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Abstract 
 
 

Trace element distributions between mineral and melt phases have proven to be 

important recorders of igneous differentiation histories, but this utility depends on 

thorough understanding of their partitioning behavior. We propose a theory for crystal-

melt trace element partitioning that considers the energetic consequences of crystal-lattice 

strain, of multi component major-element silicate liquid mixing, and of trace element 

activity coefficients in melts. We demonstrate application of the theory using newly 

determined partition coefficients for Ca, Mg, Sr, and Ba between pure anorthite and 

seven CMAS liquid compositions at 1330 °C and 1 atm. By selecting a range of melt 

compositions in equilibrium with a common crystal composition at equal liquidus 

temperature and pressure, we have isolated the contribution of melt composition to 

divalent trace element partitioning in this simple system. The partitioning data are fit to 

Onuma curves with parameterizations that can be thermodynamically rationalized in 

terms of the melt major element activity product (aAl2O3)(aSiO2
2) and lattice strain theory 

modeling. Residuals between observed partition coefficients and the lattice strain plus 

major oxide melt activity model are then attributed to non-ideality of trace constituents in 

the liquids. The activity coefficients of the trace species in the melt are found to vary 

systematically with composition. Accounting for the major and trace element 

thermodynamics in the melt allows a good fit in which the parameters of the crystal 

lattice strain model are independent of melt composition.  

 We also present the first experimental measurements of mineral-melt radium 

partitioning. Ion probe analyses of coexisting anorthite and CMAS glass phases produce 
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a molar DRa = 0.040 ± 0.006 and DRa/DBa = 0.23 at 1400 °C and 1 atm. Our results 

indicate that lattice strain partitioning models fit the divalent (Ca, Sr, Ba, Ra) partition 

coefficient data of this study well, supporting previous work on crustal melting and 

magma chamber dynamics that has relied on such models to approximate radium 

partitioning behavior in the absence of experimentally determined values.  
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