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Abstract

The structure-property relationships of an artificial protein hydrogel, which was
constructed from a triblock protein (designated AC;oA) that contained two associative
leucine-zipper endblocks and a water-soluble random coil midblock, were investigated to
provide guidelines for the rational design of new generations of artificial protein
hydrogels. The leucine zipper A domain is composed of six heptad repeating units
designated as abcdefg, where the a and d positions are occupied by hydrophobic residues,
and the e and g positions are mainly occupied by glutamic acid residues. In contrast to
hydrogels formed from synthetic hydrophobically modified polymers, the normalized
plateau storage modulus G'./nkT of the AC;oA gel was below 13% at all concentrations
examined. This indirect evidence that ACioA tends to form a substantial fraction of
looped configurations was supported by a fluorescence quenching experiment: significant
quenching occurred in labeled d-ACjpA-a (d=tryptophan at the N-terminus, a=coumarin
at the C terminus) chains mixed with a great excess of unlabelled AC oA chains in a
solution. The strong tendency to form loops originates in large part from the compact size
of the random coil midblock domain (mean Ry, ¢;¢~20 A, determined from quasi-elastic
light scattering of Cjo). Despite the small aggregation number of the leucine zipper
domains (tetrameric aggregates, determined from multi-angle static light scattering of
ACy diblock), the average center-to-center distance between aggregates in a 7% w/v
AC)oA solution is roughly 3 times the radius of gyration and 1.5 times the average end-
to-end distance of the C;y domain. To avoid the energy penalty for stretching the Cjo
domain to form bridges, the chains tend to form loops. The importance of loops explains

the nonmonotonic effect of pH on modulus and the decrease in modulus with increasing
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ionic strength. It also led to the design concept of increasing the midblock length or
charge density to increase storage modulus.

Dynamic properties of the AC;pA hydrogel show correlation between network
relaxation behavior and molecular exchange kinetics of the associative domain. The
longest stress relaxation time changes from ca. 70 seconds at pH 8.0 to ca. 1000 seconds
at pH 7.0, determined by creep measurements on 7% w/v gels. In a parallel manner, the
characteristic time of the leucine zipper strand exchange varies from ca. 200 seconds at
pH 8.0 to ca. 4500 seconds at pH 7.0, determined by fluorescence de-quenching after
mixing a fluorescein-labeled leucine zipper solution (in which fluorescence was
quenched) with a great excess of an unlabeled leucine zipper solution. Both time scales
vary strongly with pH due to the associated change in charge on the e and g residues of
the leucine zipper.

The observed structure-property relationships suggest that the rapid dissolution
that occurs with AC;pA hydrogels in open systems originates from the tendency of the
protein to form loops, the small aggregation number of the associative domains, and the
transient nature of association. For applications in which materials are surrounded by
excess fluids, we demonstrated two molecular design approaches to avoid the rapid
dissolution. One way to slow dissolution is to suppress loops by engineering a triblock
protein with dissimilar associative endblocks, PCjoA, such that P associates only with P
and A associates only with A. A PCpA gel erodes 500 times more slowly and exhibits a
5-fold increase in modulus compared to an AC;pA gel at the same concentration.
Alternatively, hydrogel stability in open systems can be improved by engineering a

cysteine residue into each leucine zipper domain to allow covalent bond formation
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following physical association of leucine zippers. Asymmetric placement of the cysteine
residue in each leucine zipper domain suppresses locking-in loops and creates linked
“multichains”. The increased valency of the building units stabilizes the hydrogels in
open systems, while the physical nature of their association retains the reversibility of
gelation. The gel networks dissolve at pH 12.2, where the helicity of the leucine zipper
domains is reduced by ca. 90%, and re-form upon acidification.

The ability to form robust artificial protein hydrogels in open systems opens the
way to biomedical applications. Therefore, we examined their toxicity and incorporated
an RGD cell-binding domain into the midblock backbone. Viability assays for
mammalian 3T3 fibroblast cells cultured in the presence of the AC;oA protein revealed
no evidence of toxicity. Anchorage-dependent epithelial cells spread well on hydrogel
films bearing an RGD cell-binding domain. In contrast, cells remained round on films
without the cell-binding domain; significant apoptosis was induced. Encapsulated 3T3
fibroblast cells remained viable inside the hydrogel for at least 12 hours, suggesting that
these materials have proper permeability for transferring oxygen, nutrients, and metabolic
waste. The hydrogel containing the RGD domain was micropatterned on a PEG-modified

glass surface and limited cell adhesion to the hydrogel region.
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