Protein Structure/Function Classification Using

Hidden Markov Models

Thesis by

Moira E. Regelson

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997
(Submitted June 4, 1997)

11

© 1997
Moira E. Regelson
All Rights Reserved

1l

Acknowledgements

Many thanks to Jerry Solomon and Dan Meiron for their invaluable assistance through
the vears. I would also like to thank Tom Hou and Scott Fraser for their interest in
my work. Finally, thanks to my parents for their support and encouragement, and

particularly to my mother for her editorial advice.

v

Abstract

Three-dimensional protein structures can be divided into classes in which proteins
demonstrate high similarity of structure. While full and accurate determination of
a protein’s three-dimensional structure from its amino acid sequence is not feasible
at this time, methods seeking to determine this full structure would be aided by a
priori information about the sequence’s overall structural class. We have utilized
Hidden Markov Models on sequences from the SWISS-PROT database in an attempt
to determine the structural class of a protein given only its primary amino acid
sequence.

Varying representations of the amino acid sequences and the accuracy with which
the models using these representations differentiate between classes give some insight
into the chemical and physical properties which are significant in the protein folding
process. In addition, some representations of the protein sequence can illustrate the
redundancy in the protein alphabet and others can capture structural class informa-
tion with reduced computational requirements. Real vector representations provide

an analogv to the problem of speech recognition.

Contents
Acknowledgements iii
Abstract iv
1 Introduction 1
1.1 Biological background: the protein folding problem 1
1.2 Structural classification of proteins 2
1.2.1 Utility of classifving sequences by three-dimensional structure 2
1.2.2 Approaches to identification of structure 3
1.3 Structural class as a random process 4
1.3.1 “Decoding” protein sequences into structural classes 5
1.3.2 Approaches to classification using Hidden Markov Models . . . 6
1.4 Extension of Hidden Markov Model approaches 7
1.4.1 Maximum likelihood classification 7
1.4.2 Alphabet variationso 8
2 A Hidden Markov Model approach to protein structure/function
classification 10
2.1 General Hidden Markov Model definition 10
2.2 Application of Hidden Markov Models to protein sequences 11
2.2.1 Protein sequences as time series 11
2.2.2 The protein alphabeto 12
2.3 Specific model structure 12

2.3.1 Flow within the model: tracking the time step versus the node 13
2.3.2 Alignment to the model 14

2.3.3 Multi-domain sequences 15

vi

2.3.4 Selection of model length and window size
2.3.5 Initialization of the model
2.4 Evaluation of model performance: the Viterbi algorithm
2.4.1 Construction of the A’ matrix
2.4.2 Construction of 7
2.4.3 Determination of best path through model
2.4.4 Computation time L
2.4.5 Use of best probability path
2.5 Update Process
2.5.1 The Baum-Welch update routine
2.5.2 The Baldiupdate
2.5.3 COnVergence

3.1 Preliminary processing of protein sequences

3.1.1 Property profiles
3.1.2 Amino acid composition profiles . . .
3.2 Model adaptation

3.2.1 Non-discrete observation distributions

Modeling with real vector representations of sequences

3.2.2 [Initialization of continuous observation distributions
3.2.3 Alignment modifications
3.2.4 Modification of the Baum-Welch update routine
3.2.5 Computation time

4 Experiments
4.1 Svmbolic alphabets
4.1.1 Datasets
4.1.2 Variance in classification accuracy . .
4.1.3 The full alphabet
4.1.4 Reduced alphabets
4.2 Baldi update models

4.3 Amino acid compositiono Lo
4.4 Transformed property profiles00
4.4.1 Datasets
4.4.2 Single versus multiple properties. L.
4.4.3 Models for each property considered simultaneously
4.4.4 Individual propertieso

5 Discussion

5.1 Symbolicmodels o000
5.1.1 Multi-domain sequences
5.1.2 Baum-Welch vs. Baldi

5.2 Continuous observation models o000
5.2.1 Mixture variationso
5.2.2 Amino acid compositiono
5.2.3 Transformed property profiles

5.3 Conclusiono

Bibliography

viii

List of Figures

1.1 Structural Class encryption and decryption 5
2.1 A general three-state HMM 11
2.2 Allowable state transitions 13
2.3 Transitions between nodes and time steps 14
2.4 Sequence length distribution for Calcium-Binding sequences 16
2.5 Sequence length distribution for Globin sequences 17

List

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

4.26

1x

of Tables

20-Svmbol model classificationso
8-Symbol model classifications
3-Svmbol “structural” alphabet model classifications
5-Symbol model classifications
Models using 4-letter H/Py/P,/P- alphabet
Models using 4-letter “functional” alphabet
Models using 3-letter H/P/G alphabet
Models using 3-letter “charge” alphabet
Models using 2-letter H/P alphabet
Codon redundancy alphabet
Random alphabet 1
Random alphabet 2
Baldi update models, full alphabet
Baldi update models, 8-letter chemical alphabet
Baldi update models, 3-letter structural alphabet
Baldi update models, 5-letter alphabet
Baldi update models, 2-letter alphabet
Amino acid composition models, single mixture
Amino acid composition models, 5 mixtures
Amino acid composition models, 10 mixtures
G-property comparison, single mixture. 128 components
G-property comparison, 30 mixtures, 128 significant components

6-property model, 30 mixtures, short Kinase sequences
6-property model, 30 mixtures, 64 significant components
6-property model, 30 mixtures, 32 significant components

Hvdrophobicity (PONNU)

50

4.27 Accessible surface area L.
4.28 van der Waals Volumeo
4.20 Chargeo
4.30 Hvdrophobicity (ROSEF),
4.31 Hvdrophobicity (PRIFT)

Chapter 1 Introduction

1.1 Biological background: the protein folding prob-
lem

Given a protein, the primary question is “what does it do?” The answer to this
question lies in the details of the protein’s structure. The amino acid sequence defining
a protein will quickly fold into a specific and compact three-dimensional structure
called the “native” fold. This structure contains regions whose shape and composition
allow specific types of interactions with other molecules. Through these interactions,
a protein performs its function.

Determination of the structural details of a protein’s fold is a complex and difficult
task. Tools for the direct examination of folded proteins exist but are difficult to apply
and do not alwavs vield the desired detail [11]. Finding the amino acid sequence of
the protein is relatively easy, whether by direct sequencing or decoding of DNA. We
would like to be able to look at this sequence and draw some conclusions about the
protein’s shape and, hence, its function.

The amino acid sequence contains all the information necessary to define the
protein’s native fold, but we do not know how to extract this information. In theory,
we should be able to model the folding process and determine the native fold directly
from the sequence. In practice, however, the many attempts made to model the
biologyv. chemistry and physics of this folding process have met with limited success.
Most attempts to determine a protein’s native structure from its sequence fail to
find this structure with much accuracy [18]. The complex forces driving the protein

folding process have not been well modeled at this time.

2
1.2 Structural classification of proteins

While we cannot vet accurately determine the specific placement of each amino acid
within the protein’s three-dimensional structure, we may at least be able to determine
the protein’s general structural or functional class. Information about the general
structural class of a sequence can provide a rough idea about the role of the protein
and may assist methods which search for more specific three-dimensional structure. In
this work, we have used Hidden Markov Models with several different representations
of amino acid sequences in an attempt to distinguish between different structural
classes of proteins. We also hope that the nature of the representations will give us

some insight into the forces driving the protein folding process.

1.2.1 Utility of classifying sequences by three-dimensional
structure

Though determination of the general folding class of a protein would not entirely solve
the protein folding problem, it could provide assistance to methods which model
the phvsical and chemical interactions of the process. For example, some models
use a Monte Carlo (or other type of search) approach to search for appropriate low
energv folds [3, 4, 17, 25, 30] and a preliminary process which determined the general
structural class of a protein sequence could aid these models by significantly reducing
the search space. This reduction in the search space could increase the chances of
finding the structure to which the protein would naturally fold.

Knowledge of folding class can assist attempts to determine the full native fold
of a protein and can also help approaches seeking to determine sub-structures (or
“secondary” structures) within the native fold. Protein structure is traditionally
considered at the primary, secondary and tertiary levels. The amino acid sequence
itself defines the primarv structure of a protein, and secondaryv structure refers to
three-dimensional sub-patterns which form along the length of the amino acid string.
such as alpha helices and beta strands. Tertiary structure refers to the superstructure

formed by the secondary structural elements. Knowledge of the tertiary structural

3
class gives some information as to what secondary structures are likely to be formed
bv a given sequence and can therefore help secondary structure prediction methods

126].

1.2.2 Approaches to identification of structure

Three-dimensional structure prediction from sequence has been attempted at both
the secondary and tertiary levels. Sequence similarity is most commonly used in
attempts to identify the structural class of a sequence at both levels. This has some
utilitv. but the first problem encountered is that of alignment between the sequence
(or segment of a sequence in the case of secondary structure) to be classified and the
sequences belonging to a known structural class. The second, more relevant to this
work. is the existence of sequences which fold to the same general structure but with
very low sequence similarity to other members of the class.

Profiles reflecting the statistics of sequence similarities for classes of proteins have
been generated and used to “score” sequences [5, 14, 12, 16, 20, 21, 23, 29, 31]. While
specific profile construction varies widely, these methods generally rely heavily on
sequence alignment and attempt to identify regions of sequence similarity (common
sub-strings of amino acids). The underlving assumption of such approaches is that
sequence similarity very probably reflects structural similarity. However. these ap-
proaches fall short when faced with sequences demonstrating very little amino acid
similarity but much structural and functional similarity.

Prediction of tertiary structural class is complicated by the wide variety of defini-
tions of tertiarv structural class. One common definition is based on the arrangement
of secondary structure elements within the protein. This definition divides proteins
into four or five rudimentary structural classes (o, 3, o + 3, «/F and “multi”).
Other definitions in this broad vein exist, defined with respect to a particular aspect
under study. For example Nishikawa, Kubota and Ooi [22] categorized protein struc-
tures into four groups: intracellular enzymes, intracellular non-enzymes, extracellular

enzymes and extracellular non-enzymes. They were able to correctly identifv approx-

4
imatelv 66% of the sequences they studied. Alternately, tertiary structural classes
may be defined by considering a combination of structure and function. Varving dei-
initions of tertiary classification can make comparison of results somewhat difficult.
but the inherent ambiguity of the problem would tend to increase acceptance of any
consistently good results on consistent definitions of classes.

One of the most successful methods of prediction of tertiary structural class to
date uses only the “acid composition” of a sequence. This simply refers to a vector in
which the n** entrv is the percentage of times amino acid n appears in the sequence.
This is a very different approach from the commonly used profile methods mentioned
above, which specifically track each position in the sequence. Chou and Zhang [7. 8. 9]
have worked with amino acid composition and used comparison with class statistics
to assign a sequence to one of the above rudimentary structural classes. They have
found the correct classifications of over 90% of unknown sequences, although there
has been some dispute over the selection of the test sets for these experiments [13].

While amino acid composition may or may not play the primary role in protein
folding, it certainly has a strong correlation to fold type. Different types of secondary
structure elements show strong preferences for certain tvpes of amino acids: thus.
composition of a protein sequences could easily correlate to tertiary structure based
on secondary structure composition. A neural network approach has been applied
to the amino acid composition of sequences (and vet another definition of structural
classes) with an average accuracy rate of 87% [13].

Other very successful methods of tertiary structural classification have involved the
use of Hidden Markov Models (see 1.3.2). These entail hypothesizing that sequences

from a structural class are the result of a random process.

1.3 Structural class as a random process

1.3.1 “Decoding” protein sequences into structural classes

w DNA X Protein Y Conformation z
B —— R —— e e

Encryption Encryption Decryption

Conformation signal Genetic code Amino acid sequence Native fold

Figure 1.1: Structural Class encryption and decryption. Note that “Protein encryption”
is equivalent to DNA decryption

If we look at the amino acid sequence of a protein as a code for structure. we can
consider protein folding as the decoding process. In fact, there are two analogous
steps to the process of producing a folded protein from DNA sequence information.
In translating the DNA sequence into an amino acid sequence, we have a more trans-
parent decoding process because it consists of well defined code words (“codons™)
corresponding to specific amino acids. The folding decoding process, as we postu-
late it here, consists of “decoding” a protein’s amino acid sequence into a particular
general structure.

We hvpothesize that each structural class of proteins corresponds to a random
process. X. The signals from this process generate, by passage through a hypothetical
channel, the genetic code. The genetic code, in turn, produces a sequence of amino
acids bv passage through another hypothetical channel.

In decoding segments of DNA, we find great redundancy in the codons for certain
amino acids and, similarly, a great many amino acid sequences correspond to a single
general structural class. When the ultimate objective of the process is to generate a
protein with a particular structure/function, we must have redundancy to compensate
for decoding errors, first at the genetic level and then again at the amino acid sequence
level.

While there are similarities between the generation and decoding of DNA and
of protein sequences, the rules for generating amino acids from codons have bheen
well documented. By contrast. the folding process appears to rely on much longer
and more complicated code words, the coding rules of which we have not vet iden-
tified. Even without a full understanding of the rules of encryption. we can at least
attempt to determine some essential characteristics of the sequences belonging to a

common structural class. In particular, we attempt to model the random process

6

which generated the sequences by using a Hidden Markov Model.

1.3.2 Approaches to classification using Hidden Markov Mod-
els

The variations in amino acid sequences corresponding to a structural class clearly in-
dicate a need for a non-deterministic model of sequence generation. We should note
that the variability of the sequences does not necessarily mean that the randomness
originates with the process itself. We could as easily assert that the process is deter-
ministic and that noise and decoding errors in the hypothetical channels introduce
the random factor. However, in this work we choose to consider amino acid sequence
generation as the direct result of a random Markov process, X', disregarding the DNA
generation and decoding phases. The decoding of DNA into an amino acid sequence
is a relatively well understood and deterministic process which does not illuminate
the underlving random process.

Hidden Markov Models have been used extensively in pattern recognition appli-
cations, notablyv for speech recognition problems [24]. They model random processes
and can recognize patterns with variations as being generated by the same random
process. Since we would like to find common ground for widely varving protein
sequences, Hidden Markov Models offer a means of modeling the random process
generating these sequences.

Hidden Markov Models have been used previously to attempt to identify protein
structural classification from amino acid sequence data. White et al. have carefully
constructed models [26, 28] to reflect the secondary structures known to be present in
certain tertiary structures and then used filtering techniques to determine, for a given
sequence. the likelihood that each model produced the sequence. Their test data was
drawn from the Brookhaven Protein Data Bank (PDB).

Krogh et al. used a similar approach and chose to consider the nodes of a Hid-
den Markov Model as representing positions in secondary structural elements. Unlike

White et al., they did not attempt to hand-tailor the parameters of the model and

7
used traditional training methods instead. The primary goal of their approach ap-
pears to have been sequence alignment and search for similarity. They achieved good
recognition of the Globin structural class, as indicated by higher scores by Globins on
the Globin model than sequences from other classes displayed [19]. Baldi et al. have
used a modified version of the Krogh approach with an alternate training procedure
for the model. with similar results. This approach is designed for on-line training and
requires somewhat less computation time [1, 2]. Both of the latter groups used data

from the SWISS-PROT database.

1.4 Extension of Hidden Markov Model approaches

While the above methods essentially test sequences for membership in a particu-
lar structural class, we choose to define a classification scheme. We have achieved
success rates of up to an average of 94.8% in distinguishing between the Globin,
Calcium-Binding and Kinase structural classes and a “Random” class which repre-
sents sequences from other classes. While other methods using Hidden Markov Models
[1, 2, 19] have achieved comparable results in detecting members of the Globin and Ki-
nase classes. thev used only full, twenty letter alphabet representations of amino acid
sequences. We have considered both this full alphabet and several reduced symbolic
alphabets. In addition, we have considered real vector representations of sequences
which require significantly less computation, while still successfully detecting up to

an average of 94.58% of sequences in the above classes.

1.4.1 Maximum likelihood classification

In this work, we use performance on a Hidden Markov Model as a criterion for a
classification scheme. Instead of considering variations between scores on a single
model, we consider the performance of a single sequence on multiple models. each
trained for a different class. We then assign the sequence of unknown structure to
the class corresponding to the model with the highest probability of having generated

the sequence.

1.4.2 Alphabet variations

The alphabet used in previous applications of Hidden Markov Models to the pro-
tein folding problem consists of symbols representing the twenty amino acids which
constitute the protein’s primary structure. We have used this alphabet. while also

considering alternate representations of the protein sequence.

Alphabet reduction

While still representing a sequence symbolically, we can explore the essential infor-
mation contained in the sequence. We look at various groupings of the amino acids
primarily based on their properties of hydrophobicity, polarity and charge. In this
way, we reduce the size of the alphabet composing the sequence. Note that with
this reduced alphabet we may find increased similarity between sequences within a
structural class.

If we can reduce the size of the alphabet without significantly affecting perfor-
mance of the model, we will have placed a bound on the entropy of the random
process which generated the sequence by displaying redundancy within the set of
symbols used to generate the code words (sequences). And, in a more practical sense,
we may have identified the essential properties which the amino acids represent at

each position.

Real vector representations

In addition to alternate symbolic representations of the primary sequences. we have
considered real vector representations of protein sequences. We have primarily con-
sidered processed property profiles in an analogy to signal processing, but we have
also considered amino acid composition because of its significantly good, if somewhat
controversial. results in prediction of the rudimentary structural classes.

We generated “property profiles” by replacing each amino acid by its value in a
table for the propertv being modeled. This provides a real vector representation of

an amino acid sequence with respect to a biochemical property. We treated each

9
property profile as a signal from the random process and computed the Fourier power
spectrum, which we then passed to the Hidden Markov Model.

An additional real vector representation is given by considering the amino acid
composition of a sequence. In this representation we reduced the sequence to a 19-
dimensional vector representing the percentage of each amino acid within the protein
sequence. Like the property profile, this vector represents a “property,” but this is a
property of the entire sequence, not of the individual amino acids.

We alreadv know that Hidden Markov models using symbolic representations of
protein sequences (with the full alphabet) can differentiate between structural classes.
Bv using real vector representations, we hope to establish that this faster approach
is equally effective. In addition, we hope to be able to evaluate the significance of

various properties in the folding process.

10

Chapter 2 A Hidden Markov Model
approach to protein structure/function

classification

2.1 General Hidden Markov Model definition

Hidden Markov Models (HMMs) work on the general principle that we are modeling
a Markov process and that this process can be considered to be in one of a discrete set
of states at any time. A change in “time” generally occurs with a transition between
states. Relating the process to a set of actual observations means simply assigning
svmbol emission probabilities to each state.

Consider a path, ¢, within the model consisting of a sequence of states ¢[t]. Since
we assume we have a Markov process, we assume the states are memoryless and
that the probability of transition from state g[t] to state ¢[t + 1] depends only on
state ¢[t] and no preceding states. We also assume that this transition probability is
independent of time, so that if ¢[t] = ¢ and ¢[t + 1] = j, the transition probability
from state 4 to state j is fixed, regardless of the time index at which the system passes
through state 1.

We can completely specify such a model by a number of states (/V), an alphabet
(S). an initial probability distribution on the states (7), a state transition probability
matrix (4), and a symbol emission probability matrix (B). A path through the states
of the model probabilistically generates a sequence of observations, o in which o[t] is
generated by some state ¢[t] in the given set of states.

7 is defined for each state of the model and =[n] denotes the probability that a
path through the model will start in state n. A[n][n'] is defined for all states n and

n’ and represents the probability of the next state being n’, given that the current

11

A[311]

Figure 2.1: A generalized three-state Hidden Markov Model, allowing all possible state
transitions

state is n. The “hidden” aspect of the HMM is that B[n][k] (the probability of seeing

svmbol k given that the system is in state n) may be non-zero for all k and all n. In

this case we cannot be sure which state generated which symbol.

2.2 Application of Hidden Markov Models to pro-

tein sequences

2.2.1 DProtein sequences as time series

HMMs are useful for modeling time series or other sequences of observations which
can be considered as the product of a Markov process, and to a certain extent we
can consider protein sequences in this way. We can consider the random process
generating proteins of a particular structure as passing through a set of states. each
emitting an amino acid. However, in the three-dimensional structure of a protein
amino acids not adjacent in sequence may come in contact. Since there may be
correlations due to these interactions, we cannot consider protein sequence generation

as a strict Markov process. We can sidestep this question somewhat by considering

12
a left-to-right HMM in which transitions are never made to lower index states. This
allows us to use the general idea of a Hidden Markov Model but still places some
restrictions on position within the model for each time step. In this way we can hope

to capture probabilities specific to position.

2.2.2 The protein alphabet

The fundamental alphabet of protein sequences is, of course, twenty svmbols repre-
senting the twenty amino acids. Previous constructions of HMMs for protein classi-
fication use only this full alphabet, but we have also considered various groupings of
amino acids by biochemical properties. We have primarily considered the properties
of hvdrophobicity, polarity and charge, but we have also tested some other common
groupings of amino acids. These variations do not affect the construction of the model

except for definition of alphabet size.

2.3 Specific model structure

We denote a protein’s amino acid sequence with the vector o and hypothesize that 1t
was generated by a left-to-right Hidden Markov Model.

A left-to-right HMM is defined by zero transition probabilities to states with a
lower index, i.e. A[n][m] = 0 if m < n. The model consists of a sequence of nodes,
each consisting of three states. To parallel Krogh et al.’s work, we refer to these states
as Match, Insert and Delete . In addition, we introduce an End state to which the
process goes after the last symbol in a sequence.

The Match states are the main line of the model. Insert states allow the pro-
cess to remain at a node while the Delete states allow the process to skip a node.
This terminology stems from Krogh et al.’s objective, which was primarily multiple
sequence alignment. In Baldi’s work, Match is replaced by “Main.” However, if we
conceive of the sequence generation process as attempting to generate some sort of
archetypal sequence but affected by corrupting random influences, the term “Match”

still applies. If a sequence lacks a certain component which tends to be characteristic

13

Newte | Node 2 A —
M o M >< / M
%%x -) e
Z><\ — /></

D D D

Figure 2.2: Allowable transitions between states of the model

of a structural class, we would say the process was in the Delete state at that position.
whereas if extraneous amino acids appear which have no relevance to the structure,
we would hvpothesize that the process had been in the Insert state at that point.
Essentiallv, we are considering a three-state HMM, but we have duplicated this
model 7 times to allow position variations. Transitions are still from and to those
fundamental three states, but some transitions move the process forward a node. The
final result is a Hidden Markov Model with 3T states, plus one for End. This model
allows us to keep the probability of transition between states in this general sense

fixed over “time,” while still allowing necessary variations relating to position (time).

Notation

To more effectively represent the structure of this model, we use a slight modification
of the conventional notation. A “state” in the global structure of the model will
be represented by n, where n is the node and s is the sub-state within the node.

Henceforth, “state” will refer to the sub-state within a node.

2.3.1 Flow within the model: tracking the time step versus

the node

We choose to define the “time step” in this context as the position in the amino acid
sequence. This is a departure from the common definition of a time step for a Hidden
Markov Model in which the #* time step corresponds to the ' transition made in
the model. In this case the presence of the Delete state, which generates no symbol.
makes that definition impractical. We also cannot define time step to correspond

to the node of the model because it is theoretically possible that no amino acid in

14

o -0 =] = =] 7]

time tet : ?@ ; :_- __E@ !=® \\/‘) !:()

VA S a7 7 pdN a i N
'h--—--

L] [} [} Ny o

timer © O, 0O ., — O @,

AN 70 7 /o 132N

startll} stantj+1 start{t}+2 end[t-1) endft}

Figure 2.3: Transitions between nodes and time steps. Dashed lines indicate possibility
that the start (or end) of the alignment windows for time ¢ and time ¢+ 1 may
be the same. In particular for + < & (or t > T — 4

the entire sequence was emitted by a particular node. Because of the existence of
the Delete state, we must consider alignment of the sequence to the model and by
defining time step in this manner, we avoid introducing the additional considerations
of alignment of the time step to the sequence.

To apply this convention about the time step, we require that any transitions from
svmbol producing states involve an increase in the time index. Transitions from the
non-svmbol producing Delete state remain within the same time step. Thus we may
have a set of transitions associated with each time index ¢, beginning with a number

of Delete states and ending with the state producing observation £.

2.3.2 Alignment to the model

The question of alignment arises in this approach, but in contrast to similarity
searches, the question is of alignment to the model as opposed to other sequences.
We could assert that the number of insertions to a given point in the sequence 1is,
with high probability, the same as the number of deletions to that point. However,
to allow greater flexibility, we have allowed for the possibility that the t** node in the
model may not have generated the " amino acid in a sequence (o[t]). This increases
computation time by a factor on the order of the square of the alignment window
size, but given variation in sequence length between members of the same structural
class, 1t seems impossible to neglect the alignment question.

Having decided that the #** amino acid in a protein sequence defines the " time

15

step, what node most probably generated this amino? Given the existence of both
Insert and Delete states, there is a fair chance that the observation at that time
step t was generated by node ¢. In attempting to determine which node generated
amino acid t, we look within a window of size M centered at ¢ for the most probable
node. In particular, to be certain that we do not exceed the edges of the model,
the alignment window ranges from max(1, min(T,t — %)) to min(7T.t + 4-). Though
insertions tend to be somewhat more probable than deletions, with a wide enough
window we can still hope to overlap the node which most probably generated o[t] (as
defined by generating o[t] on the highest probability path through the states of the
model, computed over all paths which might have generated o).

Considering the window as defined above affects the training of the Hidden Markov
Model. We need only compute the training variables associated with observation #
for nodes n in the window and not outside it, since we have constructed the window
on the assumption that there is virtually zero probability that a node outside the

window generated observation .

2.3.3 Multi-domain sequences

The alignment window ends at the last node of the model for single domain se-
quences but may extend onto a concatenated version of the model for multi-domain
sequences. For some structural classes, proteins within the class may consist of a
sequence of domains, each conforming to the structure which defines the class. In
general, attempts at classification of sequences have examined domains one at a time,
considering them as individual sequences. In this model, however, we have considered
the entire sequence at once, dividing it into segments only for training logistics.

In order to determine the probable length of each domain for these classes. we
looked at histograms of length of sequences from the SWISS-PROT database. From
these we determined approximate domain length ranges for a single domain from the
Globin and Calcium-Binding classes. We rejected as fragments any sequences with

length shorter than the minimum single domain length indicated. The histograms

16

Caicium-Binding data

40 1 T 1 H H H i ¥ T
‘len_freq.9” ——
35 F i
30 b i
w
3 25 F .
o)
@
5
<
3 20 b J
5
3
£
£ 15 |- _
z
10 J -
l
5+ 0l I .
| MWM aﬂ“ JH'EM HJ%
i f H Hm
o i lih ol HHHMHH?H&LM.HHHM.%FM 0
0 100 200 300 400 500 600 700 800 900 1000

Sequence length

Figure 2.4: Sequence length distribution for Calcium-Binding sequences

display peaks roughly around integer multiples of the average of the domain ranges
chosen.

There appear to be a large number of both single and double domain Calcium-
Binding sequences, which makes determination of single domain length difficult. We
have set the single domain length range to [70,130].

Note that, while there are very few occurrences of what we would call multi-
domain Globin sequences, their lengths cluster together at regular intervals. We have

chosen the domain range to be [115,170].

2.3.4 Selection of model length and window size

Given the minimum and maximum single domain lengths, we select a model length
and window size to allow the last amino acids of the shortest and longest possible
single domain sequences to be generated by the last node of the model. In particular

for multi-domain sequences, we choose window size

M = maximum domain length — minimum domain length

17

Gilobin data
300 T H 1 H H T H] T

'len_freq.13" —

250 b [§

200 -

150 =

Number of occurrences

100 + B

. mei’” i 1 o e l i ! ! 1

o]
0 100 200 300 400 500 600 700 800 900 1000
Sequence length

Figure 2.5: Sequence length distribution for Globin sequences

and model length

. . M : . M
T = minimum domain length + ~ = maximum domain length — -

L <

(with slight alterations if max - min is not even).
Other constant quantities associated with the model and derived from the above

are the arrays

M
start; = max(1, min(7,t — —9-))

L

and
M)
2

end; = min(7.t +

which define the edges of the window of nodes to examine for each time £. Note that
start; as defined above insures that the entire window will lie on the model. even for
exceedingly long sequences.

The window size is a fixed property of the model and is constant (except at the
edges of the model) for every time ¢, however there is very likely another construction

of window size, perhaps one varying with time step, that would work as well with

18
somewhat greater efficiency.

One alternative under consideration is to determine the sequence-independent
probability of being at a node at a given time step, then to calculate the average
node, 7, for that time step and, finally, to assign the window to be [— 30.7 + 30].
capturing the most probable set of nodes. However, if we constructed the window this
way, we might miss updating nodes which it would be more appropriate not to ignore.
We have not tested results with different window constructions, but it might be useful
to do so. Given the wide range of single domain lengths, the window size determined
bv the fixed window length method may be quite large relative to sequence length,
which has a great impact on computation time. With a large and fixed window, the

window size may introduce computational factors on the order of the model length.

The alignment window of the “Random” class and other single domain

classes

A “Random” structural class was constructed of protein sequences from SWISS-
PROT not belonging to the Globin or Calcium-Binding groups. Since the Random
class, by definition, lacks structural similarities, maximum and minimum domain
lengths as determined above would not make sense. Thus, we simply restricted the
lengths of sequences chosen and treated the entire class as consisting of single-domain
sequences. The sequences ranged in length from 75 to 250 and the above convention
for window size would be prohibitively large, so instead we used a fixed window size.
We set this size (fairly arbitrarily) to 60. Similarly, sequences in the Kinase class do
not exhibit repetitive patterns along their sequences; for these, as well, we fixed the
window size to 60. In order to allow the longest sequence in the training set to have

been generated by the model. we set

M
T = max(seq_len) — —9-[—

19

Impact of time step and window conventions on model parameters

Combining the time step convention with the observation window restricts construc-
tion and update of certain transition probabilities. To remain consistent with the
above definition of the time index, we must disallow transitions to the final Delete
state within the window associated with time ¢. If we allowed a state sequence to
pass through that state, no symbol could have been produced for the index ¢, as any
transitions to symbol producing states would necessarily take us out of the window.

There is an exception to this rule at the final node of the model when considering
multi-domain sequences, whose alignment window for later times may extend bevond

the end of the model.

2.3.5 Initialization of the model

Initially. we set 7 and the state transition matrix, A, to constant values with higher
probability of being in or going to the Match state than to the Imsert or Dclete

states.

Symbol emission probability matrix

For the discrete alphabet case, the initial symbol emission matrix is set by considering
the statistics of the training set. In particular, we compute the average number of
times svmbol m appears at position n in the sequences in the training set and use

that as the initial probability of seeing m at n, for s € {Match, Insert}.

Thus, .
BlnJim] = (=) 3 d(o.fnl.m)

where §(0;[n],m) = 1 if the n" amino acid in the i*"

sequence in the training set
corresponds to symbol m and 0 otherwise. As a convention, we consider the lack of
a svmbol in the Delete state to be a “skip” symbol and say that Bnpeere|[skip] = 1
for all nodes n, at all times. Since B|n,][.] is a probability distribution on the symbols

in the alphabet, Bnpeere)[m] = 0 for all actual symbols m in the alphabet.

20
2.4 Evaluation of model performance: the Viterbi

algorithm

For anv given sequence, there exist multiple paths through the states of the model
which could have generated the sequence. The Delete states within this path will. of
course. not appear because the Delete state produces no symbol. For the purposes
of examining paths through the model, we define a new state transition matrix A" in

which the Delete states do not appear.

2.4.1 Construction of the 4" matrix

Within the matrix A in our left-to-right model, the only possible transitions from
node n go to either n or n + 1. In particular, the transitions Match->Insert and
Insert->Insert from node n go to node n, and all other transitions from node n
go to node n + 1. Therefore, in A[n,][next_ny], we can infer next.n from n. s, and
s’. However, we can construct a state transition probability matrix which represents
transitions from node n to any higher-index node within a window by incorporating

transitions to and from Delete states. In particular,

/4, [nMa,tch,} [ns} =0

A'nataten)[(n + 1)s] = AlNasaten] [next_ng]

for s € {Match, Delete} because the transitions Match— > Match and Match— >

Delete necessarily move to the next node. Similarly,
‘4,[723] [nlnsertj = 44[779} [nemt_nmsm]

‘Al[ns}[(n + 1)]nsert] =0

for s € Match, Insert because those transitions stay within the node.

For steps of size greater than one node, we construct the transition probability

21

based on the state sequence we must have had to see a step of that size between
two svmbol producing states. If we start in n,, where s € Match, Insert (ie.. a
svmbol-producing state) and we do not see a symbol until state n,, then the process
must have been in the Delete states for each node between n and n’. Thus. we have
a transition from ng to (1 =+ 1) perere, @ sequence of transitions from Delete to Delete,
and finally a transition from (n' — 1) perere to nl,. The probability of this sequence of
transitions is given by:

Al{ns}[n;’] - A{ns][(ﬂ + 1)Delete] (Hn, 2)‘A{I/Delete”(y + 1)DeleteD A{(nl - 1)[)(11(#,8} [’/L;/}

v={(n+1

with the center term omitted if n’ =n + 2.

2.4.2 Construction of =’

In addition to eliminating the Delete states from the state transition matrix, we must
also consider the vector 7[s], which represents the probability of starting a path in
state s of the first node. When we eliminate the Delete states, we need a new vector
7'[n,] which represents the probability that the first observed symbol was generated
bv n,. Clearly,

7'[1] = 7[s]

and, for subsequent nodes n € [start, end],
7‘_,{”3} = ‘[S} (Z;?A[I/Delete][(y + 1)Delete]) ‘4[<TL - I)Delete][ns]

with the center term omitted if n = 2.

2.4.3 Determination of best path through model

Given the above transition probability matrix, we can determine the best path through
the model which could generate the observation sequence. This path is defined by a

sequence of states, g, where we assume that state ¢, generated the svmbol oft]. The

22
Viterbi algorithm is a dynamic programming approach to the problem of determin-
ing the best path of the many possible paths g. For each time, node and state, we
calculate the highest possible probability path to that node and state at that time.
The “best” path ends at the node and state which has the highest probability path
to it at time t = seq_len. Thus, in addition to storing the probabilities at each node
and state of the model, we must store the paths to which they correspond in order
to back-track and determine the entire best path.
Having temporarily eliminated the Delete states, in the following

s € {Match, Insert}. For ¢t = 1, we initialize the highest probability paths to each
node and state to simply the probability of being in that node and state and seeing the
first observation. Having constructed 7'[n,] to represent the probability of starting the
observation sequence at n,, we combine it with the probability of seeing observation

o[1] at that node and state:

best_prob[1][n,] = #'[s|B[n][o[1]].

For subsequent times,

best_prob[t)[ns] = Bln,|[o[t]] x max](best.p’/'ob[t — 1)[nl]A 0] nd)
n' in [starts—q,ends— ’
[and sl’ 1
and

path[t][ns] = n}, maximizing the above.

Thus, path[t][n,] is the previous step in the highest probability path to state n, at
time .

When the above quantities have been computed for each 7 to seq_len, we incor-
porate the probability of transition to the End state from each possible node which
may have generated the final symbol. We cannot justify termination of the process
in the middle of the model and hypothesis of an End state allows us to explain if a
sequence’s final symbol was not generated by the final node of the model.

Given best_prob[seq_len][n,] for n € [starty jen, €ntseqien] With these slightly

23
modified values and paths[seq_len][n;], we can now determine the single best path
through the model for the given sequence. We must work backwards through the
sequence, so initially

high_prob(o) = max(best_prob[seq-len][n])

1’7,5,

best_pathlseg_len] = n', maximizing the above
Yy q s g

and, for each previous step,
best_path[t] = paths[t + 1][best_path[t + 1]].

Calculation of best path for multi-domain sequences

When we initialize the start and end arrays, we do so only for a single domain. In
the above calculations we generalize these arrays to refer to the appropriate range of
nodes on the concatenated models. In particular, to generalize for a multi-domain
model we set

7

M
start, = (t — —9—) mod T

&~

and

M
end; = (t + —?—) mod T

to refer to the appropriate position on the current model.

2.4.4 Computation time

Evaluating the best path for a given observaﬁion sequence requires calculation. for
each time t in [1, seq_len], for each node n in the window [start,, end,] and for each
svmbol producing state s in the node, the probability of transition from each node n’
and svmbol producing state s’. Because we have incorporated the Delete states into
the transition probability matrix, n' is not necessarily n or n—1 and we must consider

the entire window [start,_,, end;—;]. Thus. calculation of the best path requires on the

24
order of seq_len x (M x N)? operations. Using the left-to-right property of the model,
we can eliminate some transitions from consideration, but this does not fundamentally
affect the order of operations. Here, we only consider two states: Match and Insert
(N = 2), but the alignment window, }, is almost on the order of seg.len, which

makes this a fairly sizeable computation.

2.4.5 Use of best probability path

We have chosen the probability of the best path through the model as a measure of
the model’s performance on a sequence, although other measures of distance between
a sequence and the model exist. In addition to providing a measure of model perfor-

mance. the highest probability path guides Baldi et al.’s model update procedure.

2.5 Update process

During the model training process, we attempt to maximize the model’s performance
on the training set (which could equivalently be viewed as the training set’s per-
formance on the model). We primarily used the conventional Baum-Welch update
procedure described in Rabiner [24]. In addition, we implemented the much less

time-consuming update procedure described by Baldi et al. in [1, 2].

2.5.1 The Baum-Welch update routine

During this update procedure, we compute intermediate quantities «, 5, v, and £ for
each sample sequence. These facilitate the update process and add a certain amount
of intuitiveness to it.

The quantity «:[n,] represents the conditional probability of being at (global)
state n, at time ¢, given the partial observation sequence o[l.t]. §,[n,] represents the
conditional probability of being at n, at time ¢ given the partial observation sequence
o[t + 1, seg-len| and ~,[n,] represents the probability of being at n, at that time given

the entire observation sequence. £,[n;] is the probability of being in state n, at time

25
t and n/, at time ¢t + 1. We first use & and 3 to compute v and &, then use ~ and &
$

to compute the new parameters of the model.

Scaling

Since the update quantities o and § are extremely small, we compute them in loga-
rithmic scale. Generally, this is very convenient, as we perform manyv multiplications
with these quantities. However, at times in the update procedure we must add a set
of quantities stored in log scale. In each case, these quantities represent probabilities
and, thus, we can safelv assume that their logarithms will take values less than zero.
As a convention, when storing quantity z in log scale, it z = 0, we let log_r = 1, a
value not possible to achieve for < 1, the constraint all z satistfy when z represents
a probability.

When called on to add the set of quantities {z,}, if we have stored each x,, as
log _z,,, we first compute the average value of log -z, and assign its absolute value to

scale. We then compute

log(sum) = log(Z exp(log -z, + scale)) — scale.
n s.t log -xn#1

We must scale each term to avoid underflow in evaluation of the exponential for
each term. However, when the argument of exp() is greater than E (approximately
1 x 10™), we have overflow. To balance between these two extremes, we attempt to
choose a scale which brings as many log _z,,’s as possible out of the underflow region
without overflowing for the largest log _z,, # 1. Therefore, if max(log _z,,) + scale > E
for scale as above, then we set scale = E — | max(log z,,)|. By limiting scale in this
way, we may lose the contributions to the above sum of smaller values of 7,,. However,
if the relative sizes of the largest and smallest logarithms vary so greatly, the smaller
values would have had a virtually insignificant effect on sum anvwayv.

Floating point errors not related to overflow or underflow may also cause difficul-
ties in calculating the above sum. For z, close to one, log(z,) may return zero for

single precision z,, and the above sum mayv exceed one inappropriatelv. Double preci-

26
sion z,,, combined with restrictions on minimum size for model parameters, appears

to circumvent these types of errors.

Updates for multi-domain sequences

For multi-domain sequences, we apply the update routine to overlapping segments of
the sequence. We consider segments of length maz_dom and overlap segments by the

window size M. In particular, we break the sequence into n_dom domains where

seq_len
n_.dom = —————,
main_dom

but we increment n_dom by one if seqlen — n.dom x T 2 %Z, 1e., if the end of the

sequence exceeds the end of the final model by more than half a window. If we did
not increment the number of domains in this case, we would limit the contribution of
the final amino acids to the update procedure since computation is performed only
within a window about position in the sequence.

In breaking the sequence into n_.dom domains, for the d”* domain we use the

partial observation sequence
o' = o[(d — 1) x min_dom + 1,d x min_dom + M].

This allows us to consider the possibility that the amino acids in the range [d x
min_dom, d x min_dom + M) were generated by the d" model or, because of the
overlap, by the (d + 1)*' model. Note that the amino acid o[d x maz_dom) could
not generally have been generated by the d*" concatenated model. but to allow for
both o[d x min_dom] and o[d x maz_dom] to have been generated by the same model
would require excessive overlap for multi-domain sequences. However, the results with
this approach to sequence division indicate that an alternative division into segments
might prove more appropriate.

When considering multi-domain sequences, we construct an alternative to the end

array. For each t, we let

,) M
end, = min(T + 1, + 7)

if we have a multi-domain sequence and are not considering the final domain and
end, = end,
otherwise.

Calculation of oy (“forward variables”)

For a given observation sequence, a;[n,| represents the conditional probability of the
partial observation sequence o[1, t], given the model parameters and presence at n, at
time ¢t. Once initialized, we compute these quantities by feeding information forward
in time and forward through the model.

The initial probability of being in node one at time one, given o[1], is given for all

5 by
a1[1ls] = Bll][obs] 7[s]

where obs = “skip” if s = Delete and o[1] otherwise.
However, we must also fill in values for all other n in [start,, end;], which we do
by acknowledging that passing through the Delete state does not increase the time

index. Thus, for n in [start; + 1, end}] and all s,

Q‘l[ns} = B[?’Lg][ObS] 051{(77/ - 1)Delete] A[(” - 1)Delete””s}

where, again, obs = “skip” if s = Delete and o[1] otherwise.

For time ¢ € [2, seq_len], we use the probabilities calculated for the previous time

step. Since we know that «;_1[n’,] represents the probability of being at n/, at time

t — 1 given o[l,t — 1], we can calculate oy[n;] by considering all possible previous

positions 7!, in the model and the probability of transition from n!, to n,. then

28
including the probability of seeing observation o[t] at n,. Since all transitions in
the model move at most one node, we need only sum over possible previous states,
which will cover all possible previous nodes. Note, however, that if the previous state
is Delete, we must use probabilities from the current time step because transitions

from Delete states do not leave the time step. Therefore,

aylng| = Blngllobs Cpren_tlprevng| Alprev_ongn
P LT0s]

R

prev.nElstartyrev_t . endprcy_t)

where prev_t = t if 8 = Delete and t — 1 otherwise, prev_n = n if s = Insert and
s' # Delete, n — 1 otherwise, and obs = " skip” if s = Delete and o[t] otherwise.

We calculate oy for nodes within a window and assume that the probability of
being at a node outside the window is zero. In addition, our definition of time step
requires that the probability of being in a non-symbol producing state (i.e. Delete)
at the last node in a window for time ¢ be zero. Thus we require o;[(endy)perere) = 0.
We make an exception for the last node of the model when updating for anyv but the
last segment of a multi-domain sequence. In that case, the alignment window can
overlap multiple models and we are only considering the portion of the window on
the current model. Thus, even though no symbol could be emitted for time step ¢
on this model, one could be emitted on the next model, so no logical contradiction

occurs in letting the model pass through state [T petete)-

Calculation of 3, (“backward” variables)

Because 3, depends on the partial observation sequence o[t + 1, seg_len], we initialize

it at the end of a sequence. We set

Mseqlen

ns] =1

for all nodes n in the window startseq_en to end,, ., and all s. Note that Cseqien]Ts)

represents the probability of being at n, given the entire observation sequence: initial-

12108 3,0 _sen|Ns) as above allows us to say that e sen[Ns] Feq_ienns) 15 the probability

29
of being at n, given the entire observation sequence.

For earlier times, we consider all possible subsequent positions, combined with
the probability of seeing a particular svmbol at that position and the probability
of transition from the current position to that position. Note that, analogously to
the calculation of a4, transitions from Delete states must not involve an increase in
time index. Therefore, in the following nextt = ¢t if s = Delete. Note that these
calculations require working backwards through the nodes in the window [start,. end)]
as well as through time. Using the convention that B[npejete)[m] = 1 for m = “skip”

(the svmbol generated by the Delete state), we let

3,In,] = > (Blnext_ny][obs] Alnsl[next-ny) 8, [ncatng))
s s.t

next-n€lstartnezt_t,endnext_t)

where next_n is either n or n+1, depending on s and " and obs = “skip” if ' = Delete

and o[next_t] otherwise. If next.n ¢ [startnes s, end,,,, ,], we omit the term.

Calculation of v,

We calculate o and 0 to facilitate computation of v and &, which we then use to
calculate the new model parameters. Given a4 [n,] (the probability of being at n,
given the model and the partial observation sequence o[1,t]) and 5,[n,] (the probabil-
ity of being at n, given the partial observation sequence o[t + 1, seq_len]), v,[n,] (the
probability of being in state n, given the model and the entire observation sequence)
is simple to calculate: it is simply the product of ay[n,] and §,[n,]. We normalize to
give a probability distribution over possible n, for time #, because we assume that the

sequence must pass through some n, for n in the window start; to end; at time t.

g [ns] By[ns]
,7,[775} — v tifts tifts

Zn’:sta,rl,f Zs' (O(f[n,s’] ﬁt [TL;,D

which insures that
end;

Z Z“/t[ns} =1

n=starts s

30
Note that since we calculate « and S from different ends of the sequence, we must
save at least one of these quantities for all ¢, while we need only save the other long
enough to calculate v, and &,. We have opted to save the forward variables and, for

each time step t, save only 3, and 3,,;.

Calculation of &,

£, denotes the probability of being in state n, at time ¢ and next_ny at time next_t
(t + 1 it s # Delete and t otherwise), so summing over next_ng gives v,[n,]. the
probability of being in state n, at time ¢. Specifically,

" !
end)

norm= % Y an}] Aln} |[nextnl,] Blnextn][oft] 8. i[nextnl,]

n'=start; 51,52

ft[nsﬂnelit—ns@ — O”t[ns} A[ns][next-ns'} B[:Sf:r;nﬂ'}{o[tﬂ VBnert-t[nextan’].

We onlyv compute &, for t = 1,seq-len — 1 because next_t will extend past the
end of the sequence for all states but Delete . However, if we have a single domain
sequence or the last segment of a multi-domain sequence, we update at ¢+ = scq_len

for the transition to the End state by letting

fseq_len [TLSHEde] = A/seq.len [nS}
for svmbol-producing states s.

Use of the update quantities

The above quantities are computed for each sequence or segment of a sequence in
the training set and we use them to calculate the contribution to the new model
parameters.

The following update rules stem from an interpretation of computing probability
by counting event occurrences. In particular, we can consider v,[n,], which is the

probability of being in ny at time ¢, to be the expected number of times the process is

31
in state n, at time . Similarly, &,[n,][next_ny| can be viewed as the expected number
of transitions from n, to next.ny. In the following expressions, s is any state, with

the exception of the expression for Bln,][m], for which s € {Match, Insert}.

_ 2 (L))

n_seg

= expected number of times in state s of node 1 at time 1

Z:):_sleg(e?ggt[ajrtn H/t[n.SDi
'B‘[nsnm} — ‘ s.t. o[tj=m
S (i are, 1alns])s

expected number of times in n,, seeing symbol m

expected number of times in 7,

Zn_seg (min{T—~1,ends) gt [775] [nemt_ns/])4

i=1 t=starty,

.5 v
Z:::ieg(:Z.s:drtn 77&[”£‘Di

expected number of transitions from n, to next_n

Aln)[nextng] =

expected number of transitions from n,

Note that we do not update for transitions from node 7', although we do use multi-
domain sequences. For the majority of the sequences/segments used, &,[T}][next_ny]
is minuscule except for transitions to Insert and averaging over all segments causes
inappropriatelv small transitions at the last node of the model.

After applyving these update rules, we must sometimes adjust the model parame-
ters in a less elegant manner. Floating point errors can prevent quantities that should
sum to exactly one from doing so, so we make adjustments to compensate for those
errors. In addition, if a particular transition rarely or never occurs, or a certain svm-
bol never appears at a position within a training set, the update rules will cause the
corresponding parameters to go to zero. However, if we allow any model parameters
to go to zero, we introduce the possibility that a sequence which closely matches the
model for the most part may have zero probability of having been generated by the

model. To avoid this situation, we set anv quantities that have been updated to an

32

excessively small value to a small but non-zero constant.

Training time

When calculating the «’s, we consider for each time step all the nodes n and states
s in which the process could possibly be at time ¢ and all »’, s’ where it could have
been at time ¢ — 1 (or at time ¢ if s = Delete). However, given n. s, and s we can
determine n’, so calculation of « for a sequence only requires time on the order of
seq_len x M x N?. Similarly, calculation of § and £ require the same approximate
number of operations. Calculation of v requires only seq.len x M x N operations
because its calculation does not require consideration of transitions between time
steps. When calculating these quantities, we use segments of size seg.len = T, so
we can sav that the calculation of v and £ for each sequence requires time on the
order of T x M x N?. Given these quantities for each sequence, calculation of the
new model parameters requires that we calculate for each node in the model the new
probability of transitions from all states s to all states s" and, for each state s, the
probability of seeing each symbol m. This implies operations at least on the order of
T x N x (N + 5), regardless of update method, but that quantity is dominated in

this case by n_seq x T x M x N? since N =3, S <20 and M = 60.

2.5.2 The Baldi update

One appeal of this alternative to the Baum-Welch update routine is that updates of
model parameters cannot cause quantities to become zero. The re-parameterization
of the model parameters guarantees this, as well as guaranteeing that the appropriate
quantities will sum to one. However, due to floating point errors, we do in fact set a

minimum value for model parameters and adjust the probabilities if necessary.

Model parameterization

33

We define wln,][n),] and v[n][k] such that

: exp(w[n][ny])
Al = S s)
and
B[ns][k} eXP(U{nSHkD

= S ; .
2 =1 €xp(v[ns][K'])
Although the transition probability matrix used by Baldi et al. very likely contains

the information contained in what we call 7, we explicitly define x[s] such that

exp(a]s))

= Sl

Update procedure

This update procedure does not require calculation of v or &, which saves a great
deal of computing time. In fact, the update relies solely on the best path through
the model, which we compute at each step anyway as a means of evaluating model
performance. The approach was designed to be used with updates after the presen-
tation of each sample sequence, but we have chosen to use it in batch mode with
updates performed after the presentation of all sample sequences. For each sample.

we compute the following contribution to Az[s]:
Azi[s] = n(X, = 7ls])

where X, is one if the best path passes through node 1, state s at time 1 and zero
otherwise.

When updating for state transitions and symbol emissions, we must consider the
implicit Delete states in the best path. If the node associated with time ¢ in the best
path (best_node;) is more than a single node away from best_node;_;, then we must
have passed through one or more Delete states at time ¢ before reaching best_node;.
Therefore, when using this update routine we incorporate the Delete states back into

the best path.

34

At each time t we compute a contribution to Aw[n;][next-ny] for all s and all n €
[best_node,—, ., best_node;). In this way, we address the transitions from best_node,_. .
transitions to best_node;, and all transitions between. To update for the svmbol
emission probability matrix, we compute a contribution to Awng|[m] for all s and
each n € (best_node;_,, best_node,]. This slightly different range of nodes corresponds
to associating a sequence of Delete’s, followed by o[t], with time ¢. If best_node,—, =
best_node;, we look only at node n.

The contribution of sample ¢ to the nodes in the above range is given by
Awlng][next-ng] = n(T[ns)[next_ng] — Alngl[next ng])

Avilng]lm] = n(E[ns][m] — Bln][m])

and where T'[n,][nextny] is one if the transition n, to next_ny occurs in the best
path for sequence o; and zero otherwise. Similarly, E[n][m] is one if o,[t] = m
and best_path, = n, and zero otherwise. For transitions to the End state. we let
T[n,)[End] = 1 if and only if best_patheq jen = 1 and set it to zero for all other n.

After computing the contributions to the A’s from each sequence we compute an
average A by dividing by the number of sequences considered. Then the new model
parameters are given by

5] = exp(z[s] + Az[s])
> exp(zls’] + Azls'])

Alng][nert_ny) exp(w[ns][neztng] + Awln,|[next_ny])
Alnglnextng] = :
£ 5 Zsu eXp(w l?’Lg] {next_nsu} -+ Aw{rn/s] [ﬂeﬂit_ﬂ,‘q//])

and
exp(v[ng)[m] + Aving][m])

2 exp(v[ng][m] + Avln]fm])

and w, v, and z are all incremented by the corresponding A for the next iteration.

Bin,][m] =

35

Training time

Since we do not need to consider alignments in calculating the contribution of each
sequence to the new model parameters, the time required to calculate these contri-
butions is on the order of n_seq x T x N x (N + S), or roughly a factor of A/ less

than the Baum-Welch update routine.

2.5.3 Convergence

Convergence in the training process is extremely difficult to define with any great
certaintv. Omne approach is simply to train a model until the increase in average
probability is “negligible.” However, the numerical scale of the probabilities is so
small and varies so much across data sets that “negligible” improvement is a rather
ambiguous term. We could, alternately, update each model for a fixed number of
iterations, but that assumes that all models require a comparable amount of training
time. In fact, the training sets do not appear to attain a comparable average proba-
bility on the different models in the same number of iterations. Another possibility is
to require improvement on at least a certain fraction of the training samples. Since
the update process is averaged over training samples, there may not be improvement
on 100% of training samples at each iteration. If the number of samples showing
improvement dwindles, it may mean that we are adjusting the model to emphasize a
few high probability sequences at the expense of a larger number of lower probability
sequences. However, this criterion cannot be applied strictly because in many cases
the percentage of samples showing improvement dwindles, only to rise again sharply
after a few additional iterations. In addition, this criterion may be met while the
average probability still shows “negligible” improvement, as defined by virtually no
percent change from one iteration to the next.

Given the benefits and failings of each of the above criteria, we use a combination
in determining when to stop training and which iteration to call the “best.” In
particular, we track the number of iterations with relative and absolute decrease in

average and average log of probability. We use the average log of probability because

36
it provides a somewhat more robust measure of training set performance, given the
possibility of underflow when computing average probability directly.

If we train for n_rel (set to five) iterations with a relative decrease in performance
on both of these measures, we assert that the model is diverging and cease to train.
Alternately, we may see a single relative decrease from one iteration to the next. then
a series of relative increases without ever performing better than the initial iteration.
In this case, we have a series of iterations with absolute decrease in performance
without a series of relative decreases. This situation offers more hope, as it does
not indicate divergence. Therefore, we allow up to n_abs (set to ten) iterations with
an absolute decrease in probability as long as the relative performance continues to
improve. In general, a relative increase in probability will either produce the best
probability to date or exceed it within a few steps.

We define “negligible” improvement in relative (not absolute) performance as
improvement of less than neg_pct percent (set to ten) in average probability and
improvement of less than neg_fract (set to .1) in average log probability. If we have
negligible improvement by this definition, or if we have not seen improvement on at
least best_pct (65) percent of the samples for n_neg (set to ten) iterations. we assert
that the model has converged and stop training. This last criterion must be applied
with some discretion. In some cases, the model has shown an initial drop in average
probability, followed by a steady rise, but without improvement on best_pct within
n_neg iterations. In these cases, we begin training again from the point at which it
stopped.

After one of the above criteria has caused the model to stop training, we take and
save the last iteration which showed improvement on best_pct percent or greater of

the training samples.

37

Chapter 3 Modeling with real vector

representations of sequences

3.1 Preliminary processing of protein sequences

Considering protein folding as a signal recognition problem requires conversion from
the sequence of symbols representing amino acids to a vector of real numbers. There
are many options in this process, depending on what characteristics of the sequence

we seek to represent.

3.1.1 Property profiles

One option for real vector representation of a protein sequence is to choose a bio-
chemical property and convert the amino acid sequence into a “property profile.” To
generate a property profile, we replace each amino acid in a sequence by its value in
a property table. Note that while these profiles represent the sequence with respect
to the chosen property to some extent, the representation is hardly definitive.

Property tables have been calculated by many different groups [10, 11] and even
if these tables represent the same property, they may vary significantly. In addition,
some properties have high theoretical correlations to others, but, given the variations
between tables for the same property, there seems no harm in considering correlated
properties as the correlation may not even appear in the table.

We have considered the following “six” properties: hydrophobicity (PONNU),
charge. accessible surface area, van der Waals volume, hyvdrophobicity (ROSEF). and
hvdrophobicity (PRIFT) [10]. Given this set of six property tables, we normalized
each to zero mean and unit variance across the amino acids to reduce magnitude

variations.

38

After generating the property profiles, we could pass them directly into the model
and proceed completely analogously to the discrete symbol case. However, we choose
to perform some additional processing. The unprocessed property profile model re-
quires an excessive amount of computation and cannot be expected to behave much
differently than the symbolic case, with twenty different floating point numbers rep-
resenting the symbols instead of twenty integers.

To process the profiles, we treat the property profile vector as a signal from the
hvpothetical random process and compute the Fourier power spectrum. To facilitate
the use of the Fast Fourier Transform, we select sequences from a specified range and
pad them to a length which is a power of two with zeros. Given the training set of
transformed profiles, we compute the average power of each component and use that
as a measure of the “significance” of the components. We retain the n_sig highest
power components of the training sequences. The components retained then become
a fixed property of the model: we use them to represent all sequences passed to the
model and all non-training sequences are reduced, after the FFT, to the indicated
components.

We consider processed property profiles partiallv because of sequence length vari-
ation within structural classes: transforming the profile allows us to capture global
sequence information within a single component. In addition, we can reduce the
dimension of the problem somewhat by retention of components we believe to be
significant in some way. We use the Fourier transform and retain high power compo-

nents, although other transform-related options certainly exist.

3.1.2 Amino acid composition profiles

Another property of amino acid sequences we can consider is the amino acid com-
position. Chou and Zhang [7, 8. 9] achieved very good results classifving sequences
from the PDB into the classes a. 5, o + 8 and «/8, so we have considered this
representation for our continuous symbol model.

To convert the amino acid sequence into this format, we compute, over the length

39
of the sequence, the average number of times a given amino acid appears. In this way,
we reduce the sequence to a 19-dimensional vector whose n** entry is the percentage of
times the n** amino acid appears in the sequence. The 20" component is completely
determined by the others and is therefore omitted. This crudely constructed quan-
tity appears to have some merit in distinguishing between some structural classes,

although perhaps not as much as indicated by the results of Chou and Zhang.

3.2 Model adaptation

To handle observations drawn from a continuous distribution, we must make some
alterations to the model, primarily related to the observation probability at each

node.

3.2.1 Non-discrete observation distributions

If the observation sequence o does not take on a discrete set of values, we must replace
the svmbol emission probability matrix B with a probability density function. The
alphabet S then becomes a set of mixtures from which a given observation may have

been drawn. B is characterized by the statistics of these mixtures. Thus,

S

BlnJ(olt]) = Y (¢[n][m] N(o[t], uln][m]. o[n,)[m])

m==1

where ¢ is the mixture coefficient, u is the mixture mean and o is the mixture variance
and M is a Gaussian density function. B no longer represents a matrix. but rather
an arrayv of functions.

To calculate B[n,](o[t]) for use in the Baum-Welch update procedure, we use the
Gaussian probability density function with the appropriate mean and variance. This
is not strictly a probability, but any scaling factor would cancel out in the update
routine and multiplication by a sliver ¢ would incorporate a constant factor into
the best probability path for a sequence. Just as we prevent model quantities in the

discrete svmbol case from becoming too small, we prevent the variance of each mixture

40
from becoming too small. In addition, this allows us to insure that the probability
density function will not return a value exceeding one.

Note that it is not strictly necessary, given the above e-scaling argument. for the
B’s to return values not exceeding one. However, the current log scale storage of small
quantities would be complicated by the new possibility of achieving the value one.
Alternative scalings exist, but our restrictions on size of variance have not seemed to

harm significantly the performance of the model.

3.2.2 Initialization of continuous observation distributions

For observations drawn from continuous distributions, we initialize the mixture statis-
tics by calculating the sample mean and variance for each position in the test set
sequences. Initially we set the mixture coefficients (¢) to uniform probability over
mixtures and the mixture means to the sample means. The variances are set to

values about the actual sample variance on the training set.

c[ny][m] =

Ul —

=
»

eq

1
n_seq Z iln]

=1

pns][m] =

and
n.seq

LSl sl £ A

n-seq
2

v[ng][m] = (

for each mixture m and each state s.

We select A’s such that Ay = 0 and we set the first mixture’s variance to the
sample variance. For mixtures 2 to S, we attempt to let the variances range from
approximately half the sample variance to approximatelv 1.5 times the sample vari-

alce.

41

3.2.3 Alignment modifications

Replacement of the B matrix by a function is the only required difference in model
architecture between these two types of observation sequences. However. we have
made a few additional adjustments. For the transformed profile data and amino acid
composition profiles, we do not consider alignment within a window. Having replaced
amino acid position with Fourier power spectrum components (or with average amino
acid composition), position in the sequence corresponds to a specific component and
it becomes inappropriate to consider aligning sequences except to the known corre-
sponding node. Thus, model node and time step become the same quantity. Initially,
we set m[Match] = 1 and A[nugrenl[next-naseen] = 1 for each n, which insures that
we never deviate from the main line of the model. And, after updates, we no longer
adjust the probabilities to insure that no quantities achieve the value zero as we did

with the discrete symbol case.

3.2.4 DModification of the Baum-Welch update routine

Calculation of updates to the state probability and transition arrays remains the
same as for the discrete symbol case. However, we must now calculate updates for

the mixture statistics at each node and state.

Evaluation of v,

The update variables ¢, 5 and £ remain the same, but « is slightly modified. In the
continuous observation distribution case, v,[n][m] now represents the probability of
being at n, and in mixture m at time ¢, with the sum over mixtures giving us, again,
the probability of being at n, at time ¢. However, this quantity is trivial now that we
have removed alignment considerations because end, = start; = t. Note also that in

each of the following equations n =t and s = Match.

Y ndim] = clns]lm] N(olt], plr]lm], olnl[m] aulny] Biny]
o > Mot ulnJim . olnlm] = st S (aufnly) 5,0l)

n' =starts

42
c[ns][m] N(o[t], pln]im], o[n][m]

2 Mot plns][m'], olns][m]

Update of mixture statistics

To update the mixture coefficients, we consider the number of times in n,, mixture

m, over the number of times in n,:

o] = o T, (il
Z?jeq f’Ls:arth (v [m)s
i1 (elns][m])i
Z?;ieq m’(/t[n)[m /])1

To compute the new mixture average, we use

nlliml = Z::;(q(ﬂft[nsnm}L Oi[t}
ﬂ'[5][] Zn-seq m’(ﬂft{ns}[m/])i

2==1

and, similarly,

i (ylng]lm])i (oilt] = pnslim])?)
Z?:;eq m (ve[ns)[m'])s '

v[ng][m] =

3.2.5 Computation time

The time required for training a model with our real vector representations is signif-
icantly less than that for symbolic representations because of the lack of alignment
considerations. In particular, calculation of the Baum-Welch update quantities now
requires only T x N? operations for «, # and €. The new ~ requires calculations
for each mixture, which introduces an extra factor of S into the calculation of ~.
However. we do not even need to consider the transitions between states because
we adhere strictlv to the main line of the model. which reduces the training time to

approximately order 7' x S for each sequence.

43

Chapter 4 Experiments

Given the svmbolic and floating point HMMs, and the multiple representations within
these tvpes of models, how do these various constructions perform as classifiers? We
trained a large number of models for the Globin, Calcium-Binding, Kinase and Ran-
dom (or “other”) classes and measured their effectiveness at discriminating between
these classes. For the svmbolic models, we considered various groupings of amino
acids to reduce the alphabet size. Since we already know that HMMs are effective at
discriminating between structural classes of proteins. in this way we hoped to gain
insight into the biochemical forces driving the folding process and the redundancy of
the protein alphabet. We also seek this insight with the real vector representations.
In addition, we hoped to ascertain the effectiveness of the HMM approach on floating
point representations of protein sequences.

The sequences for these experiments were drawn from the SWISS-PROT database.
The Calcium-Binding, Globin, and Kinase class information was taken from the file
kevwords.txt accompanying the database. The “Random” class consists of sequences
from the database with lengths in the range [75,250] drawn from twelve other classes
listed in the kevwords.txt file, with at most 50 sequences drawn from a single class.

This is onlv one possible method of construction of “Random” classes. We chose
this construction primarily to insure a rigorous test of model performance. Randomly
generated sequences may have very little resemblance to real protein sequences. In
particular, a random sequence of amino acids may not fold to a compact shape the
wayv a real protein would. If we used randomly generated sequences to train our
Random model, we might not be testing the ability of our models to detect proteins
from the classes thev are trained for, but rather their ability to discriminate between
proteins and non-proteins. By using real protein sequences, we provide a realistic test

of the more difficult procedure of differentiating between classes.

44
4.1 Symbolic alphabets

In addition to the full twenty letter amino acid alphabet, we considered several other
groupings of the amino acids based on various criteria. For each of these groupings, the
fundamental data remained constant. We trained models for the Globin, Calcium-
Binding (CB), Kinase and Random classes for each alphabet and evaluated their
performance on the data sets for each of these classes. This allowed construction of a
maximum-likelihood classifier in which a sample was assigned to the class on whose

model it attained the highest probability.

4.1.1 Data sets

Since we considered the Globin and CB sequences as potentiallv multi-domain, we
could use most of the sequences in the database, discarding only those with length less
than the chosen minimum domain length. The fact that we could process sequences
of any length as multi-domain sequences gave us an adequately sized data set for the
CB class. Note that anyv sequence passed to the model for a multi-domain class was -
treated as multi-domain. We used 669 Globin sequences in total, randomly selecting
approximately 70% of them (468) as a training set and retaining the remainder as a
test set. Similarly, we used 423 CB sequences with a training set of size 296. Kinase
is a single domain class, but the database contains sequences over a thousand amino
acids in length. For computational practicality, we restricted our data set to those
sequences falling in the length range [256,512]. This gave us a total set size of 245
sequences with a training set of size 171. The Random class contains a total of
356 sequences, with a training set of size 249. These appear to be adequately sized
training sets to allow generalization to the test sets, as the two sets performed with

approximately the same accuracy on most of the alphabets.

The “other” symbol

For each of the following symbolic alphabets, we included an additional svimbol to

represent anv ambiguous information from the database. For example. in some se-

45
quences, the symbol “X” appears to indicate that the amino acid in that position is
unknown. While this does not occur frequently, incorporation of the “other” svinbol

allows us to handle this symbol without discarding the entire sequence.

4.1.2 Variance in classification accuracy

In an attempt to estimate the variance in test set performance over test set compo-
sition, we considered divisions of the test set into sub-sets and computed the average
classification accuracy for each sub-set. We then computed the variance over this set
of sub-sets and averaged that quantity over a large number of such divisions. This
procedure indicated a standard deviation on the order of 2.5% for the Globin class
for each alphabet considered, 5.5% for the CB class and 4% for the Random class.
The Kinase class demonstrated large variations for the full and chemical alphabets
(on the order of 8% and 5% respectively), but dropped to something less than 2% for

the other reduced alphabets.

4.1.3 The full alphabet

The full twenty letter alphabet undoubtedly gives the best results overall when at-
tempting to differentiate between CB, Globin and Random classes but for some reason

does not perform exceptionally well on the Kinase class.

46

Symbols Globin CB Kinase Random
20 % # % # % # % #
Globin Train 98.72 | 462 1.28 6 0.00 0 0.00 0

Test 97.01 | 195 2.49 5 0.00 0 0.50 1

Total || 98.21 | 657 1.64 11 0.60 0 0.15 1

CB Train 0.00 0 98.99 | 293 0.00 0 1.01 3
Test 0.00 0 97.64 | 124 0.00 0 2.36 3

Total 0.00 0 || 98.58 | 417 0.00 0 1.42 6

Kinase Train 0.00 0 0.00 0 i 100.00 | 171 0.00 0
Test 0.00 0 52.70 39 47.30 35 0.00 0

Total 0.00 0| 15.92 39 || 84.08 | 206 0.00 0

Random | Train 0.00 0 0.80 2 0.00 0 §9.20 | 247
Test 0.00 0 27.10 29 0.00 0 72.90 78

Total 0.00 0 8.71 31 0.00 0 || 91.29 | 325

Table 4.1: Sequences assigned to each class by 20-Symbol models

We assign a sequence to a class if the probability of its “best” path through a
model is higher than that for other models and, in this representation, the sequences
belonging to the training sets almost all score higher on the appropriate classes.
Generalization to the test sets is excellent for the Globin and Calcium-Binding classes,
fair for the Random class and poor for the Kinase class.

It is unclear what influences caused the relatively poor performances on the test
sets of Random and Kinase. We could hypothesize that the training set for Kinase
is of inadequate size, since it is more than 120 sequences smaller than the CB train-
ing set. but that does not explain how alternate alphabets overcome this deficiency.
Similarly, the errors on the test set of the Random class could be a consequence of
the fact that, by construction, the Random sequences do not have high structural or
sequence similarities. However, with most alternate representations generalization to

the Random test set occurs with no difficulty.

47
Although the CB class performs quite well with this representation of sequences,
it is interesting to note that the number of Match states in the “best” paths for the
CB training sequences is generally much lower than expected. We would expect a
number of Match’s approximately equal to the estimated number of domains times
the model length, but we generally saw a number approximately the (single) model
length. This indicates some difficulty with the treatment of multi-domain sequences,

although this difficulty does not adversely affect performance in this case.

4.1.4 Reduced alphabets

We considered several alphabet reductions based on the properties of hvdrophobicity
and polarity. In addition, we considered several other common groupings of amino
acids. To varying degrees, almost all of these alphabets demonstrated the ability
to differentiate between at least the Globin, Kinase and Random classes. For the
Calcium-Binding sequences, the poor performance and occasional failure of the train-

ing process most likely had to do with the treatment of multi-domain sequences.

The 8-letter “chemical” alphabet

In this alphabet, we group the amino acids based on a set of chemical properties.
The groups are {Asp, Glu} (acidic), {Arg, His, Lys} (basic), {Ala, Gly, Ile, Leu. Val}
(aliphatic) {Asn, Gln} (amide), {Phe, Trp, Tyr} (aromatic), {Ser, Thr} (hvdroxyl).
{Pro} (imino) and {Cys, Met} (sulfur) [27].

While the results with this alphabet are worse with respect to the classification
of the CB sequences, performance on Kinase and Random is significantlv improved.
The CB sequences mis-classified are almost all longer than 200 amino acids, indicating
that the difficulty in classification may have to do with the treatment of multi-domain
sequences. We see a larger number of Match states in the best paths. but this

coincides with reduced performance.

48

Symbols Globin CB Kinase Random

8 % # % # % # % #

Globin Train 98.50 | 461 0.00 0 1.07 5 0.43 2
Test 98.01 | 197 0.00 0 1.99 4 0.00 0
Total || 98.36 | 658 0.00 0 1.35 9 0.30 2

CB Train 11.15 33 76.69 | 227 6.42 19 5.74 17
Test 11.02 14 74.02 94 11.02 14 3.94)
Total || 11.11 47 1| 75.89 | 321 7.80 33 5.20 22

Kinase Train 0.00 0 0.00 0 || 100.00 | 171 0.00 0
Test 9.46 7 0.00 0 89.19 66 1.35 1
Total 2.86 7 0.00 0| 96.73 237 0.41 1

Random | Train 0.00 0 0.00 0 0.00 0 1| 100.00 | 249
Test 1.87 2 3.74 4 4.67) 89.72 96
Total 0.56 2 1.12 4 1.40 5 96.91 | 345

Table 4.2: 8-Symbol “Chemical” alphabet model classifications

The 3-letter “structural” alphabet

In the structural alphabet, amino acids are grouped together according to their pref-
erence for position within the tertiary structure. The groups are {(Ala, Cys, Glv, Pro,

Ser, Thr, Trp, Tyr} (“ambivalent”), {Arg, Asn, Asp. Gln, Glu, His, Lys} (“external”)

and {Ile, Leu, Met, Phe, Val} (“internal”) [27].

This is a relatively effective grouping of the amino acids for structural classifica-
tion. Since the grouping derives from structure, we would expect this alphabet to
perform well. Performance on the Kinase test set is perfect, although a large number
of CB sequences are also classified as Kinase, corresponding to a high false positive
rate. The presence of Kinase in this classifier highlights the difficulty in the treatment

of the CB multi-domain sequences because, in its absence, models trained with this

alphabet perform nearly as well as those trained with the full alphabet.

49

Symbols Globin CB Kinase Random
3v5 % # % # % # % #
Globin Train 95.94 | 449 1.07) 1.71 8 1.28 6
Test 96.02 | 193 0.50 1 2.49 b) 1.00 2
Total || 95.96 | 642 0.90 6 1.94 13 1.20 8
CB Train 0.34 1 72.64 | 215 17.23 51 9.80 29
Test. 0.79 1 66.14 84 22.83 29 10.24 13

Total 0.47 2 1 70.69 | 299 18.91 80 9.93 42

Kinase Train 0.00 0 0.00 0 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 100.00 74 0.00 0

Total 0.00 0 0.00 0 || 100.00 | 245 0.00 0

Random | Train 0.00 0 0.80 2 0.00 0 99.20 | 247
Test 0.00 0 2.80 3 1.87 2 05.33 | 102
Total 0.00 0 1.40 5 0.56 2 1 98.03 | 349

Table 4.3: 3-Symbol “structural” alphabet model classifications

Hydrophobic/Polar alphabet reductions

We considered several alphabet reductions based on grouping amino acids together on
the properties of hvdrophobicity and polarity. At the highest level of differentiation,
we consider the groups hydrophobic {Ala, Phe, lle, Leu, Met, Pro, Val} (H). polar
uncharged {Cys, His, Asn, Gln, Ser, Thr, Trp, Tyr} (Fp), polar positively charged
{Lys, Arg} (P;), polar negatively charged {Asp, Glu} (P-) and Glycine {Glv} (G),
giving us a 5-letter alphabet [6] Note that there is a correlation between H and the
“internal” group of the “structural” alphabet above-hvdrophobic residues tend to
prefer the interior of a folded protein.

This alphabet performs essentially as well on the Globin and Random classes as
the 8-letter alphabet, but with improved performance on Kinase and decreased per-

formance on CB. Note that in the absence of the Kinase model, models trained with

50
this alphabet perform nearly as well as those using the full alphabet, differentiating

well between the CB, Globin and Random sequences.

Symbols Globin CB Kinase Random

5 % # % # % # % #

Globin Train 96.15 | 450 0.00 0 2.14 10 1.71 8
Test 95.52 | 192 0.50 1 2.49 5 1.49 3
Total || 95.96 | 642 0.15 1 2.24 15 1.64 11

CB Train 0.00 0 63.51 | 188 27.70 82 8.78 26
Test, 0.00 0 60.63 7 29.92 38 9.45 12

Total 0.00 0 || 62.65 | 265 28.37 | 120 8.98 38

Kinase Train 0.00 0 0.00 0 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 100.00 74 0.00 0

Total 0.00 0 0.00 0 || 100.00 | 245 0.00 0

Random | Train 0.00 0 0.40 1 0.40 1 99.20 | 247
Test 0.00 0 0.93 1 3.74 4 95.33 | 102

Total 0.00 0 0.56 2 1.40 5 | 98.03 | 349

Table 4.4: H/P,/P./P_/G alphabet model classifications

To reduce the alphabet still further, we incorporate the mildly hvdrophobic Glycine
into the H group. The performance with this alphabet is comparable to that of the
5-letter alphabet. The absorption of Glycine into the Hvdrophobic group appears to
have had very little impact on performance, except to slightly improve recognition of

CB sequences.

Symbols Globin CB Kinase Random

4 % # %o | # % # % #

Globin Train 96.58 | 452 0.00 0 1.92 9 1.50 7
Test 94.53 | 190 0.50 1 1.99 4 2.99 6

Total || 95.96 | 642 0.15 1 1.94 13 1.94 13

CB Train 7.09 21 67.23 | 199 18.24 o4 7.43 22
Test 4.72 6] 66.14 84 20.47 26 8.66 11

Total 6.38 27 || 66.90 | 283 18.91 80 7.80 33

Kinase Train 0.00 0 0.00 0 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 100.00 74 0.00 0

Total 0.00 0 0.00 0 {| 100.00 | 245 0.00 0

Random | Train 0.00 0 0.40 1 0.00 0 99.60 | 248
Test 0.93 1 2.80 3 4.67 5 91.59 98

Total 0.28 1 1.12 4 1.40 5] 97.19 | 346

Table 4.5: Models using 4-letter H/FPy/P. /P_ alphabet

The next alphabet considered groups the amino acids in a manner very similar
to the previous one. This alphabet clusters the amino acids into hydrophobic (H'),
acidic (A), basic (B) and uncharged (U) groups. A and B should be identical to P_
and P. and H' should obviously be identical to H, but different sources give different
groupings of the amino acids. The groupings differ on three amino acids: Glvcine
is grouped with U instead of being its own group or incorporated into hydrophobic;
Histadine is grouped with B instead of (polar) uncharged; and Tryptophan is grouped
with H' instead of (polar) uncharged. This alphabet is referred to as the “functional”
alphabet.

These three re-assignments of amino acids appear to lead to a slight improvement
in correct classification of CB sequences, indicating that at least one of these amino

acids has probably been assigned to a more accurate grouping.

Symbols Globin CB Kinase Random

4 vl % # % # % # % #

Globin Train 96.15 | 450 0.21 1 1.71 8 1.92 9
Test 95.52 | 192 0.50 1 2.49 3 1.49 3
Total || 95.96 | 642 0.30 2 1.94 13 1.79 12

CB Train 4.73 14 73.99 | 219 12.16 36 9.12 27
Test 3.15 4 70.87 90 18.11 23 7.87 10
Total 4.26 18 || 73.05 | 309 || 13.95 59 8.75 37

Kinase Train 0.00 0 0.00 0 || 100.00 | 171 0.00 0
Test 1.35 1 0.00 0 98.65 73 0.00 0
Total 0.41 1 0.00 0| 99.59 | 244 0.00 0

Random | Train 0.00 0 0.00 0 0.00 0 || 100.00 | 249
Test 0.00 0 1.87 2 2.80 3 95.33 | 102
Total 0.00 0 0.56 2 0.84 3 || 98.60 | 351

The next reduction involves incorporating all types of polar amino acids into one
group, P. We now have a three letter alphabet: H/P/G. Without the Kinase model,
the performance with this alphabet is comparable to the 5-letter alphabet, which
again isolated Glycine. This could indicate that the charge of a polar amino acid
is not as significant a force in the folding process as the mere fact that it is polar.

However, with the Kinase model, this alphabet performs poorly on CB and with very

Table 4.6: Models using 4-letter “functional” alphabet

little change on the other classes.

Symbols Globin CB Kinase Random

3 % | # % | # % # %0 #

Globin Train 94.66 | 443 0.00 0 2.35 11 2.99 14
Test 94.53 | 190 0.50 1 1.99 4 2.99 6

Total || 94.62 | 633 0.15 1 2.24 15 2.99 20

CB Train 0.00 0 56.76 | 168 30.41 90 12.84 38
Test 0.00 0] 5512 70 33.07 42 11.81 15

Total 0.00 0 | 56.26 | 238 31.21 | 132 || 12.53 53

Kinase Train 0.00 0 0.00 0 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 100.00 74 0.00 0

Total 0.00 0 0.00 0 | 100.00 | 245 0.00 0

Random | Train 0.00 0 0.00 0 0.40 1 99.60 | 248

Test 0.00 0 1.87 2 7.48 8 90.65 97

Total 0.00 0 0.56 2 2.53 9 | 96.91 | 345

Table 4.7: Models using 3-letter H/P/G alphabet

The next alphabet considered is referred to as the “Charge” alphabet [27]. In this
case, we group all amino acids not in the groups A or B into a neutral group, N.
With this grouping, the correct classification rate for CB rises to approximately the
rate achieved with the functional alphabet, although the Random test set performs
better with other alphabet reductions. Charge would appear to be a significant force

in the folding process.

Symbols Globin CB Kinase Random

3 v4 % # % # % # % #

Globin Train 95.94 | 449 0.00 0 1.71 8 2.35 11
Test 92.54 | 186 0.00 0 2.49 5 4.98 10

Total || 94.92 | 635 0.00 0 1.94 13 3.14 21

CB Train 9.41 16 || 72.64 | 215 12.84 38 9.12 27
Test 5.51 71 69.29 88 18.11 23 7.09 9

Total 5.44 23 | 71.63 | 303 14.42 61 8.51 36

Kinase Train 0.00 0 0.00 0 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 100.00 74 0.00 0

Total 6.00 0 0.00 0 | 100.00 | 245 0.00 0

Random | Train 0.40 1 1.61 4 0.00 0 97.99 | 244
Test 5.61 6 0.93 1 4.67 5 88.79 95

Total 1.97 7 1.40 5 1.40 5 || 95.22 | 339

Table 4.8: Models using 3-letter “charge” alphabet

At the verv lowest level of differentiation between types of amino acids, we grouped
the amino acids into H (including Glycine) and P. The Random class initially would
not train with this alphabet, but after an initial drop in probability training proceeded

normally.

Ut
ot

Symbols Globin CB Kinase Random
2 % # % # % # % #

Globin Train 95.09 | 445 0.85 4 1.50 7 2.56 12

Test, 96.02 | 193 0.00 0 1.99 4 1.99 4

Total || 95.37 | 638 0.60 4 1.64 11 2.39 16

CB Train 1.35 4 64.19 | 190 15.54 46 18.92 56
Test 0.79 1 55.12 70 24.41 31 19.69 25

Total 1.18 5 | 61.47 | 260 || 18.20 77 11 19.15 81

Kinase Train 0.00 0 0.00 0 1 100.00 | 171 0.00 0
Test 0.00 0 2.70 2 97.30 72 0.00 0

Total 0.00 0 0.82 2 || 99.18 | 243 0.00 0

Random | Train 0.00 0 2.01 3 0.00 0 97.99 | 244
Test 0.00 0 9.35 10 4.67 5] 85.98 92

Total 0.00 0 4.21 15 1.40 5 | 94.38 | 336

Table 4.9: Models using 2-letter H/P alphabet

Results with non-biochemical 3-letter alphabets

In order to provide a control of sorts for alphabet reduction, we also considered
alphabets reduced without regard to chemical or functional relationships. The results
were somewhat unexpected. Surprisingly, the differentiation between Globin, Kinase
and Random sequences was excellent for all three of these alphabets.

In the first such grouping, we formed groups with approximately the same codon
redundancy, attempting to evenly split the hydrophobic and polar amino acids. In
particular, we had {Ala (4), Phe (2), Ile (3), Lys (2), Asp (2)., Ser (6), Trp (1)} for a
total redundancy of 20; {Leu (6), Pro (4), Glu (2). Gln (2), Thr (4), Tyr (2)}: and
{Val (4), Glv (4), Met (1), Arg (6), Cys (2), His (2), Asn (2)} with a total redundancy

of 21.

Symbols Globin CB Kinase Random
3vl % # % # % # % #

Globin Train 91.67 | 429 0.21 1 2.56 12 5.56 26

Test 93.03 | 187 0.50 1 2.99 6 3.48 7

Total || 92.08 | 616 0.30 2 2.69 18 4.93 33

CB Train 5.41 16 || 37.84 | 112 32.43 96 24.32 72
Test 4.72 6 || 29.13 37 37.80 48 28.35 36

Total 5.20 22 || 35.22 | 149 || 34.04 | 144 | 25.53 | 108

Kinase Train 0.00 0 0.00 0| 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 98.65 73 1.35 1

Total 0.00 0 0.00 01! 99.59 | 244 0.41 1

Random | Train 0.00 0 1.61 4 0.00 0 98.39 | 245
Test 0.00 0 4.67 5 3.74 4 91.59 98

Total 0.00 0 2.53 9 1.12 4] 96.35 | 343

Table 4.10: Codon redundancy alphabet

The models trained with this alphabet differentiate between Globin, Kinase and
Random sequences very well, though CB sequences were assigned in approximately
equal proportions to CB, Kinase and Random. Differentiation between CB and
Globin is very good, although that in itself does not provide an adequate basis for
a classification scheme. The CB model did train using this alphabet, which might
explain the effective differentiation between CB and Globin, although the training
does not appear to have been very effective in general for the CB model.

We next attempted to test the effect of Glyvcine by considering a three-letter
alphabet in which Glycine is retained as a separate group and the remaining amino
acids are randomly split into two groups of size 9 and 10. These groups are {Ala,
Phe, His, Lys, Met, Ser, Thr, Val, Trp, Tyr} and {Cys, Asp, Glu, Ile, Leu, Asn, Pro,
Gln, Arg}

This random grouping performed very similarly to the previous grouping. The CB

57
sequences are no longer differentiated from the Globins, however, perhaps because
the CB model only trained for one iteration before decreasing steadily in average
probability. These results could indicate that Glycine plays a large role in protein

folding, but the next randomly generated alphabet seems to contradict that assertion.

Symbols Globin CB Kinase Random

3 v2 % # % | # % # % #

Globin Train 93.80 | 439 0.00 | O 1.92 9 4.27 20
Test 93.53 | 188 0.00 0 1.99 4 4.48 9

Total || 93.72 | 627 0.00} O 1.94 13 4.33 29

CB Train 21.62 64 000} 0 21.96 65 56.42 | 167
Test 20.47 26 0.00] O 26.77 34 52.76 67

Total || 21.28 90 0.00] O 23.40 99 |l 55.32 | 234

Kinase Train 0.00 0 0.00 0 100.00 | 171 0.00 0
Test 0.00 0 000 0 100.00 74 0.00 0

Total 0.00 0 0.00 | 0 || 100.00 | 245 0.00 0

Random | Train 0.40 1 0.00 0 0.00 0 99.60 | 248
Test, 1.87 2 000 O 8.41 9 89.72 96

Total 0.84 3 0.00 | 0 2.53 9 || 96.63 | 344

Table 4.11: Random alphabet 1

The final non-biochemical grouping of amino acids was a random grouping into
two groups of approximately equal size and a single group of size one (analogous to
the Glycine group in the previous alphabet). The groups are {Cys, Glu, Gly, His, Ile,
Lys, Met, Pro, Gln, Trp}, and {Ala, Asp, Phe, Leu, Asn, Arg, Thr, Val, Tvr} and
{Ser}.

Except for a slight dip in the correct classification of the Random sequences. this
alphabet gives results very similar to those with the previous alphabet. This might
indicate that Glycine is not particularly important in the folding process. However,

Serine’s codon redundancy is six, so we may have inadvertently replaced one impor-

58
tant amino acid with another. It is more likely, though, that we have demonstrated
that grouping amino acids has little impact on model performance. Those classes
with high probability of seeing a certain amino acid at a certain position will simply
train to emphasize the probability at that position of whichever group contains that

amino acid.

Symbols Globin CB Kinase Random
3v3 % # % | # % # % #
Globin Train 96.58 | 452 0.00 0 1.92 9 1.50 7
Test 96.02 | 193 0.00 0 1.99 4 1.99 4
Total || 96.41 | 645 0.00 0 1.94 13 1.64 11
CB Train 37.50 | 111 0.34 1 18.24 54 4392 | 130

Test 39.37 50 0.00] © 23.62 30 37.01 47

Total || 38.06 | 161 024 | 1 19.86 84 || 41.84 177

Kinase Train 0.00 0 000 O 100.00 | 171 0.00 0
Test 0.00 0 0.00 © 100.00 74 0.00 0

Total 0.00 0 0.00 | 0| 100.00 | 245 0.00 0

Random | Train 2.01 5 0.00 0 1.61 4 96.39 | 240

Test 7.48 8 0006 O 10.28 11 82.24 88

Total 3.65 13 0.00 | O 4.21 15 || 92.13 | 328

Table 4.12: Random alphabet 2

4.2 Baldi update models

We trained models using the Baldi update procedure for the 20, 8, 5 and 2 letter
alphabets and also for the 3-letter structural alphabet. Using a learning rate of
0.6. the average probability on the training sets was generally lower at convergence
than for the Baum-Welsh (BW) models and each iteration had a smaller effect on
average probability. This disparity was particularly noticeable for the Globin and

CB classes, vet virtually non-existent for the Random class. For the full alphabet the

59
results were comparable to those with the BW update, but for alternate alphabets the
results almost all resembled those with the full alphabet, showing poor recognition of
the Kinase and Random test sets. Although recognition of CB remained good with
each alphabet reduction, we would have liked to see improvement in the Kinase class.

Unlike the BW models, the number of Match’s in the best path for CB was as
expected for each alphabet. Calculation of the best path, which is used for the Baldi
update routine, does not involve division of the sequence into regions as with the BW
update routine. The Baldi routine performs better overall on the CB class, indicating
that we probably do not appropriately divide the sequences into segments for the BW
update.

The results with the full alphabet are very similar to those with the other training
method, although performance on Globin is somewhat reduced. When we consider
the chemical alphabet, unlike the BW trained models. performance on Kinase remains
poor on the test set and performance on the CB class remains good. The results with
the Chemical alphabet resemble those for the full alphabet much more closely than
we might expect given the difference in results between these two alphabets with the
BW update.

Similarly, the 5-letter alphabet strongly resembles the full alphabet, with a small
decrease across the board in sequence recognition. Like the chemical alphabet. we see
neither the improved recognition of the Kinase test set nor the decreased recognition of
CB sequences which we see with the BW updated models. In fact. most of the reduced
alphabets behave very similarly with the Baldi updated models, not demounstrating

the variation in performance shown with the BW updated models.

60

Symbols Globin CB Kinase Random
20 % | # %o | # % | # %o | #
Globin Train 86.11 | 403 11.32 53 0.43 2 2.14 10
Test 89.55 | 180 8.46 17 0.00 0 1.99 4
Total || 87.14 | 583 || 10.46 70 0.30 2 2.09 14
CB Train 0.00 0 98.65 | 292 0.00 0 1.35 4
Test 0.00 0 97.64 | 124 0.00 0 2.36 3
Total 0.00 0 || 98.35 | 416 0.00 0 1.65 7
Kinase Train 0.00 0 1.75 3 98.25 | 168 0.00 0
Test 0.00 0 52.70 39 47.30 35 0.00 0
Total 0.00 0| 17.14 42 || 82.86 | 203 0.00 0
Random | Train 0.00 0 4.02 10 0.40 1 95.38 | 238
Test 0.00 0 21.50 23 6.54 7 71.96 7
Total 0.00 0 9.27 33 2.25 8 || 88.48 | 315

Table 4.13: Baldi update models, full alphabet

Symbols Globin CB Kinase Random

8 % # % # % # % #

Globin Train 84.83 | 397 .97 42 3.21 15 2.99 14
Test, 90.55 | 182 5.97 12 1.49 3 1.99 4
Total || 86.55 | 579 8.07 54 2.69 18 2.69 18

CB Train 0.00 0 93.24 | 276 2.03 6 4.73 14
Test 0.00 0 92.13 | 117 3.94 5 3.94 5
Total 0.00 0] 92.91 | 393 2.60 11 4.49 19

Kinase Train 0.00 0 8.19 14 91.81 | 157 0.00 0
Test 0.00 0 50.00 37 50.00 37 0.00 0
Total 0.00 0 || 20.82 51 || 79.18 | 194 0.00 0

Random | Train 0.00 0 7.23 18 3.21 8 89.56 | 223
Test 0.00 0 21.50 23 12.15 13 66.36 71
Total 0.00 0| 11.52 41 5.90 21 || 82.58 | 294

Table 4.14: Baldi update models, 8-letter chemical alphabet

Symbols Globin CB Kinase Random

3 v5 % | # % | # % | # % | #

Globin Train 86.54 | 405 5.77 27 1.50 7 6.20 29
Test 91.54 | 184 3.48 7 0.50 1 4.48 9
Total || 88.04 | 589 5.08 34 1.20 8 5.68 38

CB Train 0.00 0 86.49 | 256 3.04 9 10.47 31
Test 0.00 0 81.89 | 104 0.79 1 17.32 22
Total 0.00 0 | 85.11 | 360 2.36 10 || 12.53 53

Kinase Train 0.00 0 18.71 32 70.76 | 121 10.53 18
Test 0.00 0 39.19 29 29.73 22 31.08 23
Total 0.00 0| 24.90 61 || 58.37 | 143 | 16.73 41

Random | Train 0.00 0 10.84 27 4.02 10 85.14 | 212
Test 0.00 0 20.56 22 9.35 10 70.09 75
Total 0.00 0| 13.76 49 5.62 20 || 80.62 | 287

Table 4.15: Baldi update models, 3-letter structural alphabet

Symbols Globin CB Kinase Random

5 % | # % | # % | # %o #

Globin Train 81.84 | 383 8.5 40 5.13 24 4.49 21
Test 87.06 | 175 7.46 15 2.99 6 2.49 5
Total | 83.41 | 558 8.22 55 4.48 30 3.89 26

CB Train 0.00 0 92.57 | 274 1.69 5 5.74 17
Test 0.00 0 90.55 | 115 1.57 2 7.87 10
Total 0.00 0 || 91.96 | 389 1.65 7 6.38 27

Kinase Train 0.00 0 18.71 32 81.29 | 139 0.00 0
Test, 0.00 0 59.46 44 40.54 30 0.00 0
Total 0.00 0| 31.02 76 || 68.98 | 169 0.00 0

Random | Train 0.00 0 10.04 25 4.02 10 85.94 | 214
Test 0.00 0 22.43 24 11.21 12 66.36 71
Total 0.00 0| 13.76 49 6.18 22 || 80.06 | 285

Table 4.16: Baldi update models, 5-letter alphabet

64

Symbols Globin CB Kinase Random
2 % # % # % # %% #

Globin Train 81.41 | 381 8.97 42 5.98 28 3.63 17
Test 89.55 | 180 6.47 13 2.49 5 1.49 3

Total | 83.86 | 561 8.22 55 4.93 33 2.99 20

CB Train 0.00 0 87.16 | 258 2.36 7 10.47 31
Test 0.00 0 83.46 | 106 3.15 4 13.39 17

Total 0.00 0 | 86.05 | 364 2.60 11 || 11.35 48

Kinase Train 0.00 0 29.82 51 70.18 | 120 0.00 0
Test, 0.00 0 52.70 39 41.89 31 5.41 4

Total 0.00 0| 36.73 90 | 61.63 | 151 1.63 4

Random | Train 0.00 0 25.70 64 7.23 18 67.07 | 167
Test 0.00 0 38.32 41 17.76 19 43.93 47

Total 0.00 0| 29.49 | 105 || 10.39 37 || 60.11 | 214

Table 4.17: Baldi update models, 2-letter alphabet

4.3 Amino acid composition

Training of the models for amino acid composition profiles was very fast, due to a
combination of factors. The short length of the model and the processed sequences
(19) meant very little time per training iteration. In addition, convergence occurred
for all models in at most fifteen iterations. Thus, we could easily examine the effect
of variation of the number of mixtures on model performance.

Since sequence length does not matter in this representation of sequences. we used
the same training and test data sets for the Globin, CB and Random classes as for
the svmbolic representations. In addition, we used all available Kinase sequences in
the length range [100,1000] (430) with a training set of size 300.

We first considered the single mixture model for amino acid composition profiles.

The model cannot reallv train in the single-mixture continuous distribution model

65
because without multiple mixtures, there are no variable parameters to adjust. How-
ever, consideration of the single mixture case gives us the evaluation of the model

essentially using the sample statistics of the training set.

AA Comp Globin CB Kinase Random
1 Mixture % # % # % # % #
Globin Train 90.17 | 422 4.70 22 2.78 13 2.35 11

Test 92.04 | 185 4.98 10 2.49 S (.50 1
Total || 90.73 | 607 4.78 | 32 2.69 18 1.79 12

CB Train 1.01 3] 70.27 | 208 15.54 46 13.18 39
Test 0.00 0 74.02 94 || 12.60 16 41 13.39 17
Total 0.71 3 | 71.39 | 302 || 14.66 | 62 || 13.24 | 56

Kinase Train 2.77 8 9.69 28 71.63 | 207 15.92 46
Test 3.20 4 9.60 12 58.40 73 28.80 36
Total 2.90 12 9.66 40 || 67.63 | 280 | 19.81 82

Random | Train 0.00 0 13.65 34 9.24 23 77.11 1 192
Test 0.00 0 12.15 13 7.48 8 80.37 86
Total 0.00 0| 13.20 47 8.71 31 || 78.09 | 278

Table 4.18: Amino acid composition models, single mixture

The single mixture case for amino acid composition performs moderately well.
Clearlv some pattern detection is occurring, but the only class reallv successtully
distinguished is Globin. The Globin sequences perform better on the Globin model
than on any other and very few sequences from other classes do, giving a low false

positive rate.

66

AA Comp Globin CB Kinase Random
5 Mixtures % # % # % # % #
Globin Train 89.96 | 421 3.63 17 4.27 20 2.14 10
Test 92.54 | 186 1.99 4 2.99 6 2.49 3
Total || 90.73 | 607 3.14 21 3.89 26 2.24 15
CB Train 0.34 1 71.96 | 213 18.24 54 9.46 28
Test 0.00 0 74.02 94 14.96 19 11.02 14
Total 0.24 1] 72.58 | 307 || 17.26 73 9.93 42
Kinase Train 0.35 1 7.61 22 85.47 | 247 6.57 19
Test 0.80 1 5.60 7 77.60 97 16.00 20
Total 0.48 2 7.00 29 || 83.09 | 344 9.42 39
Random | Train 0.80 2 9.24 23 14.46 36 75.50 | 188
Test, 0.00 0 9.35 10 10.28 11 80.37 86
Total 0.56 2 9.27 33 || 13.20 47 || 76.97 | 274

Increasing the number of mixtures to five improves results somewhat. While this
would not be considered a very reliable classifier, these results indicate that amino
acid composition definitely correlates to structural class. The average rate of correct
classification over all samples tested was 82.28%.

strong with these definitions of structural classes as Chou and Zhang achieved with

Table 4.19: Amino acid composition models, 5 mixtures

their definitions.

These results are not quite as

67

AA Comp Globin CB Kinase Random
10 Mixtures % # % # % # % #
Globin | Train 89.32 | 418 427 20 4.27 20 2.14 10
Test 92.54 | 186 1.99 4 2.99 6 2.49 5
Total || 90.28 | 604 3.59 24 3.89 26 2.24 15
CB Train 0.34 1 70.95 | 210 | 18.24 54 | 10.47 31
Test 0.00 0| 74.02 94 || 14.96 19 || 11.02 14
Total 0.24 1| 71.87 | 304 | 17.26 | 73 || 10.64 | 45
Kinase | Train 0.35 1 7.61 22 || 85.12 | 246 6.92 20
Test 0.80 1 5.60 71 77.60 97 || 16.00 20
Total 0.48 2 7.00 | 29 || 82.85 | 343 9.66 | 40
Random | Train 0.80 2 8.43 21 14.46 36 1| 76.31 1 190
Test - 0.00 0 9.35 10 || 10.28 11§ 80.37 86
Total 0.56 2 871 | 31| 13.20 | 47 | 77.53 | 276

Increasing the number of mixtures to ten marginally decreases overall perfor-
mance, but essentially leaves the results the same. Note that the training and test
sets perform with comparable levels of accuracy. This probably indicates the exis-

tence of generalizable characteristics of each class within this representation of the

sequences.

We also tested this type of model with 20, 25, 30, 35, 40 and 50 mixtures; the
model performed with average accurate classification between 81.95% and 82.12%.
After the slight dip in performance with 10 mixtures, the model appeared to stabilize

at a level just slightly below the level of performance with 5 mixtures. Thus, for this

Table 4.20: Amino acid composition models, 10 mixtures

tvpe of sequence representation, 5 mixtures appears adequate.

68
4.4 Transformed property profiles

To prepare the property profiles, we first read the sequence data, replacing the amino
acid code with its value on a particular property and padding the sequence length to
a power of two with zeros. After performing a fast Fourier transform, we consider the
average power over the training set for each Fourier component and retain the nig

most powerful components to represent the sequences.

4.4.1 Data sets

For this representation of sequences, we restricted Globin, CB and Random sequences
to the length range [128,256] (the power-of-two range containing the largest number
of samples for those classes), using 651, 167, and 188 sequences respectively. For the
Kinase group, we chose sequences in the range [256,512] for a total of 245 sequences.
The CB training set for these experiments may not have been of adequate size to
generalize to the test sets. As a further test of the impact of training set size on
generalization, we tested Kinase sequences in the range [128,256] with the very small
data set (79 total sequences) available.

Since sequences for different classes may come from different length ranges, we
replace non-existent components with zeros. For sequences from the length range
[128,256], the number of components with distinct powers is 128, but for sequences
in the range [256,512], there are 256 distinct values. If, for those longer classes, a
component with index greater than 128 is selected to represent the sequences, shorter
sequences (from other classes) will have zeros in that position when being represented
to the model. This is simply equivalent to saving that the shorter sequences do not

have higher frequency components in their transforms.

4.4.2 Single versus multiple properties

We constructed models for each of the properties of Hydrophobicity (PONNU), Ac-
cessible Surface Area, van der Waals volume, Charge, Hvdrophobicity (ROSEF) and

69
Hvdrophobicity (PRIFT). While these models perform reasonably well individually,
considering sets of models for each class, trained with different properties. might
compensate for imperfections in any individual model.

Initially, we considered all six properties at once, assigning a sequence to a class
if it scored higher on a the greatest number of models for that class. For example, if
a sequence scores highest (“wins”) on the Globin models for Hydrophobicity. van der
Waals volume, and Hydrophobicity (ROSEF), wins on the Calcium-Binding model
for Charge, wins on the Kinase model for Accessible Surface area. and wins on the
Random model for Hydrophobicity (PRIFT), we would assign that sequence to the
Globin set. The size of individual differences in scores is not considered, although it is
interesting to note that on average the difference is much smaller for sequences which
are mis-classified. We have found that performance variation between properties is
slight and considering the properties simultaneously in this way provides an “average”

case.

4.4.3 Models for each property considered simultaneously
128 significant components

We again start by considering the single mixture case. It is surprisingly effective at
distinguishing between Globin and Kinase sequences. For the Calcium-Binding class

results on the training set are good, but have poor generalization to the test set.

128 Comp, 1 Mix Globin CB Kinase Random Tied
prop 123456 % # % # % # % # % | #
Globin Train 88.79 | 404 4.84 22 0.00 0 3.52 16 2.86 | 13
Test 93.37 | 183 3.06 6 0.00 0 1.53 3 2.04 4
Total 90.17 | 587 4.30 28 0.00 0 2.92 19 2.61 | 17
CB Train 0.00 0 87.93 | 102 0.00 0 6.90 8 5.17 0
Test 0.00 0 60.78 31 0.00 0 35.29 18 3.92 2
Total 0.00 0 || 79.64 | 133 0.00 0 | 15.57 26 4.79 8
Kinase Train 0.00 0 0.00 0 94.15 | 161 2.92 5 2.92 5
Test 0.00 0 0.00 0 86.49 64 4.05 3 9.46 7
Total 0.00 0 0.00 0 || 91.84 | 225 3.27 8 4.90 | 12
Random | Train 1.25 2 3.75 6 0.00 0 91.88 | 147 3.12 5
Test 1.45 1 8.70 6 0.00 0 86.96 60 2.90 2
Total 1.31 3 5.24 12 0.00 0 || 90.39 | 207 3.06 7

Table 4.21: 6-property comparison, single mixture, 128 components

We tested results with 5, 10, 20 and 30 mixtures and average performance in-

creased steadily with the number of mixtures. We will present results with 30 mixtures

for the remainder of the discussion because that is the largest number of mixtures we

tested and this construction provided the best results. Performance might improve

still more with an increased number of mixtures.

71

128 Comp, 30 Mix Globin CB Kinase Random Tied
prop 123456 % # % # % # % # Yoo | #
Globin Train 91.21 | 415 0.00 0 0.00 0 5.49 25 3.30 | 15
Test 90.31 | 177 0.00 0 0.00 0 5.10 10 4.59 9
Total 90.94 | 592 0.00 0 0.00 0 5.38 35 3.69 | 24
CB Train 0.00 0 99.14 | 115 0.00 0 0.86 1 0.00 0
Test, 0.00 0 49.02 25 0.00 0 45.10 23 5.88 3
Total 0.00 0| 83.83 | 140 0.00 0| 14.37 24 1.80 3
Kinase Train 0.00 0 0.00 0 || 100.00 | 171 0.00 0 0.00 0
Test, 0.00 0 0.00 0 98.65 73 0.00 0 1.35 1
Total 0.00 0 0.00 0!l 99.59 | 244 0.00 0 0.41 1
Random | Train 0.00 0 0.63 1 0.00 0 99.38 | 139 0.00 0
Test 0.00 0 0.00 0 0.00 0 98.55 68 1.45 1
Total 0.00 0 0.44 1 0.00 0| 99.13 | 227 0.44 1

Table 4.22: 6-property comparison, 30 mixtures, 128 significant components

With 30 mixtures, we achieved an average correct classification of 93.11% when

considering all properties at once. The fact that the CB class did not perform nearly

that well on its test set may be a testament to the fact that the data set was simply

too small.

Short Kinase sequences

For completeness, we tested Kinase sequences in the range [128,256]. The class has

a small data set in this length range and we can clearly see the impact of this small

set size on performance. While this class achieves 100% recognition of its trainin

o
=]

set, it virtually fails to recognize the test set. This illustrates directly the impact of

training set size on performance.

72

128 Comp, 30 Mix Globin CB Kinase Random Tied
prop 123456 % # % # % # % # Y% | #
Globin Train 91.21 | 415 0.00 0 0.00 0 5.49 25 330 | 15
Test 90.31 | 177 0.00 0 0.00 0 5.10 10 4.59 9
Total 90.94 | 592 0.00 0 0.00 0 5.38 35 3.69 | 24
CB Train 0.00 0 99.14 | 115 0.00 0 0.86 1 0.00 0
Test, 0.00 0 49.02 25 0.00 0 45.10 23 5.88 3
Total 0.00 0 || 83.83 | 140 6.00 0 14.37 24 1.80 3
Kinase Train 0.00 0 0.00 0§} 100.00 | 55 0.00 0 0.00 0
Test 0.00 0 0.00 0 0.00 0 95.83 23 4.17 1
Total 0.00 0 0.00 0 || 69.62 | 55] 29.11 23 1.27 1
Random | Train 0.00 0 0.63 1 0.00 0 99.38 | 159 0.00 0
Test 0.00 0 0.00 0 0.00 0 98.55 68 1.45 1
Total 0.00 0 0.44 1 0.00 0 | 99.13 | 227 0.44 1

Table 4.23: 6-property model, 30 mixtures, short Kinase sequences

64 significant components

We initiallv retained 128 significant components from the transformed property pro-

files because that was the maximum number available for consideration of sequences

in the range [128,256], but can we reduce that number and still differentiate between

classes? In fact, retaining 64 components decreases performance dramaticallv. The

only classes really distinguished from the others are the Random and Kinase classes.

This might be useful to distinguish between Kinase and “other” sequences, but for

no finer differentiation.

64 Comp, 30 Mix Globin CB Kinase Random Tied
prop123456 % # %N | # % # % # % | #
Globin Train 49.67 | 226 0.00 0 0.00 0 41.10 | 187 9.23 | 42
Test 48.47 95 0.51 1 0.00 0 39.80 78 11.22 | 22
Total 49.31 321 0.15 1 0.00 0 || 40.71 | 265 9.83 | 64
CB Train 0.00 0 68.97 | 80 0.00 0 12.93 15 18.10 21
Test 0.00 0 29.41 | 15 0.00 0 58.82 30 11.76 6
Total 0.00 0} 56.89 | 95 0.00 0 | 26.95 45 || 16.17 | 27
Kinase Train 0.00 0 0.00 0 86.55 | 148 3.51 6 9.94 | 17
Test 0.00 0 0.00 0 78.38 58 4.05 3 1757 | 13
Total 0.00 0 0.00 0 || 84.08 | 206 3.67 9 || 12.24 | 30
Random | Train 0.00 0 0.00 0 0.00 0 97.50 | 156 2.50 4
Test 0.00 0 1.45 1 0.00 0 86.96 60 11.59 8
Total 0.00 0 0.44 1 0.00 0| 94.32 | 216 5.24 | 12

32 significant components

Table 4.24: 6-property model, 30 mixtures, 64 significant components

Reduction to 32 components gives results little better than random assignment to

classes. The overall average rate of correct classification is only 28.95%, but most

results are far worse. The peak recognition is of the Random set. The results on the

Random set can be explained by the fact that 68.49% of the non-Random sequences

were classified as Random-a very high false positive rate. So the Random set scored

highest on the Random model and so did most of the other sequences.

32 Comp, 30 Mix Globin CB Kinase Random Tied
prop 123456 % | # % | # % # % # G| #
Globin Train 6.15 | 28 0.00 0 0.00 0 87.69 | 399 6.15 | 28
Test, 6.63 | 13 0.51 1 0.00 0 87.24 | 171 5.61 | 11
Total 6.30 | 41 0.15 1 0.00 0 || 87.56 | 570 5.99 | 39
CB Train 0.00 0 2241 | 26 0.00 0 56.03 65 21.55 | 25
Test, 0.00 0 9.80) 0.00 0 80.39 41 9.80 5
Total 0.00 0] 18.56 | 31 0.00 0| 63.47 | 106 | 17.96 | 30
Kinase Train 0.58 1 1.17 2 57.89 99 20.47 35 19.88 | 34
Test 2.70 2 4.05 3 47.30 35 22.97 17 2297 | 17
Total 1.22 3 2.04 5 || 54.69 | 134 || 21.22 52 || 20.82 | 51
Random | Train 5.63 9 8751 14 0.00 0 78.12 | 125 7.50 1 12
Test 8.70 6 13.04 9 0.00 0 62.32 43 1594y 11
Total 6.55 | 15 || 10.04 | 23 0.00 0|l 73.36 | 168 || 10.04 | 23

4.4.4 Individual properties

Table 4.25: 6-property model, 30 mixtures, 32 significant components

On the whole, models for each of the properties considered performed at comparable

levels. The property showing the highest average correct classification for the 30-

mixture, 128 significant component case was hydrophobicity (PRIFT), with 1222 of

the 1292 sequences considered correctly classified (94.58%).

75

128 Comp, 30 Mix Globin CB Kinase Random
prop 1 % # % # % # % #
Globin Train 94.73 | 431 0.66 3 0.00 0 4.62 21
Test 92.86 | 182 0.00 0 0.00 0 7.14 14
Total 94.16 | 613 0.46 3 0.00 0 5.38 35
CB Train 0.00 0 99.14 | 115 0.00 0 0.86 1
Test 3.92 2 50.98 26 5.88 3 39.22 20
Total 1.20 2 || 84.43 | 141 1.80 3 || 12.57 21
Kinase Train 0.00 0 0.00 0 98.25 | 168 1.75 3
Test 0.00 0 0.00 0 93.24 69 6.76 5
Total 0.00 0 0.00 0| 96.73 | 237 3.27 8
Random | Train 0.00 0 0.63 1 0.00 0 99.38 | 139
Test, 2.90 2 2.90 2 4.35 3 89.86 62
Total 0.87 2 1.31 3 1.31 3 | 96.51 221

Table 4.26: Hydrophobicity (PONNU)

128 Comp, 30 Mix Globin CB Kinase Random
prop 2 % # % # % # %% #
Globin Train 88.35 | 402 0.22 1 0.00 0 11.43 52
Test 89.29 | 175 1.02 2 0.51 1 9.18 18
Total 88.63 | 577 0.46 3 0.15 1 10.75 70
CB Train 0.00 0 9741 | 113 0.00 0 2.59 3
Test 0.00 0 54.90 28 1.96 1 43.14 22
Total 0.00 0| 84.43 | 141 0.60 1 14.97 25
Kinase Train 0.00 0 0.00 0 98.83 | 169 1.17 2
Test 0.00 0 0.00 0 98.65 73 1.35 1
Total 0.00 0 0.00 0 || 98.78 | 242 1.22 3
Random | Train 0.00 0 0.00 0 0.00 0 |1 100.00 | 160
Test 0.00 0 2.90 2 4.35 3 92.75 64
Total 0.00 0 0.87 2 1.31 3 97.82 | 224

Table 4.27: Accessible surface area

77

128 Comp, 30 Mix Globin CB Kinase Random
prop 3 % # % +# % # % #
Globin Train 89.01 | 405 0.00 0 0.00 0 10.99 50
Test, 90.82 { 178 0.51 1 0.00 0 8.67 17
Total 89.55 | 583 0.15 1 0.00 0| 10.29 67
CB Train 0.00 0 99.14 | 115 0.00 0 0.86 1
Test 3.92 2 49.02 25 1.96 1 45.10 23
Total 1.20 2 || 83.83 140 0.60 1| 14.37 24
Kinase Train 0.00 0 0.00 0 98.25 | 168 1.75 3
Test 0.00 0 0.00 0 98.65 73 1.35 1
Total 0.00 0 0.00 0 || 98.37 | 241 1.63 4
Random | Train 0.00 0 0.63 1 0.00 0 99.38 | 159
Test 5.80 4 0.00 0 1.45 1 92.75 64
Total 1.75 4 0.44 1 0.44 1} 97.38 | 223

Table 4.28: van der Waals Volume

78

128 Comp, 30 Mix Globin CB Kinase Random
prop 4 % # %% # % # % #
Globin Train 87.91 | 400 0.00 0 0.22 1 11.87 54
Test 85.71 | 168 0.00 0 0.51 1 13.78 27
Total 87.25 | 568 0.00 0 0.31 2 12.44 81
CB Train 0.00 04 96.55 | 112 0.00 0 343 4
Test 0.00 0]} 45.10 23 7.84 4 || 47.06 24
Total 0.00 0 || 80.84 | 135 2.40 4 || 16.77 28
Kinase Train 0.00 0 0.00 0] 97.66 167 2.34 4
Test, 0.00 0 0.00 01 98.65 73 1.35 1
Total 0.00 0 0.00 0 || 97.96 | 240 2.04 5
Random | Train 0.63 1 0.63 1 0.00 0 98.75 | 158
Test 10.14 7 0.00 0 4.35 311 85.51 59
Total 3.49 8 0.44 1 1.31 3 | 94.76 | 217

Table 4.29: Charge

128 Comp, 30 Mix Globin CB Kinase Random
prop 5 % # % # % # % #
Globin Train 92.09 | 419 0.88 4 0.00 0 7.03 32
Test, 93.37 | 183 1.53 3 0.00 0 5.10 10
Total 92.47 | 602 1.08 7 0.00 0 6.45 42
CB Train 0.00 0 99.14 | 115 0.00 0 0.86 1
Test 1.96 1 47.06 24 0.00 0 50.98 26
Total 0.60 1| 83.23 | 139 0.00 0| 16.17 27
Kinase Train 0.00 0 0.00 0 95.91 | 164 4.09 7
Test 0.00 0 0.00 0 91.89 68 8.11 6
Total 0.00 0 0.00 0 || 94.69 | 232 5.31 13
Random | Train 0.00 0 0.63 1 0.00 0 99.38 | 159
Test 0.00 0 1.45 1 1.45 1 97.10 67
Total 0.00 0 0.87 2 0.44 1 || 98.69 | 226

Table 4.30: Hydrophobicity (ROSEF)

128 Comp, 30 Mix Globin CB Kinase Random
prop 6 % # % # % # VA #
Globin Train 92.97 | 423 1.54 7 0.00 0 5.49 25
Test 93.37 | 183 1.02 2 0.00 0 5.61 11
Total 93.09 | 606 1.38 9 0.00 0 5.53 36
CB Train 0.00 0 99.14 | 115 0.00 0 0.86 1
Test 0.00 0 66.67 34 0.00 0 33.33 17
Total 0.00 0 || 89.22 | 149 0.00 0 || 10.78 18
Kinase Train 0.00 0 0.00 0 1] 100.00 | 171 0.00 0
Test 0.00 0 0.00 0 93.24 69 6.76 5
Total 0.00 0 0.00 0 97.96 | 240 2.04 59
Random | Train 0.00 0 0.63 1 0.00 0 99.38 | 159
Test, 0.00 0 1.45 1 0.00 0 98.55 68
Total 0.00 0 0.87 2 0.60 0| 99.13 | 227

Table 4.31: Hydrophobicity (PRIFT)

81

Chapter 5 Discussion

5.1 Symbolic models

The svmbolic model using the full twenty-letter alphabet differentiated very well be-
tween the structural classes we modeled. However, we can effectively capture struc-
tural class information using models with fewer svmbols. This indicates redundancy
in the protein alphabet. as expected.

In considering symbolic alphabet reductions, we tried to find a particular grouping
of the amino acids demonstrating exceptionally good ability to differentiate between
structural classes with our model format. Alphabet reductions potentially increase
sequence similarity, and a high level of similarity would lead to increased recognition
of sequences. In searching for the best alphabet reduction to a specific number of
svmbols, we used groupings based on properties known to be significant in the folding
process.

While members of a class might have a variety of amino acids appearing from
a particular node and state of the model in their best paths, perhaps those amino
acids are all (for example) hyvdrophobic. Using an alphabet which groups together
hvdrophobic amino acids would lead to increased sequence similarity at that node and
state. Though the primary goal of alphabet reduction is to demonstrate that we do
not require twenty symbols to capture the structural class information contained in an
amino acid sequence, another objective is identification (or verification) of significant
forces in the folding process. If the highest probability amino acids at a particular
node and state of the model all share a common biochemical property, we can deduce
that the important force at that position relates to that property.

Our experiments with reduced alphabets indicate that some groupings of amino
acids lead to better differentiation between structural classes than others. The great-

est performance variations occur for the CB class and, thus, the results are somewhat

82
confused by the difficulty with multi-domain sequences. However, considering classi-
fications between all four classes, between Globin, Kinase and Random, and between
Globin, CB and Random, some alphabets ranked fairly high in average correct clas-
sification for all three cases.

Overall, the full alphabet performed the best. However, three groupings appeared
to lead to consistently better results than the others: the 3-letter “structural” alpha-
bet, the 4-letter “functional” alphabet, and the 8-letter “chemical” alphabet. These
groupings are followed by the remainder of the groupings based on hydrophobicity
and polarity, which are followed by the non-biochemical/random groupings.

The performance of the structural alphabet is surprisingly good, considering that
we have reduced the number of symbols from twenty to three. The structural alphabet
groups amino acids based on preference for general position within the native fold.
Using this alphabet appears to lead to some amount of increased sequence identity
within a structural class. This grouping does not give us much indication about the
forces driving the folding process since it is derived from observation, rather than
from biochemical analysis. But, whatever the derivation, we appear to capture the
majority of structural class information. This indicates significant redundancy in the
protein alphabet.

Hvdrophobic amino acids tend to prefer the interior of a folded protein and charged
amino acids prefer the exterior, so in a way the functional alphabet is closelv related
to the structural one. The performance of the functional alphabet (H'/A/B/U) was
somewhat better than the nearly identical 4-letter H/P,/P_/P, alphabet, indicating
that the three amino acid re-assignments probably gave a more appropriate grouping.
However, the difference in the classification accuracies was small enough that more
tests would be required to fully assess the relative merits of these two groupings.

The performance of the chemical alphabet may have to do with the appropriate
grouping of amino acids, or it may have to do with the fact that it was the largest
reduced alphabet we tested and thus contained the largest number of bits of infor-
mation. However, two of the groups considered were A and B, as for the functional

alphabet, and the performance of the functional alphabet indicated that these group-

83
ings had merit in structure prediction. Perhaps we see good performance due to the
appropriateness of that grouping.

The number of symbols used to represent a protein sequence does appear to mat-
ter somewhat in differentiating between structural classes. But we have found that
a really dramatic alphabet reduction, based on known folding principles or known
amino acid tendencies, can work almost as well as the full alphabet. The variations
between the four letter alphabets definitely indicate that some are closer to “optimal”
(in the sense of containing all available structural class information) than others. Ap-
propriateness of grouping appears to matter nearly as much as alphabet size. since
the 3-letter structural alphabet out-performs the 5-letter H/P,/P-/P. /G alphabet.
We cannot, based on our results, assert that one set of biochemical properties has
emerged as the most significant. However, we have shown that sequence recognition
is possible with fewer than twenty svmbols, given an appropriate set of biochemical
properties to group amino acids.

While a biochemically rational grouping of amino acids can surely lead to height-
ened model performance, other groupings do not perform quite as poorly as we would
expect. However, the non-biochemically reduced alphabets (codon redundancy and
random groupings) do perform consistently worse than the others, even if not by a
large margin. The non-biochemical alphabets very effectively differentiate between
Globin. Kinase and Random sequences, achieving average correct classification rates
from 95.43% to 95.91% when considering only these three classes, but each fails com-
pletely on the Calcium-Binding class.

The differentiation between the Globin, Kinase and Random classes strongly indi-
cates the existence of a small set of high probability amino acids at each node for these
classes. When we reduce the alphabet, the group containing the majority of these
high probability amino acids may simply become the high probability group/svmbol.
Perhaps the Globin and Kinase classes start with a fair degree of sequence identity,

thus retaining some amount of sequence identity in any alphabet reduction.

84

5.1.1 Multi-domain sequences

All classification errors of Kinase and Random sequences with the twentv-symbol
alphabet erroneously assign the sequences to CB. When we reduce the alphabet. the
CB models weaken and appear to assign relatively low values to the majority of
sequences. This majority unfortunately includes some CB sequences.

The difficulty we have had with CB sequences most likely has to do with our
treatment of multi-domain sequences with the BW update routine. Globin is theo-
reticallv a multi-domain class as well, but we used very few long Globin sequences.
A much larger fraction of the CB sequences used are multi-domain, so anv difficul-
ties with using multi-domain sequences in this model will primarily affect the CB
classifications.

Without comparison to the Kinase class, CB performs quite well on several of the
reduced alphabets, with correct rates of classification of CB sequences never falling
much below 75% for any of the biochemical reductions. The inclusion of the Kinase
class may highlight the weakness of our use of multi-domain sequences by offering
longer CB sequences the option of a longer model: the CB model consists of 100
nodes, while the Kinase model is 478 nodes long.

Reduction of the alphabet size corresponds to a larger number of Match states in
the best path for most CB sequences. This indicates a greater degree of alignment of
the sequence to the concatenated models. The fact that this “optimal” alignment to
the CB model has lower probability than that to another (incorrect) model indicates
a serious problem. Our treatment of multi-domain sequences entails hyvpothesis of
probable alignment between the concatenated models and the sequence. In dividing
the sequence into segments we assert that the d** segment was probably generated by
the d" or (d+1)* model. We may have erred in the definition of the d"* segment. or
perhaps in trving to treat the sequence in segments at all. The Baldi update routine

uses the best path and does not divide a multi-domain sequence into segments.

85
5.1.2 Baum-Welch vs. Baldi

In most cases and for most classes, the BW update routine found a set of model pa-
rameters giving both higher average log of probability and higher average probability
than the Baldi update routine. Convergence with both update methods occurred
within a comparable number of iterations. For the Globin and Kinase classes, the
BW update routine gave significantly higher probability and log probability on each
alphabet tested. For each alphabet both of the above criteria were comparable on
the Random class, but the CB results were mixed.

While the average probability of the CB training set was many orders of magnitude
higher for each alphabet with the BW update routine, the average log of probability
was significantly higher with the Baldi update routine. With such small probabili-
ties, the average log of probability is a much more robust measure than the average
probability. While the BW update led to some number of relatively high probability
sequences which dominated the value of the average probability, the Baldi update ap-
pears to have achieved a higher level of probability for a greater number of sequences.
This, again, most likely relates to the large number of multi-domain CB sequences.

Although the Baldi update outperforms the BW update for multi-domain se-
quences, it performs relatively poorly on the Globin and Kinase classes. Our results
suggest that this routine is more prone to local extrema than the BW update method.
Perhaps this is because the Baldi routine relies exclusively on the current optimal
path through the model, while the BW routine relies on values calculated at a larger

number of nodes and states.

5.2 Continuous observation models

For the svmbolic alphabet we considered alphabet reductions and examined the ef-
fectiveness of several amino acid properties at differentiating. with this model con-
struction, between structural classes. To examine the effect of amino acid properties

with a real vector representation, we use the transformed property profiles. And to

86

examine a property of the entire sequence, we consider the amino acid composition.

We have found that representing a sequence with a transformed property profile
leads to excellent differentiation between structural classes. When we construct a
propertv profile, we translate the twenty letter amino acid alphabet into a twenty let-
ter alphabet of floats (or three letters for charge). In representing the sequence with
these values, we limit the information in the sequence to that about the property
being modeled, but we clearly retain adequate information to effectively differenti-
ate between structural classes. Although we did not find a single “most” valuable
property, we can assert that each of the amino acid properties considered is strongly
relevant to fold tvpe. Amino acid composition’s relationship to fold is more debatable.

as the results with that sequence property were not very good.

5.2.1 Mixture variations

When we initialize the continuous observation models, we set the mixture parameters
to the training set statistics, with variance variations if we have more than one mix-
ture. For the single mixture models, no training actually occurs because the mixture
parameters are the only variable model parameters when we eliminate alignment.
Thus, evaluating performance of a sequence on a single mixture model is essentially
a use of class statistics, since the training set statistics are presumably very similar.
The novelty of this approach lies in the sequence representation: by using a processed
representation, we eliminate the need to consider sequence alignment.

The single mixture model, while conceptually similar to other uses of class statis-
tics for protein classification, has the advantage of not requiring alignment consid-
erations. With multiple mixture models, we have an additional advantage with an
increased level of flexibility. Not only does no quantity need to match another exactly
(as with symbolic representations), there are even a variety of distributions (mixtures)
which may have generated the quantity. The weighting given by the mixture coeffi-
cients allows emphasis on more than one distribution at a position. This addresses

the potential for variations within a class in a way that a single set of statistics does

87

not.

5.2.2 Amino acid composition

The single mixture case appears to detect patterns within structural classes. How-
ever, incorporation of additional mixtures improves performance on the Kinase class
considerably. The fact that increasing the number of mixtures bevond five has little
effect indicates that we may have reached the limits of effectiveness for this sequence
representation. The short training time (less than 15 iterations in all cases) may
also reflect the relatively small amount of information contained in the amino acid
composition vector. The results with this representation are interesting, though not
as stellar for these class definitions as for Chou and Zhang’s. These models clearly
detect some level of pattern within our structural classes and generalize as well as

possible to the test set.

5.2.3 Transformed property profiles

While the single mixture case gives results that are quite good (with an average
correct classification rate of 89.16% for the 128 component/six property comparison),
increasing the number of mixtures steadily improves performance (to 93.11% for the
above with 30 mixtures). It appears that the transformed property profiles contain
more complex sequence information than the amino acid composition vectors. This
representation requires a larger number of mixtures to model well and requires more
iterations for training. This more complex representation demands more of the model
architecture and the training process than the amino acid composition does. but
performance improves with this complexity.

Just as we hoped to find a particularly good grouping of amino acids for the
svmbolic model, we would have liked to see a particular amino acid propertv emerge
as the best predictor of structural class. This did not happen, but onlyv because all of
the amino acid properties we considered gave very good results. It is not surprising

that using each of these properties led to a model which could differentiate between

88
classes. We considered these properties because they are known to relate to folding.
Hvdrophobic amino acids strongly prefer the interior of a folded protein and charged
amino acids strongly prefer the exterior.

The comparable results with the different properties may be a consequence of
the relationships between them. Accessible surface area and van der Waals vol-
ume correlate strongly to hydrophobicity and we also used multiple hydrophobicity
scales. Charge is essentially uncorrelated to hydrophobicity and the performance of
the transformed charge profiles is surprisingly good. The charge alphabet contains
only three symbols, so we might not expect such a high level of differentiation. How-
ever, the distribution of charged amino acids along the protein sequence relates to
their three-dimensional distribution, which, in turn, relates strongly to the fun(:tic;n
of the protein. The results with the symbolic structural alphabet indicate that three
svmbols can adequately capture the class information in a sequence and the charge
results reinforce that conclusion.

The onlv data set we considered which was not extremely well recognized by
this tvpe of model was the CB test set. This probably has to do with the size of
the CB training set, which contains somewhat fewer sequences than those for the
other classes. As we can see so clearly with the small set of short Kinase sequences

tested, sample set size has a large effect on generalization to the test set. The CB

generalization to the test set, but not as much as for the classes with larger training
sets.

We would have liked to see more effective cooperation between models for dif-
ferent properties. In theory, a set of models might compensate for defects in each
individual model, but in actuality several sequences are mis-classified by a majority
of the models. These sequences should probably be examined more carefully for class
membership. As another, possibly more effective, approach to the use of multiple
properties, we could construct multi-dimensional property profiles-matrices of real

numbers—and perform multi-dimensional transforms.

89
5.3 Conclusion

We have found that left-to-right Hidden Markov Models are very well suited to the
task of differentiating between structural/functional classes of proteins, both with
svmbolic and with real vector representations. While this suitability had already
heen demonstrated for full alphabet, symbolic representations, we have shown that
reduced alphabets can work nearly as well. This demonstrates the great redundancy
in the protein alphabet.

The modifications we made to the model to use real vector representations give us
a direct analogy to the problem of speech recognition. While amino acid composition
vectors used with this model give mediocre results, transformed property profiles show
excellent differentiation between structural classes. These representations effectively
capture the structural class information contained within the protein sequence, while
completely eliminating the need for alignment considerations. This appears to be a

verv promising basis for a structural/functional classification scheme.

90

Bibliography

[

2]

Pierre Baldi and Yves Chauvin. Smooth on-line learning algorithms for hidden

Markov models. Neural Computation, 6:307-318, 1994.

Pierre Baldi, Yves Chauvin, Tim Hunkapiller, and Marcella A. Mc-
Clure. Hidden Markov models of biological primary sequence information.

Proc. Natl. Acad. Sci. USA, 91:1059-1063, February 1994.

J. Bascle, T. Garel, and H. Orland. Some physical approaches to protein folding.

J. Phys. I France, 3:259-275, February 1993.

James U. Bowie and David Eisenberg. An evolutionary approach to folding small
alpha-helical proteins that uses sequence information and an empirical guiding

fitness function. Proc. Natl. Acad. Sci. USA, 91:4436-4440, May 1994.

James U. Bowie, Roland Luthy, and David Eisenberg. A method to identifv
protein sequences that fold into a known three-dimensional structure. Science.

953:164-170, July 1991.

Carl Branden and John Tooze. Introduction to Protein Structure, pages 4-7.

Garland Publishing, Inc., New York and London, 1991.

Kuo-Chen Chou and Chun-Ting Zhang. A correlation-coefficient method
to predicting protein-structural classes from amino acid compositions.

Eur. J. Biochem., 207:429-433, 1992.

Kuo-Chen Chou and Chun-Ting Zhang. Predicting protein folding tvpes
bv distance functions that make allowances for amino acid interactions.

The Journal of Biological Chemistry, 269(35):22014-22020, February 1994.

Kuo-Chen Chou and Chun-Ting Zhang. Prediction of protein structural classes.

Critical Reviews in Biochemistry and Molecular Biology, 30(4):275-349. 1995.

[10]

13)

[15]

91
J.L. Cornette, K.B. Cease, H. Margalit, J.L. Spouge, J.A. Berzofsky. and
C. DeLisi. Hydrophobicity scales and computational techniques for detecting

amphipathic structures in proteins. J. Mol. Biol., 195:659-685, 1987.

T.E. Creighton. Proteins: Structures and Molecular Properties, pages 4,142,202~

217. W.H. Freeman, New York, NY, 1993.

Russell F. Doolitle, editor. Molecular evolution : computer analysis of protein
and nucleic acid sequences, volume 183 of Methods in Enzymology, section Profile

analvsis, pages 146-159. Academic Press, San Diego, California, 1990.

Inna Dubchak, Stephen R. Holbrook, and Sung-Hou Kim. Pre-
diction of protein folding class from amino acid composition.

Proteins: Structure, Function and Genetics, 16:79-91, 1993.

David Eisenberg, James U. Bowie, Roland Luthy, and Seunghvon Choe.
Three-dimensional profiles for analysing protein sequence-structure relationships.

Faraday Discuss., 93:25-34, 1992.

Frank FEisenhaber, Cornelius Frommel, and Patrick Argos. Predic-
tion of secondary structural content of proteins from their amino acid
composition alone. II. The paradox with secondary structural class.

Proteins: Structure, Function and Genetics, 25:169-179, 1996.

Michael Gribskov, Andrew D. McLachlan, and David Eisenberg. Profile analysis:
Detection of distantly reltated proteins. Proc. Natl. Acad. Sci. USA, 84:4355-
4358, July 1987.

Teresa Head-Gordon and Frank H. Stillinger. Optimal neural networks for

protein-structure prediction. Physical Review E, 48(2):1502-1515, August 1993.

George Johnson. Designing life: Proteins 1, computer 0. The New York Times,

146(50742), March 1997.

92
[19] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjolander, and David
Haussler. Hidden Markov models in computational biology. J. Mol. Biol.,

235:1501-1531, 1994.

[20] Roland Luthy, Ioannis Xenarios, and Philipp Bucher. Improving the sensitivity

of the sequence profile method. Protein Science, 3:139-146, 1994.

[21] Thomas Madej and Michael C. Mossing. Hamiltonians for protein ter-
tiary structural prediction based on three-dimensional environment principles.

J. Mol. Biol., 233:480-487, 1993.

[22] Ken Nishikawa, Yasuchi Kubota, and Tatsuo Ooi. Classification of proteins into
groups based on amino acid composition and other characters. II. Grouping into

four types. J. Biochem., 94(3):997-1007, 1983.

(23] John Overington, Dan Donnelly, Mark S. Johnson, Angrej Sali, and Tom L.
Blundell. Environment-specific amino acid substitution tables: Tertiarv tem-

plates and prediction of protein folds. Protein Science, 1:216-226. 1992.

[24] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEFE, 77(2):257-286, February

1989.

125] Jerry E. Solomon and David Liney. Exploration of compact protein conforma-
tions using the guided replication monte carlo method. Biopolymers, 36:579-597,

1995.

[26] Collin M. Stultz, James V. White, and Temple F. Smith. Structural analvsis

based on state-space modeling. Protein Science, 2:305-314, 1993.

[27] Guunar von Heijne. Sequence Analysis in Molecular Biology, page 135. Academic

Press, Inc., San Diego, CA, 1987.

93
(28] James V. White, Collin M. Stultz, and Temple F. Smith. Protein classifi-
cation by stochastic modeling and optimal filtering of amino-acid sequences.

Mathematical Biosciences, 119:35~75, 1994.

[29] Matthias Wilmanns and David Eisenberg. Inverse protein folding by the residue
pair preference profile method: estimating the correctness of alignments of struc-

turallv compatible sequences. Protein Engineering, 8(7):627-639, 1995.

130] Kaizhi Yue and Ken A. Dill. Sequence-structure relationships in proteins and

copolymers. Physical Review E, 48(3):2267-2278, September 1993.

[31] Kam Y.J. Zhang and David Eisenberg. The three-dimensional profile method
using residue preference as a continuous function of residue environment.

Protein Science, 3:687-695, 1994.

