 0 0 0 0 0 0 −1 0 −2 −1 0
1 2 0 0 1 0 0 0 0 −1 0 0 −2 −1 0
1 2 0 0 0 0 0 0 0 0 0 0 −2 −1 0
1 1 0 1 0 0 1 −1 0 0 −1 0 −1 −1 0
1 1 0 0 1 0 0 0 0 −1 0 0 −1 −1 0
1 0 1 0 0 0 0 0 0 0 0 −1 0 −1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0



,
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A16 =



11 6 1 12 7 2 −3 0 3 −2 −7 −12 −1 −6 −11 0
11 6 1 12 −1 2 −3 0 3 −2 1 −12 −1 −6 −11 0
9 2 11 4 −3 6 −1 0 1 −6 3 −4 −11 −2 −9 0
9 2 3 4 −3 6 −1 0 1 −6 3 −4 −3 −2 −9 0
7 6 1 0 7 2 −3 0 3 −2 −7 0 −1 −6 −7 0
5 10 15 4 1 −2 −5 0 5 2 −1 −4 −15 −10 −5 0
5 10 7 4 1 −2 −5 0 5 2 −1 −4 −7 −10 −5 0
5 10 −1 4 9 −2 3 0 −3 2 −9 −4 1 −10 −5 0
5 10 −1 4 1 −2 3 0 −3 2 −1 −4 1 −10 −5 0
5 2 7 4 1 −2 3 0 −3 2 −1 −4 −7 −2 −5 0
5 2 −1 4 1 −2 3 0 −3 2 −1 −4 1 −2 −5 0
3 6 9 12 −1 2 5 0 −5 −2 1 −12 −9 −6 −3 0
3 6 9 12 −1 2 −3 0 3 −2 1 −12 −9 −6 −3 0
3 6 9 4 −1 2 −3 0 3 −2 1 −4 −9 −6 −3 0
3 6 9 0 −1 2 5 0 −5 −2 1 0 −9 −6 −3 0
3 6 9 0 −1 2 1 0 −1 −2 1 0 −9 −6 −3 0
3 6 5 0 −1 2 5 0 −5 −2 1 0 −5 −6 −3 0
3 6 1 4 7 2 −3 0 3 −2 −7 −4 −1 −6 −3 0
3 6 1 4 −1 2 5 0 −5 −2 1 −4 −1 −6 −3 0
3 6 1 4 −1 2 −3 0 3 −2 1 −4 −1 −6 −3 0
3 6 1 0 3 2 −3 0 3 −2 −3 0 −1 −6 −3 0
3 6 1 0 −1 2 1 0 −1 −2 1 0 −1 −6 −3 0
3 2 5 0 −1 2 1 0 −1 −2 1 0 −5 −2 −3 0
3 2 1 4 −1 2 1 0 −1 −2 1 −4 −1 −2 −3 0
3 2 1 4 −1 2 −1 0 1 −2 1 −4 −1 −2 −3 0
3 2 1 0 3 2 1 0 −1 −2 −3 0 −1 −2 −3 0
3 2 1 0 3 2 −1 0 1 −2 −3 0 −1 −2 −3 0
3 2 1 0 3 0 −1 0 1 0 −3 0 −1 −2 −3 0
3 2 1 0 −1 2 1 0 −1 −2 1 0 −1 −2 −3 0
1 2 3 4 5 6 7 0 −7 −6 −5 −4 −3 −2 −1 0
1 2 3 4 5 6 −1 0 1 −6 −5 −4 −3 −2 −1 0
1 2 3 4 5 −2 −1 0 1 2 −5 −4 −3 −2 −1 0
1 2 3 4 1 −2 −1 0 1 2 −1 −4 −3 −2 −1 0
1 2 3 0 1 2 3 0 −3 −2 −1 0 −3 −2 −1 0
1 2 3 0 1 2 −1 0 1 −2 −1 0 −3 −2 −1 0
1 2 3 0 1 0 1 0 −1 0 −1 0 −3 −2 −1 0
1 2 3 0 1 0 −1 0 1 0 −1 0 −3 −2 −1 0
1 2 3 0 0 0 1 0 −1 0 0 0 −3 −2 −1 0
1 2 3 0 0 0 0 0 0 0 0 0 −3 −2 −1 0
1 2 1 0 1 2 1 0 −1 −2 −1 0 −1 −2 −1 0
1 2 1 0 1 2 −1 0 1 −2 −1 0 −1 −2 −1 0
1 2 1 0 1 0 1 0 −1 0 −1 0 −1 −2 −1 0
1 2 1 0 1 0 −1 0 1 0 −1 0 −1 −2 −1 0
1 2 1 0 0 0 1 0 −1 0 0 0 −1 −2 −1 0
1 2 0 0 1 0 0 0 0 0 −1 0 0 −2 −1 0
1 2 0 0 0 0 0 0 0 0 0 0 0 −2 −1 0
1 1 2 0 0 0 1 0 −1 0 0 0 −2 −1 −1 0
1 1 1 0 0 0 1 0 −1 0 0 0 −1 −1 −1 0
1 1 0 0 1 0 0 0 0 0 −1 0 0 −1 −1 0
1 0 1 0 1 0 1 0 −1 0 −1 0 −1 0 −1 0
1 0 1 0 1 0 0 0 0 0 −1 0 −1 0 −1 0
1 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0



.
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