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Abstract

As wireless computer networks grow in size and complexity, we are faced with the
problem of providing scalable, high-bandwidth service to their users. Wired networks
typically use “data pull,” where users send requests to a server and the server responds
with the desired information. In the wireless domain, “data push” promises to provide
better performance for many applications [1]. The broadcast domain that is typical of
wireless communication is very effective in distributing information to large audiences.

The idea of broadcast disks has been around since the Teletext system [3]. There
is now an interest in applying these ideas to wireless computer networks. There are
some interesting research questions about scheduling for data distribution. Comput-
ing optimal schedules has been shown to be difficult [18]. The optimal schedules
themselves, however, seem to be less complex, and often periodic [4]. Xu [24] looks
at the scheduling of streaming data, which involves splitting the data into smaller
pieces. The idea of error correction is also important for wireless transmission due to
the noisy nature of the channel [6].

We look at scheduling data for broadcast. We compare time-division scheduling
and frequency-division scheduling for data items of equal length. We show that
time-division is better for sending dynamic data. We then find optimal time-division
schedules for two items. We show how the freedom to split items into smaller pieces
can give improvements in performance. With a single split, where each of two items
is split in half, we find the optimal schedules for items of equal length.

We continue with the idea of splitting items, and show what happens when the
number of splits is very large. Then, we examine what happens when we add stream-
ing data to our broadcast. We compare time-division and frequency-division as before,
and now also look at a mix of the two. We prove bounds on where the mix is the

best broadcast method.
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Chapter 1 Introduction

1.1 Wireless Networks

Computer networks have changed the way we store, process, and transfer information.
The Internet has made it possible to store information in one part of the world and
make it available anywhere in the world with an Internet connection. The Internet
infrastructure is established and continues to grow. However, the access points leave
much room for improvement. Many homes and offices have computers which can
access this growing collection of information, but people often want information when
they are away from these areas.

Wireless computer networks are becoming increasingly popular as a way to provide
access to the Internet over broad areas through portable, wireless devices. As these
networks grow in area and include more users, we will face new challenges in providing
scalable, high-bandwidth access to these users. At first glance, wireless Internet
connections seem very similar to wire connections, except that clients can move within
a specified area instead of requiring a wire connection. However, as more users move
to wireless connections, the resulting networks will face problems that wired networks
do not have.

One fundamental difference is that in a wireless network, communication is done
by broadcasts, while wired network communication is usually done along wires from
one computer to another. In wireless networks everyone in a region must share the
communication channel, making communication slower and less efficient. The diffi-
culties of wireless communication are not just due to broadcasts. Ethernet also uses
broadcasts, but with Ethernet, we can quickly determine if a collision has occurred,
since everyone can hear everyone else. In a wireless network, a node may receive
data from two different nodes that do not detect each other. This “hidden terminal

problem” makes efficient, reliable communication difficult.
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Although wireless communication has its drawbacks when it comes to point-to-
point communication, it is very effective in distributing information to large audiences.
Wired networks typically use “data pull,” where users send requests to a server and
the server responds with the desired information. However, in many cases “data
push,” where the server sends information with no user requests, provides better
performance. For example, if certain Web pages are very popular and their requests
by wireless clients would collide too often to make pull-based communication efficient,
it is better to simply send the popular pages and have the clients listen for the pages
they want. In this way there are no collisions, and each broadcast can serve many
clients simultaneously.

This is the idea behind the broadcast disk. Data items are sent repeatedly in a
periodic, or nearly periodic, manner with their frequency of broadcast determined
by their demand and size. The broadcast disk idea has been used in the Teletext
system, as discussed by Ammar and Wong [3]. It has a promising future with wireless
communication, using the air to send data instead of wires. If portable computing
devices become as popular as cellular phones, we will need techniques to make efficient
use of the available bandwidth. Broadcasting information within cells is one way to
help achieve this goal. Also, digital cable systems provide another application for
intelligent broadcast techniques. As more channels send data in addition to video,

scheduling this data will become increasingly important.

1.2 Scheduling

Scheduling sounds like an easy task at first. To send n data items, we can just send
them one after the other, and then repeat. This works if all the data items are about
the same size and have about equal demands. However, when this is not the case, we
would still like to send information in a way that is efficient.

For example, consider the items shown in Figure 1.1. We assume that there are
three data items to broadcast, with lengths [; = 5, [, = 30, and I3 = 2. We assume

that these items can change over time, so to assure consistent data, clients must
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1,=2 p;=5

Figure 1.1: Three items, with their corresponding lengths and demand probabilities.

receive a data item from start to finish. If a client starts listening while the item it
desires is being sent, it must wait until the beginning of the next broadcast of that
item. We want to send these items to clients whose demands for the items are p; = .2,
p2 = .3, and p3 = .5. If we send these items one after the other repeatedly, the clients
will wait for item 1 for a time between 0 and 5 + 30 + 2 = 37, with the expected
waiting time being 3—27 Since items 2 and 3 have the same spacing as item 1, a client
will also have an expected waiting time of 377 for these items. The overall expected
waiting time is simply the average of these times, weighted by the demands for the
items. This is 3—27 -2+ 377 -3+ 3—27 .5 = 18.5. For this particular schedule, all the times

are the same, so the expected waiting time will be 18.5 for any values of the p;’s.

S=118 2 3 1333

Figure 1.2: A schedule for three items.

Now, consider the periodic schedule, S, one period of which is shown in Figure

1.2. Figures 1.3, 1.4, and 1.5 show the waiting times, T3 for items i = 1, 2, and 3,

wait?

S,i

-, the time at which a client starts listening for that

respectively, as a function of ¢
item within the schedule. The expected waiting time for each item is shown in the
figures as a dashed horizontal line. The overall expected waiting time is the average
of these times, weighted by the p;’s.

For this example, we get expected waiting times of 16.42, 25, and 11.3 for items 1,
2, and 3, respectively, and an overall expected waiting time of .2-16.42+ .3-25+.5-
11.3 = 16.434. We see that the expected waiting times for the items are not always
decreased. Item 2 has a longer expected waiting time in the new schedule than in

the simple schedule. However, the overall expected waiting time is lower. This is the

idea of scheduling. Since we have a fixed bandwidth to share, we must find a way to



TS,l

wait

EWT,=16.42—

N\

10T e 1

Figure 1.3: Waiting time for item 1 as a function of initial listening time within the
schedule.

T S2

wait

EWT,= 25—

S=0B 2 BIEH =

ni

Figure 1.4: Waiting time for item 2 as a function of initial listening time within the
schedule.

EWT,=11.3—
\\\\ |

S=B 2 BB s

Figure 1.5: Waiting time for item 3 as a function of initial listening time within the
schedule.
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share it that makes some waits longer and others shorter, but makes the average wait
as short as possible.

We see that this schedule, although non-optimal, provides improved performance
over the simple schedule of repeatedly sending the items sequentially. In this case,
the improvement is modest. For some cases, we can prove that the simple schedule

is actually optimal. For others, intelligent scheduling provides large improvements.

1.3 Research Questions and Related Work

There are many research questions related to broadcast schedules. Here we list a few

of them.

e Complexity of Computing Optimal Schedules. Any set of items and
demand probabilities has an optimal schedule. How computationally difficult
is it to find these optimal schedules as a function of the data items we wish to

broadcast and their demands by the clients?

e Complexity of Optimal Schedules. We would like to know how easy the
optimal schedules are to describe, in terms of length of a schedule’s period,
frequency of changing which item is sent, or other metrics. Before we answer
this, we should also ask whether the optimal schedules are always periodic. In

general, how complicated are the optimal schedules?

e Time-Division vs. Frequency-Division. We can schedule using frequency-
division, time-division, a mixture of the two, or some other method. How does
the performance of frequency-division scheduling compare with that of time-
division scheduling? How does mixing these two compare with using either
alone? Do the optimal schedules always fall into one of these classes, or is there

some other method that can perform better?

e Data Types. We can send static data, dynamic data, data that is updated

regularly, or data that requires some constant average bandwidth. How do
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properties of the data affect how we should schedule it? Are the same schedules
optimal for both dynamic and static data” When mixing data types, do new

types of scheduling become optimal?

e Splitting. Sometimes a data item consists of many independent smaller pieces
combined together. Instead of sending the data item, we might want to split it
into its components and send them independently. What advantages does the

ability to split data into smaller pieces provide?

e Errors. How can we combine error detection and correction with scheduling?
Can k out of n codes provide increased performance or increase error-handling
abilities? When is it better to add parity bits to the items, and when is it
better to have clients wait for the next broadcast of that item if they receive it

in error?

e Robustness. Knowing the optimal schedule is good, but sometimes system
parameters change, or parameters are not known precisely. Are there situations
when certain schedules are optimal over a broad range of system parameters?
Which schedules are robust with respect to small changes or errors in system

parameters?

There has been work on some of these areas, and some questions have been an-
swered. Vaidya and Hameed [13, 14, 23] looked at finding optimal schedules. They
found a theoretical bound on how well a schedule can perform, and then proposed an
algorithm whose performance approximates this bound. Su and Tassiulas [21] also
examine broadcast scheduling. In [22], they also discuss memory management for
client caching. Liberatore [20] also discusses caching, but in the context of on-line
scheduling algorithms. Jiang and Vaidya [16] discuss performance metrics combining
the mean and variance of the response time, and show how to adjust schedules based
on these metrics. Khanna and Zhou [17] look at combining tuning time and waiting

time for clients and minimizing them together.
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Aksoy et al. [1] and Franklin and Zdonik [12] discuss the general issues related
to broadcast disks and push-based technology. Hassin and Megiddo [15] look at
the problem of scheduling inventory replenishment. This is very different than the
broadcast problem, but the scheduling problem behind each is similar. Bar-Noy,
Bhatia, Naor, and Schieber [4] look at scheduling in general and show that there is an
optimal cyclic schedule for a broadcast disk and that finding it is NP-hard. Kenyon
and Schabanel [18] examine the broadcast of multiple items with different lengths and
transmission costs. They show that finding optimal schedules is NP-hard, and the
optimal schedules seem very different structurally than schedules for equal lengths.
Bar-Noy, Nisgav, and Patt-Shamir [5] discuss perfectly periodic scheduling, where
each item has constant spacing within a periodic schedule.

Aksoy and Franklin [2] discuss scheduling the broadcast of information based on
client requests. They consider such metrics as average and worst case performance,
scheduling overhead, and robustness in the presence of environmental changes. Leong
and Si [19] also discuss how to choose which items to broadcast, using ideas of cache
management. This does not address scheduling itself, but looks at choosing the
broadcast data to put in the schedule. Bestavros [6] describes a way to add fault
tolerance to broadcast disks by sending parity information in addition to data. Xu
[24] discusses splitting data into pieces to reduce waiting time, in the context of
streaming data. Franklin, Zdonik, Acharya, and Alonso [11, 25] also discuss aspects

of broadcast disks.

1.4 Contributions

In this thesis, we examine different ways to schedule the broadcast of information to

multiple clients. We address the following areas:

e Time-Division vs. Frequency-Division. We [8] prove the optimality, with
respect to minimal expected waiting time for the clients, of a certain type of

frequency-division schedule, for both static and dynamic data. We provide
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a constructive proof that time-division schedules are better than the optimal

frequency-division schedules for broadcasting equal-length dynamic data.

e Data Types. We show that optimal schedules for frequency-division are the
same whether the data is static or dynamic. We examine dynamic data and
find some optimal time-division schedules. We look at combining streaming
video data with dynamic data, and find where a combination of time-division

and frequency-division is better than either alone.

e Splitting. We show how splitting data items in half can improve performance,
and we [7| provide optimal schedules for two dynamic items of equal length.
We examine multiple splits and prove some facts about when and how much to

split data items, and how to schedule their pieces.

e Robustness. We [9] show an example where a simple schedule for two items

is optimal and robust to small changes in demands for the items.

The following chapters examine the topics above and provide answers to some
specific questions in this area. In Chapter 2, we first give definitions for the basic ideas
used in the rest of the paper. We analyze frequency-division scheduling, finding the
optimal schedules for both static and dynamic data. We then show that for dynamic
data items of equal length, we can always find a better time-division schedule.

In Chapters 3, 4, and 5 we look at finding optimal time-division schedules. We first
find the optimal schedules for two dynamic data items. Then, we consider splitting
two equal-length items into halves and scheduling these smaller pieces. We find
the optimal schedules and present a proof of their optimality. We then generalize to
arbitrary splits. We make a proposition regarding the optimal schedules for this model
and prove some lemmas that support this proposition. One of these lemmas shows
the robustness of a simple schedule with respect to small changes in the demands for
the items.

In Chapter 6, we consider scheduling for streaming data and dynamic data simul-

taneously. We find that a mixture of time-division and frequency-division is some-
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times best. In Chapter 7, we summarize the results and propose future directions for

research.
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Chapter 2 Comparing Frequency-Division and

Time-Division Scheduling

We examine frequency-division scheduling and time-division scheduling. In Section
2.1, we introduce the ideas of frequency-division and time-division, and define terms
relating to scheduling and expected waiting times. In Section 2.2, we define the square
root rule frequency-division schedule and prove its optimality for both dynamic and
static data. Then, in Section 2.3, we compare time-division and frequency-division
for equal-length data. We show that for dynamic data time-division is always better.
For static data we consider the scheduling of 2 or 3 items, and show that for these

cases time-division is better.

2.1 Introduction

We consider a set of n items, numbered 1 through n, where each item 7 has a length,
[;, and a demand probability, p;. The length, [;, is simply a measure of the size in
bytes of data item 7. The demand probability, p;, is the probability that the next item
that any client wants is item 2. We assume that item requests are Poisson processes,
so the p; values are constant over time.

Since we will be talking about scheduling, let us define some of the terms we will

be using.

Definition 2.1 A schedule for n items and frequency interval [fi, f2] is a function
SR X [fi, fo] = {1,2,... ,n}, where S(t, f) is the number of the item sent at time

t over frequency f.

Essentially, a schedule is an assignment of our two resources, time and bandwidth,

to the n items we wish to broadcast. We will examine two special types of schedules:
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Figure 2.1: Examples of different types of schedules: (a) general schedule (b)
frequency-division schedule, and (c¢) time-division schedule.

Definition 2.2 A frequency-division schedule for n items and frequency interval [fy, fa]

is a schedule S for n items and frequency interval [f1, f2], where for all t € R and

f€lfi, fo], S(t, f) = fulf), for some function fr: [f1, fo] = {1,2,... ,n}.

Definition 2.3 A time-division schedule for n items and frequency interval [fy, fo]

is a schedule S for n items and frequency interval [fi, fa], where for all t € R and

f€lfi, fo], S, f) = fr(t), for some function fr: R — {1,2,... ,n}.

Figure 2.1 represents some schedules graphically. We will generally consider peri-
odic schedules S with [fi, fo] = [0, B], where B is the bandwidth we have available for
broadcast. We will refer to these as schedules for n items and bandwidth B. Using
frequency-division, we essentially divide the bandwidth into n channels and repeat-
edly send one item per channel. With time-division, we simply send items one after
another in some specified order using the full bandwidth available.

A schedule tells us when to send each item, but it does not tell us which part of
the item to send. We assume that we send bits of each item sequentially within their
bandwidth allocation. When we must get an item from start to finish, the starting
and ending points for the items are important to know. We define starting points

and ending points as follows:
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Definition 2.4 The delta function, § (a,b), is 1 if a =b, 0 otherwise.

Definition 2.5 The k' starting point for item i using schedule S, for k € 7, is the
largest time t for which fot fff (St f),0)df dt = (k—1)-1;

Definition 2.6 The k' ending point for item i using schedule S, for k € 7, is the
smallest time t for which [ [[>6 (S (¢, f), i) df dt =k - 1;

We assume that at time zero we are ready to send the first bit of each item. The
k™ starting point of item i is the time when we start sending the first bit of item i for
the k™ time. The k™ ending point of item i is the time when we have just completed
sending item 7 for the £ time.

We consider two types of data. The first is dynamic data. This data can change
from one broadcast to the next. If item 1 is dynamic, then each broadcast of item 1
would refer to the same basic information, but the actual content could change with
time. For example, stock quotes and sports scores would be dynamic data. You could
make two requests for the same information and receive different data each time, since
stock prices fluctuate with trading, and sports scores change as the games progress.

The second type of data we consider is static data. This is the more traditional
type of data. If item 2 is static, then each broadcast of item 2 will contain the
same sequence of bits. An example is photographs of Mars from a recent exploration.
Many people will want to access these images, but the data will never change once it is
posted. There are other types of data, such as information that is updated regularly,
or information that is updated irregularly and infrequently.

We define the idea of waiting time for both dynamic and static data.

Definition 2.7 The waiting time for dynamic item @ of length l; with schedule S
(for n items and frequency interval [fi, fo]) and initial listening time t; is a function

WTi(S,t) =ty —t; — ﬁ, where ty is the smallest ending point for item @ such that

/tt2 /f2 6(S(t, f),i)df dt > 1;.
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Definition 2.8 The waiting time for static item i of length l; with schedule S (for
n items and frequency interval [fi, f2]) and initial listening time t, is a function

WT;(S,t) =ts — t; where ty s the smallest time such that

_ b
fo—f1’
ta rf2
/ S(S(t, ), i)df dt > 1.
t1 Jf1

For dynamic data, we must start at a starting point and end at an ending point,
since we receive data from start to finish. For static data, we have more freedom. We
can start receiving data when we start listening to the channel. If we start listening
during the transmission of the data we want, we can collect the last part of the current
transmission and then finish when we hear the beginning of the next transmission.
So, our restriction of starting at a starting point and ending at an ending point is

eliminated.

l;
fa—f1

long for item 7. Even in the best possible case, where we immediately start receiving

In each case, we subtract the term because we will always listen at least this

item ¢ from its beginning and continue receiving it over the full available bandwidth,

we still listen a time fQZj e Since we are interested in studying waiting times due

to scheduling, we subtract this constant “transmission time” when computing the

walting time.

Definition 2.9 The expected waiting time for item i is a function, EWT;, of a sched-

ule, S, where

T

EWT(S) = lim = [ WTy(S,)dt.

T—o0 0

For a periodic schedule with period 7', where the starting points and ending points
are also periodic with period T, we can eliminate the limit and compute EWT;(S)

as & [T WT; (S, 1) dt.

Definition 2.10 FEzpected waiting time (EWT) is a function of a schedule, S, and a
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Figure 2.2: Sample WT calculation for a frequency-division schedule for dynamic
data: (a) the schedule S, (b) WT1(S,t), (¢) WTy(S,t), and (d) WT5(S,t).

vector of demand probabilities = (p1,pa, - .. ,Dn), where
EWT (S, p) Z pEWT(S).

When we have n = 2 items, we will often say EWT(S, p1) instead of EWT(S, p),

where 7 is assumed to be (p1,1 — py).
Example 2.1

Figures 2.2 and 2.3 show sample WT computations for frequency-division and
time-division schedules for dynamic data. Since each of the schedules is periodic
with period %, we can compute EWT;(S) by simply computing the average value of
WT;(S,t) for t € [0 3] For the frequency-division schedule, we get EWT; = 4B,

' B
EWT, = 4B, and EW'T3 = 5%. For the time-division schedule, we get EWT; = 103’
EWT, = 5%, and EWT; = 3. For p1 = 3, p» = 5, and p3 = £, we get expected

waiting times of 5 for the frequency division schedule and 5533 for the time-division
schedule.
We see in the example above that the time-division schedule has a lower expected

waiting time than the frequency-division schedule. In this chapter, we show that for
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Figure 2.3: Sample WT calculation for a periodic time-division schedule for dy-
namic data: (a) one period of the schedule S, (b) WTi(S,t), (c) WTy(S,t), and
(d) WT5(S, t).

equal-length, dynamic data there is always a time-division schedule that has a lower
expected waiting time than any given frequency-division schedule. In Section 2.2, we
discuss optimal frequency-division scheduling. In Section 2.3.1, we show how to find
better time-division schedules for equal-length, dynamic data. Then in Section 2.3.2,

we discuss static data and some cases where time-division is provably better.

2.2 Optimal Frequency-Division Scheduling

2.2.1 The SRR-FD Schedule

We want to use frequency-division scheduling to send n items over a broadcast channel
of bandwidth B. This is shown for n = 3 in Figure 2.4. When waiting for item i, a
client listens to channel i of bandwidth «; - B. We define a specific frequency-division

schedule and prove its optimality for both dynamic and static data:

Definition 2.11 The square root rule frequency-division schedule (SRR-FD sched-
ule) for n items of lengths l;, 1 < i < n, frequency interval [f1, f2], and demand

probability vector p = (p1,p2, ... ,Pn) is a frequency-division schedule S for n items
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Figure 2.4: Frequency-division scheduling.

and frequency interval [fy, fa], with S(t, f) =k, if

A (f=f) Y, a<k<fit(fo—f)) ay,
j=k

j=k+1

where

pili

> i1 Vil

o = Vi, 1 <i<n.

2.2.2 Dynamic Data

We first look at scheduling of dynamic data.

Theorem 2.1 Among all frequency-division schedules for n dynamic items of lengths
l;; 1 < i < n, and frequency interval [f1, f2], for demand probability vector p =
(p1,D2,- -+ ,Pn), the corresponding SRR-FD schedule has minimal expected waiting

time.
Proof of Theorem 2.1

First, we note that the waiting times depend only on the total bandwidth allocated
to each item, and not on how it is distributed in S. So, we are free to assume that
any frequency-division schedule S consists of exactly n different “subchannels,” where
item 7 is sent on subchannel ¢ of bandwidth o; B, and ) | o; = 1. The waiting time,

using the notation of Definition 2.7, is WT; = t, — t; — —i—. We see that t, — ¢; is
fo=f1
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the total time spent listening to the channel. This is just ¢,4,ia1 + titem, Where ey, is
the wait to receive the item from start to finish, starting at the next starting point,
and t,4r4iq 1S the wait until the next starting point, which ranges uniformly from 0 to
titem- S0 to — t1 = tpartial + Oi—iB, and WT;(S,t) = tpartiar + al—lB — %. We now compute
EWT;(S).

l; l;
EWT(S) = Ill—IEOT/ (,,amal+ B B) dt

bk

= 1l arzadt
TI—IEOT o tial +alB B

1 l; l;

204Z'B OéZ'B B
3Lk
20[iB B

This gives us an overall expected waiting time of

" /3 l;
EWT(S.5) = Z(ia,B—E)pz
i=1 t

: Z
= on — T 5 pili
ZB
This is minimized when ) | pgy—ll is minimized, or when
- (2

o= VPili
> i1 V/Pil;
These are the values of the «;’s used by the SRR-FD schedule. It follows that the
SRR-FD schedule has minimal expected waiting time among all frequency-division
schedules.

Using these values of «;, we get the minimal expected waiting time of

1 3
EWTin = 5 > V/pil (5 > Vil = \/pizi>
i=1 j=1
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Figure 2.5: Optimal frequency-division scheduling: (a) computing «;’s for the items,
(b) the resulting schedule.

Example 2.2

As an example of optimal frequency-division scheduling, we consider scheduling three
items with lengths [; = 9, [, = 32, and [3 = 3, and demand probabilities p; = .46,
p2 = .05, and p3 = .49. We compute pil; = 4.14, pyly = 1.6, and p3ls = 1.47. Taking
square roots and normalizing, we get «; = .45, ap = .28, and a3 = .27, giving an

expected waiting time of 23.33. Figure 2.5 shows the resulting schedule for B = 1.

2.2.3 Static Data

We now look at optimal scheduling for static data.

Theorem 2.2 Among all frequency-division schedules for n static items of lengths
l;; 1 < i < n, and frequency interval [f1, f2], for demand probability vector p' =
(p1,D2,- -+ ,Pn), the corresponding SRR-FD schedule has minimal expected waiting

time.
Proof of Theorem 2.2

Again, we note that the waiting times depend only on the total bandwidth allocated
to each item, and not on how it is distributed in S. So, we are free to assume that
any frequency-division schedule S consists of exactly n different “subchannels,” where

item 7 is sent on subchannel 7 of bandwidth o; B, and ) | o; = 1. The waiting time,
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using the notation of Definition 2.8, is WT;(S,t;) = to —t; — lifl. We see that to —1;

fo—
is the total time spent listening to the channel. This is just %;s.,,, the wait to receive

the item from start to finish. So ty — t; = ai_iB, and WT;(S,t,) = ai_iB — % We now
; T (. 4 l; _ l;
compute EWT;(S) = Tlgrgo% s (aiB — E) dt = 1 — &

This gives us an overall expected waiting time of

n

L
EWT = z;<aiB_E>pz’

This is minimized when > | poi—ll is minimized, or when
- 7

oo Vpili
> im1 VPl

As it was for scheduling dynamic data, these are the values of the a;’s used by the
SRR-FD schedule. It follows that the SRR-FD schedule has minimal expected waiting
time among all frequency-division schedules.

Using these values of a;, we get the minimal expected waiting time of
1 n n
EWTin = B ; Vil (; Vil = v pili>

2.3 Better Time-Division Scheduling

We now consider time-division schedules, as in Figure 2.6. Finding the optimal time-
division schedules as we did for frequency-division schedules is difficult. Instead, we
consider the case when all items have the same length, and for any frequency-division

schedule we look for a time-division schedule that has lower expected waiting time.

2.3.1 Dynamic Data

We first consider dynamic data.
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Figure 2.6: Time-division scheduling

Theorem 2.3 For any frequency-division schedule, Spp, for n dynamic items of
length | and frequency interval [f1, f2], there is a time-division schedule, Stp, for n
dynamic items of length | and frequency interval [f1, fo] such that EWT (Spp,p) <

EWT (Spp,p) for any vector p= (p1,p2,... ,pn) of demand probabilities.
Proof of Theorem 2.3

The idea of the proof is to consider an arbitrary frequency-division schedule, Sgp,
and construct a better time-division schedule. We will assume WLOG that the length
of the items is [ = 1, the bandwidth is B = 1, and the «;’s are ordered as follows:
oL > > ag > ... >, Welets, = aii, the spacing between instances of item ¢
in the frequency-division schedule. For the frequency-division schedule, the expected
waiting time is Y . | p; (% — 1). We will construct a time-division schedule that
has a lower expected waiting time. We choose our construction based on the value of

Qaq.

Case 1 (0< o < %)

When all «;’s are at most %, we see that for the frequency-division schedule Srp we

have

EWT; (SFD) = Y 1
(5-)
= P %) Si
2
> 8

Let s, = 2log2 51 the next power of 2 greater than or equal to s;. Since S sl =1

and s} > s; for 1 < i < n, it follows that ), Si, < 1. Since Y7, & is the bandwidth

i 53
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Scheduleitem 1: | 1

Scheduleitem?2: | 1| 2

Scheduleitem 3: | 1 2I 112

Eliminate empty space:

Figure 2.7: Generating a time-division schedule better than the frequency-division
schedule with «; = .41, ay = .36, and a3 = .23.

requirement for scheduling with spacing s, and 1 is the total bandwidth available, we
have enough bandwidth to schedule with these spacings between items. We start with
item 1 and schedule it with spacing s|. We then repeat for items 2 through n. Since
the spacings are increasing powers of 2, we can always schedule the items with the
appropriate spacing. Each s/ is less than twice the corresponding s;, and the expected
waiting time for item ¢ using the time-division schedule is 1s} < 3 (2s;) = s;. Thus,
for this time-division schedule, Sy, we get EWT; (Syp) < s; < EWT; (Spp) Vi, 1 <

1 < n. It follows that time-division is better than frequency-division when o < %
Example 2.3

To see how to schedule items when o < %, we consider an example. Let n = 3,
a; = 41, ap = .36, and a3 = .23. Then we assign s} = 4, s, = 4, s§ = 8§, and
schedule the items as shown in Figure 2.7. Using the frequency-division schedule,
we get EW'T, = 2.66, EWT, = 3.17, and EW'T; = 5.52. With the time-division
schedule, we get EWT, = 1.4, EW'T, = 1.4, and EWT3 = 2.5. Since the time-
division schedule gives lower expected waiting times for each item, it follows that the
time-division schedule has a lower expected waiting time for any values of the demand

probabilities py, po, and ps.

)

Case 2 (% <o <

|
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Scheduleitem 1: | 1

Scheduleitem2: |1 2|1 1 1

Scheduleitem3: | 1| 2 lIl 1

Figure 2.8: Generating a time-division schedule better than the frequency-division
schedule with «; = .61, ay = .23, and a3 = .16.

Eliminate empty space:

For the frequency-division schedule, Srp, with % <a < %, we get EWT, (Spp) =

% —1 > 1. For our time-division schedule, S;p, we let s§ = 2. This gives
EWT, (Srp) = 1, so EWT, (Srp) < EWT, (Spp). For the other items, the sum
of the o;’s is at most %, and we have % the schedule to fit them in. So, we proceed as
in Case 1 and round each s; up to the next power of 2. We then schedule these items
as in Case 1. As before, EWT; (Spp) < EWT; (Spp) Vi,1 <i <mn. So, time-division

is better than frequency-division when % <ap < %.
Example 2.4

To see how to schedule items when % <ap < %, we consider an example. Let n = 3,
a; = .61, ay = .23, and a3 = .16. Then we assign s| = 2, s, = 8, s} = 8, and
schedule the items as shown in Figure 2.8. Using the frequency-division schedule,
we get EW'T, = 1.46, EWT, = 5.52, and EW'T; = 8.38. With the time-division
schedule, we get EW'T, = .83, EWT, = 3, and EWT; = 3. Since the time-division
schedule gives lower expected waiting times for each item, it follows that the time-
division schedule has a lower expected waiting time for any values of the demand

probabilities py, po, and p3.
Case 3 (% <o < 1)

Consider the time-division schedule, Stp, where we broadcast item 1 consecutively

r times and then leave an empty spot. This has EWT, (Srp) = 2(’";31). For the
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time-division schedule to have a lower value of EWT} than the frequency-division

r+3 3 _ 2, o — 2. a1 i
schedule, we need 50r11) < Zap l=r>35 125 —1,s0owe let r = {3 1—041J' This

uses a fraction TLH of the schedule for item 1. This is

7”+1 2 «

22| +1
2, a1
3 1-

< 2.La_li_1
3 l-—a1

. 20!1

201 4+3-3a

. 20!1
2+(1—Oél)
20[1

< —
2

= i

So, we have used less than «; of the schedule for item 1, and we have kept EW T} (S7p) <
EWT, (Spp). Foritems i = 2 through n, we let s = (r + 1) o[lot: T%L the next value
larger than or equal to s; of the form (r +1)2™ m € Z. If o} = si,i, then Y ", af <
¢, a4, so our bandwidth requirement is reduced for time-division. We schedule
items 2 through n as before, doubling the schedule’s length as necessary. For i > 2,
we have s} < 2s; => EWT; (Stp) = 1 (s}) < 3 (2s3) = 5; < %l — 1= EWT,(Srp).
So, EWT, (Srp) < EWT,;(Spp) Vi,1 < i < n, and time-division is better than

frequency-division when % <oy <1

Example 2.5

To see how to schedule items when a; > %, we consider an example. Let n = 3,
a; = .88, ap = .07, and a3 = .05. Then we group item 1 in blocks of r = 4, let
sy =(4+1)-4=20and s§ = (4+1) -4 = 20, and schedule the items as shown in
Figure 2.9. Using the frequency-division schedule, we get EWT|, = .70, EWT, = 20.4,
and EWT3; = 29.0. With the time-division schedule, we get EWT, = .61, EWT, =9,
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Scheduleitem1: |1]1|1|1

Scheduleitem?2: |1|1/1|1|2/1/1/1\1| |1|1|1|1]| |1|1|1|1
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111Il

Figure 2.9: Generating a time-division schedule better than the frequency-division
schedule with «; = .88, ay = .07, and a3 = .05.

Scheduleitem3: |1/1|1(1(2|1|1
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Eliminate empty space: |1{1|1|1|2

and EW'T3; = 9. Since the time-division schedule gives lower expected waiting times
for each item, it follows that the time-division schedule has a lower expected waiting
time for any values of the demand probabilities p;, ps, and p3.

We see that for any value of oy and any frequency-division schedule we can find
a time-division schedule with a lower expected waiting time. Since all the EWT;’s
are lower for time-division, it follows that the expected waiting time (EWT) for the
time-division schedule is lower for any values of the demand probabilities, and the

theorem is proved.

2.3.2 Static Data

For static data, we do not have a proof like we do for dynamic data. So, instead
of showing that time-division is always better than frequency-division, we will show
that this is true when we have n = 2 or 3 items. These techniques seem to generalize
to any particular n > 4, but the proof for arbitrary n is elusive. First, the theorem

for 2 items.

Theorem 2.4 For any frequency-division schedule, Sy, for 2 static items of length |
and frequency interval [fi, fo], there is a time-division schedule, Sy, for 2 static items
of length | and frequency interval [fi, fa] such that EWT (Sy,p) < EWT (S1,p) for
any vector p = (p1, p2) of demand probabilities.
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We will prove this by showing that the time-division schedule 12" is better than the

optimal frequency-division schedule, with the appropriate choice of n. In the proof of

Theorem 2.2, we showed that the optimal frequency-division schedule has expected

waiting time 2,/p1pz = 2+1/p1 — p?. Consider the schedule S™ = 12" where [; = [, = 1.

We compute the expected waiting time for each item and then the overall expected

waiting time.

EWTi(S")

EWT,(S™)

EWT(S", 5)

1 (10 +0 (3)

n? + 2n

2(n+1)

1 1(5) +e-vo+10)]
3

2(n+1)

EWT(S")p1 + EWT(S™) (1 — py)

n? +2n 3 1

IR LTy (=n)
3 n2+2n—3p

2t ) T 2+ D)

Figure 2.10 shows the performance of the optimal frequency-division schedule and

some of the time-division schedules of the form 12". We compute the values of p; for

which EWT(S",p) = EWT(5"*, j).

EWT(S",
3 n?+2n — 3
2(n+1) 2(n+1)

p)

y41
b1

b1

= EWT(S" D) <=

3 (n+1°+2(n+1)—3

= + p1 —

2(n+2) 2(n+2)

2(n+1) ~ 2(n+2)
n2+4n _ n2+2n-3

2(n+2) 2(n+1)

3
n?+3n+6
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Figure 2.10: Comparing the optimal frequency-division schedule to time-division
schedules of the form 12".

We now compute the expected waiting time for both S™ and the optimal frequency-

division schedule at these values of p;. We let = (p1, p2), where

3
PU= i sn+6
B 3
b2 n?+3n+6
_ 3 n®+2n —3 3
=rtl — EWT(S™,p) =
fume (57.7) 2(n+1)+ 2(n+1) n>+3n+6
3 2n+3
 2n2+3n+6
= = EWT(Sppopt, D) = 2 5 — )
freq n?+3n+6  (n?+3n+6)"
2
= —— 32+ 9 +9
Zisnter o T

We compare the expected waiting times for the time-division and frequency-

division schedules and see that the time-division schedules are always better.
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- _ 2 3 2n+3
r=ntl 5 yn=ntl o V3n24+9 9> - ——
freq = “time n2 +3n+6 n®+9n+9 = 2

<~ 4V3n2+9In+9>3(2n+ 3)

= 16(3n° +9n+9) > 9 (4n* +12n +9)

— 12n?+36n+63>0+— trueV¥n >1

We see that we can always find a time-division schedule of the form 12" that is
better than the optimal frequency-division schedule. Hence, time-division is better
than frequency-division for broadcasting 2 static data items.

We now consider 3 static data items.

Theorem 2.5 For any frequency-division schedule, Sy, for & static items of length [

and frequency interval [fy, fo], there is a time-division schedule, Sy, for 3 static items
of length | and frequency interval [f1, f2] such that EWT (Sy,p) < EWT (S1,p) for
any vector p = (p1, p2, p3) of demand probabilities.

Proof of Theorem 2.5

We will prove this by showing that one of the time-division schedules 123, 1213,
or 1"21"21"21"213 is better than the optimal frequency-division schedule, with the

appropriate choice of n > 1. In the proof of Theorem 2.2, we showed that the optimal

frequency-division schedule has expected waiting time 2,/p1ps + 2,/P1p3 + 2/D2P3.
Consider the schedule S™ = 17213, where I; = [, = I3 = 1. We compute the

expected waiting times for each item and then the overall expected waiting time. In

this proof, we will assume that p; > po > p3. By symmetry, we need only show this

case to show the theorem holds for all values of p;, ps, and p3.
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¥

p;=1 p, =1

Figure 2.11: Regions where time-division schedules of the form 1”213 have lower
expected waiting time than the optimal frequency-division schedules.

EWT(S") = {(n_ 1) (0)+1(1)+1 (%) +1(1)+1 G)]

n+3

3

n-+ 3

1 +2
EWT,(S") = n+3{1(n+2)+(n+2)<n2 >]
n? +6n+ 8
2(n+3)
1 n+2

EWT;(S") = [(n +2) (T) +1(n+ 2)]

n+3

n? +6n+8

2(n+3)

EWT(S",p) = EWT\(S")p: + EWTy(S")py + EWT5(S™) (1 — p1 — p2)

n?4+6n+8 n?+6n+2
2(n+3)  2(n+3)

b1

Figure 2.11 shows the regions where each time-division schedule is better than the
optimal frequency-division schedule. The triangle represents all possible values of the
demands p;, p2, and p3, and the shaded regions are where the time-division schedules

are better. We compute the values of p; for which EWT(S™, p) = EWT(S™!, p).



EWT(S™,
n?+6n+8 n®>+6n+2
2(n+3) 2(n+3)

p)

P

P
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EWT(S™ p) <=
(n+1)°4+6n+1)+8
2(n+4)
(n+1)°4+6(mn+1)+2
2(n+4)

6
24+ Tn+19

b1

We now compute the expected waiting time for both S™ and the optimal frequency-

division schedule, Sppept, at these boundaries. We consider the case where .1 (1 — p;) <

p2 < .9(1 —py). By symmetry, and concavity of ¢f,cq — tiime, we need only consider

the boundary p, = .9 (1 — p;). We let o= (p1, p2, p3), where

6
- 1-—
b n? +7n + 19
= 2 (1-
D2 10( p1)
=
ps = 10 b1
_ 2+6n+8 n?+6n+2 6
=t — pWT(St ) = _ o2
time ( 7]5) 2(n+3) 2(TL—|—3) ( n2—|—7’n—|—19>
o 3(2n*+13n-9)
 (n+3)(n2+7n+19)

6 9 6
=t = EWT (Sppopts ) = 24/ [1- ———= ) | =——F——
freq (Skopt, P) \/( n2—|—7n—|—19> (10n2—|—7n+19>

6 1 6
U1l | =5———
N \/( n2+7n+19> (10n2+7n+19>
9 6 1 6

|

n?2 -+ + 19

1002 +7n + 19

)

1002 +7n+ 19

(3

)(

n?4+7n+13
15

)

12
— 42
10jL
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We compare the expected waiting times for the time-division and frequency-

division schedules and see that the time-division schedules are always better.

_ _ 3 n?+7n+13 3(2n? +13n—9)
n=n-+1 n=n+1
tfreq > ttime — 12 <—10 + 2 —15 ) > nt3

1
= 8V3Vn2+Tn+13 > ———— (30n* + 122n — 189)
V5 (n+3)

(30n2 4 122n — 189)°
5(n+3)°

= 192 (n®+7n+13) >
<~ 60n*+ 5160n> + 44816n>

+177696n + 76599 > 0 «— true Vn > 1

So, we see that we can always find a time-division schedule of the form 17213
that is better than the optimal frequency-division schedule. Hence, time-division is
better than frequency-division for broadcasting static data when .1 (1 —p;) < py <
91 —py).

Actually, this only applies forn > 1 = p; > 1 — = I. However, the

6
2471419 — 9
schedule 123 covers the remaining area. We first compute the expected waiting times

for the schedules S' = 1213 and S° = 123.

12+6-1+8_12+6-1+2

1
EWT(S.P) = —a53 2(1+3)
159
-5
EWT(S"p) = §p1+§p2+§p3
1
3

We compute the value of p; for which EWT(S',p) = EWT(S, p).
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15 9 4
3 " T 3T
8 (15 4
P 5(@‘3)‘:*
13
pPr = 2—7

We now compute the expected waiting time for both S° and the optimal frequency-
division schedule, Srppt, at these boundaries. We consider the case where .1 (1 —p;) <
p2 < .9(1 —py). By symmetry, and concavity of ¢f,cq — tiime, we need only consider

the boundary p, = .9 (1 — p1). We let p'= (p1,p2, p3), where

B 13
P = 97
B 7
P2 = 15
_
Py = 935
4
ttime:EWT(SO,ﬁ) — g

7
tfreq:EWT(SFDoptam = \/7 \/75—’_ \/_57—
7
= (H?’ i 4—>

42 4 8v455
135

We compare the expected waiting times for the time-division and frequency-

division schedules and see that the time-division schedules are always better.

42 + 8v/455
135
<= 1.575...>1.333...<— true

WI»-lk

tfreq Z ttime
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So, we have verified that time-division is better than frequency-division for broad-
casting static data when .1 (1 —p1) < py < .9(1 —py).
Consider the schedule S™ = 1"21"21"21"213 where [; = I3 = [3 = 1. We compute

the expected waiting times for each item and then the overall expected waiting time.

EWTy(s7) = — [((n—1>(o>+1(1>+1(§))'4“(”“(%)]

4n+6
15

4 (2n + 3)

EWTy(S") = 4n1+6[(n(g)ﬂ(n))-3+n(g)+1(n+2)+2(n+1)]

n? +3n + 2
2n+ 3
EWTy(S") = 4n1+ - [(4n+ 5) (4”; 5) 1 (4n + 5)]
16n? + 48n + 35
4(2n + 3)
EWT(S",p) = EWT(S")p1 + EWT,(S")pe + EWT5(S™) (1 — p1 — p2)
16n2 +48n +35 4n2+12n+5 12n2 + 36n + 27
12n+3) 243 VT 4(2n+3)

b2

Figure 2.12 shows the regions where each time-division schedule is better than

the optimal frequency-division schedule. We compute the values of p;, ps, and p3 for

which EWT(S™,5) = EWT(S™, ).

EWT(S™p) = EWT(S"p) <=

4 (4n® +16n+ 19) py + (12n° + 48n + 45) py = 16n° + 64n + 61

We now compute the expected waiting time for both S™ and the optimal frequency-
division schedule, Sppey, at these boundaries. We consider the case where p, <
1(1=p1) OR py > .9(1 —p1). By symmetry, and concavity of ¢f,eq — time, We need
only consider the two boundary conditions p, =1 — p; and py, = .9 (1 — py). We first
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Figure 2.12: Regions where time-division schedules of the form 1721217217213 have
lower expected waiting time than the optimal frequency-division schedules.

examine the case where p, =1 — p;. We let

4 (4n* + 16n + 19) py + (12n” + 48n +45) p, = 16n” + 64n + 61
p = 1—p

ps = 0

This gives us p'= (p1, p2, p3), where

4n? + 16n + 16

4n? 4+ 16n + 31
15

4n? + 16n + 31
p3 = 0

P =

P2 =
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15 (n +2)
An? + 16n + 31
2\/15 (4n2 + 16n + 16)
(4n? 4 16n + 31)°

4y/15 (n + 2)

4n? + 16n + 31

th=ntl — EWT(S™, p)

time

=" = EWT(SEpopt, D)

Ireq

We compare the expected waiting times for the time-division and frequency-

division schedules and see that the time-division schedules are always better.

gr=ntl ~ yn=n+l 4vV15 (n - 2) > 1> (n + 2)
freq 2 Ctime 4n? +16n + 31 — 4n? + 16n + 31
<~ 4v15>15

< 240 > 225 +— trueVn >1

So, we have shown the first boundary condition.

Now we show the second, where po = .9 (1 — p;). Let

4 (4n* + 16n + 19) py + (12n” + 48n + 45) p, = 16n” + 64n + 61

9

P2 = 1—0(1—291)
1

pP3 = 1—0(1—291)

This gives us p'= (p1, p2, p3), where

_ 150
P 52n2 + 2081 + 355
135
P2 = 2
52n2 1 2081 + 355
15
p3s =

52n? + 208n + 355
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195 (n + 2)
52n? + 208n + 355

B 150 135
=t = EWT(SEp, = /{1~
Freq (SFDopt, P) \/( 52n2 + 2081 + 355) (52712 + 208n + 355)

it = EWT(S™,p) =

time

150 15
+2 1—
52n? 4 208n + 355 52n2 4 208n + 355

49 135 15
52n2% 4 208n + 355 52n2% 4 208n + 355

90
52n? 4 208n + 355

/15 (52n2 + 208n + 205)

T 5202 1 2080 + 355
90 + 84/15 (52n2 + 208n + 205)
52n2 4 208n + 355

We compare the expected waiting times for the time-division and frequency-

division schedules and see that the time-division schedules are always better.

it 5 ponin, 90+8y/15(5207 + 2080 205) 195 (n +2)
freq = “time 52n2 + 208n + 355 = 52n2 + 208n + 355
> 118950 + 82680n + 106800 > 0 «— true Vn > 1

We have shown the second boundary condition. By symmetry and concavity,
we see that there is a time-division schedule of the form 1721721721"213 that is
better than the optimal frequency-division schedule when py < .1 (1 —p;) OR py >
91 —p).

We have shown that time-division is better than frequency-division for the small
triangular regions indicated in Figure 2.13. By symmetry, it follows that time-division

is better than frequency-division for all values of p;, po, and ps.
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(11211121112111213

1211211211213

Figure 2.13: Regions we have examined, and the time-division schedules that have
lower expected waiting time than optimal frequency-division schedules in those re-
gions.
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Chapter 3 Time-Division Schedules

We now consider time-division schedules exclusively. We showed that optimal frequency-
division scheduling is often not very difficult, but time-division schedules are better
than frequency-division schedules in many cases. Now, we address the problem of
time-division scheduling. We look at the case where we have two items to schedule,
and we find the optimal time-division schedules for this case, as a function of the
lengths of the items and their demands.

In Section 3.1, we present Theorem 3.1, which tells us the optimal time-division
schedules. In Section 3.2, we prove some lemmas. Then, in Section 3.3, we use the

lemmas to prove Theorem 3.1.

3.1 Introduction

For these schedules, we can adopt a simpler notation for describing schedules. We
will generally write a sequence of numbers, possibly with exponents, to describe a
schedule. The numbers indicate the sequence of items to send, and the exponents
indicate how long to spend sending that item. An exponent of 1 means to send the
item exactly once. Integer exponents of 2, 3, 4, etc. indicate that the item is to be
sent that number of times consecutively. The length of a schedule can be computed
as the sum of the lengths of the pieces in its description.

For example, the schedule 121 means that we send item 1, then item 2, then
item 1, and repeat this pattern indefinitely. The two schedules 1?23 and 11222 are
identical. In each we alternate between sending item 1 twice and item 2 three times.
Since schedules are cyclic, any one of 12221, 22211, 22112, and 21122 could represent
this schedule as well. For this schedule, if [; = 5 and [y = 7, then the length of the
schedule is 2-5+3 -7 = 31.

We discuss the splitting of items into smaller pieces. When we split an item,
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we assume that it consists of a number of independent parts that can be sent inde-
pendently. For example, if item 1 contains 10 stock quotes as 10 pairs of the form
(ticker, price), then we could split item 1 into 10 pieces, where each piece contained
one such pair.

When we split an item into k equal-sized pieces, we write schedules in terms of
the pieces, so the schedule 1223 in this context would mean to send two pieces of item
1 followed by three pieces of item 2, and repeat. Different periods of this schedule
may send different pieces of the items, depending on which piece is next to be sent.
For example, if we split item 1 into two pieces 14 and 1p, and split item 2 into two
pieces 24 and 2p, then the schedule 1223 means we send the pieces in the following
order: 141524252414152524281415242524.. ..

In this chapter, we will prove a lemma about splitting items, but our theorem

about optimal scheduling does not involve splitting of items.

Theorem 3.1 For two items of lengths [; = 1 and ly = a, the broadcast schedule that

minimizes expected waiting time s

1124, if p € [2(a1+1)’ L - 2((;:—1)

lon - a+1 a+1
2% ifpr € [n(n+1)a2+2(n+1>a+2’ n(nfl)a2+2na+2)

n . a(a+1) a(a+1)
1 21’ prl = <]' " 2a22na+n(n—1)’ L - 2a2+2(n+1)a+n(n+1)]

3.2 The Lemmas

Before we prove this theorem, we prove two lemmas that will be useful in the proof
of this theorem. In the first lemma, the length of a schedule is the sum of the lengths

of its pieces.

Lemma 3.1 (The Splitting Lemma,)

Split item 1 into n; pieces of length =, Vi,1 < i < n. Suppose time-division

b
schedule S is written as s18o...s;, where each s; € {1,2,... ,n}, and represents the
broadcast of one piece of item 1,2,..., or n, respectively. Suppose also that there is

a schedule C' = cicy...ck, such that C' has at least n; i’s Vi,1 < i < n, and ¢; =



39

Sgrti mod 1 = Sgprs mod VJ» 1 <7 <k, for some gy # go mod 1. Then EWT(S, p1)

! !
= %EWT(SI; pl) + %EWT(S% pl); where Sl = S(g1+1) mod IS(g1+2) mod I - - - Sga mod 1,
So = S(gy41)mod 1S(ga+2)mod L - - - Sqimod 1, Ls, = length of schedule Sy, ls, = length of

schedule S, and lg = lg, + lg, = length of schedule S.
Proof of Lemma 3.1

Since S repeats cyclically, we can assume without loss of generality that it starts

with one of the sub-schedules C'. We can write schedule S as

S
A
e ™~

S1 So S1
AN AN AN
N N N

(G o |Cootarey -+ - |Crstarey -+ - :

where C(sary) indicates the start of the first instance of sub-schedule C' within S,
Cy(start) indicates the start of the second occurrence, and the dots represent everything
else.

We can also write schedules S| and S, as follows:

S1 S1
(**) |C(smt) ...... Clatarty " """+
Sa Sa
() | Csarey - - - - - |Catarty =+ - -

If we start waiting at some time within the first S; group in either (*) or (**),
we will wait through a certain number of pieces before finding enough pieces of the
desired item. If we receive all needed data within the initial S; group, the times are
identical for (*) and (**) since the sequence of pieces that we encounter is the same in
each case. If we must proceed into the next group, we first enter the C' sub-schedule
in either case. Since C contains n; pieces of item ¢ Vi, 1 < ¢ < n, we will not have to
advance past the C' group, so the waiting times in these cases are identical, since we

again encounter the same sequence of pieces. So, it follows that the waiting time for
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schedule S, given that we arrive somewhere within sub-schedule Sy, is the same as it
is if we use S; as our schedule. The same applies for sub-schedule S;. So, we have
EWT(S,p1) = Pr(arrivein Sy)-EWT(Sy, p1)+Pr(arrive in Sy)- EWT(S3,p1). The
probabilities of arriving in sub-schedules S; and S5 within schedule S are simply lls—sl
and lls—;, respectively. So, we have EWT(S,p;) = lls—sl-EWT(Sl,pl)—i—llS—;-EWT(SQ,pl).
For this section we will use Lemma 3.1 only with n; = ny, = 1. In Chapter 4, we

will consider n; > 1. For Lemma 3.2, we do not consider splitting.

Lemma 3.2 Let schedule S = 1™722"%2 gnd schedule S = 1™1212"F where [} =

Llp=a>0,m>0,n>0. Then EWT(S",p1) < EWT(S,p1)Ya,m,n.
Proof of Lemma 3.2

We compute EWT, and EW'T; by first computing the expected waiting time for
the items given that we arrive during different parts of the schedule. Then we weight

these times by the probability that we arrive during that part of the schedule.

EWTy(S) = m+2+1a(n+2)-<m<%>+1<%>+1<%+2a+na>
+a(%+a+na +a<g+na)+na<%))
EWT\(S) = m+2+1a(n+2) : <m <%> +1 (%—i-a) +a(%)

+1 1—i—a—i—na +a(g+na)+na<ﬁ)
2 2 2
AEWT, = EWT(S)—- EWT(S)

m(0) +1(—a) +1(a) + a(a+ na) + a (0) + na (0)
m+2+a(n+2)

a? + na?
= > 0Va,m,n
m+2+a(n+2)
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m(Z+2)+1(5+1)+1(3)+na(d)+a(d)+a(t+m+2)
m+ 2+ a(n+ 2)
m(Z+D)+1(3)+a(¢+1)+1(3) +na(d) +a(é+m+1)
m+2+a(n+2)

EWTy(S) =

EWTy(S) =

AEWT, = EWTy(S)— EWTy(S')
m(l)+1(1)+1(0)+a(-1)+na(0)+a(l)
m+ 2+ a(n+ 2)

m+1
= > 0Va,m,n
m+ 2+ a(n+ 2)

AEWT(p)) = EWT(S,p)— EWT(S,p)

= AEWTip, + AEWT,(1 —py) > 0Va,m,n,p;

So, it follows that EWT(S',p1) < EWT(S,p1)Va, m,n,p;.

3.3 Proof of Theorem 3.1

First we note that it is never optimal to have a schedule with two occurrences of 12
or 21. This follows from Lemma 3.1. So the optimal schedule is always a sequence of
1’s followed by a sequence of 2’s. But if we have the sequence 1122, Lemma 3.2 tells
us that it is better to replace it with 1212. So, the optimal schedule is one of 12" or

1"2. The expected waiting time for 12" can be computed as:

na® + 2a na® + 2a + 1
p1+
2(na+1) 2(na+1)

EWT(12",p1) =(n—1)

We see that EWT(lQ”,pl) = EWT(12n+lap1) at p1 = p%Zn,nH - n(n+1)a2‘i|—+21(n+1)a+2‘

The expected waiting time for 1"2 is

n+ 2a a’>+2a +n
EWT(1™2 =n—-1——(1— _
We see that EWT'(12, p;) = EWT(1"12,py) atp, = pl™" "2 = 1— o’ ta

2a2+42(n+1)a+n(n+1)"
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To show that these schedules are optimal on the indicated ranges, we must show
that no other schedule is better than 12" or 172 at p!2™""" or p!™""'2, respectively,
for all n > 1. We first compare similar schedules with different values for n. We look
12mntl

at p; and compare the schedules 12" and 12""*, where z is any integer value.

We find the values of 2 such that 12"%* has lower expected waiting time than 12".
AEWT = EWT (12"+x,p}2"’"“) _EWT (12",p}2"’"“)
a(a+1)z(z—1)
2(n+z)a+1)(n(n+1)a>+2(n+1)a+2)
< 0= 0<z<1

We see that the only schedules that are not worse than 12" at pl2™""" are 12"+°
and 1271, So, all other schedules have higher expected waiting time at p!2™""" than

these two. Now, we consider schedules of the form 1™2.

12n,n+1

AEWT = EWT (1’"2,p}2”’”+1) _EWT (12",])1 )

4
- 2(m+a)(na-l—l)(n(nl—l—l)a2+2(n+1)a+2) ) ((TL2 (m (TL + 1) - 2)) a
+(n(n+1) (m(mn+1) —2))d®
+ (2mn® (m — 1) + mn (mn — 1) + 2n (m* — 1)) o®

+(m(m—1)3n+1))a+ (m(m-1))

v

0Vm,n>1

We look at the equation term by term to see that each coefficient of a is always
greater than or equal to 0, with equality exactly when m = n = 1. So, no schedules
of the form 12 are better than 12" at p!2"""" | except that 1'2 has the same expected
waiting time as 12!. This is expected, since they are the same schedule.

Similarly, we can show that the best schedules at pl™""'? are 12 and 1"*12. So,
the endpoints for the range where 12" is optimal are p!2" " and p!2"""™" for n > 2.

The endpoints for the range where 12 is optimal are p!"~ "2 and p!™""'2 for n > 2.

For 12, the optimal range is just the region between p! 2 and p!?"”. Substituting the
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Optimal schedules for two items of different lengths

Inf

12H|

1/5

1/10
1/20

Figure 3.1: Regions where 12" and 1™2 are optimal, as a function of p; and a, for
n < 20. In this plot, n increases in the regions to the lower left and upper right.
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+1 1 . .
“sand pI""" ?’s, we see that the theorem is proved. Figure

expressions for the pi2™
3.1 shows us the values of p; and ﬁ—f = a where each schedule is optimal, for n < 20.
For the regions to the lower left and upper right, we use schedules with increasing

values of n.



45

Chapter 4 Time-Division Scheduling with One
Split

We have shown how to schedule optimally for two dynamic items using time-division
scheduling. We now examine schedules for two items that we can split in half. We
assume that we have the freedom to split our two items into two pieces of equal
size and schedule these pieces. Section 4.1 describes this new idea and some new
notation and presents the theorem describing the optimal schedules. In Section 4.2,
we present two lemmas and describe how these two lemmas and Lemma 3.1 will be
useful in manipulating schedules to find the optimal schedules. In Sections 4.3 and 4.4,
we prove these lemmas. In Section 4.5, we use the lemmas to find a set of irreducible
schedules. Then in Section 4.6, we compare these irreducible schedules and find the
optimal schedules. In Section 4.7, we consider two items of different lengths and show

that much of the work for items of equal lengths generalizes to arbitrary lengths.

4.1 Introduction

We examine the scheduling of two items for a broadcast disk. These items will be
dynamic and split into two equal-size pieces. We can receive pieces out of order, but
each piece must be received from start to finish. In this section, we think of each item
as consisting of two halves, and a 1 or 2 will represent one of these halves, not the
entire item. For example, a schedule in which the two items are broadcast one after
the other in their entirety is 112211221122... and not 121212..., since we need two
halves of each item to broadcast the entire item.

Broadcast schedules are cyclic, so we will represent them by one of their cycles.
Since each item has two halves, we assume these halves are broadcast in an alternating

way. The schedule 122, for example, should really be written as 142425152425, where
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14 and 15 are the two halves of item 1, and 24 and 25 are the two halves of item 2.
This would more accurately represent one period, but we shorten the representation
to 122 with the understanding that the two halves of each item are broadcast in an
alternating way.

Another representation of a schedule that we will use is based on the number of
2’s between consecutive 1’s in the schedule. We use a bracketed sequence of numbers
that represent the number of 2’s between each consecutive pair of 1’s. For example,
[0,2] represents the schedule 1122, and [0,0,1,3,2] represents 11121222122. We use
the notation S¢ to represent the complement of S, the schedule S with 1’s and 2’s
swapped. For example, if S = 12211112, then S¢ = 21122221. We use S* to represent
the reversal of S. With S as above, S® = 21111221.

Sometimes we want to indicate that a certain instance of an item may or may not
be present in a schedule. Parentheses will be used to indicate the possible presence of
an instance of an item in a schedule. For example, a schedule in which we know only
that item 2 is never broadcast twice consecutively is represented by 1(2)1(2)...1(2).

We define a new notion of expected waiting time to deal with 2 split items.

Definition 4.1 EWTs(S,p1) is the expected waiting time using schedule S with de-

mand probabilities p1 and ps = 1 — py, for two items, each split into two halves.

The mathematical definition is exactly the same as for no splits, except we allow
the value of the integrals in the definitions of starting point and ending point to
assume values that are half integer multiples of [;, not just integer multiples of [;.
This reflects the idea that we can start and end at the start and end of the pieces (of
size % - 1;), not just the start and end of the items. The subscript S indicates that
this is an expected waiting time with splitting.

We compute waiting time for an item by looking at how long a client must wait to
get all of the desired item, starting in a particular section of the broadcast cycle. We
average over all sections to get the expected waiting time for that item. We do this
for each item and weight these times by the demand probabilities to get the overall

expected waiting time.
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We show the following:

Theorem 4.1 For two items of the same length, each split into two halves, the broad-
cast schedule that minimizes expected waiting time s

_ _ 40
11222 n = Max <0, [%7 ”HOD ,if pr € [£,1]

2

—134,/-103+32
1221222" n = Maz (0, [—D ,if pre (0,4)

2

In Section 4.2, we present lemmas useful in proving Theorem 4.1. We discuss
the implications of each lemma. We describe how to reduce the search for optimal
schedules from all schedules to a smaller set of irreducible schedules. We determine
which schedules are in this set. Then, we compare these with each other and see that
the schedules listed in Theorem 4.1 are optimal on their respective intervals. We also
show the optimal schedules without splitting, for comparison.

In Section 4.7, we consider items of different lengths. We present numerical results
that suggest that the optimal schedules for different length items are the same as those

for items of the same length.

4.2 The Lemmas

These lemmas provide ways of manipulating schedules into similar but better sched-
ules. In Lemmas 4.1 and 4.2, we assume two items, each split into two halves, with

llzlandlgza.
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Lemma 4.1 (The Rearrangement Lemma)

The following hold for all values of p;:

(a)
EWTs(S',p1) < EWTs(S,p1), where
S = la,bye, ... dye f,...],
S" = [a,b—1,¢,...,de+1,f,...], and
(a+b+c)—(d+e+f)>1
(b)
EWTS(TIJPI) < EWTS(TJPI); where
T = ...12"1212°12Y1 ...,
T = ...12"1122%12Y1 ..., and
n>2uxye€ {01}
(c)
EWTS(UIJPI) < EWTS(Uapl); where
U = ...172°1%2%1. ..,
U = ...1m2%17 2% and
r>1,s>1,t>3,u>3
(d)

EWTs(V',p1) = EWTs(V,p,), where
Vo= 1m2bige2gb  qok-19bk-1]akobk

Vo= 2Pk mpbi-rg-r o obapazgbijer
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Lemma 4.2 (Corollary to Lemma 4.1 part (a)) If, instead of S =Ja,b,c,... ,d,e, f,...],
S is one of [a, b, c =d, e, f,...], Ja, b=d,c=e, f,...], Ja=f, b, c=4d, ¢],
or f[a =e, b= f, c =dJ, then Lemma 4.1 part (a) still holds, where S" is S with b

decremented by 1 and e incremented by 1.

Part (a) and its corollary tell us that it is generally not good to have strings of
2’s of significantly different lengths. More specifically, for each string of two or more
2’s, we add its length to the sum of the lengths of the adjacent strings of 2’s. These
sums should be as close to each other as possible (equal or within 1) for all strings of
two or more 2’s in the schedule.

For example, for the schedule 1212222211212212222222121, consider the two long
strings of 2’s of lengths 5 and 7. Their adjacent strings of 2’s have lengths 1 and 0, and
2 and 1, respectively, giving sums of 5+140=6 and 74+2+1=10. Since 10—6 =4 > 1,
we can move a 2 from the string of length 7 to the string of length 5, giving the new and
better schedule 1212222221121221222222121, with sums 6+1+0=7 and 6+2+1=9.
Since our new sums differ by 2, we can move another 2 to get an even better schedule
1212222222112122122222121 with sums 8 and 8. However, moving another 2 will not
give us a better schedule, since 8 — 8 =0 % 1.

The corollary allows us to eliminate adjacent long strings of 2’s. We do this by
performing the operation in the lemma. We call our adjacent strings the b- and e-
length strings. After multiple applications of the lemma (move a 2 from one of these
strings to the other), we get one of the strings down to length 2.

As an example, consider the schedule 1212222212222112. We have adjacent strings
of 2’s of lengths 5 and 4. By considering these strings as we did above, we get sums
of 5+144=10 and 4+4-54-0=9. So, if we move a 2 from the string of length 5 to the
string of length 4, we improve our schedule. However, unlike before, our sums remain
the same at 44+14+5=10 and 5+4+0=9, so we can repeat this procedure until we are
left with only two 2’s in the first string and a new schedule of 1212212222222112.

Part (b) applies when we have blocks of at least four 1’s, possibly with some single

2’s in them, bounded on both sides by at least two 2’s. This lemma tells us that if
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the beginning or end of the block is 121, it is better to shift the 2 toward the inside
of the block to get 112[rest of block] or [rest of block|211.

An example of this is the schedule 12212111212112222. This contains the string
1211121211, which is a block of seven 1’s with only single 2’s, bordered on both
sides by 22. Part (b) of the lemma tells us that it is better to have 112 than 121 at
the beginning of this string. It is better to rearrange the start of the string to get
1121121211, for a new and better schedule of 12211211212112222.

Part (c) tells us that large strings of 1’s and 2’s should not border each other.
It is better to swap the innermost 1 and 2 if we have at least three of each. A
simple example of this is the schedule 121111122212. We would be better off using
121111212212.

Part (d) tells us that reversing a schedule does not affect its expected waiting time.
So, the schedules 121112222 and 222211121, for example, have the same expected
waiting times.

We will also use Lemma 3.1, the Splitting Lemma. This lemma tells us that under
certain conditions we can split a schedule S into two schedules, S; and S3. Schedule S
will have an expected waiting time that is the weighted mean of the expected waiting
times of S7 and S5. At any value of py, one of S; and S, will have a shorter expected
waiting time and the other will have a longer expected waiting time. As a result, we
should not use S, but instead choose the better of S; and S5.

As an example, consider the schedule 11212122221122. We rewrite it (by shifting,
since we send data cyclically) as 12121222211221. This is just 12 concatenated with
121222211221. Each of these starts with 1212, which is a string with two 1’s and two
2’s. It’s easy to see this for the second sub-schedule. For the first one, think of it not
as 12, but as 121212. .., which is what we broadcast when we use this schedule. We
can split our schedule into these two smaller schedules. We can find the point p where
the two schedules have the same expected waiting time, and see that 12 is better for
p1 > p and 121222211221 is better for p; < p. So, instead of using the original
schedule 11212122221122, we should use either 12 or 121222211221, depending on

the value of p; compared to p.



51
4.3 Proof of Lemma 4.1

4.3.1 Lemma 4.1 Part (a)

= ...12912°12¢1 - - 12912¢12/1 -+ | §' = ... 12012011261 - . - 1241284012/ - b >
3,e > 2.

S and S” have the same length, 5. To show EWTs(S",p1) < EWTs(S,p1) Vp1, we
show At = EWTs(S,p1)—EWTs(S',p1) > 0Vp;. We compute At as p1 Aty +py Aty =
p1 (ty — t}) +pa (to — t}), where ¢; and t, are the waiting times for items 1 and 2 using
schedule S, and t| and ¢}, are the waiting times for items 1 and 2 using schedule S’.
The algebra to show this follows. In each expression, we have a sum of terms of
the form length(time; + ...+ time,). The length value corresponds to arriving in a
section of the schedule with a length of length. The sum of the times is the sum of
the lengths of the undesired sections that one waits through before getting all of the
desired item, when arriving in the section with a length of length. Adding all terms
of this form and dividing by the total length of the schedule gives us the waiting time

for an item.
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It is easy to see that t, = t,, so Aty = 0. It follows that At > 0 <
(a+b+c)—(d+e+ f) > 1. Thus, EWTs(S",p1) < EWTs(S,p1) < (a+b+c¢)—
(d+ e+ f) > 1, and part (a) of the lemma is proved.

4.3.2 Lemma 4.1 Part (b)

T=---1271212712V1 - - | T' = --- 1271122712Y1 - -, > 2,2,y € {0, 1}.

T and T" have the same length, I7. To show EWTs(T",p,) < EWTs(T,p1) Vpy, we
show At = EWTs(T,p1)—EWTs(T',p1) > 0Vp;. We compute At as py Aty +pa Aty =
p1(ty —t)) + pa(ty — 1)), where ¢; and ¢, are the waiting times for items 1 and 2 using
schedule T, and t| and t,, are the waiting times for items 1 and 2 using schedule

T'. The algebra to show this follows. In each expression, we have a sum of terms of
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the form length(time; + ... + time,). The length value corresponds to arriving in a

section of the schedule with a length of length. The sum of the times is the sum of

the lengths of the undesired sections that one waits through before getting all of the

desired item, when arriving in the section with a length of length. Adding all terms

of this form and dividing by the total length of the schedule gives us the waiting time

for an item.
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Here T3, is the time to get one piece of item 2 when we start listening at the

beginning of “2*” and Ty, is the time to get two pieces of item 2 when we start
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listening at the beginning of “2*”. It is easy to see that T5, > T5. Also, n > y, by the
restrictions we placed on them. So, At; > 0 and Aty > 0. Since At = pi Aty + poAty,
we see that At > 0, and part (b) is proved.

4.3.3 Lemma 4.1 Part (c)

U=-..-2172511241 ... U = 2172510121211 -+ ()5 > 1,t,u > 3.

U and U’ have the same length, {;;. To show EWTs(U',p1) < EWTs(U, p1) Vp1,
we show At = EWTs(U,p) — EWTs(U',p1) > 0¥p;. We compute At as pi Aty +
paAty = pi(ty — t)) + pa(te — t}), where ¢; and ¢, are the waiting times for items 1
and 2 using schedule U, and t| and t), are the waiting times for items 1 and 2 using
schedule U'. The algebra to show this follows. In each expression, we have a sum
of terms of the form length(time; + ... + time,). The length value corresponds to
arriving in a section of the schedule with a length of length. The sum of the times is
the sum of the lengths of the undesired sections that one waits through before getting
all of the desired item, when arriving in the section with a length of length. Adding
all terms of this form and dividing by the total length of the schedule gives us the

waiting time for an item.
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Here 77 is the time to get one piece of item 1 when we start listening at the end of
the piece of item 1 just after “2“” in schedule U. This is the same as the time when
we start listening at the end of the piece of item 1 just after “2“~!” in schedule U’.
Expressions such as (r = 1) and (s > 2) are evaluated as 1 if the expression in the
parentheses is true and 0 if it is false. This is just a shorthand way of considering
multiple cases with one equation. Since 77 > 0, r > 1, and t > 3, we see that At; > 0
and Aty > 0. Since At = pi Aty + paAty, we see that At > 0, and part (c) is proved.

4.3.4 Lemma 4.1 Part (d)

Vo= e9biqeagbe .. qar-19be1]akobs |7 — 9bkjarobi-iier-1...9b21@29b1 141 Without
loss of generality, we assume all a;’s are 1. If they are greater than 1, we can simply
replace 1% with a; copies of 112°.

V and V' have the same length, ly,. To show EWTs(V',p1) = EWTs(V,p1) Vp1,
we show At = EWTs(V,p1) — EWTs(V',p1) = 0V¥p;. We compute At as p1At; +
paAty = pi(ty — t)) + pa(ta — t), where ¢; and ¢y are the waiting times for items 1
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and 2 using schedule V', and ¢} and t, are the waiting times for items 1 and 2 using
schedule V'. The algebra to show this follows. In each expression, we have a sum
of terms of the form length(time; + ... + time,). The length value corresponds to
arriving in a section of the schedule with a length of length. The sum of the times is
the sum of the lengths of the undesired sections that one waits through before getting
all of the desired item, when arriving in the section with a length of length. Adding
all terms of this form and dividing by the total length of the schedule gives us the

waiting time for an item.
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Similarly, At, = 0. So, we have At = 0 and part (d) is proved.

4.4 Proof of Lemma 4.2

We use the result of Lemma 4.1 (a), plus an additional little trick. We write S as
SSSSSS, repeating the schedule six times. This is still the same schedule, since we
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broadcast schedules repeatedly. Now, we choose the b-length section from the second
S and the e-length section from the fifth S, and choose a and ¢ adjacent to b, and
d and f adjacent to e in the overall schedule. There is no overlap of these regions.
We now apply Lemma 4.1 (a) to SSSSSS to get SS~SSSTS. Here S~ is S with b
decreased by one and S* is S with e increased by one. We will write S* to represent
S with b decreased by one and e increased by one. We then do a cyclic shift and
repeat on S~SSSTSS to get S~ S SSTSTS. We shift and repeat four more times,
giving SESESESESESE = S+ = S’ in Lemma 4.1 (a). At each step, we reduced
EWTs, so EWTs(S",p1) < EWTs(S,p1) Vp1, and Lemma 4.2 is proved.

4.5 The Irreducible Schedules

We begin the proof of Theorem 4.1 by classifying schedules into one of two sets. The
first set is the “reducible” schedules, the set of all schedules for which the lemmas
can be applied to give a strictly better schedule. The second set is the “irreducible”
schedules, the set of all schedules for which no lemmas can be used to give a strictly
better schedule. We see that any schedule will be in exactly one of these two sets.
We then look at the set of irreducible schedules, since any reducible schedule is worse
than some irreducible schedule and hence not optimal. We compare these irreducible
schedules and find that a small subset of them (the set of schedules listed in Theorem
4.1) forms the set of optimal schedules.

Each of the lemmas provides a way to change a schedule to get another equally
good or better schedule. We can think of the lemmas as describing actions we can
perform on schedules to change them. There are two types of actions. For each type,
we assume some fixed value of p;.

The first type reduces the expected waiting time of a schedule. This type of action
gives a schedule that is strictly better than the original. These actions establish a
partial ordering, py, among schedules. When one schedule can be modified by one
of these actions to get a second schedule, the second schedule is less than the first

according to ps.
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The second type of action changes the structure of the schedule, but keeps the
expected waiting time the same. This type of action does not give a measurably
better schedule, but instead identifies schedules that are equal with respect to p,.
When one schedule can be modified by one of these actions to get a second schedule,
the two schedules are equal.

There are two orderings of schedules. The first, p;, is by EWTs. Any two sched-
ules can be compared using EWTg. This is the ordering we use to define the optimal
schedule at any value of p;. The optimal schedule is simply the one that is “less than
or equal to” all other schedules according to p;.

The second ordering, p,, is by the actions described above. Not all schedules can
be compared by py, just the ones that are the initial and resulting schedules from
some action. Any two that can be compared with p, will have the same ordering as
by p1, so ps is really a sub-ordering of p;. That is, the set of relationships described
by ps is a subset of the set of relationships described by p;.

So, any minimal schedule under p; will be a minimal schedule under ps. Our
strategy for determining the optimal schedule (the minimal element under p,) will be
to determine the minimal elements under p; and then compare them under p; to find
the optimal schedule.

For ease of referencing the lemmas and their associated transformations, we list
the following actions that we can perform on schedules:

Al: S =AB — S; = A,S, = B, where both A and B start with the same

sub-schedule C', which contains at least two 1’s and two 2’s.

nls nls
A2: S:...22121'(2)1(2)?...(2)f22...—>S’: ...22112'(2)1(2)?...(2)f22...,
n > 2
A3: S — 5" =GP
A4d: S =1]..,a,nmb,...] - S =[..,¢,2,m+n-2b,...|, n > 2, m > 2,
b>a
A5: S =1[..,a,b,c,... , dye f,...] =S =1[..,a,b=1,c,... de+1 f, ...],

b>3,e>2
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A6: S =...12"2221111™2... — S'=...12"2212111™2... ,n>0,m >0
We use the notation “N” to mean “three or more.” Different occurrences of
N within a schedule can correspond to different numbers greater than or equal to
three. For example, [0,N,1,2)N] can represent the schedule [0,3,1,2,3], [0,3,1,2,4], or
[0,10,1,2,12], but not [0,3,1,2,1], [0,0,1,2,2], or [0,10,1,2,2].

We first show a weaker version of Theorem 4.1:

Proposition 4.1 All optimal schedules are equal to a schedule or the complement of
a schedule in the following list:

[0,1], [0,1,1], [0,1,2], [0,1,2,N], [0,1,N], [0,1,N,2], [0,1,N,2,N], [0,2], [0,2,1,N],
[0,2,N], [0,2,N,1,N], [0,N], [0,N,1,2,N], [0,N,1,N], [0,N,1,N,2,N] [0,N,2,N], [1], [1,2],
[1,2,N], [1,N], [1,N,2,N], [2], [2,N].

Note that the optimal schedules (]0,2], [0,N], [2], and [2,N]) are all included in the
list. We show later that these are the best schedules in the list. We now derive this
list containing all the irreducible schedules.

First we consider all schedules that don’t contain both three consecutive 1’s and
three consecutive 2’s. For now, we assume there are no 111’s. We will eliminate
certain schedules based on the fact that we can find a better schedule according to
p2. Since we can find a better schedule, the original schedule is reducible, and we can
exclude it from the list.

We know that no irreducible schedule can contain more than one each of 1122,
2211, 1212, 2121, 1221, or 2112, since we could use action Al on such a schedule
to get a better schedule. Here, and in general, we ignore schedules that are optimal
at exactly one point, such as the schedule before splitting, at the value of p; where
the two sub-schedules have the same waiting time as the original. This is because

the other two schedules are not only optimal at that point, but also at neighboring

points.
We can not have a schedule with two 0’s in it, since we would have [...,0,...,0,...],
which gives us two 2112’s, or [...,0,0,...], which gives us a 111. We can not have a

schedule with two 2’s in it, since we would have [...,2,...,2,...], which gives us two
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1221’s. If we have a schedule with two 1’s in it, we have two instances of 121. If both
are preceded by or followed by something other than 0, we get two instances of 1212
or 2121. The only way to prevent this is for one to be preceded by 0 and the other
to be followed by 0. Since we can have at most one 0, we need to have [...,1,0,1,...],
with only 2’s or larger in the rest of the schedule. But with 2’s in the schedule, we
can use action A2 to get a better schedule. So, the only irreducible schedule with two
I’s is [0,1,1].

We can not have a schedule with two adjacent N’s, where N represents some
number greater than 2, since we can use action A4 on such a schedule to get a better
schedule. So, the irreducible schedules are [0,1,1] and all schedules that have at most
one 0, 1, and 2, and no adjacent N’s. It is straightforward to list these:

[0,1,1], [N], [0], [0,N], [1], [1,N], [2], [2,N], [0,1], [0,1,N], [0,N,1], [0,N,1,N], [0,2],
[0,2,N], [0,N,2], [0O,N,2,N], [1,2], [1,2,N], [1,N,2], [1,N,2,N], [0,1,2], [0,1,2,N], [0,1,N,2],
[0,N,1,2], [0,1,N,2)N], [0,N,1,2,N], [0,N,1,N,2], [0,2,1], [0,2,1,N], [0,2,N,1], [O,N,2,1],
[0,2,N,1,N], [0,N,2,1,N], [0,N,2,N,1], [1,0,2], [1,0,2,N], [1,0,N,2], [1,N,0,2], [1,0,N,2,N],
[1,N,0,2,N], [1,N,0,N,2], [1,2,0], [1,2,0,N], [1,2,N,0], [1,N,2,0], [1,2,N,0,N], [1,N,2,0,N],
[1,N,2,N,0], [2,0,1], [2,0,1,N], [2,0,N,1], [2,N,0,1], [2,0,N,1,N], [2,N,0,1,N], [2,N,0,N,1],
[2,1,0], [2,1,0,N], [2,1,N,0], [2,N,1,0], [2,1,N,0,N], [2,N,1,0,N], [2,N,1,N,0], [0,N,1,N,2,N],
[0,N,2,N,1,N].

We can eliminate repetitions of the same schedule using periodicity of the sched-
ules. For example, [0,2,N,1] = [1,0,2,N]. We can use action A3 to eliminate reversals.
We also eliminate [0], since it does not contain item 2. When we do this, we get the
following list of schedules:

[0,1], [0,1,1], [0,1,2], [0,1,2,N], [0,1,N], [0,1,N,2], [0,1,N,2,N], [0,2], [0,2,1,N], [0,2,N],
[0,2,N,1,N], [0,N], [0,N,1,2)N], [0,N,1,N], [0,N,1,N,2,N] [0,N,2,N], [1], [1,2], [1,2,N],
[1,N], [1,N,2,N], [2], [2,N].

If we allow 111 and not 222, we get the complements of the schedules in this
list. Thus, the set of these schedules and their complements contains all irreducible

schedules that do not have both a sequence of 111 and a sequence of 222.

We now consider schedules with both 111 and 222 sequences. We can decompose
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any such schedule into a sequence of sub-schedules that begin and end with either
111 or 222, and have no sequences of three or more 1’s or 2’s other than at their
beginning or end. We will now derive the set of irreducible sub-schedules that can be
combined to form irreducible schedules.

To do this, we start with the sequence 1112 and extend this schedule one piece
at a time until we reach either a 111...111 sub-schedule, a 111...222 sub-schedule,
or a reducible sub-schedule (a sub-schedule such that any schedule containing it is
reducible). For each position, we can choose either 1 or 2, so we search all possibilities
using a binary tree. This is diagrammed in Figure 4.1.

From this tree, we see that there are seven irreducible 111...222 sub-schedules.
We label them A through G. The irreducible 222...111 sub-schedules are simply the
complements of the irreducible 111...222 sub-schedules. We will call these A through
G. We now generate 111...222... schedules by combining these 111...222 and 222...111
sub-schedules. We use action Al to eliminate reducible schedules and we find that
the only irreducible combinations are CC, CE, EC, FG, GF, and GG.

Of these, only CC and GG do not contain all six possible patterns of length four
that have two each of item 1 and item 2. In these we can replace 111 with 111...111, if
the 111...111 sub-schedule does not have any of the same patterns in it as the starting
schedule. We find that the only such 111...111 sub-schedule is 111212111. When this
sub-schedule is added to CC and GG, each resulting schedule contains all six patterns.
So, the only possible schedules with both 111 and 222 are: CC, CE, EC, FG, GF,
GG, C'C, G'G, CC’, and GG’, where C’ is C with 111 replaced by 111212111 and G’
is G with 111 replaced by 111212111.

We need only consider CC, CE, and C'C, since EC = (CE)¢, FG = (CE)®, GF =
(CE)“R, GG = (CC)°E, G’'G = (C’C)®, CC" = (C’'C)%, and GG’ = (C’C)“E. We use
action A4 on CC = 111211222122 to get 111211221222. We then use action A6 to get
the schedule 211211221221, to which we can apply action A2. We can do the same
thing to CE = 11121122212122 and C’C = 111212111211222122, applying action A4
to give 11211122212122 and 111212112111222122, respectively, and then A6 to get
11211212212122 and 111212112112122122, which we can reduce using action A2.
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Tree used to generate schedules with both 111'sand 222’ s

=irreducible 111...222 subschedule. . = A2-reducible subschedule.
11 r2

O =irreducible 111...111 subschedule. o O = A4-reducible subschedule.
12 r4
. = Al-reducible subschedule. . = A6-reducible subschedule.
rl ré

\ riip Y )
‘y C=111211222 E=11121211222 15 G=111221222
B=111211221222 D=11121211221222 F=11122121222
A=11121122121222

Figure 4.1: Tree of schedules.
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Since all of the schedules listed above can be reduced, there are no irreducible
schedules with both a 111 and a 222. So, the schedules listed previously and their
complements are the only possible schedules that can not be reduced to better sched-

ules, and Proposition 4.1 follows.

4.6 The Optimal Schedules

We have thus far shown that the schedules 1122, 11222, 112222, and 1221222", n > 0,
are irreducible. Now we finish the proof by showing they are better than the other

irreducible schedules:

Proposition 4.2 At any value of p1, EWTs(S,p1) is minimized over all irreducible
S by one of 1122, 11222, 112222, or 12212227, n > 0.

To show this, we first compute their expected waiting times as a function of
p1- We then plot expected waiting time versus p; for each schedule. We find the

appropriate intersection points and see that 1122 is best on p; € (%, %), 11222 is best

on (£, 2), 112222 is best on (1, 2), 122122 is best on (&, 1), and 1221222",n > 1,

is best on ((n+1)2+1§(n+1)+68, n2+1§n+68). We compute these intersection points by
first computing EWTs for the schedules as a function of p;, and n when appropriate.
We then set “neighboring” schedules’ EWTs’s equal to each other and solve for p;.
We use this value of p; to compute the EWTs and get our (p;, EWTs) pairs.

This is illustrated in Figure 4.2. The curve in the figure is the best we can do
without splitting, as given by Theorem 3.1.

The splitting schedules 1122 and 112222 are similar to the no splitting schedules
12 and 122, since we send the same information in the same order in each. However,
the splitting schedules allow a lower EW'Tg because we can start getting an item
halfway through, unlike the no splitting schedules where we must wait until it is sent

again. As p; decreases, we also take advantage of the fact that we can separate the

two halves of item 1 within the schedule, to get even greater gains in performance.
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Expected Waiting Times for Optimal Schedules
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Figure 4.2: Expected waiting time versus p; for some of the optimal schedules. The
lines are for splitting, the solid piecewise linear curve is for no splitting.

It remains to show that any other irreducible schedule is worse than one of the
optimal schedules listed above for any value of p;. Suppose there is some schedule,
with graph defined by t = a-p; + b, that has a shorter expected waiting time at some
p1 than any of our optimal schedules. Then it will dip below the (piecewise linear)
minimum function of the graphs. Since this function is linear, it must be less at some
corner of the minimum function. So, if we can show that no schedule has a graph
that dips below a corner, we have shown that our schedules are optimal.

We do this by checking the set C; = {(1%, %) , (2—51, %) , (%, 3—8)} of intersection

points of 1122 and 11222, 11222 and 112222, and 112222 and 122, and the set

TL2 n
Cy = { <n2+1§n+68a % + nSi(lgnJ‘ilZﬁ)zlos) ‘ n > 0}, where 1221222" and 122122271

intersect, ¥n > 0. These are our corner points. We evaluate ¢ = a - p; + b at the
corner point (p,,t.) and compute the difference t —t. = a - p. + b — t.. We then show

this is positive at all corner points.
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As an example, consider the schedule [0,N]. If m = N — 2, this has expected
waiting time % for item 1 and 4(m—5+4) for item 2. So, t —t, at the “n'” corner

point in Cj is

m? +7m 8 N 5 4(n* + 14n + 48)
dm+16 n2+13n+68 2m+8 nd3 + 19n? + 146n + 408

This is non-negative <
4(m?* + Tm)(n + 6) + 5(n® + 19n? + 146n + 408) — 4(2m + 8)(n* + 14n + 48) > 0
We rewrite as a quadratic in m to get
(4n + 24)m? — (8n* + 84n + 216)m + (5n° + 63n® + 282n + 504) > 0

We know this is always positive if it has no real roots, so it is always positive if its

discriminant is negative. So, we want
(8n? + 84n + 216)% — 4(4n + 24)(5n® + 63n? + 282n + 504) < 0
Simplifying, we get
16n" + 144n® 4 48n* — 1152n + 1728 > 0

This is true for n = 0,1,2. For n > 3, note that this expression is greater than
16(n — 3)*, which is non-negative for all n > 3. So, this expression is always positive,
and hence there are no values of m > 0 and n > 0 where the schedule 11222™ is
better than 1221222". We also check against 1122, 11222, 112222, and 122122, and
see that we do not dip below their corner points. We do this the same way, except
now we only have the single parameter n instead of both m and n.

We use the same basic idea for all other irreducible schedules. Some of them

have more than one group of N 2’s. For these, we use action A5 to determine
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Optimal schedules for dynamic data with two items of lengths 11 and 12, each split into halves
Inf

20
10

al

-122122...2

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3: Optimal scheduling with different lengths.

how many 2’s the blocks can have relative to each other, and we consider all pos-
sible combinations, doing the above calculation for each. So, Proposition 4.2 is
proved, and combining with Proposition 4.1 we see that our small set of schedules
{1122,11222,112222,1221222™ n > 0} performs better than any other schedule. The
intervals on which each is optimal are described by C and Cs. These agree with the

intervals in the statement of Theorem 4.1, thus completing the proof.

4.7 Different Length Items

We have shown the optimal scheduling for two items of the same length, when we
split them each into halves. Now we consider the same situation, but with items of
different lengths. We fix the length of item 1 at [y = 1 and let item 2 have length

[y that can be any positive value. We then split item 1 into two pieces, each of size

1

3, and split item 2 into two pieces, each of size L2 We want to find the optimal

2

schedule for the items, as a function of the ratio of the lengths, /5, and the demand
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probabilities p; and ps =1 — p;.

We attempt to use the same reasoning as with Iy = [;. Since the lemmas we used
for equal lengths also hold true for different lengths, we can use the same reductions
and arrive at the same set of irreducible schedules. However, comparing the schedules
to each other is more difficult than when [, is fixed at 1.

To get an idea about which schedules are optimal for which values of [, and p;, we
numerically checked a range of values of /5 and p;, and found the optimal schedule at
each pair of values. The results are shown in Figure 4.3. We see that the only optimal
schedules are 11222", 1221222", n > 0, and their complements. It is interesting to
note that these are the same optimal schedules as for equal length items.

It would be interesting to know if this is provably true for all p; and [,. We have
been able to eliminate some of the schedules as being non-optimal. For example,
[1,n+2] is always worse than [0,n+3], for all ly, p;, and n > 0, so [1,N] is worse than
[0,N] and hence [1,N] is never an optimal schedule. However, we have not been able

to eliminate all other schedules, as we could for I, = [;.
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Chapter 5 Time-Division Scheduling with
Multiple Splits

In this chapter, we extend the idea of splitting. Instead of splitting items in half, we
look at splitting them in an arbitrary way. We essentially assume that a data item
can be split into n pieces of equal size, and then assume n — oc.

Section 5.1 presents these new ideas and some new notation and a proposition that
we would like to prove. Then, in Section 5.2, we present some lemmas that prove

parts of the proposition. Sections 5.3 through 5.6 present proofs of these lemmas.

5.1 Introduction

In this section, we think of each item as consisting of very many very small pieces,
so a 1 or 2 will represent some number of these pieces, and not the entire item. We
will use exponents to indicate how many pieces. The exponent is the fraction of the
complete item that is broadcast. For example, 122! means broadcast half of item 1
and then all of item 2.

Broadcast schedules are cyclic, so we will represent them by one of their cycles.
Since we have pieces of each item, we assume these pieces are broadcast in sequence,
where the next piece to broadcast depends only on the previous piece of that item
that was broadcast.

We define a new notion of expected waiting time to deal with this arbitrary split-

ting of items.

Definition 5.1 EWT4g(S,p1) is the expected waiting time using schedule S with
demand probabilities p; and po = 1 —py, assuming two items, each of length one unit,

split into arbitrarily small pieces.

The AS indicates “Arbitrary Splitting” of items. The lower the value of EWT4s(S, p1),
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the better schedule S is for demand probabilities p; and ps = 1 —p;. This is simply a
generalization of the previous section. We assume we have dynamic data that is split
as before, so we can receive pieces start to finish and out of order. However, as the
number of pieces becomes large, this limiting case is simply static data. So, to avoid
confusion, we will simply assume the data is static.

In general, we would like to show the following:

Proposition 5.1 For two static items of the same length, each split into arbitrarily

small pieces, the broadcast schedule that minimizes expected waiting time 1s:
11217 prl € (%7 %]

. B 3 . 15-4v/5 3
119 1,l_\/p_17_4, if p1 € ( 145 ’5]

1n2l 1w = b 1D g 1) (2 4 1),

p1
c 1-n+4+3n248n3+4n? —2n(n+1)vV—1-6n+8n3+4n? 14n+3n2—-8nc+4n*—2n(n—1)v1+2n—8n3+4nt
P 1-2n+11n2+442n3+53n4+32n5+4-8n6 ) 1+2n+3n2—18n3+17n%—16n°+8nb

Following are results related to this proposition. We present and prove some

lemmas related to Proposition 5.1.

5.2 The Lemmas

These lemmas tell us how to optimize certain classes of schedules described in the

proposition. For p; > %, we swap which items we call “1” and “2.”

Lemma 5.1 (Optimization for 1 piece)
If a schedule Sy of the form 1'2!=1 minimizes EWTys(S,p,), where | > 2 and
0<p < %, then EWTas(S,p1) is minimized by S = Sy with [ = p% — 4.

Lemma 5.2 (Optimization for 2 pieces)
If a schedule Sy of the form 142°1'=%2=1=8 minimizes EWTys(S,p1), where o >
0, 8>0,1>2+p, and 0 < p; < 2, then EWTys(S,p1) is minimized by S = S,

337
witha:%,ﬁzl,l:% 11)—?—30.
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Lemma 5.3 (Optimization for 3 pieces)
If a schedule S3 of the form 192°172011=e=72l=1=F=0 minimizes EWTas(S, p1),
where a > 0,8>0,7v>0,6 >0, >24+ 49, and 0 < p; < %, then EWTa5(S, p1)
15 manimized by S = S3 with a = v = %,626: l,l:% ;2)—1—120.

Lemma 5.4 (Restricted optimization for N pieces)
If a schedule Sy of the form 18211521 - - 15 27N minimizes EW Tas(S, p1), where

[>N+1,and 0 <p < (N+1)?2]\]7\7+21+N+1)’ then EW Txs(S, p1) is minimized by S = Sy

with | = %\/% ~ N(N +1)(N2+1).

5.3 Proof of Lemma 5.1

S =S has the form 1'27*, 1 > 2, and 0 < p; < 2. We want to choose [ to minimize

EWTas(S,p1).

1 [-1/1-1
1

= ﬂ(21—2+12—2l+1)

-1

EWTago(S) =

)

EWTAS(S,pl) = t1p1+t2(1—p1)

dEWTas(S, pi)
dl

1 3
= = 20 2p, — =12
21’1 + D1 5

(IP4+4)p —3
212
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dEWTys(S, p1)

y = 0=
(P+4)p = 3=
Y A
4

This is valid for [ > 2 <= p; < %.

d*EWTas (S, p1)
dl?

—41 p, +317°
3 2 I3 3 2 T3
— —4p1<——4> ,/——4+3<——4> 2y
P1 P1 P1 D1
3 2 I3 3
= (3_4191)(__4) — —4>0Vp, < ¢
P1 y4i 8

So, we have a minimum value of EWTys at [ = /2 — 4, and it follows that

b1
EWTas(S,p1) is minimized for S = 1'2""" when | = /2> — 4.

When we choose [ this way, the expected waiting time is

12—-4 3
EWTss(S,p1) = P+ =
3

2l 21
(——4) 4
,/ ,/ —4
= \/3p1 — 4p?, f0r0<p1<§

5.4 Proof of Lemma 5.2

S =S, has the form 1%2°11792/=17F o > 0,3 > 0,1 > 2+ 3,0 < p; < 35. We want
to find the values of «, 3, and [ that minimize EW T 45(S, p1).
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5.4.1 Case l: >1

Pa—4y+ﬂo—1—§>+(y—@a_1)

+a—1—m<é—%+§ﬂ

dEWT45,1(5) 1

EWTAS,l (S) —

~| —

dp l
| = 28+1=

[-1

r=

This is a relative maximum, so we choose 3 as large or small as possible to minimize
EWTys,1(S). The limits on 3 are 1 and [—2. These two values give the same schedule,

so choose = 1.

EWTag2(S) = %g(g)+w—1ﬂm+lu—aywl—@<1;a>
+(—2-5)(0) +1(a)]

1, 3

= 7_0[ —Oé+§:|
dEWTys2(S) 1 B
e = 7[20{—1]—O:>

1

“© T3

This is a relative minimum, so we choose a = % The resulting schedule is the

following:

122'122/-2



5.4.2 Case 2:

EWTys.(S)

dEWTs5,(5)
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g <1
%{a(l—1)+ﬂ<l—1—§>+(1—a)(l—1)
(i)
[t
%[l—Qﬂ—l]:0:>

20+1 =

[—1

2
%a(l—%)—l—ﬁ(l—a)—i—(l—a)(l O‘>+(z—2—6)(0)
+B(a) + (1= 5) (1]

113

af

We see that for § > 1 and 8 < 1 we get the same expression for EWT,g,(S5).

For EWTAS,Q(S), we

get 1 [o® —a+ 3] when 8 > 1 and 4 [3] when 8 < 1. We know

o —a < 0Va,0 < a<1,so it follows that EWT4g5(S) is always less when § > 1

than when 8 < 1. So the case of § < 1 is never optimal.

So the best schedule is when o = % and g = 1.

Now we choose the length, [, of the schedule.

1 1[5
EWTas(S,p1) = 7{ ——] P1+l [4] (1—p1)
. +z +2
= 7 D1 1
dEWT,s(S,p1) 1 5 B
dl = 3h 4z2p1 V=
1/5 15 1
Z\qg b)) T ol
1 /1
;= L /10 g
2V m
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This is valid for [ > 3 <= p; < %

PEWTys(S, p1) 15, 5,
FIE = 5 gl
~15 |1 /10 21 /10
= —p —(——30 ~ /= =30
2 4 \ py D1

So, we have a minimum value of EWTy g at [ = %, /11)—? — 30, and it follows that
EWTas(S,p1) is minimized for S = 1221122/=2 when [ = %, /11)—? — 30.

When we choose [ this way, the expected waiting time is

202+ 41— 15 3

EWTas(S,p1) = —————m+
2 (4 (2 -30)) +4(4,/2—30) — 15 -
= p1+
1(5/2 - 30) 1(4/2 - 30)

I e— 5
= p1+§ 10p1—30p1,f0r0§p1§£

5.5 Proof of Lemma 5.3

S = S5 has the form 192°17201-2=72=1=8=0 o, > 0,8 > 0,7 > 0,6 > 0,1 > 2+ 3 +
0, and 0 < p; < %. We want to choose «, 3,7,d, and [ to minimize EW T 45(S, p1).
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5.5.1 Casel: §>1,0>1

EWTys,1(S) = %[a(l—1)+ﬂ<l—1—§>+7(l—1)+6<l—1—g>

+(l-—a—-vy)(1-1)

I 1 B 6
+(l_1—5—5)<§—§+§+§>}
1 [ , ) 1
= - {5+(6+5)l—<5 TR +5+5+5>]

dEWTs:(S) 1 -
AR~ - B =0 =

[ = 204+0+1=

[—1-6_ 148
= >
B 2 =2

This value of  gives us a maximum, so choose § =1 to minimize EWTg:(S5).

Using similar reasoning for d, we see that we should choose 6 = 1 to minimize

EWTys:(S).

EWTisa(s) = 1 [a($) 4100 +7(2) +10-0-7)

2 2
1 a v
l—-a—7v)|z-—=—= 1
== (5-3-1) +1)
11, 5 3
=7 a” +y +§—a—’y+a7
AdEW T ys2(S 1
EWTsaS) Lo
da l
_ 1=
o — -
2
AEW T y52(S 1
dEWTasa(S) T2y -14a]=0=
dy [
l-«o
’)/ =

2
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Froma:%andyzl_Ta,weget
oty = ,_ lat7)
2
. 2
« = -
7T 3
1 9 3
EWTAS,Q(S) = 7 (Oé—|—')/) +§—(O!+')/)—O!’)/
23
-1 Y

This is minimized when ay is maximized, which is at o = v = % These values of

a and v give us the following schedule:
S = 15215211522

5.5.2 Case 2a: > 1,0<1

EWTys1(S) = %[a(l—1)+ﬁ<l—1—§>+7(l—1)+6<l—1—g>
[ 1
+(1—a—7)(l—1)+(l—1_5_7)<§_§+§+%>]
2
- %[%+(ﬁ+5)l—<52+55+52+5+5+%>]
dEWTys:(S) _ 1o ., o 5
5 l[l 26—0—1=0=
_l-1-6_1+8
> 1
dEWTys,(5) — 1[1_5_25—1]:0:>
do [
o l-1-p_ 146
b = 5 > 5
§ > 1

These are the values where 5 and 0 maximize ¢;, so we choose f = 1 and § =

€,€ — 0 to minimize t;.
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EWT5x(S) = 1P(E)+w_1Hm+5wym1_®uf¢n+yQ—a_l)

[ 2 2
+5(1—a—’y)—|—(1—a—’y)(%—%—%>+(l—2—6—5)(0)
+1 ()]
17, 3
ST
EWTisalS) _ 1
do l
1
“ T3

The schedule we get is the following:

1%21 1(5261%—(52[—2—6

But as € — 0, this simply becomes the following schedule:

122'122/-2

This is the schedule from Lemma 5.2. So we see that the case of 5> 1and § <1

is never optimal.

5.5.3 Case 2b: < 1,0 >1

This case is symmetric to Case 2a and hence is never optimal.
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55,4 Case 3: 0<f<1,0<d0<1,64+0>1

EWTasa(S) = %PU—U+5@—1—§>+yu—n+5o—1_g>

+(l—a=7) (-1 +(@-1-F-7) (1—1+§+§>]

_ 1 E+ﬁl+5l—ﬁ2—52—55_ﬂ_5_1
= 7|5 2
AdEW T 451(S) 1
a5 lL=2-0-1l=0=
I—1—96
B = 9
dEWTysa(S) _ 1o oo o 4
do = qlmw-pml=0=
5 = LZ1-8
9

Combining 8 = =1=% and § = 171275 we get f =6 = (I —1). These values

maximize EWTys:(S), so choose § and ¢ as small as possible.

FWTiss(S) = 1 [a($+2)+B+1-10)+0-9(-0) +7(1-a-7)

2
ta-a=n)(3-53-7)+0-2-6-00+5(
+ (1= 8) (a+7)]
1, 3
= 7{& +a7—a+§]
g@%fﬂ@-:-%m+v—u:0:$
_ 1-7
= 5

We minimize EWT4s(S) by choosing ¥ = 0 = a = 5. So we get the optimal
schedule 1325+7132-1-=7_ But we choose [ and v as small as possible, so their sum
will be 1 and we get the schedule 132!1132/~2, which is just the schedule in Lemma

5.2. So this case is never optimal.
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5.5, Case 4: 0<f3<1,0<dé<1,p+6<1

EWTas1(S) = %[a(l—1)+ﬁ<l—1—§>+7(l—1)+(5<l—1—g>
+(1—a—7)(l—1)+(l—1—ﬂ—5)<é—%+§+g>]
1 [? 1
_ 7{5 Bl+6l—ﬂ2—56—52—5—6—§]
dEWTAg,l(S) B 1 _ s a1
— a5 l[l 26-0—-1=0=
I—1-6
R
AEWTus,(S) 1. . o
—u - l[l f—20—-1=0=
o118
g 2

Combining # = =1=0 and § = =122 we get 8 = § = 5 (I—1). These values

maximize EWTg,(S), so choose [ and ¢ as small as possible.

EWTags(S) = Ha(1—%)+6(1—a)+v<l—a—g> +6(1—a—7)

ta-a-n)(5-5-3)+0-2-5-00+50
+5(a+7)+ (1~ - 6) (1)
1 3

If 8 > 9, we want to choose @ — 0 to minimize t5. If § < §, we want to choose
a — 1 to minimize t5. We want to choose f — 0 and § — 0, so our resulting schedule
approaches 1'2/=! in the limit as 3 — 0,6 — 0, — 0 or 1. But this is just the
schedule in Lemma 5.1, so it follows that this case is never optimal.

So the best schedule is when o = v = % and f =0 =1.

Now we choose the length, [, of the schedule.
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11/ 11 7
EWT = (42— —= “)(1—-
WTas(S,p1) ;i {(2 + 5 >p1+ <6>( p1)}
11/ 20 7
= — (=422 -= z
! {(2 + 3>p1+6}
dEWTy5(S, p1) 1 20 7
dl SPL Y 3Rl T G
1 /7 20 ! .
1 /21
I = =./22 —120
3V m
This is valid forl23<:>p1§%.
d*t —40 7
- = l_3 —l_3
FE g Pt oty
e N R B 1 21 120
— 3 Mo\ 3V o
7 1<21 120>21 21 190
319\ p y41
11 /21
= (21 —120p)) ' == /= = 120> 0 Vp, < —
3V m

So, we have a minimum value of EWTys at [ = %, /% — 120, and it follows that

EWTas(S, p1) is minimized for § = 152'152'132'7% when [ = §, /2L — 120.

When we choose [ this way the expected waiting time is

324120 —40 7
EWTys(S,p1) = Tlﬁ"‘&
1 21 1 21
3 (5 (p—l . 120)) 412 (g,/p—l — 120) — 40 X
6 (4/2 — 120) 6 (4/2 — 120)
p1 3 p1

2p1 + <

1 7
\/21p1 — 120p3, for 0 < p; < %

3
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5.6 Proof of Lemma 5.4

S = Sy has the form 152'1#2L - 1527 [ > n4+1,0 < p; < % We want

to find the value of [ that minimizes EWT45(S, p1).

1 [ 3
= 1 12 _ _ = 2_1 1
= l_2l +(n 1)l+< 5" 2n+2>]
1 1 1
EWTys2(S) = 7 1 o +n - +(l—n-1)(0)
_ ek
L 2n
1 1 1 1 1 1

_|_
dEWTys(S, p1) (
dl

dEWTas(S, p1)

dl
0 = Sy (s lns iyl (-1-1)) =
= 2" T T gy 2n
1 2 1
| = —\/M—n(nﬂ)(rﬂﬂ)
n 4
.. . 2n+1
This is valid for [ > n +1 <= p1 < G-

n(2n+1
22D (n+1) (n2 + 1),

and it follows that EWTag(S,p1) is minimized for § = 172'1a2%-.. 172" when
I =1 /220 (04 1) (024 1),

So, we have a minimum value of EWTyg at [ = %\/

n p1
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When we choose [ this way, the expected waiting time is

/1, 1, 1 1 1 1
= l[<21+(n 1)l+< 5" T T 2n>>p1+<1+2n>]

1\/M_n1(n+1) (n2 +1) [(é (% (%_H(HJFU (n2+1)>>

n p1

+(n—1)%\/%—n(n+l)(n2+l)+ (—%nZ—%n—%—%>)p1

+(+30)]

= (n—1)p1+%\/n(2n+1)p1—n(n+1)(n2+1)p%
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Chapter 6 Mixing Time-Division and

Frequency-Division

We have examined frequency-division scheduling and time-division scheduling of both
dynamic and static data. Now we consider a different type of data and a different
way of scheduling. We consider data that has a specific bandwidth requirement, such
as a video transmission with a required quality of service. We also wish to schedule
many dynamic items in addition to this video data. We attempt to combine these
two types of data on a single broadcast channel, and we search for the best way to
schedule this data.

In Section 6.1, we describe this new type of scheduling and the methods of schedul-
ing we will be examining. In Section 6.2, we compute expected waiting times for the
time-division schedules and the mixed schedules. Then, in Section 6.3 we compute

bounds on where the two scheduling methods are better.

6.1 Introduction

We require that the video has a fixed portion of the total bandwidth, with a small
amount of buffering at the receiver allowed, and we try to minimize the expected
waiting time for the dynamic items. An application where this type of scheduling
would be used is for sending both video and data over a digital cable line. Users require
that the video arrives at some minimum bandwidth, but they also want dynamic
information with as little waiting as possible. We assume we have a channel of
bandwidth B = 1, of which a fraction « is required for video broadcast. In addition,
we have k£ dynamic data items of length [ that we wish to send on this channel. We
consider three ways of doing this.

The first is time-division. This is shown in Figure 6.1. We break up the video
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f, —
video [12¢ A| video |1?. video

f, —
b>f t

Figure 6.1: Time-division scheduling for fixed-bandwidth video data and 6 dynamic
data items.

1(2|3|4 1(2|3|4

OI( video

f, ¢

Figure 6.2: Mixed time-division and frequency-division scheduling for fixed-
bandwidth video data and 6 dynamic data items.

data into packets and use time-division scheduling to send these packets and the other
items. We require that o of our bandwidth is spent sending the video packets, and
the other 1 — « is used for the other items. We also impose a limit on how small
the video packets can be. We assume that sending packets of size less than 3 is not
practical, so our actual packet size will be some value b > 5. We will not split up
the dynamic data items, so these packets will have a spacing that is some integral
multiple of .

The second broadcast method will be a mix of time-division and frequency-
division. This is shown in Figure 6.2. We first allocate bandwidth « - B for the
video, and then send the data items using time-division on the remaining bandwidth
(1 — «) - B. For each of these broadcast methods, we assume that all items are the

same length and have the same demand probability, so our ordering of the data items
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is simply 1,2,3,...,k. This allows us to better isolate the effects of the scheduling
method rather than the actual scheduling of the data with this method.

The third method we consider is frequency-division, where we give the streaming
data one channel, and each item gets its own channel in the bandwidth that remains.
However, we can use the results of Chapter 2 to show that the mix is always better,
since we are essentially comparing time-division and frequency-division now. So, we
will ignore frequency-division from now on and only compare time-division and the

mix of time-division and frequency-division.

6.2 Expected Waiting Times

6.2.1 Time-Division

For time-division scheduling, we compute the expected waiting time for an item by
considering the spacing of its broadcasts. We know that the video takes bandwidth

a, so the average number of video packets between each broadcast of an item is

kL
15‘ = b(]flfka)' So, the average spacing of an item is 5 = kl + b (b(lflféa)) = % We

assume that our video packets are spaced as evenly as possible, so this is one of
R+ b | e | or ki + b e ).

If the items were all spaced evenly, then the expected waiting time would simply

be half the spacing, or ﬁ However, this is typically not the case, so this value is
a lower bound for the expected waiting time. We know that the spacing will be one
of two values, depending on whether we use the floor or the ceiling function above.
We will call the first possible spacing a, so the second will be a + b. We will have
spacing a some fraction, 1 — ¢, of the time and spacing a + b the remaining fraction,
q, of the time. So, our average spacing is a + ¢b.

We can compute the values a and ¢q. The value a is simply the smaller spacing,

soa =kl+0b Lb(fﬁla)J' We compute ¢ as the value such that a + gb = 5, giving

q= b(’fl_aa) — Lb(’fl_aa)J . It is now easy to compute the expected waiting time for time-

division. We simply look at the probability of starting to listen during a spacing of
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that length, and the expected waiting time when we arrive within a spacing of each

length. This gives us

EWTyy — L=90 <1a> I (Ch) (1 (a+b)>

a+qb \2 a+qgb \2
1
2a+ab)
a? + 2qab + qb?
2(a + gb)
a+qb  q(1—qb?
2 2(a + gb)

a® — qa® + qa® + 2qab + qb2)

We see here that the expected waiting time is simply the ideal expected waiting
time, or half the average spacing, plus a penalty term for not achieving the ideal

spacing.

6.2.2 Mixed Frequency-Division and Time-Division

With the mixed scheduling, we simply compute the expected waiting time as half of
the spacing, plus the time to receive the item minus the length of the item sent at

full bandwidth. This is

kl l
EWhuie = sn—gyti=a !
B kl 2l
- 2(1—a) +2(1—a)
(k +2a)l

2(1 —a)

We can write this, using the notation we used for time-division, as

b b
a+q Jr(a+q Ja

EWT i =
2 k

We see here that again we have a sum of half the average spacing plus a penalty term

for using less than full bandwidth to send the items.
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6.3 Bounds on Regions of Optimality

We have computed the expected waiting times for each method of scheduling. Now,
we would like to find where each method performs better. Finding exactly when each
method is better is difficult. We will show bounds on where each is better. First, we

show when time-division is better.

6.3.1 Time-Division

From our expected waiting time computations, we can compute that time-division is

better when

q(1 — q)b? (a+qb)a
2(a + gb) k
g1 = )b’k < 2(a+qh)’a =

) kL\?
q1—g)b°k < 2 a4 =

1 —«
k12 1
¥ o< 2 ( > —
(1—-a)?) q(1—-q)
Bo< 2@ p

¢(1—q) (1-a)?

The value of ¢(1—¢) is at most i, SO ﬁ > 8. So, we can say that time-division

: 2 2 o 2
is better when 0° < D ar - kl*, or

20/ 2ak

1l -«

b <

We can not use this equation to say anything about when the mixed schedule is

better, however, because 11(1—2_(1) is not bounded above.

6.3.2 Mixed Frequency-Division and Time-Division

To find where mixing time-division and frequency-division is better than time-division

alone, we calculate the difference in their expected waiting time. However, we make
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an assumption about the spacings between items, first. We see that if b < 2-kl,

then there will always be at least one packet of video between each instance of an

item. However, if b > %=Fkl, then there will either be zero or one packet of video
between each instance of an item. We saw that the expected waiting time for time-
division was simply half the average spacing, plus a scheduling penalty, for not having
equal spacing. So, if we can space items equally, we will have an optimal schedule.
When b < $%-kl, we can simply increase b so that we always achieve the lower of the
two possible numbers of video packets between items. So, when § < 2-kl, we can
schedule with no penalty using time-division. Thus, time-division is always, better,
since mixing always has a nonzero penalty.

When 8 > %-kl, penalty-free scheduling is not possible, since the lower number
of video packets is zero, and having zero packets of video between items means video
is never sent. So, it is only this case where we will find the mix performing better
than time-division. For time-division, we use our expected waiting time formula with

the a’s and ¢’s, but replace the a’s and ¢’s with their equivalents in «, b, k, and [.

This gives us

Pt = 1= 225) kl)—lF(L%) (kl+b)'<<1_%%> (k1) (%)

l—«

+<1fa% (kL + b) (@))

—

= 1 -(l(kl)2— & @
a_ (kD)® o (k1)® a —
kl_m(b) +m(b) + 72 (ki) 2 1—a 2b
(6 kl 2 2
+1_a%((kl) +2klb+b)>

_ %-(%(kzﬁ_ o (M) _a h)? 4 klb)

k(1 + 1% l-a 20 1-a l—a 2
l—«a « 1 9 « 1
= . — ) (Kl — | =klb
(2 g) w125 (Gro)
11—« 1
= kl —b
<a+ 5 )( )+a<2>
kl la

We know that the expected waiting time for mixing is EWT,,;, = 50a) + =,

-«
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k=97, | = 1.000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

Figure 6.3: The regions where time-division (light gray) and mixed (dark gray)
scheduling are better, for £k = 97 items of length [ = 1. The white line is the
bound from Section 6.3.1 and the black line is the bound from Section 6.3.2.

We can now determine when mixing is better by computing when time-division has

a higher expected waiting time.

M e Y o () =
21-a) 1l-a ‘T “\2

kl+2la < 2a(1—a)kl+(1—a)’kl+a(l—a)b<

1
— 2o — 2a(1 — —(1—a)?
b > Ml_m(m+-m a(l — )kl — (1 — a)’kl) <
1

b ——— (a?kl + 2al) =

> a(l—a)(a + 2ad)
b k+2

> l—a(a +2)

So, we have bounds on the region where mixing is better and the region where
time-division is better. Between these bounds, it is not as easy to compute which
method is better to use. Figure 6.3 shows the nature of these bounds and the region

between them for k =97 and [ = 1.
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Chapter 7 Conclusions and Future Directions

We have examined the scheduling of data over a broadcast channel. We looked
at different types of data, and different methods of scheduling. In Chapter 2, we
looked at frequency-division scheduling. We showed that optimal frequency-division
scheduling is possible and showed how to do it. Then we compared these schedules to
time-division schedules. We showed that for any frequency-division schedule for items
of equal length, we can generate a time-division schedule with lower expected waiting
time. It is somewhat surprising that even non-optimal time-division schedules can
always perform better than the optimal frequency-division schedules.

Motivated by our result in Chapter 2, we looked in Chapter 3 for optimal time-
division schedules. We showed that for two dynamic items of arbitrary lengths there
is a simple schedule that is optimal. We compared these simple schedules and found
the values of demands and lengths for which each is optimal.

In Chapter 4, we looked at how splitting items into smaller pieces could help us
reduce expected waiting time. We looked at two items as in Chapter 3, but allowed
them to be split in half. We narrowed our search for optimal schedules to a small set
of “irreducible” schedules. For equal lengths, we compared these and found optimal
schedules. We provided evidence that suggests that the set of optimal schedules may
be the same for arbitrary lengths.

In Chapter 5, we looked at two dynamic data items of equal length and consid-
ered splitting them into arbitrarily many pieces. We then proved some lemmas that
support the idea that the optimal schedules are somewhat simple. All of the good
schedules that we found involve splitting the item with lower demand into n pieces
of size % and scheduling them in a simple pattern.

In Chapter 6, we looked at a new type of data, one which requires a constant,
fixed bandwidth. We looked at a new method of scheduling that combines frequency-

division and time-division and showed that it is sometimes better than either frequency-
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division or time-division alone.
There are many areas remaining for future research. Continuing the research in

this thesis, we could try to show something about frequency-division and time-division

19

for different length items. For the simple case of two dynamic items with p; = 3,

Py = %, [y =1, and I3 = 19 the optimal frequency-division schedule is actually better
than the optimal time-division schedule. However, if we allow splitting of item 2,
then time-division can perform better. The trade-offs between number of splits and
ratio of lengths could be explored.

We could also try to prove or disprove that the optimal schedules for two different
length dynamic data items are the same as for equal-length data items when we can
split them in half. This would be very interesting if the added generality of arbitrary
lengths did not change which schedules are optimal.

Another more ambitious goal would be to prove the proposition in Chapter 5
about optimal schedules with arbitrary splits. Extending the work with two items
to arbitrary numbers of items would also be nice. Work examining different ways to
mix data types or scheduling methods would also be interesting. For example, a new
type of schedule might work well for many items, where some of them are dynamic
and the others are static.

In a broader sense, looking at issues such as error detection and correction, mul-
tiple broadcast servers, and client constraints such as power and mobility would be
interesting. The idea of clients caching and prefetching are also issues that people are
working on. On the practical side, it would be good to study what we can do in a
real system by getting numbers for the parameters we consider, such as bandwidth,

file sizes, and expected waiting times.
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