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Abstract

The virtual completion of the genome project and prodigious amounts of work by differ-
ent biologists throughout the world have elucidated many of the components of biological
systems. The genes (and hence proteins) are largely known, and the tools of molecular
biology allows one to manufacture and express them, so as to understand their function.
Given this increased understanding of components, the next step in understanding complex
biology will be understanding systems, which will almost certainly involve formal, detailed,
and quantitative models.

One of the great challenges of modeling biological systems is that they tend to “break
the math.” Biological systems have small numbers of molecules, operate far from equilib-
rium, change shape and size, etc. This thesis develops mathematical and computational
tools for biological systems with few molecules. Such systems are particularly problematic
because the usual macroscopic view of chemistry, in which concentrations of molecules vary
continuously, continually, and deterministically, does not work. Rather, one needs to use
the mesoscopic view of chemistry: molecules undergo discrete reaction events, and the tim-
ing of these events is probabilistic. There are many standard numerical computational
techniques for the macroscopic view, but far fewer for the mesoscopic view.

This thesis develops (1) an efficient, exact stochastic simulation algorithm, to generate
trajectories of mesoscopic biological systems, (2) a sensitivity analysis algorithm, to quantify
how a model’s predictions depend on the exact values of parameters (e.g., rate constants)
used, and (3) a parameter estimation algorithm, to estimate the values of model parameters

from observed trajectories.
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Chapter 1 Overview

These are the times that excite men’s souls.

The last 50 years have witnessed an amazing revolution in biology. The view that
has emerged is that biological systems are very complex machines, which nonetheless obey
the laws of physics and chemistry. These machines store genetic information in long
linear molecules called DNA, which is passed from parents to children. In particular,
DNA provides information for how to build proteins, complex macromolecules that are
the workhorses of cells. A single protein may itself be a complex machine: hemoglobin
transports oxygen, ion channels act as the “transistors” of the nervous system by conducting
different amounts of current in response to applied voltages or other signals, molecular
motors transform energy to work in complex ways. At a higher level, proteins can be
grouped into pathways — biological circuits — where complex function is achieved not by
individual molecules, but by combinations of molecules working in concert.

Human DNA consists of about 3 billion bases: A, C, T, or G. Simpler organisms have
much less DNA. The first genome, that of a simple virus, was sequenced in 1977 (i.e.,
the complete sequence of As, Cs, Ts, and Gs was determined). Such a genome has tens
of thousands of bases. Recently it has become possible to sequence much larger genomes
beyond viruses: bacteria, eukaryotes such as yeast, and more recently multi-cellular animals:
the nematode Caenorhabditis elegans (1998) and the fruit fly Drosophila melanogaster
(2000). The human genome project is expected to determine the complete sequence of all

3 billion bases of human DNA within the next year.

1.1 Engineering and Biology

The human genome is thought to consist of about 100,000 genes, in other words, it contains
recipes for making 100,000 different kinds of proteins. For comparison, the early viruses
sequenced have 50 or so genes, and bacteria have 3,000-5,000. In the language of engineer-
ing, simple viruses are machines with 50 kinds of components, bacteria are machines with

3,000-5,000 types of components, and humans are complex machines with 100,000 types of
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components. While that number may seem frightening to a computer engineer used to
dealing with complex systems built out of one kind of component — transistors — it is not
unthinkably high; the Boeing 777 has 150,000 distinct subsystems.

Components of a system are important: much work was (and some Nobel prizes were)
involved in developing transistors to replace vacuum tubes in early computers, then figuring
out how to fabricate multiple transistors on a single chip. However, as time has passed
on, many fundamental component problems have been solved, and the concentration has
moved to how one combines components into systems. For example, the Intel P3 contains
28 million transistors. Although the individual components are well understood, there is
still an enormous amount of work to put those components together into a useful system.

Years of unrelenting work by experimental biologists has brought molecular biology to a
point where components are becoming understood. That is not to say that all components
are understood, or that any component is understood in its entirety from first principles,
but rather that components are known and enough is understood about them that it is now
possible to understand simple biological systems in terms of their components.

In the same way that computers are built out of transistors and airplanes are built out of
rivets, gears, etc., biological systems are built out of proteins. The human genome project
is providing a “parts list” of proteins, much subsequent work will focus on determining
the function of those individual components. The biology problem of the twenty-first
century will be figuring out how those components work together to form systems, and
understanding those systems at a low level in terms of their components. For lack of a
better term, this thesis will refer to this burgeoning field as molecular systems biology.

Engineering techniques will be very important in molecular systems biology. Under-
standing systems is not the same as understanding components, and the properties of com-
ponents one need understand depends greatly on the relationship of the components in a
system. Very importantly, the sheer complexity of these systems dwarfs our ability to
reason about them in ad-hoc or “back of the envelope” ways. Rather, one needs formalized
methods for analysis and simulation of systems. As an analogy, consider electrical sys-
tems. Simple resistors, capacitors, inductors, power supplies, diodes, and transistors are
well understood. However, one can combine them into arbitrarily complex systems, and the
behavior of arbitrary systems is not well understood. Much of electrical engineering focuses

on how to build systems that are understandable and achieve the desired performance. But
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more to the point, there are formalized reasoning techniques that let one simulate arbitrary

electrical systems built out of these simple components.

1.2 Representing Biological Systems

To begin reasoning about biological systems using engineering thought processes, one needs
to represent biological systems in a formal way — a standardized notation or terminology
that different investigators agree upon and computers can operate on [6]. Such a represen-
tation is called a model. The term ‘model’ means different things to different people. For

example:

e Biologists sometimes refer to a simple organism that displays a behavior of interest
as a model: the virus lambda phage is a model of a genetic switch, the nematode C.

elegans is a model of development, etc.

e Other times, biologists refer to a cartoon diagram as a model: a schematic of the key

molecules involved and their interactions is a model.

e Engineers refer to a detailed, quantitative representation as a low-level model: a circuit

simulator has a transistor model.

e Engineers typically do not refer to a higher-level representation as a model, but as
a block diagram. Such a diagram might have an engine (or a cache for computer
engineers) as a building block, rather than the detailed components that make up the

engine.

In this thesis, a model is any formal representation of a system that leads to specific
predictions. So the first usage is out, but the other three stand. A person in Los Angeles
can write down a model of some system there, send that model to a person in New York,
and the New Yorker will know exactly what is meant by the model and what predictions
are made. (The New Yorker may not agree with the model; he need only agree what
predictions the model makes, not whether those are correct.)

Models come in many shapes and sizes [14|. There are quantitative models, whose pre-

dictions are numeric, and qualitative models, whose predictions are not. (A quantitative
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model of a computer might contain voltages and currents of different transistors; a quali-
tative model of the same system might talk about Os and 1s.) There are realistic models
and phenomenological models. (A realistic model of turbulence over airplane wings might
consider the Navier-Stokes equation applied to the air, a phenomenological model might
just consider the turbulence to be Gaussian noise.) There are also model types geared to
certain mathematical or computational assumptions: linear models, neural network models,
etc. To the extent possible, this thesis will consider quantitative, realistic models, indepen-
dent of computational assumptions, and will explicitly state computational or mathematical
assumptions as they occur.

For a biological system, what does a quantitative, realistic, computation independent
model look like?

Biological systems are not built out of transistors or rivets; they are built of molecules.
Molecules move around, subject to physical laws and constraints: diffusion, temperature,
electrical forces, etc.  Molecules also react with each other, forming different types of

molecules. To specify reactions, one writes chemical equations such as

A+B —-C

which says that one molecule of type A reacts with one molecule of type B to form one
molecule of type C.

A complex biological system consists of many chemical reactions and possibly many
physical constraints. FEach individual chemical reaction is simple; each individual physical
constraint is simple. The overwhelming complexity of biological systems comes from the
sheer numbers of chemical reactions and physical processes, and their strong interconnect-
edness.

This thesis is concerned primarily with detailed, realistic, quantitative models consisting
of chemical equations only, although certain physical effects — temperature and volume

change — will be considered in Chapter 6 as they affect chemical reactions.
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1.3 Computation with Models

Suppose a simple biological system boils down to the equations

A+ B C
o0 2 A4 D
D = B

(For pedagogical purposes, most examples in this thesis will be simple, but the techniques

used scale to larger systems as well, such as the model of the virus lambda phage in Chapter

1)

1.3.1 Macroscopic Chemistry

In the usual, macroscopic view of chemistry, one deals with concentrations. The concentra-
tion of molecule type A is denoted [A], and is typically measured in moles per liter. (One
mole = 6.02 x 102 molecules, and the symbol M is used for ‘moles per liter.”) In this view,

the model above leads to a set of ordinary differential equations:

% — &y % [A] X [B] + ks x [C]?

% — kX [A] % [B] + ks % [D]

% = k1 x [A] X [B] =2 x kg x [C)?
% = ]CQX[C]Q—]C?;X[D]

which can be solved by standard numerical techniques, and so one can generate the time
course of [A], [B], [C], and [D].

If one considers the model above augmented by the physical process of diffusion, then
[A], [B], [C], and [D] are functions of position as well as time, and one may write partial
differential equations which include diffusion terms. These too can be solved, using appro-
priate numerical techniques, and one gets [A], [B], [C], and [D] as a function of time and
space.

Various analysis tools are available for the macroscopic chemistry:
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e Sensitivity analysis to see how the time courses depend on ki, k2, and k3.

o Fquilibrium analysis to find the concentrations as ¢ — .

e Bifurcation analysis to see how the equilibrium points change as k1, k9, and k3 change.
e ctc.

Furthermore, various model-building techniques and tools exist:

e Parameter estimation (sometimes called system identification or statistical learning

theory) to find ks given time-courses.

e Various approximation schemes, such as linearization or neural networks to expedite

parameter estimation.

e etc.

Finally, there are various standard approximation techniques useful for reasoning about

systems and for improving calculations:

e [Linearization about operating points.

e Perturbation methods, which separate fast and slow time scales.

These approximations are used, for example, in stiff solvers, which achieve efficiency by

solving fast dynamics as fast temporal resolution and slow dynamics at slow resolution.

1.3.2 Limits of Macroscopic Chemistry

All is not well in the macroscopic view of chemistry. Specifically, the macroscopic view
makes the following assumptions: (1) concentrations are well-defined quantities, (2) rate
constants are well-defined quantities, (3) concentrations vary deterministically over time,
and (4) concentrations vary continuously and continually. These assumptions are approx-
imately satisfied if the number of molecules is sufficiently large. If the system is infinitely
large (i.e., in the thermodynamic limit) they hold exactly.

Real systems are not infinitely large. Many real biological systems are very, very small,

and some or all of the assumptions fail. For example, consider assumption (4). It says
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that if the concentration is now 1 M (one mole per liter), and 10 minutes from now, the
concentration is 2 M, then at some point in between, it will be 1.5 M, at some point before
that 1.25 M, etc. This seems reasonable enough in normal chemistry, and works well in
large chemical systems (recall that 1 milliliter of water contains 3 x 10?2 molecules of water,
which is certainly a large system). However, real biological systems have amazingly low
numbers of certain molecules. A cell will have one molecule of DNA, tens of molecules of
certain RNAs and proteins, hundreds of molecules of other RNAs and proteins, etc. The
statement that before seemed obvious now makes no sense. If there is 1 molecule now,
and 10 minutes later there are 2 molecules, it is not true that at some intermediate time
there were 1.5 molecules, or 1.25 molecules, etc. (This is similar to the interpretation of
statistics such as “the average family has 2.4 children.” While that statement may be true

for the nation as a whole, there is certainly no individual family with 2.4 children.)

1.3.3 Mesoscopic Chemistry

A different chemistry holds at very small numbers of molecules [19]. In the mesoscopic view,
one makes the assumption (1’) the solution is well-mixed and at thermodynamic equilibrium
(although not necessarily chemical equilibrium), which is essentially equivalent to (1) and
(2). Assumptions (3) and (4) are replaced with: (4”) concentrations change only by discrete
numbers of molecules, corresponding to single reaction events, and (3’) when such discrete
changes occur is random or stochastic. (One typically phrases the mesoscopic chemistry in
terms of number of molecules, rather than concentration, to keep things clearer.)

The reason to use mesoscopic chemistry is not that it is somehow more interesting math-
ematically, but rather, the macroscopic view breaks down (and makes incorrect predictions)
for very small systems.

If one is forced to take the mesoscopic view, certain problems arise:

1. What is the formal transformation from chemical equations to mathematics?
2. How does one solve this math?

3. How does one deal with physical properties, such as diffusion, temperature change,

etc.?
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4. What analysis techniques can one use: sensitivity analysis, equilibrium analysis, bi-

furcation, etc.?
5. What model building techniques exist: parameter estimation, neural networks, etc.?

6. What approximation techniques exist: linearization, perturbation methods, etc.?

The answer to many of these question is “no techniques exist for the mesoscopic chem-

istry.” This thesis will develop some simple techniques to fill some of those holes:

1. There is a known way to translate to mathematics, which is covered in the background,

Chapter 3.

2. To solve the mathematics, one does a Monte Carlo simulation of the type described
by Gillespie [16]. One of the parts of this thesis contains improved algorithms for

accomplishing such simulations.

3. Diffusion is a particularly hard problem, because it violates assumptions (1’) and (2’).
(In the macroscopic chemistry, assumptions (1) and (2) are assumed to hold locally.)
Changes such as temperature or volume can be handled by the Next Reaction Method,

as described in Chapter 6.

4. Chapter 9 and 10 present a way to do mesoscopic sensitivity analysis. No other

analysis techniques are developed here.
5. Chapter 11 presents a very simple parameter estimation algorithm.

6. There has been some interesting work on approximating mesoscopic chemical systems,

which will not be covered in this thesis. (Some hint of this was reviewed in [14].)

1.4 Contributions of This Thesis

There are three main contributions of this thesis:

e Improved versions of two of Gillespie’s simulation algorithms. Both improved algo-

rithms were previously described in [12]. Specifically:
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— The Next Reaction Method in Chapters 5 to 6 is more efficient than Gillespie’s

original algorithms [15, 16], taking time proportional to the logarithm of the
number of reactions, rather than to the number of reactions itself. Further,
the logarithm is an upper bound; the algorithm will typically do much better.
Some previous work [27], focussing on surface processes, achieved the logarithmic

result, but in that domain, the algorithm typically used the full logarithm.

— The Next Reaction Method in Chapter 5 uses a single random number per sim-
ulation event, an improvement over the two previously needed for Gillespie’s

Direct Method.

— The extended version of the Next Reaction Method, in Chapter 6, which uses a

single random number for time-dependent Markov processes.

— The extension of the Next Reaction Method to non-Markov processes in Chapter

6.

e The Multiple Next Reaction Method in Chapter 9, which runs multiple simulations,
corresponding to different parameter values, in a much more efficient way than was
previously possible. Also, applying the Multiple Next Reaction Method to the prob-

lem of sensitivity analysis, in Chapter 10.

e The Estimation of Stochastic Parameters algorithm in Chapter 11, which estimates
rate constants from observed mesoscopic data. This algorithm is proved to be an

inverse of the Next Reaction Method.

1.5 Organization

Much in the same way that all Gaul is divided into three parts, this thesis is divided into
six parts.

Part I consists of this overview chapter.

Part II explains the mesoscopic chemistry and other sundry background for the the-
sis. Chapter 2 provides a more detailed description of representing biological systems
and presents the key concepts of physical chemistry. Chapter 3 describes the mesoscopic
physical chemistry, how to translate it to mathematics, and previous work on solving (an-

alytically and numerically) that mathematics. Chapter 4 presents a simplified version of
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the Arkin et al. [3] model of lambda phage, a simple virus'. This model will serves as a

running example for much of the rest of the text.

Part III deals with exact stochastic simulation of mesoscopic biological systems. Chap-
ter 5 describes the basics of the Next Reaction Method, an improved version of Gillespie’s
First Reaction Method (detailed in Chapter 3). The Next Reaction Method takes time
proportional to the logarithm of the number of reactions being simulated, and uses a single
random number per simulation event. Chapter 6 extends the Next Reaction Method to
time-dependent Markov processes and to non-Markov processes, which can be useful for (1)
systems with additional physical properties, such as volume or temperature change, and
(2) simplifying complex chemical processes where analytical solutions are available for some
sub-process. Chapter 7 describes a different method for exact stochastic simulation: an
improvement to Gillespie’s Direct Method (also detailed in Chapter 3), which achieves the
logarithmic speedup that the Next Reaction Method achieved. Chapter 8 applies the Next
Reaction Method to the lambda phage model of Chapter 4.

Part IV deals with sensitivity analysis. Chapter 9 describes the Multiple Next Reac-
tion Method (MNRM), an efficient algorithm for running multiple simulations with slightly
different parameter sets. Chapter 10 uses MNRM as a building block for Mesoscopic Effi-
cient Sensitivity Analysis, a numerical approximation algorithm for calculating “sensitivity
gradients.” The techniques developed are applied to the running lambda phage example.

Part V deals with parameter estimation. Chapter 11 presents the Estimation of Stochas-
tic Parameters algorithm and applies it to test data from the running lambda phage model.

Part VI summarizes, pulls the pieces together, and provides directions for further re-

search.

!This model is only presented as a motivating example. This thesis is not about lambda, not about
modeling lambda, not about gene regulation, not about bacteriophages. Rather, this thesis is about general
computational and mathematical techniques that can be used to deal with any mesoscopic chemical system.
Lambda provides a good example of a mesoscopic chemical model of a molecular biological system, and
hence is included as an illustration. The algorithms in the thesis apply to any mesoscopic system that can
be described by a system of chemical reactions.

Having said that, specific parts any model will be very inefficient to simulate in too general a framework.
This thesis provides some specific optimizations for the lambda model, but the idea of using optimizations,
and shows the general framework of how to optimize for different models. Although the examples given are
specific to the lambda model, these are just examples of the underlying framework.
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Part 11

Background
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Chapter 2 Biological Systems and Physical Chemistry

2.1 Summary

This chapter does two things. First, it explains how to break a complicated biological
system into a set of (simple) chemical reactions. Although this content is very familiar
to most biologists and chemists, it may not be to the computer scientist or mathematician
reading this thesis, and hence is included. Second, the chapter explains the basic physical
chemistry underlying systems of chemical reactions, including why the usual macroscopic
view of chemical kinetics is inappropriate for some systems, and how it should be supplanted
with a mesoscopic view, i.e., a stochastic framework. A more detailed version of this

stochastic framework may be found in the next chapter.

2.2 How to Represent Biological Systems

The process of creating a predictive model from biochemical details can be split into two
parts. This chapter develops the concept of a calculation independent model, i.e., a for-
mal, precise, and quantitative representation of biological processes. Subsequent chapters
describe how to start with a calculation independent model, do calculations, and make
predictions about the behavior of the system. There are numerous ways to do the calcula-
tion, depending on the assumptions one makes; this thesis will consider only the mesoscopic
stochastic framework. For a review of other frameworks, see [14].

There are two reasons why having a calculation independent model is useful. First,
biologists can develop a model — a precise representation of the processes involved in some
biological process — without regard to the computational problems involved. For instance,
certain areas of the computational theory have not been worked out fully; precise description
of biological processes should not be held hostage to computational problems. (This thesis
will develop some of the computational theory that was lacking, but certainly not all.)
Rather, a precise model should be made, and when computations are to be done, additional

assumptions and constraints can be added, which are understood to be computational
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assumptions and constraints, not biological. Further, as more powerful theoretical and
computational techniques do become available, they can be applied to existing models,
rather than necessitating a new (and time-consuming) round of modeling. The second use of
calculation independent models is that theorists can develop the tools — both computational
and mathematical — to deal with all models that fit into this calculation independent
framework, rather than ad-hoc methods that apply only to a particular biological system.
The rest of this chapter introduces the notation of chemical reactions and describes some
fundamental ideas underlying physical chemistry: kinetics, equilibrium and the connection

to thermodynamics.

2.3 Chemical Reactions

Chemical reactions are the lingua franca of biological modeling. They provide a unifying
notation in which to express arbitrarily complex chemical processes, either qualitatively or
quantitatively. Specifying chemical reactions is so fundamental that the same set of chemical
reactions can lead to different computational models, e.g., a detailed differential equations
model or a detailed stochastic model. In this sense, representing processes by chemical
equations is more basic than using either differential equations or stochastic processes to
run calculations to make predictions.

A generic chemical reaction, such as:
ngA + ny B LN n.C +ngD

states that some molecules of type A react with some of type B to form molecules of
types C and D. The terms on the left of the arrow are called the reactants; those on the right
are called the products. There can be an arbitrary number of reactants and an arbitrary
number of products, not just always two, and the number of reactants and products do not
have to match.

In the reaction given, n, molecules of A react with n, molecules of B to give n. molecules
of C and ng of D. The n terms are called stoichiometric coefficients and are small integers.

For example, the reaction

o
>
=

—
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Before: After:

Figure 2-1: Reaction in the previous example.

has one reactant, A, and one product, A’; ny is 1 and ny is also 1. In other words, this
reaction says that one molecule of type A reacts to give one molecule of type A’. Note that,

as in this example, stoichiometric coeflicients of 1 are frequently omitted.

Example 1 A common reaction everyone remembers from high school chemistry is
oY +0H - 1,0

This reaction states that a hydrogen ion from an acid, H, reacts with OH~ from an alkali,
to form water, HoO. This reaction occurs, for example, when one mizes vinegar and baking

soda.

It is very important to point out that a single chemical reaction can represent either an
elementary step, i.e., a physically occurring simplest reaction, or the conglomeration of many
such elementary steps. In the latter case, the stoichiometric coefficients are the net change
caused by the reaction. For most of what follows, we shall be interested in elementary
reactions, which have the additional property that the total number of molecules on the
left side (i.e., the sum of the stoichiometric coeflicients of the reactants) is usually 1 or 2.
Most reactions with more reactants are not elementary, and can be split into elementary

reactions.

Example 2 The process illustrated in Figure 2-2 is a simple example of transcription fac-
tors binding to DNA (as discussed in [1] and in [37]). In this particular example, two
different proteins, P and @, can bind to DNA. There are siz types of molecules (techni-
cal term: molecular species) to keep track of: P, QQ, DNAjrce, Po DNA, Qe DNA, and
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Figure 2-2: Simple model of proteins P and ) binding to and unbinding from DNA. The
DNA, a single molecule, is represented as a line.

PeQeDNA. The first three are self-explanatory. The notation Pe DN A means “P bound
to DNA;” the second half of the molecular species are new molecule types created when P,
Q, and DN Afree react. In other words, P e DN A is one molecule, of the type shown in
State 1 of Figure 2-2. Once a reaction occurs, we no longer care what the molecules were

before the reaction, only what they are after it.

P+ DNApee 2% Pe DNA
Q+ DNAjree 225 Qe DNA
P+QeDNApe 225 PeQeDNA
Q+PeDNApe 25 PeQeDNA
PeDNA XS Py DN A,
Qe DNA L Q4 DN A,
PeQeDNALL PLQeDNAy.

PeQeDNALL Q4 PeDNAy.

In these examples, the value & on the reaction arrow is a rate constant. Chemical
reactions do not occur instantaneously, but rather, take some time to occur. The value k is
a way of specifying the amount of time a reaction takes. Suppose a molecule of A collides
with a molecule of B; the rate constant measures the probability that this collision will
occur with sufficient energy for the molecules to react and give the products. The rate
constant depends on temperature — at higher temperatures, collisions will tend to occur
more frequently and with greater force, and hence will be more likely to cause reactions, at

lower temperatures, the reactants will tend not to collide, or to bounce harmlessly off each
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other.

Remark 1 There is a conceptual difference between the rate constant in deterministic
(macroscopic) kinetics and the stochastic (mesoscopic) reaction constant. The two con-
stants are related in a straightforward way, but are not necessarily identical. This thesis
will concern itself primarily with the latter, but the former are almost always reported, so

Section 3.3.1 will discuss converting between the two.

2.4 The Importance of Physical Chemistry

Chemical equations provide a convenient notation for writing a model of a complicated
biological system in terms of elementary interactions or reactions. In and of itself, this is
not terribly useful; one really needs physical chemistry [4], which tells how these elementary
reactions occur. Once one knows that, a model makes very specific predictions about
the behavior of systems. We shall discuss three views of physical chemistry: microscopic,

mesoscopic, and macroscopic.

2.4.1 The Views
The Microscopic View of Physical Chemistry

In principle, one could write out the full molecular dynamics of a system. In other words,
one can represent the system as a set of particles, each with a position and a momentum.
These particles move around subject to Newton’s laws of motion. When particles collide,
they may bounce off each other, or, if they collide with sufficient energy, they may react,
according to one of the chemical reactions. (Here the rate constants k are related to how
much collision energy is required for a collision to result in a reaction.) Newton’s laws
can be expressed as deterministic differential equations whose variables are positions and
momenta. The number of variables is 6 times the number of molecules, 3 each for position
and momentum of each individual molecule.

This view is the lowest level of the three and hence the most general. It can incorporate
spatial information easily, e.g., local non-uniformities, and can deal with arbitrary reaction
geometries. Its main problem is that it contains (and requires!) too much information.

For typical systems, there are a nearly infinite number of possible initial conditions, each of
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which give rise to similar outcomes. For large systems, this becomes intractable; although
one might be able to simulate the folding of a short protein on a picosecond time scale,
given enough supercomputer time, a system of hundreds of proteins on a timescale of tens
of minutes is not possible. Even if it were, many possible realizations of the process differ
by insignificant parts — the position of one molecule in a system of hundred, for example
— and this level of detail makes it hard to separate important differences from unimportant

ones.

The Mesoscopic View of Physical Chemistry

In the mesoscopic view of physical chemistry, one counts particles, but does not keep track
of their individual positions or momenta. Rather, one assumes the solution is well mixed,
at least locally, so that the probability of finding a given molecule anywhere in the volume is
equal [19]. Intuitively, this means that one ignores fast, non-reactive collisions, and focuses
on the less frequent reactive collisions. The system state is represented by the total number
of molecules of species A, the total number of B, etc. When a reaction occurs, the state
changes instantaneously and discretely. The reaction constants specify the probability per
unit time of a fixed set of reactants reacting — all this will be clarified in the next chapter.
The key points are: the state is discrete, changes in the state are discrete and instantaneous,
and changes in the state occur probabilistically (in continuous time), according to the laws
in the next chapter.

The mesoscopic view cannot take into account spatial information, such as local-non-
homogeneities. On the other hand, it is much more tractable, as it uses a single variable
per molecule type. In other words, a system of 10 molecules of type A requires a single

variable (whose value is 10) rather than 60 variables.

The Macroscopic View of Physical Chemistry

The macroscopic view of physical chemistry, typically taught as the physical chemistry,
deals with systems of many molecules. One approximates the number of molecules as a
continuously varying quantity, rather than as discrete numbers. There is another slight
difference: one usually talks about concentrations, i.e., number of molecules per unit volume,
rather than pure molecule count, but this difference is not the significant one. Again, one

assumes the solution is well-mixed, so concentration is a well-defined quantity. Further,
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this view assumes concentration varies 1) continuously and 2) deterministically — i.e.,
that the number of molecules is sufficiently large that 1) the discrete changes that occur
when individual molecules react cause a small enough change in concentration that said
change can be approximated as continuous, and 2) statistical fluctuations in the number
of molecules can be neglected [21]. One writes differential equations whose variables are
concentrations that describe how concentrations change over time.

This view, like the mesoscopic, cannot take into account arbitrary geometries or local
non-homogeneities.  Additionally, it cannot even account for the stochastic fluctuations
caused by the discrete nature of molecules. For systems with many molecules, this ap-
proximation is sufficient, and can be used. There is a great computational advantage to
this view, as there is only a single variable per molecule type, and those variables obey

deterministic, not stochastic, laws.

2.4.2 How the Microscopic, Mesoscopic, and Macroscopic View Relate

to Each Other

The microscopic view is the most general and exact. It can handle low-level details.
However, it is computationally intractable, and contains too much irrelevant information, so
one must make additional assumptions. The assumptions made should be noted. Defining
precisely and justifying rigorously the conditions — number of molecules, time scale, etc.
— under which each of the modeling frameworks is appropriate, remains an open problem.

To use a stochastic model, the mesoscopic chemical kinetics, rather than microscopic,
one assumes the solution is well-mixed, at least locally, i.e., that a given molecule is equally
likely to be anywhere in the solution, or equivalently that the rate of molecular collisions is

much greater than the rate of reactions.

Example 3 The diffusion rate of green fluorescent protein in the bacterium Fscherischia
coli has been measured to be on the order of 1-10 um? /s [9]. E. coli has dimensions of order

1 pm, so for gene regulation on the order of seconds or tens of seconds, this assumption is

fine.

Two additional assumptions are required to use the macroscopic, differential equations

framework: one, that the number of molecules is sufficiently high that discrete changes of a
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single molecule can be approximated as continuous changes in concentration, and two, that
the fluctuations about the mean are small compared to the mean itself.

It is straightforward to check whether the first condition is met. The second often appeals
for its justification to the Central Limit Theorem of probability theory [10], which states
that the sum of independent, identically distributed (i.i.d.) random variables with finite
mean and variance tends to a Gaussian distribution, whose variance grows as the square
root of the number of molecules. Typically, one assumes this 1/ V/N noise is sufficiently
small for N > 100 — 1000. (Beware that sums of i.i.d. random variables with heavy tails
— infinite mean or variance, e.g., the Cauchy distribution — do not follow this theorem,

nor do distributions that are statistically dependent.)

Example 4 Consider a large number of molecules, each of which can degrade or not degrade
independently. At a fized time, the number remaining is simply the sum of the random
variable 0, defined for a single molecule to be 1 if the molecule is present and 0 if it has
degraded. This sum meets the criteria of the Central Limit Theorem, so the differential

equations approach is probably valid.

Example 5 Consider the process of transcriptional elongation, i.e., when DNA is tran-
scribed into mRNA nucleotide by nucleotide. One may model each nucleotide step as taking
an exponentially-distributed amount of time, so the total time to move several steps down

the DNA is a random variable that meets the criteria of the Central Limit Theorem.

For more complex processes, it is not so simple to apply the Central Limit Theorem;
doing so may not even be legitimate. Under what precise conditions one can and cannot
remains an open problem.

Two standard approaches are used to justify using differential equations rather than

stochastic models:
e Asgsert “it is appropriate to use differential equations in this case.”

e Run a subset of the analysis using a stochastic simulator and show that it does not

differ qualitatively from the differential equations approach.

Ideally, one would have some better way of justifying when differential equations are
and are not valid, or at least a way to point out models where one should be particularly

careful so as not to generate incorrect predictions.
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2.5 Physical Chemistry - the Concept of State

The state of a system is a snapshot of the system at a given time that contains enough
information to predict the behavior of the system for all future times. Intuitively, the state
of the system is the set of variables that must be kept track of in a model. Different models

of biological systems have different representations of the state:

e In microscopic models of gene regulation, the state is a list of the positions and

momenta of each molecule.

e In mesoscopic models, the state is a list of the actual number of molecules of each

type.

e In macroscopic models, the state is a list of the concentrations of each chemical type.

Physical chemistry deals with two problems: changes of state (kinetics) and which
states are steady states (equilibria). Amazingly, the latter question can be answered by
thermodynamics, just by knowing the energy differences of the different possible states of the
system, without knowing the initial state or anything about the kinetics. We shall consider
in turn kinetics, equilibria, and thermodynamics, as they apply to biological models. Note
that these concepts apply to all three views; however, this thesis is primarily interested in

the mesoscopic, and will tend to give examples in that framework.

2.6 Kinetics - Changes of State

The chemical equation
A+B L C

deals with three chemical species, A, B, and C. According to the equation, A and B
are transformed to C' at a rate of k. In other words, the chemical equation specifies how
the state of the system changes, and how fast that change occurs. (See Example 2-1.)

In the microscopic approach, this equation specifies that when a molecule of A and a
molecule of B collide with sufficient force (loosely specified by k), they react to form a new

kind of molecule, C.
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In the mesoscopic approach, this equation specifies that the state changes in a different
way: one single molecule of A and one of B are converted into a molecule of C; the total
number of molecules of A decreases by one, as does the total number of molecules of B,
and the total number of molecules of C' increases by one. The probability that this reaction
occurs in a small time dt is given by k X (#A4) X (#B) x dt, where (#A) is the number of
molecules of A present, etc.

In the macroscopic approach, this equation specifies that state changes in the following
way: the concentration of A decreases, the concentration of B decreases by the same amount,
and the concentration of C' increases by the same amount. For small times dt, the amount

of the change is given by k x [A4] x [B] x dt, where [A] is the concentration of A, etc.

2.7 Equilibrium
A system is said to be at equilibrium when its state ceases to change. Consider the example:

AL A
As long as there is available A, the state will change at a rate determined by k. Thus,
when this system reaches equilibrium, all of the A will be gone, and only A’ will remain.
At the equilibrium point, once all the A has been used up, there can be no more changes
of state.
It is not in general true that equilibrium only occurs when one of the components has
been used up. Consider, for example, a certain DNA binding protein X, whose binding to

and unbinding from DNA follow simple and complementary chemical kinetics:

X +DNAM XeDNA (2.1)
XeDNA™SL X 1 DNA (2.2)

This set of reactions involves chemicals of three types: X, DNA and X ¢ DNA. Equi-

librium will occur when there is no more net change.

Example 6 One way that could happen, in the macroscopic view, is if the rate at which X

and DN A are converted to X @« DN A (according to Eq 2.1) exactly equals the rate at which
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X e DN A is converted to X and DN A (according to Eq 2.2). Note that in this equilibrium,

there are still changes: both reactions still occur constantly. However, there are no net
changes. And the state of the system (i.e., the list of concentrations of all chemical types

involved) does not change.

In the mesoscopic and microscopic views, equilibrium is not so simple; it is a statistical

property.

Example 7 (Fquilibrium in the Stochastic Framework) One computational method (de-
scribed in the next chapter) for the mesoscopic framework is to consider the probability that
the system is in a particular state. From the equations above, a single DN A molecule can
be in two states, bound or unbound, i.e., X e DNA or DNA. As will be shown in the next
chapter, one can write a differential equation (called a master equation) for the probability
of the molecule being in each state, given the initial state sg.
Assuming that there are x molecules of X, that equation is:
d P(DN A, t|so, to) I X ki k_q y P(DN A, t|so, to) (2.3)
dt | P(X e DNA, |50, o) xxky  —k_y P(X o DN A, ts0, 1)
The off-diagonal terms correspond to the two reactions above, the diagonal terms correspond
to no reaction occurring, and are negative to ensure conservation of probability. (How to
generate this equation will be explained in the next chapter, in Section 8.4.)
Using Eq 2.8 and the initial state, one could solve for both probabilitics as a function of
time. Doing so would be the kinetics approach to the problem. Instead, assume the two

competing processes have reached equilibrium, i.e., there are no further net changes. Thus,

d P(DN A, |s0, to)

= =0 (2.4)
dt | p(X ¢ DNA, t|s0, to)
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This leads to the following equation for the equilibrium probability distribution:

P(DN A, |s0, t) 1 k1

P(X o DN A, t|s0, 1) byt ok | gpy
€q

1/l€,1 ]C,1
k_1/k_q+xki/k_

xky

_ ! 2.5

14 aKy, xKeq 235)

Here K., is called the equilibrium constant of these reactions. Notice that applying the
equilibrium condition in (2.4) reduced a differential equation to an algebraic equation, and
that the equilibrium probabilities depend only on K4, i.e., on the ratio of reaction con-
stants, not on the constants themselves. Applying the equilibrium condition in an arbitrary
framework removes the time-dependence of the kinetic equations, and the resulting equa-
tions are algebraic. In addition to the rate constants of the previous subsection, chemical
reactions may have an equilibrium constant, which is a property only of the system, not

the computational framework of the system.

Remark 2 In the microscopic framework, Newton’s laws can be represented as differential
equations whose variables are positions and momenta. In the mesoscopic, for systems with
a small number of possible states, one can write a master equation, another differential
equation, whose variables are probabilities.  In the macroscopic, one writes differential
equations whose variables are concentrations. One should not get confused by these different
kinds of differential equations. The frameworks and the variables are very different, even

if some of the math overlaps.

Real physical systems tend toward equilibrium unless energy is continually added. So
another interpretation of equilibrium is the state of the system as time— oo, in the absence
of energy inputs. To simplify models (and experiments), reactions that are fast (compared
to the main reactions of interest) are often assumed to be at equilibrium. Given this

assumption, for example, the pair of equations 2.1 and 2.2 can be abbreviated as

Ke
X+DNA = XeDNA (2.6)
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The previous example considered a single DNA molecule. More generally, consider the
reaction above with some arbitrary number of DNA molecules. Then the state can be
specified as S = (#X, #DNA, #X ¢ DNA). The reaction above specifies that this can
change state to S = (#X — 1, #DNA — 1, #X e DNA +1). [From the material to be
developed in the next chapter, the probability of the forward reaction occurring in a little
bit of time dt is k1 x (#X) x (#DNA) x dt and the reverse (ending in the same state) is
ko1 x (#X @« DNA+ 1) x dt. The property of detailed balance says that at equilibrium,
these two rates should be equal. (Detailed balance is a special condition that comes from
the physical chemistry of the situation, not just from the math.) That means that at

equilibrium:

Poyx #DNA#xeDNA) X k1 X (#X) X (#DNA)

= Puyx—1,#DNA-1,#XeDNA+1) X k-1 X (#X @ DNA +1) (2.7)

or

Plgx—1,4pNa-1,pxepNA+) X (FX @ DNA4T) by K (2.8)
Piux #DNA#xeDNA) X (FX) X (#FDNA) k1 “ '

The above example was the special case (#X, #DNA, #X ¢« DNA) = (x,1,0).

Definition 1 (Detailed Balance) The special condition that, at equilibrium, in addition to

the net change in probability balancing to 0, each reaction individually balances to 0.

It is possible to go directly from the chemical equation 2.6 to the algebraic equation
2.8 by multiplying all the concentrations of the products (in this case #X ¢ DNA + 1) by
the equilibrium probability of that state, and dividing by the product of the concentrations
of the reactants (in this case (#X) X (#DNA)) times the equilibrium probability of that
state.

Now consider Eq 2.6 and the additional equilibrium equation:

Keq2 /
XeDNA = X e DNA

For example, this could mean that X undergoes a conformational change to X’ while bound

to DNA. For simplicity, assume (as in the previous example) a single DNA molecule, which
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may be bound or unbound. Then the state can be specified (#X, #DNA, #XeDNA,#X'e

DNA), and the equilibrium equations become:

Pox-1,0,1,0 x (1) K
Payx a0 X (#X) x (1) -

and

Px-1,001) X (1)

Pyux_1010 % (1) “a
This leads to
Plx-roon (1) Pgxoronnx ) Pyxoaoon @) _ 0
- - e eq2
Plux1,0) X (#X) x (1) Plux,1,0) X (#X) x (1) Plux-1,01,0 X (1) ! !
(2.9)

This is an important property of equilibria: if A and B are in equilibrium, and B and C are
in equilibrium, then A and C are in equilibrium, and the resulting A-C equilibrium constant
is simply the product of the A-B and B-C equilibrium constants.

The key points to remember about equilibrium:

e Equilibrium ignores the dynamics of state change, and only considers a static state.

e Equilibrium depends only on equilibrium constants, i.e., a ratio of reaction constants,

not the reaction constants themselves.

e Multiple equilibria can be treated by multiplying equilibrium constants, as in Eq 2.9.

2.8 Thermodynamics

Two ways of determining equilibrium constants have been presented thus far: calculating
equilibrium constants from the forward and reverse rate constants, and calculating them
from the equilibrium concentrations of the chemicals. There is a third way — equilibrium
constants can be calculated from thermodynamics [11], using just the energy difference
between the products and reactants. From this energy difference alone, one can predict the

final state of the system, but not the time-course of the state from initial to final.
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For chemical reactions, the Gibbs free energy, G, is defined by

G = (Total internal energy) — (absolute temperature) x (entropy) + (pressure) x (volume)

= Z(chemical potential) x (particle number)

Typically, values of AG are reported instead of the values of K. From thermodynamics

in dilute solutions [4,11] it follows that, for reactants and products with free energy difference

AG,

K., = e AG/RT

where T is the absolute temperature, and R is the ideal gas constant — namely Boltzmann’s
constant time Avogadro’s number.

To deal with multiple states in equilibrium with each other, one uses partition functions.
In general, the fraction of the system in a certain configuration c¢ (e.g., the fraction of the

DNA bound to protein P) is given by:

exp(—AG,/RT) x [Species [PV x - -- X [Species,, |PPWe™

f?“acc = ZZ eXp(—AGZ/RT) « [Speciesl]powfﬁj N % [Speciesn]po’weﬁz

The power of chemical species x in configuration c is simply the number of molecules of
type = present in configuration c. The denominator of this equation is called the partition

function.

Example 8 (Partition Functions): Consider the example in Figure 2-2, but this time,

assume that equilibrium has been reached. Then

Pal0) = o
Pty = KA
Py = f2

where each of the K’s is defined to be the equilibrium constant between a given state and
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State 0, and

Z =1+ K\[P] + K2[Q] + K3[P||Q]

Here 7 is the partition function.

Proof. (of the previous example) Let Fy be the concentration of DNA in State 0, and
let [P] and [Q] be the concentration of free (i.e., unbound) protein P and Q, respectively.

Then, there are equilibrium constants Ky, K, and K3, such that at equilibrium

Py
Plxh ~ &
P
Q] x Py Ko
P
Pl @xB

The total probability must sum to 1, so

1 = Ptotal
= R+~ +P+13
= B+ (K1 x [P] x Ro) + (K2 x [Q] x Fo) + (K3 x [P] x [Q] x Po)

= P()XZ

The result of the previous example follows directly.

2.9 Key Concepts

e A detailed biological system can be described by many simple chemical equations.

e Chemical equations specify what chemical reactions occur, and how frequently they

occur.

e There are three interpretations of chemical equations:

— microscopic interpretation: positions and momenta. Chemical equations specify

discrete changes in the particles present.
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— mesoscopic interpretation: count the number of molecules of each time. Discrete

changes occur probabilistically in continuous time.

— macroscopic interpretation: approximate the number of molecules as continuous.

The number changes continuously and deterministically.

This thesis will focus on mesoscopic, as that view allows us to deal with systems of

tens or hundreds of molecules.

In the mesoscopic view, the state is specified by the number of molecules of each type.

Kinetics: the mesoscopic state changes discretely at random times. These times are
chosen from continuous distributions. Simple laws for those distributions are covered

in the next chapter.

Equilibrium = steady state. State of the system as ¢ — co. In the mesoscopic view,

one specifies an equilibrium probability distribution.

The equilibrium condition simplifies a set of differential equations to a set of algebraic
equations and is a useful approximation for reactions that are fast compared to the

ones of interest.

The equilibrium constant is a ratio of rate constants and helps specify the equilibrium

probability distribution.
Multiple equilibria can be treated separately. This property is called detailed balance.

Equilibrium constants tie in to thermodynamics and can be determined from the

energy differences between states.

Partition functions provide a useful tool for dealing with multiple equilibria.
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Chapter 3 The Stochastic Framework

3.1 Summary

This chapter provides a more detailed explanation of the mesoscopic view of chemistry.
It shows how to make specific predictions about a system described by a set of chemical
reactions. There are two main ways to make exact predictions: 1) a state-space approach,
which leads to a master equation, a system of differential equations whose variables are the
probabilities of all the possible states, and 2) numerical methods for generating realizations

of the system according to the correct probability distributions.

3.2 Probability Theory Background

As the mesoscopic framework involves stochastic processes (random processes that depend
on time), a few quick words about probability and stochastic process theory are in order.
Several introductory books discuss probability theory, for example [26] and [10], and several
more advanced books discuss stochastic processes, for example [18] and [38]. A couple
stray facts are useful in dealing with stochastic processes that do not commonly appear in
elementary books or courses. Also, there are different notations, so here are the ones used

in this thesis:

e Random variables will be denoted by capital letters, e.g., X is a random variable.
e The expected value of a random variable X will be denoted E[X].

e Samples from random variables will be denoted by lowercase letters, e.g., x is a sample
from the random variable X. (One can imagine a bucket with X painted on the side.
When one asks for the value of X, one takes a sample x out of the bucket.) Samples

are simply numbers.

e A random variable X is defined by its probability density function, Px. For con-

tinuous random variables, Px(z)dzr = the probability that a sample of X will fall in
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(x,z + dx). Note that Px(z) is not a probability, it has units of 1/length, while

probability is unitless.

e For stochastic processes, it is frequently useful to state the initial conditions explic-
itly. So for example, if the initial state of the system at time ¢g is denoted xq, it is
preferable to deal with the conditioned random variable P(z,t|xo,to) rather than the
unconditioned P(x,t). Taking care to explicitly state initial conditions avoids certain

paradoxes, for example [20].

e A common operation in probability theory is constructing a random variable Y from
a random variable X by some function ¥ = f(X). (In the bucket analogy, this
amounts to having a bucket X and a bucket Y. One takes samples x from bucket X,
transforms them according to y = f(z), and drops the resulting number into Y.) A

common question is: given Py and f, what is Py7 For single variable distributions,

it can be shown [17,18] that

Prly) = / " Py(@)sly — (o)) da

This result is called the Random Variable Transformation Theorem, and will be fre-

quently referred to as the RVT theorem.

3.3 The Basics of the Stochastic Framework

Consider the following system of 4 chemical species, in which 3 reactions can occur:

A+ B C
20 2, A4 D
D ', B

In the mesoscopic framework, the state of this system can be described by the list (#A4, #B, #C, #D):
the number of molecules of A, the number of B, etc. Discrete changes of state occur when-

ever a reaction is executed.

Example 9 Suppose the state is (10,8,15,3). Then Reaction 1 would cause the state to
change to (9,7,16,3), Reaction 2 would cause the (original) state to change to (11,8,13,4),
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and Reaction & would cause the state to change to (10,9,15,2). If no reaction occurs, the

state does not change.

In the mesoscopic view, the probability that a given molecule of A will react with a given
molecule of B in the next infinitesimal time dt is given by kidt. (For a physical derivation
of this, see [19].) In other words, that probability that a given pair of molecules react in the
next infinitesimal time dt is well defined and is proportional to dt. The proportionality
constant — in this case k1 — is independent of d¢t. Typically, it is a real-valued constant,
although it may instead be a function of time (but not of dt!), or of some other physical

quantity.

Remark 3 The macroscopic view assumes that a reaction rate per unit time is well defined,
but for small dt, one cannot have fractional reactions, so the mesoscopic view is more

T1gOTOUS.

The probability that a particular pair of molecules of A and B will react in the next
infinitesimal time dt is given by kidf. The probability that some pair of molecules of A
and B will react in the next infinitesimal time dt is given by ki1 X #A X #B X dt, since
there are #A X #B possible pairs that can react. (Here #A is the number of molecules of
A, etc.) The probability of more than one reaction occurring in the same infinitesimal dt is
proportional to (dt)? and may be ignored.

It is occasionally useful to refer to some of these quantities by name. The combination
#A < #B will be called the redundancy function of Reaction 1, abbreviated hq. The com-
bination k1 X #A x #B will be called the propensity function of Reaction 1, abbreviated

ai.

Remark 4 The key assumptions that allow the transition from the microscopic view to the
mesoscopic view are that the solution is well-mized and in thermal (although not necessarily
chemical) equilibrium. Without those assumptions, it would still be possible to write expres-
stons for the probability of given pairs reacting, but those expressions would vary rapidly with
time and would almost certainly not be the same for different particular pairs of reactants.

The assumption provides an enormous simplification to the framework.

Reactions with more than one copy of the same reactant are a little tricky. In addition

to the state changing by 42 instead of +1, the redundancy function A is a little different.
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Recall that the redundancy function counts the number of distinct reactant pairs that
can undergo a reaction. In Reaction 1 above, that number is simply #A X #B . In
Reaction 2, two copies of C' react with each other. The total number of pairs of C is

(#20) = #C x (#C —1)/2, not (#C)2. One should be careful with this kind of reaction.

3.3.1 The Relationship Between Mesoscopic Reaction Constants and Macro-

scopic Rate Constants

Typically, macroscopic rate constants are reported, not mesoscopic reaction constants, so
it is useful to know how to convert between the two. Dimensional analysis can be used to

calculate the dimensions of mesoscopic reaction constants.
Probability = a X dt =k X h x dt

Probability is dimensionless, dt has dimensions of time, and & is just a dimensionless integer.
Therefore, k has dimensions of (time) 1.

First order reactions (reactions with a single reactant) have macroscopic rate constants
with dimensions (time) !. Second order macroscopic rate constants have dimensions of
(moles/liter) !(time)~!.  Thus, up to a dimensionless factor, first order reactions have
the same macroscopic and mesoscopic constants, whereas second order constants follow
Emacroscopic = kmesoscopic X A XV x C, where A is Avogadro’s number, V' is the volume, and
C' is a dimensionless constant. In particular, C' = 1 for reactions involving two different
reactants, and C' = 1/2 for reactions involving two copies of the same molecule type. (For
a more detailed discussion see [16] or [29].) The following table illustrates the redundancy

function, h, the propensity function, a, and the macroscopic rate constants that correspond

to the mesoscopic rate constants ky, ko, and kj3:

Reaction h a Macroscopic rate constant
1 H#A X #B k1 X #A x #B k1t x AxV
9 (#20) _ #Cx(;&écfl) ko x#cé(#cfl) kof2 X AXV
3 #D ks X #D ks
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Closed Open

Figure 3-1: A simple, two-state ion channel. The channel is a protein that sits in the cell
membrane. When it is closed, ions may not pass through. When it is open, ions may pass
through. This figure shows a positive ion — or cation — but certain channels allow negative
ions — anions.

3.4 The Chemical Master Equation

Calculations in the mesoscopic framework use three techniques: the Chemical Master Equa-
tion, exact stochastic simulation, or approximation. This thesis will only consider exact
methods, i.e., the first two. Exact stochastic simulation algorithms, presented in the next
section, will turn out to be the method of choice, but we first present the Chemical Master

Equation approach [18,30, 38|, as it is useful in justifying certain theoretical results.

3.4.1 The Basic Idea Behind the Chemical Master Equation

The basic approach can be summarized as follows:

e For each possible state S of the system, let P(S,|So,%0) be the probability that the

state is S at time ¢, given that the state is S at time .

e Use the rules of the previous section to specify how P(S, ¢]So, ty) varies as a function

of ¢.

e This will lead to a system of linear differential equations with constant coeflicients,

called a Chemical Master Equation. Solve this system.
The easiest way to illustrate this approach is through a simple example.

Example 10 (Defining States) Consider a very simple model of an ion channel as in Figure
8-1. An ion channel is a protein that can conduct electricity in the form of ions. At the

simplest level, the channel may be open (conducting) or closed (non-conducting). Suppose
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this particularly simple ion channel has only those two states, and call the states O and C
(real ion channels may have multiple open and multiple closed states). Suppose the chemical

equations governing transitions between the states are:

20

oL ¢

(The non-biologically inclined may take these equations as given, and ignore the motivating
example.) Consider a single channel, i.e., a single molecule. Thus, the system state is

equal to the state of that one molecule, which is either O or C.

Example 11 (Specifying transitions) From the previous section, the probability of a tran-

sition from state C' to state O in the infinitesimal time step dt is given by

P(O,t+ dt|C,t) = o x dt

and, analogously,

P(C, L+ dt|O,t) = B x dt

Because probabilities must sum to 1, we have

P(Ct+dl|Ct) = 1—axdt

P(O,t +dt|O,t) = 1—08xdt

The functions of interest are P(C\t|So,to) and P(O,t|So,t), i.e., the probabilities condi-
tioned on the initial state (which may be either O or C') and on the initial time, not the

current time. By the laws of probability:

P(C,t—l—dt’So,to) = P(C,t—I—dt]C,t)P(C,t]So,to)—I—P(C,t—l—dt]O,t)P(O,t]SO,tO)

P(O,t—l—dt’So,to) = P(O,t—I—dt]C,t)P(C,t]So,to)—I—P(O,t—|—dt]O,t)P(O,t]So,t0)
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Writing this in matriz form:

P(C’7 t+ dt’S(), to)
P(O7 t+ dt’S(), to)

P(t+dt]So, tg) =

l—axdt (@xdt P(C, ]S, t0)
axdt 1—pxdt P(O,t|So, to)

1—axdt G x dt
a X dt 1—038xdt

— [1 “lea] ™ F P (150, to)
0 1 a -0
1

— Y Pusow va | T | Psen)
0 1 a —f

— BSo,to) +dt | B P (tSo, to)
a =3

Rearranging,

?(t+dtyso,to)—?(t!507f0): —a B P (150, to)

dt o 8

In the limit as dt — 0, the left-hand side becomes a derivative, which leads to a Chemical

Master Equation:

d?(f’S@,to) o —a f
dt a -3

This is sometimes written as

dP (t|So, to) WP

T (t]:S0, to) (3.1)

where W is a special matriz, sometimes called a W -matriz [38] or a consolidated charac-

terizing function matrixz [18].
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In some sense, writing Chemical Master Equation is enough, as solving this sort of
differential equation subject to its initial conditions is a well-studied problem that can
be found in elementary differential equations or linear algebra texts. However, for good

measure, here is how to solve it.

Example 12 Look at the eigenvalues and eigenvectors of YW. It has an eigenvalue of 0,
corresponding to the (un-normalized) eigenvector [3,a]’ and an eigenvalue of —(a + f3),
corresponding to the (un-normalized) eigenvector [1,—1]". Thus,

?(t) = b Ot=to) 4 ¢ ! e (atp)(t—to)

la} —1

where ¢ and co are constants that depend only on the initial probability distribution. In

particular, the formula must hold at t = tg, so

Py = Pl

I} 1
= + ¢
« —1
g1 ¢
a —1 co
Hence
-1
1 ﬁ 1
— Po
co a —1
1 1 1
— Po
a—+p3 a -3
So, for example, if P(C,ty) =1 (and hence P(O,ty) = 0), then ¢y = a%rﬁ and ¢y = a;iﬁ

Thus

1< Qa 1
- _|_
a+p8 | 4 a+p8 | _1

Pt|C, to) =

(@t B)(t-to0)

Remark 5 Another way to do the same problem is to recall that the solution to % = WP
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is given by P(t) = exp(Wt) P, which holds for vectors equations as well as one-variable
equations. One can break W into an eigenvector matriz, a diagonal eigenvalue matriz, and

the inverse eigenvector matrix as follows:

W =
a —f
_ L 0 0 a2+52 O¢2+ﬁ2
= a? 8% V2 ats a}ﬂ
-1 2 —v23
| = Bl LY —(a+h) a5 aTs
= EAE!

Simplifying things a bit by using u =t — tg, and using the previous result
1 2, 1 3
expWu) = T+Wu+ §(Wu) + g(Wu) +...
1 1
= I+ FAE lu+ 5(EAE*lu)2 + 5(EAE*lu)3 4.

- <I+Au+%(Au)2+%(Au)3+...> o

B 1 2+B2 2+B2
_ | e v exp(Ou) 0 Tt ats
_ )
ﬁﬁg 7% 0 exp(—(a + B)u) ﬁ a\ﬁf
And hence
_2/3 ; = 1 0 o402 ot
Py=| 7 ¥ | Pl)
212 0 exp(—(a+ B)(t —to)) ot atg

3.4.2 The General Case

The general case is completely analogous to the example. The goal is to get a Chemical

Master Equation of the form

dP (t]So, to) _ W

T (t]:So, to) (3.2)

Here P is a vector containing the probabilities of all possible states, conditioned on the
initial conditions: {?(HSO, to)} = ?(S = 1,t|So, o), etc. In the previous example, there
1

were two possible states, so P was a 2-vector.
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Once the meaning of 7 s defined, all that remains is WW. In particular,

the propensity, a;;, of going from state j to state ¢ if i # 5
=D ki Whi ifi=j

Wij =
The first line of this definition relates the propensities discussed in the previous chapter to
the W-matrix. The second line is necessary to conserve probability; this corresponds to
the condition that probability must sum to 1, which implies that %(Z ?) must be 0.
P(C,t)So, to)

Example 13 In Frample 11, P s the two vector . Weo = (the
P (0,180, o)

propensity of going from state O to state C')= 3, and Woc = a. Finally, Wee =
- ZR#C Wre = —Woc = —a, and analogously, Woo = —03.

More examples of writing chemical master equations follow. Solving such equations is
a standard matter in differential equations and in linear algebra, so we shall be content to
write the equations. (Also, as we shall see later, the number of states is typically so large

that one cannot solve anyway.)

Example 14 Consider a more complicated example, defined by the chemical equation
X+DNAM XeDNA

Here the state consists of every possible combination of number of X molecules, number
of DN A molecules, and number of X @« DN A molecules. Assuming some total number of
molecules, the number of states will be finite (although possibly large). Suppose j is the
index of the state (#X,#DNA,#X ¢ DNA) = (a,b,c), for some fized a,b,and c. Then
let i be the index of the state (#X,#DNA,#X e DNA)=(a—1,b—1,c+1). Then

ki Xaxb ifk=1
Wi =< —kixaxb ifk=j

0 otherwise
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Example 15 Consider both the forward and reverse reactions:

X +DNA-S XeDNA

XeDNAM x + DNA

The state definition remains the same. Using the same definition of j and i, and letting 7/

be the state (#X,#DNA,#X @« DNA)=(a+1,b+1,c— 1), gives

k1 Xaxb ifk=1
k 1xc if k=1
—kixaxb—k_1xc ifk=7

0 otherwise

In the special case of a single DN A molecule (bound or unbound), there are only two states:

a=z,b=1,c=0anda=x—1,b=0,c=1, and

—z Xk k_
W — 1 1
T X ]Cl —]C,1

This corresponds to Example 7 of the previous chapter.

Example 16 Consider a simple degradation reaction:

A" o A

For simplicity, suppose the initial state contains & molecules of A. Then

[ P#A=3,4%t) | [ -3 0 0 0]
d?(t’S(),to) _ i P(#A = 27t’507t0) _ 3k =2k 00 ?(f’S() tO)
dt dt | p(#A =1,tSo, to) 0 2% —k 0 ’
| P#A=0USot) | | 0 0 k0]

3.4.3 Pros and Cons of This Approach

The chemical master equation has a nice feel to it: one is able to capture all the information

of a system into a compact vector equation. Solving that equation gives the complete
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probability distribution at any point in time. Even better, it is a linear differential equation

with constant coefficients, so unlike most differential equations, one can actually solve it.
There is, of course, a catch: the chemical master equation needs one variable for each

possible state of the system. For all but the simplest systems, this number of variables

becomes huge, and so one cannot even write out the full master equation, let alone solve it.

Example 17 Consider the degradation reactions

A 0 A
B 0B

C*5 000

Suppose the initial conditions are (#A, #B,#C) = (99,99,99). Fach chemical species can
vary independently, so all possible combinations of & integers between 0 and 99 are possible.
There are precisely 100 x 100 x 100 = 108 such combinations. Thus, this simple example
of &8 reactions leads to a vector 7 of size 1 million, and a W-matriz of size 1 million by 1

million.

Example 18 In the Arkin et al. [3] model of lambda phage, reasonable limits on the number
of each kind of molecule lead to a number of states on the order of 107°.  Even if a
miscalculation, or a clever reduction of the number of states, say by a factor of 10°0, leaves
1029 states, which is still intractable. Exact stochastic simulation provides a more feasible

approach.

For a more detailed example of the stochastic framework, please see [13].

3.5 Exact Stochastic Simulation

Consider, for example, the set of reactions:
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Number of molecules

0 20 40 60 80 100 120 140 160 180 200

Time 0 17 50 60 9(3 y 1())8 121 150 155 175

HA 6 5 4 4 5 ) 6 7 7 8

#B 14 13 12 11 11 11 11 11 10 10

#C 8 9 10 9 9 9 9 9 8 8

(b) #D 12 12 12 13 13 14 14 14 15 15
#E 9 9 9 9 8 8 7 6 6 )
#F 3 3 3 3 3 2 2 2 2 2
#G 5 5 5 5 4 5 4 3 3 2
Reaction 1 1 2 ) 4 ) ) 2 )

Figure 3-2: Example trajectory. (a) Graphical representation. Legend: A-X, B-circle, C-
triangle, D-square, E-diamond, F-star, G-line. (b) State representation. The ‘Reaction’ row
merely indicates which reaction occurred; it is not part of the state.

k1

A+ B - C

B+C . p
D+E Mpar
F *pic

E+G (3.3)

As a different way of dealing with the stochastic framework, consider the problem of

generating a single sample trajectory of a chemical process in the stochastic framework, as

in Figure 3-2(a). The (intractable) Master Equation approach tries to write a system of

equations and solve simultaneously for the probability of all possible trajectories. Gener-

ating a single trajectory is significantly easier; as in Figure 3-2(b), one needs to generate a

sequence of state transitions and the times at which they occur. A naive way to generate

legal trajectories is to start with the initial state, repeatedly pick reactions arbitrarily, and
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execute them, thus generating a legal trajectory. A better way to generate trajectories
is to pick reactions and times according to the correct probability distributions so that the
probability of generating a given trajectory with the simulation algorithm is exactly the
probability that would come out of the solution of the Master Equation. Amazingly, it is
possible to create an algorithm that has this property, even if it is not possible to write out
the entire Master Equation explicitly, let alone solve it. (There are also inexact stochas-
tic simulation algorithms that generate trajectories according to approximately the correct
distribution. Our interest is only in exact methods, however.)

Given the ability to generate a single trajectory with the correct probability, one may
estimate any parameter of interest by generating many trajectories, calculating the value
of the parameter for each trajectory, and observing the statistics of those calculated values.
For example, to find the average number of molecules of B present at time t, one can run
many (say hundreds or thousands of) trajectories and plot a histogram of the values of the
number of molecules of B at time t.

Gillespie [15,16] developed two exact stochastic simulation algorithms, discussed in the
next section. The tricky mathematical part of such an algorithm is specifying how to
generate random numbers so that they will have the correct distributions. The tremendous
success of these exact stochastic simulation algorithms has led to them being applied to much
larger systems than was originally designed for. For example Arkin et al. [3] used exact
stochastic simulation to simulate a model of a simple virus, lambda phage, containing 75
equations in 57 chemical species. Because the original algorithms do not scale readily to
large systems, this thesis presents new versions that do scale well with number of reactions.

(The tricky computer science part is to develop efficient algorithms that do the right thing.)

3.6 Gillespie’s Algorithms

Consider a system of r reactions as in Eq 3.3. For now, assume that all rate constants
(e.g., k1...ks in Eq 3.3) are true constants; time-varying rate constants will be covered in
Chapter 6. Gillespie [16] proposed two ezxact stochastic simulation algorithms. At each
time step, the system is in exactly one state. A transition consists of executing a reaction,
so there are at most r possible transitions from a given state. The key is to choose random

numbers using a computer’s random number generator, and use those to pick transitions.
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One must be careful to choose from the correct distribution at each point in the algorithm.

Gillespie proposed two methods for accomplishing the simulation. The first method,
which he calls the Direct Method, calculates explicitly which reaction occurs next and when
it occurs. The second method, which he calls the First Reaction Method, generates, for
each reaction p, a putative time 7, at which reaction p occurs, then chooses the reaction u*

with the smallest 7}, (the first reaction) and executes reaction u* at time 77,. This section

pE
describes both of these methods.

3.6.1 Gillespie’s Direct Method
For a system in a given state, Gillespie’s direct algorithm asks two questions:

e Which reaction occurs next?

e When does it occur?

Clearly, both of these questions must be answered probabilistically, by specifying the
probability density P(u,7) that the next reaction is p and it occurs between times 7 and

T+ dr. Theorem 1 (see also [16]) will show that

P(p,7)dr = a,exp —TZaj dr (3.4)
J

= [Z?j“aj] zj:aj exp —TZaj dr

Theorem 1 Iq 3.4 holds.

Proof. By definition

P(p, 7)dr = Prob(the next reaction is p and it occurs between times 7 and 7 + dr)
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This is equal to

Prob(no reaction occurs before 7, and reaction p occurs between times 7 and 7 + dr)
= Prob(no reaction occurs before 7)

x Prob(reaction p occurs between times 7 and 7 + dr|no reaction occurs before 7)
The second multiplicative term is simply equal to a, X dr. Define
q(t) = Prob(no reaction occurs before )
Then, by the laws of probability

g(t+dt) = Prob(no reaction occurs before ¢ + dt)
= Prob(no reaction occurs before )

X Prob(no reaction occurs between times ¢ and ¢ + dt|no reaction occurs before )

= q(t) x 1—dt2aj
J

Rearranging,
dg _ g(t+dt) —q(t) _
at dt - zj:aj
Thus
t
q(t) = q(to) exp —/ Za] du
to j
In particular, ¢(tp) = 1, and for the present chapter, it is assumed that a; is time-

independent, and g = 0, so

g(t) =exp | =t | Y ay
j
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Putting this all together,

P(p,m)dr = q(r) xa, xdr

= exp|—-T E a; X ay, X dr
J

This leads directly to the answers of the two questions above. The probability distribu-

tion for reactions and the probability distribution for times are independent, and are given

by

Pr( Reaction = ) =a,/ Zaj (3.5)
J

and

P(r)dr = Zaj exp —TZaj dr (3.6)
J J

These two distributions lead to Gillespie’s direct algorithm [16]:
Algorithm 1 FEract Stochastic Simulation — Direct Method (Gillespie)

1. Initialize(i.e., set initial numbers of molecules, set t — 0.)

2. Calculate the propensity function, a;, for all 1.

3. Choose i according to the distribution in Eq 3.5.

4. Choose T according to an exponential with parameter Zj a; (asin Eq 3.6).

5. Change the number of molecules to reflect execution of reaction p. Set t — t+ 7.

6. Go to Step 2.

As written, this algorithm uses two random numbers per iteration, takes time propor-

tional to the number of reactions to update the a;’s, and takes time proportional to the
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number of reactions to calculate ). a; and to generate a random number according to the
distribution in kEq 3.5. Chapter 7 will show how to make the algorithm more efficient, so

that the time it takes is proportional to the logarithm of the number of reactions.

3.6.2 Gillespie’s First Reaction Method

The algorithm of the previous subsection is direct in the sense that it generates o and 7
directly. Gillespie also developed the First Reaction Method [15], which generates a putative
time 7; for each reaction to occur — a time the reaction would occur if no other reaction
occurred first — then lets p be the reaction whose putative time is first, and lets 7 be the

putative time 7,. Formally:

Algorithm 2 (Exact Stochastic Simulation — First Reaction Method)
1. Initialize(i.e., set initial numbers of molecules, set t — 0.)
2. Calculate the propensity function, a;, for all 1.

3. For each i, generate a putative time, T,;, according to an exponential distribution with

parameter a;.
4. Let p be the reaction whose putative time, 7, is least.
5. Let T be 7).
6. Change the number of molecules to reflect execution of reaction . Set t — t 4 7.

7. Go to Step 2.

As written, this algorithm uses r random numbers per iteration (where 7 is the number
of reactions), takes time proportional to r to update the a;’s, and takes time proportional

to r to identify the smallest 7,,.

3.7 Equivalence of Algorithms With Each Other, and With

the Master Equation

At first glance, these two algorithms may seem very different, but they are provably equiv-

alent [15], i.e., the probability distributions used to choose 1 and 7 are the same.
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Proof. In Algorithm 2, the ;1 chosen is the one whose 7, is least. Let R be the random

variable describing the choice of reaction, and let 7, be the random variable describing
the choice of 7,. By assumption, the random numbers used are statistically independent.

Then

Pr(R = ) = Pr(min(1,) = 7,

= /000 P(u) H Pr(T, > w)du

- atp
= / a, exp(—ayuu) H exp(—aqu)du
u= aEp
= au/ exp(— Z(aa)u)du
u=0 o
Ap

Pr(T" > u)= Pr(main(Ta) > u)
= H Pr(T, > u)
= H exp(—aqu)

[0

= exp(}(~aa)u)

[0

dPr(T > u)
du

= O ad)exp(d_(—aa)u) (3.7)

[0
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Chapter 4 The Lambda Model - a Motivating Example

4.1 Summary

The Arkin et al. [3] model of the temperate bacteriophage lambda provides an example of
the issues one encounters in stochastic modeling of large systems. This chapter summarizes
the model. Recall that the focus of this thesis is developing general computational meth-
ods — not calculations for a specific model. Subsequent chapters will show the general
computational framework and how easy it is to incorporate optimizations for this specific

model.

4.2 Introduction to Lambda Phage

Lambda phage [34] is a virus that infects the bacterium FE. coli. It is called a temperate

phage, because it has two possible developmental pathways (see Figure 4-1) — it can either:

e replicate and lyse (dissolve) the host cell, thus releasing about 100 progeny or

e integrate its DNA into the bacterial DNA and form a lysogen.

In the latter case, the virus will replicate passively whenever the bacterium replicates.
A lysogen has immunity from subsequent lambda infections; this protects the lysogen from
being destroyed should another phage infect the host cell.

Under the right conditions (e.g., exposure to UV light), a lysogen can be induced, i.e.,
the viral DNA excises itself from the bacterial DNA and undergoes normal replication and
lysis. (See [34].)

Lambda has been studied extensively because it is one of the simplest developmental
switches - systems with multiple possible end states. Its complete genome (50,000 base
pairs) was sequenced long before the era of large-scale genome sequencing. The details of
which genes are expressed, when, and in what quantity have been studied extensively, as
has lambda’s host, F. coli. As a result, lambda is one of the best-understood organisms in

existence. It is also an organism that exhibits probabilistic or stochastic behavior — some
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7’? ? (=

Lysis Lysogeny

Figure 4-1: The life cycle of lambda phage. A phage injects its DNA into the F. coli host,
then either (left) replicates and destroys the host cell — lysis — or (right) integrates its
DNA into the host DNA — lysogeny.

infected cells end up in lysis, others in lysogeny. Hence it is a perfect system in which to

demonstrate the stochastic framework of gene regulation modeling.

4.2.1 Origins of Stochastic Behavior

Where does this probabilistic or stochastic behavior come from?
An FE. coli cell, which acts as the host for lambda, is a rod shaped bacterium 2 pm long

with a diameter of 1 pm [39]. The volume of an F. coli cell is
V=2l == x 10 liters

As will be explained later, significant differences in the amount of binding occur in the
range 107% M to 107 M. (Remember that M = moles/liter.) The number of molecules

that corresponds to, say, 1078 M is
(g x 10715 liters)(10~® moles/liter)(6 x 10%* molecules/mole) ~ 10 molecules

The lambda model deals with 1 molecule of DNA, a few molecules of mRNA, and 10s to

100s of molecules of proteins.
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4.3 The Lambda Model

4.3.1 Model Overview

The central dogma of molecular biology is that genetic information travels from DNA to

messenger RNA (mRNA) to proteins. This is frequently abbreviated

DNA — RNA — protein

DNA and mRNA store information in a linear form. Proteins are complex macromolecules
whose three-dimensional shape is very important, and which can have complex functions.
Information stored in DNA is called a gene, and a gene is said to be expressed if its protein
is made.

The lambda model deals with transcription (the processes by which RNA is created
from DNA), translation (the process by which a protein is created from mRNA), various
protein-protein interactions, and feedback via protein-DNA binding. (For an extended
overview of these processes, see [14].)

The basic steps that occur when lambda infects a host are:

e Lambda injects its DNA into the host.

e The machinery in the host treats lambda DNA just like native host DNA, and tran-
scribes lambda mRNA. (The host is unable to distinguish lambda DNA from its
native DNA, because DNA is all the same chemically.)

e The machinery in the host treats lambda mRNA just like native host mRNA, and
translates lambda proteins. (The host is unable to distinguish lambda mRNA from

its native mRNA, because mRNA is all the same chemically.)

e In lysis, the proteins that are created: make shells for new viruses, copy the lambda

DNA, dissolve (lyse) the host cell, etc.

e In lysogeny, the proteins that are created: cut host DNA, insert lambda DNA into

the cut, glue it all back together, turn off the expression of lysis genes, etc.

e Certain early genes control whether the lysis or the lysogeny genes are expressed; the

protein products of these genes bind to DNA and affect the rate at which mRNA of



52

Open complex

formation .
Elongation

——— mMRNA

Ribosome Trandation
initiation Elongation
Degradation

\

RNase Protein

Degradation

Figure 4-2: Processes included in the lambda phage model.

each type is transcribed.
The Arkin et al. [3] model of this process consists of chemical equations for:

e transcription: mRNA being made from DNA,

translation: proteins being made from mRNA,

degradation: proteins and mRNA being recycled, and

protein-DNA binding, and how it affects the rate of mRNA synthesis.

All these processes are illustrated in Figure 4-2.

4.3.2 Specifics

The model deals with 5 genes, their 5 mRNAs, and their 5 protein products. By convention,

genes are in italics, and protein products are in normal text:

e cro controls lysis. The cro protein turns off ¢/ and activates those genes that are

required to duplicate DNA, make virus shells, and lyse the cell.

e ¢l is present in lysogeny. The cl protein shuts everything down, especially cro. (The

cl protein is typically called repressor, but for simplicity, we shall call it cl.)

e N is a temporal regulator. It is expressed very early in the infection cycle, and turns
on early genes that are necessary for both lysis and lysogeny. It is turned off by either

cl or cro protein.
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OR, right —» ¢cro — NUT-R — TR; — cll
clll « TLy «+ N « NUT-L « PL, left < ¢I <« OR, left «— PRE, left

Table 4.1: The linear order of genes (in italics), promoters (OR, PRE, PL), termination
sites (TRy, TLy) and anti-termination sites (NUT-R, NUT-L).

e cIl and clIl are “decision” genes. Under the right conditions, these will be stably
expressed, which leads to ¢l expression. If conditions are such that clII and cIII

proteins are unstable, ¢l is not expressed, and cro is instead.

For more information on lambda biology (including the function of these and other
genes) see Ptashne [34] or Lambda II [23]. For more details on the model (including
justification of various assumptions) see Arkin et al. [3]. Reference [13]| contains a subset

of the full model, namely the regulation of N by cl and cro.

4.4 Chemical Equations for the Model

4.4.1 Transcription

Transcription occurs when the enzyme RNA Polymerase (RNAP), bound at a promoter,
unzips the DNA double helix, thus forming an open complex, and begins transcribing DNA
into mRNA (e.g., Reaction 1 in Table 4.2). RNAP moves along the DNA step by step and
elongates the mRNA (e.g., Reaction 2 in Table 4.2). The end result of elongation is an
increase in the amount of mRNA of the gene in question (e.g., mRNA,,, in Reaction 2 of

Table 4.2).

Notation 1 We shall use the notation RNAPe DNA(X) to mean “RNAP bound to DNA
at position X,” and mRNAy to mean “mRNA corresponding to gene Y.” The position
names are really just labels, but correspond to significant positions on the DNA, such as the

promoter, the end of a gene, or anti-termination sites (see below).

It is instructive to record the relative order of positions, as in Table 4.1.
The remainder of the transcription reactions are Reactions 3-34. Reactions 1, 15, 17,
and 20 are transcription initiation reactions. Reactions 2, 3, 8, 9, 13, 14, 16, 18, 19, 21, 26,

27, 28, 29, 33, and 34 are transcription elongation reactions.
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The N-utilization sites NUTR and NUTL are places where the transcription process

slows down (Reactions 4 & 22) and the RNAP/DNA complex can bind N with some prob-
ability (Reactions 5-7, 23-25). Once the RNAP/DNA complex (with or without N) moves
past these sites, it continues as normal (Reactions 8-9, 26-29).  When the RNAP/DNA
complex reaches the termination sites TR and TL;, complexes without N bound terminate
transcription with some probability: the RNAP falls off the DNA at that point (Reactions
10,11, 30 & 31). Anti-terminated complexes, i.e., complexes with N bound, pass through

the termination sites (Reactions 12, 32).

4.4.2 Translation

Mathematically, translation is very similar to transcription; the molecular players are dif-
ferent, but the processes are similar. A ribosome binds the mRNA (Reactions 40, 42, 44,
46, and 48) and elongates step by step, translating mRNA into protein (Reactions 41, 43,
45, 47, and 49). There is none of the complication of anti-termination to deal with. How-
ever, we shall also consider degradation of mRNA: instead of a ribosome binding mRNA, a
ribonuclease (RNase) can bind to mRNA and degrade it (Reactions 35-39). Both ribosome
binding and RNase binding are modeled as pseudo-first order processes, i.e., the concen-
tration of ribosome and RNase are assumed to be constant, so that the reaction constant

subsumes the concentration of ribosome or RNase.

4.4.3 Dimerization and Simple Protein Degradation

The protein products cro and cl can form dimers, i.e., two copies bind together (Reactions
50-53). It is these dimer forms that bind DNA. The (monomer) forms of ¢l and cro
protein, as well as N protein, follow simple degradation laws (Reactions 54-56). The

protein products of cIl and cllII follow the more complicated scheme in the next subsection.

4.4.4 Complex Protein Degradation

Degradation of cIl and cIII proteins is highly interconnected, and involves two proteins P1
and P2 from the host. (Quite possibly these proteins are hflA and hflB, but that is not
important for the purposes of calculation.) This complex degradation obeys the equations

in Reactions 57-68.
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4.4.5 Cell

The cell volume doubles over the course of 35 minutes (“Reaction” 69). The host proteins
RNAP, P1, and P2 must be generated, in order to keep their concentrations roughly the
same as the cell grows (Reactions 70-72). The reactions to do this may seem strange —
certainly these proteins come from somewhere — but the key point is that the process by

which these proteins are made is not part of the model.

4.5 Promoters

All of the rate constants labeled ‘see 4.5 in the tables above belong to reactions of the
form RNAPeDNA(X),/ps50¢ —RNAPeDNA(X),pen. The astute reader will also note that
there are no reaction whose product is RNAPeDNA(X).joseq- These species, and the
resulting rate constants, come from an equilibrium binding model of promoters [1, 37].
Recall Example 7 of Chapter 2, which gave a very simple equilibrium model, and Section
2.8, which showed how to use partition functions to deal with complicated models. The
more complex models use the same techniques, but with more states. Fach state has
an associated rate constant for open complex formation, whose interpretation is: the rate
constant given that the system is in that state. The equilibrium models are in Tables 4.4
through 4.6, and come from [3]. (Note that the Og operator has two promoters: one left

and one right.)

Example 19 (Fquilibrium probability distribution for Prg.) Call the states of Prg (from
Table 4.4) 1, 2, 8, and 4. From Chapter 2, P(state s) will be of the form

exp(—AG,/ RT) x [cIl[P?wer x [RNAPJPower
A

where 7 is the partition function, and consists of the sum of all the different numerators for
all four possible states. To simplify notation, let Ks = exp(—AGs/RT) for s € {1,2,3,4}.
Note that all AG values are given in keal/mole. The temperature used is 37C, so using 1

keal = 4184 J, R = 8.814 J/(Kxmole) and converting degrees C' to K, AG/RT = (AG x
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4184)/(8.314 x (273 +37)).  Thus

Ky = exp(—AG;/RT) =exp(0)=1
Ky = exp(—AGa/RT) = exp(—((—9.9) x 4184)/(8.314 x (273 + 37))) = 9.54 x 10°
Ky = exp(—AGs/RT) = exp(—((=9.7) x 4184)/(8.314 x (273 + 37))) = 6.90 x 10°

Ky = exp(—AGy/RT) = exp(—((—21.5) x 4184)/(8.314 x (273 + 37))) = 1.44 x 10

So,

P(l) = %

PO) = Ky x [;NAP]

PE) = K3 ><Z[CH]

P) = Ky x [RN;XP] X eIl
where

Z = K+ Ky x [RNAP + K3 x [cIl] + K4 x [RNAP] x [cI]]
#RNAP  #RNAP
Navagadro XV 109
#ell  frell
Navagadro X V' 10

[RNAP| =

lell] =

Example 20 (Average rate of open complex formation.) The values of k. reported in
Table 4.4 are conditioned on the system being in each respective state. We can define the

average rate by

(koc) = Y P(s) X koe(s)
= P(1) x 04 P(2) x 0.00004 + P(3) x 0+ P(4) x 0.015

—  P(2) x 0.00004 + P(4) x 0.015

Using the formulas from the previous example, let #RNAP = 30, and #cll = 0. So
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[RNAP| =30 x 1072 and [cI]] = 0. Then,

7 = Ki+ Ky x [RNAP| + K3 x [cIl] + K4 x [RNAP| x [cI]]

= 1+ (954 x10% x (30 x 107°) +0+0

= 1.29
(9.54 x 10°) x (30 x 10°?)
P(2) = = 0.223
2) 1.29
PM4) = 0
(koe) = 0.223 x 0.00004 =8.9 x 107°

Now, let #RNAP = 30, and #cll = 20. So [RNAP| = 30 x 1072 and [cll]] = 20 x 1079,
Then,

Z = Ki+ Ky x [RNAP|+ K3 x [cIl] + K4 x [RNAP] x [cI]]
= 1+ (9.54 x 10%) x (30 x 107?) + (6.90 x 10%) x (20 x 10~)

+ (144 x 10™) x (30 x 107%) x (20 x 107?)

= 2.29
6 -9

PE) = (9.54 % 10 )2>2<9(30 x 1079) 0195
15 -9 -9

P1) = (1.44 x 10%) x (30 x 1079) x (20 x 10~9) 0377

2.29
(koe) = 0.125 x 0.00004 + 0.377 x 0.015 = 0.0057

Thus, changing the amount of cIl by 20 molecules increases the rate of open complex for-

mation by a factor of nearly 1000.

4.6 Discussion

To a first approximation, this model consists of many reactions and an equilibrium binding
model.  Our first cut at calculation (in Chapter 5) will discuss how to deal with large
numbers of reactions. Calculations involving the equilibrium binding model will be discussed
in Chapter 8.

There are a couple other things to note. First, the transcription and translation reac-

tions consist of many identical steps. Although one could deal with them by splitting to
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one step per reaction, there are more efficient ways, detailed in Chapter 6. Finally, second
(and higher) order reactions are not simple exponentials when volume is allowed to change.
One way to handle that is to assume volume changes slowly and recalculate second order

rate constants once in a while. Another way is presented in Chapter 6.
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# Reaction Constant Other
)

1 | RNAPeDNA(OR right)ciosed —RNAPODNA(OR rignt)open | see 4.5

2 RNAPeDNA(ORg)opern — RNAPeDNA(cro)+mRNA,,, 30 240 steps

3 RNAPeDNA(cro) —RNAPeDNA(NUTR) 30 24 steps

1 RNAPeDNA(NUTR) —RNAPeDNA(NUTR+1) 5

5 | RNAPeDNA(NUTR)+N——RNAPeNeDNA(NUTR) 0.145

6 | RNAPeNeDNA(NUTR) —>RNAPeDNA(NUTR) N 0.1

7 | RNAPeNeDNA(NUTR) —RNAPeNeDNA(NUTR+1) 30

8 RNAPeDNA(NUTR+1) —RNAPeDNA(TR,) 30 68 steps

0 | RNAPeNeDNA(NUTR+1) —RNAPeNeDNA(TR;) 30 68 steps

10 RNAPeDNA(TR;) —RNAP o, 15

11 RNAPeDNA(TR,) —>RNAPsDNA(TR, + 1) 15

12 RNAPeNeDNA(TR;) —RNAPeNeDNA(TR; 4 1) 30

13 RNAPeDNA(TR; + 1) —RNAP f,.c+mRNA 17 30 315 steps

14 | RNAPeNeDNA(TR; + 1) —RNAP .+ N+mRNA, /7 30 315 steps

15 RNAP.DNA<PRE)closed —>RNAPODNA<PRE)Open see 4.5

16 | RNAPeDNA(Ppp)open —RNAPSDNA(Opiest)open 30 400 steps

17| RNAPeDNA(ORg e tt)ciosed —RNAPODNA(OR jc¢t) open see 4.5

18 | RNAPeDNA(OR jct)open —RNAPeDNA(cI)+mRNA,; 30 720 steps

19 RNAPeDNA (cI) —RNAPsDNA(PL)open 30 1640 steps

20 RNAPeDNA (P ) otosed —RNAPSDNA (2% ) open se 4.5

21 RNAPeDNA (P;)open —RNADeDNA(NUTL) 30 60 steps

22 RNAPeDNA(NUTL) —RNAPeDNA(NUTL 1 1) 5

23| RNAPeDNA(NUTL)+N——RNAPeNeDNA(NUTL) 0.145

21| RNAPeNeDNA(NUTL) —>RNAPeDNA(NUTL)+N 0.1

25 | RNAPeNeDNA(NUTL) —RNAPeNeDNA(NUTL 1) 30

26 | RNAPeDNA(NUTL11) —SRNAPeDNA(N)+mRNAy 30 190 steps

RNAPeNeDNA(NUTL 1) —

27 RNAPeNeDNA(N)+mRNA y 30 490 steps

28 RNAPsDNA(N) —RNAPeDNA(TL,) 30 180 steps

29 RNAPsNeDNA(N) —RNADeNeDNA(TL,) 30 180 steps

30 RNAPeDNA(TL;) —RNAP .. 25

31 RNAPeDNA(TL;) —RNAPeDNA(TL; 1 1) 5

32 RNAPeNeDNA(TL;) —RNAPeNeDNA(TL; + 1) 30

33 RNAPeDNA(TL; + 1) —RNAP,, ., tmRNA,; 30 1260 steps

31| RNAPeNeDNA(TL; + 1) —RNAP o - NTRNA. ;7 30 1260 steps

35 mRNA,;+RNase—RNase 0.03 = kx(#RNase)

36 mRNA_ ;;+RNase—RNase 0.03 = kx(#RNase)

37 mRNA_ ;;+RNase—RNase 0.03 = kx(#RNase)

38 mRNA,,,+RNase—RNase 0.03 = kx(#RNase)

39 mRNA y+RNase—RNase 0.03 = kx(#RNase)

Table 4.2: The complete set of reactions for the lambda model, Part I.
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# Reaction Constant Other
)
40 mRNA_.;+Ribosome—RibosomeesmRNA,.; 0.3 = kx(#Ribosome)
41 RibosomeemRNA,.; —Ribosome4-cIl+mRNA,; 100 710 steps
42 mRNA . ;;+Ribosome—RibosomesmRNA ;7 0.3 = kx(#Ribosome)
43 | RibosomeemRNA,.;; —Ribosome4cII+mRNA ;7 100 290 steps
44 mRNA . ;;7+Ribosome—RibosomeemRNA ;77 0.3 = kx(#Ribosome)
45 | RibosomeemRNA ;77 —Ribosome—+cIII+mRNA ;77 100 160 steps
46 mRNA..,,+Ribosome—RibosomesmRNA..,, 0.3 = kx(#Ribosome)
47 | RibosomeemRNA,.,, —Ribosome+cro+mRNA,,, 100 200 steps
48 mRNA y+Ribosome—RibosomeemRNA 5 0.3 = kx(#Ribosome)
49 RibosomeemRNA y —Ribosome+N-+mRNA y 100 320 steps
50 CrO-+Cro——Croecro 0.05
51 CrO®Cro——Cro-+cro 0.5
52 cl4cl—clecl 0.05
53 clecl—scl+cl 0.5
54 cl—nothing 0.0007
55 cro—nothing 0.0025
56 N—nothing 0.0023
57 cll+P1—clleP1 0.01
58 clleP1—clII+P1 0.01
59 clleP1—P1 0.015
60 clII4+P1—cllleP1 0.05
61 cllTeP1——cIII+4-P1 0.001
62 cllleP1—P1 0.0001
63 clI+P2—clleP2 0.0001
64 clleP2——clI+P2 0.065
65 clleP2—P2 0.6
66 clIT4+P2——cllleP2 0.01
67 cllTeP2——cIIT+P2 0.01
68 cllleP2—P2 0.001
69 Volume =Vy(1+4-ct) e
70 nothing—RNAP 0.0146
71 nothing—P1 0.0116
72 nothing—P2 0.0465
Temperature 37 C

Table 4.3: The complete set of reactions for the lambda model, continued.
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Binding sites | AG koc

— 0 0

— | RNAP | -9.9 | 0.00004
cll -9.7 0
cll | RNAP | -21.5 | 0.015

Table 4.4: Equilibrium model of Pgg binding site. The units of AG are kcal /mole and the

units of k. are s 1.

Binding sites AG koc
— — 0 0
Cro®cro — -10.9 0
— croecro | -12.1 0
clecl — -11.7 0
— clecI | -10.1 0
— RNAP | -12.5 | 0.011
croecro | croecro | -22.9 0
croecro | clecl | -20.9 0
clecl | croecro | -22.8 0
clecl clecl | -23.7 0

Table 4.5: Equilibrium model of Py, binding site. The units of AG are kcal/mole and the

units of k,. are s~ 1.
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Binding Sites AG koc,left koc,m’ght
— — — 0
— — clecl | -11.7
— clecl — -10.1
clecl — — -10.1
— — croecro | -10.8
— CTrO®Cro — -10.8
CTrO®Cro — — -12.1
RNAP — — -11.5 | 0.001
— RNAP — -12.5 0.014
— clecl clecl | -23.7
clecl — clecl | -21.8
clecl clecl — -22.2
— croecro | croecro | -21.6
CTrO®Cro — croecro | -22.9
CTrO®CIo | Croecro — -24.0
RNAP | RNAP — -22.5 | 0.001 0.014
— croecro | clecl | -20.9

— clecl croecro | -23.8

clecl — croecro | -20.9
CTrO®Cro — clecl | -23.8
clecl | croecro — -20.9
croecro | clecl — -22.2
clecl RNAP — -22.6 0.014
RNAP clecl — -21.6 | 0.011
RNAP — clecI | -23.2 | 0.001
croecro | RNAP — -24.6 0.014
RNAP | croecro — -22.3 | 0.001
RNAP — croecro | -22.3 | 0.001

clecl clecl clecl -33.8
Croecro | croecro | croecro | -33.7

Croecro clecl clecl -35.8
clecl Croecro clecl -32.6
clecl clecl croecro | -33.0

clecl croecro | croecro | -31.7

Croecro clecl croecro | -33.0

croecro | croecro | clecl | -34.6
RNAP clecl clecI | -35.2 | 0.011
RNAP | croecro | croecro | -33.1 | 0.001
RNAP | croecro | clecl |-34.0 | 0.001
RNAP clecl | croecro | -32.4 | 0.011

Table 4.6: Equilibrium model of Og binding site. The units of AG are kcal/mole and the

units of k,. are s~ 1.
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Part 111

Exact, Efficient Stochastic

Simulation
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Chapter 5 The Next Reaction Method

5.1 Summary

This chapter describes an efficient algorithm, the Next Reaction Method, for exact sim-
ulation of chemical reactions in the stochastic framework. The Next Reaction Method
takes time proportional to the logarithm of the number of reactions, not to the number of
reactions, and uses a single random number per simulation event. This chapter contains
the basic description of the algorithm (as applied to time-invariant Markov processes) and
a detailed description of the data structures used. The extension to time-varying and

non-Markovian processes is done in the next chapter.

5.2 The Next Reaction Method

Gillespie’s First Reaction Method has three activities that occur every iteration and take

time proportional to the number of reactions, 7:

1. updating all r of the ays,
2. generating a putative time, 7;, for each 7, and

3. identifying the smallest putative time, 7.

The Next Reaction Method will do away with each of these in turn. The main ideas

used are:

e Store T;, not just a;.

e Be extremely sensitive in recalculating a; (and 7;); recalculate a; only if it changes.
The preceding statement may seem circular: how can one know that a; has changed
or not changed without calculating it and comparing to its old value? In fact, one can
analyze the set of reactions beforehand and determine which reactions change which
a;8.  Section 5.3 will introduce a data structure, called a dependency graph, which

allows one to update the minimum number of a;s.
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e Reuse T;8 where appropriate. In general, Monte Carlo simulations assume statistically

independent random numbers, so it is usually not legitimate to reuse random numbers.
In this particular special case, we shall prove that it is legitimate. Specifically,
Theorem 2 in Section 5.6 plus two simple transformations make it possible to reuse
all 7;s except for 7,, the time of the reaction that was just executed. Because re-using
random numbers is not valid in general, it is critically important to justify such reuse

in this special case.

Switch from relative time (time between reactions) to absolute time. This will obviate
the need for one of the two transformations above; for reactions whose underlying a;

has not changed, the putative time 7, will not have to change, either.

Use appropriate data structures to store a;s (and 7;s), so that updating those that
change will be a very efficient operation. Section 5.4 shows a data structure, called

an indexed priority queue, that achieves this goal.

The formal statement of the algorithm is in Section 5.5, following the definitions of the

data structures used.

5.3 Dependency Graphs

Consider, once again, the reactions in Eq 3.3.

Definition 2 Let Reactants( p ) and Products( p ) be the sets of reactants and products,

respectively, of reaction p. So, for example, Reactants( Reaction 1 ) = {A, B} and Prod-

ucts( Reaction 1 ) ={C%}.

Definition 3 Let DependsOn( a, ) be the set of substances which affect the value ay,.

Evidently, Reactants( jt ) = DependsOn( a,, ). It is sometimes useful to add additional

dependencies (e.g., in the lambda model of Chapter 4), so we make this distinction.

Definition 4 Let Affects( i) be the set of substances that change quantity when reaction p

18 executed.



Reaction a, DependsOn( a,, ) | Affects( i)
A+B B0 | by x (#A) x (#B) A B A, B, C
B+C 2D | kyx (#B) x (#C) B, C B, C, D

D+E 5 E+ F | ks x (#D) x (#E) D, E D, F
r* pra kg X (#F) F D, F, G
E+G25 A | ks x (#B) x (#G) E, G A E, G

Figure 5-1: Dependency graphs for example equations from Table 5.1.

Typically, Affects( p ) = Reactants( p ) U Products( p ), but again, there may be
exceptions (e.g. catalytic reactions, such as Reaction 3).

Table 5.1 illustrates each of these concepts.

Definition 5 (Dependency Graph) Let a set of reactions R be given. Let G(V, E) be
a directed graph with vertex set V = R, and with a directed edge from v; to v; if and
only if Affects( v; ) N DependsOn( ay; )# 0. (If for some strange reason, the self edges
from v; to v; are not included in this definition, include them as well.) Then G is called the

dependency graph of the set of reactions R.

In other words, a dependency graph is a data structure which tells precisely which a;s
to change when a given reaction is executed. Using the dependency graph allows one to
recalculate only the minimum number of a;s in Step 5 of the Next Reaction Method. The

dependency graph of the sample reactions is illustrated in Figure 5-1.
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Reactions

LIS

Chemical Species

AN N

Reactions

Figure 5-2: Schematic view of the two-step process of generating the dependency graph.
First, one records which reactions affect which chemical species, then one records which
chemical species affect which reactions and uses this information to infer which reactions
affect which other reactions.

5.3.1 Efficient Generation of Dependency Graphs

The definition of dependency graph calls for a vertex for each reaction and an edge from
v; to v; if and only if Affects( v; ) N DependsOn( a,, )# 0. A simple way to compute
the dependency graph is to check, for each possible edge, whether the edge meets the
dependency graph criterion. This approach requires (# reactions)? operations.

The simple approach may well be sufficient, as a dependency graph need only be gener-
ated once per reaction set, regardless of how many simulation events occur per iteration or
how many iterations are run. (Further, in the Multiple Next Reaction Method of Chapter
9, only one dependency graph will be used regardless of how many simulation events, itera-
tions, or parameter sets.) For completeness, though, here is a more efficient algorithm for
generating dependency graphs.

The basic idea is simple: store a temporary array, Chemical Affects, with one entry
for each chemical species. Loop through the reactions once, looking at dependencies: make
links in the Chemical Affects array for each (chemical ¢, reaction ') pair, where chemical
c affects the propensity function a, of reaction r’. Loop through the reactions again,
looking at which chemicals each reaction affects: for each (reaction r, chemical ¢) pair,
where reaction r affects chemical ¢, add to the dependency graph all edges (r, r') where r
affects ¢ and c affects r'. In particular, (r, ¢) is stored in Affects(r) for each reaction, and
(¢, 1) is stored in the ¢ entry of the array ChemicalAffects.

The formal statement is:
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Algorithmn 3

1. For each chemical C

ChemicalA ffects(C) = .

2. For each reaction R
For each chemical C € DependsOn(ar)
ChemicalAffects(C) = ChemicalAffects(C) U {R}

3. For each reaction R
For each chemical C € Affects(R)
For each reaction R’ € ChemicalAffects(C)
Add edge (R, R’) to dependency graph.

This algorithm does not examine every edge, so it is not O( (#reactions)?). Rather, it
depends on the number of chemicals affected by or affecting each reaction (typically, these
two quantities sum to < 3), and the number of actual edges in the dependency graph. For

systems with many reactions but few dependencies, this algorithm is preferable.

5.4 Indexed Priority Queues

Typically, the dependency graph is sparse, i.e., that the number of edges from a given vertex
is small. It is important to have data structures that are very efficient at handling a small
number of updates.

The Next Reaction Method deals with two kinds of variables, 7;8 and a;s. The latter
are easy to handle: the operations required are READ and UPDATE; they can be stored
in a simple array. (A purist might not even store them, but rather recalculate them as
needed.) The 7;s require the operations: FIND_MINIMUM (in Step 2) and UPDATE
(in Step 5d). The former is one of the operations of a priority queue (which is often
implemented as a heap), and with a little thought, the other can be implemented in terms
of the standard priority queue algorithms ADD_ELEMENT and DELETE_ELEMENT [8].
However, the standard algorithms, although used in some contexts for this speedup [27], are
not really what is called for in this context. A better UPDATE, which takes into account

the structure of the data, requires an indexing scheme and a separate UPDATE algorithm.
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(8,13)
B c
(1,4.2) (6, 2.0)
D E F G
(9,7.3) (4,55) (2,3.7) (7,89)
H I J
(591 ] 1o 101 (3, )

(BlFIJ[E]H]C]G[A]D]I|
123456789 10

Figure 5-3: Example indexed priority queue. Top: tree structure. The positions in the tree
structure are labeled with letters A—J for pedigogical purposes. Bottom: Index structure.
Each number has a pointer to the corresponding position in the tree structure; these pointers
are illustrated as letters A—J.

Definition 6 An indexed priority queue consists of (a) a tree structure of ordered pairs
of the form (i,7;), where i is the number of a reaction, and T; is the putative time when
reaction i occurs, and (b) an index structure whose i-th element is a pointer to the position
in the tree that contains (i,7;). The tree structure in (a) has the property that each parent

has a lower T; than either of its children.

Figure 5-3 shows an example priority queue. Note the following: a) finding the
minimum element takes constant time — it is always in the top node, b) the ordering is
only vertical, not horizontal, ¢) the number of nodes is precisely the number of reactions r,
not twice the number of reactions as in the efficient version of the Direct Method in Chapter
7, d) because of the indexing scheme, it is possible to find any arbitrary reaction in constant
time, and e) 73 = oo, which corresponds to reaction 3 never occurring, i.e., az = 0. In
fact, oo is a perfectly legitimate floating point number, so it is possible to implement this
feature (in the C programming language, for example) without any major headaches.

There are several algorithms that need to be defined in order to use the priority queue.

Most of them are analogous to algorithms for priority queues. In particular, one needs:

e SWAP(i, j), which swaps the tree nodes i and j and updates the index structure ap-
propriately,

e BUILD, which takes a tree and an index structure and moves entries until the tree

has the property that each parent is less than its children,
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e UPDATE(r), which updates a given reaction number.

SWAP is easy to implement. BUILD is completely analogous to the standard heap/priority
queue BUILD operation, but uses SWAP so as to keep the index structure correct. UP-

DATE is non-standard and deserves comment.

Algorithm 4 UPDATFE(node n, value new_value)
Change value of n to new_value

UPDATE.AUX( n )

Algorithm 5 UPDATE_AUX(node n)

If value(n) < value( parent(n ) )
SWAP n and parent( n )
Update_aux( parent(n ) )

FElse If value( m ) > minimum value( children( n ) )
SWAP n and minimum child( n )
Update_aux( minimum child( n ) )

Else

Return
An example is called for.

Example 21 Suppose the value of 71 changes from 4.2 to 16. Looking in the index array,
71 18 stored in node B. In the tree structure, one changes node B’s 7 value to 16. Calling
UPDATE_AUX on node B, one executes the ‘Eise If’ statement and swaps the ordered
pairs in nodes B and F and the corresponding indices (1 and 4) in the array.  Calling
UPDATE _AUX recursively on node I, one notes that the new value of 16 is in the correct
position (5.5 < 16 < 00), so the final ‘Else’ clause is executed, and the algorithm stops with:
ordered pair (4, 5.5) in node B, (1, 16) in node E, index ‘E’ in position 1 of the array, and

index ‘B’ at position 4. The rest of the structure remains unchanged.

The converse case, where the new value is less than the old value, is completely analo-
gous.
One way to implement UPDATE is simply to delete the offending node, and insert a

new node with the same reaction number but a different time value. This takes something
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like 2logr operations. Our approach, on the other hand, changes the node in place, then
bubbles it up or down the tree structure until the priority property is re-established. This
evidently takes logr, but has the advantage that if there are a small number of reactions
that have fast rate constants compared to the others, say there are v’ such reactions, most
of the updates will involve those, and take logs' time, because once the algorithm reaches
a node that is already in the right spot, it does not continue further. So, for example, if
some of the reactions are “disabled” or “not possible” in the given state, and have a = 0
and 7 = o0, they will not slow down the computation. This effect can be significant, for
example, the chemotaxis system of [32] contains a large number of reactions which will not
be “active” at any given time. Because of these inactive reactions, [32] avoided the standard
Gillespie algorithm (i.e., the Direct Method), which grows with the number of reactions,
and instead developed one that is not exact, but scales with number of molecules, since the
number of molecules is much less than the number of possible reactions. Note that our
algorithm is not only exact, but also scales with the logarithm of the number of “active”

reactions. Chapter 8 gives some performance numbers.

5.5 Statement of Algorithm and Timing Analysis
Algorithm 6 (Ezxact Stochastic Simulation — Next Reaction Method)
1. Initialize:

(a) Set initial numbers of molecules, set t <« 0, generate a dependency graph G.
(b) Calculate the propensity function, a;, for all i.

(c¢) For each i, generate a putative time, 7;, according to an exponential distribution

with parameter a;.

(d) Store the T; values in an indexed priority queue P.
2. Let p be the reaction whose putative time, 7, stored in P, is least.
3. Let T beT,.
4. Change the number of molecules to reflect execution of reaction . Set t — 1.

5. For each edge (u, ) in the dependency graph G,
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(a) Update aq.

(b) If o # i, set
To < (aa,old/aa,newa& - t) +1 (51)

(c) If o = pu, generate a random number, p, according to an exponential distribution

with parameter a,, and set To «— p +1 (see notel)

(d) Replace the old T, value in P with the new value.
6. Go to Step 2.

Consider the time used by the algorithm. Step 1 of the Next Reaction Method is only
executed once; Steps 2-6 are executed once for each simulation event. Steps 3, 4, and 6 do
not depend on the number of reactions, . Step 2 does not either, because of the properties
of indexed priority queues. Step 5 is executed once for every edge (i, ) in G; suppose there
are k such edges, where k is typically much less than r. Step 5a, executed k& times, depends
on the number of reactants for each (elementary) reaction, so it should take no more than
3 multiplications (as was explained in the introduction). Step 5b, executed k& — 1 times,
requires an addition, a subtraction, a multiplication and a division. Step bc, executed 1
time, requires a call to the random number generator, which can be very slow compared to
the other operations discussed (a simple test on our system indicates that a single call to
the random number generator takes 10 times as long as a division). Step 5d, executed k
times, requires at most 2log(r) operations, although it may effectively take far fewer (see
the discussion in Section 5.4). (Throughout this paper, log means logarithm base 2, as per
the typical computer science usage.)

The total number of operations per iteration is at most ¢93 4,546 + csp(k — 1) + ¢5c +
csa(k)(2log(r)), where each ¢ is a machine specific constant. From a computer science
perspective, this is O(log(r)), i.e., for very large r, only the last term will matter. From a
more practical perspective, for r of 50 or 100, the other terms, particularly cs., may not be

negligible. Let us be very clear on this point: the Next Reaction Method words even if & is

LIt may happen that aa = 0 for some o # p, in which case Step 5b is incomplete. As long as ao =0,
To Should be set to oco. Let t1 be the time at which as first becomes 0, let 1o be the time at which a. ceases
to be 0, let aq o1a be the last pre-0 propensity, and let Go,new be the first post-0 propensity. Then the correct
transformation for Step 5b is To «— (Qa,0ld/ Ga,new)(Ta —t1) + t2.
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large, but will achieve more of a speedup if & is small, relative to the number of reactions.
(An equivalent way of saying the same thing is ‘if the dependency graph is sparse.’)

Lukkien et al. [27]| discuss ways to improve the Direct Method and the First Reaction
Method (a more detailed treatment can be found in Segers [36]). Their improved First
Reaction Method, which we shall call the Absolute Time First Reaction Method, consists
of switching from relative to absolute times and using a standard priority queue. They
conclude that for time-invariant processes, the Direct Method is preferable to the Absolute
Time First Reaction Method for two reasons, which do not apply to the Next Reaction
Method. First, in their domain, in which position is important, it is difficult to do the
indexing necessary to implement the efficient update algorithm (Algorithm 4 of Section
5.4); specifically, the time-consuming part of their problem is not the priority queue, but
rather maintaining the data structures that store position-dependent information, which is
irrelevant in the present position-independent context. Second, the Absolute Time First
Reaction Method generates too many random numbers. Because typical computer pseudo-
random number generators cycle with some regularity, using too many random numbers will
quickly exhaust the abilities of the generator, and should be avoided with extreme prejudice.
(Also, from a purely practical standpoint, generating random numbers is relatively slow.)

Amazingly, the Next Reaction Method uses just a single random number per iteration.
Clearly, the optimum would be ezactly one random number per iteration. Our algorithm
is slightly sub-optimal, in that the initialization step will generate r extra random numbers,
and at the end of the algorithm, » random numbers will be left over. As the number of
iterations increases, this initialization effect becomes negligible in comparison. The only
new random number generated, 7,, corresponds to the reaction that was just executed and
is generated in Step bc. It is clear that reaction p requires a new random number, since
the value of the old random number has been used explicitly, thus reducing it to a sure
variable. Section 5.6 will show that it is correct to do the other manipulations in 5, so as
not to regenerate any other random numbers.

For this reason we assert that the Next Reaction Method is superior to the Direct

Method.
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5.6 Reusing 7;s

This section will demonstrate that the Next Reaction Method, with its switch from relative
to absolute times and all of the strangeness in Step b, is equivalent to the First Reaction
Method. This demonstration, necessary to show that the algorithm works and why it works,
is somewhat more mathematical than the rest of the paper. The reader whose primary
interest is implementing the Next Reaction Method may skip ahead with impunity. As
mentioned before, it is usually not legitimate to reuse random numbers; this section will
prove that it is permissible in this special case.

In what follows, T; will denote the random wvariable corresponding to the i-th reaction,
and 7;, a number, will denote a sample from that random variable.

One of the differences between the First Reaction Method and the Next Reaction Method
is that the former uses relative times, while the latter uses absolute times. This should not
be a stumbling block or a source of confusion. Suppose that during the n-th iteration of the
First Reaction Method, the random variables are denoted R, for 1 < o < (number of reac-
tions). Then R, =FExp(aq), and the density of R, is given by Pg_(7) = 0(7)aq exp(—anT).
(0(7), the Heaviside function, is 0 for 7/ < 0 and 1 for 7/ > 0.) The corresponding absolute
time is given by the random variable T, = R, + t5, the sum of the relative time and the
variable ¢ during the n-th iteration. (The n-th iteration ends, and the n+ 1-st begins, when
t is updated in Step 5.) What is the density of 7,7 By the random variable transformation
(RVT) theorem [18],

Pr (1) = /OO Pr (7)8(r — [T + tn))dr" = Pr (7 — tn) = 0(7 — tn)aq exp(—an (T — ty)),

— 00

or, equivalently,

exp(—aan(t —tn ifu>t,
Pr(Thn > u) = ( ( ) (5.2)

1 otherwise

Clearly, an absolute-time version of the First Reaction Method with no other changes

would be entirely equivalent to the original relative-time version.
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Now we turn our attention to the Next Reaction Method. After Step 1, the random

variables follow the distribution in Eq 5.2; tg was set to 0 in Step la. The real core of the
Next Reaction Method is that each subsequent iteration maintains Eq 5.2.
At the risk of being overly mathematical, we state the key property that allows the Next

Reaction Method as a theorem:

Theorem 2 Assume that Eq 5.2 holds at the beginning of Step 2. Then, before Step 5 of

the n-th iteration, for all v # p, T; is distributed according to

exp(—ain(t — tny1 if u >ty
Pr(T; > u) = (Zain{t = tni1)) i (5.3)

1 otherwise

Proof. By assumption, before Step 2 of the n-th iteration, 7; is distributed according
to Eq 5.2. Steps 2 and 3 identify the least 7, namely 7,,. The act of identification reduces
uncertainty. In particular, T}, becomes the sure variable 7,, and all of the other 7;s must be
larger than 7,. Hence each of the other T;s is distributed according to Pr(T; > u|T; > 7,,).
By definition, this is Pr((7; > w) AND (1; > 7,))/Pr(T; > 7,). There are two cases.
Case 1) for v > 7,, the numerator simplifies to Pr(7; > u), and the resulting division is
exp(—ain(u — tn))/ exp(—ain(T) — tn)) = exp(—asn(u —7,)). Case 2) u < 7, and the
numerator simplifies to Pr(7; > 7,). In this case, the numerator cancels the denominator,
leaving 1. In Step 4, {,41 is set to 7 (which was set to 7, in Step 3), so the theorem holds.

Showing that Eq 5.2 is maintained is just a matter of collecting the details:

e For those 7 # ;1 whose a; remains constant from the n-th to n+1-st iteration, a; 1 =
a;n, so Eq 5.3 is equivalent to Eq 5.2. There is no need to change these 7;s in Step
5. In fact, reactions whose a; does not change are not in the dependency graph, so

the 7,8 are not changed.

e For those i # p whose a; does change, 7; is now distributed according to Eq 5.3. Sim-
ply plugging in to the RVT theorem shows that the random variable T}, constructed

by 7t = (@in/@int1)(Ti — tny1) + tny1, is distributed according to Eq 5.22.

2Similarly, plugging into the RVT theorem shows directly that the formula for the case a; = 0 produces
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What is the intuition behind this transformation? By the theorem, 7; is distributed
according to Eq 5.3. Going back to relative times, 7; — £, 11 is distributed according
to Exp(a;n). It can be shown (by the RVT, for example) that (a;n/a;ni1)Exp(asy)

= Exp(a;ny1). Returning to absolute times gives the transformation.

This transformation is applied to all the appropriate ¢s in Step 5b.

e Finally, for ¢ = p, it is necessary to generate a new random number. Note that the
theorem only holds for ¢ # p. For ¢ = p the variable T}, was reduced to a sure variable

in Step 3, so a new random variable is needed. That new value is supplied in Step

5c.

One key point has been overlooked thus far: the First Reaction Method requires statis-
tically independent random numbers. To complete the correctness argument amounts to
showing that the manipulations done by the Next Reaction Method do not introduce any
statistical dependencies.

At each step in the algorithm 7; = f;(R;); each random variable in the Next Reaction
Method is a transformed version of the corresponding random variable in the First Reaction

Method, and there are no cross dependencies. By the RVT theorem,

=1

- 11 { / " 0(rs) exp(—agri)s (ri — fi(rs)) dn}

=1 e

Pr.py(T1,...7n) = /o; .. /C: {1_[1 Q(Ti)exp(—airi)} H(S(Tj — fi(ry)) dry---dry

The “product form” of this joint distribution function tells us that since the original
variables R; were statistically independent, then the transformed variables T; are as well.

In summary, Step 1 sets up the T; according to Eq 5.2. FEach subsequent iteration
maintains that distribution, without introducing any statistical dependencies between the
random variables. Thus the Next Reaction Method is equivalent to the First Reaction

Method, and in turn to the Direct Method and the Master Equation approach.

the correct new distribution for 7). We shall outline a more intuitive argument, but not make it entirely
rigorous: Intuitively, one can multiply the original transformation by a;,t1, gIViNg @; ni17; = GinTi —
Cintnt1 + Gint1tnt1. One can view this as a transformation ¢ =c¢— Cintnt1 + Gintri1tny1 of a new
random variable ¢, which is well-defined even if @ = 0. Applying the ¢ — ¢’ transformation for each time
that a;,n+1 = 0 and the first non-zero a; 11, and applying ¢ = a;,,7; to the last pre-zero a; and the first
post-zero a;, gives the desired transformation.
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Chapter 6 Extensions of the NRM

6.1 Summary

The Next Reaction Method presented in the previous chapter assumed that the probability
of a reaction p occurring in a little bit of time dt (a) is given by a, X dt, where a, is a
constant, and (b) depends only on the current state, not on the previous state or states
of the system. It can be shown [19] that many reasonable chemical systems have these
properties.

This chapter will show how to deal with systems in which (a) and (b) do not hold. In
particular, it first relaxes assumption (a) by letting a,, be a function time (as is necessary to
model systems whose rate “constants” change, due to changing temperature, volume, etc.),
and second it relaxes assumption (b), showing how to deal with non-Markov processes. Even
though elementary reactions in the stochastic framework are Markov (i.e., have property
(b) ), it is sometimes useful to group consecutive steps to form a composite process. The
full model of that process is, of course, still Markov, but if one is only interested in a subset
of the variables, the resulting mathematical process is not guaranteed to be Markov.

Computationally, it is amazingly simple to do the extension: one simply replaces the
exponential random number generator with some other random number generator. Much
mathematical machinery is required to show that it is legitimate to extend the NRM in this

way.

6.2 Time-Dependent Markov Processes

Consider a system in which the probability of a reaction u occurring in a little bit of time
dt is given by a, x dt, but a, is a funclion of time. For now, assume that the transition
probabilities do not depend on history, but only on the current state. For example, in
Table 5.1, the first reaction has a; =k; X (#A4) x (#B). The rate constant k; is a function
of temperature and of volume. In an engineering system, one typically affects the rate

constants by heating or cooling the reaction. In a biological system, cell growth changes



78

the volume. Either of these mechanisms, or others, might change rate constants as a
function of time, which requires a modification to the algorithms presented.
In place of the simple exponential distribution, the putative times are distributed [18]

according to

Pu(7|S,tn) = au(S, ) exp <_ /t a,(S, t)dt> (6.1)

Notice two things: first, it is not easy in general to find a closed form solution of Eq 6.1
for arbitrary functions of time a,,, and second, for non-constant a,,, the resulting answer will
not be a simple exponential distribution, and hence will not have the temporal homogeneity
property that Pr(7; > u|T; > 7,) = Pr(1; > w—7,). As a consequence of the latter, it

will not, in general, be possible to let {5 = 0, so absolute times should be used.

6.2.1 How to do it: Next Reaction Method, Markov Processes

To extend the Next Reaction Method to arbitrary Markov processes, one simply changes
Step 3 to generate 7; according to the new process'. This has two advantages over the

time variant version of the Direct Method in the appendix:

e Since one considers each reaction separately, the computation is easier, and may be
analytically solvable for some processes (e.g., in the example of the next section).
The Direct Method, which considers all reactions at once, involves a sum within the

integral in Eq 6.1; the exact form is given in the appendix.

e Conditioning. Since the Next Reaction Method stores 7;s and not just a;s, it does not
have to recondition on each iteration. Specifically, after executing reaction pu it does
not need to regenerate 7; according to Pr(T; > u|T; > 7,): the fact that the algorithm
chose to execute reaction p implies T; > 7,. Therefore, T; is already distributed

according to the correct distribution, for all ¢ # pu whose a; has not changed.

1For time varying processes, there may be a non-zero probability that a given reaction does not occur
at all (in other words, integrating Eq. (9) from t,, to co may result in some p < 1). In this case, one must
choose random numbers in such a way that P,(oo|S,t,) = 1 — p. This is easy to do in the Next Reaction
Method: one generates a uniform random number r; if » > p, the reaction never occurs — so 7 = 00,
otherwise one transforms r (or uses some other method) to find 7 < co.
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We now show an example of how to generalize the Next Reaction Method for time
varying Markov processes, then consider the problem of reusing random numbers with the

generalization.

Example 22 (Changing Volume)

Reaction 1 in Table 8.3 has propensity k x (#A) x (#B). For second order reactions,
such as this one, the k term depends on the volume, and should be replaced with k'/V (1),
where V(t) is the volume and k' is independent of volume. This leads to the propensity
a' [V (t), where o/ = K x (#A) x (#B) is a constant independent of volume (and hence
time). For simple V(t), Fq 6.1 can be solved analytically, for example, in Arkin et al., the
volume is modeled as increasing linearly. Thus V() = Vo + ct, which leads (by a simple

integration) to the distribution

a (V(to) +ct)y /!

P<t’t0) = V(to)ia//c

(6.2)

Note also that in the limit as ¢ goes to zero, this distribution reduces to an exponential with
parameter o’ [Vy, as expected.

It is a straightforward operation to generate random numbers according to this distri-
bution, using the inversion generating method [18, 26]: one calculates the cumulative dis-
tribution function F (a simple integral of P), takes a sample U from a uniform random
number generator, and the variable F~1(U) has the correct distribution. For the preceding

example, the variable R = V(to)[U*C/“/ —1]/c is distributed according to Eq 6.2.

6.2.2 Generating Fewer Random Numbers

It was remarkably simple in the time-independent, exponential case to reuse the same
random numbers. The extension is somewhat more difficult. The method presented here
works for reusing random variables generated by the inversion generating method. Of
course, not every random variable is generated that way, and in practice it may be hard to

reuse other random numbers.

Theorem 3 Let 7 be a random number generated according to an arbitrary distribution

with parameter a, and distribution Fyp,. Suppose the current simulation time is tp,, and
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the new parameter (after the update in Step 2) is any1. Then the transformation

7= Fyni1(Fan(r) = Fan(tn)l/[1 = Fan(tn)]) (63)
generates a new random variable from the correct (new) distribution.

Before proving this theorem, here are some examples:

Example 23 For exponentials,

1 —exp(—an{u —th_1 ifu>th_1
Fyn(u)=Pr(1, <u) = (=an( )

0 otherwise

and

—I(l = U)fan +tnq fO<U<1
Folw) = (A= U)an + fn

a,n

undefined otherwise

So, by the theorem, 7’ =

Fon i1 ([Fan(7) = Fan(ta)l/[1 = Fan(ta)])

-1 In(1 — [1 —exp(—an(T —tp_1))] — [1 — exp(—an(tn —tn_1))]
A y1 1 —[1 —exp(—an(tn —tn_1))]

= (anfan ) — ) + by

) +tn

This is the transformation used by the Next Reaction Method.

Example 24 The previous section considered a process with V(t) =V (tn—1) + c(t — tn—1),

Fyn(u)=1— <VLt))>an/c

(tnfl

and

Fun(U) = V(ta-)[(1 = U) "/ —1)/c+tns

By the theorem, one can reuse random numbers by the transformation
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7’ = F(;,:LH([Fa,n(T) — Fan(tn)]/[1 = Fan(tn)])
—an/c —an/c —c/an 11
A > _ <1 (Vi) >
_ V(En) 1 < <V(tn71)> - <V(t“*1)> e,
< V(tn) ) an/c
V(tn71)
V(tn)

()

In some cases, as in the examples above, it is possible to calculate a closed form solution

C

of the equations that is relatively simple, so this method is practical. In general, it may
not be at all practical, and it may be easier to generate fresh random numbers.

Proof. (Theorem 3) The random number 7 is originally distributed according to distri-
bution Fg p, with density P, ,. After Step 6, it is distributed according to P(’l’n =Prq,(I' =

u|T > t,,), which is equal to

P () = Pa(u)/[1 = Fan(tn)] if u >t

a,n
0 otherwise

By the Random Variable Transform Theorem [18], the random variable Y = [Fj ,(7) —
Fon(tn)]/[1 — Fan(tn)] has the density

Q) = / " P <y - Fa"ﬁ) i F“’"@")) du

%0 an(tn)

o Fan _Fan tn
= ;/ Pun(u)é |y — n(®) ntn) du
1— Fa,n@n) tn ’ 1— Fa,n@n)
Fyn(o0)=1 .
-t / 5 <y _IT Tantin) F“’"@")) dv
1— Fa,n@n) Fon(tn) 1— Fa,n@n)
1
= / 6(y —w)dw
0
1 0<y<l1

0 otherwise

The second line is just the definition of P, ,,(u). The third line comes from the trans-

formation v = F, p(u), dv = dF“d’iZ(u)du = Pyn(u)du. The fourth line comes from the
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Figure 6-1: Procedures, f, for generating random numbers. (a) A Markov process, in which
no history is stored. (b) A non-Markov process, which requires storing history.

v=Fo n(tn) dw —

transformation w = T Fs (i)’

mdv. The final line comes from the definition
of the delta function.
Hence, the random variable Y is distributed uniformly on (0,1]. Finally, the inverse

generation method works by transforming a uniform random number U and to F *I(U).

Here Y is such a uniform random number, which proves the theorem.

6.3 Non-Markov Processes

Even though elementary reactions are Markov (i.e., do not depend on history) in the stochas-
tic framework, it is sometimes useful to deal with non-Markov processes. For example, one
may model a system using a certain set of variables for which the system is Markov, or one
may use a smaller set for which the system is not. Provided the simulation algorithm still
works for non-Markov processes, a smaller number of variables may be significantly faster
to simulate.

For Markov processes, one generates 7; directly from the state and the time, as in Figure
6-1a. For example, in the time independent case, the value a; is calculated from the state,
and 7; is the sum of ¢ and a random variable with exponential distribution and parameter
a;. Notice that 1) f; is a random function, i.e., calling it multiple times with the same
parameters will give multiple answers, and 2) f; is a function in the mathematical usage
(or in the computer science sense of functional programming), i.e., it does not contain any
internal state. For non-Markov processes, as in Figure 6-1b, the distribution of 7; depends
on the history of (possibly all) states of the system from the initial time to the present.

Hence one must use a procedure (in the computer science sense of procedural programming),
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which can store previous values of the system state and time.

In general, non-Markov processes are very difficult to deal with [18]. The distribution
of next states, or of transition times to the next state, may depend on the entire history of
the system. Fortunately, the sort of non-Markov processes that occur in chemical reaction
simulations have some nice properties that make them easier to deal with. First, the
complete history of the system is uniquely determined by the series of discrete transitions
and transition times. Given the transitions and transition times, the state at any time  is
the same as the state at the last transition before ¢. This is an enormous simplification:
since continuous transitions are not possible, one can hope to store the entire state history.
Second, one may not even need the entire history. For any given reaction p, one only
needs to store that fraction of the history that affects (in the dependency graph sense) the
reaction p. For systems with many reactions, that leads to another significant reduction
in the amount of storage.

For arbitrary non-Markov chemical reaction models, even this reduction in storage may
not be enough. It may be very difficult to generate 7, given the appropriate subset of
history. In that case, it may be preferable to include the full gamut of variables so as to
make the system Markov. In those special cases where it is possible to generate 7;, one

may achieve a substantial performance improvement. An example follows.

6.3.1 Example: Gamma Distribution

Consider the set of equations:

A+B Fug,
So s

s, s,

Snfl i} Sn

S, ™co4D

Systems of equations very much like this comes up in the Arkin et al. [3] model of lambda
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phage, both for transcription and for translation. Physically, this means that at some time
a molecule of type Sy is produced, it undergoes an n-step process, and then the resulting
molecule, S,,, affects the rest of the system.

The first and last equations are different, but all the n intervening equations are identical.
Assuming time-independence (as is the case in the model; first order reactions are not
affected by change in volume) one may solve these n equations analytically. Rather than
n exponentials, the combined waiting time is a gamma distribution. Specifically, consider

a single molecule of Sy, produced at tg, with no other molecules of Sy produced. Then:

Pr (one molecule of S, is produced between ¢ and ¢ 4+ dt | one molecule of Sy, #9)

= k[kitn%ti;]!nl exp|—k(t —to)] x dt (6.4)

This is simply a gamma distribution, and there are efficient ways to generate random
numbers according to this distribution.

Now consider several molecules undergoing this process. This composite system can be
described by ordered pairs of the form (molecule identity, state). There are two ways to
simplify this: grouping by state and grouping by molecule identity. Thus far, the grouping
has always been by state, i.e., the number of molecules in state Sy, the number in state
molecules of 51, etc.

For the context in which this problem occurs, with many more states than molecules,
one achieves a smaller system by grouping by molecule identity; by Eq 6.4, one can simplify
the n-step exponential process into a 1-step gamma process, thus the number of processes
to comnsider is equal to the number of distinct molecules, much less than the number of
states. (Note that this is possible because the reactions involved are first order.) These
two possibilities are schematized in Figure 6-2.

The procedure f; is as follows: rather than store state and time directly, f; will keep a
list L of processed values 7. Every time a new molecule of Sy is produced, f; generates
a 7/ value for it according to Eq 6.4 and adds that value to L. The value of 7 that f;
returns is simply the minimum of the 7 values in L. (The astute reader will note that the
operations required on L are insert, delete and minimum, so one could implement L as a

priority queue. This implementation of L as a priority queue should not be confused with
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Figure 6-2: Ways of splitting reactions. (a) By state, (b) by molecule.
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the indexed priority queue in Section 5.4 of Chapter 5.)

In the current context, the transcription or translation lengths, and hence the n values,

may be in the hundreds or even thousands, so this enhancement achieves quite a speedup

(see Chapter 8).
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Chapter 7 Improving the Direct Method

7.1 Summary

The underlying ideas of the Next Reaction Method — use a dependency graph to update
the minimal number of variables, and use an eflicient data structure — are applied to the
Direct Method to create an efficient version of it. However, the NRM is preferable for two
reasons: 1) it is more difficult to extend the Direct Method to time varying and non-Markov

processes and 2) the Direct Method requires two random numbers per simulation event.

7.2 Efficient Direct Method

Algorithm 7 (Efficient Exact Stochastic Simulation — Direct Method)
Replace Steps 1 and 2 of the Direct Method with:

1. Initialize (i.e., set initial numbers of molecules, sett =0, generate a dependency graph

G).

2. Calculate the propensity function, a;, for the following 1:

If this is the initial iteration, calculate a; for all 1.

Otherwise, let j be the reaction that was just executed. For each edge (p, ) in the

dependency graph G, update a,,.

It is clear from the definition of the dependency graph that this will update only the
a;s that need to be updated. The only thing remaining is to use the right data structure
to speed up the updates.

To complete the speed up of the Direct Method, one must do Steps 2, 3 and 4 efficiently.
One might consider using a simple array to store each of the a;s. In this scheme, updates
would be very fast. However, Step 3 of the Direct Method would then take time proportional
to the number of reactions. A better data structure, which takes time proportional to the

logarithm of the number of reactions, follows.
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Figure 7-1: Data structure used for a;’s for an eflicient version of the direct method. Each

leaf contains an a; value. Each other node contains the sum of its left and right child. (a)
generic construction, (b) numerical example used in text.
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Store the a;s as the leaves of a complete tree, and store in each non-leaf node the sum of
its left child and right child (see Figure 7-1a). Thus, the root will have value ) . a;. When
a;s change, update 1) those a;s that have changed and 2) their ancestors. Notice that the
tree contains r leaves and r/2 +7/4 +7r/8+ ... + 1 2 r non-leaves. The height of the tree
is simply log2r = 1+ logr. Each update affects one node at each level, hence is O(logr).

Generating the random numbers 7 will be easy, since the root of the tree contains the
appropriate parameter. For the p value, generate a random number x between 0 and >, a;

(which can be found at the root) and then use the following algorithm, starting at the root:
Algorithm 8 (Efficient Uniform Random Number Generation)

1. If the current node is a leaf, let i be its index.

2. Otherwise, if 0 < x < (left child value), then call this algorithm recursively on the left

child with parameter x.

3. Otherwise, (left child value) < x, so call this algorithm recursively on the right child

with parameter = — (left child value).
The discussion thus far has been somewhat abstract and calls for an example.

Example 25 Consider the numerical values in Figure 7-1b, the tree structure for a1 = 6,
ag=2,a3="7,a4=1andas =9. To calculale T, generate an exponential random variable

with parameter 25. For the i value, generate a random number x between 0 and 25. Suppose
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x = 15.5. Because x > 15 (the left child), go to Step & of the algorithm, and descend the

right subtree (i.e., the one whose root is “10”) with parameter v’ = x — 15 = 0.5.  Now,
0 <’ <1, so use Step 2 of the algorithm, and go to the left node, labeled “1.” Finally,

this is the leaf corresponding to a4, so stop and let p be “4.”

One standard method of generating a random number of this distribution is to generate a
random number R between 0 and 1, then find the index u such that S 'a; < R(3; a5) <
Zf:l a;. In fact, Algorithm 8 does precisely that, in an efficient way, and takes time
proportional to the height of the tree, not the total number of nodes in the tree.

With this algorithm, an update takes 14+logr operations. By the sparseness assumption,
each simulation event (time through the loop) takes at most k(1 + logr) operations, where
k is a constant independent of r. For F simulation events, the algorithm takes O(Flogr)
operations, not counting the initialization in Step 1.

As a side note, there are other efficient ways to generate random variates of a discrete
distribution [28], which are somewhat esoteric but have better expected times. One could do
a thorough analysis of the trade-off between programming complexity, run time, numerical
stability, and number of uniform random numbers required. @ However, since the Next
Reaction Method is more easily enhanced to use fewer uniform random numbers and handle

time-varying processes, both Markov and non-Markov, we shall favor it.

7.3 Time Varying Direct Method, Markov Processes

It is well known how to generalize the Direct Method to arbitrary functions of time a;(#)
[18,24]. One writes an equation that is analogous to Eq 3.4. If S is the state at time %,

then the equation is:

Pl 718, t0) = au(S e | = [ 3 as(s oy
to F

At each subsequent step of the algorithm, one must recondition, i.e., change the density
P(u,7|S,t;) to the density P(u,7|S,%;41). Doing so works out to changing the lower limit

of integration.
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It may be hard to generate random numbers according to this distribution for arbitrary
functions of time a;. (Note, in particular, that the lower limit of integration changes each
iteration, so methods which involve numerical storage of partial values of the integral will
have to do significant recalculation each iteration.) If all the a;s change in the same way,
then one can use the enhancements of the previous section; if not, it is not immediately
clear how to run this algorithm efficiently for many reaction channels. Once again, the

Next Reaction Method is preferable.
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Chapter 8 Application to Lambda

8.1 Summary

This chapter details how the Next Reaction Method of Chapter 5 can be used to simulate
the lambda model of Chapter 4. Section 8.2 describes the basic principles used to run the
lambda model through the Next Reaction Method. Sections 8.3 and 8.4 explain technical

details of how to implement promoter binding. Section 8.5 presents simulation results.

8.2 The Basics
The reactions in Table 4.2 can be divided into four groups:

1. Zeroth and first order reactions. These reactions obey simple exponential probability
distributions as detailed in Chapter 5. The reactions that fall into this category are:
4,6, 7,10, 11, 12, 22, 24, 25, 30, 31, 32, 51, 53, 54, 55, 56, 58, 59, 61, 62, 64, 65, 67,
68, 70, 71, and 72. The pseudo-first order reactions 35, 36, 37, 38, 39, 40, 42, 44, 46,

and 48 also fall into this category.

2. Second order reactions. These reactions follow the more complicated time-varying
distribution in 6. The reactions that fall into this category are: 5, 23, 50, 52, 57, 60,
63, and 66.

3. Gamma reactions. All the transcription and translation reactions with multiple steps
can be simplified using the gamma distribution of Chapter 6. (The original Arkin
et al. paper does not do this in all cases, so as to model collisions between RNA
polymerase molecules traveling in opposite directions across the same DNA. We shall
ignore that effect.) The reactions that fall into this category are: 2, 3, 8, 9, 13, 14,
16, 18, 19, 21, 26, 27, 28, 29, 33, 34, 41, 43, 45, 47, and 49.

4. Promoter-related reactions. These follow the equilibrium binding model of Section

8.3. The reactions that fall into this category are: 1, 15, 17, and 20.
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Chapter 5 explains how to implement category 1 in NRM, Chapter 6 explains how to

implement categories 2 and 3. Category 4 is discussed in the next subsection.

8.3 Promoter-related Equations

The promoters are assumed to be in equilibrium, i.e., the binding and unbinding reactions
are much faster than the other reactions considered in the simulation. There are several

possible methods for dealing with this equilibrium assumption:

1. Ignore it; write out the kinetics of each reaction, apply the NRM. Pros: (1) This
approach is exact and (2) relatively efficient. Cons: (1) Requires knowledge of reaction
rate constants (kinetics data), not just free energies (equilibrium data), and (2) if the
equilibrium assumption is correct, these reactions are very fast compared to others,

so NRM may spend a disproportionate amount of time on these reactions.

2. Calculate the average rates, add dependencies based on rate constant dependencies.
For example, k1 depends on the number of molecules of cly, so add an edge in the
dependency graph from any reaction that affects c¢lo to Reaction 1. Pros: (1) This
simplifies the simulation by using the equilibrium assumption, thus getting rid of the
cons of Method 1. Cons: (1) Very computationally intense. Requires an iterative
calculation at each promoter whenever one of the concentrations changes. (2) Even
then, this approach is not exact, because some terms in the partition functions depend
on volume, which is changing. (This would mainly be a problem if the number of
molecules of each type that affects a promoter were to remain constant for a long

time.)

3. Use a “Monte Carlo” approach: randomly pick a promoter state every so often at
fized time intervals. Pros: (1) Much faster than Methods 1 and 2, (2) if the time
step is sufficiently small, gets around the volume problem, and (3) does not do any
averaging — thus one sees the true stochastic nature of binding and unbinding. Cons:
(1) Not exact, because it depends on the value of the time interval A¢. (To integrate
this into NRM, one can make a pseudo-reaction that is executed at regular intervals,
and whose only effect is to update the state of the promoters and then adjust the

promoter-related s appropriately.)
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4. Various modifications of Method 3: e.g., use a variable time interval or update pro-
moters every second reaction, etc. Pros: (2) and (3) above. Possibly (1), depending
on how cleverly one does the updating. Cons: (1) above: still not exact, no matter

how cleverly one uses discrete time jumps.

Remark 6 There is no rigorous theoretical method to use the equilibrium assumption in

stochastic kinetics.

These different approaches have various interpretations of the equilibrium assumption.
In Method 1, one simply ignores it. In Method 2, one assumes that the rate at any given
time is equal to the equilibrium rate calculated from statistical mechanics. In Methods 3
and 4, one assumes that the probability of finding the system in a given state is given by
the equilibrium distribution. While that is true, it still does not specify how frequently
one should sample the state to get statistically valid results.

We have opted for Method 3. Because the NRM is efficient at handling large sets of
chemical reactions, calculating the promoter probabilities becomes the most time-consuming
part of the simulation using Method 2. (Also, kinetics data is not available, so Method 1
is right out.) We originally set time interval At to 0.1s (recall that simulations run for 35
minutes of simulation time), but the simulation was still very slow. A time interval of 1.0s
is significantly faster (the time to update promoters is on order of the time to run NRM)

and yielded indistinguishable results.

8.4 Issues

There are two big issues with the equilibrium assumption used in modeling promoter bind-
ing: correctness and computational efficiency. As mentioned above, there is no theoretical
justification for treating certain reactions as having reached equilibrium, yet modeling the
kinetics of other reactions. The only rigorously justified approach is Method 1, which is
computationally very costly and requires kinetic rate constants that may not be available.

As for computational efficiency, there is one trick we can pull out that helps somewhat.
Suppose the system in question has four states:

The partition function of this system is given by

Z =1+ Ko[P] + K3[P] + K4[P]?



93

—
«—

lT State 1 State 2

_>
«—

State 3 State 4

(a)

Figure 8-1: (a) Four state system used in example. (b) Simplified three state system.

where [P] is the concentration of P. The probabilities of the four states are given by

1
A=
Ko[P
Ks[P
P = 32[]2
K4[P
P = 4[2]

(See Chapter 2, Section 2.8, for more discussion of partition functions.) The average rate

is given by

<rate> = kPt koPo+ kP + kaPy
k1 X1+ kg X KQ[P] + k3 X Kg[P] + k4 X K4[P]2
A

One can create an equivalent system with three states, by combining State 2 and State 3.

Call this new state ‘23" and let

Koz = Ko+ K3
ko Ko 4 ks K3

kon —
23 K23

Theorem 4 This three state system has the same equilibrium properties as the four state

system.
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Proof.

Zs = 1+ Ky3[P|+ K4[P)?
= 1+ Ky[P] + K3[P] + K4[P)?

= /s
Further,

P o=

Pz =

P =

SO

(rate)s = k1P + kosPoz + ka Py
k1 X1+ kog X KQg[P] + k4 X K4[P]2
73
ki x 14 (koK + ks K3)[P] + ka x K4[P)?
73
ki1 X 1+ kg x Ko|P] + k3 x K3[P| + k4 x K4|P)?
Z

= (rate),

More generally, this trick can be used to combine any set of states with the same

stoichiometry into a new state, and letting

Knew = ZKJ

and

(Here the sum is over all states j that are being combined into the new state.) Note that
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this trick only works for states with the same stoichiometry.

Theorem 5 The simplified system has the same equilibrium properties as the original sys-

tem.

Proof.

Zom'g — ZKZ « [Xl]power(i,l) « [X2]powe7’(i,2) N

= ZZKJ X [X]powerGil) o [ X, power(h2) o ...
s g

— Z <[X1]powe7’(s,1) « [XQ]power(sQ) < ) « ZKJ

s J

— Z <[X1]powe7’(s,1) « [X2]powe7’(s,2) < ) % Kpew

= Znew

The sums are over: all states ¢ (first line); all stoichiometries s and states ¢ with stoichiom-
etry s (subsequent lines). We have used the fact that the powers to which one raises
the concentrations depend on the stoichiometry of the state only, not on the state itself.

Analogously,

(rate) ., = ZkiPi
i

Zi szz < [Xl]power(i,l) < [X2]powe7’(i,2) N

Zorig
3. ([Xl]power(s,l) X [Xolpower(s2) ) % <Z] ijJ)
- Zorig
S, ([XPowerGn) s [Xofrower(:2) s ) 5 Ky e <Zj ;]—f]w>
N Zorig
S (P s [per(5D) s )  Kn  Kns
Zinew

= g Ps,new X ks,new
$

= (rate)

new

Again, the sums are over: all states 7 (first two lines); all stoichiometries s and states ¢ with

stoichiometry s (subsequent lines)
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State 1

State 2

Figure 8-2: Operator with left and right promoters. The simplification presented thus far
ignores statistical dependencies between reaction rates for different promoters at the same
operator.

Using this technique, the promoter Py, (in Table 4.5) can be simplified from 10 states
to 7, and Og (in Table 4.6) can be simplified from 40 states to 17.

This trick, in its current form, applies to Method 2. The simplification may give
different results for Method 3 for operators with multiple promoters:

Method 3 keeps a statistical dependence between the two rates, whereas Method 2
averages out that statistical dependence. Depending on how one interprets the equilibrium
assumption, it may be legitimate to average out. (Here the interpretation would be “the
reactions in question are so much faster than the other reactions in the simulation that an
observer cannot disambiguate between individual states, and the statistical dependencies
of individual states average out.”) If one is worried about this problem, one can combine
only those states with identical stoichiometries and having all rate constants the same. In
this mode, Py, can still be simplified from 10 states to 7, and Og can be simplified from 40

states to 22, not the 17 above.

Remark 7 This technique only works for reactions at equilibrium; the kinetics of state
change are very different if there is one state than if there are multiple states. Also, the
original K;s and k;s depend on temperature, so this simplification will not work if temper-
ature is changing. (In other words, the combined Kyeyps will not change in the same way
with temperature that the original K;s and k;s do.) Changing volume is okay, though, since

volume is subsumed in the stoichiomelric part, not the equilibrium or rate constants.
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(a) (b)

Figure 8-3: Total amount of ¢l (dotted line) and cro (solid line) present in two runs at MOI
3. (a) Run ending in lysis, (b) run ending in lysogeny.

(a) (b)
Figure 8-4: Total amount of N (solid line), cII (dotted line), and cIII (dotted-dashed line)
present in the same two runs at MOI 3. (a) Run ending in lysis, (b) run ending in lysogeny.

8.5 Results, Times, etc.

8.5.1 Basic Results

Figure 8-3 shows the concentration of protein dimers cls and crog for two typical trajectories.
In Figure 8-3a, the concentration of croy increases and the concentration of cly remains very
low — this possibility leads to lysis. The converse case, shown in Figure 8-3b, leads to
lysogeny. Figure 8-4 shows the concentrations of other proteins — N, clI, and cIII — for
these two cases.

Note that these trajectories are generated from the same rate constants and the same
initial conditions. The only difference between trajectories is the specific set of random

numbers chosen.
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Figure 8-5: Final amount of cly and croy for MOI (a) 1, (b) 3, (c¢) 6, and (d) 10.

8.5.2 Lambda Fates

An F. coli host cell infected with more lambda phages has a higher probability of lysogeny
than a host cell with fewer phages. Recalling that lysis or lysogeny is determined largely
by the final concentrations of cls and cros, we can plot these concentrations as a function of
Multiplicity of Infection (MOI). Figure 8-5a shows MOI=1, 8-5b shows MOI=3, 8-5c¢ shows
MOI=6, and 8-5d shows MOI=10. (For reference, the line shows equal amounts of cly and
crog.) Note the statistical nature of the simulations: if the system were deterministic, there
would be a single point per graph.

Note that as MOI increases, the probability of lysis decreases and the probability of
lysogeny increases.

Figure 8-6 shows the probability of lysogeny (calculated as the fraction of trajectories

where, at time = 35 minutes, the amount of cly exceeded crog) as a function of MOL.
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Figure 8-6: Fraction of lysogens as a function of MOI.

8.5.3 Time

The simulations done all ended at time = 35 minutes; thus the number of simulation events
depends on how quickly events are occurring. For the parameter values used in the original
Arkin et al. paper, the NRM took approximately n seconds per trajectory at MOI = n on
a Pentium 400. Thus, running 500 trajectories each for MOIs 1 to 10 takes

500 x 14500 x 24 ... 4500 x 10 =500 x 55 = 27,500 sec = 7.6 hours

We were running on a cluster of ten such machines, so the actual time was about 45 minutes.
For other parameter sets (not the values used in Arkin et al.), as in Chapter 10, many more
simulation events occurred, and hence the simulation was much slower.

The original lambda work of Arkin et al. was done on a 200-node supercomputer. (Note
that to be statistically correct, one must run different numbers of trajectories to estimate
each probability to a fixed percent error, so the calculation above is just an estimate.) With
the algorithmic improvements here, it is possible to run the model on a desktop computer
(at the time a high-end desktop computer) overnight, or on a cluster of a few computers on

the order of an hour.
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Part IV

Sensitivity Analysis
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Chapter 9 The Multiple Next Reaction Method

9.1 Summary

This chapter presents the Multiple Next Reaction Method (MNRM), an algorithm for si-
multaneously creating trajectories corresponding to different parameter sets (e.g., rate con-
stants). In particular, MNRM will outperform NRM when run on parameter sets which
are very similar. MNRM can be used by itself to gauge the sensitivity of a model to its
parameters, or as a building block for the more sophisticated sensitivity analysis of the next

chapter.

9.2 Introduction

Consider a set of reactions, such as

A+B ™

B+C “*p

D+E Bopap
F ™ pra

E+G  Fg

or the reactions for lambda in Chapter 4. These reactions consist of stoichiometric infor-
mation (one A and one B react to form one (') and also rate/propensity information (k).
Stoichiometry is relatively straightforward — it consists of small integers. Stoichiometric
measurements done in vitro (in a test tube) are likely to result in the same reactions as the
corresponding measurements done in vivo (in a cell). The rate/propensity information is
much more subtle. The (real-number valued) constant k& depends on many factors: volume,
temperature, salt concentration, etc. For that reason, rate/propensity measurements done
in vitro will likely differ from ones done in vivo.

How does this affect modeling and simulation?
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A modeler must be aware that rate constants, typically measured in vitro or sometimes
guessed, will not be exact. For that reason, it is critical to understand the behavior of
a model whose rate constants are uncertain. Recent theoretical [5] and experimental [2]
work has suggested that some biological systems are robust to uncertainty in components,
i.e., that changes in %k values or steady state concentrations of certain proteins will not
affect the qualitative behavior of the system. (In other words, the system is robust to such
uncertainty.) Rather than the system working because of the exact value of its parameters,
the system works despite the exact value of its parameters; system structure, not fine
tuning of parameters, leads to the observed behavior. It seems likely that this design
principle, robustness, will play a role in many biological systems. (In the Barkai & Leibler
system, Yi et al. [40] have suggested that the particular structural consideration or “pathway
motif” is integral feedback, which occurs in Barkai and Leibler’s model, and is theoretically
necessary and sufficient for deterministic systems to have perfect adaptation at steady state,
as is observed in the system. This theoretical result does not hold as-is for the stochastic
framework, as will be discussed in Chapter 13.)

As a first step toward considering robustness to uncertainty in rate constants, it is useful
to see how trajectories and measurable variables of interest change as rate constants change.
This chapter presents a first cut algorithm that can efficiently run several simultaneous
simulations, each with a different parameter set. This algorithm, MNRM, is most eflicient
if the parameter sets are similar, differing only in a small number of parameters. So MNRM
by itself is ideal for simulating some “nominal” or “base” parameter set, ?, and parameter
sets & most of whose components are identical to the corresponding T components. The
next chapter will build on this, using MNRM as a tool for more sophisticated analysis, and

will use ks that differ from % in precisely one parameter.

9.3 Fundamentals

In what follows, it will be important to specify not only which reaction is meant, but also

which parameter set.

Notation 2 Let subscripts correspond to reactions and superscripts to parameter sets. For

example, xb would be the quantity x corresponding to reaction v and parameter set p.
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Parameters will be specified k%, the reaction constant & corresponding to reaction r in pa-

rameter set p. A parameter set & is a vector of parameter values: B = (K K, .o Khaxr)-
—

We acknowledge a special parameter set, the main parameter set, £™*", which is the nom-

inal or base parameter set, and all other parameter sets differ little from it.

— .
Example 26 Consider a set of 10 reactions. Then E™*" is a 10-vector, and KT'*" is

the k parameter of Reaction 1 for the main parameter set, etc. Suppose we define a new

KT

parameter set by

10 x kman ifp =1

main
kr

kL=

T
otherwise

Another parameter set, ﬁ, could be defined analogously by replacing the “r =17 condition

with “r =27 and so forth.

The problem that MNRM addresses is

kmain ﬁ ﬁ

Problem 1 Simulate a system with each of the parameter sets L kY, kT, L, jopmat

A simple way to solve Problem 1 is:

Algorithm 9 Forp € {main,1,2,... ,pmax},
Simulate the system corresponding to &P using NRM.

The complexity of this algorithm is

Emain logr + Erlogr + ... 4+ Epmaz logr

= Z Iy, | logr

pe{main,1,2,... pmaz}
= Etotal IOg r

where [, is the number of simulation events in the simulation corresponding to parameter
set p, and r is the total number of reactions.

One way to accomplish this simulation is to store the following data for each p:

e tP, a real number representing the time in the pth simulation
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top-level
(1,12
(main, 1.2) (2,21
main 1 2
(3,12 (3,12 (3,12
(1,25) (5,4.3) (2,41) (5.4.3) (1.25) (54.3)
(4,106)| |(2,3.9) (4,106)| |(1,65) (4,9.8) (2,39

Figure 9-1: Priority queues used by Algorithm 10: one top-level and one for each parameter
set.
e (#X)P, an array with one element for each chemical species, representing the state in

the pth simulation
e PP a priority queue consisting of the 77 values for the pth simulation
o P 1P P working variables for the simulation.

Also, one needs G, the dependency graph of the system. Only a single copy of G is
needed, as it is the same for all parameter sets.

Note that Algorithm 9 does not really require p copies of all these things, because it runs
simulations in serial. Subsequent algorithms will run simulations in parallel, and hence
will require separate copies.

As a baby step toward MNRM, consider the following way to solve Problem 1: Store
a single ¢, and a single copy of the working variables, but multiple priority queues PP and

multiple chemical numbers (#X)?.
Algorithm 10 (Top level)

1. Create a priority queue PP~ which stores (p, T) pairs, where p € {main,1,2,... ,pmaz}
and T is a time. Like all other priority queues used in NRM and MNRM, Ptop—ievel

1s ordered by T with smaller values having higher priority.

— s
2. Run simulations for K™M", Ij, ﬁ, o, KPTT in parallel in the following way:
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(a) For each p, do the initialization step of NRM.

p : top—level p . i : : 7Y
(b) Store (p,7. ..) inP , where T . is the minimum time in PP.

(c) Pick the minimum element (px, 0 ) of Ptopievel,

(d) Do one NRM step in simulation px, including updating 7° as necessary.

(e) Sett«— 7P

min’
(f) Update the (px, 7% ) entry of PP~ with the updated 7% . which may cor-

min’

respond to a different reaction in simulation px.

(9) Go to Step ¢ and repeat, as long as t < tymax.

This is similar to Algorithm 9. The difference is that we now ask the questions “What
is the next reaction that occurs in any parameter set? When does it occur? In which
parameter set?” repeatedly.

It is not hard to show that Algorithm 10 is equivalent to running Algorithm 9 and
sorting the generated events by time, rather than by parameter set.

It turns out that there is no advantage to doing this. In fact there is a disadvantage.
Specifically, it still takes Fjeq logr operations to accomplish the simulations, but it now
takes an additional F,q logpmax operations to put the Fy., events into the correct
temporal order, so the total number of operations is Eitqi(logr + log pmazx).

Another possible algorithm is:

Algorithm 11 Store (p,r,7F) triples in a single priority queue, P.
In analogy with NRM:

1. Choose the minimum triple, (p*7T*7T$I),

2. Fwecute reaction rx in parameter set px (i.e., update (#X)P* according to execution

of x).
3. Update certain (px,a,Th") based on the dependency graph G.
The priority queue P in this algorithm is size » X pmax, so the resulting algorithm

requires Fyoq log(r X pmazx) = Fypq(logr +1og pmazx) operations, the same as the previous

algorithm. This algorithm also suffers the problem of ordering all the times across reactions.
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It is not immediately clear whether it would be simpler to implement Algorithm 10 or
Algorithm 11. In any case, Algorithm 9 is better, so it is time to introduce a new idea.

Use the same random numbers for the simulation p = main, the simulation p =1, etc.
Then, in Algorithm 10 or Algorithm 11, it will frequently be the case that (r, 7'51) = (r, 7'17[32)7
i.e., that the 7s chosen for the same reaction in different parameter sets will be the same.
The main idea of MNRM is not to do too much calculation in this case.

In particular, we decompose Fiotq into Eynigue and Feopy, where Fypique counts the first
time a particular (r, 7'51) pair is executed, and F,.p, counts executions of the same pair in

different parameter sets. Of course Fio1q) = Funique + Feopy. Then:

e The simple algorithm, Algorithm 9, requires Fi,tq; log r operations.
e Algorithms 10 and 11 require Eiytqi(logr + log pmax) operations.

e MNRM requires Eynigue(logr + log pmax) + E..py operations.
Note that there is no log term in the final summand of the MNRM line.

Example 27 (Good case) Suppose we have r reactions and p parameter sets, and nearly all
the events are the same across parameter sets. (For example, if the parameter sets differ in
parameters that do not affect the system much.) Then Eioaqr = pEmain: Eunique = Emain.
and FEeopy = (p — 1) Emain.  So the simple algorithm takes pEp,qinlogr reactions, while
MNRM takes Emain(logr +1ogp) + (p — 1) Emain.  The savings incurred by using MNRM

is thus Emain [(p — 1)(logr — 1) — log p| &= Emamnplogr operations.

Example 28 (Bad case) Suppose the numbers of events Fg are about the same for each
s, but the events themselves are nearly always different. (For example, if the parameter
set is very different, or if the trajectories from similar parameter sets diverge quickly.)
Then Eiotar = pEmain, Punique = PEmain, and Eeopy ~= 0. So the simple algorithm takes
PEmain logr reactions, while MNRM takes pFmain(logr + logp), which is higher than the

number of operations in the simple algorithm by pFmain(logp).

The basic savings in MNRM comes from simplifying the processing for identical reactions
across different parameter sets. The problematic cost is due to running the p simulations

in lock-step, i.e., ordering all the events from different parameter sets relative to each other.
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Section 9.4 details MINRM. Section 9.5 proves its correctness and explains where the
algorithm comes from. Section 9.6 extends it to time-varying and non-Markov processes.
Section 9.7 analyzes the time needed to run MNRM, and presents two techniques to lower

or eliminate the logp cost for very different or divergent parameter sets.

9.4 Details of MNRM

The key idea of MNRM is to use the same random numbers for each simulation, as far as that
is practical. (In those cases where the cost of using the same random numbers outweighs
the benefit gained, MNRM will use distinct random numbers.) Imagine applying this basic
idea to Algorithm 10. The priority queues in Algorithm 10 store certain data, in particular,

ignoring for now PP~ evel the stored data can be described as:

e For each parameter set p, for each reaction r, store the pair (r,7%) in PP, where 7% is

a random number valid as a time for reaction r in parameter set p.

By using the same random numbers across parameter sets, it will now be the case that
many 7,8, for the same reaction but different parameter sets, are equal. (See Figure 9-
1.) In particular, it will frequently be the case that = P2 = rmain - (Recall the
assumption that main is somehow the base or nominal parameter set, about which all
others are centered.) Assuming the parameter sets are similar and the system is not too
sensitive to the differences in parameters, a lot of redundant information is stored. MNRM

does away with (some of) that redundancy by using a different concept of what to store:

e For each r, store (r,7"*", C) in P™¥" where 77" is a random number valid as

a time for reaction r in parameter set main, and C' is a collection {p1,p9,...} of
f hich main __ pl _ _p2
parameter sets for which 7 =7, =T, , ctc.

Example 29 The entry (12,18.3,{main,1,2,5}) in P™%" stores data for reaction 12,

namely 7T = 11, = 12, = 75, = 18.3. Fquivalently, T«l{gnain,lﬂ,f)} =18.3.

e Lor each parameter set p # main, and certain (but not all) reactions r, store the pair
(r, ) in PP, where 7% is a random number valid as a time for reaction 7 in parameter
set p, and the (r, 77" C) entry in P™¥" is such that p ¢ C. The “certain” reactions

r are those where a) 75 % 74" or b) it is convenient, as described in Section 9.5.
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In other words, each 75 will be stored in exactly one place, either in the (r, 77%%" (') entry
of P™%" (in which case p € C) or in the (r, 77) entry of PP. We have been deliberately vague
about why a certain entry would be stored in P™*" versus in PP; the exact specification is

somewhat tedious:

main

main will always be stored in P,

1. For all r, the value 7

2. For all r, and for all p # main, if af # a™%", then 75 # 77%" 50 77 will be stored in

PP.  Specifically,

(a) If k¥ # kKM% then af # a™@" so Condition (2) will hold.

(b) Suppose a, = k, x (#X1) X (#Xo). If (#X1)F # (#X1)™™" (for example), then
ak # ™" 5o Condition (2) will hold.

3. For all 7, and for all p # main, if at some point in the past ak was not equal to a™*",

so 71 was stored in PP. Even if changes in system state cause ak to regain equality
with " the value 7% will still be stored in PP. (The rationale behind this is that

it would take more time and effort to check this condition than would be gained by

moving 75 back to P™n))

We are now in a position to outline MNRM. Along the lines of Algorithm 10, it cre-
ates a top-level priority queue PP~!¢l with (p,7) pairs, and additional priority queues
PLPZ .. Pm with (r,7) pairs, and P™¥" with (r,7,C) triples. What data is where
was described above, and is illustrated in Figure 9-2. MNRM also keeps separate (#X )P
arrays. Bach iteration picks the minimum element of PP~/v¢! executes the corresponding

reaction, and updates the 7s and priority queues appropriately.
Algorithm 12 (MNRM)

1. Create a priority queue PPl which stores (p, T) pairs, where p € {main, 1,2,... , pmazx}
and 7 is a time. Like all other priority queues used in this chapter, PP~vel js op-

dered by T with smaller values having higher priority.

K,

—_—
2. Run simulations for k™", k', k=, ..., jopmad

in parallel in the following way:

(a) MNRM-Initialize
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top-level
(main, 1.2)
(1, 4.1) (2,9.8)
main 1 2
(3,1.2,{m,1,2}) (2,4.1) (4,9.8)

(L,25{m2) | |5 43 {m12})| |65

(4,10.6,{m1})||(2,39,{m,2})

Figure 9-2: Priority queues used by MNRM: one top-level and one for each parameter set.

p : top—level p . i : : 7Y
(b) Store (p,7. ..) inP , where T . is the minimum time in PP.

(c) Pick the minimum element (px, 0 ) of Ptopievel,

(d) MNRM-FExecute

(e) Sett«— 7P

(f) MNRM-Update

(9) Go to Step ¢ and repeat, as long as t < tymax.

Figure 9-2 shows samples of the priority queues used by MNRM. Compare them with
the corresponding priority queues for Algorithm 10, in Figure 9-1. Algorithm 10 stores
a lot of redundant information, and all priority queues are the same size, namely r. In
MNRM, the redundancy is eliminated by the collections C' added to the main priority
queue. As a result, P!, P2, etc., may be much smaller than the corresponding priority
queues in Algorithm 10. (P™%" is, of course, still size r.)

The data stored by Algorithm 10 and MNRM is different, so the operations that manip-
ulate the data structures must also be different. The MNRM-Initialize, MNRM-Execute
and MNRM-Update steps of MNRM differ from the corresponding steps of Algorithm 10.

We discuss each of these three in turn.
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9.4.1 Initialization

Algorithm 13 (MNRM-Initialize)

1.t=0
2. Set initial number of molecules (for each parameter set).

8. For each reaction r:

(a) Calculate initial a]*™", i.e., propensity for reaction r in parameter set main.

(b) Generate initial T'™", i.e., putative time for reaction r in parameter set main.

(c) Put the triple (r,7™%" {main,1,2,... ,n}) into Pm¥",

4. For each parameter set i (p # main):
For each reaction r:

I kin £ K

(a) Calculate initial al, i.e., propensity for reaction v in parameter set p.

b) Generate initial 77, i.e., putative time for reaction v in parameter set p.
2 2 p p p
(c) Put the pair (r,7F) into PP.

(d) Remove p from the collection C' in the (r, 7% C') entry of P™".

5. For each parameter set &P (including p = main), put (p, 7%, ) into PLoP~level,

min

6. Generate dependency graph G.

The formal proof of correctness is in the next section, but the present section will outline
why MNRM-Initialize works: for all r, it puts (7, 77%" {main, 1,2,... ,n}) into P"¥" then
moves those 7,p pairs where af # a7%" to PP. (Specifically, it never moves p = main,
in accordance with Specification (1), and it will move pairs where kf # k%" according
to Specification (2a). Now, at the initial time, (#X)P = (#X)™¥" so Specification (2b)

cannot occur, and because ¢ = 0, Specification (3) cannot happen either.
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Parameter Set | #A #B #C #D #E #F #G

(a) man 15 12 13
1 15 12 13

21 15 12 7 13 4 9 3

Parameter Set | #A #B #C #D #E #F #G

\]
.
e
w

\]
.
e
w

(b) main 15 12 7 13 4 9 3
1 15 11 6 14 4 9 3
2 15 12 7 13 4 9 3

Parameter Set | #A #B #C #D #E #F #G

( ) main 15 12 7 12 4 10 3
¢ 1 15 12 7 12 4 10 3
2l 15 12 7 12 4 10 3

Table 9.1: Values of (#X)P for p = main, 1, and 2. (a) Initial values, before any reactions
are executed. (b) Values, starting from initial, after Reaction 2 (B + C — D) is executed
in parameter set 1. (c) Values, starting from initial, after Reaction 3 (D + F — E+ F) is
executed in all parameter sets.

9.4.2 Execution

The MNRM-Execute algorithm is also straightforward. Looking at Figure 9-2, suppose we
execute P! entry (2,4.1). (We would not normally do this, as the top entry of P™¥" occurs
at an earlier time. This example is for illustration purposes only.) Executing this entry
means “execute reaction 2 in parameter set 1 at time 4.1,” so we change (#X)! according
to reaction 2. See Table 9.1.

Executing an entry in P™%" is more complicated. Suppose, for example, we execute
the entry (3,1.2,{main,1,2}). In this case, the 7 value, 1.2, is valid for parameter sets
main, 1, and 2. We change (#X)™*" according to reaction 3, change (#X)! according to
reaction 3, and change (#X)? according to reaction 3. See Table 9.1.

In this example, the collection C' contained all the parameter sets. In general, it will

not, and the reaction will be executed in some of the parameter sets only, as specified by

C.

Algorithm 14 (MNRM-Execute)

1. If p #£ main, execute reaction r at time T in parameter set p.

2. If p = main
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a (¢ (¢ € coiliection of parameter sets in e\r, T . s eniry mn . .
Let C be the collecti ter sets in th main (1) entry in PN

(b) For each parameter set m € C', execute reaction r at time T in parameter set 7.

9.4.3 Updating

The most complicated part of MNRM is updating 7s. First we give the formal statement,

then walk through it.

Algorithm 15 (MNRM-Update)

1. If p #£ main

For each edge (r,a) in G

(a) If (o, 7o) is in PP, update a in PP in the same manner as NRM.
(b) Else /* (a,T4) is in PMen */
i. Remove p from the collection C in the (o, 7m%" (') entry of P,

ii. Let Th = the reused form of T, Put the pair (o, Th) into PP.

2. If p = main
For each edge (r,a) in G

(a) For each parameter set i (m # main):
i. Consider the (r,7,,Cy) and (o, 7o, Cy) entries of P™",
i. If meCr AND w € C,, do nothing.
iit. If m € Cp AND 7 ¢ Cy, update o in P in the same manner as NRM.
wv. If 7 ¢ C, AND 7 € C,, remove T from the collection Cy. Let 77, = 774"
Put the pair (o, T%) into PT.
v. If m¢ C. AND 7 ¢ Cy, do nothing.

(b) Let (Tg”“m)’ = the reused form of 7Y (of course, if a =1, then %" must be

regenerated). Update the triple (a, (Tg”“m)/ ,Cp) in Pmain,

Recall the key points about updating in NRM: 1) we need to generate a new random

number for the reaction r that was just executed, and 2) for reactions a that depend on r,
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top-level

main 1 2
3.12.(m2) @.51)
| (1,25,{m2}) | |(5, 4.3,{m,1,2})| |(1, 7.5)| |(3, 10.6)|

| (4,10.6,{m,1}) | | (2,3.9,{m,2}) |

Figure 9-3: Priority queues used by MNRM after the update operation in Example 30.

a, changes, and so 7, needs to be transformed (according to Eq 5.1 or Eq 6.3) to regain
the correct distribution. MINRM adds a new wrinkle: we need to make sure 7, and all the
Tos wind up in the right priority queue(s).

As in the MNRM-Execute algorithm, there are two cases: events that are in P™*" and

events that are not. The latter are easier, so we consider them first.

Example 30 Starting with the priority queues in Figure 9-2, suppose we execute the top
element of P1, namely (2,4.1). (Note: as mentioned above, we would not typically do this,
and this example is only an illustration.) In the MNRM-FEzxecute algorithm, we changed
(#X)P for p =1 only, as in Table 9.1. From the dependency graph, Reaction 2 affects
reactions 1, 2, and 8. To update p = 1,7 = 1, one runs MNRM-Update Step 1a and
transforms (1,6.5) in P! according to Eq 5.1. Suppose the new value is 7.5. To update
p=1,r =2, one also runs MNRM-Update Step 1a. This time, we need to generate a new
random number, and update it in P'. Suppose the new random number is 5.8. To update
p = 1,7 = 3, one runs MNRM-Update Step 1b. Here the entry is in P™¥", so one not
only transform the value 1.2 (say the new value is 10.6) but also removes it from PmEN and

puts it in P'.  These manipulations are illustrated in Figure 9-3.

Example 31 Starting with the priority queues in Figure 9-2, suppose we execute the top
element of P™@"  namely (3,1.2,{main,1,2}). From the dependency graph, we need to
update Reactions 3 and 4 in all three parameter sets. Which case in MNRM-Update we
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top-level
(main, 2.1)
(1, 4.1) (2,11.3)
main 1 2
(3,2.1,{m,1,2}) (2,4.1) (4,11.3)

1,25 {m2) | (543 {m12}) (1, 6.5)

4,122, {m1}) || (2 3.9,{m,2})

Figure 9-4: Priority queues used by MNRM after the update operation in Example 31.

execute depends on where the target reactions are. For Reaction 8, all three parameter
sets use the same T, stored in P™%".  Because the Ts for those three parameter sets were
equal before execution of Reaction 3, they must be equal after its execution (the conditions
that assure this will be discussed in the correctness proof of the next section). We executed
Reaction 3, so we will have to generate a new T3, say 2.1 and update it in P™%", according
to Steps 2a,ii and 2b. Updating Reaction 4 in parameter sets main and 1 uses the same
step, but only requires a transformation (Eq 5.1), not a new random number. Suppose the

transformed value is 12.2. Updating Reaction 4 in parameter set 2 involves transforming

the (4,9.8) entry of P2, to 11.8. These manipulations are illustrated in Figure 9-J.

There is one other interesting case, Step 2a, iv. Starting with our original priority
queues, suppose we had to update Reaction 3 in parameter sets main and 1, but not 2.
(Again, this is a contrived example.) Then 75%" and 74 would change, and the priority
queue would be updated appropriately. However, 7'% would not change, and after the
update 72(new) = 72(old) = 75" (0ld) # 7" (new), so we need to move 72 to P2.

From the discussion thus far, Steps 2a and 2b could occur in either order. In fact, for

Markov processes, the order does not matter. For non-Markov processes, as in Section 9.6,

the order will matter, and they should be executed as written.
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9.5 Correctness of MNRM

We shall prove that MNRM is essentially equivalent to Algorithm 10, except that MNRM
allows statistical dependencies between random numbers in the simulations corresponding
to different parameter sets. It is critical that NRM and MNRM not have statistical de-
pendencies between random numbers in the same parameter set; however, there is no such

restriction across parameter sets.

Definition 7 The inputs of the propensity function are the variables that determine the
propensity. For the reaction A+B LI C, the propensity a is given by a = k x (#A) X (#B),
so the inputs are k, #A, and #B. (The “constant” k is variable in the sense that it may
vary from one parameter set to another.) The function valin(a) will be the values of the
inputs, and valin(a) = valin(b) if and only all inputs to a equal the corresponding input to

b.
We shall prove the following:
Lemma 1 In the MNRM, at time t, the contents of the priority queues are:

1. The T value corresponding to reaction r, parameter set p will be in the main branch
(i.e., P will contain an entry (r, 77" C) and p € C) if and only if ¥' € [0,1],
valin(al(t')) = valin(@™®"(¢)).

2. Otherwise, the T value corresponding to reaction r, parameter set p will be in the

(r, %) entry of PP.

3. The entry for reactionr in PP (p € {1,2,... ,n,main} ) is associated with a well-defined

af and T8 ~ Exp(al) + 1.

Lemma 2 MNRM is equivalent to running n instances of NRM, subject to: the values Tf}

and ng are statistically dependent if and only if r1 =12 and (Vt' € (0,1, valin(af} t)) =
valin (a?3(t')) = valin(a%n(t') ), where t* < t and neither reaction r1 in pl or reaction r2

in p2 has occurred in [t*, ).

Theorem 6 MNRM is correct; i.e., ¥p, the trajectories generated for the pth parameter

set follow the same statistics one would get running NRM on parameter set p. (And
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thus, MNRM is equivalent to applying the chemical master equation approach for multiple

parameter sets.)

Proof. (Lemma 1, Part 1) The proof proceeds by induction on ¢. Let C, denote
the collection of parameter sets in the (r,77°%" () entry of P"%". Tet H'(p,r,t) be the
statement “p € C, if and only if V¢’ € [0,¢], valin(af (¢')) = valin(a™*"(t')).” The induction
hypothesis, H(t), is “H(p,r,t) holds for all reactions r and all parameter sets p.”

Base case: £ = 0.

Let p and r be given. The routine MNRM-Initialize sets up the induction hypothesis.
Specifically, it puts the triple (r, 7., {main,1,2,... ,pmax}) into P™%" in Step 3. Step 4
removes those p from C, for which £7%" =£ k. Note that this inequality implies inequality
of the corresponding wvalin functions. In fact, the implication goes both ways, because the
initial number of molecules is the same for each parameter set. So, after MNRM-Initialize,
p € Cp & KM = [P o valin(a™™ (¢t = 0)) = valin(ak(t = 0)). This establishes
H'(p,r,0). As p and r were arbitrary, this establishes H(0).

Induction step: Assume H (f44), and suppose the next reaction occurs at tyew > toq (in
other words, no reaction occurs between tgq and thew). We shall show that after running
the functions MNRM-Execute and MNRM-Update, H(fnew) holds. Let p and r be given,
and consider the (r,7,p) triple picked by MNRM-Execute.

Case 1 p # main

This implies p & Cr(toq). In this case, we execute MNRM-Execute Step 3, which
affects (#X)?, and MNRM-Update Step 1. The change in (#X)P only affects the values
stored for the pth parameter set, some of which are stored (by the induction hypothesis) in
PP and some of which are stored in P"¥".  Thus for all reactions v and all parameter
sets pp & {p,main}, (#X)PP does not change, and so T5¥ does not change, and so H(t,q)
immediately implies H' (pp, 7, tnew)-

Let reaction rr be arbitrary. To establish H' (p,rr,tnew), consider three cases:

o (ryrr) ¢ G

Then valin (aly(teq)) = valin(aby(tnew)). Because equation r is not exvecuted in the

main parameler set, only in the pth parameter set, valin (am%" (1 ,4) ) = valin (@™ (L,00,) )-

rr rr

Thus valin (aby (tnew) ) = valin (@4 (Le) ) if and only if valin (b, (toq)) = valin (@%"

(toia))-
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o (r,rr) € G, and p & Crr(tod)
Then Step 1a will be executed, and Cy, will not change. So p & Crr(tnew), and by the
induction hypothesis, (V' € [0,t,14), valin(al(t')) = valin (@™ (t') ), which implies
TVt € [0, thew], valin(ak(t')) = valin (@@ (¢') ).

o (r,rr) € G, and p € Crr(tod)

Then Step 1b, ¢, and d will be executed. (r,rr) € G, so valin(aly(t o)) # valin(al, (tnew) )-
Using the fact that p € Crr(toa) and the induction hypothesis, we have valin(afr(tnew))
# valin(aby(toq)) = valin(@m¥ (ty4)) = valin(@2%" (tpew)). Step lc ensures that

p ¢ CTT (tnew) .

In the first case, H' (p,rr,toq) = H' (p, 77, tnew). In the second and third cases, p ¢
Crr(tnew) and (Tt € [0, tpew), valinfak(t')) = valin(@?¥™(t')), so H' (p,r7r,tnew) holds in
those cases as well. Because all rr fit into one of these cases, this establishes H' (p, 17, tyew)

for all rr, subject to p & Cr(toia)-

Case 2 p = main
In this case, we execute MNRM-FExecute Step 4, which affects the number of molecules
in simulationg, for all pp € Cr(toq), and MNRM-Update Step 2.  Let reaction rr and

parameter set pp € Cr(ty14) be given, and consider cases:
® pp = main

Case 3 o If(r,rr) € G, we execute Step 2b. Whether we do or not, pp remains in Cpp.
By definition, H' (main, r,tpey) holds.
® pp £ main
The key here is to see whether abt should change. If ab% is in the main branch, this
can be tricky — some elements of C,.. may need to change their a,.s, while others
may not, in which case one will need to move things around between priority queues.

Breaking this up into cases:

o (ryrr) ¢ G

This is completely analogous to the subcase above in the p # main case.
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o (r,rr) € G, and pp € Cr(tod) and pp € Crr(tora)

The fact that pp € Cp(toq) means we will evecute reaction r in parameter set pp
(MNRM-Execute Step 4). Because (r,rr) € G, aff should change. Here is the clever
part: by the induction hypothesis, V' € [0,ty4], valin(am®" (') = valin(alZ(t')); i

particular, it is true at t' = toq. When we execute r, we change certain inputs. They

were the same at t,14, and they are changed in the same way (i.e., by the effect of ),

1 (@MY (L1600) ) = valin(al® (tpew) ), and

so they must still be the same . Hence valin

H' (pp, 77, tpew) holds.

o (r,rr) € G, and pp € Cr(tog) and pp & Crr(tora)

Again, the fact that pp € Cr(toq) means we will execute reaction r in parameter set
pp (MNRM-FEzecute Step 4). Because (r,rr) € G, ab¥ should change. The value
i corresponding to ¥l is being stored in PPP (because pp ¢ Crp(toa)), so it is
updated there. Formally, by the induction hypothesis, (¥t € [0,t04], valin(am®"(¢'))
= valin(afL(¢'))) implies (¥ € [0, tpew], valin(al¥™(¢')) = valin(al£(t'))), and the

update in 2aiii keeps pp & Cop(tnew). Thus H' (pp, rr,tnew) holds.

o (r,rr) €G, and pp & Cr(toa) and pp € Crr(toq)

This time, we do not execute reaction r in parameter set pp. aby should not change.

mazn

However, a®" is going to change at Step 2b. Thus valin(aff (ten) ) = valin(al? (tp14))
= valin(a®" (t ) ) # valin(am%" (tne,) ), s0 77 no longer qualifies to be in P™Y",

This is taken care of in Step 2aiv, after which pp & Crr(tnew)-

b (7“ 7“7“) €G, and pp ¢ C, ( old) and pp ¢ CM’( old)

In this case, we do not change: valin(at*"(to4) ), valin(aff (tnew) ), Cr(tora)s or Crr(tora)-
Thus H' (pp,rr,teq) = H (pp, 7, tnew)-
Together, these five cases cover all possibilities. Thus H' (pp,rr,tnew) holds for all pp
and rr, s0 H(tpew) holds.

This completes the induction, and hence the proof.

1 This is why we require equality of input values, not just equality of a.s. For example, suppose a, =
Ex (#A)x (#B). Ifar =k x (1) x(2) =k x (2) x (1) = ¢2. the change will not have the same effect, and
the a,.s will not be equal after the change.
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Proof. (Lemma 1, Part 2) Every (reaction, parameter set) pair is always contained
in one of the priority queues (all the places where such a pair is removed from one priority
queue, it is immediately added to another). The previous lemma showed under which
conditions (reaction, parameter set) is in P™%", Whenever a pair is removed from P74,
either in MNRM-Initialize Step 4 or MNRM-Update Step lc or Step 2aiv, the pair is
immediately inserted into PP. This proves Part 2.

Proof. (Lemma 1, Part 3) Again, the proof is by induction. The basic idea here is
that

8 v Exp(al) +1 (9.1)

after the initialization step, then each time we change or do not change af, in all the cases
above, we change or do not change 7> accordingly. More formally,

Base case: Clearly MNRM-Initialize, Steps 1-3 set Eq 9.1 up for all » and 77°%" at
t =0. Step 4 sets Eq 9.1 up for all » and p where 75 # 774" at ¢ = 0.

Induction step: Suppose each 7% follows Eq 9.1 at the beginning of an iteration. MNRM
picks a certain reaction p in one or more parameter sets and executes it. By direct analogy

of the proof for NRM,

e Any reaction not affected by p may keep the same 7. In particular, the reactions in

MNRM-Update Step 2aiv are not affected by p, so they fall under this case.

e Any reaction updated in the same priority queue (MNRM-Update Steps 1a, 2aiii, and

2b) uses the standard NRM update, and hence is correct.

e The only troublesome case is MNRM-Update Step 1b, moving priority queues. By

main

the induction hypothesis, 75 = 7" ~ Exp(a™™) +t before we choose . Also, by

Part 1 of the lemma, a*" = af before we execute . Thus, after ju, the reused form

of 7% equals the reused form of 77",

Thus Part 3 of the lemma holds.

Another approach would be to separate simulations as soon as the first event occurred
that causes trajectories from different parameter sets to diverge. MNRM is more effi-
cient, because conglomeration is done at the reaction level, not the trajectory level: two

trajectories that differ by a single reaction will continue to incur savings.
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9.6 Time-varying and non-Markov Processes

MNRM can be extended to time-varying and non-Markov processes. Time-varying Markov
processes are particularly simple: one replaces the exponential function with some other
function, as was done in Chapter 6 for NRM.

Non-Markov processes are more challenging. From the discussion of NRM in Chapter 6,
recall that a non-Markov process must store state information, and so the next-time code is
a procedure, not a function. Each non-Markov reaction in MNRM must store state for each
parameter set. However, just as the times for different parameter sets can be combined, so
can the stored states. (In fact, the value 7 is a special case of state — it is the amount of
state stored by the NRM for Markov processes.) When a reaction in a certain parameter
set diverges from the main branch, it must copy the stored state from the main branch, and
from then on maintain state separate from the main branch.

For the gamma reaction in NRM, we had to store a separate list L with times of events
for different molecules undergoing the gamma process. For example, suppose reaction r is
a gamma process, which conglomerates the elementary reactions Sg — S1 — --- — 5y, all
with a common rate constant k. Whenever a molecule of Sy is generated, NRM generates
a 7' value according to a gamma distribution (Chapter 6, Eq 6.4) and adds that value to L.
The value 7, is simply min L. Here L stores the state of the gamma reaction r. (One may
implement L as a priority queue, but whether one does or not is irrelevant for the current
discussion.)

To extend non-Markov reactions to MNRM, suppose (r, 7m%" () € PM%" and p € C,.

Lmain main
r .

Then one needs to store state .

in order to generate 7 Similarly, one needs to store

p

state L} in order to generate 7. However, as long as p € C,, one can use L} = [

and
78 = 7m@n_ The tricky part is when (and if) p needs to be removed from C,.. To accomplish
this removal, one duplicates L7%"; the copy becomes LY. Subsequent manipulations of L

affect either the original, which is now L7%", or the copy, which is now L%, but not both.

Example 32 Suppose reaction r is a gamma-type reaction whose 7 values coincide for pa-
rameter sets main, 1, and 2. As in Table 9.2a, suppose L™%" = [} = [?2 = {14.6,18.2,19.3}.
Now, suppose that executing some other reaction p # r in parameter set 1 requires that we
update L, by adding the value 20.8. Because we only update in parameter set 1, it is neces-

sary to copy the L% entry, and change the C, set in the P™“" entry (Table 9.2b). Upon
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Parameter Set Variable Value
(a) main P entry  (r, 14.6, {main, 1,2})
main Lmain {14.6,18.2,19.3}
Parameter Set Variable Value
main Pman entry  (r,14.6, {main, 2})
(b) main Lmain {14.6,18.2,19.3}
1 Pl entry (r,14.6)
1 Ll {14.6,18.2,19.3}
Parameter Set Variable Value
main Pman entry  (r,14.6, {main, 2})
(c) main Lmain {14.6,18.2,19.3}
1 Pl entry (r,14.6)
1 Ll {14.6,18.2,19.3,20.8}

Table 9.2: Copying of state for gamma reaction. (a) Before any manipulations, when
parameter sets {main, 1,2} agree. (b) Parameter set 1 has split off and been copied. (c)
Subsequent manipulation affecting parameter set 1 only.

executing i in parameter set 1, the new 7' value is added to L. only (Table 9.2¢).

More generally, non-Markov processes will require some sort of shared state S7%". One
may use a single copy corresponding to the main branch, and as other parameter sets diverge
(in steps MNRM-Update 1b and 2aiv, for example), it is necessary to copy S7%" to create
SE.

In principle, one can apply the MNRM-ideas to the stored state S to minimize the
amount of duplication. In practice, the amount of state may be small, and the code

necessary may outweigh the benefits.

9.7 Timing Analysis and Improvements

This section analyzes the time it takes to run MNRM and suggests two ways to improve its
worst-case performance.

The operations in MNRM-Initialize are executed only once, whereas the operations in
MNRM-Execute and MNRM-Update are executed once for each simulation event. As there
will typically be very many simulation events, we shall ignore the initialization cost.

At each iteration, MNRM chooses an event to execute, which consists of a parameter set
p and a time 7, which together constitute the top entry of P!P~!v¢l The event executed

will then be the top entry of PP. There are 2 cases:
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Case 4 p # main

In this case, MNRM executes a single event in a single parameter set. MNRM-Fzxecute
runs Step 1, which takes constant time, MNRM-Update executes Step 1, which takes for each
a with (r,a) € G, either log|PP| (Step 1a) or log|PF| + const (Step 1b). Assuming, as
before, that |{(r,a) € G}| is a constant independent of r (in other words, that the dependency
graph is sparse), then the total amount of time is O(log |PP|). (Here we have used the fact
that although PP may grow, its total growth is bounded by |{(r,a) € G}|, a constant.) Note
that |PP| will always be < R, and typically will be < R. At the end of the update process,
one updates the (p, 0. ) entry of PPl which takes worst case O(log pmaz).

In short, one event takes O(log R + log pmazx) operations in the worst case.

Case 5 p = main

In this case, MNRM executes events for each p € C, for the (r,77%" C,) entry of
P There are |Cy| such events.

The function MNRM-FExecute requires pmax + |Cy| X const operations; the first term is
to loop through all possible parameter sets p (assumed to be stored as bits in an array) and
const to execute each reaction.

For each (r,a) € G, Step 2ai takes p operations, and exactly one of 2aii-2av is executed:
2aii and Z2av require a constant amount of time, Zaiii requires logr™ and Z2aiv Tequires
const +logr™. Thus the total time for Step 2 is |{(r,a) € G}| X (pmaz+ |Cr @ Cy|logr™),
where @ denotes the symmetric difference, i.e., elements in C, or C, but not in both.

Step 2b requires |{(r,a) € G}| x log R operations.

Updating PP~ 1€l takes worst case O(pmazx) operations, in the case that all its en-
tries change and it is necessary to rebuild it from scratch, rather than updating each entry
individually.

In short, |C,| events take O(pmax + |Cr| 4+ |Cr @ Cy|logr™ 4 log R) operations in the

worst case.

In the latter case, amortizing across events gives us that each event takes

pmazr  |Cy| |Cr ® Cyllogr™  log R)
Gl |G || |G+

O

operations in the worst case. If || is small, this is O(pmax) operations per simulation
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event, which is atrocious. Therefore, to get reasonable performance, |Cy| needs to be close
to pmax, which leads to our first improvement:

If || < pmazx, move all p € C, into PP, and mark the r entry of P™%" as “main only.”
When executing a “main only” event, do not bother looping over all parameter sets, only
execute in the main parameter set.

Given this improvement, either |C,| &2 pmax or |C,| = 1. The order per event is

O(CECalar” 1 Y8l = Oflog ™) if G4 7 pmaa

O(|Cr ® Cy|logr™ 4+ log R) if |Cr] =1

In the former case, the order per event is very good, in the latter, no (as |C, ® C,| can be
close to pmaz). To rectify this, we introduce improvement 2:

If |r™| gets to be too big, move all the 7 elements of P™%" into PP and continue the
simulation of parameter set m independently of the others.

This reduces the complexity to log R, for individual simulations, as they are removed
from PtoP-tevel  Further, since no non-main branch can be “too big,” not only is logr™
small, but |C,. ® C,| is small on average.

(At long last we are in a position to say why we prefer Algorithm 10 to Algorithm 11,
namely it is easier to remove parameter sets from Algorithm 10 to accomplish improvement

2.)

9.8 Conclusions

This chapter has presented the Multiple Next Reaction Method (MNRM), an algorithm to
run multiple simulations in parallel for different parameter sets. By keeping track of which
as and 78 are the same across parameter sets, and using the improvements in the previous
section, MNRM is never worse (in order) than running separate instances of NRM, and is

frequently much better.
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Chapter 10 Sensitivity Analysis

10.1 Summary

A very important problem in analyzing models is: to what extend does the model depend
on the exact parameter values (rate constants, etc.) chosen? [25]

To deal with this question, this chapter provides a numerical sensitivity analysis algo-
rithm for calculating the gradient of observable system properties with respect to the system
parameters. (Sections 10.3 and 10.4 define more clearly the types of properties and what
their gradients mean.) Section 10.5 explains the Mesoscopic Efficient Sensitivity Analysis
(MESA) algorithm. Section 10.6 shows the results of applying MESA to the lambda model
of Chapter 4. Section 10.7 shows how to bound the difference in a model’s predictions

given uncertainties in its parameters.

10.2 Introduction

Work done on deterministic biological systems suggests that certain model properties are
robust [2, 5|; changing parameters should not affect those properties. Specifically, perfect
adaptation is robust in K. coli: an E. coli cell tumbles with the same frequency regardless
of the absolute amount of chemoattractant. Barkai and Leibler’s work [5] suggests that
the structure of the system, not fine-tuning of parameters, maintains the properties. Per-
fect adaptation is robust not because of the exact values of the system’s parameters (rate
constants, etc.), but despite the exact values. Of course, not every property is robust —
for example, changing parameters may lead to the same qualitative behavior but different
timing.

When one creates a model, certain parameters are unknown, so one is forced to estimate
or even guess their values. Sensitivity analysis provides a way to see whether the model
depends critically on those parameters (in which case one might want to get better estimates
of them) or whether the parameters do not matter at all. In other words, one can study

the model at a nominal parameter set (the operating point) and make statements about
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what the model will do in an area near that operating point, without having to calculate
the model’s behavior everywhere in the region, rather only at key points. (See Figure 10-2
below.)

This chapter presents a way to deal with robustness and its converse, sensitivity, in the
stochastic framework. Section 10.3 gives a simple example of a system with one parameter
and a small number of states. This system is used to illustrate the concept of an observable
of a system and sensitivity of observables with respect to a parameter. Section 10.3.3
presents an important use of sensitivity — to approximate the value of an observable at
different points in parameter space. Section 10.4 formalizes these concepts, and generalizes
them to multi-variable systems. Section 10.5 presents a numerical method to approximate
sensitivity gradients using the MNRM algorithm of the previous chapter. Section 10.6
applies sensitivity analysis to the running example, the lambda model. Section 10.7 presents

another use of sensitivity analysis, namely singular value decomposition.

10.3 Example of Sensitivity Analysis

Consider a simple chemical system
A-tino A

with initial condition “3 molecules of A.” Using the approach of Chapter 3, one can write

a chemical master equation for this system, namely

‘'r]l [ =3 0o o0 0]
dP  d | P 3k -2k 0 0
arr _ a2 bzl (10.1)
adt | p 0 2k —k 0
Py 0 0 k O
Solving this gives
[ 673kt_

3672kt _ 3673kt
3efkt _ 6672]% 4 3673]%

1— 3671% 4 3672kt _ 673kt
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Figure 10-1: Sample trajectory of the system in Example 10.3.

A plot of the number of molecules of A as a function of time for a single trajectory would
look something like Figure 10-1. Many plots, corresponding to many trajectories, would
give the correct statistical distributions.

Various statistics relate to this process. For example:

® lcan, the mean amount of time from the initial time till there are no molecules of A

left, which can be shown to be &,

e [%(t), the probability that there are 0 molecules of A at time ¢, given by Py(t) =

1— 3efkt 4 36721% _ 673]%.
e F[#A], the expected number of molecules at time ¢, given by
El#A] = 3 <673kt> ) <3672kt _ 3673kt> 11 <3efkt _ e 2t 4 3673kt>

10 <1 ekt g2kt 673kt>

= 3¢kt

e Var[#Ay, the variance of the number of molecules at time .

The simple example system chosen has precisely one parameter, k'. This chapter asks

the question: How sensitive is the system to the parameter k¢

1One could consider the initial number of molecules to be a parameter, but that will not be done here.
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10.3.1 Observables

Suppose k in the example above were replaced with &’. The previous analysis goes through,

but with &' instead of k. In particular, the system starts with 3 molecules and ends

with none. The plot in Figure 10-1 is identical, the only difference being the probability

distribution on transition times ts2, f21, and t19. (In other words, while Figure 10-1 is

the same, the probability that a given trajectory will look like Figure 10-1 changes.) The
11

statistics change: fmean becomes &7, Fo(t) changes, F[#A;| becomes 3e ', etc.

So how sensitive is the system to k7

The states of the system do not change at all.

The state transitions do not change either.

The trajectories (Figure 10-1) do not change either, but the probability of getting any

particular trajectory changes.
o [(t) follows the same type of distribution, but with different parameters.

® {can Changes.

E[|#A;] changes.

In other words, whether the system is sensitive to & or not, and how sensitive, depends

on the quantity of interest.

Definition 8 An observable is a measurable quantity of a system. Fach of the bullets

above corresponds to an observable.

The key to sensitivity analysis is to define an observable and determine the sensitivity
of that observable with respect to a given parameter. In particular, this chapter will be

concerned with observables of the form

y(t)= > C.Pi(1) (10.2)

state s

The rate constant k is real-valued, initial numbers of molecules are integer-valued, and it will not make
sense to take derivatives (in Section 10.3.2) with respect to integer-valued variables. This is not the severe
restriction it appears to be: in general, one could have certain probability distributions on the initial number
of molecules of each type, and take derivatives with respect to the parameters of those distributions.
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where (s is a function of state only.

Example 33 y(t) = Po(t) is such an observable, with Co =1, C; = 0 otherwise.
Example 34 y(t) = E[#A:] is also such an observable, with C; = 1.

Example 35 y(t) = E[(#A:)?] is also such an observable, with C; = i2.

Example 36 t;cqn is not of the form Eq 10.2, nor is the shape of Figure 10-1, nor the
type of any of the distributions.

Remark 8 One may object that Eq 10.2 only allows linear functions. This is not entirely
correct. FEq 10.2 only allows functions that are linear in probability, but they may be of
arbitrary order in the state. For example, one could construct C so as to observe (1) =
the k-th moment of the number of molecules of type A. (This quantity, 3 (#As)¥P(s), is
linear in P, but not in #A.)

10.3.2 Sensitivity of an Observable

This section shifts focus slightly and views y(¢) as a function of k, not of £. To reinforce
this notion, we shall write y.(k). In other words, one treats ¢ as fixed. Given that y.(k) is
a function of k&, it is meaningful to discuss its derivative with respect to %k, which provides

a measure of the sensitivity of y to changes in k.

Definition 9 The derivative <%> is called “the sensitivity of y¢ with respect to param-
k*

eter k, evaluated at k*.”

Example 37 Lett =3 and k* = 1. For the observable y:(k) = Py(t), we have

dyt d —kt —2kt —3kt
Wy = C(1-3 3¢ 2t _ )
<dk>k* dk( ¢ e ©

= <—|—3teikt — Gte 2kt 4 315673’“)

Ek*

k*
= 0.4046
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Example 38 Using the same t and k*, let the observable yi(k) = E|#A¢. Then

dy — a <3e*kt>
dk ) .. dk E*
= <—3teikt>
k*

= —0.4481

10.3.3 Using Sensitivity to Approximate Observables

In general, y:(k) is a messy, non-linear function. Using a Taylor expansion about a point

k* (in parameter space) gives

d
ye(k) = ye(K*) + (K — k¥) <£> + Higher order terms
k*

One important use of the sensitivity is to approximate the value of y; for parameter values
close to the operating point k*. To a first approximation, one may drop the higher order
terms approximate about &£* using the linear terms only. Other uses of sensitivity will be

shown in Section 10.7.

Example 39 In Fxample 37, approzimate y, at k= 1.2. At the operating point (k* =1),

(k) = <1 _3e Rt | 32t _ e*3kt)k — 0.8580

and the approximated y.(k) is
" o (W
wi) = )+ =) (5)
k*
= 0.8580 + (1.2 — 1)(0.4046)

= 0.9389

For comparison, the actual calculated value is 0.9202.

Example 40 Using the same k, use the observable from Fxample 38. Then,

ye(k*) = <3e*’”> = 0.1494
k*
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and so the approximated y(k) is

dyt

w) = )+ =) ()
= 0.1494 + (1.2 — 1)(—0.4481)

= 0.0598

For comparison, the actual calculated value is 0.0820.

10.4 Generalization - Multi-dimensional Sensitivity

Chapter 3 described the chemical master equation approach to stochastic kinetics. Al-
though that approach is impractical for large systems, it provides a simple theoretical
framework for sensitivity analysis. More practical techniques will be discussed in Section
10.5.

Recall that in the chemical master equation framework, one considers a probability
vector ?(t) that changes over time and contains a huge number of states. Specifically, the
i-th component of ?(t) is the probability of being in state ¢ at time ¢, conditioned on the
initial state. ?(t) evolves with time according to the equation:

@ = WP(1) (10.3)
where W is a coefficient matrix that is independent of ?(t) The matrix W is determined
from the chemistry using propensity functions a, corresponding to each reaction (see Chap-
ter 3), which are in turn functions of kinetic rate constants, k.. Note that in principle, one
could solve this equation to get ?(t), but in practice, ?(t) is too big (e.g., in the lambda

060

model it has something like 1 elements). FEven writing out W is impractical, although

any given W;; can be calculated easily.
Definition 10 A mesoscopic chemical system is one that obeys kg 10.3.

Now consider an observable. The observables in the previous section were all one-

dimensional, but one can equally well have a multi-dimensional observable.

Definition 11 An observable of a mesoscopic chemical system is a function y(t) defined
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7(t) =CP(t) (10.4)
Where C is a matrix.

In particular, if C is the identity matrix, one observes the probabilities of all states
directly. If C is invertible, one may infer the probabilities of all states from the observation.
In Eq 10.2 of the previous subsection, y(t) was a scalar (i.e., a real number) and C was an
n-vector, or equivalently a 1 X n matrix. Typically, the chemical master equation will be
very high dimensional, and the observable will be very low dimensional, so one will not be

able to find all the original probabilities.

Example 41 In the lambda model, one is interested in the statistics of the final fate of the
system, namely P(lysis), P(lysogeny), and P(undecided) at tppq = 35 minutes. In the
chemical master equation framework, the system has very many states (call this number n)

and obeys Eq 10.3, and the observable is

P(lysis)
T ()= | P(lysogeny) = C?(t)
P(undecided)

where C 18 a 3Xn matriz with

1 if state i is lysis

Ci; =

0 otherwise

1 if state © is lysogeny
Cos; =

0 otherwise

1 if state © is undecided
C3; =

0 otherwise
The final cell fate probabilities are given by Y (35 minutes).

Example 42 Consider the system A 1, o A B 2, o B, subject to the initial conditions
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“1 molecule of A, 1 molecule of B.” This system obeys the master equation

P(1A,1B) | R N
dP(t) d | PUA0B) | b k000
dtdt | p4,1B) ki 0 —ky O
P(0A,0B) 0 ki ky O
El#A] 1100
Let y(t) be . Then C =
bl#B] 1010

10.4.1 Sensitivity Gradients

The previous section considered only a single rate constant, &, but now consider multiple

rate constants, ki, ks, etc.

Definition 12 For a mesoscopic chemical system obeying Fq 10.8 and an observable 7
(possibly multi-dimensional) obeying Eq 10.4, the derivative of y with respect to the rth

parameter, namely %, is called the sensitivity of 7'y with respect to k.

Definition 13 The sensitivity gradient V¥’'y of an observable of a mesoscopic chemical

system is a matriz {%, %, .. } .

Example 43 Consider the system of Example 42. Solving the master equation,

[ e*(k1+k2)t
€7k1t<1 _ e*kgt)
(1 _ e*klt)efkgt

I (1 _ e*klt)<1 _ e*kgt)

Pt) =
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So,
T = CPE
[ e*(k1+k2)t i
E[#A] 1 100 e Ft(1 — e hat)
E[#B] 1010 (1 — e ity hat
(1 _ e*klt)<1 _ e*kgt)
i e*klt
- e*kgt
And
—te kit
Vv =
0 —te k2t

10.4.2 Using Multi-dimensional Sensitivity to Approximate Observables

Let W(?*) be the value of y at some operating point T = (kf,k5,...) in parameter

space. At a nearby point ?, the value of W(?) is given by

—

— I——— g Oy * Oyt *
(k) = (k") + | 5 (k1 — kD) + | = (ko — k3) + ...
Ok1 ) - Oka /)

+ <@> (kn — ky,) + higher order terms (10.5)
Oky ) 2+

In other words, one can approximate W(?) anywhere in a multi-dimensional neigh-
borhood of an operating point T using just 1) the value at the operating point, and 2)
the sensitivities, %. So by calculating n one-dimensional functions, one can approximate
1y anywhere in an n-dimensional neighborhood centered at ?*, as in Figure 10-2. This
first-order approximation should be relatively good near the operating point, but may get
progressively worse away from the operating point. In fact, it would be wrong to as-

sume that system properties far from the operating point are similar to those close to the

operating point.
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Ky

Figure 10-2: The sensitivity gradients g—;ﬁ allow one to approximate y at any point & in a
neighborhood (shaded) about k*.

10.5 Calculating Sensitivity

o7 ().

In principle, one can calculate o,

Ok; Ok; Ok; Ok;
and
d (8P (1) 9 (dP()
dt \ Ok, C Ok; \ dt
° (WP
= — ¢
o, (VP 0)
P (1) oW
= W( o, ) + <a_kj> P(1)
Letting u = ?Rgt) and W = g—}%}, these equations simplify to:
Iy (1)
ok, "
du ,
— = Wu+WTPQ)
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So, in principle, one can solve for ?(t), use that to solve for u, and use that to solve for

a7 (1)
Ok; °

Example 44 For the example of Section 10.3, with y as in Example 38 and k; = k,

3 0 00
oW 3 -2 00
Ok; 0 2 —1 0
0 0 1 0
S0
[ 3k 0 o0 0] 3 0 0 0]
d ([6P@®)\ | 3k =2t 0 0 |3P() 3 -2 00 B
di \ Ok; 0 2 —k 0| 9k 0 2 -1 0
0 0 %k 0 0 0 10

where ?(t) satisfies Fq 10.1.

Of course, this technique is not practical for larger systems. Rather, we shall use the
fact that %kgt) is a well-defined, meaningful quantity, and develop numerical techniques to

approximate it.

10.5.1 Calculating Derivatives

It is straightforward to calculate y at any point % in parameter space: one uses the param-
eters & and runs the Next Reaction Method to calculate y. In particular, NRM provides
samples from ?(t), and 7 (t) = C?(t), so in the limit of large numbers, the estimated y

approaches the correct y.

Example 45 In the running lambda example, y is a 3-vector, C is a 8xn matrixz, where
n 18 very large (1060) and P is an n-vector. Fach trajectory run by the simulator picks a
state from P according to the correct probability distribution, so to estimate the probabilities

in P to some accuracy € would take a number of trajectories proportional to some function
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of n and €2. Clearly, since n is so large, this is not practical. However, to estimate y, one

needs only a number of trajectories proportional to € and 3, so it is tractable.

ogt (k).
ak]‘ .

The following algorithm approximates the derivatives

Algorithm 16 (Mesoscopic Efficient Sensitivity Analysis (MESA))

—

1. Calculate g (k*).

2. Vj, caleulate Y7 (k* + Ak;) and gt (k* — Ak;j).

3. Use W(F‘) + Ak;) and @)(F‘) — Akj) to approximate oyt (k ), using the formula

ok
O (E) _ T (F + Akj) — 5 (FF — Ak;) 06
Ok; 2Ak; (106)

The formula in Eq 10.6 is a standard three-point approximation of a derivative [7] (the
three points are B - Akj, F‘), and &* + Ak;, even though the middle term is not used) and
is accurate to O((Ak;)?). There are also higher order approximations, using four or more
points, which may be used instead without changing the basic idea. The remainder of this
chapter will assume the three-point method.

To calculate W(ﬁ) and W(F‘) + Ak;) for all j, one can use the NRM 2n + 1 times.
This approach is entirely doable: e.g., the NRM, applied to the lambda model for MOI 1 to
10, takes a couple of hours on a desktop, so one can run the entirety of MESA on a cluster
of desktop machines in a couple of days. However, the 2n + 1 calculations done are highly
redundant and can be reduced significantly. Consider, as an extreme example, a parameter
k; that the system is not sensitive to. Then W(F‘)) = W(F‘) + Ak;) = W(F‘) — Ak;), so
there should be no reason to do the same calculation three times. For other parameters —
even sensitive ones — some trajectories may not depend on the parameter at all, i.e., the
reaction in question may never occur, and other trajectories may be sensitive only from a
certain point on. In either case, there is computational savings to be had.

The problem to be solved is to run NRM on many similar parameter sets, precisely the

problem that MNRM handles.

2If one is interested in estimating each probability to a fized percentage error, the number of trajectories
would depend on the values in P, not just its size.
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Parameters P(lysis) P(lysogeny)

T 0.77 0.23
T4 Aky 0.81 0.19
T — Aky 0.73 0.27
T+ Aks 0.83 0.17
T — Aks 0.80 0.20
T* 4 Akg 0.79 0.21
T* — Akg 0.83 0.17
T+ Ak 0.75 0.25
T — Akr 0.78 0.22

Table 10.1: Sensitivity data for four equations of the lambda model.

Algorithm 17 Let k™% = & *, let 2 = + Ak;, and let 22— Ak;, and run
MNRM to get the y values for MESA.

10.6 Sensitivity of the Lammbda Model

In the lambda model, let

P(lysis)

Ui =

P(lysogeny)

At MOI=3 (chosen because neither P(lysis) nor P(lysogeny) is close to 0) ¥ is approx-
imately | 0.77 0.23 T. This section will consider the first four elementary reactions,
Reactions 4-7 in Table 4.2. (Elementary reactions are non-gamma, non-promoter reac-
tions.) Data for all 46 elementary reactions can be found in Table 10.2, for now the first
four will be used to illustrate some of the principles involved.

MNRM was used to generate 77 estimates at & * = the values in Table 4.2. FEach Ak;
was half the value of k;, so, for example, kq is 5 sec™!, so Ak; is 2.5 sec™!. Under these
conditions, the following 77 values were generated:

Note that some of these appear to be well-approximated by a linear fit — Ak, adds 0.04
and —Aky subtracts 0.04, for example — but others (e.g., k5) do not. Such is the danger
of assuming linearity, particularly with the statistical uncertainty inherent in mesoscopic
chemical systems. To fix this, one would need to decrease Aks and make statements about

¢ on a smaller part of parameter space. To get the full parameter space, one would need

to do multiple runs of MESA about different operating points, and approximate the more
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complex non-linear behavior by a series of piecewise linear segments. We shall ignore this
concern for now, and assume that it is legitimate (within statistical error) to approximate
as linear on the space of interest.

The formula in Eq 10.6 of the MESA algorithm in Section 10.5 can be used to estimate
V¥;. To do this, one needs to use the data from Table 10.1 and the nominal values
of the rate constants (as the Aks were derived from them). (It is unclear whether this
normalization of the “error as a fraction of rate constant” normalization one would get by
not dividing by nominal rate constants is more useful. We shall assume the former.) This

gives

0.02 021 -0.40 -0.001
—-0.02 —-0.21 040  0.001

VY =

As in previous sections, one can use this sensitivity matrix to approximate 7; anywhere
in a four-dimensional neighborhood of the nominal parameter values. We shall leave that
as an exercise for the interested reader.

Using NRM, one could do the calculation in this section. The key to MNRM is that it
is much faster, so one can do sensitivity analysis for all the elementary reaction (see Section

10.7) rather than just a small subset.

10.7 Other Uses of Sensitivity

So far, only one use of sensitivity has been presented, namely, using sensitivity derivatives
to approximate an observable anywhere in a neighborhood around the nominal parameters.
This is an important feat, because it allows one to do a small number of calculations and
approximate a function over a much larger space. This section shows another use of
sensitivity derivatives, namely to find the singular values of the sensitivity and to figure
out what combination of parameter uncertainties has the biggest effect on the model’s

predictions.
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10.7.1 Singular Value Decomposition

One can linearize Eq 10.5, and rewrite it in matrix form (using the sensitivity gradient in

Definition 13):

T (F) = T (K ")+ (VIR) 3. (Ak)

The vector Ak = & — k*. The matrix V¥ consists of n columns, where the ith column

oyt
Ok, °

is
One analysis tool one can apply is Singular Value Decomposition (SVD) [41]. Basically,
any matrix M can be decomposed into ()13} where X is a diagonal matrix and ()1 and

(09 are unitary matrices.

Example 46 For the four lambda reactions above, VY{ can be rewritten as

Vi = @QiXQ:

[ 0.036 0459 —0.888 —0.002 ]

0.707 —0.707 | | 0637 0 0 0| | —0.151 0.8%0 0449  0.010

| —0707 —0.707 000 0]]|—0988 —0.118 —0.101 —0.002
i 0 —0.008 —0.007 1|

In particular, the maximum singular value of 3 is the maximum change in || 77| for any
normalized vector E, and that maximum change occurs when the vector is in the direction

corresponding to the row of Q)9 that corresponds to the maximum singular value.
Example 47 In the lambda example 46, the manipulation that will change | UZ|| the most
18 E = { 0.036 0.459 —0.888 —0.002 }, the first row of Q2. Recalling that

Ez[mﬂ Aks Akg Aky

note that ks is the most important of the three parameters; changing ks by a unit will change
| Z]| by (—0.40)2 + (0.40)2 = 0.32. However, changing ks by 0.459 and ks by —.0888 (a
total of a unit as (0.459)24(—0.888)% = 1) will result in a change to ||y¢|| of (0.637)% = 0.41,

greater than a unit change in any individual parameter.

Sensitivity analysis, in particular the V37 matrix, shows how much the model will
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change per unit change of individual parameters. Singular value decomposition considers
combinations of parameters and makes definite statements about the maximum change in

|| 7Z|| that can be achieved by any normalized combination of changes in parameters.

10.7.2 SVD of Lambda

MESA was run on the lambda model for all elementary reactions (i.e., not gamma reac-
tions or promoter reactions, but all others) at MOI=3. (Chosen because 0 < P(lysis
at MOI=3) < 1.) There are at least two different ways to do this: if one uses straight
unit-changes, then Reaction 63 is the most sensitive. This is to be expected, as the rate
constant for that reaction, at 0.0001, is the lowest in the simulation; the second most sen-
sitive is 62, other reaction with constant 0.0001. So a unit change, 0.0001 to 1.0001, is
very big relative to the rate constant (in fact, so big that the linear analysis almost cer-
tainly does not hold), while a unit step of a rate constant 100 is small compared to the
rate constant. A much better comparison is to normalize, so a “unit step” is a constant
fraction of the rate constant. Under these conditions, no one reaction sticks out. The
sensitivities range from 0 to (absolute value) 0.19. Seven reactions (see Table 10.2) have
sensitivities greater (in absolute value) than 0.1. Table 10.2 shows the reactions used, their
sensitivities, and the normalized combination of them that gives the largest change in || 77|,
namely (0.673)2 = 0.45.

This is the sort of analysis one can do with no a priori knowledge of the system. Really,
though, the right way to do this is to define error bounds on each &, based on the amount of
data one has available to get the value k., then normalize with respect to these error bounds.
(Note that creating such bounds is a modeling issue, not an algorithmic issue, and will not
be addressed here. It will, however, be alluded to in the chapter on parameter estimation,
Chapter 11.) One can then run MESA and find out how sensitive the model is within the
parameter space of interest, defined by the error bounds. For example, if k7 is known very
precisely, but kg is not, a modeler should use MESA on a parameter space that is small in

the k1 dimension and large in the k9 dimension.



141

Reaction # Sensitivity Component Reaction # Sensitivity Component
4 0.080 0.168 48 0.000 -0.011
5 0.030 0.063 50 -0.090 -0.189
6 -0.040 -0.084 51 -0.110 -0.231
7 -0.030 -0.063 52 0.000 -0.000

10 0.030 0.063 53 -0.040 -0.084
11 -0.040 -0.084 54 0.070 0.147
12 -0.020 -0.042 55 -0.050 -0.105
22 -0.190 -0.399 56 0.020 0.042
23 -0.070 -0.158 57 -0.110 -0.231
24 0.070 0.147 58 -0.050 -0.105
25 -0.040 -0.084 59 -0.010 -0.021
30 -0.120 -0.252 60 -0.130 -0.273
31 0.030 0.084 61 0.010 0.010
32 0.070 0.147 62 0.060 0.126
35 -0.010 -0.021 63 -0.100 -0.210
36 0.040 0.084 64 -0.080 -0.168
37 -0.050 -0.105 65 -0.030 -0.063
38 -0.030 -0.063 66 -0.050 -0.105
39 0.040 0.084 67 0.150 0.315
40 0.030 0.063 68 0.010 0.021
42 -0.060 -0.137 70 0.080 0.168
44 -0.040 -0.073 71 0.020 0.042
46 0.130 0.273 72 -0.030 -0.063

Table 10.2: Data for singular value decomposition of lambda phage.

k*

Ky

Figure 10-3: The sensitivity gradients g—;ﬁ allow one to approximate y at any point & in a

neighborhood (shaded) about k*. Here the neighborhood is smaller in the k; dimension,
because uncertainty in the value of %1 is less than uncertainty in the value of ks.
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Part V

Parameter Estimation
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Chapter 11 Estimation of Stochastic Parameters

11.1 Summary

Previous chapters have considered the problems of simulation and sensitivity analysis, both
of which ask what predictions (in the form of trajectories, etc.) come from a given model.
This chapter considers the inverse problem: given trajectories, how much information (rate
constants, etc.) can one retrieve about the underlying model?

The fundamental result presented is that a trajectory where reaction r occurs n times
contains the same amount of information as n statistically independent random draws from
a distribution with parameter k.. (This chapter will concern itself with time-invariant
distributions, so the distribution will be an exponential.) These draws allow one to estimate
1/k, efficiently (in the statistical sense of efficient estimators) with variance 1/(nk?). A
standard result in statistics shows that this bound is the best one can hope to achieve, and
any other unbiased estimator must have higher variance.

Moreover, the following surprising result comes out of the analysis: in a system with
multiple reactions, one can estimate the constant of each individual reaction independently
and correct for the effects of other coupled reactions, even if those reactions are unknown.
For example, to estimate the parameter k of the reaction A + B LI C', one needs only
measure #A, #B, and #C, even if other (possibly unknown) reactions affect #A, #B, and
#C'; the results of this chapter show how to correct for other reactions.

Section 11.3 introduces NRM™!, an exact inverse to NRM, which recovers the random
numbers used by NRM up to a factor depending on the rate constants k.. Section 11.4
presents the Estimation of Stochastic Parameters (ESP) algorithm, which is exactly equiva-
lent to NRM ™1, but shows more explicitly how to do the estimation for individual reactions.

Section 11.6 explains the statistical results and discusses the issue of separability.
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11.2 NRM Simplified

Chapter 5, which presented the Next Reaction Method (NRM), was very interested in
efficiency. The present chapter is interested in generating an inverse, NRM~!, and making
that inverse efficient. Toward that end, we provide NRM', a simplified version of NRM,
which

e does not contain the efficient data structures of NRM,

e has a different take on random numbers: the first time it uses a random number, the
random number may depend on the rate constants k. All subsequent manipulations

do not depend on the rate constants, and

e uses the random numbers ¢ explained in the footnotes of NRM, rather than only the

Ts, to avoid problems when the propensity a becomes 0.

Recall from Chapter 3 that the propensity function a of an equation (say A+ B LI )
can be written as & x h, where h is a dimensionless number called the redundancy function

that tells how many identical (redundant) copies of a reaction are possible. In this example,

h = (#4) x (#B).
Algorithm 18 (NRM')

1. Initialize

(a) t 0.
(b) For each chemical c, set initial #X..
(¢) For each reaction r, calculate h,.

(d) For each reaction r, generate a random number w according to a uniform distri-

bution, let p, — % In (%), and let ¢, «— p,.

(e) For each reaction v, if h, = 0, then let T, < oco. Otherwise, let T, < <, /hy.
2. Pick and execute

(a) T+ minT,.

(b) p«— the corresponding r.
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(¢) Update #X according to exvecuting reaction p.

(d) t— .
3. Update

(a) For each reaction r, ¢y +— ¢ — hy X .

(b) For each reaction r, recalculate h,.

(c) Generate a single random number w according to a uniform distribution, let p, «—
% In (%), and let ¢, «— p,.

(d) For each reaction r, ¢, «— <p + h, X L.

(e) For each reaction v, if h, = 0, then let T, < oco. Otherwise, let T, < <, /hy.
4. Loop (go to Step 2).
We now provide an extended example before proving that NRM’ is equivalent to NRM.

Example 48 Consider again the reactions in Table 11.1, subject to the initial conditions
#A, #B, ..., #G], =[10, 8, 7, 3, 6, 8, 12| and using rate constants [12.3, 18.2, 6.4, 15.0, 0.9].
Table 11.2 shows an execution of NRM .

Stepping through this: Att =0, the initial #X s are as above, and the hs can be calculated
from those numbers and Table 11.1. The initial random numbers from Step 1d, p,, are
shown in the first column of the ‘p,s’ rows. (Subsequent columns of these rows show the
values at the end of Step 3c.) In Step 1d, these initial p,s become the initial s,s. After
Step le, the Trs are set. Based on the initial 7,5, 7 = 0.0001 in Step 2a and =1 in Step
2b. The second column of Table 11.2 shows the new #Xs and t after executing Steps 2b
and c. The second column also shows the recalculated h,.s, the single new random number
generated in Step 3c, the fully transformed ¢.s after Step 3d, and the new 7,s after Step 3e.
NRM continues by picking the minimum of the new 7,5, etc., as shown in the rest of Table

11.2.

11.2.1 Correctness

It is not that hard to show that NRM’ is entirely equivalent to NRM. Note first of all

that the standard way to generate an exponential random variate p with parameter a is to
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Reaction hy,
A+B L (#4) x (#B)
B+C 22D | (#B) x (#C)

D+E 5 E+F | (#D) x (#E)
rfpta (#F)
4G5 (#B) < (#G)

t 0 .0001 .004 .0015 .00177 .00178 .0038 .0040 .0057 .00575 .00578
#A 10 9 8 8 9 8 7 7 6 7 7
#B 8 7 6 5 5 4 3 3 2 2 2
#C 7 8 9 8 8 9 10 10 11 11 11
4D 3 3 3 4 4 4 4 3 3 3 4
#F 6 6 6 6 5 5 5 5 5 4 4
4 8 8 8 8 8 8 8 9 9 9 8
#G 12 12 12 12 11 111 11 11 10 11

n — 1 1 2 5 1 1 3 1 5 1

hi 80 63 48 40 45 32 21 20 12 14 14
hy 56 56 54 40 40 36 30 30 22 22 22
hs 18 18 18 24 20 20 20 15 15 12 16
ha 8 8 8 8 8 8 8 9 9 9 8
hs T2 T2 T2 T2 55 55 55 55 55 40 44
o 004 022 064  — — 066 040 — .007 — —
py 081  —  — 219 — - - = = — —
oy 08— — — — — 036 @ — — —
oy 048 — = — — - - = = — 116
ps A28 —  —  — 219 - - — = 337 —
¢ 004 025 083 071 080  .123 120 .120 075  .087 087
¢, 081 081 080 .278 278 271 248 248 202 202 202
¢s 078 078 078 .087  .080  .080 .080 .096 .096  .079  .102
¢t 048 048 048 048 048  .048 048 052 052  .052  .162
¢ 128 128 128 128 316 .316 316 .316  .316 567 .590
71 0001 .0004 .0017 .0018 .0018 .0038 .0057 .0057 .0063 .0062 .0062
7o 0014 .0014 .0015 .0070 .0070 .0075 .0083 .0083 .0092 .0092  .0092
73 0043 .0043 .0043 .0036 0040 .0040 .0040 .0064 .0064 .0066  .0064
74 0060 .0060 .0060 .0060 .0060 .0060 .0060 .0058 .0058 .0058  .0203
75 0018 .0018 .0018 .0018 .0058 .0058 .0058 .0058 .0058 .0142 .0134

Table 11.2: Example execution of NRM'.
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generate a uniform [0,1] random variate v and apply the inverse-generating method [18,26]:
p= %hl (%) This fact was not explicitly mentioned in the discussion of NRM.
We shall only consider cases where a, # 0 (and hence h, # 0). The zero cases follow

easily.
Lemma 3 The 7,5 generated in Step 1 of NRM follow the correct distributions.

Proof. Consider a certain reaction . In NRM, 7, is generated according to exponential
distribution with parameter a. By the remark above, this is equivalent to generating a
uniform [0,1] random variate u and letting 7, = %ln (%) By arithmetic, this is the same
as generating v and letting 7, = % [% In (%)] . The part inside the brackets is accomplished

in Step 1d, the multiplication by 1/h in Step le. As r was arbitrary, the lemma holds.
Lemma 4 The 7,5 generated in Step 3 of NRM follow the correct distributions.

Proof. By induction, we shall show that the 7,s follow the correct distributions and
that 7, X h, = ¢,. (Remember we are only considering the case where h, # 0.)
The previous lemma established the base case. For the inductive case, assume both

parts of the induction hypothesis hold before Step 3.

Case 6 r #£ u, and h, remains constant.

Then a, remains constant.  Further, Steps 3a and 3d cancel each other out, so ¢,
remains constant. Thus 7, at the end of Step 3 is equal to T, at the beginning of Step 3,
as it should be.

Case 7 r #£ u, and h, changes.
Denoting the new values with primes, .. = <. /hl after Step 3e (this is half the induc-
tion). Further, <, = g, — h, X t+ hl. x t by Steps 3a and 3d. So,

o=

1

= h—/(nxhr—hrxt+h;><t)
r
iy

= —(rr—1t)+1
[T

= T+t

/
a7’
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The second equality follows from the induction hypothesis. The third follows from algebra.

The last is simply a restatement of a = k X h. Note that this final result is precisely the

transformation used by NRM.

Case 8 r=p
Denoting the new values with primes, 7, = <, /h,, after Step 3e (again, this is half the

induction). Then

~

Tu = Su/hy
1 1 1

— (S| +w, %t
i (] v )

1 1
CLM Uu

The second equality follows from Steps 3¢, d, and e. The final equality follows from algebra
and the identity a = k X h. By our previous comment on generating exponential random

numbers, T;L follows an exponential distribution with parameter a;“ plus t, as in NRM.

These three cases cover all possibilities, so the lemma holds.

From the two lemmas, it is immediately clear that NRM' is equivalent to NRM. The
former is simply a different way of specifying precisely the same steps as the latter, minus
some of the optimizations for efficiency. (Such optimizations should not affect correctness.)

Why introduce NRM' at all? Basically, NRM’' isolates the parts of the code that have
knowledge of the rate constants k,. The next section will introduce NRM~!, an inverse to
NRM'. In particular, NRM~! will not have knowledge of the rate constants k,, so it will
not be able to retrieve the random numbers u, rather only the exponential random numbers

labeled p, in Table 11.2.

11.3 NRM!

NRM and NRM’ are equivalent simulation algorithms that transform random numbers into
trajectories. The current section introduces a parameter estimation algorithm, NRM™1,
that transforms trajectories into random numbers and uses those random numbers in an

optimal way to estimate the parameters (i.e., rate constants) of the system.
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In what follows, it will be assumed that NRM~! knows what reactions are present, but
does not know the rate constants k.. (Section 11.6 will come back to the case where one
does not know the reactions either.) Because NRM ! does not know the rate constants, it
cannot hope to recover the random numbers u in Steps 1d and 3¢ of NRM'. (We use NRM'
rather than NRM as a starting point, because NRM' isolates the parts of the code that
require knowledge of rate constants.) Rather, NRM ™! takes as input ¢ and #X. for each
chemical type ¢, and outputs the random numbers p,. For now, assume the inputs are a
vector of ¢ values and a vector of # X, values for each chemical type ¢, which includes each
discrete event. For example, the first two parts of Table 11.2 could be input to NRM~1.

These restrictions will be relaxed later.
Algorithm 19 (NRM 1)

1. Input 7 and 7‘;&—)(0> for each chemical type c.

2. Calculate T as well as possible.

3. Calculate T .

4. Calculate 57 for each reaction v as well as possible.
5. Calculate p, for each reaction r.

6. Calculate estimates Ig;, which approximate k., for each reaction r.

Step 1 is self-explanatory.

Step 2: By assumption, the inputs contain every discrete event. A given discrete
event will look something like [#A, #B, ... ,#G| — [#A,#B,... ,#G| + A, where A is
a signature of a given reaction. (For example, the first event in Table 11.2 — the change
from Column 1 to Column 2 —has A =[—1,—1,41,0,0, 0, 0], corresponding to the reaction
A+ B — C, which implies p = 1.)

It is possible there could be some ambiguity here. For example, suppose one of the
possible reactions is A + B M, ¢ and another is A + B #2, . Because both reactions
have the same signature, NRM~! is unable to disambiguate them. In such a case, we would
suggest grouping the reactions into A + B LI C, where k = k1 + ko, and estimating k.

To disambiguate k1 and ks, one would have to do some experimental manipulation that
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changes k1 and ke independently, then estimate k£ again, and use the combination of the &
estimates to separate ki and k.

This kind of reaction ambiguity could also come up, for example, in the set of reactions
A+ — B+ FEy and A+ FEy — B+ sy, i.e., the same reaction catalyzed by two different
enzymes. However, one could disambiguate by breaking these reactions into elementary
steps such as A+ — AeF)y — B+ FEq, etc. Again, one would have to do an experimental
manipulation — one should measure the amount of chemical species A o [7, etc.

Up to the kind of ambiguity described, one can identify which reaction i occurred. In
particular, the way to get around the ambiguities is to redesign the experiment, which is
not an estimation issue.

Step 3: The h_;s follow directly from the #—X;s, just as they did in NRM’.

Step 4: This is the key step of NRM~!. Assume that 7 and #X. (and hence h_;) are
indexed from 1 to M, and p is indexed from 2 to M. The key is to calculate values ,(1) to

$r(M), which will be shown to equal ¢,(1) to ¢,(M) up to some end effects.
e Algorithm 20

1. For each reaction r, let $p(M) «— (.

2. IFori1 =M —1 downto 1
(a) if r = p(i+1)
G (0) — ti+ 1) x (i)
(b) else if S;(i+1)=10
Sr(3) «— 0
(c) else
(i) — (i +1) + (i + 1) X hp(d) — (i + 1) X hpe(i 4 1)

Table 11.3 shows the result of running Algorithm 20 on the example of the previous
section.
How does this work?

Basically, NRM’ does the following:

e iterates forward through time,

e outputs ¢ = 7, at Step 2d,
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& 0.004 0.025 0.083 0.071 0.080 0.123 0.120 0.120 0
& 0.081 0.081  0.080 0 0 0 0 0 0
& 0.078 0.078 0.078 0.087 0.080 0.080 0.080 0 0

¢y 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.052 0.052 0.05

0
0
0
2
¢ 0128 0.128 0.128 0.128 0.316 0.316 0.316 0.316 0.316 0

S oS =

Table 11.3: Inverse values calculated by NRM 1.

e generates a single new random number ¢,,, at Step 3c,

e transforms the existing ¢, values for all r # p in Steps 3a and 3d.
NRM™! inverts these steps. It

e iterates backward through time,
e inputs { = 7,
e uses ¢t =7, to get a single random number ¢ «— ¢ x h, in Step 2a,

e undoes the NRM' transformation ¢,(new) « ¢p(old) — t(new) x hy(old) 4+ t(new) x
hr(new) (Steps 3a and 3d of NRM'), giving ¢, (old) < <p(new) 4 t(new) x hy(old) —
t(new) x hy(new) (Step 2c of NRM™1).

NRM~! does not have knowledge of the last random number used for each reaction,
because random numbers only become available to trajectories as they are converted into ¢
values, i.e., when events occur. Said another way, the last random number used for each
reaction is part of the internal state of NRM’, not part of the output trajectory. To signify
this, NRM~! uses the value () for &s whose value is unknown, and carries the value §) from
right to left until the first (i.e., last in time) occurrence of the reaction r.

Note that ¢, agree with ¢,, i.e., all non-0) values of ¢, equal the corresponding <, values.
Thus the notation ¢, is slightly misleading — it might imply to some readers that ¢, is
simply an estimate, not an actual value. In fact, ¢, is a calculated value, which is an
internal variable of the estimation algorithm, and agrees with the corresponding value of
the simulation algorithm.

Step 5: This step inverts Steps 3¢ and 3d to get p, values.

Algorithm 21



152
Ly {0.004, 0.022, 0.064, 0.066, 0.040}

Ly {0.081}
Ly {0.078}
Ly {0.048}

Ls  {0.128,0.219}

Table 11.4: L, values generated by NRM™1.

Figure 11-1: Histogram of Lo values, with predicted line overlaid.

1. For each reaction r, let L, +— {5 (1)}

2. Fori =2to M

() p— ()

(0) Ly = Ly U {Su(@) = 1(7) X y(2)}

For each reaction r, the list L, will contain p, values. Step 1 records the initial p,
values (from Step 1d of NRM’). Each subsequent ¢ records the single new random number
p,, generated during the :th iteration. Step 2b is the inverse of NRM' Step 3d. (Note that
all ¢, values for r # p are transformed values of previous ¢, values and are not statistically
independent random numbers, so they are ignored.)

At the end of Step 5, we are left with a list L, for each reaction r of the p, values used
(minus the last p, value for each ). Table 11.4 shows this for the running example. Recall
that the original p,.s were statistically independent random numbers distributed according
to an exponential distribution of parameter k,.

Figure 11-1 expounds on this idea. Here we have run NRM’ on the same system with
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Value ‘ Reaction 1 Reaction 2 Reaction 3 Reaction 4 Reaction 5
Events 61 85 43 2 9
&, 0.0917 0.0500 0.1493 0.0368 1.4846
1/ky 0.0813 0.0549 0.1563 0.0667 1.1111
1/(y/nk,) | 0.0104 0.0060 0.0238 0.0471 0.3704

Table 11.5: Sanity check for NRM 1.

different initial conditions for 200 simulation events'. Of the 200 simulation events, 85
correspond to Reaction 2. Figure 11-1 shows a histogram of those 85 values, with the
predicted curve for the actual k, value superimposed.

Step 6: Informally, we could draw for each reaction r a histogram of the L, values,
then find a parameter Ig; that provides a good fit like the superimposed curve in Figure
11-1.

More formally, the L, values constitute independent samples from an exponential dis-
tribution with parameter k.. Estimating k,, namely calculating Ig;, from such samples is a

standard problem in statistics [22,35]. It turns out that

1 — ‘
57’ = E;LT@)

is an efficient estimator for 1/k,, i.e., E[¢,] = 1/k, and Var[¢,] = 1/(nk2). Tt can be
shown that any other unbiased estimator has at least this much variance. It can also be
shown that for no other function of k, does an efficient estimator exist (i.e., any estimator
of another function of k&, will have variance strictly greater than the bound, not equal to
it.)

Table 11.5 shows the results of a simple sanity check: 200 simulation events were run
(as mentioned above). First, the breakdown of the 200 events by reaction. Second, the
values of &, calculated by NRM~!. Third, the actual values of 1/k,, using the real &,
values (which are not known to NRM~!). Finally, the predicted standard deviations of the

estimates, namely the square roots of the variances, again using the real &, values.

!The simple example system has the unfortunate property that the total number of molecules decreases
with time, so different (larger) initial conditions were needed to generate 200 simulation events without
running out of molecules. The original initial conditions times 20 were used.
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11.3.1 Correctness

A proof of correctness proceeds by induction backward in time, showing that the steps of
NRM~! invert the steps of NRM’. The individual steps of that induction were explained

above.

11.4 Estimation of Stochastic Parameters, the ESP Algo-

rithm

This section presents the Estimation of Stochastic Parameters (ESP) algorithm. ESP is
equivalent to NRM™1, in fact, it consists of precisely the same mathematical steps, simply

grouped in a different way.

Algorithm 22 (ESP) For each reaction r,
1. Input T and the appropriate #—ng,
2. Find those indices i such that (i) =r.
3. Caleulate h_;

4. Calculate 7.

—

5. Calculate an estimate 1/k,.

Notice the first key to the ESP algorithm — it separates reactions completely. In
point of fact, NRM~!contains a lot of parallel structures of the form “calculate something
for all reactions r.” The reader can verify that none of these parallel constructions in
NRM'depend on each other — the variables corresponding to reaction 7y only depend on
other ry variables, not r9 variables. So ESP amounts to filling in Tables 11.2 and 11.3
by rows, rather than by columns. Further, though, the details of Steps 1 to b differ from
NRM 1.

Step 1: Inputting T is self-explanatory. For any given reaction r, one only needs to
input 7‘;&—)(0> for those chemicals ¢ that are reactants of products of reaction r. For example,
for the reaction A + B — C, one need only input #A, #B, and #C, not #D, #FE, etc.

Step 2: One need not calculate ' (¢) for every ¢ € 2...M. (Recall that (1)

is undefined, since T (¢) is the reaction going from time ¢ — 1 to time ¢.) Rather, one
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only needs to know whether 7w'(i) = r. This can be determined by comparing #X,(i)—

#X.(i—1) for those chemicals ¢ in the reactants and products of reaction r, and comparing

with the signature of the reaction.?

Step 3: The h_; array follows directly from the #X.s of the reactants.
Step 4: The following algorithm is algebraically equivalent to Steps 4 and 5 of NRM ™1,

as will be proved below:
Algorithm 23

1. Let iy < 1, letig, i3, ..., i be the set of indices such that [ (i) = r.
2. L, 0.
3. Fork =1tol—1

(a) D=3 " he () x [T +1) = T()]

(b) Ly — L. U{p}

Theorem 7 Algorithm 28 is equivalent to Steps 4 and 5 of NRM™1, in the sense that L,
at the end of NRM~! equals L, at the end of Algorithm 23.

The proof proceeds by a chain of equivalent algorithms, starting with Algorithms 20 and
21, leading to Algorithm 23. Recall that each of the following algorithms will be executed

for all reactions r, by virtue of being within the main loop of the ESP algorithm.
Algorithm 24

1. Let S (M) « 0.
2. Fori1 = M —1 downto 1
(a) if r = p(i+1)

if Sr(i+1) # 0 then Ly + Ly U{S (i +1) —t(i +1) X he(i 4+ 1)}

G@) 0+ 1) X hu(i)

?In cases where this could lead to ambiguity, one should read in additional #X.s to disambiguate. See
also the discussion in Section 11.3.
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(b) else if (i +1) =0
Sr(i) — 0
(c) else

(i) — (i +1) + (i + 1) X hp(d) — (i + 1) X hpe(i 4 1)
3. if $r(1) # 0 then Ly — L, U{S(1)}
Lemma 5 Steps 4 and 5 of NRM~1 are equivalent to Algorithm 24.

Proof. Algorithm 24 is essentially Algorithm 20, with extra lines to add elements to
L. In particular, the ¢, (¢ +1) —#(i 4 1) X hr(i+1) values added are the same as the values
added by Algorithm 21, with a slight difference in indices. In Algorithm 21, r = pu(7), so
the correct index to use is . Here, 7 = pu(i 4+ 1), so the correct index to use is ¢ + 1. The
final element added, in Step 3, is the first element added in Step 1 of Algorithm 21. Note

that Algorithm 24 adds elements to L, in the reverse order of Algorithm 21.
Algorithm 25 For k = I downto 2
1. Go(ig — 1) «— t(ix) X hp(ipg — 1)
2. For 3 =iy — 2 downto 131
() = <G+ +1G+1) X he(G) =8 +1) X he(G+1)
3. Ly — L, U{S(lg—1) —t(ig—1) X he(ix_1)}
Lemma 6 Algorithm 25 is equivalent to Algorithm 24.

Proof. The equivalence comes from the definitions of the ixs: 21 = 1, and for all & > 1,
W(ix) = r. First, it is no longer necessary to use the dummy value ); that value is for
indices j > ¢y only. For k> 2, and index j =i, — 1, W(j+1) = @W(ix) =r, so Algorithm
24 executes Step 2a. Ignoring (for now) the part about L,, this is equivalent to Step 1 of
Algorithm 25. For indices j = iy — 2 downto i1, Algorithm 24 executes Step 2c, which
is equivalent to the body of the loop in Step 2 of the current Algorithm. Finally, for index
j=ix—1—1, W(j+1)= (k1) =r, so Algorithm 24 executes Step 2a, which puts the
term {Sp(ig—1—1+1) —t(ig—1 —1+1) X hp(ix—1 —1+1)} into L,. This is the part of Step
2a we ignored before. Finally, Step 3 of Algorithm 24 is just the special case where k = 2,

as 151 = t9_1 = 11 = 1, by definition of 7.
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Lemma 7 Algorithm 25 is equivalent to Step 4 of ESP (i.e., to Algorithm 23).

Proof. Let x be the quantity that is added into L, in Step 3 of Algorithm 25. Then

v o= tig) X helix — 1) + 22 (£G4 1) X er(§) = 87 4+ 1) X er (F + D] = ti1) < B (1)
= t(ig) X he(iy, — 1) + 22 [t +1) X he(5)]
=S ) A D~ ) ¢ i)
_ ]kzl [t(j 4+ 1) x he(4)] — utiﬂ [t(u) X hr(u)] = t(ik—1) X hr(ir—1)
= ]kzl [t +1) X he(j)] —ukzl () X Tor(w)]
_ Zl (LG + 1) % T (5) = £(5) X R (5)]
= S < G+ )~ 1)

The first equality follows directly from Algorithm 25. The second follows from splitting
the sum. The third follows from combining the first term with the first sum and using
u = j + 1. The fourth follows from combining the second sum and the final term. The
fifth follows from combining the two sums, using the index j. The final equality follows by
rearrangement, and is precisely the equation used in ESP.

Proof. (Theorem 7) By a chain of equivalences, using the lemmas above: NRM~!
Steps 4 and b are equivalent to Algorithm 24, which is equivalent to Algorithm 25, which
is equivalent to ESP Step 4.

Step 5: Use precisely the same step as NRM 1.

11.5 Applying ESP to Lambda

Figure 11-2 shows ESP applied to test data generated from the lambda model. The input

data for ESP is data for a single reaction only, namely the reaction croecro — cro + cro.

The values ?, F#cro e cro, and #cro are inputs. ESP was run on a single trajectory, of
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Figure 11-2: Histogram of inverse values for lambda model.

which 42,000 of the events correspond to this particular reaction (the reaction was chosen
in part because it occurs so frequently). The L, values are histogrammed in Figure 11-2.
The estimated value, 17%,, is 1.9993. For contrast, the actual value of 1/k, is 2.0, and the
predicted standard deviation is 0.0097.

Note that ESP only used two chemical species as input, out of the 57 possible chemical

species in the model. This key separability issue will be discussed in Section 11.6.

11.6 Results

This section summarizes the key non-algorithmic issues involved.

11.6.1 Putting it All Together

So far we have introduced NRM, NRM’, NRM~!, and ESP. They have the following

properties:

1. The Next Reaction Method, NRM, is an exact stochastic simulation algorithm equiv-

alent to the chemical master equation approach.
2. NRM' is a simplified version of NRM that is entirely equivalent.
3. NRM~! is an inverse of NRM'.

4. ESP is equivalent to NRM~1.
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Putting this all together, one can apply the ESP algorithm to a trajectory of a chemical

stochastic process (i.e., a process that obeys a chemical master equation). This results
in lists of statistically independent random numbers, such that the elements of list L, are
distributed according to an exponential distribution with parameter k.. ESP uses standard

methods from statistics to estimate &, from L,.

11.6.2 Statistics

Given n samples x1, ...z, of an exponential distribution with parameter k., the formula
—_— 1 &
1/k, = — x; 11.1
o= 3 (11.1)

is an unbiased, efficient estimator for 1/k;, in the sense of the Cramer-Rao bound [22, 35].
In other words, E[I//ET] = 1/k, for all n, and the variance of I//ET achieves the lower bound
established by Cramer-Rao, in this case Var[any unbiased estimator] > 1/(nk2). Tt can
be shown that no unbiased estimator can do better, and that for exponentials, one cannot
achieve the lower bound in estimating k., but only in estimating 1/k,.

So, in other words, given a trajectory with n occurrences of reaction r, ESP will give

(in probability) 1/k.(1 + 1/4/n). One should be careful in reading the previous sentence,

though, as it is easy to bias one’s choice of trajectories in such a way as to negate this result.

11.6.3 Interpretation of Results

e If there is only a single reaction, the summation in ESP simplifies to h,(7) x[t(ix) — t(ix—1)].

In other words, in the absence of other reactions, just take the time difference between
subsequent occurrences of the reaction, multiply by the redundancy function, and that

will estimate 1/k,.

The usefulness of the full summation in ESP is that it tells you exactly how to deal
with a reaction that is part of a pathway and can be affected by outside reactions.
(Note that one need not have full knowledge of the other reactions, however, as will

be discussed below.)

e The variance bound in the previous section tells you how much data you need to get
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an estimate of a fixed uncertainty. For example, if you want to estimate a parameter

to 10%, you will need 100 data points.

11.6.4 Separability

It is not immediately clear that one can separate arbitrary systems into their constituent
reactions for the purpose of estimation. For systems where one can observe stochastic
events, we have proven that it is possible, using ESP.

For deterministic systems phrased as differential equations whose variables are concen-
trations, it is certainly not true that one can separate things so easily. In a coupled

deterministic system of n variables, one has three choices:

e measure all the [X|s and do an n-dimensional estimation,
e control certain [X]s,

e pull out a given reaction and run it in vitro (in a test tube).
Each of these approaches is troublesome:

e In a large system, the number of variables may be very large — the simple lambda
system had 75 equations in 57 chemical species. It is very difficult to run an ex-
periment where one has to measure 57 variables simultaneously. Further, if there
are unmodeled dynamics, i.e., unknown reactions, that affect the 57 chemical species,

those reactions may disturb or mess up the estimation procedure.

e Controlling concentrations is also hard experimentally, and also suffers from the prob-

lem of unmodeled dynamics.

e In a complex system, the ks may depend on electrolyte concentration, activity (par-
ticularly at high local concentrations, or if spatial effects are important locally), etc.
One loses all of these variables in vitro, so the constants estimated must be taken with

a grain of salt.

Thus, for deterministic systems, one is left to choose between several alternatives, none

of which is ideal.
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The key of ESP is that if one can measure stochastic events, everything changes. One
can measure rate constants separately (for example, the rate constant from lambda, es-
timated above, involved knowledge of two chemical species only). One can do a series
of relatively simple experiments, measuring 3 or 4 species at a time; each of these simple
experiments will give one rate constant. (Presumably it is easier to do 75 3-variable exper-
iments than one 75-variable experiment; this process might even be automatable.) There
is no reason one could not do such an experiment in vivo: for deterministic systems, it was
necessary to remove the effects of unmodeled dynamics, so experiments were run in vitro,
for stochastic systems, ESP already takes care of unmodeled dynamics. If one wants to
measure the rate constant k in A + B LI C, one need only measure #A, #B, and #C;
the algorithm shows how to correct for unmodeled reactions without complete knowledge
of those reactions, just how they affect #A, #B, and #C. There is no a priori knowl-
edge required — one can simply observe how the observed variables change and correct for
such changes. One could, in principle, run ESP without even knowing what reactions are
present. One would simply observe discrete events, and those would define the reactions.
It will typically be preferable, however, to know what one is looking for, because then one
need only observe a subset of the chemical species.

It is certainly desirable to measure stochastic events. The question remains: is it
possible? At this writing, no one has done such an experiment for chemical reactions.
However, the ion channel community has been measuring stochastic events involving single
ion-channel molecules for decades [33]. More recently, biophysicists have measured biolog-
ical motors, which behave according to stochastic dynamics [31]. In light of how useful it
could potentially be, measuring stochastic chemical reaction events is an area that should

be seriously considered by experimentalists.
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Part VI

Conclusions
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Chapter 12 Summary

The preceding chapters have presented three main ideas:

e NRM, an exact, efficient simulation algorithm,
e MNRM and MESA, efficient algorithms for sensitivity analysis, and

e ESP, a parameter estimation algorithm for mesoscopic chemistry.

These three can be used together to create and refine models of chemical processes.

Basically, the algorithm for doing so goes like this:

1. Write down a system of chemical equations that have been determined experimentally.
2. Augment with suspected reactions.

3. Pick some set of parameter values, either:

(a) Use values reported in the literature
(b) Run in vitro experiments

(c) Use the ESP algorithm to measure and estimate constants in vivo, or

(d) Guess or estimate the parameters.

4. Use NRM to simulate the system.
5. If the simulation is way off, check the set of reactions and go to Step 2.
6. Use MNRM and MESA to figure out how sensitive the model is to its parameters.

7. For those parameters that the model is sensitive to, use ESP to generate better esti-

mates.

8. Go to Step 4.
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One can iterate this until the model matches the results of experiment. Further, one can
then predict and run experiments that were not used in forming the model. For example,
one can create a model entirely from biochemical rate data, and check its predictions on
system-level data, such as lysis versus lysogeny in lambda.

So, in short, by iterating between the forward algorithms (NRM, MNRM, and MESA)
and the inverse algorithms (ESP and experiments) one can create increasingly good biolog-

ical models that are based on actual structure, not parameter fitting.
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Chapter 13 Research Directions

There are numerous areas for further study.

e Using the tools of mesoscopic chemistry to model more biological systems, and more

complex biological systems.

e Developing formal reasoning techniques for simplifying models — for figuring out
which parts of the model are most important, and which are not. (MNRM and

MESA are numerical techniques, but provide little in the way of reasoning tools.)

e Adapting techniques such as singular value perturbation methods, separation of time
scale, bifurcation analysis, and so on, that have been developed within the differential

equations framework, to work with stochastic mesoscopic models.

e Formalizing the tie-in between stochastic, mesoscopic chemistry and deterministic,
macroscopic chemistry. For example, how many molecules does one need to have

before it is legitimate to ignore stochastic effects?

e Developing intermediate formalisms between stochastic and deterministic.  Some
interesting work has been done using Langevin and Fokker-Planck equations, but little
has been done to determine when it is legitimate to use which formalism. Also, there
may be room between the full mesoscopic chemistry and Langevin/Fokker-Planck

formalisms.

e Developing techniques for multi-mode or hybrid systems, systems where part behaves
stochastically and part deterministically, or more generally, where different parts are

considered in different frameworks.

e Formalizing the equilibrium assumptions in earlier chapters. When is it legitimate

to separate out certain parts of a system and declare them to be in equilibrium?

e How can one use position dependent information (diffusion, proteins bound to the

membrane) in mesoscopic chemistry?
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The first question is obviously biological in nature. The remainder are theoretical
and mathematical. The glue that ties them together will be large-scale computational
frameworks such as the techniques employed in this thesis. In particular, the typical
biological user of these computational techniques should be presented with a user interface
that abstracts away the details; he or she need not care about the underlying theoretical
details, in the same way that the user of a numerical package such as Matlab does not have

to know the details of numerical techniques for finding eigenvalues.
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