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Abstract

Large, high density FPGAs with high local distributed memory bandwidth surpass the peak floating-

point performance of high-end, general-purpose processors. Microprocessors do not deliver near their

peak floating-point performance on efficient algorithms that use the Sparse Matrix-Vector Multiply

(SMVM) kernel. In fact, microprocessors rarely achieve 33% of their peak floating-point performance

when computing SMVM. We develop and analyze a scalable SMVM implementation on modern

FPGAs and show that it can sustain high throughput, near peak, floating-point performance. Our

implementation consists of logic design as well as scheduling and data placement techniques. For

benchmark matrices from the Matrix Market Suite we project 1.5 double precision Gflops/FPGA

for a single VirtexII-6000-4 and 12 double precision Gflops for 16 Virtex IIs (750Mflops/FPGA).

We also analyze the asymptotic efficiency of our architecture as parallelism scales using a constant

rent-parameter matrix model. This demonstrates that our data placement techniques provide an

asymptotic scaling benefit.

While FPGA performance is attractive, higher performance is possible if we re-balance the hard-

ware resources in FPGAs with embedded memories. We show that sacrificing half the logic area for

memory area rarely degrades performance and improves performance for large matrices, by up to 5

times. We also 0 the performance effect of adding custom floating-point using a simple area model

to preserve total chip area. Sacrificing logic for memory and custom floating-point units increases

single FPGA performance to 5 double precision Gflops.
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Chapter 1

Introduction

Peak floating-point performance achievable on FPGAs has surpassed that available on microproces-

sors [12]. Further, memory bandwidth limitations prevent microprocessors from approaching their

peak floating-point performance on numerical computing tasks such as Dense Matrix-Vector Multi-

ply (DMVM) due to large memory bandwidth requirements. Consequently, modern microprocessors

deliver only 10–33% of their peak floating-point performance to DMVM applications [13]. Delivered

performance per microprocessor is even lower in multiprocessor systems. Sixteen microprocessors

in parallel rarely achieve 5% peak. In contrast, high, deployable, on-chip memory bandwidth, high

chip-to-chip bandwidth, and low communications processing overhead combine to allow FPGAs to

deliver higher floating-point performance than microprocessors in highly parallel systems.

We investigate SMVM on the VirtexII-6000-4. On a single microprocessor, SMVM performs

somewhat worse than DMVM due to data structure interpretation overhead. In our FPGA imple-

mentation (Chapter 2), data structure interpretation is performed by spatial logic, incurring less

overhead than on a microprocessor. Loads and stores are streamed, so the computation does not

stall between load issue and data arrival. We use local on-chip BlockRAMs exclusively which gives

us a further performance advantage from high memory bandwidth. Our design on one FPGA has

somewhat higher performance than the 900MHz Itanium II, which is the fastest of microprocessors

released in the same period. The performance gap increases when scaled to multiple processors: for

16 processors our design runs at 1/3 peak (750 Mflops/FPGA out of 2240 Mflops/FPGA (Chap-

ter 3)). This is a factor of three higher than 16 processor, microprocessor-based parallel machines.

Our design scales to 48 FPGAs before Mflops/FPGA drops below half of single FPGA Mflops.

Novel contributions of this work include:

• Architecture designed for SMVM for large matrices on multi-FPGA systems

• Parameterized mapping strategy that allows deep pipelines

• Analysis and characterization of scalability

• Demonstration of feasibility of sparse matrix routines on modern FPGAs

• Exploration of FPGA architectures balanced for this application
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sequential in parallel in
dot product dot product

sequential over single microprocessor Zhuo, Prasanna [17]
dot products 1 100
parallel over this work
dot products typical parallel microprocessor implementation

10,000 1,000,000

Table 1.1: Types of parallelism. Numbers indicate potential parallel operations for a typical
1,000,000 entry matrix.

1.1 Sparse Applications

Many real life numerical problems in applications such as engineering simulations, scientific com-

puting, information retrieval, and economics use matrices where there are few interactions between

elements and hence most of the matrix entries are zero. For these common problems, dense matrix

representations and algorithms are inefficient. There is no reason to store the zero entries in memory

or to perform computations on them. Consequently, it is important to use sparse matrix represen-

tations for these applications. The sparse matrix representations only explicitly represent non-zero

matrix entries and only perform operations on the non-zero matrix elements. Further, sparse parallel

algorithms often take advantage of matrix locality to perform much less communication on parallel

machines than their dense counter parts.

Sparse Matrix-Vector Multiply (SMVM) is one of the most important sparse matrix problems.

SMVM is primarily used in iterative numerical routines where it is the computationally dominant

kernel. These routines iteratively multiply vectors by a fixed matrix. Examples that solve Ax = b

are GMRES, Conjugate Gradient (CG), and Gauss Jacobi (GJ) [10]. Examples that solve Ax = λx

are Arnoldi and Lanczos [10].

The specific problem we solve is iterative SMVM, which finds Aib by performing SMVM re-

peatedly with a square matrix. We take it as a representative of both the implementation and

performance of iterative numerical routines. The extra computations besides SMVM in the routines

CG, GJ and Lanczos are a few vector-parallel operations, which require little work and communi-

cation compared to the matrix multiply (See Section 3.7).

1.2 Parallelization

The advantage of FPGAs is that many floating point operations can be performed in parallel. The

parallelization strategy we choose must allow use of many Processing Elements (PE). We parallelize

over the set of dot products in the matrix multiply, assigning a minimum of one dot product to each

PE. So the maximum usable number of PEs is the dimension of the matrix. Further scaling would

2



require breaking dot products between processing elements. Parallel scaling can also be limited by

the large amount of communication work required when there are many PEs. Our results show that

parallel performance becomes inefficient before breaking dot products is necessary for further scaling

(Chapter 3.4).

A different strategy is used by Zhuo and Prasanna’s FPGA solution [17]. It sequentially iterates

over dot products, parallelizing each one. The number of usable PEs is limited by the number of

non-zero entries per row, which is typically between 8 to 200. Non-zeros per row is independent of

the size of the matrix, so this approach sometimes cannot parallelize large problems by more than

8 PEs. Table 1.1 shows how various approaches choose to parallelize. Zhuo and Prasanna’s design

stores the matrix in off-chip memory which has the advantage that only one FPGA is required for

large matrices. They do not require much parallelism, since they use one FPGA with throughput

limited by off-chip bandwidth.

Problems with regular or periodic two- or three-dimensional structure often generate banded

matrices. For banded matrices, a common parallelizing strategy is to assign each band to a processor.

Then communication, which consists of entries of b and partial accumulations of entries of Ab, is

systolic on a linear array of PEs. [18] adapts this strategy to general sparse matrices by assigning

matrix entries to jagged bands. For this approach the time complexity is lower bounded by the

dimension of the matrix since both b and Ab are streamed through the PE array. This means that,

like parallelizing each dot product, potential parallelism is limited to the number of entries per row.

1.3 Communication

For many approaches, including ours, large communication work between processing elements is

the main scaling limiter. We perform offline data placement to minimize communication by ex-

ploiting locality in the sparse matrix. The interconnect for our design is a bidirectional ring which

allows inexpensive local communication between PEs. We also evaluate the time overhead of mesh

interconnect which provides lower message latency and higher throughput than the bidirectional

ring.

Section 3.1 determines the value of data placement on the bidirectional ring in terms of asymptotic

scaling. Random data placement limits the number of efficiently utilizable FPGAs to a constant.

Clustering data then assigning one cluster to one PE allows the number of efficiently utilizable

FPGAs to increase with matrix size. Intelligently placing clusters on PEs further increases the

asymptotic number of efficiently utilizable FPGAs. The asymptotic analysis models connection

locality in sparse matrices with a constant Rent parameter.

Single FPGA performance is halved at 16 FPGAs, primarily due to communication overhead on

the bidirectional ring. Although data placement can decrease the total work required to communi-
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cate, it usually cannot decrease the maximum message latency. Since maximum message latency is

proportional to the number of PEs, it dominates communication time over interconnect throughput

for more FPGAs than about 30, which is where communication time becomes significant compared

to computation time. Section 3.5 evaluates the communication overhead when two-dimensional mesh

interconnect is used instead of the bidirectional ring. The mesh decreases the maximum message

latency and increases interconnect throughput. When using the mesh, scaling is most often limited

by unbalanced computation load. After 96 FPGAs median performance drops below half single

FPGA performance. When mesh overhead does limit scaling, which may begin at 20 FPGAs, it is

due to limited interconnect throughput rather than message latency.

1.4 FPGA Architecture Exploration

Modern FPGAs are typically used to solve computations for large problems using off-chip memory.

Our approach is to utilize high memory throughput by using on-chip memory. For large matrices we

use many parallel VirtexII-6000s with enough combined memory capacity to store the matrix. This

has the disadvantage that increased parallelism decreases Mflops/FPGA. Also, matrices with more

than about 2,000,000 non-zeros cannot fit on any number of FPGAs due to large communication

memories. However, as the gap between off chip memory bandwidth and on-chip compute grows,

the performance advantage of using on-chip memories will continue to grow. In order to utilize

on-chip compute, we consider increasing on-chip memory capacity by devoting a significant fraction

of chip area to memory. The types of memory we consider are increased capacity BlockRAMs and

embedded DRAMs. Since our application uses double precision floating point arithmetic, we also

evaluate the effect of devoting area to custom FPUs. Chapter 4 evaluates these modifications to

make hardware more suitable to our application, which is representative of numerical applications

with large working memory.

Increasing BlockRAM area while sacrificing reconfigurable logic area allows significant perfor-

mance improvements for large matrices by up to 5 times, while decreasing performance slightly for

small matrices (Section 4.2). Use of embedded DRAM blocks rather than increased capacity Block-

RAMs allows only marginal performance increase for benchmark matrices, while the large DRAM

blocks sacrifice application flexibility (Section 4.4). Section 4.5 shows that when custom FPUs are

used with DRAM memory, single FPGA performance for large matrices is about 5 Gflops. This is

about 3 times the performance of the performance of a single VirtexII-6000, and many times the

performance for large matrices that require many FPGAs. For large matrices, SRAM memories with

custom FPUs forces the number of PEs to be too large for efficient performance. For our benchmark

matrices, greater than half of the 14 Gflops peak performance is maintained for up to 35 PEs/FPGA

(Subsection 4.7).

4



1.5 Outline of Paper

Chapter 2 describes the transform from the basic SMVM sequential algorithm to our parallel

VirtexII-6000 implementation. It describes the off-line matrix mapping that is performed in soft-

ware. Chapter 3 reports the single FPGA and parallel FPGA performance of our design which it

compares to microprocessor performance. It analyzes the effects of design decisions such as data

placement for locality and bidirectional interconnect. Chapter 4 explores FPGAs with reconfigurable

logic area sacrificed for hardware resources that are suitable to our design.
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Chapter 2

Design

This chapter describes our implementation of Iterative SMVM for many VirtexII-6000s connected in

a linear topology. We start with the simple CSR sparse matrix representation and the sequential CSR

algorithm. We then parallelize across dot products to run on a parameterized number of processing

elements. In a processing element, pipelined arithmetic units stream data between memories. Linear

interconnect then communicates data between processing elements, six of which are on each FPGA.

2.1 Sparse Matrix Representation and Sequential Algorithm

One of the simplest and most efficient sparse matrix representations is Compressed Sparse Row

(CSR), as shown in Figure 2.2. Using CSR, the matrix A is represented as three arrays: row start,

matrix value, column index. A is square with dimension n× n and has m non-zero entries.

• matrix value of length m stores the non-zero values in row major order (non-zeros in row 0

ordered by their column index, then non-zeros in row 1 ordered by their column index, ...).

• column index of length m stores the column indices of non-zeros also in row major order.

• row start of length n + 1 stores each row’s starting index into matrix value and column index.

If j<(row start[i+1]-row start[i]) then

A[i][column index[row start[i]+j]]=matrix value[row start[i]+j]

CSR(row start, matrix value, column index, b, x)
for (int row=0;row<n;row++)
accum=0
for (int i=row start[row]; i<row start[row+1]; i++)

accum=accum+matrix value[i]*b[column index[i]]
x[row]=accum

Figure 2.1: Compressed Sparse Row SMVM Algorithm

6



vector

matrix = {row_start, matrix_value, 

column_index}
matrix

row_start

matrix_value

column_index

Figure 2.2: Compressed Sparse Row Representation of Example Matrix

The sequential CSR algorithm computes x = Ab by performing a dot product on each row. If

Ai is the ith row, then xi = Aib, where the dot product between vectors a and b is defined as

atb =
∑

i aibi. It performs dot products from top to bottom (See Figure 2.1).

2.2 Architecture

Our implementation parallelizes CSR SMVM by partitioning the set of n dots products across

multiple Processing Elements (PEs). The entire computation is the set of dot products between

the vector and the matrix rows. We assign the dot products, Aib, to PEs, so they can compute

in parallel (Section 2.4). During the compute stage, each dot product results in a vector entry, xi.

Since we are iterating matrix multiply, we must send the resulting entries to the PEs that will use

them for the next iteration, setting b
(t+1)
i := x

(t)
i . This is performed by a communication stage

(Section 2.2.2).

2.2.1 Compute

During the compute stage each PE accumulates dot products on its rows of A and the vector

b to produce the vector x. The PE that is assigned dot product Aib stores the row Ai in its

compute mem and puts the resulting dot product xi = Aib into its dest mem. Each PE stores the

entries of b that are used by its dot products in its source mem. Each element of b may be used by

multiple PEs so the local source mems redundantly store entries of b.

The PE datapath (Figure 2.3) performs its accumulation with a floating-point multiply-accumulate

(MAC). Values from source mem and compute mem stream through the MAC and into dest mem.

compute mem also provides indices into source mem and control to initialize accumulations and store

accumulations into dest mem. compute mem increments through addresses to provide the same se-

quence of instructions on each compute stage execution. compute mem acts as a queue which is full

at the beginning of each iteration and is popped on each cycle. For the compute stage, we can think

7



of dest mem as a queue which is initialized to empty and is pushed each time a new entry of x is

ready. Each compute mem word is an instruction: {end dot, matrix value, source address}.

• matrix value is the entry value.

• source address is the address into source mem which is multiplied by matrix value. Relating

to CSR, source address takes the place of column index. Instead of multiplying:

matrix value[i]*b[column index[i]]

we multiply:

matrix value[i]*source mem[source address[i]]

• end dot instructs an accumulation to end by pushing its output into dest mem and reinitializing

the MAC to zero.

Figure 2.4 shows pseudocode for the version of the CSR algorithm performed by each PE.

To exploit the full computational throughput of the FPGAs, we want to pipeline the dot-product

accumulation as heavily as possible, maximizing clock frequency. Since one accumulation input

depends on the result of previous MAC operations, the latency of the addition stage prevents us

from pipelining a single dot product at the full throughput which the FPGA can offer. However,

we are computing multiple dot products on each PE, and these dot products may be computed

in parallel. Consequently, we can interleave the independent dot products in C-slow fashion [9]

on a single floating-point MAC pipeline. The adder latency, Ladd, becomes the interleave factor,

C. Consequently, the data streams into the MAC must be interleaved in compute mem consistently

with the adder latency as shown in Figures 2.3 and 2.5. The following recursion computes the

accumulation of row i; accumt is computed on cycle t:

accum(ti+Ladd×j) = accum(ti+Ladd×(j−1)) +

(matrix value[row start[i]+j] × b[column index[row start[i]+j]])

and

accumti
= (matrix value[row start[i]] × b[column index[row start[i]]])

That is, the accumulation of row i begins on cycle ti and is interleaved with Ladd other accumulations.

Table 2.5 shows the succeeding memory states. We can think of the accumulations as occurring on

Ladd processors in parallel; we call each “processor” a MAC slot. We parameterize logic generation

and memory configuration (Section 2.3) around Lmult and Ladd.

2.2.2 Communicate

The communication stage sets b
(t+1)
i := x

(t)
i by copying the contents of each dest mem to source mems

on different PEs. The interconnect topology is a bidirectional ring as shown in Figure 2.6. One ring

sends messages to the right and the other sends messages left. Matrix locality and good partitioning

imply locality in inter-PE communication. Two ring directions allow local communications between

PEs to be short.
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Ladd = 2 in this example. The memory contents are the initial values to multiply the example matrix and
vector in Figure 2.2. X values are don’t cares which result when a matrix does not exactly fill a multiple of
Ladd MAC slots and at the end of the computation when we need to flush the adder pipeline. end dot values
are placed Ladd cycles after the accumulates they end.

Figure 2.3: PE Compute Datapath

The communication pattern is fixed for each multiply, so it can be statically scheduled. Switches

are controlled by their adjacent PEs (Figure 2.7). After a message is sent on a ring its receiving PEs

copy it off. Once the message has been received by all its destination PEs, it may be overwritten

by another message. A vector element with destinations both to the right and to the left generates

one message to send right and one message to send left. One advantage of static scheduling is that

one message may fan out to multiple PEs without a dynamically sized header. The bus data width

is the same as the compute datapath, so each message occupies one ring register at a time.

Like the compute stage, the communicate stage has an instruction memory, communicate mem,
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accum=0
row_idx=0
for i in [0,instr_len)
prod=source mem[source address[i]]

* matrix value[i]
if (end dot[i])
destination[row_idx]=accum
accum=prod
row_idx=row_idx+1

else
accum=accum+prod

Figure 2.4: PE Compute Code (Ladd = 1)

compute_mem:{end_dot;matrix_value;source_address}

F; 1.0; 0F; 3.0; 1F; 2.0; 1T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x

F; 3.0; 1F; 2.0; 1T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x

F; 2.0; 1T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x

T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x

T; x; xF; 5.0; 2F; x; xT; x; x

F; 5.0; 2F; x; xT; x; x

F; x; xT; x; x

T; x; x

0.00.0

0.01.0

1.06.0

6.05.0

5.04.0

x19.0

19.0x

xx

4.0x

6.0

6.05.0

6.05.019.0

6.05.0

6.05.0

add pipeline dest_mem

Figure 2.5: Trace of Compute Memory Values Starting at the Initial Values in Figure 2.3

which it cycles through once per communicate stage execution. communicate mem contains instruc-

tions of the form {dest address, left recv, right recv, left send, right send}. If the left

or right receive flag is valid, a message is received from the left-ring or right-ring respectively.

source mem acts as a queue and pushes received messages. If the left or right send flag is valid, a

message is sent on the left-ring or right-ring respectively. When sending, dest address addresses

the dest mem word to send. Figure 2.7 shows the communicate logic for one PE along with its

left-ring and right-ring switches.

The pipeline depth of interconnect between PEs is parameterized so it does not constrain the

maximum operating frequency. When message latency rather than ring throughput dominates the

number of cycles required for communication, the communication time is proportional to this pipeline

depth. On the other hand, when throughput dominates this pipeline depth makes little difference.

2.2.3 Controller Element

Taking the place of one PE is the Controller Element (CE) which is for performing the high level

control and memory loading and unloading. The CE has a state machine where each state corre-

sponds to a stage of PE behavior. To start each stage it issues instructions in the on the right-ring

direction. The stages are the compute stage, the communicate stage, and memory load and unload
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Figure 2.6: Bidirectional Ring
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stages. There is one memory load stage for each of the four types of PE memories. It loads data

from off-chip to the right-ring and unloads from the right-ring. The CE requires little area compared

to a PE since it is a simple state machine and has no floating point arithmetic in its datapath.

Stages are divided into two behavior types: sequential for memory load and unload, and parallel

for compute and communicate. During a sequential stage one PE is active at a time starting with

the PE to the right of the CE. An active PE activates its up neighbor when it finishes. Sequential

stages are useful for memory loading and unloading, where the off-chip data stream can only load

to or unload from one PE memory at a time. During a parallel stage the CE sends a start signal

up the ring which activates PEs as it passes them. Done signals are linearly AND reduced from the

PEs to the CE: Once a PE is finished and it has received a done signal from the previous PE it

sends done to the next PE. Five extra bits on the right-ring distribute the reset signal and control
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Figure 2.8: Matrix Map Stages

when PEs start and finish. For stage start instructions the other 64 bits of the right-ring specify

which stage to start: Compute, communicate or which memory to load or unload is specified which

sets the PE data path until the next instruction arrives.

2.3 Design Parameterization

To make this solution general and scalable, we parameterize the logic generation, assembly, and

tools. This allows us to quickly assimilate better floating-point cores, new technologies which may

have different levels of pipelining, and various FPGA capacities. Key parameters include:

• Ladd – adder pipeline depth

• Lmult – multiplier pipeline depth

• Lringstage – ring stage pipeline depth; this can be tuned so that interconnect latency does not

limit the clock cycle and to tolerate pipelining between chips.

• NPEs – number of processing elements.

• NFPGAs – number of FPGAs.

• W – datapath width; this allows support for single-, double-, and custom-precision floating-point

units.

• Mdepth[mem] – memory depth of memory mem per PE; mem ∈ {compute mem, communicate mem,

source mem, dest mem}. This is tuned along with the parallelism. Highly parallel designs have

shallow memories, while more sequential designs require deeper memories per PE (See Table 2.1).

Logic is generated using a flexible generator built in JHDL[3].

2.4 Matrix Mapping

To map a matrix to this architecture, we must schedule the communication and computation of the

input matrix and produce memory configurations to load onto logic. The scheduling will depend on

the logic parameters (Ladd, Lmult, Lringstage) and the total number of processors, NPEs. Figure 2.8

shows the operations performed for mapping.
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Matrix partitioning assigns dot products, or equivalently, vector entries, to PEs. A good par-

titioner will load balance to minimize computation latency while minimizing the inter-PE commu-

nication. compute mem size will set a limit to the volume of work assigned to any single PE. To

minimize communication, dot products should be placed to minimize the number of dot products in

other PEs that use their result, effectively minimizing the number of messages that need to be sent

and the size of the source mems’. We use UMpack’s multi-level partitioner, UCLA MLPart4.21.1, on

a Linux platform [4].

Partitions are then placed on PEs to minimize the sum of message distances. Graphs with

locality tend to have locality on their partition level as well, so placement of partitions on PEs is

important. UMpack’s partitioner computes binary partitions, so we apply it recursively to compute

an arbitrary number of partitions. The resulting binary tree of partitions is then flattened for a

linear placement. Subsection 3.1.4 shows that this placement of partitions asymptotically minimizes

the sum of message distances.

After placement, the computation scheduler load balances dot products assigned to a PE across

the Ladd MAC slots. Since compute mem depths are bounded by compute stage latency, a poor quality

schedule causes both high computation time and requires large memories. The simple strategy used

is to order each accumulate by its length. Accumulates are then greedily scheduled from largest to

smallest. The schedules resulting from this heuristic are never longer than the optimal schedule plus

the length of the longest dot product [6, 7].

After placement, we also need to schedule communications. The quality of this schedule affects

the communicate stage latency which is limited by communicate mem size. dest mem words are sent

to source mems. Each word that is used outside its PE must be sent to a set of sink PEs. Since one

message may fanout to multiple PEs and PEs are placed for locality, typically each word is sent by

one short left message and one short right message. For a given word, the set of PEs that receive

it from the left message and the set that receive it from the right are chosen to minimize the sum

of message latencies. Our message scheduling algorithm is described by Figure 2.9. It schedules

messages greedily with priority to the longest.

The message scheduler shown in Figure 2.9 uses the following predicates and operations:

• unscheduled() is true iff there exist unscheduled messages.

• unsent(PE) is the set of unscheduled messages to be sent from PE, ordered from longest to shortest.

• ring free(m,c) is true iff message m’s ring is unused on cycle c.

• destinations free(m,c) is true iff when message m is sent on cycle c all its destination PEs

don’t yet input on m’s arriving cycle.

• send(PE,m,c) schedules message m to be sent on cycle c.
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cycle=0
while unscheduled()

for each PE in PEs
for each message in unsent(PE)

if (ring free(message,cycle) and
destinations free(message,cycle))

send(PE,message,cycle)
cycle=cycle+1

Figure 2.9: Bidirectional Ring Message Scheduler.

Memory Width Depth BlockRAMs
compute mem 75 (78) 3584 (3584) 15 (15)

communicate mem 14 (14) 5120 (9216) 5 (9)
dest mem 64 (64) 512 (512) 2 (2)
source mem 64 (64) 512 (2560) 2 (10)

Total 24 (36)

Table 2.1: Per PE Memory Shapes for 6 PEs (4 PEs) per FPGA

2.5 Concrete Design

The design is implemented on the VirtexII-6000-4. Since the computation and communication

schedules are static given the matrix, we know how many cycles a matrix multiply takes.

Since standard benchmarks are in terms of double precision Mflops, we use double precision

arithmetic units. We modified our FPUs from parameterized precision VHDL cores from Northeast-

ern University by increasing pipeline depths [2]. The resulting pipeline depths for the adder and

multiplier are 13 and 26 respectively. The overall clock frequency is 140MHz, which is limited by

the multiplier frequency.

To operate at 140MHz the ring pipeline depth per PE, Lringstage, is 5. So Lring = 5NPEs.

The floor-planned adder and multiplier occupy 790 and 3276 slices respectively. The total num-

ber of slices for the VirtexII-6000 is 33792, which allows a maximum of 8 PEs/FPGA. The peak

performance is then 2×8×140MHz = 2240 Mflops/FPGA. Including other logic (e.g. control logic,

addressing, interconnect) and 1 limits us to 6 PEs/FPGA arranged as two columns of three PEs.

This gives us a maximum performance of 3/4 peak. The CE takes the place of one PE on one FPGA.

Due to deep pipelining, logic, including the FPUs, uses more registers than LUTs. Since VirtexIIs

have one register per LUT, registers are the critical resource.

Memory depths, Mdepth[mem], and Npes must be large enough to fit the input matrix. Keeping

NFPGAs constant, and decreasing Npes while increasing Mdepth[mem] tends to allow larger matrices

for two reasons: Data can be more balanced in larger memories since the BlockRAM depth is finer

grain relative to Mdepth[mem]. Smaller Npes decreases Lcommunicate which decreases the upper

bound on total communicate mem words: Npes × Lcommunicate. We map to 4 PEs/FPGA as well as
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6 PEs/FGPA to allow larger matrices to fit. Table 2.1 shows memory sizes per PE which fit 6 PEs

(4 PEs) per FPGA.

All logic except for the FPUs was generated using JHDL 0.3.34. FPUs were synthesized with

Synplicity Synplify Pro 7.5. Logic was mapped, placed, and routed with Xilinx ISE 6.1.
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Chapter 3

Evaluation

This chapter evaluates the performance of and sources of inefficiency in our implementation on the 35

benchmark matrices in Table 3.2 taken from the Matrix Market Suite [1]. Matrices range from 17,000

non-zeros to 2,000,000 non-zeros, with dimension from 300 to 100,000. Parallel SMVM algorithms

cannot maintain constant efficiency or constant Mflops/processor as the number of processors is

increased beyond a small number. This chapter reports the efficiency of scaling our design in

Section 3.1 and Section 3.4. We evaluate performance in terms of Mflops/FPGA for one FPGA and

many FPGAs, which we compare to single and parallel microprocessor performances in Section 3.4.

Section 3.1 asymptotically evaluates our design’s maximum efficient scaling. It uses a constant

Rent parameter to model matrix locality. The section shows asymptotic improvement in scaling

when matrix locality is used for data placement. Section 3.2 defines metrics we use to analyze types

of inefficiency in our approach and to find their sources. Section 3.3 discusses memory size impact on

efficiency, required number of FPGAs, and maximum matrix size. Section 3.4 reports performances

and efficiencies for the benchmark matrices. Section 3.5 shows what happens in terms of Lcommunicate

when the interconnect topology is changed to a two-dimensional mesh of PEs. Section 3.7 compares

SMVM performance to Conjugate Gradient performance.

3.1 Communication Models

In this section we study how communication bandwidth constraints affect asymptotic scalability.

We evaluate how much matrix locality increases scalability by using it to place data on PEs. Our

notion of scalability is the number of PEs usable with efficiency greater than a constant. We analyze

how the number of PEs, NPEs, scales with matrix dimension, n, for three different partitioning and

PE placement types:

• Random assignment of dot products to PEs.

• Partitioning dot products for locality into PEs, then placing PEs in a random order.

• Partitioning for locality, then placing PEs for locality.
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For matrices with locality, we show that each refinement improves asymptotic scaling of NPEs in

terms of n.

We use Lideal compute to model the compute stage latency, and Lcommunicate to model the com-

municate stage latency. We model of the fraction of total cycles spent in the compute stage as:

ECideal
=

Lideal compute

Lideal compute + Lcommunicate

Henceforth we use ECideal
≥ 1/2 as our target constant, which gives us Lideal compute ≥ Lcommunicate.

Recall the matrix dimension is n, and the number of non-zeros is m. k = m/n is the average

non-zeros per row. Lideal compute = kn/NPEs so for E ≥ 1/2 in the following analyses we will use:

Lcommunicate ≤ kn/NPEs (3.1)

Two lower bounds on the latency of the communicate stage are the maximum message latency,

Lring, and the cycles required if interconnect is fully utilized, Lthroughput:

Lcommunicate ≥ max(Lring, Lthroughput) (3.2)

If the maximum message latency constrains communication, then we say it is latency constrained,

otherwise it is throughput constrained. Since maximum message latency is linear in the number of

PEs, NPEs, we model:

Lring = Lringstage ×NPEs ∈ Θ(NPEs) (3.3)

Combining Equations 3.1, 3.2 and 3.3 we get the upper bound on NPEs due to ring latency:

NPEs ∈ O(n1/2) (3.4)

Interconnect is fully utilized if each switch routes a message on each cycle:

Wcomm =
∑

msg∈messages

Lmsg

Lmsg is the distance each message must travel. Wcomm is the useful work performed in communica-

tion. We say a switch performs one unit of work on each cycle it routes a message. Since there are

2NPEs switches:

Lthroughput = Wcomm/(2NPEs)

Hence:

Lcommunicate ≥ Wcomm/(2NPEs) (3.5)
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Figure 3.1: I/O Scaling for Benchmark Matrices

In this section’s model of perfectly balanced communication, it is throughput constrained if and only

if:

Wcomm/(2NPEs) ≥ Lringstage ×NPEs (3.6)

3.1.1 Random Partitioning

First we find the scaling effect of a partitioning that load balances dot products with no regard

to matrix locality. Most vector entries are used by multiple dot products, which are distributed

in random PEs. So most entries are sent as either one or two messages which are received by

all destination PEs. The length of the ring is Lringstage × NPEs, so the work per vector entry is

proportional to NPEs. Since assignment was random, communication is load balanced on switches.

Hence Wcompute = n×NPEs. From Inequality 3.6, communication is throughput constrained:

Lcommunicate = Wcomm/(2NPEs) ∝ n

Using Eq. 3.1, we find:

NPEs ∈ O(1)

This means we can only use NPEs constant in n or communication will dominate. Therefore in-

creasing the matrix dimension while keeping non-zeros per row fixed does not allow us to scale to

more processors.

3.1.2 Matrix Model

In order to analyze the effect of good partitioning, we need a model of matrix locality. We first

represent the matrix communication structure as a graph. Each dot product is a node. It fans out
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to each dot product that uses its result. Consequently each node has an input for each non-zero

matrix entry. We use the common Rent Parameter model, where the graph is fitted to the two

parameters c, p [8]. The Rent Parameter is defined for a graph when there is a power law relating

the size of each local cluster with the IO of the cluster. If the number of nodes per cluster is r, then

the number of inputs to each cluster is:

inputs(r) = c(r)p (3.7)

A graph with p = 1 has little locality if any: a constant fraction of nodes in a partition output to

another partition. A 3D problem has p = 2/3, a 2D problem has p = 1/2, and a 1D problem has

p = 0. Circuit graphs often have p = 2/3.

Partitioning well with different size partitions can be used to fit to Equation 3.7. Figure 3.1 shows

the average number of inputs per partition for our benchmark matrices. This uses the multilevel

partitioner we used for matrix mapping (Section 2.4). Figure 3.1 plots Eq. 3.7 on a log-log scale.

Relating x and y gives y = log(c)+px. So p for a matrix is the slope of inputs(r) vs r on the log-log

scale plot. Many matrices have a flat slope for two orders of magnitude and hence a well defined

p. Others have negative curvature, which means larger partitions have smaller p. The average p for

most matrices ranges from 0 to 0.6 (See Table 3.2). In either case, when p < 1 there is locality to

be exploited by a partitioner and placer.

3.1.3 Partitioning for Locality and Placing Randomly

Next we find the scaling effect of a partitioning that load balances and minimizes communication

between partitions. Each partition is then assigned to a random PE. Communication will be load

balanced since placement is random. Here, message sends per PE is Θ((n/NPEs)p). Work per

message is still NPEs, so work per PE is Θ(NPEs × (n/NPEs)p). Since there are NPEs PEs:

Wcomm ∈ Θ(N2
PEs × (n/NPEs)p) (3.8)

From Inequality 3.6, communication is throughput constrained. From Inequalities 3.1 and 3.5:

kn/NPEs ≥ Wcomm/(2NPEs) (3.9)

Next use Relations 3.8 and 3.9 to solve for NPEs:

NPEs ∈ O(n(1−p)/(2−p))

For example, for p = 2/3, NPEs ∈ O(n1/4), and for p = 1/2, NPEs ∈ O(n1/3).
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Section partition place NPEs(n, p) p = 0 p = 1/2 p = 2/3 p = 1
3.1.1 random random O(1) O(1) O(1) O(1) O(1)
3.1.3 good random O(n(1−p)/(2−p)) O(n1/2) O(n1/3) O(n1/4) O(1)
3.1.4 good good O(min(n1/2, n1−p)) O(n1/2) O(n1/2) O(n1/3) O(1)

Table 3.1: PE Scaling on Ring: Number of PEs which can be supported with bounded efficiency

3.1.4 Partitioning and Placement for Locality

Scaling can be further improved by placing partitions on PEs for locality. We construct a hierar-

chical, binary tree of partitions, where each pair of siblings partitions its parent. On level k, each

partition is of size n/2k. When placing we flatten the tree to a line so each pair of sibling partitions

on each level are adjacent. Then all k level siblings can communicate in parallel. This load balances

communication. Sends per k-level partition is Θ((n/2k)p). So Lk ∝ (n/2k)p is the time to commu-

nicate between two k-level siblings. Lthroughput = Wcomm/(2NPEs) is the communication latency

due to throughput. Communicating on each level separately, we get

Lthroughput ∝
log(NP Es)∑

k=0

Lk (3.10)

∝
log(NP Es)∑

k=0

(n/2k)p (3.11)

= np ×
log(NP Es)∑

k=0

(1/2k)p (3.12)

∝ np (3.13)

We get Eq. 3.13 from Eq. 3.12 using:

1 ≤
log(NP Es)∑

k=0

(1/2k)p <

log(NP Es)∑
k=0

1/2k < 2

Using Eq. 3.1 we get:

NPEs ∈ O(n1−p) (3.14)

Considering both throughput and latency constraints, we combine Eq. 3.14 and 3.4 to get:

NPEs ∈ O(min(n1/2, n1−p)) (3.15)
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3.1.5 Comparison

Table 3.1 compares the three types of partitioning and placement. It shows that scalability is

constrained to O(n1/2), due to ring latency. Scaling is always limited to O(1) for random partitioning

or when p = 1.

3.2 Efficiency

This section analyzes the sources of inefficiency which contribute to the actual performance relative

to peak performance. Recall that for a given matrix, m is the number of non-zeros. Lideal compute =

m/NPEs is the ideal latency where all logic is devoted to floating-point units that are fully utilized

on each cycle. We decompose the actual latency of one iteration of SMVM into this ideal latency

and an efficiency factor, E, for the parallel computation:

L = Lideal compute/E (3.16)

We decompose efficiency into four main components:

E = EA × EB × EC × EL (3.17)

Efficiencies are:

• EA – MAC slot utilization

• EB – Partition balance efficiency

• EC – Communication efficiency

• EL – Logic utilization

Figure 3.6 and Section 3.4 assess the magnitude of EA, EB , EC and EL.

During the computation stage, it may not be possible to schedule every PE so that it issues a

MAC operation on every cycle. MAC slot utilization efficiency, EA, measures the extent to which

dot products assigned to a PE utilize its Ladd MAC slots. If there are fewer dot products assigned

to the PE than MAC slots, then parallelism due to pipelining cannot be fully exploited. Also, due

to non-uniform dot product lengths, slots cannot be fed near the end of the computation. EA is the

number of cycles which use a MAC slot on the PE with maximum compute stage latency divided

by the compute stage latency. EA is correlated with m and negatively correlated with Ladd and k.

Section 3.4.3 reports how EA scales with Ladd.

The partitioner should try to balance the computation load between PEs. EB measures how

evenly computation work is assigned to PEs. We define EB as the average number of non-zeros per

PE divided by the non-zeros allocated to the PE with maximum latency. The partitioner trades
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off between minimizing EB and minimizing communication. Lmax row is the size of the largest row.

Since we assign rows atomically to PEs, if Lmax row is larger than the average non-zeros per PE

then work cannot be evenly distributed.

Since computation and communication are separated into two, non-overlapped, stages, all cycles

spent communicating contribute to overhead:

L = Lcompute + Lcommunicate (3.18)

We then define EC :

EC = Lcompute/L (3.19)

Section 3.1 modeled EA = EB = EL = 1 and EC as ECideal
. Recall from Equation 3.2 that our

model of Lcommunicate is based on the both the throughput and latency of the ring:

Lcommunicate ≥ max(Lring, Lthroughput)

Since we must allocate some control logic, we cannot fill each FPGA with floating-point units.

Further, the optimal number of PEs per FPGA may be less than maximum if large NPEs causes

communication to dominate computation. EL measures the impact of these limitations. EL is the

ratio of the area of one double-precision multiply and one double-precision add to the actual PE

area used. For our design, we choose between EL = 3/4 and EL = 1/2 (See Section 2.5).

3.3 Memory Sizes

Since our design uses BlockRAM memory only, larger matrices will require more FPGAs. However,

as Table 3.1 and Section 3.1 show, there is a limit to the number of PEs, and hence FPGAs, we

can effectively use before communication dominates computation (i.e. EC begins to diminish with

NPEs). Each matrix has a feasible set of NPEs and equivalently NFPGAs. The feasible set is

bounded below by memory capacity requirements. It is strictly bounded above by the point at

which mapping to more PEs increases total latency, L. The feasible set is empty when a matrix

is too large to be mapped to any number of FPGAs. This is the case because increasing NFPGAs

to gain more memory increases NPEs, increasing Lcommunicate. Since Lcommunicate is the length of

communicate mem, the total memory requirement also increases.

Combining the scaling of memory and communication requirements, we can derive a range of fea-

sible matrix sizes for any constant efficiency, E. For constant EC , we will spend, at most, a constant

fraction of our cycles communicating; this means the communication memory (communicate mem)

will be at most linear in the size of the computation memory (compute mem). Each source and dest
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Figure 3.2: Bounded efficiency regions for n and NPEs with constant memory per PE.

entry is used at least once so:

depth(source mem) ≤ depth(compute mem)

depth(dest mem) ≤ depth(compute mem)

Together, this means the sum of the depth of all memory components (compute mem, communicate mem,

source mem, and dest mem) is proportional to the compute memory depth (depth(compute mem)).

Therefore, to bound EL to a constant, the memory per PE must be constant and hence depth(compute mem)

must be a constant. Assuming EA and EB are constant, PE memory will be fully utilized. This

means:

depth(compute mem) ∝ m/NPEs ∝ n/NPEs

This gives us the memory constraint:

NPEs ∈ Ω(n) (3.20)

From Section 3.1 constant efficiency requires:

NPEs ∈ O
(
min

(
n1/2, n1−p

))
(3.21)

Together this means NPEs must be within the region bounded below by the memory constraint

(Eq. 3.20) and bounded above by the communication efficiency requirement (Eq. 3.21) as shown in

Figure 3.2.

Figure 3.3 relates NPEs, E, and m for benchmark matrices. It plots one point for the minimum

possible NPEs in each of the three efficiency regions, partitioned by E = 1/2, 1/4, and 1/8. The
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Figure 3.3: Three efficiency regions are shown. For each efficiency region, each matrix is plotted at
the point at which it has the greatest efficiency.

graph shows the feasible set of NPEs for each benchmark matrix. Each matrixes points are vertically

aligned since the horizontal axis is m. The feasible region narrows as m increases until it ends at

m = 2, 000, 000. The region that satisfies E > 1/2 narrows until it ends before m = 1, 000, 000.

This shows that our use of on-chip memory only means we cannot efficiently support matrices with

m > 1, 000, 000.

3.4 Results

SMVM performance is highly dependent on the matrix. For benchmarking, we used 35 matrices

from the Matrix Market Suite [1] in Table 3.2. Although median performance tends to be close to

maximum performance, performance of different matrices on the same number of processors varies

by as much as a factor of four. Table 3.2 lists the matrices and their application areas. Matrix sizes

range from 17,000 non-zeros to 2,000,000 non-zeros, with dimension from 300 to 100,000. We also

chose matrices to cover a wide range of sizes and applications.

3.4.1 Single Processor Comparison

Table 3.3 compares the performance of our implementation on one VirtexII-6000 to the performance

of various microprocessors. The single microprocessor information is performance reported for the

SPARSITY sparse matrix pack [13]. Our performance for a single FPGA is the median of our

benchmark matrices that fit on a single FPGA.

The Power 4 has the greatest peak performance of the microprocessors summarized here and was

released the same year as the VirtexII-6000. The Itanium 2 performs relatively well, delimiting the

highest net performance of the microprocessors considered, because it has a large cache and high
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Matrix Application n m p

af23560 Aeronautics 23560 460598 0.2
bcsstk11 Finite Element 1473 17857 0.1
bcsstk18 Finite Element 11948 80519 0.3
bcsstk24 Finite Element 3562 81736 0.2
bcsstk25 Finite Element 15439 133840 0.1
bcsstk28 Finite Element 4410 111717 0.0
bcsstk30 Finite Element 28924 1036208 0.0
bcsstk31 Finite Element 35588 608502 0.1
bcsstk32 Finite Element 44609 1029655 0.1
bcsstm27 Finite Element 1224 28675 0.0
fidapm07 Finite Element 2065 45184 0.0
fidap009 Finite Element 3363 99397 0.0
fidap011 Finite Element 16614 1091362 0.0
fidap020 Finite Element 2203 67429 0.1
fidap035 Finite Element 19716 217972 0.0
fidapm07 Finite Element 2065 53533 0.3
fidapm37 Finite Element 9152 765944 0.0
dwt 2680 Finite Element 2680 25026 0.1
plat1919 Fluid Dynamics 1919 17159 0.2
lnsp3937 Fluid Dynamics 3937 25407 0.2
cavity10 Fluid Dynamics 2597 76171 0.2

conf6.0-0014x4- Quantum 3072 119808 0.4
3000 Chromodynamics

gemat11 Power Grid 4929 33108 0.5
add20 Digital Logic 2395 17319 0.3

memplus Digital Logic 17758 99147 0.6
mhd3200b Magneto- 3200 18316 0.0

hydrodynamics
mhd3200a Magneto- 3200 68026 0.0

hydrodynamics
mhd4800b Magneto- 4800 27520 0.0

hydrodynamics
mhd4800a Magneto- 4800 102252 0.0

hydrodynamics
qc324 Molecular 324 26730 0.1
qc2534 Molecular 2534 463360 0.2

s3dkt3m2 Finite Element 90449 1888336 0.2
s3rmt3m3 Finite Element 5357 106240 0.2
utm5940 Nuclear 5940 83842 0.2
rdb3200l Chemistry 3200 18880 0.2

Table 3.2: Matrix Market Benchmark Matrices (p denotes average rent parameter)

memory bandwidth [13].

3.4.2 Parallel Processor Comparison

Table 3.4 shows that our implementation scales well to multiple processors. The microprocessor-

based implementations may be affected by poor communication and partitioning as discussed in

Section 3.1. Further, the multiple processor versions may pay operating systems overhead for com-

munication. Single processor SMVM implementations tend to be more highly tuned to use available

memory bandwidth than parallel implementations. We compare our iterative SMVM performance

to other parallel machines’ Conjugate Gradient(CG) performance; since CG is dominated by its

SMVM kernel, and its other operations have higher performance than SMVM (See Section 3.7),

the comparison favors the other machines. This shows a three times improvement over the best

microprocessor based competitor, 16 ItaniumIIs.
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Peak Mflops/ SMVM Mflops/ fraction
Processor Year MHz Processor Processor of peak Ref.
Pentium 4 2000 1500 3000 425 1/7 [14]
Power 4 2001 1300 5200 805 1/6 [14]

Sun Ultra 3 2002 900 1800 108 1/16 [14]
Itanium 2001 800 3200 345 1/10 [14]

Itanium 2 2002 900 3600 1200 1/3 [14]
VirtexII-6000-4 2001 140 2240 1500 2/3

Table 3.3: Single processor performances of SMVM.

Peak SMVM Fraction of
Mflops/ Mflops/ Fraction Single Proc

Architecture Processors Year MHz Proc Proc of Peak Perf Ref.
NEC SX-6 8 x NEC SX-6 2002 500 8000 *131 1/60 [11]

Altix 16 x Itanium II 2002 1500 6000 *263 1/23 1/4 [5]
Cray X1 16 x MSP 2002 800 12800 *170 1/75 [5]

SP4 16 x Power4 2001 1300 5200 *250 1/20 1/3 [5]
This Work 16 x VirtexII-6000s 2001 140 2240 750 1/3 1/2

* denotes NAS CG performance

Table 3.4: Parallel processor performances of SMVM

We use Mflops/FPGA as our baseline performance metric for scaling. Figure 3.4 shows how

performance scales with the number of VirtexIIs. Taking the median performances, 16 FPGAs

deliver 1/3 peak. We get 1/7 peak at 128 FPGAs. The best parallel microprocessor architecture in

Table 3.4 drops to 1/20 peak by 16 processors.

3.4.3 MAC Slot Scheduling

The MAC slot utilization component of E, EA, is low if MAC slots are poorly utilized. Figure 3.5

shows how increasing Ladd decreases EA. At this point (Ladd = 13), we are able to fill over 80% of

our MAC slots, giving EA = 0.80.

3.4.4 Analysis of Inefficiencies

The largest factor contributing to scaling inefficiency is the large ring interconnect latency, Lring.

We use Figures 3.6 and 3.7 to analyze sources of inefficiency.

Figure 3.6 shows EC is the major component of diminishing efficiency as NPEs increases. The

two main latencies contributing to Lcommunicate are Lring and Lthroughput. Figure 3.7 shows that at

1024 PEs Lring dominates: Lring = (2/3)Lcommunicate and Lthroughput = (1/10)Lcommunicate.

The second worst scaling efficiency is EA. EA decreases when there are too few dot products to

be evenly distributed between MAC slots.

EB is also significant. Large rows sometimes make it impossible to load balance. The heuristic

26



 100

 1000

 1  10  100

M
flo

ps
/F

P
G

A

FPGAs

Max Mflops/FPGA
Median Mflops/FPGA

Min Mflops/FPGA

Figure 3.4: Mflops scaling of benchmark matrices in their feasible regions
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Figure 3.5: Median MAC slot efficiency, EA, as a function of Ladd for 16 FPGAs

partitioning algorithm could also contribute to low EB , as well as the common trade-off between

partition cut-size and partition load balance.

Constant EL shows that we obtain our best performance using 6 PEs per FPGA, rather than 4,

up to 95 FPGAs.

Scaling further requires decreasing communication overhead. The primary dominator of commu-

nication overhead is message latency rather than interconnect bandwidth. So message latency can

be improved cheaply without improving throughput by switching to tree structured interconnect.

Section 3.5 shows the latency improvement due to switching to mesh interconnect, which benefits

scaling by both decreasing message latency and increasing interconnect bandwidth.
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Figure 3.7: Matrix fidapm37 Cycle Breakdown: fidapm37 has n = 9152, m = 765944.

3.5 Mesh Latency

Communication latency can be decreased using lower latency, higher bandwidth interconnect. This

increases scaling efficiency primarily by decreasing communication overhead and also by decreasing

communication memory requirements, allowing fewer PEs. Decreased communication memory also

allows matrices with larger m. From Subsection 3.4.4, we see the key scaling limitation in this

architecture is, not surprisingly, communication latency on the ring. We can easily decrease the

worst-case communication latency from the current 5NPEs to O(
√

NPEs) or even O( 3
√

NPEs) by

moving to two- or three-dimensional interconnect structures.

This section evaluates how well two dimensional mesh interconnect improves Lcommunicate. Max-

imum message latency for a 2D mesh is 5
√

NPEs, compared to 5NPEs for the bidirectional ring.

Bisection bandwidth is also improved to 2
√

NPEs from 4, where bisection bandwidth is the number
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PE PE PE

PE PE PE

Figure 3.8: Topology of the two dimensional mesh. The two messages shown in gray transmit a
vector entry which is used by three PEs other than its source.

Figure 3.9: Switches for routing. Context memory for switches is not shown.

of lines between two halves of the ring or mesh. Figure 3.8 shows the mesh topology, and Figure 3.9

shows the mesh logic.

Our approach to mesh routing is similar to our approach to bidirectional ring routing:

• Static schedule given matrix

• Each PE has Lcommunicate depth communicate mem for switch instructions.

• Each communicated vector entry is sent as multiple messages, each of which are received by at

least one PE.

• Algorithm schedules messages greedily with priority to the longest.

For each vector entry, for each mesh row, one message may be sent in the positive horizontal direction

and one in the negative direction, as shown in Figure 3.8. The topology is square, not toroidal like
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Figure 3.10: 2D mesh vs. bidirectional ring communication latency for the finite element matrix
fidapm37. n = 9152 and m = 765944.
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Figure 3.11: 2D mesh vs. bidirectional ring communication latency for the QCD matrix conf6.0-
00l4x4-3000. n = 3072 and m = 119808.

the bidirectional ring.

Figures 3.10 and 3.11 compare mesh scaling with bidirectional ring scaling for two typical example

matrices. Lcomm2d is the communication latency for mesh interconnect. Figure 3.10 shows that

Lcomm2d < Lcompute for the finite element matrix. So for this case, mesh interconnect is adequate

for any number of PEs. On the other hand, for the smaller QCD matrix, Figure 3.11 shows that

if NPEs > 128 then Lcomm2d > Lcompute. When NPEs = 256 or NFPGAs = 43 communication

overhead causes a performance decrease by 3/4.

Since mesh latency can still limit scaling we use Figures 3.12 and 3.13 to understand which

factors dominate Lcomm2d. Latencies lower bounding Lcomm2d are:

• Lrecv is the maximum number of messages input by any PE.

• Lthroughput2d is the maximum number of messages routed by any switch.
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Figure 3.12: Factors contributing to 2D mesh latency for the finite element matrix fidapm37. n =
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Figure 3.13: Factors contributing to 2D mesh latency for the QCD matrix conf6.0-00l4x4-3000.
n = 3072 and m = 119808.

• Lmessage2d is the maximum message latency.

Contrary to the bidirectional ring, Lmessage2d is not significant, so mesh communication is dominated

by throughput constraints rather than message latency constraints. Each PE can only input one

message per cycle, which is a bottleneck before NPEs grows large. For larger NPEs, the throughput

bottleneck is in the interconnect. The reason for this is that total source mem write throughput

for all PEs scales as Θ(NPEs), while total bisection bandwidth scales as Θ(
√

NPEs). In both

cases Lrecv < Lcompute means the source mem write bottleneck is never the main scaling limiter.

Figure 3.13 shows that interconnect throughput limitations do impede scaling at NPEs > 128 for

the QCD matrix.

For the finite element matrix, Lthroughput2d ≈ Lcomm2d shows that the greedy routing algorithm

performs very close to an optimal router. For the QCD matrix, the small divergence between
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Matrix Map Stage Seconds
Matrix Partition 70.5

Schedule Communication 30.0
Schedule Computation 8.6
Assemble Memories 1.9

n = 9152 SMVM iterations 1.0

Table 3.5: Compute Times for Matrix Map Components for matrix fidapm37 on 16 FPGAs

Lthroughput2d and Lcomm2d could be due to message latency or non-optimality of our router.

Since we have not coded mesh interconnect logic, we estimate its impact on area to be at most

30%. Per PE the mesh doubles the number of buffered wires. It increases the number of switches

from two to four and doubles inputs for two switches from two to four, which triples the number of

LUTs required. The width of communicate mem increases from five bits to eleven bits. So mesh LUT

requirements should double or triple bidirectional ring LUT requirements. For the bidirectional ring,

control and interconnect logic require 704 slices out of 4065 slices. The rest of the area is occupied

by the area dominant FPUs. So LUTs per PE could increase from 4769 by 3× 704 to 6177, which

is a 30% increase.

3.6 Matrix Mapping Overhead

The software step of mapping a matrix to FPGA memories is on the order of minutes, which is large

compared to one SMVM iteration. The number of iterations performed by numerical routines that

use SMVM is often less than n. Table 3.5 compares the time taken by Matrix Map stages in software

to the time to perform n SMVM iterations. In this example, mapping time requires 106 the time

of a single iteration. Without improving mapping time, our design is limited to applications which

use a fixed matrix structure and run for much longer than a few minutes (e.g. Spice Simulations).

Each timestep of a Spice simulation performs a non-linear solve, which is commonly implemented

with a sequence of linear solves, each of which can use the Gauss Jacobi solver, which iterates over

SMVM. Although nonlinear solvers change matrix entry values, they don’t change the structure of

the matrix. Since the scheduling algorithm operates on matrix structure, it need only compute the

map from matrix entries to compute mem addresses once.

3.7 Scaling and Computational Requirements

Conjugate Gradient (CG) is part of the common NAS benchmark suite and its performance is more

often reported than SMVM. As mentioned above, CG computation and communication are domi-

nated by the SMVM kernel and the other operations have little impact on performance. We evaluate
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CG performance for an extension of our architecture that supports vector parallel operations: this

extension incurs, at most, 20% more cycles for a 16 FPGA design.

Per iteration, CG consists of 1 SMVM, 2 vector dot products, 3 vector-add scalar multiplies,

and 2 scalar divisions. Vector-add scalar multiply performs ax + y on vectors x and y, and scalar a.

The two scalar divisions each require Ldivide cycles. Divider latency is typically on the order of tens

of cycles, so we conservatively assume Ldivide = 100. A vector-add scalar multiply consists of one

scalar broadcast, n adds and n multiplies. A vector dot product consists of an addition reduce and

n adds and n multiplies. Adds and multiplies can be pipelined as in SMVM for n/NPEs compute

cycles. Each CG operation can immediately follow the previous leaving one Lring latency:

Lreduce = Ladd × n/NPEs + Lring (3.22)

Lextra = Lring + Lreduce + 4× n/NPEs (3.23)

+ 2× Ldivide

We are interested in comparing the performance of 16 processor machines. Since there are at most

6 PEs per FPGA, the point on Figure 3.7 where NPEs = 100 gives us at least 16 FPGAs. Here

L ≈ 15000 and Lring ≈ 700. For the matrix fidapm37, n = 9152. Ladd = 13. Now Lreduce ≈ 1900,

so Lextra ≈ 3200 ≈ (1/5)L. Without considering performance benefit due to extra floating point

operations performed, this shows CG incurs a performance overhead of at most 20%.
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Chapter 4

Alternative Hardware Evaluation

Chapter 3 shows the SMVM performance achievable on parallel VirtexII-6000s. Here we evaluate

the benefit of choosing a more suitable balance of hardware resources for our application. Restricting

our design to exclusively use on-chip memory forces NFPGAs to be too large for many matrices for

efficient resource use. We explore the impact of devoting more chip area to memory to allow efficient

execution for large matrices. We keep our bidirectional ring architecture the same while changing

PE area and memory capacity. Since FPUs are used by many applications and occupy 88% of the

reconfigurable logic area in our design, we also evaluate the impact of including custom FPUs in the

reconfigurable fabric. Finally we estimate the performance if control logic area is also reduced.

The performance and minimum number of FPGAs for each architectures is shown for the three

representative matrices by Figures 4.1, 4.2, and 4.3. The architectures are labeled as:

• 2V6000-4: VirtexII-6000 with no modifications.

• SRAM: Increased SRAM to half logic area. See Section 4.3.

• DRAM: DRAM memory occupies half the logic area. See Section 4.4.

• DRAM custom FPU: DRAM memory with reconfigurable FPUs replaced by custom FPUs. See

Section 4.5.

• SRAM custom only: SRAM memory with custom FPUs and no area for control logic. See Sec-

tion 4.6.

Section 4.1 explains how we estimate the area cost of the reconfigurable logic we are replacing.

Section 4.2 summarizes the effect of the increase in memory capacities for the four alternatives.

Succeeding sections use these graphs to show the performance impact and decrease in required

NFPGAs for alternative architectures. Section 4.3 shows that sacrificing logic area for memory tends

to increase maximum performance for larger matrices, often by a significant amount. Section 4.4

shows that using DRAMs instead of large SRAMs doesn’t allow much performance increase for our

benchmark matrix sizes. Section 4.5 shows that replacing reconfigurable FPUs with custom FPUs

increases maximum performance about 5 times. Section 4.6 shows that setting PEs per FPGA to

105, the maximum allowed by custom FPU area, tends not to increase performance further and
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Figure 4.1: Performance scaling for the QCD matrix conf6.0-00l4x4-3000.
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Figure 4.2: Performance scaling for the finite element matrix fidapm37.

to sometimes decrease performance significantly. Section 4.7 shows that for up to 35 PEs/FPGA

performance is greater than half the peak performance of 14 Gflops/FPGA.

Table 4.2 shows the peak performances and median performances of each architecture over feasible

matrices for one FPGA and for 16 FPGAs. Although this provides a direct comparison when we

fix NFPGAs and choose matrices small enough to fit, it does not compare performances when we fix

the matrix and choose a feasible NFPGAs to maximize performance.

4.1 Area Estimation

In order to replace reconfigurable logic with extra memory and custom FPUs, we must estimate the

area used by the VirtexII-6000’s reconfigurable logic. By inspection, the die area of the VirtexII-6000

is approximately 20mm× 20mm. This area is used by IO pins, BlockRAMs, 18x18 multipliers, and
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Figure 4.3: Performance scaling for the NAS1 benchmark CG matrix.

CLBs. The reconfigurable logic consists of CLBs, which are LUT clusters, and occupies over half

of the 400mm2 chip area. Our conservative lower bound for the area used by reconfigurable logic is

then 200mm2. The feature size for logic is 0.12µm. We define the reconfigurable logic area in terms

of λ, half the feature size:

Areconfig ≥ 5.6× 1010λ2 (4.1)

Since there are 67584 LUTs, area per LUT is then:

ALUT ≥ 800Kλ2 (4.2)

Lower bounding ALUT makes our estimations of relative area sizes conservative in this chapter.

4.2 Large Memory Capacity

Low memory capacity means that many FPGAs are required for medium size matrices. For example

the 766,000 non-zero matrix fidapm37 requires more than 23 FPGAs. In the first place, a large

number of FPGAs is often not affordable. Further, performance efficiency decreases with the number

of FPGAs. Also, as mentioned in Section 3.3, many matrices don’t fit on any number of FPGAs

because increasing NPEs increases communicate mem depth. Fitting a larger matrix than those found

in the Matrix Market Suite is unlikely.

Assuming we avoid all disk access larger problems always require more hardware in the form of

more memory. When memory chips are separate from compute chips there is flexibility to choose a

suitable compute to logic ratio for the problem. When memory and compute are on the same chip,

the ratio may be balanced so not too much of either is wasted in any situation. We replace half of

the VirtexII-6000’s 5.6× 1010λ2 logic area with memory so the resources used by any application is
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Architecture # memory blocks Kbits/block Mbits Memory Density /
DRAM chip density

2V6000-4 144 18 2.5 1/314
SRAM (Section 4.3) 144 144 20 1/39
DRAM (Section 4.4) 6 31,304 183 1/4
DRAM custom FPU (Section 4.5) 38 3,143 117 1/7
SRAM custom only (Section 4.6) 210 98 20 1/39

Table 4.1: Memory statistics for architectures.

bounded by a factor of two more than the best choice for the application. This leaves us with 3 PEs

worth of double precision floating point logic instead of 6. To evaluate each architecture Table 4.1

shows:

• Memory density decrease compared to DRAM chip density with 169λ2/bit [15]

• Memory capacities (Sections 4.3 and 4.4)

The three example benchmark performance graphs (Figures 4.1, 4.2 and 4.3) show for each archi-

tecture:

• Minimum number of FPGAs for the three example benchmark matrices

• Performance scaling

4.3 SRAM Increase

The VirtexII-6000 has 144 dual ported 18Kbit SRAMs called BlockRAMs. Each BlockRAM occupies

the same area as a column of four CLBs. Since there are 8448 CLBs, the ratio of CLBs to BlockRAMs

is 58:1. Using half the logic area for memory, we multiply the BlockRAM size by 8 to get 144 144Kbit

BlockRAMs. This is a conservative estimate since larger memories have lower overhead per bit.

Figure 4.1 shows performance for a relatively small matrix. Increased SRAM capacity increases

the feasibility range, allowing one FPGA to be used. Since there are half as many PEs per FPGA,

the feasibility upper bound doubles. The maximum performance increases slightly and in the range

of 10 to 20 FPGAs it decreases slightly. The difference is much less than the change from 6 PEs per

FPGA to 3 PEs should indicate because the original feasibility range is outside of efficient scaling:

E is nearly divided by two and L decreases little when NPEs is doubled.

Figure 4.2 shows performance for a larger matrix. The VirtexII-6000 requires too many FPGAs to

be efficient, so increasing memory capacity allows maximum Mflops/FPGA over NFPGAs to increase

by a factor of four. The matrix in Figure 4.3 is too large to fit on any number of VirtexII-6000s.

Increasing SRAM allows it to fit on 20 FPGAs.
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4.4 DRAM substitution

Compared to SRAMs, large DRAMs have smaller area per bit and lower power consumption [15].

SRAMs are faster, and have lower area overhead per memory block. We evaluate the area impact

of using embedded DRAMs rather than SRAMs. The DRAMs can operate at a higher frequency

than the 140MHz imposed by our logic, so the speed difference is not a consideration. We use a

linear area model for embedded 256-bit word DRAMs from [15]. The overhead per DRAM block is

1.25mm2, and the area per Mbit is 0.6mm2. We then normalize in terms of the feature size, 0.13µm.

The large overhead per DRAM makes 144 blocks per processor infeasible. In order to min-

imize blocks per PE, we show how to convert our design to use two 256-bit DRAM blocks per

PE, or 6 DRAM blocks per FPGA. We do this by taking advantage of the regularity of stream-

ing memory access to pack the four PE memories into two wide memories: The compute data

path reads source mem as a RAM and it reads compute mem and writes dest mem as streams.

The communicate data path reads dest mem as a RAM and reads communicate mem and writes

source mem as streams. We pack source mem with communicate mem into block0 and dest mem with

compute meminto block1. The compute data path may then read block0 as a RAM and time multi-

plex streaming reads and writes to block1. Time multiplexing block1 is feasible since its throughput

is 256 bits per cycle whereas dest mem and compute mem require 64 and 78 bits per cycle respectively

(Table 2.1). The communicate data path reads block1 as a RAM and time multiplexes streaming

reads and writes to block0. For block0 source mem and communicate mem require 64 and 14 bits

per cycle respectively (Table 2.1). We don’t consider the extra area overhead to multiplex memory

access.

Since PEs/FPGA doesn’t change from the increased SRAM case, the significant change is that

larger matrices can now fit on one FPGA. For our benchmark matrices, the use of DRAM improves

maximum performance over SRAM from 0% to 60%. Of course maximum performance would be

significant for larger matrices. One disadvantage is that peak memory throughput is decreased from

5184 bits/cycle to 1536 bits/cycle. The number of independently addressable words also decreased

from 144 to 6. So other applications which require high memory throughput or use finer grained

memories than 6 per FPGA are no longer efficiently supported.

4.5 Efficient FPUs

Our logic is dominated by floating point multipliers which take substantially more area than custom

or ASIC multipliers. In this section we evaluate the increase in terms of peak performance and

achieved performance if we use DRAM and custom floating point units, while using FPGA fabric

for control logic. This increase is primarily due to an increase in area efficiency rather than clock
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speed since our referenced DRAMs operate at 200MHz. DRAM still uses 1/2 of the reconfigurable

logic area with two DRAM blocks per PE.

The double precision multiply-adder (MADD) in [16] is 0.9mm × 0.6mm with a feature size of

90nm. This is 2.7 × 108λ2/MADD. From Inequality 4.2 area per LUT is at least 800Kλ2/LUT .

Then one MADD requires the area of less than 326 LUTs. The non-FPU logic requires 1408 LUTs.

With 326 + 1408 LUTs/PE, 19 PEs fit into half the original logic area. The other half then consists

of 38 DRAMs.

Custom FPUs increase peak performance over the original architecture by 4.5 times and over the

increased memory architectures by 9 times to 7.6 Gflops. The figures show the maximum achieved

performance is between 4 and 5 Gflops. This is at least 5 times that of the increased memory

architecture, which is greater than the original architecture. Compared to the original BlockRAMs,

throughput increases from 5184 bits/cycle to 9728 bits/cycle, while the number of independent

addresses decreases from 144 to 38.

4.6 Arithmetic Logic Only

Since area is dominated by reconfigurable logic after switching to custom FPUs, improving non-FPU

logic efficiency may significantly reduce PE area. The control logic is dominated by pipeline registers,

so significant savings may result by mapping to reconfigurable logic optimized for pipelined designs

or by mapping to custom logic. This section considers the corner case of discounting reconfigurable

logic completely, leaving only the custom FPUs. Since half of the reconfigurable area fits 105

MADDs, there are 105 PEs/FPGA. We assume the frequency stays at 200MHz. PEs in this case

are too small to support the overhead of DRAM, so we increase the size of BlockRAMs to occupy

the other half of the reconfigurable area as in Section 4.3. Two memories per PE are required so

the number of BlockRAMs increases from 144 to 210.

Peak performance is 42 Gflops which is 5.5 times the peak when reconfigurable logic is included

with custom FPUs. Maximum performance increases by less than two times, however and decreases

in some cases. For the small matrix (Figure 4.1) maximum performance is only doubled because

there isn’t enough parallelism for 105 PEs to be efficient. Since we used SRAM, larger matrices

(Figures 4.2 and 4.3) cannot fit onto few enough FPGAs to be efficient. Since fewer than 105

PEs/FPGA may be required to allow the matrix to fit, Mflops/FPGA can drop significantly when

NFPGAs is decreased. The number of PEs per FPGA is limited to few enough to use DRAM memory

for efficient execution.
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Figure 4.4: Max, Median, Min Mflops/FPGA over benchmark matrices as we increase PEs/FPGA
while using DRAM. For a given PEs/FPGA, each matrix contributes its maximum Mflops/FPGA
over its feasible NFPGAs.

Architecture Peak Delivered Delivered
Gflops/FPGA Gflops for Gflops/FPGA

Single FPGA for 16 FPGAs
2V6000-4 2.2 1.5 0.75
SRAM (Section 4.3) 1.1 0.75 0.5
DRAM (Section 4.4) 1.1 0.75 0.5
DRAM custom FPU (Section 4.5) 7.6 5 2
SRAM custom only (Section 4.6) 42 8 2

Table 4.2: Comparison between architectures of the peak performance and of the median perfor-
mance over matrices which fit onto one FPGA and onto 16 FPGAs

4.7 Varying PE size

Since SRAM decreases memory density too far for efficient use of custom FPUs (Section 4.6), this

section evaluates the performance result of scaling PEs/FPGA from 5 to 45 while using DRAM.

This section can be used to evaluate the performance of our architecture after design changes or

device changes cause PE area to change.

DRAM overhead forces us to use no more than 45 PEs, or 90 DRAMs per FPGA. Figure 4.4 shows

median Mflops/FPGA over matrices for 5 PEs/FPGA to 45 PEs/FPGA. For a given PEs/FPGA,

each matrix contributes its maximum Mflops/FPGA over its feasible NFPGAs. At 35 PEs/FPGA,

the peak performance is 14 Gflops/FPGA, while the median achieved performance is over half peak

at 8 Gflops/FPGA. Performance drops after 35 PEs/FPGA because smaller DRAM sizes prevent

matrices from fitting on one FPGA due to the decrease in DRAM density, memory fragmentation

and larger Lcommunicate.
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4.8 Conclusion

Simply increasing SRAM area tends to significantly improve performance for large matrices and

slightly decrease performance for smaller matrices. Use of DRAMs instead of increased SRAM is

necessary for matrices with m > 2, 000, 000 if using tens or hundreds of FPGAs is not an option.

Custom FPUs with DRAM memory increase maximum performance by 5 times to 5 Gflops/FPGA,

which is greater than half the peak performance. After moving to custom FPUs, if the size of

reconfigurable logic can be reduced, greater than half peak performance can only be maintained up

to 35 PEs. This is primarily due to large DRAM block overhead, rather than poor parallel scaling to

a single FPGA’s PEs. When custom FPUs are used, the 16 FPGA performances shown in Table 4.2

are 1/4 and 1/21 peak. This difference is worse than the VirtexII-6000’s performance of 1/3 peak

because custom FPUs allow more PEs per FPGA. In order to allow the same degree of hardware

scaling, communication overhead must be decreased, perhaps with mesh interconnect as shown in

Section 3.5.
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Chapter 5

Conclusions and Future Work

5.1 Future Work

This work focuses on design for the SMVM kernel. Our current solver uses sequential software

scheduling algorithms to generate the initial memory configuration from a matrix. Memory configu-

ration time should be reduced to allow efficient execution of applications which perform few SMVM

iterations (Section 3.6). A complete solution for contemporary FPGAs needs to be general enough

to implement a wide range of sparse numerical routines on large matrices (Section 5.1.2).

5.1.1 Reduce Matrix Mapping Time

Section 3.6 reports that the software step of mapping a matrix to FPGA memories is on the order

of minutes while one iteration is on the order of 100s of microseconds. Although this is suitable for

applications such as long simulations which run on the order of tens of minutes, for the architecture

to be useful for a broader set of applications, the Matrix Mapping stages must be streamlined or

eliminated. We have not, yet, focused on efficient mapping steps, so all stages could be improved

with attention to their runtime. For the largest stages, simple tuning will not be enough. Some

promising directions to achieve the large-scale performance improvement required include:

• FPGA-based clustering: Exploit the same hardware to rapidly create partitions.

• Dynamic routing: Avoid the need to compute a static route.

• Hardware routing: Automatically route in parallel via interconnect augmented with route

discovery logic [19] [20].

5.1.2 General Applicability

Adapting the architecture to a more complete set of sparse numerical routines requires implemen-

tations for vector parallel operations, accumulations, scalar broadcasts, and scalar divides. These

operations easily fit into the current ring interconnect and can extend to high-dimension interconnect
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solutions. The routines CG, GJ, and Lanczos require two extra vector memories per PE of the same

size as dest mem. They also require a programmable data path for generalized dataflow between the

memories and the adder and multiplier. Like the current design, the algorithm can be divided into

stages issued by the CE, with one data path configuration per stage.

5.2 Conclusions

An architecture for performing efficient SMVM on modern FPGAs has been demonstrated. It

achieves high scalability and outperforms microprocessors. Our design is mapped to the VirtexII-

6000-4 from 2001 and outperforms microprocessors from the same era when comparing both single

processors and parallel processors.

We parallelize over dot products for high potential parallelism. Software mapping places data

on processing elements to load balance and minimize the communication required. Bidirectional

ring interconnect allows inexpensive local communication. These allow our design to scale with a

performance penalty less than one half for up to 48 FPGAs and to perform at least three times

faster than 16 parallel microprocessors.

We show that placing data for locality asymptotically improves scaling on the bidirectional ring.

Random data placement limits the number of efficiently utilizable FPGAs to a constant. Placing

data for locality allows the number of efficiently utilizable FPGAs to increase with matrix size. In

order to model matrix locality we use a constant Rent parameter.

The bidirectional ring interconnect begins to cause a large communication overhead at greater

than 48 FPGAs. This is because its maximum message latency is proportional to the number of

processing elements, rather than throughput constraints. We evaluate the communication overhead

when two-dimensional mesh interconnect is used instead. When using the mesh, scaling is most

often limited by unbalanced computation load. When mesh overhead does limit scaling, it is due to

limited interconnect network throughput rather than message latency.

We explore the benefit of FPGA resource distributions balanced for our application. On-chip

memory capacities are increased to get memories which are both large and high-throughput. This

allows our design to use fewer FPGAs for large matrices, improving their maximum performance

per FPGA by up to 5 times. For our benchmark matrices with m ≤ 2, 000, 000, the performance

benefit of using large DRAMs instead of large SRAMs is marginal. We also estimate the delivered

performance increase due to using DRAM and embedding custom FPUs in the reconfigurable fabric

to be 3 times, comparing matrices that fit on a single FPGA. For larger matrices the higher memory

density gives us an increase of maximum performance per FPGA by up to 15 times.
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