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Abstract

A lamination on a circle is an equivalence relation on the points of the circle. Lami-

nations can be induced on a circle by a map that is continuous on the closed disc and

injective in the interior. Such laminations are characterized topologically, as being

flat and closed. In this paper we investigate the conditions under which a closed, flat

lamination is induced by a conformal mapping. We show that if the set of multiple

points of the lamination form a Cantor set, whose end points are identified under the

lamination, then the lamination is conformal. More generally, the union of such lam-

inations is also conformal. We also show conjecture that any closed, flat lamination,

such that the set of multiple points is of logarithmic capacity zero, is conformal.
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Chapter 1

Introduction

1.1 Notation and Definitions

A lamination on the unit circle, T, is an equivalence relationship on the points of

T. So a lamination L on T can be thought of as a subset of T × T that is reflexive,

symmetric and transitive.

Definition 1.1.1. A lamination L on T is closed if L is a closed set in T× T, i.e.,

λn, νn ∈ T, λn ∼ νnand λn → λ, νn → ν as n →∞ =⇒ λ ∼ ν.

Definition 1.1.2. A lamination on T is flat if λ1 ∼ λ2, ν1 ∼ ν2,and λ1 and λ2 lie in

different components of T\(ν1, ν2) =⇒ λ1 ∼ ν1.

We will denote the complex plane by C and the extended complex plane by Ĉ.

A lamination on T can be introduced by considering a continuous map φ : D → Ĉ,

where φ is injective on D. All points that mapped to the same point are then identified

under the lamination.

Definition 1.1.3. Let φ : D → Ĉ,be a continuous map that is injective on D. The

lamination Lφ, induced by φ on T is defined as follows:

λ ∼ ν ⇔ φ(λ) = φ(ν),∀λ, ν ∈ T.
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The proof of the following theorem follows from the continuity of the map, φ and

the separation properties of the Riemann Sphere.

Theorem 1.1.1. If φ : D → Ĉ,is a continuous map that is injective on D, then Lφ

is a closed, flat lamination.

Let D∗ be the exterior disc {z : z > 1} ∪ ∞. Then, we can also define Lφ such

that φ : D∗ → Ĉ where φ is continuous in D∗ and injective in D∗.

Definition 1.1.4. L is a conformal lamination if there exists a mapping φ : D→ Ĉ,

such that φ is conformal in D and L = Lφ.

Definition 1.1.5. If L is a lamination on T such that x ∼ yunder L and x 6= y, then

x is called a multiple point of L.

If L is a lamination on T, then we shall denote the set of multiple points of L by

mult(L) and the closure by mult(L). Note that according to our definitions L ⊂ T×T
while mult(L) ⊂ T.

We can also define a lamination on any closed curve which is the boundary of a

simply connected domain, Ω. If γ ∈ Ĉ is a curve and C ⊂ γ is a closed set, then we

can write γ\C = ∪∞j=1Ij, where each Ij is a component of γ\C. We shall call the I ′js

the complementary intervals of C in γ. In our discussion the closed set C will usually

be mult(L). If the end points of Ij are (not) equivalent under L, we shall call Ij a

complementary interval with (non)equivalent end points of L.

A subset L′ ⊂ L is called a sublamination if L′ defines a lamination on T. Note if

L is flat then L′ is not flat in general. A simple example would be the flat lamination

L which identifies the 4 points {1,−1, i,−i} on T. The sublamination L′ such that,

1 ∼ −1, and i ∼ −i, form 2 separate equivalence classes, is not flat.

1.2 Totally Disconnected, Cantor-Type and Julia-

Type Laminations

We first give a brief review of quotient spaces.
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Definition 1.2.1. Let X be a topological space, Y a set, and f : X → Y an onto

map. Then the quotient topology on Y is defined by specifying V ⊂ Y to be open

⇔ f−1(V ) is open in X.

Note that the quotient topology on Y is the largest topology on Y which makes

fa continuous map.

Definition 1.2.2. Let X be a topological space and ∼ be an equivalence relation on

X. Let Y = X/ ∼ be the set of equivalence classes and π : x → Y be the canonical

map taking x ∈ X to its equivalence class [x] ∈ X/ ∼ . Then Y with the topology

induced by π is called the quotient space of X.

If X ⊂ T and L is a lamination on X, then we shall denote the set of equivalence

classes by X/L.

We now define 3 types of laminations that will play an important role in this

paper.

Definition 1.2.3. A closed, flat lamination L on T is called a totally disconnected

lamination if mult(L)/L is a totally disconnected set.

See Fig. 1.1 for examples of totally disconnected laminations. In the left-hand side

figures, the straight lines join equivalent points of the lamination. The right-hand side

figures represent the quotient space, D∗/L, which can be thought of as being obtained

by collapsing each convex hull of an equivalence class to a single point. The mapping

π(z) in the figures is the quotient map corresponding to L.

A perfect, nowhere dense set is called a Cantor set.

Definition 1.2.4. Let C ⊂ T be a Cantor set and {Ij}∞j=1 be the set of complementary

intervals. Let Ij = (aj, bj). Then L is a Cantor-type lamination if

(a, b) ∈ L iff a = ai, b = bi, for some i ∈ N,

It is clear that a Cantor-type lamination is closed and flat. See Fig.1.2 for an

example of a Cantor-type lamination. The arcs in the left hand side figure join the
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Figure 1.1: Totally Disconnected Laminations.

Figure 1.2: Cantor-Type Laminations
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equivalent points of L, which are the end points of the complementary intervals of C

labelled as (ai, ai′). The right hand figure represents the quotient space D∗/L.

We now define the completion of a subset of T× T.

Definition 1.2.5. Let L be any non empty subset of T× T. Then the completion of

L is the intersection of all the closed, flat laminations that contain L.

We will denote the completion of L by Lc.

Claim. Lc is the minimal closed, flat lamination containing L.

Proof. It suffices to show that Lc is a closed, flat lamination. Let Lc = ∩λ∈ΛLλ, where

Lλ are closed, flat laminations containing L. We first check that Lc is a lamination: It

is trivial to check that Lc is reflexive and symmetric. We check that Lc is transitive:

Assume (a, b), (b, c) ∈ Lc

⇒ (a, b), (b, c) ∈ Lλ,∀λ ∈ Λ

⇒ (a, c) ∈ Lλ,∀λ ∈ Λ

⇒ (a, c) ∈ Lc.

Hence Lc is a lamination. Lc is a closed set in T×T since Lλ is a closed set in T×T
and the intersection of closed sets is closed.

We now show that Lc is a flat subset of T× T.

Let a1 ∼ a2, b1 ∼ b2 , under Lc and a1 and a2 lie in different components of

T\(b1, b2). Then , ∀λ ∈ Λ, a1 ∼ a2, b1 ∼ b2 under Lλ. Since a1 and a2 lie in different

components of T\(b1, b2), it follows that ∀λ ∈ Λ, a1 ∼ b1 under Lλ. Hence a1 ∼ b1

under Lc. This proves the claim.

We prove the following lemma for the completion of a subset of T× T:

Lemma 1.2.1. Let Lc be the completion of L ⊂ T× T. Then

(1.2.1) Lc = (L)c
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and

(1.2.2) ⇒ mult(L) = mult(Lc)

Proof. Since Lc is closed in T× T it follows that

Lc ⊃ L

⇒ (Lc)c ⊃ (L)c

⇒ Lc ⊃ (L)c

Since Lc ⊂ (L)c it follows that

Lc = (L)c

which proves (1.2.1).

To prove (1.2.2) note that Lc is a subset of the closed, flat lamination L∗ which

identifies mult(L) to a single point. But

mult(L∗) = mult(L)

It follows that

mult(Lc) ⊂ mult(L∗) = mult(L).

Since

mult(Lc) ⊃ mult(L)

⇒ mult(L) = mult(Lc)

which proves (1.2.2).

Definition 1.2.6. Let L = (∪λ∈ΛLλ) be a flat subset of T × T, where for λ ∈ Λ, Lλ
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is a Cantor-type lamination such that

(i)mult(Lλ)’s are pairwise disjoint sets

(ii) If z ∈ mult(L),and I = (z, z′) is the associated complementary interval with

equivalent end points , then there are points, arbitrarily close to z on both sides which

do not belong to the closure of any complementary interval of any Lλ, except I. And

if z ∈ mult(L)\multL, then there are points, arbitrarily close to z on both sides which

do not belong to the closure of any complementary interval of any Lλ.

Then L is called a Julia-type lamination.

We need to check that L as defined above is a lamination. It is clear that L is

reflexive and symmetric. Furthermore, L is transitive since it consists only of double

points by condition (i) of the definition. It is easy to check that L is, in fact, a closed

lamination. Let an ∈ mult(Lλn) and an ∼ bn. Assume that (an, bn) → (a, b). Since

both an and bn ∈ mult(L) we have by (ii) of definition 1.2.6 that if an → a then

bn → a. Hence a = b and since a ∼ a it follows that a Julia-type lamination is closed.

We shall say that L is generated by {Lλ}.
Remark: We need condition (ii) in the definition of Julia-type lamination to

exclude the following trivial laminations: Let L identify all the points of a Cantor set

of positive capacity. Then L = (∪λ∈ΛLλ), where each Lλ is a Cantor-type lamination

and Lλ do not obey (ii). But L is not a conformal lamination. Condition (ii) is

crucial in our proof of Theorem 1.31 that every Julia-type lamination is conformal.

Consider any closed flat lamination L that identifies the upper semi circle of D to

the lower semi circle in a 1− 1 manner. Then L is generated by {Lλ}, where the Lλ

are the degenerate Cantor sets, which consist of exactly 2 points. However, such a

lamination does not obey condition (ii) and so is not a Julia-type lamination. In our

definition of a Julia-type lamination we have not assumed that Λ is a countable set.

We now show that (ii) of Definition 1.2.6 implies that a Julia-type lamination has

to be generated by a countable number of Cantor sets.
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Claim. Any Julia-type lamination is generated by a countable number of Cantor

laminations.

Proof. Assume L = ∪λ∈ΛLλ, where Lλ is a Cantor lamination. Let S ⊂ ∪λ∈ΛLλ ⊂
T× T be a countable dense subset of ∪λ∈ΛLλ and let S = ∪∞n=1(an, bn)

Let (an, bn) ∈ Lλn .

Then

∪∞n=1Lλn ⊃ ∪∞n=1(an, bn) = S

⇒ ∪∞n=1Lλn ⊃ S

But

S ⊃ ∪λ∈ΛLλ

Hence

⇒ ∪∞n=1Lλn ⊃ ∪λ∈ΛLλ

⇒ (∪∞n=1Lλn)c ⊃ (∪λ∈ΛLλ) = L

But by 1.2.1

(∪∞n=1Lλn)c = (∪∞n=1Lλn)c

⇒ (∪∞n=1Lλn)c ⊃ L

Since the opposite inclusion is obvious, we have

⇒ (∪∞n=1Lλn)c = L

But as we showed earlier, (∪∞n=1Lλn) is a closed flat lamination. Hence

⇒ (∪∞n=1Lλn) = L

Note that, in fact, if L is a Julia-type lamination then L/∪z∈T {z, z} is a discrete

set and mult(L) is a countable set which consists only of double points. We give two
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Figure 1.3: Julia-type Laminations Generated by 2 Cantor Sets

examples of a Julia-type lamination generated by two Cantor sets in Fig. 1.3. The

complementary intervals of the two Cantor sets are labelled as (ai, ai′) and (bi, bi′),

respectively. The arcs in D represent the closed convex hulls of the equivalence classes

and π(z) is the quotient map.

Fig. 1.4 gives the Julia-type lamination and the filled in Julia set for P (z) = z2−1.

Again, the arcs joining the end points of the Cantor sets represent the closed convex

hulls of the equivalence classes and π(z) is the quotient map.

Using these definitions we can define a sublamination, L′ of L, to be totally

disconnected, Cantor-type, or Julia-type.

1.3 Main Results

In this paper we shall investigate the conditions under which a lamination on T is

conformal. This problem has also been investigated by Leung ([15]). The main result

which we will prove in Chapter 4, is as follows:

Theorem 1.3.1. Let L be any Julia-type lamination on T. Then L is a conformal

lamination.
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Figure 1.4: The Filled in Julia Set of P−1 and Several Magnifications

To prove this theorem, we will introduce a new way to measure the oscillation of

a Jordan curve which we will call the K-oscillation of the curve.

In Chapter 5 we will use an approach employing potential theory to prove the

following:

Theorem 1.3.2. Let L be any totally disconnected lamination on T, such that the

closure of the set of multiple points, mult(L), is of zero logarithmic capacity. Then

L is a conformal lamination.

The zero capacity condition is necessary since a set of positive capacity on T cannot

be mapped to a single point by a mapping that is conformal on D and continuous on T.

In Chapter 6 we shall prove Theorem 6.0.1 that union of a totally disconnected and

Julia-type laminations, which are disjoint in the sense that their intersection contains

only points along the diagonal of T × T, is also conformal. We also conjecture that

any lamination such that the logarithmic capacity of the set of multiple points is zero

is conformal. We describe a possible approach to proving this conjecture.
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Chapter 2

Overview of the Welding and
Lamination Problem

We first give a brief introduction to quasiconformal and quasisymmetric mappings,

which play an important role in conformal weldings and laminations. We then define

weldings and laminations and gives some examples.

2.1 Quasiconformal Mappings

Let C be the complex plane. A quasiconformal mapping, of a plane domain Ω ⊂ C,

is a sense preserving homeomorphism, such that infinitesimal circles are mapped

into infinitesimal ellipses whose ratio of axis is uniformly bounded by a constant.

A geometric definition can be given in terms of the module of a quadrilateral. A

quadrilateral consists of a Jordan domain, Q and a sequence of boundary points,

z1, z2, z3, z4, called the vertices of Q. By the Riemann Mapping Theorem and the

Schwartz-Christoffel transformation there is a conformal mapping of Q(z1, z2, z3, z4)

onto a rectangle R(w1, w2, w3, w4), where the zi are mapped onto wi, i = 1, 2, 3, 4.

This rectangle is canonical, in the sense that a conformal mapping between any two

such rectangles is a similarity transform. Hence all the canonical rectangles of a

given Q(z1, z2, z3, z4) have the same ratio of sides a
b

:= M(Q), where a denotes the

length of the side between w1 and w2, and b denotes the length of the side between

w2 and w3. The conformally invariant number, M(Q) is called the Module of the

quadrilateral(c.f.[2]).
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Definition 2.1.1. A sense-preserving homeomorphism φ : Ω → C is called a K quasi-

conformal mapping if for any quadrilateral Q(z1, z2, z3, z4), whose closure is contained

in Ω,

sup
Q

M(φ(Q)

M(Q)
≤ K < ∞.

The number M(φ(Q)
M(Q)

is often called the dilatation of Q under φ(z). Since the

dilatations of Q(z1, z2, z3, z4) and Q(z2, z3, z4, z1) are reciprocal numbers, it follows

that K ≥ 1.

The analytic formulation of this definition is as follows:

Definition 2.1.2. A sense preserving homeomorphism φ : Ω → C is called a K

quasiconformal mapping if

1)φ(x + iy) is absolutely continuous in x for almost all y and in y for almost all

x and

(2) The partial derivatives are locally square integrable and satisfy the Beltrami

equation
∂φ

∂z
= µ(z)

∂φ

∂z
for almost all z ∈ Ω,

where µ(z) is a measurable function with

|µ(z)| ≤ K − 1

K + 1
< 1

The complex number µ(z) is often called the complex dilatation of φ(z). The

following existence-uniqueness theorem, proved in [15], plays a fundamental role in

the theory of conformal weldings and laminations :

Theorem 2.1.1. Given an arbitrary measurable complex function µ(z) on a domain

Ω ⊂ C, with sup |µ(z)| < 1, there exists a unique (upto a conformal mapping) quasi-

conformal mapping φ : Ω → C with complex dilatation µ(z) for almost all z ∈ Ω.
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2.2 Quasisymmetric Maps

Alfhors and Beurling were the first to describe the boundary behavior of quasicon-

formal maps in terms of a property called quasisymmetry, (see [4]).

Definition 2.2.1. A sense preserving homeomorphism φ : T → C is called a qua-

sisymmetric map if there exists a constant M, such that for z1, z2, z3 ∈ T,

|z1 − z2| = |z2 − z3| ⇒ |φ(z1)− φ(z2)| ≤ M |φ(z2)− φ(z3)|.

A formally stronger but equivalent definition is given by Väisälä (see [29], [30]):

Definition 2.2.2. The map φ : T→ C is called a quasisymmetric map if it is injective

and if there exists a strictly increasing function λ(x), (0 ≤ x < ∞)with λ(0) = 0 such

that:
|φ(z1)− φ(z2)|
|φ(z2)− φ(z3)| ≤ λ

|z1 − z2|
|z2 − z3| , ∀z1, z2, z3 ∈ T.

Alfhors also introduced the concept of a quasicircle in C which is defined as a

Jordan curve J such that

diam J(a, b) ≤ M |a− b|,∀a, b ∈ J

where J(a, b) is the smaller arc of J with endpoints a and b(c.f.[9]). The inner domain

of a quasicircle is called a quasidisc.

The following theorem, proved in [25], describes the relation between quasicon-

formal and quasisymmetric maps:

Theorem 2.2.1. Let J be a Jordan domain in C and let f map D conformally onto

the inner domain of J. Then the following conditions are equivalent:

(a) J is a quasicircle;

(b) f is quasisymmetric on T;

(c) f has a quasiconformal extension to C;

(d) there is a quasiconformal map of C onto C that maps T onto J.
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2.3 The Welding Problem

2.3.1 Conformal Weldings

Two plane domains or bordered Riemann surfaces can be conformally welded (or

sown) together into a single Riemann surface by an identification of two boundary

arcs, (c.f.[1]). More formally, let W1 and W2 be two bordered Riemann surfaces with

J1 and J2 two respective boundary arcs. Let α(J1) = J2, where α is a homeomorphism.

Then W1 and W2 are said to be welded together if the topological sum, W1 ∪α W2,

where x is identified with α(x) for x ∈ J1, can be given a conformal structure which

is compatible with the original structures of W1 and W2 . The homeomorphism α is

then called a welding homeomorphism.

If α is analytic and orientation-reversing, then it is certainly a welding homeo-

morphism. If the welding takes place along the unit circle (or the real axis) then

analyticity can be replaced by weaker conditions, (see [22],[23],[14],[24],[6]). The

problem, in this case can be restated as follows: Let D∗ be the exterior unit disc. A

homeomorphism, α : T → T, is a welding homeomorphism if there exists a Jordan

domain J ( with J∗ exterior ) and conformal mappings:

φ : D→ J

and

φ∗ : D∗ → J∗

such that

φ ◦ α = φ∗.

Note that the definition makes sense, since if the welding solutions φ and φ∗ exist

then they are well defined and injective on T by Caratheodory’s theorem.

A straightforward argument, (c.f. [22]), based on the existence and uniqueness

theorem for quasiconformal mappings with a given complex dilatation, shows that it is

sufficient to consider quasiconformal welding solutions instead of conformal solutions.
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Besides the existence of welding solutions, the other issue is of the uniqueness of

these solutions. This is equivalent to the conformal removability of the Jordan curve,

∂J .

The case where the homeomorphism α is a quasisymmetric function was com-

pletely solved by Pfluger and Oikawa, (see [15],[22], [24 ]).

Theorem 2.3.1. Let α : T → T be a sense preserving homeomorphism. The α is a

welding homeomorphism with a unique quasidisc J iff α is quasisymmetric.

Using a generalized version of the existence-uniqueness theorem for quasiconfor-

mal mappings, Lehto [14] has shown that a weakened quasisymmetry condition

is sufficient for a welding along the real axis. Lehto and Virtanen [15], Pfluger

[24], and David [6] prove conformal weldings for other classes of homeomorphisms.

Oikawa [22] considers the case where α is quasisymmetric except at isolated singu-

lar points. He shows that in this case the problem reduces to the Type problem of

Riemann surfaces. In particular, welding is possible iff the resulting Riemann surface

R := H+\{0}∪αH−\{0} is a parabolic surface, where H+ and H− are the upper and

lower half planes respectively.

This criteria can be used to give examples of homeomorphisms that do not admit

a welding solution.

Example 1: Let k and m be positive real numbers, with k 6= m. Let α : R→ R

be a homeomorphism defined as follows:

α(t) = tk,∀t ≥ 0

and

α(t) = −|t|m,∀t ≤ 0

Using extremal length methods, Oikawa [22] has shown that in this case the resulting

Riemann surface, R is hyperbolic and hence a welding solution does nor exist.
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Example 2: Let

g1 : {x + iy : x > 0, y < sin
1

x
} → {x + iy : x > 0, y < 0}

and

g2 : {x + iy : x > 0, y > sin
1

x
} → {x + iy : x > 0, y > 0}

be conformal. Then, Vainio [28] has shown that

α(x) =





g2 ◦ g−1
1 (x) x > 0

0 x = 0

−g2 ◦ g−1
1 (−x) x < 0

is a homeomorphism of R onto R. However, the resulting Riemann surface is again

hyperbolic, and hence does not admit a welding solution.

2.3.2 Caratheodory Weldings

Example 1 and 2 can be considered as examples of Generalized or Caratheodory

weldings. Generalized weldings were introduced by Hamilton (see [10],[11]). A home-

omorphism α : T → T is called regular if for every E ⊂ T with dim E = 0,

m(α(E)) = m(α−1(E)) = 0, where m is the Hausdorff measure. Hamilton proves

the following theorem for regular homeomorphisms (see [11]):

Theorem 2.3.2. Let α : T → T be a regular homeomorphism. The there exist

conformal mappings φ and φ∗ on D and D∗ respectively, such that,

(i)φ(D) ∩ φ∗(D∗) = ∅

(ii)φ ◦ α(z) = φ∗(z)

for all z ∈ T\E where m(E) = 0.
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2.3.3 Kleinian Groups

An important source of examples of weldings comes from the theory of simultaneous

uniformization of Kleinian Groups. Two Riemann surfaces R and R∗ are said to be

conjugate if there is an orientation reversing homeomorphism from R to R∗. Bers [5]

proved that if R and R∗ are compact hyperbolic Riemann surfaces then there is a

Kleinian group Γ, simultaneously uniformizing R and R∗. In this case the conjugating

homeomorphism is quasiconformal, and hence lifts to a welding function α : T→ T.

The welding solutions are

φ : D→ W

and

φ∗ : D→ W ∗

where W and W ∗ are Γ invariant components, so that R is conformally equivalent

to W/Γ and R∗ is conformally equivalent to W ∗/Γ. The limit set L(Γ) is the Jordan

curve separating W and W ∗. Hamilton [12] proves a generalized welding version of

this theorem for conjugate Riemann surfaces of the first kind.

2.4 Laminations

2.4.1 Topological Laminations

Thurston [26] gives a simple criterion for a continuous lamination to be flat:

Theorem 2.4.1. Let L be a continuous lamination on T. Then L is flat iff the convex

hulls of the equivalence classes of L are disjoint.

It is simple to show that if a lamination L is induced by a continuous mapping

φ : D→ Ĉ which is injective in D, then L is continuous and flat. The converse is also

true by a theorem of Moore (see [17],[18]). Hence we have the following equivalence:

Theorem 2.4.2. Let L be a lamination on T. Then L is induced by a continuous

mapping φ : D→ Ĉ which is injective in D, iff L is flat and continuous.



18

Moore’s Triod theorem (see [19],[25]) also restricts the cardinality of the equiva-

lence classes of L with more than 2 multiple points to be countable.

Theorem 2.4.3. Let f be a homeomorphism of T into C. Then there are atmost

countably many points a ∈ C such that

f(rζj) → a, as r → 1−(j = 1, 2, 3)

for three distinct points ζ1, ζ2, ζ3 on T.

2.4.2 Conformal Laminations

A lamination L on T that is induced by φ which is conformal on D and continuous

on D is called a conformal lamination. There are some simple analogies between a

conformal lamination and conformal weldings. The proof of the following result is a

simple argument based on the existence and uniqueness theorem for quasiconformal

maps with a prescribed complex dilatation, completely analogous to the welding case.

Theorem 2.4.4. If L is a lamination on T induced by a continuous mapping φ :

D→ Ĉ which is quasiconformal in D, then L is a conformal lamination.

The following corollary shows that conformal laminations are invariant under qua-

sisymmetric transformations.

Corollary 2.4.1. If L is a conformal lamination on Tinduced by φ and α : T → T

is quasisymmetric, then the lamination L′ is also conformal, where L′ is defined as:

x ∼ y ⇔ φ ◦ α(x) = φ ◦ α(y).

Proof. Since α : T→ T is quasisymmetric, by Theorem 1.2.1, there exists a quasi-

conformal extension of α:

φ1 : C→ C
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Since φ1 maps D onto D, we have that the continuous mapping

φ ◦ φ1|D → Ĉ

is quasiconformal in D and induces the lamination L′.

2.4.3 Laminations Induced by Welding Homeomorphisms

We shall denote the upper (lower) half unit disc by D+(D−), and the upper (lower)

semi circle by I+(I−).

A homeomorphism of I+ to I−, which fixes 1 and −1, induces a lamination L

on T, where every point on I+ is identified with its image in I−. There is a simple

equivalence between the conformality of this lamination and the welding properties

of the homeomorphism.

Theorem 2.4.5. Let ψ : I+ → I− be a homeomorphism that fixes the points 1 and

−1. Then the lamination L induced by ψ on T is conformal iff α : ∂D+ → ∂D− is a

conformal welding homeomorphism, where α : ∂D+ → ∂D− is defined as follows:

α(z) =





ψ(z) ∀z ∈ I+

z ∀z ∈ [1,−1]

Proof. Assume α is a conformal welding homeomorphism. Let J be a Jordan domain

and let

φ1 : D+ → J

and

φ2 : D− → J∗

be a conformal welding solution. Hence,

φ2 ◦ α(z) = φ1(z),∀z ∈ ∂D+.
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But

α(z) = z, ∀z ∈ [1,−1]

Hence

(2.4.1) φ2(z) = φ1(z),∀z ∈ [1,−1]

Define

φ(z) =





φ1(z) ∀z ∈ D+

φ2(z) ∀z ∈ D−

By (2.4.1) φ(z) is well defined and a homeomorphism on D. Also φ(z) is conformal

in D+ and D− Since the segment [1,−1] is conformally removable, φ(z) is conformal

in D and induces the lamination L.

Now assume that L is induced by a continuous mapping φ : D → Ĉ, which is

conformal in D. Then J := φ(D+) is a Jordan domain Define φ1 : D+ → Ĉ as

φ1(z) = φ(z)|D+

And define φ2 : D− → Ĉ as

φ2(z) = φ(z)|D−

Hence

φ1(D+) = J

and

φ2 ◦ α(z) = φ1(z),∀z ∈ ∂D+

are a conformal welding solution.
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2.4.4 Complex Dynamics

Laminations on the circle play a fundamental role in the study of dynamics of complex

polynomials. Douady and Hubbard [8] were the first to introduce the idea of external

rays to study complex dynamics. They showed that each rational external ray of a

polynomial, f, with a connected Julia set, has a well-defined limit as it approaches

the Julia set, (see [17]). Using the Riemann Mapping theorem this gives rise to a

lamination on T where any multiple point of the lamination has a rational argument.

This lamination is not necessarily closed. However, if the Julia set is locally connected

then every external rays ‘lands ’and the resulting lamination is closed. Example 1:

Consider the filled in Julia set of the polynomial f : z → z2 + e2πitz, with t = (
√

5−1)
2

.

Then the lamination induced by this set on T is continuous and flat, and the Julia

set is locally connected.

Example 2: Let Γ ⊂ C be the quadruple comb: {[−1, 1]×0}∪{A×[−1, 1]} where

A contains 1
n

and −1
n

, n ∈ N and 0. This set is compact and simply connected but not

locally connected. Since every external ray of this set ‘lands, ’it defines a lamination

on T. However, this lamination is not continuous. For instance, the external rays

with argument 1
4

and 3
4

land on the points (0, 1) and (0,−1), respectively. But there

exists a sequence εn with εn → 0, such that the external rays with arguments 1
4
− εn

and 3
4

+ εn land on the same point of the x-axis of Γ. Hence we get a sequence of

points xn and yn such that, xn ∼ yn and xn → x, yn → y, but x 6∼ y.
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Chapter 3

Topology of Laminations

In this chapter we describe some topological properties of Julia-type laminations

and totally disconnected laminations. We show that Cantor-type laminations and

totally disconnected laminations can be thought of as the two topological ‘extremes’

of laminations.

3.1 Topology of Cantor-Type Laminations

Lemma 3.1.1. If L is a Cantor-type lamination on T, then mult(L)/L is homeo-

morphic to T.

Proof. Consider the usual Cantor function, f : T → T, which maps the closure of

every complementary interval with equivalent end points of mult(L), onto a distinct

point of T. Clearly, by a slight variation of this Cantor function, there exists a con-

tinuous function f ′ : T→ C, which maps the closure of every complementary interval

of mult(L) to a distinct Jordan curve with an endpoint on T. See Fig. 1.2. This is

the required quotient map.

There is a partial converse of this lemma, which we shall not use in this paper.

Lemma 3.1.2. If L is any closed lamination on T, such that mult(L)/L is homeo-

morphic to T, then L contains a Cantor-type sublamination.

Proof. Consider any equivalence class E of L. Since L is closed E is a closed set of

T. Let {Ij}∞j=1 be the set of complementary intervals of E in T. Note that there is
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only one complementary interval, Ik ∈ {Ij}∞j=1, which contains points of mult(L). If

more than one complementary interval contained points of mult(L), then the image

of these points would either lie in different components of mult(L)/L or E/L would

be a cut point of mult(L)/L. Let ak and bk be the end points of Ik. Then the closure

of the set of end points of all such Ik, constitutes a Cantor-type lamination.

3.2 Topology of Totally Disconnected Laminations

Consider a Cantor set C ⊂ T. Define a lamination L which identifies all the points

of C. Then since mult(L)/L is a singleton, L is a totally disconnected lamination.

We will show in Chapter 5 that L is conformal iff logarithmic capacity of C is

zero. However, note that L contains a Cantor-type sublamination L′, which identifies

the end points of the complementary intervals of C. We now show that this is the

only situation in which a totally disconnected lamination can contain a Cantor-type

sublamination.

Lemma 3.2.1. If L is a totally disconnected lamination on T and L′ is a Cantor-type

sublamination of L, then L identifies all the points of L′.

Proof. Let L′ be a Cantor-type sublamination of L . Let the continuous mapping

φ1 : D→ Ĉ, which is injective on D, induce L′, such that Ml′/L
′ is T or an arc of T.

Then mult(L)/L contains the continuous image of Ml′/L
′ under the quotient map. If

mult(L)/L is totally disconnected it follows that the continuous image of Ml′/L
′ has

to be a singleton under the quotient map.

There is a converse of this lemma.

Lemma 3.2.2. If L is a closed, flat lamination on Tsuch that the set of multiple

points is nowhere dense and any Cantor-type sublamination is identified to a single

point, then L is a totally disconnected lamination.
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Proof. If L is not a totally disconnected lamination, then one of the components of

mult(L)/L must contain more than one point. But mult(L)/L is a closed subset

of T/L. Hence every component of mult(L)/L is compact. So the component with

more than one point contains a continuum. This means that the preimage of this

component must contain a closed subset of mult(L) which is a perfect set, with the

end points of the complementary intervals identified. Since mult(L) is nowhere dense,

L contains a Cantor-type sublamination which is not identified to a single point.

If L is a totally disconnected lamination, we show that the nonequivalent multiple

points can be ‘separated’ by complementary intervals with nonequivalent end points

of L. We shall need this separation property to prove the conformality of totally

disconnected laminations of capacity zero, in Chapter 5. We now state this property

precisely:

Theorem 3.2.1. Let L be a totally disconnected lamination. Let a, b ∈ mult(L), a 6∼
b, and C1, C2 be the 2 components of T\{a, b}. Then C1contains a complementary

interval with nonequivalent end points, I1 = (p1, q1), and C2contains a complementary

interval with nonequivalent end points ,I2 = (p2, q2), and any equivalence class of L

is either contained completely in J1 or J2, where J1 and J2 are the two components

of T\{I1 ∪ I2}.

To prove the theorem we first show that a lamination L, where every complemen-

tary interval with nonequivalent end points is contained in an arc with equivalent end

points, is not totally disconnected.

More precisely, we prove the following lemma:

Lemma 3.2.3. Let L be a closed, flat lamination on T. Let a, b ∈ mult(L), a 6∼ b.

Let C be a component of T\{a, b}. Assume that if I is a complementary interval of

mult(L) contained in C, then there exists an open arc (e, e′) ∈ C, such that e, e′ ∈
mult(L) and e ∼ e′. Then L is not totally disconnected.
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Figure 3.1: L is not totally disconnected.

Before proving the lemma, we give an example of such a lamination in Fig 3.1.

Here C ∈ T is a Cantor set and {Ij}∞j=1 are the complementary intervals. If Ij =

(aj, bj), then ∃pj, qj ∈ Ij and the lamination L is defined as

aj ∼ bj

and

pj ∼ qj.

The complementary intervals with nonequivalent end points are of the form (aj, pj)

or (qj, bj) and they are both contained in the arc (aj, bj), which has equivalent end

points.

We now prove Lemma 3.2.3.

Proof. Let {Ij}∞j=1, be the complementary intervals of mult(L) contained in C. For

each j let Aj be the maximal arc that contains Ij and has equivalent end points. By

the flatness condition any two such arcs Ak and Al are either disjoint or equal. Let

A = ∪∞j=1Aj. Since the end points of Aj are equivalent we have that γ = (C\A)/L

is a connected set that contains more than one point. Since γ ⊂ T/L we have that

T/L is not totally disconnected.

Note: It follows that if L is a totally disconnected lamination, then if a, b ∈
mult(L), a 6∼ b and for i = 1, 2 Ci are the two components of T\{a, b}, then there
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exist complementary intervals with nonequivalent end points Ii, Ii ⊂ Ci, such that for

any open arc (e, f) ∈ Ci containing Ii, with e, f ∈ mult(L), e 6∼ f.

We now prove Theorem 3.2.1.

Proof. By considering the disjoint, closed convex hulls of a and b we can log assume

that a = −1, b = 1 are the equivalence classes of a and b. Let C1 be the upper

semi circle and C2 be the lower semi circle, the two components of T\{a, b}. By the

note following the definition of type 2 laminations ∃I1 = (p1, q1), p1 6∼ q1 such that

for any open arc (e, f) ∈ C1, containing I1,with e, f ∈ mult(L), then e 6∼ f. So

for any e ∈ mult(L) ∩ [a, p1], the equivalence class of e ⊂ C2 ∪ [a, p1] and for any

e ∈ mult(L) ∩ [q1, b], the equivalence class of e ⊂ C2 ∪ [q1, b]. We now consider the

following 3 cases separately:

1) Assume for any e ∈ mult(L) ∩ [a, p1], the equivalence class of e ⊂ [a, p1] and

for any e ∈ mult(L) ∩ [q1, b], the equivalence class of e ⊂ [q1, b]. Then again by

the note following the definition ∃I2 = (p2, q2), p2 6∼ q2 such that for any open arc

(e, f) ∈ C2,containing I2, with e, f ∈ mult(L), then e 6∼ f. Hence, For any e ∈
mult(L)∩ [a, p2], the equivalence class of e ⊂ [a, p2] and for any e ∈ mult(L)∩ [q2, b],

the equivalence class of e ⊂ [q2, b]. So I1 and I2 are the required intervals.

2) Now assume ∃e ∈ mult(L) ∩ [a, p1], such that an equivalent point e′ ∈ C2.

Pick the e closest to p1 and let e′ be the corresponding equivalent point closest to b.

Assume for any e ∈ mult(L) ∩ [q1, b], the equivalence class of e ⊂ [q1, b]. Then since

e′ 6∼ b, by the note again we have that ∃I2 = (p2, q2), p2 6∼ q2 such that for any open

arc (e, f) ∈ (e′b), containing I2,with e, f ∈ mult(L), then e 6∼ f. And so I1 and I2 are

the required intervals.

3) For the final case we assume ∃e1 ∈ mult(L) ∩ [a, p1], such that an equivalent

point e′1 ∈ C2. Pick the e1 closest to p1 and let e′1 be the corresponding equivalent

point closest to b. And assume ∃e2 ∈ mult(L) ∩ [q1, b], such that an equivalent point

e′2 ∈ c2. Pick the e2 closest to q1 and let e′2 be the corresponding equivalent point

closest to a. Then since e′1 6∼ e′2∃I2 = (p2, q2), p2 6∼ q2 such that for any open arc

(e, f) ∈ (e′1, e
′
2), containing I2, with e, f ∈ mult(L), then e 6∼ f. And so I1 and I2 are
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the required intervals.

The converse of Theorem 3.2.1 is also true.

Theorem 3.2.2. Let L be a closed, flat lamination on T. Let a, b ∈ mult(L), a 6∼ b,

and C1, C2 be the 2 components of T\{a, b}. Assume that C1contains a complementary

interval with nonequivalent end points I1 = (p1, q1), and C2contains a nonequivalent

complementary interval I2 = (p2, q2), and any equivalence class of L is either con-

tained completely in J1 or J2, where J1 and J2 are the two components of T\{I1∪I2}.
Then L is a totally disconnected lamination.

Proof. Let z1 and z2 ∈ mult(L) and z1 6∼ z2. Let D1 and D2 be the two components

of T\{z1, z2} Then, by assumption ,∃I1 ⊂ D1, I2 ⊂ D2, where I1 and I2 are comple-

mentary intervals with nonequivalent end points, and any equivalence class of L is

either contained completely in J1 or J2, where J1 and J2 are the two components of

T\{I1∪ I2}. Let a and b be the mid point of I1 and I2, respectively. Let C1 and C2 be

the two components of T\{a, b}. Then for i = 1, 2 the images of Ciunder the quotient

map are open disjoint sets of T/L containing the images of zi, whose union is T/L.

Since any 2 distinct points of mult(L)/L lie in different components, mult(L)/L is a

totally disconnected set.
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Chapter 4

Julia-Type Laminations

In this section we shall prove Theorem 1.3.1, that a Julia-type lamination is con-

formal.

The proof involves defining a global measure of the oscillation of a Jordan arc,

which we shall call the K-oscillation. The proof will proceed inductively where at

each step i, we will define a conformal map φi that will join the end points of a

single complementary interval. We will show that if, at end of the (i− 1)th step, the

complementary intervals are K-oscillating, then the complementary intervals at the

end of the ith step are K + ε-oscillating, for any ε > 0. Thus, the oscillations of the

complementary intervals will be bounded by a constant less than 1 at every step of

the induction. Furthermore, we will show that the distortion of φi is controlled by

the diameter of the complementary intervals at the end of the (i − 1)th step, which

in turn is controlled by the oscillation of the complementary intervals at the end of

the (i− 2)th step. Thus, the induction will converge to the required function.

4.1 Oscillation of a Curve

Definition 4.1.1. Let J be a Jordan arc in C with diameter d. We will say J is

K-oscillating if there is point z ∈ J such that if C1 and C2 are the 2 components of

J\{z}, then for i = 1, 2:

diam Ci ≤ Kd

We shall say z is a K point of J .
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Figure 4.1: K-oscillating curves and K points

Figure 4.2: A curve that is not uniformly 1
2

oscillating

The following observations follow directly form the definition:

1) For any Jordan arc J,K ≥ 1
2

and we can choose K ≤ 1.

2) If J is K-oscillating, then J is K ′ oscillating ∀K ′ ≥ K.

Examples (see fig 4.1):

1) straight line of length d is 1
2

oscillating, with the mid point as the 1
2
-point.

2) semicircle of diameter d is 1√
2

oscillating, with the mid point as the 1√
2
-point.

3) V-curve of diameter d, which consists of 2 straight line segments of length d

meeting at an angle of 60 degrees is 1 oscillating, with the vertex as the 1-point.

We shall say J is uniformly K-oscillating if J and any subarc of J is K-oscillating.

All the examples above are uniformly K-oscillating. Consider a V-curve of diameter d

and vertex of 60 degrees, with a straight line segment of length 3d attached to one leg

at an angle of 120 degrees. This arc is 1
2

oscillating, with the 1
2

point on the straight

line segment at a distance of 2d from the end point. However it is not uniformly 1
2

oscillating since the V-curve is not 1
2

oscillating (see fig 4.2).



30

Claim. Let J be a Jordan arc in Ĉ which is uniformly K-oscillating. Let h be

a bilipchitz mapping of J onto J ′ such that a|z1 − z2| ≤ |h(z1) − h(z2)| ≤ b|z1 −
z2|,∀z1, z2 ∈ J . Then J ′ is uniformly K b

a
-oscillating.

Proof. Pick any Jordan arc I ′ ⊂ J ′. Let I = h−1I ′. Since I is K-oscillating, let z be

the Kpoint of I and Let C1 and C2 be the 2 components of I\{z}. If z′ = h(z) we

claim that z′ is a K b
a

point for J ′. Let C ′
1 and C ′

2 be the 2 components of I ′\{z′}.
Let

d′ := diam (I ′)

and

d := diam I

Then By the Lipchitz condition

a|z1 − z2| ≤ |h(z1)− h(z2)|

we have that

(4.1.1) d ≤ d′

a

Then for i = 1, 2 by the Lipchitz condition |h(z1) − h(z2)| ≤ b|z1 − z2| and the

fact that I is uniformly K-oscillating we have

diam (C ′
i) ≤ b diam Ci ≤ Kbd

By (4.1.1) we have

diam (C ′
i) ≤ K

b

a
d′
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Figure 4.3: Mapping a single interval on R

4.2 Julia-Type Laminations on the Circle

In this section we will prove that a Julia-type lamination on T is conformal. The

proof will involve a sequence of lemmas, where we shall first consider the case of a

single complementary interval on the real axis (Lemma 4.2.1). We use the result

to consider a single complementary interval on a Jordan curve (Lemma 4.2.2). In

Lemma 4.2.3 we will consider a single complementary interval on a curve γ ' T/L′,

where L′ is a sublamination with a finite number of complementary intervals. Finally,

we will use the result of Lemma 4.2.3 inductively, to prove Theorem 1.3.1.

Definition 4.2.1. : Let I be a Jordan arc or curve in Ĉ which is the boundary of

a domain Ω. We shall call the set of point {z : z ∈ Ω, dist (z, I) < ε}, an open ε

neighborhood of I in Ω and denote it either by Nε(I),or Bε(I).

Now we state and prove Lemma 4.2.1 (see fig 4.3):

Lemma 4.2.1. Let γ = [p, q] be a closed segment ⊂ R ⊂ H+. Let x0 ∈ [p, q]be given.

Let ε∗ > 0 be given. Let C be any compact set ⊂ H+disjoint from [p, q]. Then there

exists a neighborhood N([p, q])of [p, q] disjoint from C and there exists a conformal

mapping φ : H+ → H+, continuous upto the boundary, and points p1, q1 ∈ [p, q] with

p1, q1 arbitrarily close to p, q respectively, such that

(i)φ(∞) = ∞.
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(ii)φ(p) = φ(q) = x0

(iii)R ⊂ φ(R)and φis injective on R\{p, q}

(iv)‖φ(z)− z‖ ≤ ε∗, ‖φ′(z)− z‖ ≤ ε∗, ∀z 6∈ N([p, q]).

(v)‖φ(z)− z‖ ≤ ε∗, ∀z ∈ [p1, q1].

(vi)=φ(z) ≤ ε∗,∀z ∈ [p, q].

Proof. Consider the mapping:

fx,δ(z) =
√

(z − x)2 − δ2 + x, x ∈ R

which is conformal in H+and continuous upto the boundary. On the real axis, it

maps the point x to x + iδ and the points x± δ to x. Let x1 be the midpoint of [p, q]

and δ = |q−p|
2

. Let φ1 = fx1,δ(z). Let φ2 be the map as described in Cor 3.2 with

γ = φ1[p, q]. Then φ2 ◦ φ1[p, q] is a Jordan curve with φ2 ◦ φ1(p) = φ2 ◦ φ1(q) ∈ R and

φ2 ◦ φ1R\(p, q) = R. Let Ω = φ2 ◦ φ1(H+\(p, q)).
Pick any points z1, z2 ∈ H+. Let γ1 be a Jordan curve in H+, containing the points

(z1, z2, x0), such that γ1 is contained in the triangle with vertices at z1, z2 and x0. Let

φ3 be the Riemann map that maps Ω onto H+\γ1. Now define φ := φ3 ◦φ2 ◦φ1. Note

we can choose φ such that φ(p1) = z1 and φ((q1) = z2. So φ : H+ → H+, is conformal

and continuous upto the boundary and satisfies (i), (ii) and (iii). Since C is a closed

set disjoint from [p, q] there is an open neighborhood N([p, q])of [p, q] disjoint from

C. We can pick the 2 vertices z1, z2 of γ1 to be in N([p, q]) and furthermore we can

choose z1 to be arbitrarily close to p and z2 to be arbitrarily close to q.

We now show that we can choose φ to be uniformly close to the identity outside of

N [p, q]. Let N1[p, q] ⊂ N [p, q] and N1[p, q] ∩ R = [p0, q0]. Now we choose a sequence

of curves γn
1 , as above, which converge to the interval [p, q]. Let φn be the associated

conformal maps. Note that we can reflect the conformal map φn|H+\[p0,q0] by reflection

to φn(Ĉ\[p0, q0]). Since φn are a normal family, they contain a a subsequence that

converges on compact sets of Ĉ\[p0, q0]). Let f be the limit function. Note that as
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Figure 4.4: Mapping a single interval on a Jordan curve

n gets larger the harmonic measure with respect to ∞ of the arc (φ(p), z1) goes to

zero. Hence for any x, p′ ∈ R with x < p′ < p we have that picking n large enough,

the harmonic measure of [φn(x), φn(p′)] is arbitrarily close to |φn(x) − φn(p′)|. Also

for any ε > 0, there exists an n and p′ with p′ < p such that |φn(p′) − p′| < ε.

Hence limn→∞ φn(x) = x. Hence the limit function f has to be the identity function.

This proves (iv) and and a similar argument proves (v). Furthermore we can choose

=(z1) < ε∗ and =(z2) < ε∗ and so (vi) holds.

Note: In the proof of the lemma, φ maps the segment [p, q] onto an ‘almost

degenerate’ triangle γ1, with vertices z1, z2 and x0. We can choose γ1 to be any

Jordan curve as long as it contains the points z1, z2 and x0 and γ1 is contained in the

triangle with vertices z1, z2 and x0.

We now generalize the results of Lemma 4.2.1 to a Jordan curve (see fig 4.4).

Lemma 4.2.2. Let γ be a Jordan curve in Ĉ, which does not contain the point ∞.

Let Ω be the unbounded component of Ĉ\γ. Let γ1 be a compact subarc of γ with a, b

as the endpoints, which is uniformly K-oscillating. Let d =diam (γ1) Let z0 be a K

point of γ1. Let ε∗ with 1 > ε∗ > 0 be given. Let C be any compact set disjoint from

γ1. Then there exists a neighborhood N(γ1)of γ1 disjoint from C, and a conformal

mapping continuous upto the boundary, φ : Ω → Ĉ, such that

(i)φ(a) = φ(b) = z0, φ(∞) = ∞
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(ii)φis injective on γ\{a, b}

(iii)φ(γ\γ1) = γ

(iv)φ(γ1) ⊂ N(γ1)

Further more there exist points a1, b1 ∈ γ1 such that if C1, C2, C3 are the three

components of φ(γ1)\{φ(a1), φ(b1), φ(a):

(v)‖φ(z)− z‖ ≤ d, ∀z ∈ N(γ1)

(vi)‖φ(z)− z‖ ≤ ε∗,∀z ∈ Ω\N(γ1).

(vii)(1− ε∗)|z1 − z2| ≤ ‖φ(z1)− φ(z2)‖ ≤ (1 + ε∗)|z1 − z2|,∀z1, z2 ∈ Ω\N(γ1).

(viii)For i = 1, 2, 3, Ciare uniformly K + ε∗oscillating.

(ix)For i = 1, 2, 3, for any subarc I ⊂ φ−1(Ci) diam φ(I) ≤ max{diam I, Kd}+ ε∗.

Proof. Let R : Ω → H+ be the Riemann map that takes ∞ to ∞. Since γ is a Jordan

curve R can be extended continuously and injectively to the boundary. Since both

R−1and (R−1)′ are continuous on the compact set H+, they are both equicontinuous.

Hence for any ε1 > 0, ∃δ > 0 such that if for any x, y ∈ H+, |x− y| < δ, then

(4.2.1) |R−1(x)−R−1(y)| < ε1

and

(4.2.2). |(R−1)′(x)− (R−1)′(y)| < ε1

Let R(a) = p ∈ R, R(b) = q ∈ R, R(z0) = x0 ∈ R. Let φ1 be the map described

in Lemma 4.2.1, with δ = ε∗. Pick N([p, q]) as described in Lemma 4.2.1 such

that R−1N[p, q] ∩ C = ∅. Let N(γ1) =⊂ R−1N([p, q]) with diameter N(γ1) < ε∗. Let

R−1(p1) = a1 and R−1(q1) = b1. Now define φ = R−1 ◦ φ1 ◦R.

It is clear that φ satisfies (i) − (iv). (v) follows from (iii) and (iv) of Lemma
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4.2.1, since the diamNγ1) < ε∗. To see that (vi) holds note that ∀z 6∈ N(γ1),

(4.2.3) ‖φ(z)− z‖ = ‖R−1 ◦ φ1 ◦R(z)− z‖ = ‖R−1 ◦ φ1(w)−R−1(w)‖

But

‖φ1(w)− w‖ ≤ δ

by construction of φ1. Hence by (4.2.1) and (4.2.3) it follows that

‖φ(z)− z‖ ≤ ε∗1.

Since this is true for any arbitrary ε∗1 > 0, it follows that φ(z) can be chosen

arbitrarily close to the identity in Ω\N(γ1). This proves (vi). To show that (vii)

holds, we replace R−1 by (R−1)′ in the above argument. Hence by (4.2.2) and (4.2.3)

it follows that φ′(z) can be chosen to be arbitrarily close to 1 in Ω\N(γ1). Hence

(vii) holds.

We now show that (viii) holds. We denote by C1 the Jordan arc with endpoints

φ(a) and φ(a1), by C2 the Jordan arc with endpoints φ(a1) and φ(b1), and by C3 the

Jordan arc with endpoints φ(b1) and φ(a). Let i = 1, 2, 3. By the Note following

Lemma 4.2.1 we are free to choose the Jordan arcs R(Ci), as long as they are

contained in the triangle with vertices φ1◦R(a), φ1◦R(a1) and φ1◦R(b1). In particular

we can choose them such that Ci are uniformly K + ε∗ oscillating. It remains to

show that (ix) holds. Since diam N(γ1) < ε∗ and φ(γ1) ⊂ N(γ1)we have that the

dist(Ci, γ1) < ε∗. Since z0 is a K point of γ1 it follows that

1) for i = 1, 3 diam (Ci) ≤ Kd + ε∗ and

2) diam (C2) ≤ d + ε∗.

Hence (ix) holds.

We now describe the setup for the statement of Lemma 4.2.3. Let L be a Julia-

type lamination on T that is generated by a countable number of Cantor sets {Ci}∞i=1.
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Figure 4.5: A finite number of Jordan curves

Let {Ij}∞j=1, be the set of complementary intervals with equivalent end points of L. By

the definition of a Julia-type lamination, for any two such complementary intervals,

either one is strictly contained in the other, or their closures are disjoint. Now consider

the sublamination L′, such that the set of complementary intervals with equivalent

end points of L′ is finite, say I∗1 , ....I
∗
n. Note that the curve Γ = T/L′ is homeomorphic

to ∪n
i=1Ji, where each Ji is a Jordan curve and is the image under the quotient map

of some Ik. Furthermore for any r, s either Jr ∩ Js = {∅} or Jm ∩ Jn = {z}. Also,

since T/L is defined upto a homeomorphism we can assume that ∞ 6∈ T/L′. Then

T/L′ is the boundary of a domain containing the point ∞, (see fig. 4.5).

We now state and prove Lemma 4.2.3.

Lemma 4.2.3. Let L be a Julia-type lamination on T generated by the Cantor sets

{Ci}∞i=1 and let {Ij}∞i=1, be the set of complementary intervals with equivalent end

points of {Ci}∞i=1.. Let L′, be a sublamination of L with complementary intervals with

equivalent end points {I∗k}n
k=1.

Let Γ ' T/L′ = ∪n
i=1Ji, where each Ji is a Jordan curve. Let I ′j ⊂ Γ be the image

of Ij under the quotient map. Let Ω be the unbounded component of Ĉ\Γ.

Assume that if Ij 6∈ {I∗k}n
k=1, then∃ an open neighborhood B(I ′j) such that B(I ′j)∩Γ

is uniformly K-oscillating, for K < 1.
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Let Î ∈ {Ij}∞i=1 and Î 6∈ {I∗k}n
k=1 be given. Then the image of Î under the quotient

map, Î ′ is a Jordan arc with end points, say a and b, and Î ′ is contained in a Jordan

curve, say J ′. Let d be the diameter of Î ′. Let 1 > ε > 0 be given. Then there exists

a conformal mapping:

φ : Ω → Ĉ

which is continuous on Γ and:

(i)φ is injective on Γ\{a, b}and φ(a) = φ(b).

(ii)∀I 6∈ {I∗k}n
k=1,∃ an open nhbd B(φ(I ′))such that B(φ(I ′))∩φ(Γ)isK+ε uniformly oscillating.

(iii)∀I 6∈ {I∗k}n
k=1, diam φ(I ′) ≤ max{diamI ′, Kdiam d }.

(iv)∃N(Î ′)such that,∀z ∈ Γ∩N(Î ′), ‖φ(z)−z‖ ≤ d+ε and ∀z ∈ Γ\N(Î ′), ‖φ(z)−z‖ ≤ ε.

(v)φ(Γ) = ∪n+1
i=1 J ′i ,where each J ′iis a Jordan curve, and J ′k ∩ J ′l = {∅}or{zkl}.

Proof. First note that by the definition of a Julia-type lamination, no two comple-

mentary intervals with equivalent end points can have a common end point. Hence

there exists a neighborhood, B∗(Î ′) of Î ′ such that

1)B∗(Î ′) ∩ Γ = B∗(Î ′) ∩ J ′

2)For any I ′ ∈ {I ′j}, if I ′ ∩B∗(Î ′) 6= ∅ and I ′ ∩ Î ′ = ∅, then diam (I ′) ≤ ε

2

3)B∗(Î ′) ⊂ B(Î ′)

Now pick φ as described in Lemma 4.2.2 with

(4.2.1) J ′ = γ

(4.2.2) Î ′ = γ1
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Furthermore pick and N(Î ′), a1, b1 ∈ Î ′ and ε∗ > 0 as defined in Lemma 4.2.2

such that

(4.2.3) N(Î ′) ⊂ B∗(Î ′)

(4.2.4).
1 + ε∗

1− ε∗
K < K + ε and ε∗ <

ε

2

(4.2.5) a1, b1are not in the closure of any complementary interval

(4.2.6) The points ∂N(Î ′) ∩ Γare not in the closure of any complementary interval

Observe that 4.2.5 and 4.2.6 are true by (ii) of definition 1.2.6 of a Julia-type lami-

nation. Also note that the diam N(Î ′) < ε∗ < ε
2
. We now show that the statements

(i)− (v) hold for φ

(i) follows directly from (i) and (ii) of Lemma 4.2.2.

To prove (ii) first note that by definition 1.2.6 and(4.2.6) the closure of any

complementary interval, I ′, either contains Î ′, or is contained in N(Î ′) or disjoint

from it. If I ′, contains Î ′ then φ(I ′) ⊂ (I ′). Hence (ii) is true. It remains to consider

the following two cases:

Case 1:First consider the case of a complementary interval, I ′ such that the closure

is disjoint from N(Î ′). Then, there is an open neighborhood B(I ′) disjoint from N(Î ′)

such that B(I ′) ∩ Γ is uniformly K-oscillating. By (vii) of Lemma 4.2.2, we have

that ∀z1, z2 ∈ B(I ′),

(1− ε∗)|z1 − z2| ≤ ‖φ(z1)− φ(z2)‖ ≤ (1 + ε∗)|z1 − z2|

Since B(I ′)∩Γ is uniformly K-oscillating, it follows by claim 4.1, that φ(B(I ′))∩φ(Γ)

is 1+ε∗
1+ε∗K uniformly oscillating. And by (4.3.4) it follows that φ(B(I ′))∩φ(Γ) is K + ε
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uniformly oscillating. With B(φ(I ′)) := φ(B(I ′)) the statement holds.

Case 2: Now consider the other case where I
′ ⊂ N(Î ′). Then there exists an

open neighborhood B(I ′) ⊂ N(Î ′). If I ′ 6⊂ Î ′, then φ(B(I ′)) ∩ φ(Γ) ⊂ N(Î ′) ∩ Γ, by

(iii) of Lemma 4.2.2. But N(Î ′) ∩ Γ is uniformly K-oscillating by 4.3.3. and so it

follows that φ(B(I ′)) ∩ φ(Γ) is uniformly K-oscillating. With B(φ(I ′)) := φ(B(I ′))

the statement holds.

If I ′ ⊂ Î ′, then there exists an open neighborhood B(I ′) such that φ(B(I ′)) ⊂ Ci,

for i = 1, 2, 3 by our choice of a1 and b1in (4.2.5). It then follows from (viii) of Lemma

4.2.2 that φ(B(I ′)) is uniformly K + ε oscillating. With B(φ(I ′)) := φ(B(I ′)) the

statement holds.

To see that (iii) holds we consider the following two cases separately:

Case 1: Let I ′ ∩N(Î ′) = {∅}. Then by (vi) of Lemma 4.2.2 and (4.2.4) we have

that ∀z ∈ I ′

‖φ(z)− z‖ ≤ ε∗ ≤ ε

2

Hence diamφ(I ′) ≤diam (I ′) + ε.

Case 2: Let I ′ ∩N(Î ′) 6= ∅. Then either I ′ is disjoint from Î ′ or I ′ ⊂ Î ′

Subcase 1: If I ′ ∩ Î ′ = ∅ then by (4.2.2) it follows that diam (I ′) ≤ ε
2
. Since z0 is

a K point of Î ′ and the diameter of N(Î ′) ≤ ε, it follows that diam φ(I ′) ≤ K diam

Î ′ + ε.(see fig 4.6)

Subcase 2:

If I ′ ⊂ Î ′, then (iv) follows directly from (ix) of Lemma 4.2.2 .

hence (iii) holds.

The statement (iv) follows directly from (v) and (vi) of Lemma 4.2.2.

To see that (v) holds, note that φ is conformal off J ′. Hence for i = 1, 2..n since Ji

is by assumption, φ(Ji) is , except for φ(J ′). But φ(J ′\Î ′) = J ′, by (iii) of Lemma

4.2.2, which is by assumption.And φ(Î ′) is a Jordan arc.
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Figure 4.6: diam φ(I ′) ≤ K diam Î ′ + ε

Before proving Theorem 1.3.1, we prove the following lemma which shows that

to prove the uniform convergence of a normal family of functions in D∗ it suffices to

show uniform convergence on the boundary of D∗.

Lemma 4.2.4. Let {fi}∞i=1 be a normal family in D∗ such that for each i

(i)fi : D∗ → Ĉ extends continuously in D∗to fi

(ii)fi(∞) = ∞

(iii)N(∞, R) ⊂ Di ⊂ N(∞, R0), whereDi = fi(D∗)

And ∃g(z) : T→ Ĉsuch that

(iv) lim fi|T → g(T) uniformly

Then the limit function f(z) of {fi}∞i=1 extends continuously in D∗ to f .

Proof. Using the conformal mapping z → 1
z

we can replace D∗ by D and∞ by 0 in the

lemma. Let fik be a subsequence which converges uniformly on each compact set of D

to f(z). Let Dik = fik(D. We show that ∂Dik = fik |T are uniformly locally connected
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closed sets. This will be sufficient to prove the lemma, since Pommerenke, (Cor 2.4,

[24]) has shown that pointwise convergence in D and uniform local connectedness of

∂Dik implies uniform convergence in D.

Let fi|T → g(T). Let ε > 0 be given. Since g(z) is the uniform limit of continuous

functions, it is a continuous function. Hence g(T) is a locally connected closed set.

So ∃δ such that ∀a, b ∈ g(T, ‖a − b‖ < δ, there exists a continuum B ⊂ g(T) such

that diam (B) < ε
2

and a, b ∈ B. Since fik |T converge uniformly to g(T), there exists

a K such that ∀k ≥ K:

‖fik(z)− g(z)‖ < max(
ε

4
,
δ

4
),∀z ∈ T

For any k ≥ K, consider ak, bk ∈ fik |T such that ‖ak − bk‖ < δ
4
. Then pick xk ∈

fik |−1
T (ak) and yk ∈ fik |−1

T (bk). Then ‖g(xk)−g(yk)‖ < 3δ
4
. By assumption there exists

a continuum B ⊂ g(T) such that diam (B) < ε
2

and xk, yk ∈ B. Let C = g−1(B) and

fik |T(C) = Bk. Then since xk, yk ∈ C,we have thatak, bk ∈ Bk. But diam Bk ≤diam

B + ε
2
≤ ε

2
+ ε

2
= ε. So k ≥ K, ∂Dik are uniformly locally connected closed sets.

Since there are only a finite number of Dik such that k < K and each is a closed

locally connected set, we have that ∂Dik are closed uniformly locally connected sets.

It follows that fik(z) converge uniformly to f(z), z ∈ D. Hence we can extend f(z)

continuously to D by defining f(z) = g(z),∀z ∈ T.

We now prove Theorem 1.3.1:

Proof. To prove the theorem we will define a sequence of functions {φi}∞i=1, where

φi(Ωi) → Ĉ will be conformal in Ω and continuous in Ω. we will show that the se-

quence kn := φn◦φn−1◦...φ1 is a normal family in D∗ and each kn extends continuously

to T. We will show that the sequence converges on T and hence by Lemma 4.2.4

on all of D∗. We will then show that the limit function k : D∗ → Ĉ is the required

function.
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First note that it suffices to prove the theorem, where k identifies the end points

of all but one complementary interval, say Ĩ. Then T\ Ĩ is a Jordan arc, which is K-

oscillating, with K < 1. Pick K∗,such that K < K∗ < 1. Let δ = K∗−K. From now

on L will refer to this modified lamination, which does not have Ĩ as a complementary

interval. Let S be the countable set of all the complementary intervals of all the Lj.

Let d = max diam(I), I ∈ S.

Assume φi−1 has been defined. Let ki−1 = φi−1 ◦ ...φ1. Assume that:

A1) There exists a finite subset Si−1 ⊂ S which we denote by {I∗j }ki−1

j=1 . If L′ is the

sublamination of L with Si−1 as the set of complementary intervals then ki−1(T) '
T/L′. So ki−1(T) is a finite union of Jordan curves, and the intersection of any two

such curves is either empty or a singleton.

A2)If I ∈ S and I 6∈ Si−1 then ki−1(I) is uniformly K + Σi−1
j=1

δ
2j oscillating.

A3) If I ∈ S and I 6∈ Si−1 then diam ki−1(I) ≤ (K∗)i−1d

We now define φi as follows:

Consider all I ∈ S\Si−1 such that diamki−1(I) ≥ (K∗)id − δ
2i . There are only a

finite number of such I. We denote them by Si = {I i
1, ...I

i
li
}. For t = 2, 3...li, we

denote the image of these intervals under the mapping ht−1 ◦ ...h1 ◦ki−1 by {I ′i1, ...I ′ili}
We will use Lemma 4.2.3 li times to define the function

φi = hli ◦ ...h1

For t = 2, 3...li, we define ht using Lemma 4.2.3:

ht : ht−1 ◦ ...hi ◦ ki−1(D∗) → Ĉ

is conformal and continuous up to the boundary and

1)J ′ is the Jordan curve in ht−1 ◦ ...hi ◦ ki−1(T) that contains I ′it

2)Î ′ = I ′it

3)ε = δ
li×2i+1

4)N(I ′it) is disjoint from N(I ′it−1) ∪ ... ∪N(I ′i1)
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We now show that assumptions A1-A3 are valid.

A1 follows directly from (i) and (ii) of Lemma 4.2.3.

We define Si = Si−1 ∪ Si. So A3 is valid.

By our choice of ε and (iii) of Lemma 4.2.3, we have that if I ∈ S\Si then ki(I)

is uniformly K + Σi
j=1

δ
2j oscillating. Hence A2 is valid.

To prove the theorem we first show that the sequence {ki}∞i=1 converges uniformly

in D∗. Since the range of each ki omits the unit disc, by Montel’s theorem it is a normal

family. By Lemma 4.2.4 it suffices to show that {ki}i=1∞ converges uniformly on

T.

We claim that ∀i ∈ N:

‖φi(z)− z‖ ≤ (K∗)i−1d +
δ

2i
,∀z ∈ T

We denote the union of the neighborhoods around the complementary intervals of

Si constructed in the proof of the theorem, by N . If z 6∈ N then by (iv) of Lemma

4.2.3 we have

‖φi(z)− z‖ ≤ δ

2i

If z ∈ N then by our choice of these neighborhoods z can belong to atmost one

of them. Hence

‖φi(z)− z‖ ≤ (K∗)i−1d +
δ

2i

which proves the claim.

Now ∀n,m ∈ N, n > m

‖kn(z)− km(z)‖ = ‖φn ◦ φn−1...φm+1(z)− z‖ ≤ Σn−1
j=m(K∗)jd + Σn

j=m+1

δ

2j

Since the R.H.S. can be made arbitrarily small, it shows the sequence converges

uniformly on the unit circle.

We now show that picking the neighborhoods N(I ′i1)...N(I ′ili) small enough we

can ensure that if a, b ∈ ∪∞j=1mult(Lj) and a 6∼ b under L, then k(a) 6= k(b). Let
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aj, j = 1..n be the image of the end points under ki−1 of I∗j , which are not equivalent

to each other under L. Note that we can pick the neighborhoods N(I ′i1), ...N(I ′ili)

small enough so that the distortion in the distance between ki−1(I
∗
j ) under φi is

arbitrarily small. Since this is true for all φm,m ≥ i, we have that the sum of

the distortion in the distances at every step can be made arbitrarily small. Hence

if a and b are contained in the closures of disjoint complementary intervals with

equivalent end points, then k(a) 6= k(b). In particular if a, b ∈ mult(L) and a 6∼ b,

then k(a) 6= k(b). Furthermore, we can pick the neighborhoods N(I ′i1), ...N(I ′ili)

small enough so that the distortion in the distance between a, b ∈ ki−1(I∗j ), under φi

is arbitrarily small. In particular, ‖φi(a)−φi(b)‖ ≤ ‖a−b‖
4

. If a and b are not contained

in the closures of disjoint complementary intervals with equivalent end points, then

by (ii) of definition 1.2.6 there exists a smallest complementary interval I(this could

be T also) which contains both a and b. Now there are two possibilities: In the first

case, no complementary interval contained in I contains either a or b. In this case by

our choice of N(I ′i1), ...N(I ′ili), k(T) contains a Jordan arc containing both k(a) and

k(b). It follows that k(a) 6= k(b). In the other case we have that no complementary

interval contained in I contains a, but b is contained in a smallest complementary

interval I ′ ⊂ I. In this case since k(I) ∩ k(I ′) is at most one point, which is the

pre-image of a multiple point, it follows that k(a) 6= k(b).

It remains to show that the limit function k(z)induces the lamination L. Since

k(z) : D→ Ĉ is a continuous function that is injective on D then by Theorem 1.1.1,

Lk is a closed, flat lamination. Note that by construction, if for any j ∈ N, (a, b) ∈ Lj,

then k(a) = k(b). Hence Lk ⊃ L. Hence, (a, b) ∈ L ⇒ k(a) = k(b).

We now show that k(a) = k(b) ⇒ (a, b) ∈ L.

We have already shown that if a, b ∈ mult(L) and a 6∼ b under L, then k(a) 6= k(b).

Now let a ∈ (mult(L))c. Then there is a neighborhood N(a) ∈ (mult(L))c of a in C,

such that every ki is conformal on this neighborhood. It follows that if z 6= a then

k(a) 6= k(z). This completes the proof that Lk = L.
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Note that if there is a curve γ = ∪∞i=1Ji where each Ji is a Jordan curve and

the intersection of any two Ji is either disjoint or a singleton, then we can define a

Julia-type lamination L on γ as follows: Conside a Cantor set on γ such that each

complementary interval with equivalent end points is contained in a unique Ji. Hence

we can define a Cantor-type lamination on γ as in Definition 1.2.4. The Julia-type

lamination is then well defined as in Definition 1.2.6.

The following corollary is a direct consequence of the proof of Theorem 1.3.1:

Corollary 4.2.1. : Let L′ be a totally disconnected lamination on T. Let γ = T/L′.

Then γ is homeomorphic to ∪∞i=1Ji, where each Ji is a Jordan curve and the inter-

section of any 2 such Jordan curves is disjoint or a singleton. Let L be a lamination

of Julia-type on γ. Then L is a conformal lamination.

Proof. The topology of γ is clear from the topology of the L′. Note that γ is compact

and the conformal map that induces L′ maps infinity to infinity. For any Jordan

curve Ji, the unbounded component of Ji can be mapped conformally to D∗, and the

mapping extends continuously and injectively to Ji. Now we can just follow the proof

of Theorem 1.3.1 to prove the lemma.
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Chapter 5

Totally Disconnected Laminations

In this chapter we will prove Theorem 1.3.2 that any totally disconnected lamination

on T, such that the closure of the set of multiple points is of logarithmic capacity

zero, is conformal.

5.1 Logarithmic Capacity and Fekete Points

In this section we will show that using the Fekete points, we can collapse a closed set

of logarithmic capacity zero to a single point. Let E be a compact set in C and G be

its unbounded component. For n = 2, 3... consider

4n(E) = max
z1,..zn∈E

Πn
k=1,k 6=jΠ

n
j=1|zk − zj|

The maximum is assumed for the Fekete points:

zk = znk ∈ E(k = 1, ...n)

It is not hard to show that the quantity 4n(E)
1

n(n−1) is decreasing in n (see [24]) .

The quantity

lim
n→∞

4n(E)
1

n(n−1)

thus converges and is called the logarithmic capacity or the transfinite diameter of

E. We first prove the following result:
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Theorem 5.1.1. Let E be any closed set of logarithmic capacity zero, on T. Let L

be the lamination defined as follows:

a ∼ b, if and only if a, b ∈ E

Then L is conformal.

Before proving Theorem 1.3.2 we prove 2 lemmas. Lemma 5.1.1 is a slight

modification of a result proven by Pommerenke (Prop 9.16, [24]).

Lemma 5.1.1. Let E ⊂ T be a closed set of capacity zero. Then there is a starlike

function h(z) = z + ....(z ∈ D) such that

(i)|h(z)| → ∞, asz → ζ, z ∈ D for each ζ ∈ E.

(ii)h(z) extends to a continuous function, h(z) : D→ Ĉ.

Proof. Let Hν be an open set containing E, (ν = 0, 1, 2...), and qn denote the nth

Fekete polynomial of E, such that, n (which depends on ν) is chosen to satisfy:

|qnν (z)| 1
nν < e−4ν

forz ∈ Hν

Let znνk, k = 1, 2..nν be the nν Fekete points. Then

h(z) = z

∞∏
ν=0

nν∏

k=1

(1− znνkz)
−1

nν2ν (z ∈ D)

is a starlike function and (i) holds as shown in Pommerenke.

To prove (ii) define the extension of h(z) as follows:

h(z) = z

∞∏
ν=0

nν∏

k=1

(1− znνkz)
−1

nν2ν , (z ∈ D\E)
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and

h(z) = ∞, (z ∈ E)

To show that this function is continuous on D, it suffices to show that the infinite

product
∏∞

ν=0

∏nν

k=1(1−znνkz)
−1

nν2ν converges uniformly on compact sets of D\E. This

is equivalent to showing the infinite series
∑∞

ν=0

∑nν

k=1
1

nν2ν log(1 − znνkz) converges

uniformly on compact sets of D\E. We will show that the absolute values of the

series converges normally. Let S be any compact set of D\E and d be the distance

between S and E. Then,

|log(1− znνkz)| = log|1− znνkz| = log|znνk − z| ≤ log|d|

Hence by picking ν = N large enough, we have that for any ε > 0,

∞∑
ν=N

nν∑

k=1

1

nν2ν
|log(1− znνkz)| ≤ 1

2N−1
log|d| ≤ ε

5.2 Conformal Maps That Separate Points

A compact curve γ in Ĉ is given by a parametric representation γ : φ(t), α ≤ t ≤ β,

with φ continuous on [α, β]. Note that since C is the continuous image of a locally

connected set, it is locally connected.

We will denote the spherical metric on Ĉ by ‖ ‖s.

Lemma 5.2.1. Let γ be a compact curve, not containing the point infinity. Let

φ(α) = 0,not be a cut point. Let Ω be the unbounded component of Ĉ\γ. Then there

is a conformal map g(z) : Ω → Ĉ, such that:

(i) g(Ω) is a Jordan domain, and g can be extended continuously to include the

point 0.

(ii) ‖g(z)− z‖s ≤ ε, ∀z ∈ Ω.
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(iii) g(∞) = ∞, g(0) = 0.

Proof. :Let ε ≥ 0 be given. Since g maps infinity to infinity, it is sufficient to prove

the lemma with the Euclidean metric, instead of the spherical metric. Let M be

the Riemann map from D → Ω, which maps ∞ to ∞. Let Cr be the contraction

Cr : z → z
r
, r ≥ 1. The mapping gr = MCrM

−1 : Ω → Ĉ is a conformal mapping of

Ω onto a Jordan domain,J , and maps ∞ to ∞. Since γ = ∂Ω is locally connected,

M extends continuously to D, which is a compact set. Hence this extension, call it

M is equicontinuous. So we can pick r, such that |M(w
r
)−M(w)| ≤ ε

2
,∀w ∈ D. So,

if M−1(z) = w,

|gr(z)− z| = |MCrM
−1(z)− z| = |M(

w

r
)−M(w)| ≤ ε

2
,∀z ∈ Ω

Since φ(α) = 0 is not be a cut point , we can extend gr continuously to 0 and

‖gr(0)− 0‖ ≤ ε
2

Let gr(0) = w, with |w| ≤ ε
2
. Then the mapping g(z) = gr(z) − w, satisfies the

requirements of the lemma.

The proof of the following corollary is a direct application of the lemma.

Corollary 5.2.1. Let γ1, γ2..γn be Jordan arcs in H+ which are disjoint except for a

common end point, x0 ∈ R. Let γ = ∪n
i=1γi and H+\γ = Ω. Let ε > 0 be given. Then

there is a conformal map g(z) : Ω → H+, which extends continuously to R such that:

(i) g(R) = R and g(Ω) is bounded by R and a Jordan curve which meets R at

exactly one point.

(ii) ‖g(z)− z‖s ≤ ε, ∀z ∈ Ω.

(iii) g(∞) = ∞, g(x0) = x0.

We now give the proof of Theorem 5.2.1.
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Proof. Let h(z) be the function described in Lemma 5.1.1 , and g(z) = 1
h(z)

. Note

that g(E) = 0 and g(∞) = ∞. We will now define a sequence of functions {fi}∞i=1,

inductively, and show the sequence converges uniformly on D to the required function

f(z).

Let {Ii}∞i=1 be the set of complementary intervals of mult(L) in T. We first define

f1(z) : D→ Ĉ as

f1(z) = h1 ◦ g(z)

where h1 is as defined in Corollary 5.2.2 with the curve γ = g(I1) and ε = 1
2
.

Assume fn−1 has been defined. Let

fn(z) = hn ◦ fn−1

where hn is as described in Corollary 5.2.2, with the curve γ = kn−1(In) and ε = 1
2n .

Then, given ε > 0, by picking N large enough we have ∀n,m ≥ N

‖fn − fm‖ =
∞∑

i=N

1

2i
≤ ε, ∀z ∈ D.

Let f(z) = limi→∞ fi(z).

We now show that the convergence is uniform in D. Let ε > 0 be given. Since

{fi}∞i=1, converge uniformly in D∃N such that, ∀n,m > N ,

‖fn(w)− fm(w)‖ =≤ ε

3
,∀w ∈ D.

Since fn and fm can be extended continuously to the compact set D, the extended

functions, fn and fm are uniformly equicontinuous in D. Hence, ∃w∗ ∈ D such that

‖fn(z)− fn(w∗)‖ =≤ ε

3
,∀z ∈ D

and

‖fm(z)− fm(w∗)‖ =≤ ε

3
,∀z ∈ D
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Hence ∀n,m > N ,and z ∈ D,

‖fn(z)−fm(z)‖ ≤ ‖fn(z)−fn(w∗)‖+‖fn(w∗)−fm(w∗)‖+‖fm(w∗)−fm(z)‖ ≤ ε

3
+

ε

3
+

ε

3
= ε.

Hence f(z) can be extended continuously to f(z) : D → D. Since each fn is

conformal in D, the same holds for f(z).

And f(E) = limi→∞ fi(E) = 0. It see that f is injective on D\E, note that if

f(D) = G then ∂G has only one cut point, namely 0 and f−1(0) = E.

5.3 Totally Disconnected Laminations of Capacity

Zero

We now prove Theorem 1.3.2.

Proof. : Let {Ii}∞i=1 be the set of complementary intervals with nonequivalent end

points of mult(L) in T. We define an equivalence relation on the set {Ii}∞i=1 as follows:

Consider Ij and Ik. Let J1 and J2 be the two components of T\{Ij ∪ Ik}.

Ij ∼ Ik iff any equivalence class of L is completely contained in either J1 or J2.

The only thing we need to check is transitivity. Let Ij ∼ Ik and Ik ∼ Im. Let J1 and

J2 be the two components of T\{Ij ∪ Ik}. Without loss of generality, assume Im ∈ J2.

And Let J3 and J4 be the two components of T\{Ik ∪ Im}. So the components of

T\{Ij ∪ Ik ∪ Im} are J1, J3 and J2 ∩ J4. Hence transitivity follows. Now consider

the equivalence classes of {Ii}∞i=1, which have more than 1 member. These classes

are disjoint and are at most countable. Call them {Ei}∞i=1. Note that by Theorem

3.2.1, if a, b ∈ mult(L) and a 6∼ b, then there exists Ij, Ik such that a and b lie in

different components of T\{Ij ∪ Ik}.
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To prove the theorem we will define a sequence of functions {fi}∞i=1, inductively,

and show the sequence kn = fn ◦ fn−1... ◦ f1 ◦ g∗(z), n ∈ N, converges uniformly on D

to the required function f(z).

Let f(z) be the mapping defined in Theorem 5.1.1 which maps mult(L) to 0

and ∞ to ∞. We first define k1(z) : D→ Ĉ as

k1(z) = h1 ◦ f(z)

where h1 is as defined in Lemma 5.2.1 with the curve γ = f(E1) and ε = 1
2
.

Assume kn−1 has been defined Let

fn(z) = hn ◦ kn−1

where hn is as described in Lemma 5.2.1, with the curve γ = kn−1(En) and ε = 1
2n .

Then,as in the proof of Theorem 5.2.1, given ε > 0, by picking N large enough we

have ∀n,m ≥ N

‖kn − km‖ =
∞∑

i=N

1

2i
≤ ε,∀z ∈ D

Hence kn(z) converge uniformly on D to a limit function f(z) and by Theorem 3.2.1

f(z) separates all nonequivalent points. Hence f(z) satisfies the requirements of the

theorem.
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Chapter 6

Union of Julia-type and totally
disconnected Laminations

In this chapter we shall consider some examples of conformal laminations which can

be represented as a union of a totally disconnected and a Julia-type lamination.

Theorem 6.0.1. Let L be a closed, flat lamination on T. Let T/L = (T/L′′)/L′,

where L′′ is a totally disconnected lamination and L′ is a sublamination of Julia-

type on T/L′′. If mult(L′′) is of logarithmic capacity zero, then L is a conformal

lamination.

Note that the Julia-type lamination on T/L′′ is defined as in Corollary 4.2.1.

Proof. : By Theorem 1.3.2 L′′ is conformal. Let φ1(z) be the required conformal

mapping. By Cor 4.2.1 there exists a conformal mapping φ2 which induces L′. Then

since φ2 ◦ φ1(T) = (T/L′′)/L′ = T/L, we have that φ2 ◦ φ1 induces L.

We give some examples of laminations which are conformal by Theorem 6.0.1.

Example 1: Let C ⊂ T be a Cantor set. Let {Ij}∞j=1 be the set of complementary

intervals of C, and let Ij = (aj, bj). For each j let {p1, p2...pnj
} ⊂ (aj, bj) be a finite

set of points. Let L be the lamination whose equivalence classes {Ej}∞j=1, are defined

as follows:

Ej = {aj, p1, p2...pnj
, bj}.

The L is a conformal lamination. Note that sublamination of Julia-type S ′ of L is the

Cantor-type lamination that identifies aj and bj and the lamination L′′ that identifies
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Figure 6.1: Example 1

the points aj, p1, p2...pnj
, for each j ∈ N, is a totally disconnected lamination of

logarithmic capacity zero. Note that we do not include the point bj, in the equivalence

class. See Fig 6.1. Let φ1 induces L′′ and L′ = φ1(S
′) and T/L = (T/L′′)/L′.

Hence by Theorem 6.0.1, L is conformal.

Example 2: The lamination L, induced by the quadratic polynomial Pc : z →
z2 + c such that 0 is periodic of period 3 and Im(c) > 0 is not nowhere dense.

But each equivalence class Ei of L consists of exactly three points {ai, bi, ci}, see

Fig. 6.2. In Fig. 6.2, a typical equivalence Ei is the equivalence class denoted by

the points { 1
56

, 53
56

, 51
56
}. Let S ′ be the Julia-type lamination where each equivalence

class consists of the points {ai, ci} and L′′ be the totally disconnected lamination of

logarithmic capacity zero, where each equivalence class consists of the points {bi, ci}.
If φ1 induces L′′ then let L′ = φ1(S

′). Since T/L = (T/L′′)/L′, it then follows by

Theorem 6.0.1, L is conformal.

Example 3: Let C1 ⊂ I1 be a Cantor set of logarithmic capacity zero on the

upper semicircle. Let φ : I1 → I2 be a homeomorphism of the upper semicircle to

the lower, which fixes 1 and −1 such that φ(C1) ⊂ I2 is a Cantor set of logarithmic

capacity zero. Define a closed, flat lamination L which identifies the end points of

each complementary interval of C1 and φ(C1), and identifies the endpoints of the

corresponding homeomorphic complementary intervals, see Fig 6.3.
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Figure 6.2: Example 2:The lamination and the Julia set defined by the Rabbit

Figure 6.3: Example 3
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Figure 6.4: Example 4

Let S ′ be the Cantor-type sublamination that identifies the end points of each

complementary interval of C1 and φ(C1). Hence L′′ be the sublamination that identi-

fies the endpoints of the corresponding homeomorphic complementary intervals. This

is a closed lamination that is totally disconnected and the log cap(mult(L′′)) = 0.

Then if φ1 induces L′′, let φ1(S
′) = L′ and since T/L = (T/L′′)/L′, L is a conformal

lamination by Theorem 6.0.1.

Example 4: We consider the setup of Example 2, but now for each comple-

mentary interval of C1 and φ(C1) we introduce a Cantor-type lamination contained

in the complementary interval, see fig 6.4. Then the sublamination of Julia-type, L′

is a 2 generation Julia-type sublamination. L′′ is the same as Example 2. And so L

is conformal, by Theorem 6.0.1.

We conjecture that any closed, flat lamination on T such that log cap (mult(L)) =

0 is conformal. A possible approach to proving this conjecture would be to show that

any such lamination admits a decomposition as described in Theorem 6.0.1.

The idea is to show that any such lamination contains a ’maximal’ Julia-type

sublamination which is not properly contained in any Julia-type lamination. If L

is totally disconnected then we are done by taking L = L′′ and L′ as the trivial

lamination which has no multiple points. If not, then since L is nowhere dense,

by lemma 3.2.2 it contains a Cantor-type lamination L1, which is not identified

to a single point. Consider the set of all sublaminations of Julia-type of L that

contain L1. This is a nonempty set and since each element of the set is a subset of
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T × T, we can partially order this set by inclusion. By Zorn’s Lemma there exists

maximal totally ordered set Ω. Let S be the union of all members of Ω. Note that

S = ∪λ∈ΛLλ, where each Lλ is a Cantor-type lamination. We show that S satisfies

(i) of Definition 1.2.6. If Lj, Lk ∈ S, then Lj ∈ A1, Lk ∈ A2 for some A1, A2 ∈ Ω.

Since Ω is totally ordered, A1 ⊂ A2( or A2 ⊂ A1), so that Lj, Lk ∈ A2. Since A2

is a Julia-type lamination, mult(Lj) and mult(Lk) are pairwise disjoint. Hence (i)

is satisfied. Also, by the maximality of S, it is not properly contained in a Julia-

type lamination. However, in general S does not satisfy (ii) of Definition 1.2.6.

If (ii) does not hold for S, then there exist points (z, z′) ∈ S,with z 6= z′and (z, z′)

is not discrete. Let Z be the set of such points. Since L is nowhere dense, we

can find a countable number of complementary intervals with equivalent end points

(pn, qn) ∈ Lλn S ′ := S\{∪n(pn, qn) ∪ Z}satisfies (ii). We can do this by choosing the

pn and qn which are the end points of the countable complementary intervals of multS

in T. Furthermore, we can choose the (pn, qn) such that each point belongs to only one

Lλn . Then S ′ satisfies (i) and (ii) of Definition 1.2.6. S ′ is a Julia-type lamination

containing L1, that is not properly contained in any Julia-type sublamination of L.

Now if C is a Cantor-type sublamination of L that is disjoint from S ′ then for every

complementary interval with equivalent end points Ij = (aj, bj) of C, either aj or bj,

but not both, is an end point of a complementary interval with equivalent end points

of a Cantor-type lamination that generates S ′. To see this, note that both aj and bj

cannot be end points of such a complementary interval since L′ and C are disjoint.

However if neither aj and bj are such end points, then since L is closed there must

be a Cantor-type sublamination for which this is true. Note these points cannot be

any of the points pn and qn since they are the end points of complementary intervals

with equivalent end points of Lλn . Hence it follows that S is properly contained in a

Julia-type lamination, which is a contradiction.

Consider the set L2 := {L\S ′} ∪ {(x, x) : x ∈ T}. Since L is a flat lamination,

and S ′ is a flat sublamination of L, it follows that L2 is a flat set that is symmetric.

By definition, it is also reflexive. It is not in general a lamination since it might not

be transitive. For instance, if (a, b), (b, c), (c, a) ∈ L and only (a, b) ∈ L′,then L\S ′
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would not be transitive. However, it contains a transitive subset L′′ ⊂ L2, such that

T/L = (T/(L′′)c)/L′. To see this, consider an equivalence class, E of L which contains

multiple points of S ′ and L2. Now define the equivalence class of L′′ to be the set of

points E without the multiple points of S ′ except one. L′′ defined in this manner is

clearly a transitive subset of L2 such that (L′′ ∪ S ′)c = L. In the above example, this

would mean choosing either (c, a) or (b, c) in the equivalence class of L′′ depending

on whether we choose a or b as the multiple point of S ′.

Now if C is a Cantor-type sublamination of L, which is disjoint from S ′, then

by the flatness of L, any complementary interval with equivalent end points (a, b)

of C, is contained in, or contains an equivalent complementary interval,(a, c) of a

Cantor-type sublamination that generates S ′. The end point a is common for the two

complementary intervals as explained earlier. Now by transitivity of L, (b, c) ∈ L and

since S ′ is transitive (b, c) 6∈ S ′. In particular we can consider L′′, which contains only

(b, c) and not (a, b). Then, L′′ is a lamination that does not contain a Cantor-type

sublamination. However, it is not closed in general. Since L′′ and S ′ are disjoint, it

follows that L′ := π(S ′), where π is the projection map, is a Julia-type lamination

and T/L = (T/(L′′)c)/L′. We would need to show that (L′′)c which is of log capacity

zero is conformal and then the result would follow.
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