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Abstract

We investigate, numerically and analytically, the structure and stability of steady
and quasi-steady solutions of the Navier-Stokes equations corresponding to steady
stretched vortices embedded in a uniform nonsymmetric straining field, (az, 8y, vz),
o + 0+ = 0, one principal axis of extensional strain of which is aligned with the
vorticity. These are known as nonsymmetric Burgers vortices studied first by Robin-
son and Saffman (1984). We consider vortex Reynolds numbers R = I'/(2nv) where
I is the vortex circulation and v the kinematic vorticity, in the range Re = 1-10%
and a broad range of strain ratios A = (6 — «)/(8 + «) including A > 1, and in some
cases A > 1. A pseudo-spectral method is used to obtain numerical solutions cor-
responding to steady vortex states over our whole (R-\) parameter space including
A > 1, where arguments proposed by Moffatt, Kida, and Ohkitani (1994) suggest
the nonexistence of steady solutions. When A > 1, R > land e = A/R < 1, we
find an accurate asymptotic form for the vorticity in a region 1 < r/ \/2_1//; < e 12
giving, in some cases, near machine-precision agreement with our numerical solutions.
This suggests the existence of an extended region where the exponentially small vor-
ticity is confined to a near cat’s-eye shaped region of the almost two-dimensional
flow, and takes a constant value nearly equal to I'y/(4mv) exp[—1/(2e¢)] on bound-
ing streamlines. This allows an estimate of the leakage rate of circulation to infinity
as OT' /Ot = (.48475/4m)ye 'T'exp (—1/2eec) with corresponding exponentially slow
decay of the vortex when A > 1. This leakage rate differs substantially from that
estimated by Moffatt, Kida, and Ohkitani. The normal-mode linear stability of the
axisymmetric Burgers vortex (A = 0) to two-dimensional disturbances is calculated in
detail and the vortex is found to be stable at all Reynolds numbers. An iterative tech-
nique based on the Power method is used to estimate the largest eigenvalues for the
nonsymmetric case A > 0. Stability is found for 0 < A < 1, and a neutrally convective

mode of instability is found and analyzed analytically for A > 1. Our general con-



v
clusion is that the generalized nonsymmetric Burgers vortex is unconditionally stable
to two-dimensional disturbances for all B, 0 < A < 1, and that the vortex will tend
to move with the background strain when A > 1, but maintain its structure which
will change only through exponentially slow leakage of vorticity, indicating extreme

robustness in this case.
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Chapter 1 Introduction and Motivation

1.1 Burgers vortex

Two important dynamical mechanisms active in the fine scales of turbulence are
known to be the intensification of vorticity through vortex stretching and the dissi-
pation of energy produced in regions of large velocity gradients. This was first noted
by Taylor [20] and later, Burgers [4] found an exact solution to the Navier-Stokes
equations for a constant density fluid that modeled these processes. Burgers’ solu-
tion may be obtained by first decomposing the velocity field in Cartesian coordinates
(x,y, z) into an irrotational part corresponding to pure strain u, = (az, fy,vz) with
a-+f+v = 0, and a rotational part confined to the z-y plane, u,, = (u,v,0). The only
nonzero component of the vorticity, & = V x u is that in the z-direction, & = (0, 0, w),

and the relevant vorticity equation then reduces to

Ow

d
= (aaz+u>— +(By +v) 5‘; — w4+ vV, (1.1)
V3 = —w, u:%%, v:——g—f—. (1.2)

For the case of axisymmetric strain, a = 3 = —y/2, v > 0, a steady solution of (1-2)

is

= ey 13
w=—e (1.3)
which induces the angular velocity,
r e
oo = — |1 —e 4 1.4
oy = 5— (1-¢7% ), (14)

where T' is the total circulation. We will refer to this solution as the axisymmetric

Burgers vortex with the Reynolds number defined as R = I'/2nv. For the case of
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plane strain a =, 8 = 0, v > 0, a steady flow solution of (1.1)-(1.2) is
w = woe T/ (1.5)

where wq is the maximum vorticity. This solution is often referred to as the Burgers

vortex layer.

1.1.1 Relevance to turbulence

Burgers vortices have been used to model various features of turbulence including the
energy spectrum in the range of dissipation wavenumbers (Townsend [21]) and the
nearly-streamwise vortices which form in the braid region of the temporal mixing layer
(Lin and Corcos [13]). Interest in the properties of the Burgers vortex intensified fol-
lowing large scale numerical simulations of turbulence, for example Kerr[10], Vincent
and Meneguzzi [22], She et al. [19], Ashurst et al. [2], Reutsch and Maxey [16] and
others, which indicated that regions of high vorticity seemed to “self-organize” into
tube-like structures. Ashurst et al. [2] demonstrated a moderate correlation between
the direction of the vorticity vector and that of the strain eigenvector corresponding
to the intermediate eigenvalue and this, together with the tube observation, revived
interest in the Townsend-Burgers model of the fine scales. Whilst the structure of
the Burgers vortex may be too simple to explain the principal characteristics of the
probability distribution of the longitudinal velocity gradients (Saffman and Pullin
[15]), the numerical experiments of Jiménez et al. [9], do provide evidence that the
structure of the most intense vorticity, which occupies a small fraction of the fluid
volume and provides a small fraction of the dissipation, but which may yet may be
responsible for the tails of the velocity-gradient probability density functions, closely
resembles Burgers vortices. Furthermore, Jiménez and Wray [8] note that whenever
vortices are strongly stretched, the radius approaches the Burgers limit, and that the

cross section of these long coherent vortices will be elliptical in nature.



Figure 1.1: Flow visualization by Douady, et al.[5] showing intensification of vorticity
in to long, thin, tube-like structures. The Reynolds number is 80,000. Subfigures
a)-b) show axial and side views of the initial formation of a tube of length ~ 5cm
and diameter ~ 0.1mm. Subfigures ¢)-d) show the views of the tube 0.1s later.

1.1.2 Stability

Leibovich and Holmes [12] addressed the global stability of the axisymmetric Burgers
vortex using an energy method but found that there existed no finite critical viscosity
at which the vortex became unstable. They noted that this did not indicate stability
to all perturbations. Robinson and Saffman [17], henceforth referred to as RS84, using
perturbation methods, solved the corresponding linearized stability problem through
a series expansion in R, finding the Burgers vortex to be linearly stable for small
R. Buntine and Pullin 3] studied the merger and cancellation of Burgers vortices in
order to model the dissipation range energy spectrum for three-dimensional isotropic

turbulence.
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1.2 Stretched vortices in nonsymmetric strain

1.2.1 Symmetry considerations

Direct numerical simulations not only suggest the existence of vortex structures, but
also the tendency of these structures to pérsist over long periods of time, even when
their length reaches the integral scale of the flow (Vincent (22]). Flow visualization
by Douady et al. [5] (see Figure 1.1) of homogeneous turbulence has also shown the
persistence of intense vortex tubes. In all these cases it seems reasonable to suppose
that the vortex tubes were present in regions where the strain was not perfectly
axially symmetric, suggesting the relevance of nonsymmetric Burgers vortices. Here
it is convenient to consider, without loss of generality, cases where a < 0 <7, § > «

and define the field in terms of a single parameter, the strain ratio, A, where

——l1-wy, (1.6)
A= af,

The strain ratio is non-negative and uniquely defines the strain into the following

classifications:
A =0, a=[03=—v/2, axisymmetric axial strain
O0< A<l a<g<n, nonsymmetric axial strain
A=1, a=—y,0=0, plane strain
1<A<3, >0,8<7, biaxial strain
A =3, o = —2v,03 =, axisymmetric biaxial strain
A>3, 8>, extreme biaxial strain

where, for A > 3, it should be noted that the z-direction is no longer the direction of

maximum extensional strain.



1.2.2 Vortex structure

RS84 first proposed the generalized or nonsymmetric Burgers vortex corresponding
to strain geometries intermediate between axisymmetric and plane strain. They nu-
merically found steady solutions at Reynolds numbers up to 100 and strain ratios
0.25 < A £ 0.75. They showed that increased nonsymmetry of the strain tended
to increase the ellipticity of the vortex while increasing the circulation decreased the
ellipticity and rotated the vortex counterclockwise to a limit where the vortex was
aligned 45° to the axes of the strain. Kida and Ohkitani [11], in a study of the
spatiotemporal intermittency of a developed turbulence, found that vorticity tended
to be concentrated in long thin tubelike regions that resemble nonsymmetric Burg-
ers Vortex in structure. Moffatt, Kida, and Ohkitani [14], which we will refer to as
MKQO94, developed a large Reynolds number asymptotic theory of stretched vortices
in nonsymmetric straining fields. The structure of the vortices for the small param-
eter, A/R, was given as a correction to that of a Burgers vortex. Jiménez, et al. [7]
showed the asymptotic results from MKQO94 to be valid in a larger, elliptical region.
Furthermore, they provide evidence of vortices with elliptical structure in a numerical

simulation of decaying two-dimensional turbulence.

1.2.3 Stability

No comprehensive analysis of the stability of nonsymmetric Burgers vortices has been
presented thus far. Buntine and Pullin [3] calculated several examples of the relax-
ation of an initial vorticity distribution towards a nonsymmetric state, indicating
at least some measure of the stability to two-dimensional disturbances for A < 1.
MKOQO94 argued that the stretched vortices can survive for long times even when two
of the principal rates of strain become positive. From a far field analysis of the vor-
ticity, they indicate that for biaxial strain, vorticity away from the core of the vortex
will behave like a passive scalar and be convected to infinity, therefore eliminating

the possibility of a true steady solution in the region A > 1.



1.3 Outline

The layout of this thesis is as follows. We begin in Chapter 2 by by utilizing an exten-
sion of the pseudo-spectral method of RS84 to calculate solutions of the Navier-Stokes
equations corresponding to steady nonsymmetric Burgers vortices, over a wide range
of (R-)) space. When R is large and A > 1 we have no difficulty in obtaining ap-
parently steady solutions with vorticity at the level of machine precision far from the
vortex core. When A\ > 1, our numerical results suggest a method for obtaining an ap-
proximate analytical form for the vorticity field outside the region studied by MKO94
but confined by the strain to a cat’s-eye shaped region of nearly two-dimensional flow.
This approximation, developed in Chapter 3, confirms the exponentially small vor-
ticity away from the core and also provides a means of estimating the exponentially
slow leakage and convection to infinity of vorticity from the confinement zone. Our
estimate of the decay rate of the circulation differs substantially from MKO94.

A full numerical normal-mode treatment of the stability of the axisymmetric Burg-
ers vortex is given in Chapter 4. It is found that the axisymmetric vortex is stable
to two-dimensional disturbances, in which velocity perturbations are restricted to the
plane normal to the vorticity, for all Reynolds numbers. A Lagrangian convectively
neutral mode corresponding to an arbitrary bulk displacement of a compact vorticity
distribution embedded in a general linear velocity field is identified. When applied
to the steady generalized Burgers vortex, this implies a convectively neutral stability
which convects the vortex to infinity without change of form when A > 1. The normal
mode stability of the numerically obtained nonsymmetric steady vortex solutions is
studied in Chapter 5 using an extension of the power method. For the cases stud-
ied at R = 1, 10, 100 and 1000, when 0 < A < 1 (nonsymmetric axial strain), the
largest eigenvalue always corresponds to the above-mentioned convectively neutral
instability mode which, for this range of A, convects small bulk displacement of the
vorticity field into the undisturbed center of vorticity. This implies stability of the
nonsymmetric Burgers vortices for 0 < A < 1, for all R. When A > 1, the convec-

tively neutral mode is also found and the algebraically second largest eigenvalue is
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zero to the accuracy of our calculation. In an appendix, the steady exact solution to
the Navier-Stokes corresponding to the Sullivan vortex is shown to be stable to two

dimensional disturbances.



Chapter 2 Structure of Nonsymmetric

Burgers Vortices

2.1 Basic equations

Unless otherwise noted, all quantities are henceforth nondimensionalized using the
length and time scales /2v/y and 2/ respectively. Equations (1.1)-(1.2) become
Ow w Ow

Ow
—6?——5;—{-—8?+[(1+)\):1:—Ru]—a—:;+[(1——/\)y—Rv]

Ow

By + 2w, (2.1)

¥, W (2.2)

200 — — S
VY =—w, u 5y’ v 5

where w, u, v, z, y, and ¢, now denote dimensionless variables without change of
notation. This equation has three notable solutions. First, there is the axisymmetric

Burgers vortex solution, valid for all R at A =0,

w = Re~ =T/, (2.3)

Second, we have,

w =11 — A2 g2 (@NP+1-N?) (2.4)

which is valid for all A at R = 0, and third, for plane strain, there exists the Burgers

vortex-layer solution,

w=woe ™, (2.5)

which holds for A = 1 for all wy, but does not correspond to a confined vorticity

distribution and will not be studied presently, but is referred to in Chapter 3.



2.2 Numerical method

2.2.1 Pseudo-spectral method

Here we investigate numerically steady solutions to (2.1) for general A > 0. We

assume that w(z,y) decays exponentially when r = (z* +3?)¥/? — co independent of
direction. This allows use of a collocation method to approximate the vorticity with

the double series of sinc functions in z and y (see RS84),
w(z,y) = Z E wrS(k, hy; ) S by y), (2.6)
—MI=—N

where

sinf(r/)(C — j1)]
(/B)(C —Jh) 27

in a rectangular domain defined by —h,M...h, M x —h,N...h,N where wy are coef-

S(j,h;¢) =

ficients to be determined and M, N are specified series-truncation parameters. Inte-

gration and differentiation of the sinc function can be approximated using

M N

/+oow(a:,y)dm = h, Z > wiS(l hy;y) (2.8)

—oe —~MI=—N

'g_;_%(l')y) = Z Z ( . Z kwpl) khx,a:)S(l,hy,y)

k=—Ml=—-N

We will only need n = 1, 2, for which

6L = g QI P R < e P S (2.9)

nm)7 (n__m)2

On substituting (2.6) into (1.2), the Poisson equation may be solved in terms of
the Fourier transform of the vorticity, &, to give the approximated velocities at each

of the collocation points as

— (6= )] [#+ )~ Hly = 7))

@(5,77) — hmhyei(ﬁkhﬁnlhy) [H(& +
Y
(2.10)
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where H is the heaviside function. This yields approximated velocities at each of the

collocation points as

u= 27?)2 // 52 ‘i@””y)dfdn, (2.11)
- g_f - ﬁ / / €2i”n2e—i<fz+"y)d§dn. (2.12)
From this, the coefficients of the expansion of the velocities in terms of sinc functions
are
Ui = _%I(l)lz k> Vij = %Ii(f)k,j_l, (2.13)
where
= [ 2 sin(G - Drmcos( — re)agdn, (214
0 Jo a2+ n?
19, = [ [ inlli— b cos((G — Demydedn.  (215)
’ 0 Jo o2&+ n?

Due to the difficulty evaluating these double integrals, it is more efficient to calculate

I, » numerically using,

T /1 a sin’[(mm + nrz) /2] n sin’[(mm — naz)/2] dz, (2.16)
’ 0o 1+ a?z? mn + nrz mmT — NTx
n /1 ot sin’[(mmz + nm) /2] L sin’((mrz — nr) /2] iz,
0o o+ z? mnT + nm mrEr — N

o, - /1 o [sin2[(m7r + nrz)/2] N sin’((mm — ) /2] dz, (2.17)

a? + 2 mm + nrz M7 — NTT
/1 o sin®[(mnz + nrr) /2] n sin’[(mnz — nr)/2] g
z.
0 14+ a2x? mnz + nw MTL — nT

Then, by inserting (2.6) into (2.1) and using (2.8), we obtain

2
By = h2 Z 8wy + ZZ 8w + 2wy

T k=—M y

+[(1 + €)s uu Z 61(;)‘%1 (1—¢)j— —un Z 5 w,l,(2.18)

y I=—N
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where

M N
=—— Z Z [(-—l’t——kwk’l’ Vij = Z Z ’L—k] Wkl (219)
Ml=-N

—MIl=—N k=—

Two constraints to this equation are applied; first, we fix the total circulation and
second, we fix the centroid of vorticity in accordance with RS584. The circulation is
fixed at 27 by adding the term p(i, 5) (hmhy M uSN o — 27r) to (2.18) where
p(i,7) is a random number function that decouples the last term from the other
equations. Second, since the equations are invariant under a 180° rotation, Fj; =
F_;_;, we can fix the centroid of vorticity at the origin and also reduce the number

of unknowns to (2M + 1)N + M + 1.

2.2.2 Accuracy

With M and N fixed, this system is solved using Newton-Raphson method where the
Jacobian is Jiji = OF;;/0zy. BEuler continuation in A starting from the axisymmetric
Burgers vortex is used to expedite results, but this is not necessary for convergence,
which is defined by |Jjjx (W3 — w8 lmax < 10712 and |whoundary/ Rlmax < 107°. Second
order convergence is always obtained within a few iterations. Given that the Jacobian
contains ((2M + 1)N + M + 1)? elements, we were limited by storage capacity to a
maximum square domain of M, N = 50, rather than by a CPU time constraint.

In order to determine the best possible values for the basis spacing h, and h,,
the code is tested using the axisymmetric case and it is found, by trial and error,
that both the error from the Newton-Raphson method and the maximum value of
the vorticity at the boundary are minimized by using h, = \/;r/—M and h, = m ,
leading to a domain size of V7T M x v/7N. Since the Burgers vortex is axisymmetric,
the best domain shape corresponds to a square, M = N, but choice of domain aspect
ratio depends quite strongly on the shape of the function to be approximated. At
low Reynolds numbers, strain tends to elongate the vortex, therefore a rectangular
domain can be used for greater accuracy. At higher Reynolds numbers, the vortex

tends to be less elliptical, thus M = N is used as before, but since the vortex aligns
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itself at an angle to the strain, domain size efficiency can be maximized by allowing
strain to be rotated through an angle, ¢, where the velocities are
08—«

2

2

Uy = axcos’ g+ frsin’® P+ ysin 2¢, (2.20)

2 sin2¢, (2.21)

uy, = Pycos®d+ aysin®¢p + b

choosing ¢ to align the major axis of the vortex with diagonal of the domain.

2.3 Results

Since exact solutions (2.3)-(2.4) are known for either R = 0 or \ — 0, the R-)\
parameter space for Reynolds numbers 1 < R < 104and 0.2 < A < 150 is investigated.
For each case studied, Tables 2.1-2.5 show the value of the core vorticity and the
largest value of the vorticity at the domain boundary. Ideally, this latter quantity
should be at the level of machine precision. In Figures 2.7-2.30, the isovorticity
contours and the streamlines projected onto the plane normal to w are plotted on
the domain on which they are calculated. The isovorticity contour plots show the
directions of the principal axes of strain and contours varying from 0.1R to the lowest
value, given separately on each plot. The projected streamlines correspond to globally
inward flow when A < 1 but for A > 1 some of the contours shown correspond to fluid
particles that are not being swept into the vortex. Our results can be classified into
three categories, denoted by low, intermediate, or high Reynolds numbers.

In the low Reynolds number region, R = 1-10 (Tables 2.1-2.2, Figures 2.1-2.11)
the axes of strain are rotated by 45° to achieve maximum accuracy. All plots are
shown on the domain of calculation and the principal axes of strain are shown at
the origin of each isovorticity plot. The vorticity contours are stretched in the y-
direction and due to this, steady solutions cannot be accurately calculated within our
bounded domain beyond A > 0.8. This behavior can be predicted by assuming that
low Reynolds number flow can be approximated by the zero Reynolds number limit

(2.4) and it is likely that this is why RS84 stated that as A — 1 the “elongation of the
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vortex tends to infinity” and only investigated solutions for A < 0.75. The streamlines

are shown for completeness and for comparison to higher Reynolds number cases.

Table 2.1: Vorticity values at the core and the boundary R = 1 with M, N = 40,
¢ =m/4.

A wcore/ R wmaxl boundary/ R
0.2  0.9802 2.23E-16
0.4 0.9179 9.27E-16
0.6 0.8025 8.66E-16
0.8 0.6027 1.00E-10

Table 2.2: Vorticity values at the core and the boundary for R = 10 with M, N = 40,
o =m/4.

A wcore/ R wmax'boundary / R
0.2 0.9932 6.62E-13
0.4 0.9711 2.35E-11
0.6 0.9268 1.15E-10
0.8 0.8332 1.77E-10

For intermediate values of the Reynolds number, B = 100 (Table 2.3, Figures
2.13-2.18), it is clear that elongation of the vortex does not tend to infinity as A — 1.
In fact, increasing the circulation tends to reduce the ellipticity of the vortex as well
as rotating the major and minor axes of the vortex at an angle that approaches 45°
for large R (originally noted in RS84). This enables a steady solution to be found
for A = 1, as shown in Figure 2.15, which, in contrast to the vortex sheet (1.5), is a
bounded vorticity solution in plane strain. Furthermore, at this Reynolds number, we
are easily able to find numerically steady solutions for A > 1. The solution for A\ — 1.5
is shown in Figure 2.17, but extra care must be given to solutions in this region. As
shown in Figure 2.18, for A > 1, stagnation points will appear in the flow. MKQ94
argued that the vorticity beyond the stagnation points will be transcendentally small
and therefore be convected away from the vortex as a passive scalar. However, their

estimate for vorticity flux due to this phenomena is exceedingly small and this time
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variation does not seem to compromise our ability to find numerically steady solutions
for A > 1. Instead, our solutions correspond to a “snapshot” of the vorticity at a
time when the majority of the vorticity is contained within our bounded domain. To
account for this, we will call our steady solutions “quasi-steady” and later, in Chapter

3, address the time variation and the nature of the vorticity flux.

Table 2.3: Vorticity values at the core and the boundary for R = 100.

)\ M N ¢ Weore / R Wmax ‘boundary / R
0

0.5 40 40 0.9993 1.79E-12
1.0 50 50 0 0.9974 6.19E-15
1.5 40 40 #/3  0.9939 1.08E-8
20 50 50 -=w/6 0.9888 4.95E-6
25 20 80 0 0.9811 9.13E-5

For very large Reynolds numbers, R = 103104 (Tables 2.4-2.5, Figures 2.19-2.30),
variation away from the the Burgers solution (2.3) is very small except for large strain
ratios, well into the biaxial region. In this region, we notice that the vorticity contours
closely relate to the projected streamlines (compare Figures 2.25-2.30). Since the
vorticity is exponentially small outside of the core, it is being passively convected
by the velocity field. The projected streamlines closely resemble the streamlines for
a point vortex in pure two-dimensional strain, except that since the vortex is being
stretched, there is some inward flow which causes the streamlines to slowly coil into

the origin.

Table 2.4: Vorticity values at the core and the boundary R = 1000 with M, N = 50,
¢ =0.

A Weore / R wmaxl boundary / R
1.0 0.99997 1.96E-14
2.0 0.99989 2.01E-14
3.0 0.99976 2.44F-14
6.0 0.99905 1.26E-14
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Table 2.5: Vorticity values at the core and the boundary R = 10,000 with M, N = 50,
¢ =0.

A wcore/ R Wmax ,boundary/ R
50.0 0.99934 2.44E-14
100.0 0.99734 1.89E-8
150.0 0.9940 1.26E-6

The viscous energy dissipation, which is given by ® = 2vs;;s,;, where

dug 1 (Bug ou.
o+ Oz 2 ( Oy + Fz‘a) 0
[s] = | 1 (%’;f + %uf) B+ 66—? 01, (222)
0 0 g

is plotted for R = 10-1,000 in Figures 2.32-2.34. In the case of the axisymmetric
Burgers vortex, the maximum dissipation occurs in a ring at the boundary of the
core of the vortex. For low Reynolds numbers the nonsymmetric strain deforms this
region of maximum dissipation into two distinct lobes. For intermediate and high
Reynolds numbers, a crescent shape area of the maximum dissipation is found. At
high Reynolds numbers the dissipation contours are nearly identical for the cases
of A = 1.0,3.0,6.0 It is interesting to note the agreement between energy dissipa-
tion shown in Figures 2.32-2.34 and Fig. 7 from MKO94 calculated based on their
asymptotic expansion in 1/Ry, even for for the fairly low Reynolds number case,

R =10.
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Figure 2.1: Isovorticity contours for R =1, A = 0.4, M, N = 40. Note the direction
of principal axes of strain shown at the origin.
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Figure 2.2: Projected Streamlines for R =1, A = 0.4, M, N = 40.
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Figure 2.3: Isovorticity contours for R = 1, A= 0.6, M, N = 40. Note the direction
of principal axes of strain shown at the origin.

10

A=0.6 |

ok
-10 -5 0 5 10

Figure 2.4: Projected Streamlines for R — 1, A=0.6, M, N = 40.
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Figure 2.5: Isovorticity contours for R = 1, A=10.8, M, N = 40. Note the direction
of principal axes of strain shown at the origin.
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Figure 2.6: Projected Streamlines for R = 1, A=10.8, M, N = 40.
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Figure 2.7: Isovorticity contours for R = 10, A = 0.4, M, N = 40. Note the direction
of principal axes of strain shown at the origin.
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Figure 2.8: Projected Streamlines for R = 10, A = 0.4, M, N = 40.
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Figure 2.9: Isovorticity contours for R = 10, A = 0.6, M ,IN = 40. Note the direction
of principal axes of strain shown at the origin.
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-10

-5

0

5

10



21

A0 e
-10 -5 o] 5 10

Figure 2.11: Isovorticity contours for R = 10, A = 0.8, M, N = 40. Note the direction
of principal axes of strain shown at the origin.
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Figure 2.12: Projected Streamlines for R = 10, A = 0.8, M, N = 40.
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Figure 2.14: Projected Streamlines for R = 100, A = 0.5, M, N = 40.
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Figure 2.15: Isovorticity contours for R = 100, A = 1.0, M, N = 40. This case
corresponds to a confined vorticity solution in plane strain.
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Figure 2.16: Projected Streamlines for R = 100, A = 1.0, M, N = 40.
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Figure 2.18: Projected Streamlines for R = 100, A = 1.5, M, N = 40. Stagnation
points appear at z = £3.8,y = F8.6.
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Figure 2.19: Isovorticity contours for R = 1000, A = 1.0, M, N = 50.
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Figure 2.20: Projected Streamlines for R = 1000, A = 1.0, M, N = 50.
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Figure 2.21: Isovorticity contours for K = 1000, A = 3.0, M, N = 50.
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Figure 2.22: Projected Streamlines for R = 1000, A = 3.0, M, N = 50.
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Figure 2.23: Isovorticity contours for R = 1000, A = 6.0, M, N = 50.
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Figure 2.24: Projected Streamlines for R = 1000, A = 6.0, M, N = 50. Stagnation
points appear at z = £8.6,y = F10.0.
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Figure 2.25: Isovorticity contours for R = 10,000, A = 50.0, M, N = 50.
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Figure 2.26: Projected Streamlines for R = 10,000, A = 50.0, M, N = 50. Stagnation
points appear at z = £10.0,y = F10.0.
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Figure 2.28: Projected Streamlines for R = 10,000, A = 100, M, N = 50. Stagnation
points appear at ¢ = £7.1,y = F7.1.
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Figure 2.29: Isovorticity contours for R = 10,000, A = 150, M, N = 50.

Figure 2.30: Projected Streamlines for R = 10,000, A = 150, M, N = 50. Stagnation
points appear at x = £5.8,y = F5.8.
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Figure 2.31: Dissipation contours at R =1, A = 0.4,0.6, 0.8.
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Figure 2.32: Dissipation contours at R = 10, A = 0.4,0.6,0.8.
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Figure 2.34: Dissipation contours at R = 1000, A = 1.0, 3.0, 6.0.
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Chapter 3 Biaxial Strain at Large
Reynolds Number

3.1 Characteristic regions of the flow

We observe from our numerical results that for R > 1 the vortex becomes increasingly
circular which makes the axisymmetric Burgers vortex a very good approximation the
flow until the strain ratio becomes large enough such that outside of the core of the
vortex, the isovorticity contours resemble Figure 3.1. This figure shows several key
characteristic regions of the flow. Region I, the core of the vortex, within r = O (1),
is where viscous diffusion of vorticity is balanced by the intensification of vorticity by
vortex stretching, and the streamlines and isovorticity contours are nearly circular.
Region II, which we will call the cat’s-eye, due to its shape, is defined as the interior
—1/2

region between the stagnation points of the flow, 1 < r < €7/¢) when the strain ratio

is large, A > 1, the Reynolds number is large, R > 1, but their ratio is small,

< 1. (3.1)

(L)
If
x| >

In this region, the vorticity is exponentially small and is basically convected along
streamlines. The flow in the z-y plane is almost two-dimensional. The cat’s-eye
shape will accurately describe the contours of the vorticity and almost describe the
streamlines, as shown, for example, in Figures 2.23-2.30. The velocity in this region
is dominated by the core vorticity and the external strain. Region III begins at each
stagnation point and extends away from the vortex. Vorticity in this region is also
exponentially small, but it is convected away by the strain, which begins to dominate
the induced velocities from the core. Region IV is the far field where structure of the

vortex becomes unimportant.



34

Figure 3.1: Schematic of the two-dimensional asymptotic limit of projected stream-
lines that divide the characteristic regions of the nearly two-dimensional flow for

A>1, R>»1and ek 1.

We develop an asymptotic form for the vorticity in Region II and use this to
determine the rate of decrease in circulation out of the cat’s-eye. Then, we consider
the nature of the vorticity leakage through Region III and match the rate of circulation

increase in Region IV to the flux of vorticity from the cat’s-eye.

3.2 Region II, the cat’s-eye

3.2.1 Derivation of vorticity

We can write the nondimensional vorticity equation (2.1) in its steady form in two
parts by considering the strain to consist of the sum of an axially symmetric three-

dimensional part and a two-dimensional pure strain part,

Li(w) + Ly (w) =0, (3.2)
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where

Pw  Pw Ow Ow
L (w) = —8—3;5+5?J3+$5:;+y@—+2w, (3.3)
ow

Ly (w) = (\z— Ru) g% F(dy~Ro) 5. (3.4)

Notice that the terms of L; represent the balance of viscous diffusion of vorticity and
intensification of vorticity by vortex stretching in an axisymmetric strain while the
terms of L, correspond to the effective two-dimensional transport of vorticity by the
induced velocity and two-dimensional, or in-plane, strain. Focusing first on Ly, we
hypothesize that the flow in the region outside the core of the vortex, r > 1, can
be represented to leading order by the potential flow of a point vortex in the pure
two-dimensional strain. The streamfunction and velocity for this potential flow can

be written as

Yo lz,y) = —Iny/z2+ 9% —exy, (3.5)

O, Y
: = = — — ez, 3.
u 9 o ET (3.6)
— Oy . Z
'U:y = — aw = .{1;‘2 T yz -+ gy. (37)

The stagnation points of this low occur where the velocities induced by the point

vortex and the strain balance,

or, in polar coordinates,

Ty =% 0=—,——. (3.10)

The true projected streamlines for the numerical solutions of Chapter 2 show a
near cat’s-eye form where A and R are given by (3.1), as can be seen in Figures

2.25-2.29.
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Note that, for the full three-dimensional straining field, the in-plane velocities will

balance at

5, = i(i:-l—f 1 (3.11)

A1 2¢’
Ys = F (%j—i—) ' 2_1s’ (3.12)
or, in polar coordinates,
be i 1 3mw
Ty = (A—zj—l—> g7z, 6 = YRRL (3.13)

so that comparison with (3.10) will require that A be large.
The full streamfunction for the two-dimensional component of the velocities is

rewritten in the form,

Vo= Yo+, (3.14)
Vi = Vi, = —w. (3.15)

The higher order correction, 1/;, can be decomposed into two parts. First, we know
from the MKO94 inner solution that the flow in the core is not perfectly circular like
the Burgers vortex and there will be a streamfunction associated with the ellipticity.
Second, there will be a streamfunction associated with the exponentially small velocity
induced by vorticity outside of the core. When (3.14) is used in (3.2), the vorticity

equation becomes

L (w) + L3 (w) + Ly (w) =0, (3.16)
Pw  Ow Ow Ow
L (w) = —3—;5+5y—2+x5:;+y~85+2w, (3.17)
_ p (O 0w Oty 0w

Li(w) = R (E%-?ﬁ _ %Q‘i’) . (3.19)
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For large R, when 1 < 7 < e~'/2, we argue that both w and v; will be exponentially
small , with the consequence that the dominant terms of the equation will be L3 (w).

Solving L3 (w) = 0 will require that

w=w(y)=w (— Iny/z2 4+ y? — 6my> . (3.20)

Of the remaining terms, owing to what we will now show to be exponentially small
vorticity in region II, those of L; will be dominant over those of L,. If we consider
solving L, (w) = 0, the solution will have the property that an average around a circle

of radius r = /22 + y?, should have the form of Burgers vortex,
__1_ /wd@ = e"TZ/z = e—%(m2+y2). (321)
2
Satisfying both of these requirements, we find that the vorticity must take the form,
1
on(@,9) = Rexp [~ exp (—2up)] = Re #( ) ewem - (399)
or, in polar coordinates,
r? :
Wi (’f’, 0) — Re™ % exp(er? sin 20) (323)

within the cat’s-eye region. It may be verified by direct substitution of (3.5) and
(3.22) into (3.18), that L3(w) = 0 is satisfied. Expanding (3.22) in orders of ¢,

wr(r,8) = Re™™/? [1 — (esin 26) Z; +0 (52)} . (3.24)

which matches, when r — 0, to the MKO94 asymptotic solution for R > 1, (in terms

of their scaling definitions)

w = wy+eQ(r)sin20+ O (52) : (3.25)

1
Q(r) ~ 1—6r4e*rz/4 (3.26)



38
as r — o0o. In order to remedy the disordering of terms of the the MK094 solution
at r = (2/e)"/*, Jiménez et al. [7] performed an asymptotic analysis involving the
Lundgren transformation and coordinate stretching that delayed the disordering to
r = ¢~Y/2, (again in terms of their definitions, which involve time dependence due to
the Lundgren transformation),

1 2
(.L)(R, 0) = Zﬂ'_te—-R /4t + O (52) y (327)

where, in their notation, B = # — ef3mwsin 20. Again, (3.23) matches their form to
O (€?). Figures 3.2-3.3 show that the agreement between (3.22) and numerics for
R = 1000, A = 50,100 is excellent. The vorticity at the stagnation point (and at
any point along the cat’s-eye boundary) given by (3.22) is w, = exp(—1/2eg). This
value is compared to numerics in Table 3.1 for cases in which the stagnation point
appears within the domain of valid of the steady calculation. The stagnation point
is used because it appears at the limit of the region of the validity of (3.22), yet the

agreement is still very good.

Table 3.1: Stagnation point vorticity

R A Wi Wnumerics
1,000 6.0 1.02E-14 4.85E-14
10,000 100 9.89E-9 1.03E-8
10,000 150 1.29E-6 4.72E-6

A comparison of (3.23) with the asymptotic formulations from MKO094 (3.25),
Jiménez et al. [7] (3.27), and the present numerical solutions along cuts § = 7/4 and
6 = —m /4 are shown in Figures 3.4-3.5 respectively. Along § = 7/4, all theories give
good agreement to the numerics except MKO94 which changes sign at r =~ 3.76 and
therefore becomes infinitely negative on the log scale. Along § = —n/4, Figure 3.5
clearly shows that (3.23) is the only form that is accurate to the edge of the cat’s-eye.
The isovorticity contours of the various asymptotic formulations are shown in Figures

3.6-3.8 for comparison.
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Figure 3.2: Comparison of isovorticity contours of numerical results (shaded regions)
to Equation (3.22) (solid lines) for R = 10,000, A = 50.

3.2.2 Streamfunction calculation

We now calculate the streamfunction associated with wy from (3.14) and (3.23),

r2 s
VA, = —wy/R = —e~F opler?sinam) (3.28)
which was solved by considering
7‘2 2 o3
Py = e T HPET SO I () L e By (r) sin20 + - -] (3.29)
The resulting equation for F; is
" 1 U 2
F + <; - 2r) Fi+ (r - 1) =1 (3.30)

. . . . - . —p2
which is solved using variation of parameters of the homogeneous solutions, e~ /2,

—r2/2

Inre , and we find,

1 . '_7'2 ,,.2/2
Fl('l") = §E1 T (& . (331)
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Figure 3.3: Comparison of isovorticity contours of numerical results (shaded regions)
to Equation (3.22) (solid lines) for R = 10,000, A = 100.

Then, this solution forces the equation for F3,

1 4 ~r2
F!+ (_ = 2r> Fl+ <r2 = - 2) Fy = 47 + 3r2Ei <—2L> e/, (3.32)
r r
which is also solved by various of parameters of the homogeneous solutions, r¥2er’/2,

Then, using the boundary condition that F;, — 0 as r — 0, we find,

rt . [—1? , 6 sin 20 r2 ot
Fz(T', 9) = ——Z El <—2“> 61‘2/2 Sln20 + 7‘2 (1 -+ —2— -+ IZ— — € 2/2> . (333)

Realizing that the coefficient of the exponential integral, Ei, is (1 — ertsin26/2) e /2,

i.e. the leading terms of an epsilon expansion of %eﬁ/ 2exp(er®sin20) and matching to

the Burgers vortex as r — 0 yields

Y1 = 1E1 (ji) (3.34)

: 2 4
+6681ﬂ26 (1 + I_ + _?:_ . 6—7'2/2) e——g exp(er? sin 260) +0 <E2) ’
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Figure 3.4: Vorticity along § = /4 from MKO94 (3.25) (dotted), JMV96 (3.27)
(dash-dot), our result, (3.23) (dashed), and numerics (solid) for A = 100, R = 10, 000,
e = 0.01. Note that the MKO94 result becomes disordered and negative, so that the
log blows up at r = 3.76.
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(dash-dot), our result, (3.23) (dashed), and numerics (solid) for A = 100, R = 10, 000,
e = 0.01.
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Figure 3.6: Isovorticity contours of MKO94 asymptotic analysis, equation (3.25), for
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Figure 3.8: Isovorticity contours of equation (3.23) for e = 0.005.

where E; (_—"’2) is another form of the exponential integral, as defined by Abramowicz

2
and Stegun [1],

2] —et
Ei (2) = /0 te dt —Inz —, (3.35)

where 7y is Euler’s constant. Thus, we have found that the corrections to the stream-
function in the Region II are exponentially small and therefore the terms of L, are

small compared to L;, and both are exponentially smaller than the terms of Ls.

3.2.3 Summary and Generalization

In Region II, the essential properties of the flow are that the core of the vortex can
be closely approximated by a point vortex and that the exponentially small vorticity
is being convected by the background strain, which is composed of stretching and
two-dimensional components. Since the two dimensional components of the strain

and the point vortex can be represented by the potential flow (3.5), the vorticity can
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be written in the form,
1 2 exp(er? sin 26)
wi = Rexp —5 €Xp (—21)y)| = Re™ 7 @plersin2t), (3.36)

The associated streamfunction for the flow may be represented as,

T/) = ¢BV + rQbst;ra.in + ’wII? (337)

voy = = [ (1=") =dp (3.39)

Votraia = —ET°8in20, (3.39)
6sin 20 r2 rt —p2 — 2 exp(er? sin

It is interesting to note that this approach is not limited to the case of biaxial
strain. For instance, given the Burgers vortex embedded in a strain field in which
the two-dimensional component can be written as the streamfunction, ¥,epera1 =
Apr"sinnf, n > 1, where A, is a measure of the strength of the strain field, its
~ asymptotic form outside of the vortex core but within some dividing streamline will

be, for e, = \,/R,

2
w = Rexp [—% exp (—2¢,7" sin n@)] ) (3.41)
Y = —/ e * /2 dp +epr™sinn + 9, + O(e2), (3.42)
V¥, = —w/R. (3.43)

The cat’s-eye shape corresponds to n = 2, and two other examples for n = 3 and
n = 4 are shown in Figures 3.9-3.10 where the asymptotic form of the vortex exhibits
triangular and square dividing streamlines, respectively. Clearly, for 9¥gper;, the
dividing streamline corresponds to an n-sided polygon at a radius of €, 1/™ from the
origin. It should be noted that for each case, the asymptotic form of the vortex core

(Region I) could be calculated in a manner analogous to MKQ94.



Figure 3.9: Asymptotic limit of the Burgers vortex in a straining field where
wgeneral (7’, 0) = 7"3 sin 34.

\\|

Figure 3.10: Asymptotic limit of the Burgers vortex in a straining field where
wgeneral (7‘, 9) - ’I"4 sin 46.
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3.3 Slow decay of vortex for A > 1

Although the solutions we are finding are nearly steady, in fact, numerically steady,
there is extremely slow time variation in the form of flux of vorticity to infinity. This
slow time variation was originally noted in MKQO94 where they hypothesized that,
in biaxial strain, diffusion would not be able to balance the strain. We perform a
circulation decay rate estimate by considering flux of vorticity across the cat’s-eye

boundary and then analyze the structure of vorticity leaking into Region IV.

3.3.1 Flux of vorticity out of the cat’s-eye

By integrating the dimensionless vorticity equation (2.1) over an area, A, and using
the Green’s theorem to relate area integrals to contour integrals, the time derivative
of the circulation is easily found to be the sum of diffusion of vorticity and transport

of vorticity across the boundary of the domain,

~

Diffusion Transport

where n is an outward-facing unit vector normal to the boundary and u is the velocity
at the boundary. It will be useful to write the velocity decomposed into a two-
dimensional part induced by vorticity and pure two-dimensional strain and a part

associated with stretching,

oy
+5= —x
u=1u; +uy = (‘;yp + ) (3.45)

If we choose the boundary A to be the edge of the cat’s-eye, i.e. the contour defined by

In (s(:cz + yz)) +e(z® + y*)sin 20 = —1, (3.46)
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the dominant velocities will only come from Y~y (z,y) = —In/oZ+ 2 — ETY, SO

+2% —z
u=u; +uy = ( 661/?0 ) + ( ) (347)

Along the cat’s-eye, the unit normal vector is defined to be

that,

Vi Vw
n= = — (3.48)
(Vibo - Vb)) (Vwn - Vwr)
u - n simplifies to,
_ (0% 0%y Oty Ity
wno= (33/ Ox Ox Oy 2o
= uz-n. (3.49)

Also, along this contour the cat’s-eye vorticity from (3.22) is a constant, w, —

Rexp (—1/2ee), so with these simplifications we have

8F un
— = - M l. .
— = w, ]{9 ) ( : uz) nd (3.50)

Scaling r on e71/2, p = £'/%r and solving (3.46) for 6 (p) , we find that the circulation

decrease in terms of dimensional variables is,

or c -1

where c is defined by the integral along the cat’s eye, in terms of p,

c—1 /m1 (VL:)IC(p—)—uz(p)> SONE (j—i)ilp. (3.52)

where m = 0.5276973963 is found by solving (3.46) for § = 7/4. Numerical integration
of (3.52) results in ¢ = .48475.
For comparison, MKO94 proposed a heuristic argument that the rate of reduction

of circulation inside a circle of radius e~/2 would be, in terms of the nondimension-
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alization used in this thesis,

e —7fe T exp (—§;> ) (3.53)

Although the results look similar, our estimate of the circulation reduction is on the
order of exp[(1/2ec)(e — 1)] greater than the MK094 estimate, a very considerable
amount for ¢ < 1. However, the circulation decay rate is still exponentially small
and did not preclude us from finding the numerically steady solutions of Chapter 2.

This method of circulation decay rate calculation can be carried out for the gen-
eralized asymptotic solution (3.41). In general, the flux will be proportional to the

vorticity on the dividing streamline and the length of the dividing streamline.

3.3.2 Structure of vorticity leakage into region IV

To determine the validity of our steady numerical results in the biaxial region, we
use a time evolution code to examine how the vortices behave over time. It is found
that the structure of the core of vortex persists over very long periods of time and
that the effect of the biaxial strain is to strip away vorticity along a thin band on
either side of the core, starting at the position of the stagnation point. This “tail”
of leaking vorticity was only present for strain ratios in the biaxial region and for at
least moderate Reynolds numbers of order 102. For lower circulation, biaxial strain
will pull apart the vortex, but when the core of the vortex is close to circular, the
tails appear.

We will now establish a working model for the structure of the tails. First we as-
sume that, in this region, the induced velocities of the vortex are negligible compared
to the local strain. Second, since the structure of the vorticity leakage at the cat’s-eye
is somewhat unknown, it will be approximated by a delta function at the boundary
y = 0 and the coefficient of the delta function will be determined by matching the
flux into region IV with the flux out of Region II. Assuming the velocities induced by

the core of the vortex are small, the vorticity equation becomes
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Figure 3.11: Vorticity along maximum (dashed) and minimum (dash dot) gradient
lines at B = 100, A = 1.5. The axisymmetric Burgers Vortex is shown for comparison

with a solid line.

Ow Ow Ow Pw  Ow
— —1+Nz——-(1-Ny=—=2 — 4+ = 3.54
ot (1 )wﬁx ( )yﬁy w+8332+8y2 (3:54)
Now, transforming the variables as follows,
X = gzeltVt
Y = yeld=Mt (3.55)

AUX,Y,t) = w(Xe WV ye =N 4,

yields
o0 9%Q 1, 0%Q
B = T e e e (3.56)

Taking the Fourier transform in X,

1 o
Ok Yot) = 5 /_ Qe X gx, (3.57)

AUX,Y,t) = /°° Qe "X gk,
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and then taking the Fourier sine transform in Y,

A

2 oo ~
O(kr, ks t) = ;/0 (sin (kY) dY;

Dk, Y,8) = /°° Qsin (koY) dks,
0

the equation becomes

a0 . - 2 s
5 =0 (2 = K0P — gV ;k262(1 NI (ky, 0, 2).

Writing this in terms of a derivative prefactor , F(k1,k2,t),

d X _
© [P, k2, 00k b, 9] = —72;k262(1"\)tF(k1, k2, %k, 0, 1),
F(k1,k2,t) = e %G, (\t)Ga (1),
12 21— (~ 1"Vt }

Gu) = o |3y

Upon integrating over time and solving for Q(ky, ko, t), we find
Gl(}‘a O) G2()\7 0)
Gl()‘7 t) GZ()‘a t)

2 t Gl (/\7 T) GQ()‘7 T)
et Q —
+7Tk2/0 (k1,0,7) exp [2t — 2)7] GO0 GO\ D)

Q(kr, kayt) = Qky, ks, 0) exp [21]

Transforming the vorticity back into physical space yields

_ o 00 >SN Gl()\, O) G2(>‘7O)
Q(X,Yyt) = e /—oo/O Q(khk%o) Gl()\,t) Gg()\,t)

3 1-A)¥2/3
+\/§/t e2t—2,\7(>‘ — 1) Vexp [52_(1(*7)—7(/1—‘*7]
T Jo

(62(1—A)t _ 62(1—,\)7):}

: /_ : Q(k1,0, 7) le((’; ;)) e~ * X dk.dr.

dr.

(3.58)

(3.59)

(3.60)
(3.61)
(3.62)

(3.63)

G_ile sin (k:QY) dklde

(3.64)
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Thus, given an initial distribution and boundary condition defined by

w(Xe~0+Nt 0,4) = Q(X,0,t), —oco < < 00,
w(z,y,0) = Q(X,Y,0), 0<y< oo,

(3.65)

we can determine the nature of the tail. First we assume that the effect of vorticity is
negligible in this region and set the initial distribution of vorticity, w(z,y, 0), equal to
zero. As an approximation, we assume that the vorticity introduced at the boundary
of this region is in the form of a delta function of magnitude A, so that w(z,y =

0,t) = A6 (z). With these simplifications, the vorticity becomes,

z2 /2 2/2
w(acyt):Ay\/I/Itexp[*(l~>\)t7—_1—3m_%z:)}d’r (3.66)
. ™ J0 —P (1) Q()? ’ '

where

1— 6—2(1-)-)\)757'

POy = =35
1— 6—2(1—)\)757-

This shows that, as t — oo, far enough away from the stagnation point, so that the

delta function approximation becomes a second order correction, the vorticity takes

1 AF1A4 e 1
(.x)(.’l?,y,t) = \/; —/_\_———lge (1+2) /2+O(¥), (368)

which is an approximation to the tail of vorticity in question. This tail has a Gaussian

cross section with width 4/2/ (1 + A), which is equivalent to the width of a vortex sheet

(2.5) embedded in the same strain field. Comparing this model to numerical results

the form,

from a time advancing code, not shown presently, indicated that this estimate of the

width of the tail is very good. Table 3.2 and Figure 3.12 show that, at R = 100,
A = 1.5, the tail has a width close to 1/2/ (1 + A) = 0.8.

To find the rate of circulation increase, the vorticity distribution (3.66) may be
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Figure 3.12: Cross-sections of “tail” at various y at R = 100, A = 1.5.

integrated directly to give

or 0 f= [ _J2(A=1) A
EZ’ElmA ol )dady = || === s (3.69)
which, as t — oo, limits to,
or 2(A—1)
5 ——W————A. (3.70)

Matching this circulation increase to (3.51) requires that

. -1
A 18475y I exp ( ) ) (3.71)

C8ey2r (A - 1) 2es

This value is physically reasonable because it shows that the delta function will be

proportional to the cat’s-eye boundary vorticity, ~ I'yexp(1/2ee) and the length of
the cat’s-eye, ~ ¢/, for large strain ratio, A = O (¢71).

These results indicate that the vorticity convected out of the cat’s-eye develops
into a tail of vorticity emanating from the stagnation points achieving a characteristic

width equal to that of the Burgers vortex layer. The ability to match vorticity leakage
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Table 3.2: Results of curve-fitting a Gaussian, we—@=20)*/7* 4 the tail cross section
at R = 100, A = 1.5. Our analysis predicts o = 0.8.

Zo y w o?

3.70 86 78E-8 0.77
3.67 9.0 64E-8 0.75
3.63 9.5 5.2E-8 0.77
3.57 10.0 4.4E-8 0.79
3.50 10.5 3.8E-8 0.79
343 11.0 3.0E-8 0.79

from one region to the other gives us confidence that our various approximations are

physically valid.



54

Chapter 4 Two-Dimensional Stability of

the Axisymmetric Burgers Vortex

In this section we study the stability of the axisymmetric Burgers vortex to infinites-
simal two-dimensional perturbations. These are defined as disturbances for which the
velocity perturbations are in the (z-y) plane normal to the axis of the vortex. The

stability of the nonsymmetric case is considered in Chapter 5.

4.1 Basic equations

The problem will be formulated in the cylindrical polar coordinate system (r,8, z)
where the velocity field in the respective directions will be denoted by 4 = (u,., ug, u,).

This velocity field is decomposed as

Uy = —%r + 4, (1, 0,1), (4.1)
up = ug(r,6,t), (4.2)
U, = 7z, (4.3)

where 4, and 4y are the rotational part of the velocity field and ~ is the rate of
strain in the z-direction corresponding to a uniform axisymmetric external strain.

Substitution of (4.1)-(4.3) into the vorticity equation gives

o 0w e v |0 [0w) 10w
ot " Yor T ree M rler\"or) T reet |’

where the vorticity field is non-zero only in the z-direction & = (0,0, w).
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4.2 2-D linearized stability analysis

4.2.1 Formulation

While the stability of (1.3)—(1.4) to three-dimensional perturbations is of fundamental
interest, we presently consider the stability to two-dimensional disturbances. All
quantities are non-dimensionalized with respect to length scale \/;7; and time scale
v~1. The two-dimensional perturbed velocity field in the r—6 plane is

Up = Upg+ u;(r, 0,1),
Ug = Ugy + U’IO(T7 07 t)) (45)

w = wo+uw(r6,t).

A perturbation streamfunction 7/ can be defined such that

p_ Lo W
uT - r 80 7 uo - a[r 3 (4'6)
V3 =~ (4.7)

The perturbations are assumed to be of the normal mode form

W= wlr)erting (4.8)

P = g(r)emrtnd, (4.9)

where n is the azimuthal mode and —p is the complex growth rate of the perturbation.
In this formulation, unstable solutions correspond to negative values of the real part

of p. Using (4.6)—(4.9) in (4.4) and linearizing, it is found that

L'v+pw = inR [—f@b + %gw] ) (4.10)
MY = —w, (4.11)
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where R = I'/27v is a Reynolds number, the primes on the perturbation variables

have been dropped for convenience, and

M) = 14 (Td;‘i(.)> 0, (4.12)

rdr r?
d
) = M)+ [20)], (4.13)
f=eT? g= ﬂ. (4.14)

(r*/2)

The first part of the RS84 analysis dealt with the special case of R = 0, the
Stokes limit of (1)—-(4) with the present scaling. Solutions were found in terms of the
confluent hypergeometric function and, enforcing exponential decay at infinity, gave
eigenvalues y = n + 2k, k = 0,1,2,.... Since the eigenvalues are all positive real,
the Burgers vortex is stable for zero circulation. The R = 0 normalized vorticity

eigenfunctions are
win k) =272 2L (v2/2), (4.15)

where L} (x) is the generalized Laguerre polynomial. The streamfunction eigenfunc-

tions can be found by integrating the vorticity eigenfunctions to give

P(rin,0) = %(7”71;(27—%))7/—2[1~en_1(r2/2)e42/2], (4.16)
Yirin, k) = %r“e—“/%gi’l (r/2), (4.17)

where e,,_; is the exponential series truncated after n — 1 terms.

4.2.2 Numerical analysis using spectral methods

In order to tackle the problem numerically, we first obtain from (4.10)-(4.11) one

equation for the vorticity,

L(w) = —puw, (4.18)
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which is a complex eigenvalue problem with

£() = L") = inR [4") () + 500)]. (@.19)

The behavior at the boundaries for the finite Reynolds number problem is identical
to that found for the R = 0 case. Using boundedness of solutions and a Frobenius
method about the regular singular point, r = 0, we find the behavior of the vorticity

to be
w=0("), r—0. (4.20)

For 7 — 00, a dominant balance argument is used to write equation (4.18) as

%di; <rdirw> — :—zw + %dir [rzw] + pw = z'n:jw, (4.21)
which can be written simply as
LOPHnBY2 (0N 4w = 0, (4.22)
so that the behavior at infinity remains the same as for R = 0,
w e~ Arte™™ o oo (4.23)

Since the RS analysis for R = 0 resulted in a set of eigenfunctions that spanned the
space with the specified boundary conditions, it is natural to use spectral methods
for numerical purposes. A Galerkin approach is used to expand solutions in the

orthogonal basis defined by the R = 0 vorticity eigenfunctions

N-1
w= Y ayw(rink), w(r;n,k)=2""2"e /2™ (r2/2) : (4.24)
k=0

where the finite expansion is truncated at N — 1 terms. Substitution of (4.24) into
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(4.18) results in a complex eigenvalue problem of the form
AT = —uZ, (4.25)

where & = (ag, a1, ...,any_1)7 and A is complex matrix of order N x N whose coeffi-
cients are found by using the orthogonality of the basis functions under the weighted

inner product,
(u,v) :/ wve” Prdr, (4.26)
0

such that the coefficients of A,

B <w;?('r), [,wZ(r)>

Aj = : 4.27
ETRET) (427
follow from

if ko,
<w§-‘(r),w2(r)> = { (()n+j)! - 7&] ) (4.28)

31 nr=7y,

IR if k # j,

(wh(r), L"wi(r)) { (2 g (4.29)
<w§-‘(r), f(M™)~ 1wZ(7~)> - _2—(n+j+k+1)(j + kj;'[‘k";b - 1)!, (4.30)
(wi(r), gui(r)) = (nn:ilil:llék’l)l))! (4.31)

_ZZQ (p+q+n)p+Q+n_1)'.
7=0 70 p' q'

4.3 Results

By construction, this method reproduces the known eigensolutions for R = 0. Re-
sults for larger Reynolds number are plotted in Figures 4.1-4.4 for the values of the
parameter n = 1,2,3 and 4, respectively. Numerical solutions to (4.25) are found
using the QZ algorithm for values of N ranging from 20 to 300. For fixed N and n,

we find a denumerable set of eigenfunctions and eigenvalues for k = 0,1,2, ..., each
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corresponding to a different radial structure of the perturbation. These calculations
are tested in various ways. First, for low Reynolds number, our results are compared
to RS84 results and are found to agree well (see Table 4.1 and subsequent discussion).
Next, for fixed R, the dimension NV is increased until convergence is evident. Thirdly,
results for Reynolds numbers up to approximately 100 are checked by treating the
problem as a nonlinear continuation in the parameter R, starting at R = 0, using a
Newton-Raphson scheme with finite-difference techniques.

RS did analyze the effect of non-zero Reynolds number by way of a perturbation

expansion for small R and found that for the eigenvalue expansion
p=po+ R+ p R - -, (4.32)

to = n + 2k and the coefficients p, and p, were given by RS:{(2.15)-(2.19)}. Since
1 is strictly imaginary its value does not affect the stability of the vortex. For low
values of k, u, is positive and thereby serves only to increase the value of Re(u).
We have calculated p; and u, to larger k£ than RS, and find that, for fixed n, u,
can become negative at sufficiently large k (see Table 4.1). This is equivalent to
(0%u/OR?)p—o < 0 and indicates a trend towards possible instability at values of R
beyond the validity of (4.32).

Values of n = 1, ..., 10 are calculated. In all cases, as illustrated in Figures 4.1
4.4, the Re(p) > 0, indicating stability of the Burgers vortex to two-dimensional
perturbations. Note that for values of (n, k), where (4.32) indicates (8%u/0R?)g—q <
0, we find that Re(y) reaches a local minimum followed by a subsequent increase with
increasing R. This behavior is on a scale too small to be seen graphically in Figures
4.1-4.4. Numerical results at high Reynolds indicate that the real part of the of the
eigenvalue grows like the square root of the Reynolds number. The irregularity of the
plots at large Reynolds number is caused by resolution problems in representing the
vorticity with a maximum number of basis functions, N = 300.

The graphs of the real part of the eigenfunction shown in Figures 4.5-4.6 indicate

that as the Reynolds number increases, the eigenfunction maximum moves outward
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in radius. Moreover, the function becomes more and more oscillatory, but confined
to within a narrow radial band. It is this structure that limits the range of our finite-
difference method to maximum R ~ 10% and that of the spectral method to maximum

R~ 104

4.3.1 Summary

The stability of the axisymmetric Burgers vortex solution of the Navier-Stokes equa-
tions to two-dimensional perturbations is studied numerically up to Reynolds num-
bers of order 10*. We find no unstable eigenmodes for azimuthal mode numbers
n =1,...10 in this range of Reynolds numbers. Increasing the Reynolds number has

a stabilizing effect on the vortex.



Table 4.1: Comparison with Robinson and Saffman’s results for Small Reynolds num-
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ber, N =50, pp = po + Ry, + R?p,

n_ k —ip (RS) iy 104, (RS) 1024,

1 0 0. 0.00000000 0. 0.00000000
1 1 0.125 0.12499977  0.14435071  0.14435055
1 2 0.125 0.12500003 0.10094794  0.10094833
1 7 0.0916443 0.09164255 0.00225961  0.00225988
1 8 0.0872803 0.08728127 -0.000431672 -0.00043345
1 9 0.0834618 0.08346671 -0.00207814 -0.00207772
2 0 0.025 0.02499994  0.27855829  0.27855588
2 1 0.025 0.02499994 0.42798057  0.42798354
2 2 0.0234375 0.02343752 0.02636197  0.02636217
2 8 0.166924 0.16692388 0.00340799  0.00340921
2 9 0160179 0.16017876 -0.00284228 -0.00284910
2 10 0.154172 0.15417211 -0.00697667 -0.00697291
3 0 0.0375 0.03749983  0.85088957  0.85088854
3 1 0.034375 0.03437489 0.64678972  0.64679239
3 2 0.03203125 0.03203126 0.43069801  0.43070205
3 10 0.220477 0.22048121 0.00131356  0.00131323
3 11 0.213431 0.21342685 -0.00600394 -0.00601022
3 12 0.20701  0.20722134 -0.0112759 -0.01131203
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Figure 4.1: Real part of the eigenvalues vs. Reynolds number for n =1, N = 300,k =
0,1,2, ... defined by the y-axis intercept, n + 2k.
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Figure 4.2: Real part of the eigenvalues vs. Reynolds number for n = 2, N = 150,k =
0,1,2,... defined by the y-axis intercept, n + 2k.
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Figure 4.5: Real part of the eigenfunctions vs. radius for n = 1,N = 300,R =
1.0, k = 1(solid), 2(dashed), 3(dotted).
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Figure 4.6: Real part of the eigenfunctions vs. radius for n = 1, N = 300,R =
1000, k& = 1(solid), 2(dashed), 3(dotted).



65

Chapter 5 Two-Dimensional Stability of

Nonsymmetric Burgers Vortices

We now consider the linear stability of the steady solutions discussed in Chapter 2.
We begin by demonstrating a property of general solutions of the vorticity equation

for vorticity distributions in the presence of a linear background velocity field.

5.1 General vorticity in a linear velocity field

We return briefly to dimensional coordinates and consider a velocity field of the form
U; = Q_I,i(QIi,t) + J@J(t) Zj, (51)

where (5.1) represents a general velocity field % embedded in a linear background field.
We take Cartesian coordinates z; = (1, 22, z3) aligned with the nonrotating principal
rates of strain with a(t) + 3(t) +~y(t) = 0 and denote the background vorticity by &,.

The time-dependent rate-of-strain tensor of the background field is then

at) O 0 0 ';1553(75) _552@)
J(@) =S@) +A(t) = 0 8@ 0 |+ —%53(75) 0 %fl(t) - (5.2)
0 0 )] | &0 -ta® o

The vorticity equation, then, in indicial notation is given by

E_ + ijxkﬁ -+ U]‘% = ng -+ Jijwj -+ 1/V2wi, (53)
7 J J
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where w; = W; + &; = €;;1(0u;/0x) + £,. Making the change of variables to a system

centered on a particle initially located at xy, moving with the background flow

xr; = Xz - .’,Upi (t, Hfoi), (54)
where
dz.,,
—%’i = J;jzp, with z,,(0) = z,, (5.5)
gives
-—B—t- + Jj (Xk — xpk)gz -+ ’U,j—a—}; = wja—)(j -+ Jijw]' + szwi. (56)

Now, if we define, transformed vorticity and velocity fields denoted by capitalized

variables,

U(Xi,t) = wilXi— zp,,1), (5.7)
UZ(XZ,t) = Ei(Xi—$pi,t),

then we see that (2 solves the vorticity equation

a9, o on;
7 ) X 2 . (] —_
g T InNegx, TUigx, =

oU;

jg“)‘(‘.‘ + Jiij + I/VQQi, (58)
J

which is identical in form to (5.3). Note that the boundary conditions on this trans-
formed equation may indeed be time dependent if the solution to (5.3) corresponds
to velocities that do not decay to zero at infinity.

From the above we can conclude that for a given solution to (5.3), there exists
an infinite family of additional solutions (indexed by zy,), each with the same form
and evolution, corresponding to a displacement of the initial vorticity by z,, and
subsequent convection with the background flow. Alternatively we may say that
solutions to (5.3) are invariant to an arbitrary initial displacement of the embedded
vorticity field. We shall refer to this as the neutrally convective property of vorticity
embedded in a linear field, and note that these results are also valid for the Euler

and advection-diffusion equations. Furthermore, for the case of compact vorticity, we
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should note that the background vorticity £; must satisfy

9€;
yielding an alternative form for (5.3),
0w; 0w, 0w; 01,
T g 8“’ a“ + Ty, + Syl + vV (5.10)

5.2 A convectively neutral mode

We now apply this result to our solutions of (5.3) corresponding to steady vorticity
in the z-direction, where the background flow is a steady constant (in time) linear

strain with no shear, £ = 0. Equations (5.4) and (5.7) become

z=X — zoe™, y=Y — ype’, (5.11)

UX,Y,t) = w(X —zee™,Y — yoe?),
UX,Y,t) = T(X — z0e®, Y — ype®), (5.12)
V(X7 Y: t) = E(X - erata Y — yoeﬂt>>

and we see that Q(X,Y,?) is a convecting solution of (1.1) in the form

o0 onN
— + (X +U) ==

o0 ,
— = . Nl
- - > =102+ vV (5.13)

+(5Y+V)8

To relate this result to linear stability analysis, we write a general perturbed vorticity
field in the form
w(z,y,t) = wes(z, y) + wi(z, y)e ™™, (5.14)

where w;, is the steady base state and w1, |wi| < |wss|, and p are the eigenfunction
and eigenvalue, respectively. Positive ;1 denotes linear stability and u = 0 is the neu-

tral stability boundary. Next we apply the neutrally convective property to wss(z,y)
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and Taylor expand to obtain,

ow ow

wes(T — o™,y — yoe®) ~ we(z,y) — —a—x:coeat - a—yyoeﬁt. (5.15)

Comparing the right-hand sides of (5.14)-(5.15) gives two linear eigensolutions — 2% e**

and v-—g—)“—ieﬂt with corresponding eigenvalues —« and —f.

This result can be applied to various well known solutions of the Navier-Stokes
equations. For the Burgers vortex, the axisymmetric strain rates are o = 8 = —v/2,
so that, for any Reynolds number, this convective mode gives eigenvalue equal to
7v/2. Given our nondimensionalization in Chapter 4, this explains the appearance of
stable eigenvalue y = 1 for all Reynolds numbers in Figure 4.1. Secondly, for the
Burgers vortex sheet solution (1.5) in plane strain, & = —v,8 = 0, we see that a
perturbation in the y-direction is neutrally stable, 4 = 0, but a displacement in z,
results in a relaxation back to the base state. For the current study of nonsymmetric
Burgers vortices, upon nondimensionalization and in terms of the strain ratio, the
strain rates of the nonsymmetric strain field result in eigenvalues of y; = 1+ X and
po =1 —A. Thus for A > 1, there exists at least one positive eigenvalue and therefore
a linearly unstable mode. This does not correspond to a structural instability of the
steady nonsymmetric vortex but is merely the early-time linear phase of the non-linear

neutrally convective mode discussed previously.

5.3 Subspace iteration

In order to determine the stability boundary of the nonsymmetric Burgers vortex
in the R-A plane, we use a time advancing code in conjunction with a subspace
iteration method to capture the fastest growing modes of the perturbation (Saad
[18]). We restrict attention to two-dimensional perturbations, that is, those with
velocity components normal to the steady vorticity. We now return to nondimensional

coordinates and write (2.1) in terms of nondimensional cylindrical polar coordinate
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system, (7,6, z),

2
Ow = % [6 (ra—w> + la—(ﬂ:l + [r(Acos26 — 1) — Ru,

ot or\ or) " roe?
. RUQ Oow
0—— 2
—i—{/\sm2 ]60 + 2w
2, 109 _
\Y ¢_ W, Up= ’l"ao, Ug = — 8r

(5.16)

(5.17)

where the velocity induced by the vorticity is now u = (u,, up,0). We linearize the

equations with

/

w = wtuw,
/
Up = Upy + Uy,
/
u@ = u90 _'_ U’G)

(5.18)

where primed quantities are small perturbations, and we solve the resulting linear set

using finite-difference methods in r and spectral methods in 6 (Buntine and Pullin

[3]). Taking the discrete Fourier transforms,

1

N-
W(r,0,t) =e S Qu(r)em?,

1
n=—3N

(S

Y(r,0,t)=e* 3 P, (r)e™,
the Poisson equation becomes,

— e — __.wn

dr? r dr r2 7’

d2¢ L1 1 d¢ n? N

and the linearized vorticity equation becomes,

ot r

owy, -0 .
W [5( 9

(5.19)

(5.20)

(5.21)

Dni2) + 'a% (rzan_z)} —A[(n+2) Gpys — (0 — 2) &)
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10 ,,. 820, 100, n?.
g (170) + [ i Trar —“J (5-22)

[ ow' 1 Ow ,0wy 1 ,&uojl

T TRt e e T ee
for N=—N/2,...,N/2 — 1. The boundary conditions on (5.21 — 5.22) are

A

r=0: ¢, =0, (5.23)
w, =0,n#0,
dwy
a0
r—oo: P,(r)—0, (5.24)
Wn(r) — 0.

Equation (5.22) is solved by a fourth-order five point spatial finite difference
scheme. The system is advanced in time first with a second-order explicit predic-
tor followed by updating the vorticity in a Crank Nicolson, semi-implicit, two-point
corrector scheme. This updated vorticity &(t + 6t) is then used in the Poisson solver.
Several iterations of this procedure are needed per time step for convergence. Further
details of the scheme are given in Buntine and Pullin [3]. All calculations reported
presently use N = 256 in (5.19)—(5.20). Initial conditions are obtained from the
steady solutions of Chapter 2 by projection of the steady values of w and 9 onto the
r-0 grid.

Initially, a simple power method approach is used in which, if we represent the

time advancement as the function A, a random initial guess, @, is iterated on A, i.e.,

1
Dps1 = ——— Al (5.25)

|kt

where k denotes the iteration number and |&s,] is the L? norm of the vector Ady,.

The eigenvalue is then calculated using the Rayleigh quotient,

. <Awk7 Wk)

= (5.26)
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Iteration is continued until |y, — pp_;| < 1073, Maximum eigenvalues are found
using this method for R = 1,10,100, and 1000 and are shown in Tables 5.1-5.2.
From these results it is seen that the eigenvalue corresponding to the fastest growing
eigenfunction corresponds closely to p = 1 — A. The corresponding numerically-
obtained eigenfunctions are also found to be closely proportional to Ows,/8y. We
may thus conclude that mode with maximum growth rate corresponds to a neutrally
convective translation of the nonsymmetric vortex without change of shape and that
this convection is toward the origin for A < 1. Therefore, all eigenvalues are positive
for A < 1 and the nonsymmetric Burgers vortex is linearly stable in this region, at
least for the values of R investigated.

In the region A > 1, these eigenvalues are positive, allowing the possibility that
other eigenfunctions exist with 0 < 1 < 1— ) that are not convectively neutral. These
eigenfunctions are examined by employing a multi-step subspace iteration technique
(Saad [18]) in which we iterate on the three vector system Wj = (&1, @q,@s), where
w; and @, are equal to the analytical form of the convectively neutral eigenfunctions

and w3 is a random vector. We calculate
Vi1 = APWy, (5.27)

and compute the QR factorization Vi3 = QR to find Wy,; = Q. Since the cost
of this orthonormalization can be high, it is only performed after p iterations on A.
Computing the Rayleigh quotients yield the two analytically predicted eigenvalues
1 £ A and a third eigenvalue which corresponds to the fastest growing eigenfunction
not found previously. This eigenfunction consistently corresponds to an eigenvalue
approximately equal to 0 within our numerical accuracy for all Reynolds numbers
studied. We hypothesize that this eigenmode represents the exceedingly slow evolu-
tion of the quasi-steady numerical solutions for nonsymmetric Burgers vortices with
A > 1. We subsequently argue that this comprises leakage of vorticity occurring near
stagnation points of the steady flow. A model for this leakage was discussed in the

Chapter 3.
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5.4 Results

The linear stability analysis has analytically shown that at least one positive eigen-
value exists for A > 1. Our result shows that in a biaxial strain field, a general, small
perturbation to the vortex will result in the vortex moving with the strain field.

For the range of Reynolds numbers investigated, R = 1,10, 100, 1000, we find that
the two smallest (most negative) eigenvalues in fact do correspond to the translating
analytical solutions found in the previous section for A < 1. For A > 1, the small-
est eigenvalue, 1 — A, corresponds to the convectively neutral mode and the second

smallest eigenvalue, ~ 0, corresponds to the slow leakage of vorticity into tails.

Table 5.1: Maximum eigenvalue for R = 1,10

A Hmax; R=1 Hmax> R =10

0.2 0.8168 0.8014
0.4 0.6093 0.6050
0.6 0.4040 0.4033
0.8 0.2058 0.2046

Table 5.2: Maximum eigenvalue for R = 100, 1000

A fha, R=100 p_.., R = 1000

0.5 0.5056 -
1.0 0.0203 0.0126
1.5 -0.5031 -
2.0 - -0.9956

3.0 - -1.9965
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Chapter 6 Summary

6.1 Conclusions
The major results and conclusions are the following:

e The steady and quasi-steady structure of nonsymmetric Burgers vortices was
calculated numerically for a wide range of strain ratios (0.2 < A < 150) and
Reynolds numbers (1 < R < 10%), which includes strain ratios well into the

biaxial region, A > 1.

e An asymptotic formulation for the analytic form of the vorticity for large R and
A but ¢ < 1, in the region outside of the core of the vorticity but within the

cat’s-eye boundary was derived to be

r2 s
Wi (T', 9) — Re™ 7 exp(er? sin 26) (61)
and found the associated velocities which were exponentially small in this re-
gion. Furthermore, this asymptotic formulation was generalized for a Burgers
vortex embedded in a straining field composed of axismmetric and purely two-

dimenensional strain.

e An estimate for the flux of vorticity out of the cat’s-eye was made and the decay

of circulation was found to be exponentially small,

ar 48475
ot  Arw

ve™ T exp (_—1) . (6.2)

2ee

and the structure of this leaking vorticity was found to be in the form of “tails”
emanating from the stagnation points of the flow whose long time behavior

closely resembled a time-dependent Burgers vortex layer.



74

e The axisymmetric Burgers vortex was shown to be linearly stable to two-

dimensional perturbations for Reynolds number up to 10, 000.

e The nonsymmetric Burgers vortex was found to be linearly stable for A < 1 and
for A > 1, the instability of the vortex corresponds to the vortex maintaining
its structure while being convected with the background strain. An analytic
explanation for this convectively neutral mode of instability which applies in

general is presented.

Clearly, the structure and stability of Burgers-type vortices has been studied to
great detail without the discovery of a stability boundary that could be applied to
explaining the role of Burgers vortices in turbulence. The next step would appear to
be consideration of the stability of the Burgers vortex to three-dimensional perturba-

tions.
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Appendix A Stability of Sullivan

Vortices to 2-D Perturbations

A.1 Background

The Burgers vortex, while the most heavily studied stretched vortex, is only one
of a class of solutions. R. D. Sullivan [6] introduced a solution to the Navier-Stokes

equations, analogous to the Burgers’ solution, in which the velocities were of the form

ur = up(r), (A1)
upg = uy(r), (A.2)
u, = zu,(r). (A.3)

He in turn introduced a ”"two-cell” solution in which the flow does not only spiral in

towards the z-axis and out along it, but instead has a region of reverse flow near the

axis:
_ Y 6v (—yr?/4v)
Urg = —3T + - [1 —el™7 ] , (A4)
T [H(yr*/4v)
Yo = o [ H(oo) |’ (4.5)
Uyy = 72 [1 — 36(_7’"2/4”)] , (A.6)
where,
T T
H() = [“ezp|~t+3 [ [(1—e)/1] dr| dt. (A7)

We would like to determine if it is possible to construct a physically plausible two-
dimensional linearized stability analysis similar to that in Chapter 4 where the ve-

locities u,, up are perturbed and the perturbations can be written in streamfunction-
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Non-dimensionalizing time by /2 and length by 4/~/2v, and using the Reynolds

Number, R =T'/2nv, we get

Upy =

Ugg

Uy =

Calculating the vorticity & = V x

. 1= et
T

R [H(r?/2)

T [ H(c0) } !

22 [1 — 36(—T2/2)] .

@ of this velocity field yields

_ low v
Yo T 780 8z
Oou Ow 2
_ S I = (-r%/2)
wey 5% o brze )
_ 19(rv) 10w  H'(r’/2)
Yoo T Loy rd0 = H(oo)

Assuming a form for the perturbations as in Chapter 4,

Ug

= uT‘o —l— ’LL;.(T', 67 t)a
= ug, + uy(r,0,1),

= w,, +w'(r,0,t),

a perturbation streamfunction 1)’ can be defined such that

ST -,
u’"—rae’ 0= or’
v21/)lz_w/

where the perturbations are assumed to be of the normal mode form

- w (,r,)e—y,t-i-inﬂ’

— ,¢) (,r,)e—,u,t-i-inﬁ.

(A.8)
(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
(A.18)
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When this is inserted into the vorticity equations in the - and 6-directions, it
is seen that, given this base state, the only physically allowable two-dimensional
perturbation has no azimuthal dependence, i.e. n = 0. From the vorticity equation
in the z-direction, we obtain the equation for the perturbation quantities

(1—e/%) + 67 /%, (A.19)

6
Low+ pw = =
r

=t (o) .

Notice that this linear equation has no dependence on Reynolds number or the per-
turbation streamfunction. In order to tackle the problem numerically, we write A.19

as the general eigenvalue problem
L(w) = —pw, (A.21)

L()=L°) - g (1—e7%) —6e/ 2. (A.22)

A Galerkin approach is used to expand solutions in the orthogonal basis defined by

the R = 0 vorticity eigenfunctions from Chapter 4,

N-1
w=3 apwlrk), wlrk)=e"2L (7"2/2) , (A.23)
k=0

where the finite expansion is truncated at N — 1 terms. Substitution of (A.23) into

(A.19) results in a complex eigenvalue problem of the form
AZ = —uZ, (A.24)

where Z = (ag, a1, ...,an—_1)T and A is complex matrix of order N x N whose coeffi-
cients are found by using the orthogonality of the basis functions under the weighted

inner product,

{u, v) :/0 wve” Prdr, (A.25)
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such that the coefficients of A,

(w;(r), Lok (r))

Ay = , A.26
=y (1), (1)) (4.26)
follow from
0 ifk+# 7,
(wj(r), wi(r)) = _ T (A.27)
1 ifk=y,
0 ifk#j,
(wj(r), Lowi(r)) = , (A.28)
2j ifk=j,
1 0 if j >k,
<wj(r), —wk(r)> = , (A.29)
r 1 if j <k,
2 . i + k)]
<wj(r), o /ka(r)> = _2—(y+k+1)(_-7]%2_, (A.30)
<wﬂr%%é¢y%%00>==—2%TM+”aU—%Lk%—D, (A.31)
where
_ 2kl 1 if j =0,
a(j+1,k+1) == (A.32)
a(j,k+1)+a(j+1,k) ifj>0.

A.2 Results

Numerical solutions to (A.19) are found using the QZ algorithm for values of N up to
100. We find a denumerable set of eigenfunctions and eigenvalues for £ = 0,1, 2, ...,
each corresponding to a different radial structure of the perturbation. A table of these
eigenvalues appears in Table A.1. The eigenvalue close to zero has eigenfunction of
the same form of the Sullivan vortex. This corresponds to a change in Reynolds
number, so its stability is neutral, as expected. All other eigenvalues are positive,
therefore the Sullivan vortex is shown to be stable to 2-D perturbations.

The stability of the Sullivan vortex to three-dimensional disturbances is a consid-

erably complex problem, but a study of this should show at least one stable mode
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as shown in Chapter 5. This stable mode corresponds to an in-plane displacement of
vorticity by a three-dimensional perturbation, for which the vortex would be neutrally

convected back to the origin.

Table A.1: Eigenvalues for two-dimensional perturbations to the Sullivan vortex

I
-0.00001167

1.64283132
3.14848971
4.78395175
6.55784082
8.40255546
10.28554058
12.19251347
14.11613845
16.05221176
17.99818801
19.95244979
21.91389274
23.88167381
25.85507583
27.83342170
29.81603813
31.80222511
33.79124069

—t
X O E PR LSOO U A W~ O
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