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Abstract

The discovery of the fractional quantum Hall effect stimulated the investigation of

anyons, particles with fractional statistics which are neither bosons nor fermions.

This thesis focuses on the study of quantum Hall states which may support non-

Abelian anyons. We first address the validity of assumptions used in the numerical

study of such states, and then proceed with analyzing different experiments which

can detect non-Abelian fractional statistics. We quantitatively analyze the two-point

contact interferometer experiment, which is hoped to display clear-cut, direct evi-

dence of non-Abelian fractional statistics. We calculate the temperature and voltage

dependence of the interference experiment outcome, and the signal attenuation due

to finite temperature loss of coherence. We then analyze the edge theory of a family

of non-Abelian quantum Hall states in the second Landau level, and examine the

tunneling between these states and a quantum dot. This tunneling problem maps

onto the multi-channel Kondo problem, and will allow distinguishing between differ-

ent quantum Hall states. Finally, we use the same theoretical methods for analyzing

Sagnac interference in the conductance of a carbon nanotube loop, a one-dimensional

system.



vi

Contents

Acknowledgments iv

Abstract v

Contents vi

1 Introduction 1

1.1 Quantum mechanics in 2 spatial dimensions . . . . . . . . . . . . . . 2

1.2 Integer Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Fractional Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . 8

1.4 Edge Excitations in Quantum Hall Liquids . . . . . . . . . . . . . . . 11

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Landau Level Mixing 14

2.1 Landau Levels, Coulomb Interaction and Particle-Hole Symmetry . . 16

2.2 Multi-Particle Pseudopotentials . . . . . . . . . . . . . . . . . . . . . 19

2.3 Perturbative Calculation of LLM . . . . . . . . . . . . . . . . . . . . 23

2.4 Tree Level Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Lowest Order 3-Particle Interaction . . . . . . . . . . . . . . . . . . . 26

2.6 Lowest Order 3-Particle Pseudopotentials . . . . . . . . . . . . . . . . 30

2.7 Results in Lowest and Second Landau Levels . . . . . . . . . . . . . . 32

3 Interferometry and Non-Abelian Statistics at 5/2 Filling Fraction 34

3.1 Quantum Hall State at Filling 5/2 . . . . . . . . . . . . . . . . . . . . 35

3.2 Fabry-Perot Interferometer . . . . . . . . . . . . . . . . . . . . . . . . 36



vii

3.3 Tunneling Operators and Conformal Blocks . . . . . . . . . . . . . . 38

3.4 Temperature And Voltage Behavior . . . . . . . . . . . . . . . . . . . 46

3.5 Anti-Pfaffian Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Discussion and Interpretation of Experimental Results . . . . . . . . 54

4 Quantum Hall States at ν = 2
k+2

59

4.1 Second Landau Level Quantum Hall States . . . . . . . . . . . . . . . 59

4.2 Particle-Hole Conjugation of Read-Rezayi states . . . . . . . . . . . . 62

4.3 Properties of anti-RR States . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Candidate States for Filling 12/5 . . . . . . . . . . . . . . . . . . . . 68

5 Multi-Channel Kondo Effect in QH Edges 71

5.1 Kondo Model Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Quantum Dot coupled to QH Edge . . . . . . . . . . . . . . . . . . . 74

5.3 Pfaffian Edge and Quantum Dot . . . . . . . . . . . . . . . . . . . . . 76

5.4 Anti-Pfaffian and Quantum Dot . . . . . . . . . . . . . . . . . . . . . 81

5.5 Read-Rezayi State and Quantum Dot . . . . . . . . . . . . . . . . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Sagnac Interference in Carbon Nanotubes 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Sagnac interference in a single channel . . . . . . . . . . . . . . . . . 90

6.3 Interference in Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix 6.A Diagonalizing the Hamiltonian with Degeneracies . . . . . 109

Appendix 6.B Correlation functions . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 115



1

Chapter 1

Introduction

At an early stage of science education, students are taught that there are only two

types of particles in the world: fermions and bosons. This often happens prior to

the introduction of quantum mechanics. Fermions obey Pauli’s exclusion principle,

by which two fermions cannot occupy the same quantum mechanical state. Due to

this simple rule, electrons circulating an atom’s nucleus must fill high energy atomic

shells, and even non-interacting electrons in a metal or a semiconductor must fill

bands and form Fermi seas. Bosons, on the other hand, do no have such a restriction,

and a macroscopic number of bosons may occupy the same quantum mechanical

state. A macroscopic occupation of a single state leads to the formation of a Bose-

Einstein condensate, a state of matter which displays quantum mechanical behavior at

macroscopic length scales. The classic example of a Bose-Einstein condensate is liquid

4He below its critical temperature of 2.17K. Bose-Einstein condensed 4He exhibits

vanishing viscosity and quantized vortices, among other interesting properties.

When the number of spatial dimensions of a system is three or greater, it can be

mathematically proven that quantum mechanics of that system can be consistent only

when all particles are either bosons or fermions, perhaps with additional local degrees

of freedom (e.g., [1]). Since our world has exactly 3 observed spatial dimensions, all

elementary particles must be bosons or fermions. Indeed, all particles in the Standard

Model [2, 3] of particle physics are either bosons or fermions. With the exception of

the Higgs boson, all particles of the Standard Model have been observed.

In two spatial dimensions, on the other hand, particles which are neither bosons
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nor fermions can exist without violating any of the requirements of quantum mechan-

ics. Such particles have been dubbed anyons [4, 5], and are said the have fractional

statistics. Fortunately, anyons may be more than a theoretical curiosity. A num-

ber of physical systems are effectively two-dimensional at low energies, including

two-dimensional electron gases in semiconductor heterostructures [6, 7], single layer

graphene [8, 9], and trapped atomic gases [10, 11].

In the remainder of this chapter, we discuss quantum mechanics in two spatial

dimensions, and possible realization of anyons in physical systems, in particular in

quantum Hall systems. In section 1.1 we describe how anyons arise in two-dimensions,

and the different types of anyons. In section 1.2 we review the integer quantum Hall

effect, and in section 1.3 we review the fractional quantum Hall effect, the most

promising venue for the observation of anyons. Then we briefly discuss gapless edge

excitations in quantum Hall systems and their importance for experiments in sec-

tion 1.4. Finally, we provide an overview of the work reported in this thesis in

section 1.5.

1.1 Quantum mechanics in 2 spatial dimensions

In quantum mechanics textbooks, the bosonic or fermionic statistics are introduced

as a result of symmetry requirements on multi-particle wavefunctions. Under the

exchange of the positions of any two particles, the wavefunction must be completely

symmetric or completely antisymmetric:

ψ(x2, x1, ...) = ±ψ(x1, x2, ...). (1.1)

When the wavefunction is symmetric under exchanges it describes bosonic particles.

When it is antisymmetric, it describes fermionic particles, since the wavefunction

vanishes in that case when two particles are brought to the same position. To under-

stand the origin of this symmetry requirement, it is useful to use the path integral

representation of quantum mechanics [1, 12, 13].
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Consider the quantum transition amplitude K(q′, t′; q, t) = 〈q′, t′|q, t〉, which is

simply the probability of finding particles at the positions q′ at time t′ if they were

at positions q at time t. We can write this matrix element as a path integral over

all possible particle trajectories weighted by the action of the system [14]. In order

to classify the possible particle trajectories, we must specify the configuration space

of the particles. Since we are dealing with indistinguishable particles, particle con-

figurations which differ by the interchange of two particles must be identified. Also,

we assume two particles cannot be at a location at the same time (else they will be

necessarily bosonic), i.e., we exclude the diagonal D from the configuration space.

The configuration space of n particles in d dimensions is therefore

C =
Rdn −D
Sn

, (1.2)

where Sn is the permutation group of n elements.

With this understanding of the configuration space we can proceed to write the

path integral for the transition matrix elements:

K(q′, t′; q, t) =
∑

α∈π1(C)

χ(α)

∫
q(t)∈α

Dq(t) exp

(
i

∫ t′

t

dt0L(q(t0))

)
. (1.3)

On the right hand side of Equation 1.3, we divided all possible particle trajectories

which obey the boundary conditions into groups of trajectories labeled by α. All

trajectories in the same homotopy class α can be continuously deformed into each

other. These classes from a group, the fundamental group πq(C). Each homotopy

class is given a weight χ(α), and we will see below that it is exactly this weight which

determines the statistics of the particles.

Determining the allowed values of the weights χ(α) requires studying the group

π1(C) which classifies the possible trajectories of particles [12, 13]. The interpretation

of the matrix element above as a probability forces the weights χ to form a represen-

tation of the group π1(C) [15]. When the number of spatial dimensions is d ≥ 3, the

group π1(C) turns out to be simply the permutation group of n particles, Sn. This in
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turn means that all paths which share the same end points can be continuously de-

formed into each other. The only one dimensional representation of Sn are the trivial

representation and the alternating or permutation parity representation. Using the

trivial representation gives χ = 1 to all trajectories of particles, resulting in bosonic

wavefunctions. Using the parity representation gives χ = ±1, where the sign depends

on the parity of the permutation of particles from the start point to the end point.

This in turn yields completely antisymmetric or fermionic wavefunctions. Higher di-

mension representations of the permutation group have been also studied [16], and

have been found to be equivalent to bosonic or fermionic theories with additional

hidden local degrees of freedom [17].

In two spatial dimension, d = 2, quantum mechanics is much richer. Heuristically,

this can be motivated by thinking of the world lines of particles in the 3-dimensional

space-time. If we imagine creating a pair of particles from the vacuum, winding these

particles around each other, and then annihilating them back in to the vacuum, the

world lines of these particles would form a knot in the space-time manifold. In a

space-time manifold of dimension greater than three, there are no non-trivial knots,

since there are enough dimensions to undo any knot to a simple loop. In 2 + 1

dimension, that is not possible, and non-trivial knots can exist. In terms of particle

trajectories, this observation means that in 2 + 1 dimensions not only the end points

of particle trajectories are important, but also the exact way particles wind around

each other.

More formally, the first fundamental group π1(C) of the configuration space of

n particles in d = 2 dimensions is the braid group Bn [18], an infinite non-Abelian

group, rather than the permutation group Sn for d ≥ 3. There is an infinite number

of particle trajectories that share the same start and end points, but differ by the

way particles are exchanged along the way. The braid group Bn can be generated by

successive exchanges of particle positions, yet is different from the permutation group

Sn due to the fact that in two spatial dimensions, clockwise and counter clockwise

exchanges of particles are not equivalent.

The braid group has a family of one dimensional representations which can be



5

used to assign weights χ to trajectories. Translated to requirements on wavefunctions,

these representation lead to multi-valued wavefunctions:

ψ(x2, x1, ...) = eiπνψ(x1, x2, ...) (1.4)

where 0 ≤ ν ≤ 1. Bosons and fermions correspond to ν = 0 and ν = 1, respec-

tively. An intermediate value for ν makes this wavefunction one of Abelian anyons.

They are Abelian since exchanging or braiding particles causes a simple multiplica-

tion by a phase, so the order of exchanges can be changed without effecting the final

outcome.

Higher dimensional representations of the braid group give rise to non-Abelian

anyons [19]. In such case, the wavefunction is a vector state, even for fixed parti-

cle positions. A particle exchange causes a rotation in the vector space, i.e., the

wavefunction vector is multiplied by a matrix, as shown in Figure 1.1. Since ma-

trix multiplication is not commutative, the order in which particle exchanges are

performed is important, hence the non-Abelian statistics.

i

j

ª~ ijM! ª~

Figure 1.1: When non-Abelian particles are exchanged, the vector wavefunction is
rotated in the degenerate subspace of states with the same particle positions.

Interest in anyons and fractional statistics surged in the condensed matter physics

community following the observation of the fractional quantum Hall effect[7]. It was

evident that the planar two-dimensional geometry of quantum Hall systems plays a

crucial role in their physics. In particular, the wavefunctions suggested by Laughlin

[20], which successfully explained the existence of the fractional quantum Hall effect,
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had anyonic charged particles [21].

Fractional quantum Hall effect systems are still the most promising venue for the

observation of fractional statistics in two dimensions, and are the focus of this thesis.

We first review the integer Hall effect in section 1.2, and then we discuss the fractional

quantum Hall effect in section 1.3.

1.2 Integer Quantum Hall Effect

The classical Hall effect, discovered by Edwin Hall in 1879 [22], is easily understood

using simple electrodynamics. When moving charge carriers in a metal are placed in a

magnetic field perpendicular to the current, they will be subject to the Lorentz force.

The Lorentz force is perpendicular to both the current and the magnetic field, and

is proportional to the charge unit and the magnitude of the magnetic field. Charge

carriers will be forced to accumulate on the edges of the sample and develop a voltage

drop perpendicular to the current in the sample, exactly enough voltage drop to cancel

the Lorentz force. This voltage is the Hall voltage, and classically it is proportional

to the magnetic field magnitude.

The quantum Hall effect (QHE) occurs in two-dimensional systems, at low tem-

perature (T < 500mK) and high magnetic fields (T ≈ 2 − 10 Tesla). Under these

conditions, the Hall resistance, i.e., the ratio of the Hall voltage to the current run-

ning through the sample, deviates from the linear behavior in magnetic field predicted

by the classical Hall effect. In fact, near certain magnetic fields, the Hall resistance

forms plateaus, and its value is very precisely quantized to be of the form Rxy = 1
ν
h
e2

,

where ν is a rational number. At the same time, the longitudinal resistance of the

system vanishes. A typical experimental trace is shown in Figure 1.2.

The first quantum Hall effect observation was in a semiconductor heterostructure

system, where electrons are trapped to the two-dimensional interface between two

different semiconductors, such as GaAs and AlGaAs. At first, integer plateaus corre-

sponding to integer value of ν were observed [6]. This effect was labeled the integer

quantum Hall effect. Soon after, non-integer fractions were also observed [7], the
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Figure 1.2: A trace showing the quantum Hall plateaus and the vanishing of the
longitudinal resistance, taken from references [23, 24]

fractional quantum Hall effect.

It is instructive to examine the spectrum of non-interaction two-dimensional elec-

trons in the presence of a magnetic field. The spectrum of a clean system breaks into

a set of discrete energies called Landaul levels. The energies of Landau levels are:

En = ~ωc
(
n+

1

2

)
, n = 0, 1, 2, ... (1.5)

where ωc = eB
m

. Each Landau level has degeneracy

gLL =
SB

φ0

, (1.6)

where S is the area of the system and φ0 = h/|e| is the magnetic flux quantum.

The single-electron wavefunctions can also be calculated. For example, in the n = 0

Landau level, the electron wavefunctions are holomorphic functions of z = x+iy mul-

tiplied by a gaussian factor, when using the symmetric gauge for the electromagnetic

potential:

ϕm(~r) = Cm z
m e−|z|

2/4l2B , m = 0, 1, ..., gLL. (1.7)
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The magnetic length lB =
√

~/|e|B is the natural length scale in the quantum Hall

regime, and Cm is a normalization constant. For more on Landau levels, see sec-

tion 2.1.

It is easy to show that the Hall conductance of a filled Landau level is exactly e2

h
,

and that its longitudinal resistance vanishes (see, e.g., the review article by Girvin

[25]). It is therefore tempting to attribute the integer quantum Hall effect to simply

filling an integer number of Landau levels. Luckily, the explanation cannot be this

simple, since in a translationally invariant system, the Hall conductance must be linear

in magnetic field, just like the classical Hall effect. It will be an integer multiple of

e2

h
when the magnetic field is such that an integer number of Landau levels are filled,

but deviations from that magnetic field change the filling of Landau levels and the

Hall conductance accordingly. The existence of Landau levels does not explain the

observed plateaus in the Hall conductance.

To understand the integer quantum Hall plateaus it is necessary to invoke disorder.

In the presence of disorder, Landau levels acquires a finite width, and some of the

states in each Landau level become localized. These localized states do not contribute

to the conductance of the system, but act as a particle reservoir which can absorb

particle density changes without effecting the conductance of the system, producing

conductance plateaus (see [26] and references therein). The precise quantization of

the conductance plateaus can be explained using Laughlin’s gauge arguments [27].

Excellent review articles are [28] and [25].

1.3 Fractional Quantum Hall Effect

The picture described above for the integer quantum Hall effect had completely filled

or nearly completely filled Landau levels as a starting point. This picture does not

hold for the non-integer fractions observed, as seen in Figure 1.2 and Figure 1.3. The

fraction ν appearing in the Hall conductance σxy = ν e
2

h
corresponds to the filling

fraction of electrons, i.e., the number of filled Landau levels, or equivalently, the

ratio between the number of electrons in the sample and the number of magnetic
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flux quanta threading the sample, ν = Ne
NΦ0

. When ν is not an integer, for example

ν = 1/3, the ground state of free electrons at such a density is highly degenerate

due to the flat dispersion of a Landau level. The fractional quantum Hall effect

(FQHE) arises due to the interaction between electrons, which lifts the ground state

degeneracy at these special rational filling fractions. The FQHE ground state is a

strongly correlated state of electrons which has a gap for bulk excitations.

Laughlin’s wavefunction for electrons [20] describes the FQHE at filling ν = 1/m,

with m an odd integer:

Ψm(z1, z2, ..., zN) =
∏
i<j

(zi − zj)m exp

(
−
∑
i

|zi|2/4l20

)
(1.8)

where l0 =
√
hc/eB is the magnetic length. This wavefunction is entirely in

the lowest Landau level, as can be seen from Equation 1.7. The wavefunction of

Equation 1.8 has almost unity overlap with the exact ground state of electrons with

Coulomb interaction at filling ν = 1/m, and is the exact ground state wavefunction of

a short range Hamiltonian [29]. Laughlin showed that electrons around these filling

fractions have a gap to excitations, and also argued that these states support local-

ized charged excitation which carry fractional charge e∗ = e/m. These fractionally

charged excitations were first observed in the ν = 1/3 state [30] in 1995. Using a

hierarchy over the Laughlin series [29, 31] or a composite fermion picture [32], other

observed fractions were explained, all with odd denominator filling fractions. Quasi-

particle excitations in the Laughlin and hierarchy states are expected to have Abelian

fractional statistics. These fractional statistics are yet to be observed.

The even denominator quantum Hall state observed at filling fraction ν = 5/2

[33] could not be explained using the hierarchy scheme or composite fermion picture.

Moore and Read [34] constructed a wavefunction for electrons at ν = 1/2 as a candi-

date for the observed ν = 5/2 state, assuming the two lower filled Landau levels are

inert:

ΨPf = Pf(
1

zi − zj
)
∏
i<j

(zi − zj)2 exp

(
−
∑
i

|zi|2/4l20

)
(1.9)
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where the Pfaffian is the completely antisymmetrized product

Pf(
1

zi − zj
) = A

(
1

z1 − z2

1

z3 − z4

...

)
. (1.10)

The Moore-Read wavefunction is also referred to as the Pfaffian wavefunction. The

Moore-Read wavefunction is written here in the lowest Landau level for simplicity,

but we have in mind the equivalent wavefunction in the second Landau level (the first

Landau level of both spins is completely filled). The wavefunction in Equation 1.9

can be raised to the second Landau level by applying the raising operators described

in section 2.1. The Moore-Read wavefunction can be written as a conformal block

of a conformal field theory, an approach which proved useful for generating quantum

Hall candidate wavefunctions. The Moore-Read wavefunction suggested the existence

of non-Abelian fractional statistics, since there is a ground state degeneracy for fixed

positions of quasiparticles and a model Hamiltonian [35], and braiding quasiparticles

causes a rotation in the degenerate subspace [35, 36].

Read and Rezayi generalized the Moore-Read construction and suggested a family

of non-Abelian states at filling fraction ν = k/(Mk+2) [37]. The k = 2, M = 1 Read-

Rezayi state is the Moore-Read state. The motivation for constructing additional

non-Abelian states was the experimental observation of quantum Hall plateaus in the

range 2 < ν < 4. (see Figure 1.3.)

Until recently, support for non-Abelian quantum Hall states has been largely due

to numerical work. Support for the Moore-Read state as the ground state of electrons

at ν = 5/2 was initiated by the numerical work of Morf [39], in 1998, on systems with a

small number of electrons. Following numerical studies [40, 41, 42] further established

that the ground state of electrons at ν = 5/2 is in the same universality class as the

Moore-Read Pfaffian state. Support for the Read-Rezayi state as the ground state of

electrons at filling fraction ν = 12/5 or its particle-hole conjugate ν = 13/5 is due to

the numerical work of references [37, 43].

Experiments aimed at detecting the properties of the quantum Hall state at ν =

5/2 have been reported recently. These include experiments for measuring the charge
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Figure 1.3: States in the first excited Landau level, 2 < ν < 3, at T = 9mK, taken
from ref. [38]. Among others, plateaus at ν = 7

3
, 12

5
, 5

2
, 8

3
are clearly observed, along

with the vanishing of the longitudinal resistance.

of quasiparticles [44], I-V curves in a quantum point contact [45], thermopower [46],

and two point contact interference [47].

1.4 Edge Excitations in Quantum Hall Liquids

Quantum hall states have a gap to excitations in the bulk. It was first pointed out

by Halperin that integer quantum Hall systems must have gapless edge excitations

[48]. By examining single particle energy levels, Halperin found that the edge theory

of integer quantum Hall systems is the chiral one-dimensional Fermi liquid theory.

Based on general gauge invariance arguments, it can be shown [27, 49] that also

fractional quantum Hall samples must have gapless edge excitations, though they

cannot be described by Fermi liquid theory due to the strong correlations in the
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fractional quantum Hall effect. The gapless edge theory is closely related to the

conformal field theory of the bulk wavefunction [50], but it is also possible to deduce

the edge theory from a hydrodynamical approach [49], or by examining microscopic

wavefunctions of excitations of model Hamiltonians [51].

1.5 Overview

The gapless edge excitations of quantum Hall liquids dominate the transport prop-

erties of these systems due to the bulk gap to excitations. This is the reason for the

extensive study of edge experiments for detecting properties of quantum Hall states.

Fractionally charged quasiparticles in the fractional quantum Hall regime have

been observed [30, 44] through edge tunneling experiments. There are a number of

proposed experiments for using edge tunneling to detect fractional statistics, both

Abelian [52, 53, 54, 55] and non-Abelian [56, 57, 58, 59].

Support for the existence of non-Abelian quantum Hall states is so far only due to

numerical work on systems with a small number of electrons. In this thesis, we first

address Landau level mixing. It is often ignored in numerical work, and could sig-

nificantly improve such work and enhance our theoretical understanding of quantum

Hall systems. The bulk of the work reported in this thesis focuses on the analysis of

possible edge experiments which are hoped to reveal evidence of non-Abelian states

and statistics, either directly or indirectly.

In chapter 2 we perturbatively and systematically calculate the effects of Landau

level mixing on the interaction of electrons in a given Landau level. We represent our

results using multi-particle pseudopotentials and explain the significance of Landau

level mixing to numerical work. In chapter 3 we quantitatively analyze the two-point

contact interferometer in the ν = 5/2 quantum Hall state. This experiment is hoped

to provide direct evidence of non-Abelian statistics. We address the finite temperature

and voltages behavior of the measurable signal and the amplitude attenuation of the

signal due to finite temperature. In chapter 4 we investigate a family of quantum

Hall states at filling fractions 2/(k + 2), which are relevant to the observed quantum
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Hall fractions 5/2 and 12/5. In chapter 5 we suggest an experimental setup involving

electron tunneling between quantum Hall edges and a quantum dot. It is shown that

the neutral modes of the edge theories lead to the mapping of the tunneling problem

to the multi-channel Kondo problem, which can help distinguish between different

states at filling ν = 5/2. Finally, in chapter 6 we use the same bosonization technique

extensively used in the study of quantum Hall edges to study Sagnac interference in

carbon nanotube loops.
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Chapter 2

Landau Level Mixing

Since the early days of the fractional quantum Hall effect (FQHE), numerical exper-

iments on small systems have played a major role in the study of electrons in high

magnetic fields. Laughlin’s seminal paper [20], which initiated the approach of can-

didate wavefunctions for the FQHE, included the exact diagonalization results of a

system with 3 and 4 electrons at filling fraction ν = 1/m, with m an odd integer.

Even with such small systems, Laughlin was able to verify that the FQHE system

has a gap to excitations, that the excitations are localized and fractionally charged,

and that his variational wavefunctions for the ground and excited states are indeed

very close to the numerically calculated ones.

The observation of an even denominator quantum Hall plateau at ν = 5/2 [33]

led to the proposal of wavefunctions with non-Abelian excitations for the FQHE. A

paired electron wavefunction with non-Abelian statistics [34] was proposed to describe

the observed state at ν = 5/2. This approach was generalized to non-Abelian states

at ν = 2 + k/(k + 2), where k is an integer [37]. Recent measurements of quasi-

particle charge [44] and tunneling current [45] around ν = 5/2 are consistent with

the Moore-Read paired state of Ref. [34] or its particle-conjugate [60], but are also

consistent with Abelian wavefunctions [61]. Therefore, the support for non-Abelian

FQHE states stems mainly from numerical calculations. In particular, the Moore-

Read wavefunction emerged as the leading candidate for the ν = 5/2 state due to

the investigation by Morf in ′98 [39] and following works [40, 41, 42, 62]. The nu-

merical studies of the quantum Hall system at ν = 12/5 [37, 43] support the k = 3
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Read-Rezayi state as the ground state.

Most numerical studies of quantum Hall systems truncate the Hilbert space to

the partially filled Landau level in question. The electron-electron interaction is

usually taken as the Coulomb interaction projected onto that Landau level, or a

model interaction which captures the essential features of the projected interaction.

These simplifications make the size of the Hilbert space of the system tractable and

amenable to numerical calculations. The projection or approximation of the Coulomb

interaction has had much success in the study of Abelian quantum Hall states since

these states seem to be robust to small changes in the electron-electron interactions.

The ground state of electrons in the second Landau level, however, seems to be

sensitive to such small changes in the interaction between electrons [40, 63, 41, 42].

Though this sensitivity makes the justification of numerical results more difficult,

it might also provide a control knob for engineering ground states of quantum Hall

systems.

Another shortcoming of the projection of the Coulomb interaction onto a given

Landau level is that the resulting interaction is particle-hole symmetric. With such

a particle-hole symmetric interaction, it is not possible to differentiate energetically

between a state and its particle-hole conjugate. For example, a particle-hole sym-

metric interaction will result in the same ground state energy for the Moore-Read

state [34] and its particle-hole conjugate state, the anti-Pfaffian [60, 64], both states

of electron at filling ν = 5/2. Also, a particle-hole symmetric interaction will appear

to be the same at filling fractions ν = 12/5 and ν = 13/5, which is inconsistent with

the experimental observation of the ν = 12/5 state and the lack of such observation

of the ν = 13/5 state [38].

In this chapter we present a method for systematically incorporating the com-

pletely empty upper Landau levels or completely filled lower Landau levels into the

effective interaction between electrons in a given Landau level. This effective inter-

action is usually referred to as Landau level mixing (LLM). Our approach allows us

to better approximate the electron-electron interactions in the second Landau level,

which can make a substantial difference in the properties of numerically calculated
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ground states, as we argued above. In addition, our approach will generate interac-

tions which are not particle-hole symmetric, and will allow us to differentiate between

the Moore-Read state and the anti-Pfaffian state. Our results can be used as input

for a numerical investigation of ground states in the second Landau level.

To our knowledge, there is no previously published systematic investigation of

LLM.

2.1 Landau Levels, Coulomb Interaction and Particle-

Hole Symmetry

In the presence of a magnetic field ~B = Bẑ perpendicular to the x− y plane of a two

dimensional electron gas, the single electron spectrum breaks into flat Landau levels.

The nth Landau level has energy

En = ~ωc
(
n+

1

2

)
, n = 0, 1, 2, ... (2.1)

where ωc = eB
m

, with m the effective mass of an electron. Each Landau level has

degeneracy

g =
SB

φ0

, (2.2)

where S is the area of the sample and φ0 = h/|e| is the magnetic flux quantum.

In the symmetric gauge, ~A = (−By/2, Bx/2, 0), the lowest Landau level (n = 0)

states are holomorphic functions of z = x+ iy, multiplied by a decaying gaussian:

ϕm,0(~r) = Cm z
me−|z|

2/4l2B , m = 0, 1, ..., g. (2.3)

The magnetic length lB =
√

~/|e|B is the natural length scale in the quantum Hall

regime, and Cm is a normalization constant. Single electron states in higher n Landau

levels can be obtained from the lowest Landau level states by application of the raising
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operator a† = i√
2
e−|z|

2/4l2B
(
z∗ − 2 ∂

∂z

)
e|z|

2/4l2B for n times (see, for example, Ref. [65]):

ϕm,n(~r) =
a†

n

√
n!
ϕm,0(~r) (2.4)

In the absence of interactions, a partially filled Landau level has many degenerate

states due to its flat dispersion. The Coulomb interaction lifts this degeneracy, and

gives rise to a gapped spectrum near certain filling fractions, as was first shown by

Laughlin [20]. The Coulomb interaction can be written, using second quantization

notation, as:

U =
1

2

∑
u(4, 3; 2, 1)c†4c

†
3c2c1. (2.5)

The creation operator c†i ≡ c†mi,ni creates an electron in the state mi in the ni Landau

level. The matrix element U(4, 3; 2, 1) is the 1/r Coulomb interaction matrix element:

u(4, 3; 2, 1) = 〈m4, n4;m3, n3|
e2

4πεr
|m1, n1;m2, n2〉. (2.6)

Note the ordering of the states in the matrix element. We can use the explicit wave-

functions and evaluate the Coulomb matrix elements of Equation 2.6. We cannot

obtain a closed form for these matrix elements, but they can be expressed as an

integral over a two dimensional linear momentum variable:

u(4, 3; 2, 1) =
e2

4πεlB
ÃS

{∫
d2q

(2π)2

2π

|q|
e−q

2

Gn4,n1(q∗)Gm4,m1(q)Gn3,n2(−q∗)Gm3,n2(−q)
}
.(2.7)

The function Ga,b(q), for a > b, is [65]:

Ga,b(q) =

(
b!

a!

)(
−iq√

2

)a−b
La−bb (

|q|2

2
) (2.8)

where La−bb (q) is the generalized Laguerre polynomial. ÃS antisymmetrizes with

respect to the exchanges 4 ↔ 3 and 2 ↔ 1, so that the matrix elements respect the

fermionic statistics of electrons.

The full Coulomb interaction of Equation 2.5 includes all Landau levels, i.e., it
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acts in an infinite Hilbert space. The full Hamiltonian of the system is then:

H =H0 + U (2.9)

=
∑
m,n

~ωc(n+
1

2
)c†m,ncm,n +

1

2

∑
u(4, 3; 2, 1)c†m4,n4

c†m3,n3
cm2,n2cm1,n1

The spacing in energy between Landau level is ~ωc ≈ 20B Kelvins, when B is

in Teslas. This spacing is much larger than the observed gap in the quantum Hall

regime. For example, the fragile state at ν = 5/2 has an activation gap of about

∆ = 500mK [38]. It is also assumed in many cases that the typical Coulomb energy,

e2/4πεlB, is much smaller than the Landau level spacing as well. It will be useful to

define the ratio of the Coulomb energy to the cyclotron energy:

κ =
e2/4πεlB

~ωc
. (2.10)

Under the assumption that κ � 1, the cyclotron energy ~ωc is much larger than

any other energy scale in the problem, and it would be a good approximation to

ignore all higher or lower Landau levels other than the partially filled one. This will

reduce the size of the Hilbert space and greatly reduce the numerical effort required

for diagonalizing the system. Projection onto a single Landau level is equivalent to

keeping only operator with labels ni = n in the full Hamiltonian, Equation 2.9. We

may suppress the ni label in that case, and ignore the Landau level energy which is

simply a constant:

Hprojected =
1

2

∑
un(4, 3; 2, 1)c†m4

c†m3
cm2cm1 (2.11)

We will see that the Coulomb interaction can be easily calculated and represented

by pseudopotentials when projected to a given Landau level in section 2.2.

As discussed in the introduction, the projected Hamiltonian in Equation 2.11

has a few shortcomings. The assumption that the ratio of the Coulomb energy to

the cyclotron energy, κ, is small, does not hold in real systems. In addition, when
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projected to a single Landau level, the Coulomb interaction is particle-hole symmetric,

as can be seen from the simple transformation:

c†m → cm

cm → c†m

un(4, 3; 2, 1)→ (un(4, 3; 2, 1))∗ . (2.12)

Under this transformation, the two-particle interaction in Equation 2.11 is invari-

ant, up to a shift of the chemical potential [60]. (It is useful to remember that the

matrix elements satisfy (un(4, 3; 2, 1))∗ = un(1, 2; 3, 4).)

We show below how to incorporate systemically the neglected Landau levels into

the effective interaction between electrons in a given Landau level. This effective

interaction will not be particle-hole symmetric and will be able to resolve the difference

between quantum Hall candidate states and their particle-hole conjugates. Also,

we get the effective interaction as an expansion in powers of κ, which would allow

a rigorous test of the usual assumptions which go into numerics of quantum Hall

systems.

2.2 Multi-Particle Pseudopotentials

In this section we will review multi-particle pseudopotentials, a convenient way of

parameterizing multi-particle interactions. It is most easily presented in first quan-

tization notation, but can also be easily translated to second quantization notation,

as we shall see. Two-particle pseudopotentials were first introduced by Haldane [29],

and multi-particle pseudopotentials were introduced in [66].

In first quantization notation, a translationally invariant two-particle interaction

can be written as the sum of interactions of pairs of particles:

H2p =
∑
i<j

V (~ri − ~rj). (2.13)
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The two-particle Hamiltonian acts only on two particles at a time, so it is sufficient

to analyze a two-particle wavefunction. A two-particle wavefunction can be always

decomposed to a center of mass part and a relative part:

Ψ(~r1, ~r2) =
∑
b,c

Ab,cΨ
CM
b

(
~r1 + ~r2

2

)
Ψrel
c (~r1 − ~r2). (2.14)

When the interaction is translationally invariant, it acts only on the relative part

of the wavefunction. If the interaction is also rotationally invariant, it cannot mix

states with different relative angular momenta.

We will restrict our discussion to electrons in the lowest Landau level. Any higher

Landau level can be analyzed by simply applying the raising operators described in

section 2.1 to all electrons an appropriate number of times. In the lowest Landau level,

we can write the relative wavefunction of two particles in a basis of defined angular

momentum, as can be seen from the lowest Landau level states in Equation 2.3. The

states in this relative basis are:

|m; i, j〉 = Nm(zi − zj)m, (2.15)

where m is the relative angular momentum, and Nm is a normalization constant.

Using this basis, we can write the two-particle Hamiltonian as:

H2p =
∑
i<j

∑
m

|m; i, j〉〈m; i, j|V (~ri − ~rj)|m; i, j〉〈m; i, j|

≡
∑
i<j

∑
m

Vm,2P
m
ij , (2.16)

where Pm
ij is the projector onto the state of relative angular momentum m between

particles i and j, and Vm,2 is the two-particle mth pseudopotential [29]. Using the

explicit relative wavefunctions of Equation 2.15 we can explicitly calculate Vm,2 for

the lowest Landau level [29]:

Vm,2 = 〈m; i, j|V (~ri − ~rj)|m; i, j〉 =

∫ ∞
0

d2q

(2π)2
V (q)Lm(q2l2B)e−q

2l2B , (2.17)
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where V(q) is the Fourier transform of V (~r). For the 1/r Coulomb interaction we

have

VC(q) =
e2

4πε

2π

q
. (2.18)

,

The 2-particle pseudopotentials Vm,2 of the Coulomb interaction projected to the

lowest Landau level decay as 1/
√
m for large m, and therefore, one might suspect

that higher m pseudopotentials are not as important as lower m ones. Indeed, that

turns out to be true for the Laughlin states. For example, the ν = 1/3 Laughlin state

is the exact ground state of a two-particle interaction where only V1,2 is non-zero, and

it is very close to the ground state of the system with the full Coulomb interaction

[20].

So far we have discussed two-particle pseudopotentials, but the same approach

can be generalized to interaction of more than two particles. The derivation of multi-

particle pseudopotentials follows the above derivation closely, with the only difference

being the structure of the relative angular momentum basis.

If we are interested in an M -particle interaction, it is sufficient to consider an M -

particle wavefunction. This wavefunction can be decomposed to a sum of products

of a center of mass wavefunction and a relative wavefunction:

Ψ(~r1, ..., ~rM) =
∑

Ab,cΨ
CM
b

(
~r1 + ...+ ~rM

M

)
Ψrel
c (~r1 − ~r2, ..., ~r1 − ~rM). (2.19)

A rotationally and translationally invariant M -particle interaction acts only on

the relative part of the wavefunction, and cannot mix relative wavefunctions with

different angular momenta. If we restrict ourselves to the lowest Landau level once

more, then we can define the angular momentum of the relative wavefunction as the

total degree of the holomorphic polynomial Ψrel. If Ψrel is a homogeneous polynomial

of degree m, then it is an angular momentum eigenstate with angular momentum m.

To write an angular momentum basis for the relative wavefunctions of M par-

ticles in the lowest Landau level we must find all the homogenous polynomials in

z1, ..., zM which are translationally invariant and completely antisymmetric, due to



22

the fermionic statistics. This has been carried out in Ref. [66]. For a given angular

momentum m, there could be more than one state satisfying these conditions, and

the M -particle interaction may mix these states since they have the same angular

momentum. In such case, the pseudopotential Vm,M is a matrix rather than a scalar.

A general translationally and rotationally invariant M -particle interaction can be

written as:

HMp =
∑

i1<...<iM

∑
m,q,q′

|m, q; i1, ..., iM〉V q,q′

m,M〈m, q
′; i1, ..., iM |. (2.20)

The indices q and q′ run over the multiple possible states for a given angular momen-

tum m, if any.

As an example, we can write the lowest and second lowest angular momentum

states of 3 electrons. The lowest angular momentum a relative wavefunction of 3

fermions can have is 3. The corresponding wavefunction is:

|m = 3,M = 3 >= c (z1 − z2)(z1 − z3)(z2 − z3). (2.21)

One can easily check that |m = 3,M = 3 > is a homogenous polynomial which is

completely antisymmetric and translationally invariant. There is no such 3-fermion

state for m = 4. For m = 5, the state is:

|m = 5,M = 3 >= c′ (z1 − z2)(z1 − z3)(z2 − z3)× (z̃1z̃2 + z̃1z̃3 + z̃2z̃3), (2.22)

where z̃i = zi− z1+z2+z3
3

. A systematic derivation of multi-particle angular momentum

states of both bosons and fermions can be found in [66].

We will use the pseudopotential representation for the effective interactions be-

tween electrons generated by LLM.
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2.3 Perturbative Calculation of LLM

Our approach for including the effects of fully filled or completely empty Landau

levels on the interaction between electrons in a given partially filled Landau level

is to integrate out the degrees of freedom belonging to those empty or full Landau

levels. This will add to the interaction between the electrons of the partially filled

level the virtual processes in which electrons hop to higher empty levels, or electrons

from lower filled levels hop to the partially filled level. This approach is systematic,

and we will calculate the effective interaction in powers of κ, the ratio of the Coulomb

energy to the cyclotron energy, introduced in section 2.1.

This approach is essentially the same as energy or momentum shell Renormal-

ization Group (RG). In energy or momentum shell RG, one attempts to integrate

out high energy degrees of freedom and examine the resulting effective interaction

between the remaining low energy degree of freedom. This procedure reduces the

cutoff of the problem. Rescaling is required in the usual RG procedure, so that one

can compare the flow of the interactions. In the case of LLM, we have no need to

rescale. The RG approach for interacting fermions was pioneered by Shankar [67],

and we largely follow his conventions for notation.

The starting point for our calculation is the path integral representation of the

zero-temperature partition function of electrons in a magnetic field. The full partition

function corresponding to the Hamiltonian in Equation 2.9 can be readily written as

Z =

∫ ∏
m,n

[dcm,n(ω)dcm,n(ω)] eS0 eSU . (2.23)

The variables cm,n(ω) and cm,n(ω) are anti-commuting Grassman variables. The ac-

tion S0 is the action of free electrons in a magnetic field:

S0 =

∫
dω

2π

∑
m,n

cm,n(ω)(iω − En + µ)cm,n(ω), (2.24)

where En = ~ωc
(
n+ 1

2

)
as before, and µ is the chemical potential. The interaction
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part of the action is:

SU = −1

2

∫ 4∏
i=0

dωi
2π

u(4, 3; 2, 1) 2πδ(ω4 + ω3 − ω2 − ω1)

×cm4,n4(ω4)cm3,n3(ω3)cm2,n2(ω2)cm1,n1(ω1). (2.25)

We are interested in the situation where the chemical potential is such that one of

the Landau levels is only partially filled. Let us call the index of that partially filled

Landau level npar. Higher Landau level are completely empty, while lower Landau

levels are completely full, in the absence of electron interactions.

Borrowing notation and terminology from momentum shell RG, we shall call the

degrees of variable within the npar Landau level low energy degrees of freedom, and

we will drop the Landau level index for these variables:

cm,n=npar(ω) ≡ cm(ω), (2.26)

and the same for c(ω). We shall call all other degrees of freedom high energy degrees

of freedom. Any variable in the interaction action, Equation 2.25, can be expressed

as the sum of low and high energy variable:

cm,n(ω) = δn,nparcm(ω) + (1− δn,npar)cm,n(ω). (2.27)

Our plan from this point onwards is to use the decomposition above, Equa-

tion 2.27, to rewrite the action. Then, we will integrate out all the degrees of freedom

with n 6= npar, in powers of the interaction u, to generate new interactions between

the degree of freedom with n = np. The generated interactions will include n-particle

contributions, i.e. 2-particle, 3-particle interactions and more:

Ueff =
∑

u
(2)
eff (4, 3; 2, 1)cm4cm3cm2cm1 (2.28)

+
∑

u
(3)
eff (6, 5, 4; 3, 2, 1)cm6cm5cm4cm3cm2cm1 + ...
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Figure 2.1: The tree level diagram. The vertex corresponds to the Coulomb matrix
elements. In the tree level diagram, all the legs are low energy variable, i.e., they are
all in the partially filled Landau level npar

This procedure is well known, and it is extremely helpful to use diagrams to simplify

bookkeeping. As the review [67] provides a detailed description of the expansion in

powers of the interaction, the diagramatic representation, and the integration proce-

due, we will not review these here. We will simply show the diagrams we are interested

in and explain the corresponding interactions.

2.4 Tree Level Interaction

The lowest order contribution to the interaction between electrons in the partially

filled Landau level comes from simply ignoring the other Landau levels in the action

SU of Equation 2.25, and restricting the sums to n = np. The tree level diagram is

shown in Figure 2.1.

The tree level diagram and all other diagrams have a corresponding mathematical

expression. Each vertex contributes a Coulomb matrix element and the ω conserva-
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tion. For each vertex in a diagram, we need to include the following term:

− 1

2
u(4, 3; 2, 1) 2πδ(ω4 + ω3 − ω2 − ω1). (2.29)

We need to sum over all possible high energy legs. In the tree level diagram, there

are no high energy legs, so the interaction is simply the Coulomb interaction, but with

all Landau level indices set to n = npar. This is equivalent to the projection of the

Coulomb interaction to the partially filled Landau level, as discussed in section 2.1:

utree(4, 3; 2, 1) = unpar(4, 3; 2, 1). (2.30)

As mentioned earlier, the Coulomb interaction conserves angular momentum. The

basis states we chose are angular momentum eigenstates. The angular momentum of

the state ϕm,n(~r) is:

Jz|m,n〉 = (m− n)|m,n〉. (2.31)

In the tree level diagram, all Landau level indices are n = npar, so angular momentum

conservation forces:

m4 +m3 = m2 +m1 (2.32)

In short, the tree level interaction is simply the projected Coulomb interaction.

Keeping only the tree level diagram is equivalent to setting all the Landau level indices

in the Hamiltonian of Equation 2.9 to ni = npar. It is still a 2-particle interaction that

does not break particle-hole symmetry, and does not know about the other Landau

levels, as evident from the lack of ~ωc in these expressions.

2.5 Lowest Order 3-Particle Interaction

Higher order contributions to the effective actions come from more complicated di-

agrams which also include high energy degrees of freedom. In such diagrams, the

external legs are set to be in the Landau level of interest, n = npar, while internal

legs are allowed to be in any other Landau level, as long as angular momentum is
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Figure 2.2: Diagrams corresponding to 3-particle interaction. Figure (a) is a second
order diagram, since it contains two vertices. All external legs are in the partially
filled Landau level n = npar. Incoming legs are labeled 1, 2, 3 and outgoing legs are
labeled 4, 5, 6. The inner leg indices mx and nx run over all possible values with
n 6= npar. Figure (b) is a third order diagram.

conserved at each vertex. Examples of such diagrams are those in Figure 2.2.

We are interested in the 3-particle interaction since it is the first interesting inter-

action which is not invariant under the particle-hole symmetry, Equation 2.12. This

interaction will split the energies of a state and its particle-hole conjugate.

Let us examine the diagram in Figure 2.2(a). This is the lowest order 3-particle

interaction, in powers of κ. It is second order in u and first order in κ, as we shall see.

Note that in the usual Fermi-liquid RG, this diagram would vanish, since it is hard to

satisfy the conservation laws at a vertex when 3 of the legs are low energy variables

and the remaining leg a high energy variable. In the case of quantum Hall, this

diagram does not vanish since even for a large Landau level index, a state can have

small angular momentum when m is large enough, as can be seen from Equation 2.31.

The effective action for any diagram can be written using the following rules:

External legs are labeled by their mi values and their corresponding frequencies ωi,

with the n index suppressed since they all have n = npar. Each internal leg with

indices (mx, nx 6= npar) comes with a propagator, as a result of integration:

Gmx,nx(ωx) =
1

iωx − (Enx − µ)
. (2.33)
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Each vertex carries a contribution shown in Equation 2.29. There is also an overall

constant factor of 1/r!, where r is the order of the diagram (number of vertices),

and a combinatorial factor depending on the exact diagram considered. Finally, we

sum over all possible values of the internal indices mx, nx and the integrate over the

frequencies of the internal legs.

The diagram shown in Figure 2.2(a) corresponds to the following expression:

ccomb
1

2!

(
−1

2

)2 ∑
mx,nx 6=npar

∫
dωx
2π

1

iωx − (Enx − µ)

×u(6, x; 3, 2)u(5, 4;x, 1) 2πδ(ω6 + ωx − ω3 − ω2) 2πδ(ω5 + ω4 − ωx − ω1), (2.34)

where ccomb is a combinatorial factor arising from the different possible ways of

contacting operators using Wick’s theorem [67]. The energy Enx−µ is approximately

~ωc(nx − npar). The ωx integral in this particular diagram simply enforces energy

conservation. The resulting interaction Lagrangian to this order is:

ũ(m6, ...,m1) =− ccomb
1

2!

(
−1

2

)2

×∑
mx,nx 6=npar

u(6, x; 3, 2)u(5, 4;x, 1)

i(ω3 + ω2 − ω6)− (Enx − µ)
2πδ(ω6 + ω5 + ω4 − ω3 − ω2 − ω1).

(2.35)

There is an additional minus sign in Equation 2.35 compared to Equation 2.34 due

to the definition S ∼ −U .

The tilde in ũ indicates that this is the interaction appearing in the Lagrangian in

the frequency domain. In this form, ũ is frequency dependent, i.e., describes a time-

retarded interaction, and will not simply translate to a Hamiltonian. A Hamiltonian,

on the other hand, is much more useful for numerical calculations. Luckily, we can

argue that ignoring the frequency dependence is a good approximation. We know

that the cyclotron energy ~ωc is much larger than the energy scales we are interested
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in, therefore it is possible to ignore the frequency dependence in the term

1

i(ω3 + ω2 − ω6)− (Enx − µ)
. (2.36)

A slightly more formal way to justify this approximation is to imagine expanding

Equation 2.36 in powers of ωi. The lowest order term, the one with all the ωi’s set to

zero is the most relevant in the RG sense since it has the lowest powers of frequencies.

For these reasons, we shall make the approximation ~ωc � ωi in all the diagrams we

evaluate.

Once we’ve ignored the ωi dependence in Equation 2.35, it is straightforward to

go back to a Hamiltonian for this interaction. In terms of creation and annihilation

operators, this lowest order 3-particle interaction Hamiltonian is

H2ndorder
3b (m6, ...,m1) =

∑
{mi}

u(m6, ...,m1) c†m6
c†m5

c†m4
cm3cm2cm1 (2.37)

with

u(m6, ...,m1) = −ccomb
1

2!

(
−1

2

)2 ∑
mx,nx 6=npar

u(6, x; 3, 2)u(5, 4;x, 1)

−(Enx − µ)
. (2.38)

The Hamiltonian in Equation 2.37 came about from evaluating the diagrams in

Figure 2.2(a) with a particular assignment of external legs labels. To get the correct

result, we must sum over the different label permutations of the external legs. We will

do this implicitly when we report our results. The resulting correct Hamiltonian acts

entirely in the npar Landau level. It is not particle-symmetric, and it incorporates the

effect of LLM to lowest order.

In the next section, we explicitly evaluate the expressions for the 3-particle inter-

action and calculate the corresponding 3-particle pseudopotentials.
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2.6 Lowest Order 3-Particle Pseudopotentials

We have obtained a formal expression for the lowest order 3-particle interaction gen-

erated by LLM, Equation 2.37. It is instructive to represent this interaction using

3-particles pseudopotentials. This will allow us to conveniently parameterize the in-

teraction with a list of numbers, and will give us insight regarding the short and long

distance behavior of this interaction.

As described in section 2.2, a 3-particle interaction can be decomposed to a sum

of operators acting in defined relative angular momentum subspaces:

V (~ri, ~rj, ~rk) =
∑
m,q,q′

|m, q; i, j, k〉V q,q′

m,3 〈m, q′; i, j, k|. (2.39)

The state |m, q; i, j, k〉 is a state of the three particles i, j, and k with angular

momentum m. The label q runs over all such possible states. To extract a particular

pseudopotential element V q,q′

m,3 of V (~ri, ~rj, ~rk), one simply needs to evaluate the matrix

element

V q,q′

m,3 = 〈m, q; i, j, k|V (~ri, ~rj, ~rk)|m, q′; i, j, k〉. (2.40)

In Ref. [66] the wavefunctions of the states |m, q′; i, j, k〉 have been explicitly cal-

culated. For fermions, the lowest three particle relative angular momentum possible

is m = 3. For all angular momenta up to m = 8 there is only one state with that

angular momentum, and V q,q′

m≤8,3 is a single number Vm,3. The wavefunctions of these

states are, in the lowest Landau level:

|m = 3; z1, z2, z3〉 ∝ (z1 − z2)(z1 − z3)(z2 − z3)

|m = 5; z1, z2, z3〉 ∝ (z1 − z2)(z1 − z3)(z2 − z3)(z̃1z̃2 + z̃1z̃3 + z̃2z̃3)

|m = 6; z1, z2, z3〉 ∝ (z1 − z2)(z1 − z3)(z2 − z3)z̃1z̃2z̃3 (2.41)

|m = 7; z1, z2, z3〉 ∝ (z1 − z2)(z1 − z3)(z2 − z3)(z̃1z̃2 + z̃1z̃3 + z̃2z̃3)2

|m = 8; z1, z2, z3〉 ∝ (z1 − z2)(z1 − z3)(z2 − z3)z̃1z̃2z̃3(z̃1z̃2 + z̃1z̃3 + z̃2z̃3),

where z̃i = zi − z1+z2+z3
3

. There is no translationally invariant and completely
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antisymmetric wavefunction of 3 particles with m = 4. The exponentially decaying

factors are always implicitly assumed, since they are the same for all wavefunctions.

We have calculated the lowest order 3-particle interaction in second quantization

language, Equation 2.37. To calculate the matrix elements of Equation 2.40 we must

also represent the relative angular momentum states of Equation 2.41 in term of

creation and annihilation operators. The normalized occupation number basis for

three particles is:

|m1,m2,m3 >=c†m3
c†m2

c†m1
|0〉

=Nm1m2m3 AS {zm1
1 zm2

2 zm3
3 } e−

∑
|zi|2/4l2B , (2.42)

where the state |0〉 is the empty Landau level, AS stands for antisymmetrization, and

the normalization constant Nm1m2m3 is

Nm1m2m3 =

√
1

6(2π)32m1+m2+m3m1!m2!m3!
. (2.43)

For example, the lowest relative angular momentum state |m = 3; z1, z2, z3〉 is simply

the state |0, 1, 2〉 = c†2c
†
1c
†
0|0〉 , since the antisymmetrization yields:

AS
{
z0

1z
1
2z

2
3

}
= (z1 − z2)(z1 − z3)(z2 − z3) ∝ |m = 3; z1, z2, z3〉. (2.44)

The relative angular momentum states up to m = 8 are written using occupation

number states, Equation 2.42, as follows:

|m = 3; z1, z2, z3〉 ∝ |0,1,2〉
N012

|m = 5; z1, z2, z3〉 ∝ 2 |0,1,4〉
N014

− 4 |0,2,3〉
N023

|m = 6; z1, z2, z3〉 ∝ −2 |0,1,5〉
N015

+ 5 |0,2,4〉
N024

− 20 |1,2,3〉
N123

(2.45)

|m = 7; z1, z2, z3〉 ∝ −1 |0,1,6〉
N016

+ 3 |0,2,5〉
N025

− 5 |0,3,4〉
N034

|m = 8; z1, z2, z3〉 ∝ 2 |0,1,7〉
N017

− 7 |0,2,6〉
N026

+ 7 |0,3,5〉
N035

+ 21 |1,2,5〉
N125

− 35 |1,3,4〉
N134

.
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It is simple to normalize these states since {|m1,m2,m3〉} are normalized and orthog-

onal.

2.7 Results in Lowest and Second Landau Levels

Using the second quantization representation of Equation 2.45, we can calculate the

matrix elements corresponding to the pseudopotentials Vm,3 as in Equation 2.40, for

the lowest order 3-particles interactions we calculated, Equation 2.37. The results

are summarized in Table 2.7 and Figure 2.3, where we have calculated the effective

interaction in both the lowest Landau level and the second Landau level.

m Vm,3 (LLL) Vm,3 (SLL)
3 −0.0181 −0.0147
5 0.0033 −0.0054
6 −0.0107 −0.0099
7 0.0059 0.0005
8 −0.0048 −0.0009

Table 2.1: Lowest order 3-particle pseudopotentials. The pseudopotentials are in

units of
(
e2/4πεlB

~ωc

)
e2

4πεlB
, and therefore are of order κ. The first column are the 3-

particles pseudopotentials in the lowest Landau level, i.e., with npar = 0, while the
second column is the effective pseudopotentials in the second Landau level, npar = 1.

The lowest order diagram we have evaluated, shown in Figure 2.2a, is first order in

the ratio of Coulomb energy to cyclotron energy, κ. As expected, the lowest angular

momentum pseudopotential is the largest in magnitude. If that was the only non-zero

pseudopotential, then the ground state of the quantum Hall state at filling ν = 5/2

is exactly the anti-Pfaffian state [60, 64], since the first pseudopotential in the second

Landau level is negative. If it were positive, the ground state would be the Moore-

Read Pfaffian state [68, 41], but our explicit calculation finds it is negative to lowest

order in κ.

It is clear from Table 2.7 and Figure 2.3 that even to lowest order in κ, higher an-

gular momentum pseudopotentials cannot be ignored compared to the lowest angular

momentum one. Higher angular momentum pseudopotentials are comparable to the
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Figure 2.3: 3-particle pseudopotentials of the lowest order interactions generated by
LLM, for both the lowest Landau level and the second Landau level. The lowest order
interaction are generated by the diagram shown in Figure 2.2a.

lowest angular momentum one, and can even flip signs. When keeping these higher

angular momentum pseudopotentials, it is no longer clear what the ground state of

electrons at filling ν = 5/2 is, and whether it is close to the Pfaffian or anti-Pfaffian

states.

The pseudopotentials calculated in this chapter should provide a better starting

point for numerical calculations of ground states of quantum Hall systems, especially

in the second Landau level. We find that the electron interactions, even to lowest

order in the ratio of Coulomb energy to cyclotron energy, do not seem to be well

approximated by projection to a given Landau level, or by keeping only the lowest

angular momentum pseudopotential, as is often done. Numerical calculations using

the interaction calculated here, and higher order interactions in κ generated in the

same fashion, will give more accurate answers regarding the nature of quantum Hall

states in the second Landau level, and whether they are indeed non-Abelian.
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Chapter 3

Interferometry and Non-Abelian
Statistics at 5/2 Filling Fraction

Utilizing quantum Hall edges in interference experiments may provide a path for the

direct observation of fractional statistics. It is not yet possible to braid quantum

Hall quasiparticles by manipulating their positions in the bulk of a sample. Using

the edges of a quantum Hall sample, it is possible to design quasiparticle trajectories

along the edges which enclose trapped quasiparticles in the bulk. In such a scenario,

the effect of fractional statistics should be discernable by comparison with a topologi-

cally inequivalent quasiparticle trajectory, i.e., a trajectory which encloses a different

set of bulk quasiparticles. Interference between two such trajectories would provide

information about the braiding of quasiparticles.

For Abelian fractional statistics, the effect of braiding one quasiparticle around

another is a multiplicative phase factor. A simple phase factor might be hard to dis-

entangle from other sources of phase factors in an experiments, such as the Aharonov-

Bohm effect or dynamical phases arising from the propagation of quasiparticles.

Non-Abelian statistics, on the other hand, could provide more direct clear-cut

evidence of fractional statistics. When quasiparticles are braided, the wavefunction is

rotated in the degenerate subspace of the system. The difference between the states

of the system before and after quasiparticle braiding is more than a mere phase factor,

and it should be possible to observe this difference even without complete control of

the Abelian phase factors described above.
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In this chapter, we discuss the two-quantum point contact (QPC) interferometer,

which is equivalent to a Fabry-Perot interferometer of quantum Hall edge quasipar-

ticles. We analyze this experiment in the ν = 5/2 quantum Hall state, where it is

hoped to have a striking, measurable signature. In particular, we calculate I − V

curves and their temperature dependence assuming the ν = 5/2 state is described

by the Moore-Read Pfaffian state, or its particle-hole conjugate. We address the

ambiguities in the calculation arising from the non-Abelian statistics, and verify that

non-Abelian statistics have a clear, distinct experimental signature. We determine the

temperature and length scales for which this signature should be observable. Finally,

we discuss recent experimental results, compare with our predictions, and critically

examine the applicability of our analysis to those experiments.

This chapter has been adapted from our published article [69].

3.1 Quantum Hall State at Filling 5/2

Quantum Hall (QH) devices are the only systems known to be in topological phases.

The ν = 1/3 Laughlin state is in an Abelian topological phase. The excitations of

such a phase carry a fraction of an electron charge and have fractional statistics which

are intermediate between bosonic and fermionic statistics. The fractional charge has

been confirmed experimentally [30, 70, 71] and experiments showing indications of

fractional statistics have been carried out [72].

The observed [33, 73, 38] Quantum Hall state at filling fraction ν = 5/2 is the

primary candidate for a system in a non-Abelian topological phase, and is believed

to be described by the Moore-Read Pfaffian state [34, 68] as a result of numerical

evidence [39, 40]. The excitations of the Pfaffian carry fractional charge e/4 and have

non-Abelian braiding statistics: for given quasiparticle positions, there are several

linearly-independent quantum states of the system, and braiding the quasiparticles

causes a rotation in this space [35, 74, 75, 76, 77]. In addition to their novelty,

these properties could be useful for topological quantum computation [56]. The non-

Abelian statistics of the Moore-Read Pfaffian state are explained in more detail in
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section 3.3.

In the absence of Landau Level mixing, the Hamiltonian of a half-filled Landau

level is particle-hole symmetric. The Pfaffian state, if it is the ground state of such a

Hamiltonian, spontaneously breaks particles-hole symmetry. The particle-hole con-

jugate of the Pfaffian, dubbed the anti-Pfaffian [60, 64], has exactly the same energy

as the Pfaffian in the absence of Landau level mixing. Hence, it is a serious candidate

for the ν = 5/2 state observed in experiments, where Landau level mixing, which is

not small, will favor one of the two states. Therefore, it is important to find exper-

imental probes which can distinguish between these two states. Although the two

states are related by a particle-hole transformation and are both non-Abelian, they

differ in important ways: their quasiparticle statistics differ by Abelian phases, and

the anti-Pfaffian has three counter-propagating neutral edge modes while the Pfaffian

edge is completely chiral. In this chapter we consider edge tunneling experiments for

both the Pfaffian and the anti-Pfaffian states, and we find quantitative differences

between the two resulting from these distinctions.

3.2 Fabry-Perot Interferometer

The double point contact geometry has been proposed as a probe for non-Abelian

statistics [75, 57, 58, 78, 79, 80, 81]. In this setup, a QH bar is gated so that two

constrictions are created, as shown in Figure 3.1, and quasiparticles can tunnel from

one edge to the other at either constriction. The dashed line in Figure 3.1 serves as

a reminder that the two edges are actually different sections of a single edge which is

the boundary of the system; consequently, inter-edge tunneling satisfies topological

conservation laws which are important in the non-Abelian case. An edge quasiparticle

entering the sample from the left can tunnel to the lower edge through either point

contact, and the measured tunneling current is sensitive to the interference between

these two possible trajectories. The phase difference between the quantum amplitudes

of these two trajectories depends on the applied voltage between the top and bottom

edges, the magnetic flux enclosed between the two trajectories, and the number of
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quasiparticles localized in the bulk between the two trajectories. If the quasiparticles

have non-Abelian statistics, the quantum state of the system can change when the

edge quasiparticle encircles the localized bulk ones, and the effect on the interference

term is more than merely a phase shift. The Pfaffian and anti-Pfaffian states exemplify

the most extreme case: if there is an even number of localized quasiparticles enclosed

between the tunneling trajectories, there will be interference that depends on the

magnetic flux and applied voltage, while in the presence of an odd number of bulk

quasiparticles in the bulk, the interference pattern will be completely lost. We will

recover these striking results using an explicit edge theory calculation.

The visibility of the interference pattern in the even quasiparticle case will be ob-

scured by thermal smearing as well as the difference between the charged and neutral

mode velocities. Naively, the latter is particularly acute in the anti-Pfaffian case,

where the velocities have opposite sign. However, as we will see quantitatively from

the edge state calculation below, the difference between the even and odd quasipar-

ticle cases will be visible for sufficiently low temperature in both the Pfaffian and

anti-Pfaffian states. The required temperature vanishes as the distance between the

contacts or the difference in velocities is increased.

The principle conceptual difficulty in analyzing inter-edge tunneling stems from

the non-Abelian nature of the bulk state, which causes ambiguities in edge correlation

functions (or, more properly, conformal blocks). We show how these are resolved,

following Refs. [82, 83] and further refinements introduced in Refs. [79, 78].

In section 3.3 we set up the perturbative calculation to lowest order, explain

the ambiguity that arises in evaluating correlation functions due to the non-Abelian

nature of the edge, and show how to resolve this ambiguity, following Refs. [82, 83].

We proceed in section 3.4 to find the expected tunneling current behavior as a function

of bias voltage and temperature in the Pfaffian state, taking into consideration the

different velocities of charged and neutral modes on the edge. We show that for

sufficiently low temperature, interference will be visible in the even quasiparticle

case. In section 3.5, we repeat the calculation for the anti-Pfaffian state and show

the quantitative differences with the Pfaffian case.
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Figure 3.1: The double point contact geometry. Edge quasiparticles can tunnel be-
tween the top and bottom edges at the point contacts j = 1, 2, with tunneling am-
plitude Γj. The dashed line serves as a reminder that both top and bottom edges are
two sections of the same edge. The two ends of point contact j are two points on the
same edge separated by a distance L− 2xj, where L is the length of the edge.

3.3 Tunneling Operators and Conformal Blocks

We now set up the calculation of the tunneling current to lowest order and discuss

the basic issues which arise. The Pfaffian and anti-Pfaffian cases are conceptually

similar, so we focus on the Pfaffian for the sake of concreteness. The edge theory of

the Pfaffian state has a chiral bosonic charge mode and a chiral neutral Majorana

mode [51, 59, 82, 83]

LPf(ψ, φ) =
1

4π
∂xφ (∂t + vc∂x)φ+ iψ (∂t + vn∂x)ψ (3.1)

Both modes propagate in the same direction, but will have different velocities in

general. One expects the charge velocity vc to be larger than the neutral velocity vn.

The electron operator is a charge 1 fermionic operator:

Φel = ψei
√

2φ (3.2)
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and the e/4 quasiparticle operator is:

Φ1/4 = σeiφ/2
√

2 (3.3)

where σ is the Ising spin field of the Majorana fermion theory[83]. When inter-edge

tunneling is weak, we expect the amplitude Γ for charge-e/4 to be transferred from

one edge to the other to be larger than for higher charges ne/4, which should be ∼ Γn.

It is also the most relevant tunneling operator in the Renormalization Group sense

[82, 83], so we will focus on it. Since it is relevant, its effective value grows as the

temperature is decreased, eventually leaving the weak tunneling regime. We assume

that the temperature is high enough that the system is still in the weak tunneling

regime and a perturbative calculation will be valid, but still much lower than the bulk

energy gap.

Following Ref. [53], we write the tunneling Hamiltonian in the form:

Ht(t) = Γ1e
−iωJ t V1(t) + Γ2 e

iΦ/4Φ0 e−iωJ t V2(t) + h.c. (3.4)

The frequency ωJ = eV
4

is the Josephson frequency for a charge e/4 quasiparticle

with voltage V applied between the top and bottom edges. The difference in the

magnetic fluxes enclosed by the two trajectories around the interferometer is Φ. We

have chosen a gauge in which the vector potential is concentrated at the second point

contact so that Φ enters only through the second term above. Both edges are part of

the boundary of the same Hall droplet, so we can denote the point on the upper edge

which is on the other side of point contact j from xj by L− xj, where j = 1, 2 and L

is large. The operator Vj(t) tunnels a quasiparticle between xj and L− xj:

Vj(t) = σ(xj, t)σ(L− xj, t)e
i√
8
φ(xj ,t)e

− i√
8
φ(L−xj ,t) (3.5)

The current operator can be easily found from the commutator of the tunneling

Hamiltonian and the charge operator on one edge, which involves only the bosonic
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field:

I(t) =
ie

4

(
Γ1e

−iωJ tV1(t)− h.c.
)

+
ie

4

(
Γ2 e

iΦ/4Φ0 e−iωJ t V2(t)− h.c.
)

(3.6)

To lowest order in perturbation theory, the tunneling current is found to be:

〈I(t)〉 = −i
∫ t

−∞
dt′ 〈0|[I(t), Ht(t

′)]|0〉 (3.7)

In order to compute the current, we substitute Equation 3.4 and Equation 3.6 into

Equation 3.7. We obtain:

I(t) =
e

4

∑
j,k

ΓjΓ
∗
k e

i(j−k)Φ/4Φ0 ×

∫ t

−∞
dt′ eiωJ (t′−t)

(
〈Vj(t)V †k (t′)〉 − 〈V †k (t′)Vj(t)〉

)
(3.8)

Therefore, we must compute the correlation function

〈Vj(t)V †k (t′)〉 =〈σ(xj, t)σ(L− xj, t)σ(L− xk, t′)σ(xk, t
′)〉×

〈e
i√
8
φ(xj ,t)e

− i√
8
φ(L−xj ,t)e

i√
8
φ(L−xk,t′)e

− i√
8
φ(L−xk,t′)〉 (3.9)

This correlation function is at the heart of our calculation. The correlations involving

the bosonic fields are straightforward to calculate and, in the limit of a long sam-

ple, L → ∞, the bosonic correlation function breaks into a product of two-point

correlation functions of fields on the same edge:

〈e
i√
8
φ(xj ,t)e

− i√
8
φ(xk,t

′)〉〈e−
i√
8
φ(L−xj ,t)e

i√
8
φ(L−xk,t′)〉

=
∏
r=±

[δ + i (vc(t− t′) + r(xj − xk))]−1/8
(3.10)

However, the four σ correlation function is actually ill-defined without further in-

formation, namely the fusion channels of the four σ operators. (Technically, the

correlation function is what is called a conformal block.) These are determined by the
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physical situation, as we elaborate below.

In the Ising Conformal Field Theory, the σ operators have non-trivial fusion rules:

σ × σ = I + ψ (3.11)

These two fusion possibilities, I and ψ, correspond directly to the two degenerate

ground states of a system with two σ particles in the bulk. A correlation function

of 2n σ particles is non-vanishing only if all of the operators fuse together to the

identity, but there are a number of ways in which the fields can do that. In the four

σ operators case, the correlation 〈σ(z1)σ(z2)σ(z3)σ(z4)〉 has two different conformal

blocks corresponding to the two possible fusions. In the standard notation explained,

for instance, in this context in Ref. [83], these two conformal blocks/fusion channels

are:

Fc ≡ I

1 2 3 4

c I

where c = 1 or ψ is the fusion product of the fields at the space-time points z1 and

z2. Their explicit forms are:

FI =

(
1

z12z34(1− x)

)1/8 (
1 +
√

1− x
)1/2

,

Fψ =

(
1

z12z34(1− x)

)1/8 (
1−
√

1− x
)1/2

, (3.12)

where zij = zi − zj and x = z12z34/z13z24.

Now for an obvious question: which conformal block enters the perturbative cal-

culation? As explained in Ref. [83], when there are no quasiparticles in the bulk, the

correct choice is the conformal block in which the σ operators in the tunneling oper-

ator Vj(t), i.e. σ(xj, t) and σ(L − xj, t), fuse to the identity. Since all this operator

does is transfer a quasiparticle from one side of the Hall sample to the other, it should

not change the topological charge on the edge, which would involve the creation of a

fermion. In the bottom half of Figure 3.2a, we show two successive tunneling events.

Each can be envisioned as the creation out of the vacuum of a quasiparticle-quasihole
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pair in the bulk. Saying that they are created ‘out of the vacuum’ is equivalent to

saying that they fuse to I. The quasiparticle then goes to one edge and the quasi-

hole goes to the other. A second tunneling event (either at the same or a different

point contact) occurs in the same way. Let us, for the sake of concreteness call the

quasiparticle and quasihole which are created in the first tunneling process 1 and 2;

in the second tunneling process, 3 and 4 are created. (For these purposes, there is

no need to distinguish between quasiparticles and quasiholes.) Let us assume that

quasiparticles 1 and 3 go to the top edge while 2 and 4 go to the bottom edge. If

the two edges are independent (as occurs in the L → ∞ limit), this process has a

non-zero amplitude only if 1, 3 fuse to I and 2, 4 fuse to I, as depicted in the top

half of Figure 3.2a. (I is depicted by the absence of a line. If a fermion were the

result of fusing the two quasiparticles, there would be a wavy line emanating upward

from each of the two fusion points at the top of Figure 3.2a.) This picture can be

interpreted as the matrix element between the state in which quasiparticle-quasihole

pairs 1, 2 and 3, 4 are created in the bulk and go to the edges (bottom) and the state

in which quasiparticles 1, 3 fuse to I and 2, 4 fuse to I (top).

Hence the correlation function in Equation 3.9 is actually the conformal block:

FI = I

(xj, t)(L− xj, t) (L− xk, t′)(xk, t′)
I I

On the other hand, in the L→∞ limit, we expect the σ correlation in Equation 3.9

to break into a product of correlators of fields on the same side of the sample:

〈σ(xj, t)σ(xk, t
′)〉〈σ(L− xj, t)σ(L− xk, t′)〉 (3.13)

As noted above, this correlation function is non-vanishing only if the fields on the

same side of the sample fuse to the identity. This conformal block is given pictorially

by:

GI = I

(xj, t)(xk, t
′) (L− xj, t)(L− xk, t′)

I I

In the Gcs, we specify the fusions of fields on the same side of the edge rather than
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Figure 3.2: (a) The knot corresponding to the matrix element between the state in
which two quasiparticle-quasihole pairs, 1, 2 and 3 4 are created out of the vacuum
(top half) and go to opposite edges and and a state in which the two quasiparticles
on each edge (e.g. 1, 3 on the top edge) fuse to I. Equivalently, it is one element of
the F -matrix, which transforms between the basis of conformal blocks in which 1, 2
has a fixed fusion channel (and, therefore, 3, 4 does as well) and the basis in which
1, 3 has a fixed fusion channel. (b) The same matrix element with n quasiparticles
in the bulk. The n quasiparticles are assumed to have been created in pairs in the
distant past, with one member of each pair taken inside the interferometer and the
other member left outside. The two tunneling events are assumed to occur at different
point contacts. The figure then gives the matrix element between the states in which
1, 2 and 3, 4 are created out of the vacuum (top half), go to opposite edges, and
encircle the bulk qusiparticles; and a state in which 1, 3 fuse to I.

opposite sides of a point contact. In the L → ∞ limit, Gψ vanishes. The conformal

blocks Gc are linear combinations of the Fcs; both form bases for the two-dimensional

vector space of conformal blocks. The basis change between the two is called the

F -matrix, which is part of the basic data characterizing a topological phase. We can

write:

FI = aIGI + aψGψ (3.14)

where the coefficients aI and aψ are two of the entries in the F -matrix. They can be

calculated by computing the Kauffman bracket for a braid that corresponds to this
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change of basis, as was done in Ref. [82, 83]:

aI =
1√
2

(no qps in bulk) (3.15)

For the purposes of our calculation, we only need the long sample limit of the corre-

lation function FI . As explained above, we find that it is proportional to GI , which

can be easily evaluated since it is simply the product of two two-point correlation

functions (it can also be obtained by taking the large-L limit of the expression for GI

as in Equation 3.12):

FI |L→∞ = aIGI |L→∞ (3.16)

= aI
∏
ε=±

[δ + i (vn(t− t′) + ε(xj − xk))]−1/8

We now generalize this to the case in which there are n quasiparticles in the bulk

between the two point contacts. Correlation functions in which all of the fields are

at the same point contact are unchanged. However, as pointed out in Refs. [79, 78],

when two tunneling processes occur at different point contacts, the two quasiparticle-

quasihole pairs are created out of the vacuum as before, but quasiparticle 1 must

encircle the bulk quasiparticles before it can be fused with quasiparticle 3. This

difference modifies the matrix element with the state in which 1, 3 fuse to I and 2, 4

fuse to I, as depicted in Figure 3.2b. Let us consider the simplest case, in which there

is a single quasiparticle in the bulk. We can imagine that a quasiparticle-quasihole

pair was created in the distant past and one member of the pair was brought into

the interferometer while the other member was left outside. Then we create the

quasiparticle-quasihole pairs 1, 2 and 3, 4 and take 4 around the bulk quasiparticle.

This process is depicted in the bottom half of Figure 3.2b. We can compute the

resulting aI by computing the matrix element between the resulting state and the

state in which 1, 3 fuse to I (as do 2, 4). This matrix element can be computed from

the Kauffman bracket of the link in Figure 3.2b or, equivalently, by using the F and

R matrices of the theory. By either method, we find aI = 0. The reason is that, after
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4 is taken around the bulk quasiparticle, either 1, 3 or 2, 4 (but not both) must fuse

to ψ rather than I. Therefore, there is no amplitude for 1, 3 and 2, 4 to fuse to I.

For the same reason, aψ = 0, so even for L finite, there is no contribution from such

a process. In fact, the same result is obtained for any odd n since an odd number of

quasiparticles must fuse to σ. Therefore, their effect is the same as if there were a

single quasiparticle in the bulk:

aI = 0 (odd number n of qps in bulk) (3.17)

For n even, the n bulk quasiparticles can fuse to either I or ψ. The former case is

the same as in the absence of quasiparticles; in the latter case, there is an additional

minus sign which is acquired when a σ goes around a ψ:

aI = ± 1√
2

(even number n of qps in bulk) (3.18)

With the correct conformal block in hand, as specified by the corresponding value

of aI , we can now give a meaning to expressions such as Equation 3.9 and can use

Equation 3.7 to compute the current through our interferometer.

In the preceding discussion, we have focussed on the neutral sector of the theory,

where the interesting non-Abelian effects occur. However, there is also a charged

sector of the theory. The full conformal theory describing the edge includes both

parts. As a result, there are additional phases which result from the change of basis

when there are quasiparticles in the bulk. Furthermore, we must exercise a little more

care in distinguishing quasiparticles from quasiholes since they have different Abelian

phases. By recalculating Figure 3.2b with the Abelian part of the theory included,

we find that aI acquires an additional phase nπ/4 when there are n quasiparticles in

the bulk and 1 and 4 are quasiparticles while 2 and 3 are quasiholes. The opposite

phase results when 2 and 3 are quasiparticles while 1 and 4 are quasiholes.
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3.4 Temperature And Voltage Behavior

To lowest order in Γ1, Γ2, the current naturally breaks into the sum of three terms:

I = I1 + I2 + I12 (3.19)

where

Ij =
e

4
|Γj|2

∫ 0

−∞
dt eiωJ t

(
〈Vj(0)V †j (t)〉 − 〈V †j (t)Vj(0)〉

)
(3.20)

and

I12 =
e

4
Γ1Γ∗2

∫ 0

−∞
dt eiωJ t

(
〈V1(0)V †2 (t)〉 − 〈V †2 (t)V1(0)〉

)
+ c. c. (3.21)

Ij, j = 1, 2 would be the backscattered current if only point contact j were present.

I12 is due to interference between the process in which a quasiparticle tunnels between

the two edges at x1 and the process in which it continues to x2 and tunnels there. As a

result, I12 depends on the magnetic flux and the number of bulk quasiparticles between

the two point contacts; it reflects the non-Abelian statistics of quasiparticles, namely

the difference between even and odd numbers of bulk quasiparticles. Meanwhile,

I1, I2, and I12 all depend on the bias voltage and temperature. In this section we

quantitatively analyze the dependence of I on all of these parameters.

We first consider the zero-temperature case. The single point contact current

term, I1 + I2, is identical to the backscattering current due a single impurity in a

Luttinger Liquid. The current is a power law in voltage:

I1 + I2 =
1√
2

e

4

π

Γ(1
2
)

(
|Γ2

1|+ |Γ2|2
)
v−1/4
n v−2/8

c × sgn(V )

(
e|V |

4

)−1/2

(3.22)

The factor of 1√
2

is aI discussed in the previous section. We now consider I12. For

an odd number of quasiparticles in the bulk,

I12 = 0 (odd number n of qps in bulk) (3.23)
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For an even number n of quasiparticles in the bulk, I12 can be evaluated analytically

in the special case in which the two velocities are equal:

I12 = ± 1√
2

e

4

π3/229/4

Γ(1
4
)
|Γ1||Γ2| cos

(
Φ

4Φ0

+ n
π

4
+ α

)
× sgn(V ) |V |−1/2×(

e|x1 − x2|
4v

|V |
)1/4

J−1/4

(
e|x1 − x2|

4v
|V |
)

(3.24)

In this expression, the ± sign is obtained if the quasiparticles in the bulk fuse to total

non-Abelian charge 1 or ψ, respectively; J−1/4 is the Bessel function; Φ is the flux

enclosed in the interference loop; and n is the (even) number of bulk quasiparticles

inside the loop. The phase nπ/4 is statistical phase due to the Abelian part of the

theory. The phase α is arg(Γ1Γ∗2). When the charge and neutral velocities are not

equal, the current and differential conductance will oscillate at two different frequen-

cies as seen in Figure 3.3, and both charge and neutral velocities can be extracted

from the two different periods. The smaller period corresponding to the fast oscilla-

tions is roughly 16π
e|x1−x2|(1/vn + 1/vc)

−1, and the larger period corresponding to the

oscillations of the envelope is roughly 16π
e|x1−x2|(1/vn − 1/vc)

−1.

Finite-temperature correlation functions can be obtained from the zero tempera-

ture correlation functions by a conformal transformation from the plane to the cylin-

der, which amounts to the following substitution:

1

(δ + i(t± x/v))1/8
→
(

πT

sin (πT (δ + i(t± x/v)))

)1/8

(3.25)

We find that the general form of the current is:

I1 + I2 =
(
|Γ1|2 + |Γ2|2

)
|V |−1/2A

(
eV/4

kBT

)
(3.26)
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I12 = |Γ1||Γ2| cos

(
Φ

4Φ0

+ n
π

4
+ α

)
sgn(V )|V |−1/2×

Bn

(
e|x1 − x2|

4vc
|V |, e|x1 − x2|

4vn
|V |, eV/4

kBT

)
(3.27)

where B2n+1(x, y, z) = 0, and A(x) and B2n(x, y, z) are scaling functions which reduce

to Equation 3.22 and Equation 3.24 in the T = 0 limit: A(∞) = const., B2n(x, x, 0) ∝

x1/4 J−1/4(x). In the opposite limit, kBT > eV , A(x) ∼ x3/2 as x → 0, so that the

conductance due to a single point contact is ∼ T−3/2. The explicit form of A(x) is

A(x) =
1√
2

e

4

π
√
x

Γ(1
2
)

∣∣∣∣Γ(1

4
+ i

x

2π

)∣∣∣∣2 sinh(x/2)

B2n(x, y, z) is more complicated, but it simplifies in the limit that (x + y)/z is

large, where B2n(x, y, z) ∼ e−(x+y)/z. Consequently, there is an effective dephasing

length [84, 85, 86]

Lφ =
β

2π

(
1/8

vc
+

1/8

vn

)−1

(3.28)

such that

I12 ∝ e−|x1−x2|/Lφ cos

(
Φ

4Φ0

+ n
π

4
+ α

)
(3.29)

Interference is only visible if the interferometer is smaller than Lφ. Equivalently, there

is a characteristic temperature scale [79] T ∗:

kBT
∗ =

1

2π|x1 − x2|

(
1/8

vc
+

1/8

vn

)−1

(3.30)

Interference is only visible for T < T ∗ since Equation 3.29 can be rewritten as:

I12 ∝ e−T/T
∗

cos

(
Φ

4Φ0

+ n
π

4
+ α

)
(3.31)

For fixed vc, decreasing vn causes to T ∗ and Lφ to decrease. If vn becomes very small,

interference will only be visible at extremely low temperatures or for extremely small

interferometers (which, of course, suffer from other problems). In the extreme limit,

vn = 0, interference will not be visible at all. Numerical studies [87] indicate that
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the two velocities might be quite different, in which case, it will be important that

interferometry experiments be done at sufficiently low temperatures. Using commonly

accepted values of edge velocities (see, for instance, Ref. [41]) of vc ≈ 5 · 104m/s and

vn = 0.1 vc, we estimate the dephasing length LΦ to be about 4µm at a temperature

of 10mK. We will see below that the direction of the propagation of the neutral mode

is irrelevant for these DC interference measurements. Even when the neutral modes

propagate in opposition to the charge modes, as in the anti-Pfaffian state, interference

can be observable, and the dephasing length is only a function of the magnitude of

the velocities of the edge modes.

Figure 3.3 shows the differential conductance ∂I/∂V at a temperature much lower

than T ∗ for both even and odd numbers of bulk quasiparticles. As may be seen from

this figure, the difference between even and odd numbers of quasiparticles is still

very dramatic, even for finite temperature and different charge and neutral velocities.

The even quasiparticle differential conductance passes through zero twice at voltages

which are small enough that the odd quasiparticle differential conductance is still

appreciable (and, of course, due entirely to I1 + I2).

3.5 Anti-Pfaffian Edge

If one ignores Landau level mixing, then the Hamiltonian for the ν = 5/2 FQH system

is particle-hole symmetric when there is exactly half an electron per flux quantum

(ignoring the filled Landau Levels). The Pfaffian state, on the other hand, does not

posses this symmetry. The particle-hole conjugate of the Pfaffian state, the anti-

Pfaffian (Pf) [60, 64], has the same energy in the absence of Landau level mixing as

the Pfaffian, and should be considered a candidate for the observed ν = 5/2 state,

even with finite Landau Level mixing.

The edge theory of the anti-Pfaffian can be considered by considering a Pfaffian

state of holes in a filled ν = 1 Landau level (this procedure is covered at length in
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Figure 3.3: The differential conductance as a function of applied voltage at low tem-
perature, for vn = 0.75vc. The dashed line is the conductance with an odd number of
quasiparticles in the interference loop, and the solid line is for an even number. The
charge and neutral velocities can be extracted from the the two oscillation periods.

chapter 4):

L =
1

4π
∂xφ1(−i∂t + v1∂x)φ1 + LPf(ψ1, φ2)

+
1

4π
2v12∂xφ1∂xφ2 + ξ(x)ψ1 e

i(φ1−2φ2) + h.c.. (3.32)

Here, LPf(ψ1, φ2) is the Pfaffian edge action, Equation 3.1, but for counter-propagating

edge modes. The coupling v12 is short-ranged Coulomb repulsion between the edge

mode of the filled Landau level and the charged edge mode of the Pfaffian state of

holes while ξ(x) is random tunneling of electrons between the ν = 1 edge and the

edge of the Pfaffian of holes. For large v12 and arbitrarily weak ξ or for small v12 and

sufficiently large ξ, the theory flows in the infrared to a theory of a forward propa-

gating bosonic charge mode and three backward propagating neutral Majorana modes

[60, 64]:

LP̄ f =
2

4π
∂xφρ (∂t + vc∂x)φρ +

∑
a=1,2,3

iψa (−∂t + vn∂x)ψa (3.33)
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We will discuss quasiparticle tunneling in this phase of the anti-Pfaffian edge. The

three Majorana fermions form an SU(2)2 triplet, which means that the non-Abelian

statistics due to this part of the theory are associated with SU(2)2 Chern-Simons

theory [75]. The electron operator in this theory is (ψ2 − iψ3)ei2φρ . The charge e/4

quasiparticles are the primary fields φ±1/2e
iφρ/2, where φ±1/2 are the spin-1/2 fields of

SU(2)2, and can be written in terms of the Ising order and disorder fields σa and µa.

The φ±1/2 fields consist of linear combinations of products of 3 σa or µa operators, and

therefore has dimension 3/16. Consequently, the e/4 quasiparticle operator in the

anti-Pfaffian state has dimension 1/4, as opposed to dimension 1/8 in the Pfaffian

case. This difference in the scaling dimension causes the Pfaffian and anti-Pfaffian

to have different temperature and voltage dependance for transport through point

contacts which, in principle, allows one to experimentally distinguish between the

two states. Another important difference is that in the anti-Pfaffian case, the charge

e/2 quasiparticle operator has the same scaling dimension as the e/4 quasiparticle

and its tunneling is just as relevant, but one expects the bare tunneling element for

the e/2 quasiparticle to be smaller than the e/4 one (|Γe/2| ∼ |Γe/4|2).

The above discussion implies that e/4 quasiparticle tunneling is the dominant

one also in the anti-Pfaffian case. The tunneling current calculation in the double

quantum point setup proceeds in a very similar fashion to the Pfaffian case. To lowest-

order, we must compute four-quasiparticle correlation functions, and the relevant

conformal block is the one in which quasiparticle fields on both ends of a point

contact should fuse the identity. In the long sample limit, we seek the projection of

these correlation function on the conformal block in which quasiparticles on the same

edge fuse to the identity.

SU(2)2 non-Abelian statistics are similar to the Ising statistics that appear in the

Pfaffian. In the SU(2)2 theory there are only 3 particle types, 0,1/2, and 1, with the

fusion rule:
1

2
× 1

2
= 0 + 1 (3.34)

which is analogous to the the fusion rule in Equation 3.11. Hence, the enumeration
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of conformal blocks in SU(2)2 theory is the same as in the Ising theory if we identify

the operators I,σ and ψ with 0, 1/2, and 1 operators respectively. Also, the matrix

elements of the F-matrix which describes the change of basis between different fusion

channels turn out to be the same in both theories, up to a phase[50]. An equation

analogous to Equation 3.16 holds for the anti-Pfaffian case also, but with different

power laws since the spin 1/2 operator has a different scaling dimension than the σ

operator:

FI |L→∞ = ãIGI |L→∞ (3.35)

= ãI
∏
ε=±

[δ + i (vn(t− t′)− ε(xj − xk))]−3/8

The tunneling current behavior in the anti-Pfaffian case is qualitatively the same

as but quantitatively different from the Pfaffian case. One might worry that no in-

terference should take place at all since the e/4 quasiparticle operator is made up of

a bosonic part moving in one direction and a fermionic part moving in the opposite

direction, and in a semiclassical picture these two parts are moving away from each

other. In fact, the sign of the neutral mode velocity makes no difference, as may be

seen by comparing Equation 3.16 and Equation 3.35. As a result of the product over

ε = ±, the sign of the neutral mode velocity drops out of the problem. The point

is that the quantum mechanical tunneling process involves creating a quasiparticle

and a quasihole, and regardless of the chirality of the mode, one excitation will move

to the left and one to the right. We note that this breakdown of semiclassical intu-

ition represented by the insensitivity to the neutral mode direction is a feature of a

DC measurement. A finite frequency measurement might be more sensitive to the

difference between the charge and neutral velocities.

At zero temperature in the anti-Pfaffian state,

I1 + I2 =
1√
2

e

4
π
(
|Γ2

1|+ |Γ2|2
)
v−6/8
n v−2/8

c sgn(V ) (3.36)

The conductance will behave as V −1; the differential conductance will be sharply
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peaked at V = 0 (with a peak width of order kBT ) and vanishing elsewhere. For

kBT > eV , the conductance varies as T−1. In both cases, there are quantitative

differences from the Pfaffian.

Again, for an odd number of quasiparticles in the interference loop,

I12 = 0 (3.37)

For an even number of bulk quasiparticles, the tunneling current will oscillate with

magnetic field and voltage, similar to the Pfaffian case. Again, for charge and neutral

velocities which are equal in absolute value (although opposite in sign), I12 can be

found analytically:

I12 = ± 1√
2

e

4

2π3/2

Γ(1
2
)
|Γ1||Γ2| cos

(
Φ

4Φ0

+ n
π

4
+ α

)
×

sgn(V ) J0

(
e|x1 − x2|

4vc
|V |
)

(3.38)

Although the phase acquired in the anti-Pfaffian state by an e/4 quasiparticle going

around another e/4 quasiparticle is different (in either fusion channel) from in the

Pfaffian state, the phase acquired by an e/4 quasiparticle going around a charge e/2

is ±i in either state, with the minus sign corresponding to the presence of a neutral

fermion.

A difference between the absolute values of the neutral and charge velocities will

again be evident through a beating pattern in the differential conductance. I12 is

exponentially decaying with temperature with characteristic scale:

kBT
∗ =

1

2π|x1 − x2|

(
1/8

vc
+

3/8

vn

)−1

(3.39)

and the corresponding dephasing length is:

Lφ =
β

2π

(
1/8

vc
+

3/8

vn

)−1

. (3.40)
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3.6 Discussion and Interpretation of Experimental

Results

As we have seen from the preceding formulas, the Pfaffian and anti-Pfaffian state have

qualitatively similar behavior in a two point-contact interferometer. In particular, the

reversal of the neutral modes in the latter state makes little difference. However, the

temperature and voltage dependences of the backscattered current are quantitatively

different. The difference is clear in the behavior of a single-point contact, where the

associated power laws are different, I ∼ V −1/2 in the case of the Pfaffian and I ∼ V 0

in the case of the anti-Pfaffian. However, there are also differences in the detailed

temperature and voltage dependence of the interference contribution to the current,

as may be seen from Equation 3.24 and Equation 3.38.

The relative insensitivity of quantum interference effects to the difference between

the charge and neutral mode velocities runs counter to semi-classical thinking (and

shows its limitations): naively, one might think that when a quasiparticle decays into

its charged and neutral parts, interferometry would be hopeless. Fortunately, this

picture is inadequate for the DC measurement discussed in this chapter, as explicit

calculation shows. This also augurs well for the suitability of either one for quantum

computation along the lines of Refs. [56, 88]. The downside is that the experimental

difference between the Pfaffian and anti-Pfaffian states is muted. It can be extracted

from the behavior in an interferometer, but it would still be useful to have a probe

which is more sensitive to the direction of the neutral modes.

Both the Pfaffian and anti-Pfaffian states show the effect of non-Abelian statis-

tics on the interference experiment in its strongest manifestation. The interference

oscillations corresponding to charge e/4 quasiparticles disappear when the number of

trapped quasiparticles in the interference loop is odd. In the case of Abelian states,

the interference pattern would simply shift as a function of trapped quasiparticles,

while in the case of other non-Abelian states, the interference oscillations can be sup-

pressed by changing the number of quasiparticles in the bulk, but it might not be

possible to make them vanish [79].
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Figure 3.4: The longitudinal resistance of a two point contact interferometer, which
is proportional to the current tunneling from one side of the sample to the other.
The sample is near filling ν = 5/2. Figure (a) shows the observed oscillations at a
T = 29mK, where two oscillation periods are apparent, with the larger period present
only for certain ranges of side gate voltage. Figure (b) shows that the larger period
oscillation does not persist to T = 150mK, while the smaller period oscillation does
persist, though attenuated.

A recent experiment [47] attempted to measure tunneling current in the exact

geometry discussed in this chapter, the two point contact interferometer, in the ν =

5/2 quantum Hall regime. In this experiment, the control knob was the voltage on an

electrostatic side gate. Changing the voltage on this side gate deforms the shape of

the edge, therefore modifying the trajectory of quasiparticles and the area enclosed

by the interference loop. Changing the area of the interference loop, in the absence of

bulk quasiparticles, causes oscillations in the tunneling current due to the change of

magnetic flux threading the loop area. Of course, in addition to the e/4 quasiparticle

tunneling which would show the effect of non-Abelian statistics, tunneling of Abelian

e/2 quasiparticles is always present. Interference of e/2 quasiparticle current does
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not vanish for any number of bulk quasiparticles.

Figure 3.4 shows some results of Ref. [33]. Figure 3.4a shows the longitudinal

resistance of the sample in the presence of two point contact, which is proportional

to the tunneling current going from one side of the sample to the other [83]. The

authors observe oscillations which they attribute to a period of two magnetic flux

quanta through the interference loop, a period which would arise from tunneling of e/2

quasiparticles. They also observe a period corresponding to four flux quanta through

the loop, which could arise from tunneling of e/4 quasiparticles. The oscillations

corresponding to charge e/4 quasiparticles vanishes for certain regions of side gate

voltage, or equivalently for certain positions of the sample edge. We will refer to this

as the switching behavior. Another observation concerns the temperature behavior of

these oscillations: The e/2 oscillations survive up T = 150mK, while e/4 oscillations

are not seen at that temperature.

If the observed oscillations are indeed due to tunneling of e/2 and e/4 quasi-

particles, then the results of Ref. [47] are consistent with the behavior of the two

point contact interferometer analyzed in this chapter, under the assumption that the

ν = 5/2 state is described by the Pfaffian or anti-Pfaffian state. The observed switch-

ing behavior can be due to changes in the number of quasiparticles in the bulk. If

there are trapped quasiparticles in the bulk, pinned to certain positions by impurities,

then as the side gate voltage is swept, these trapped quasiparticles would be excluded

one by one from the interference loop. Each such exclusions would toggle the number

of quasiparticles in the interference loop between an even and an odd number, causing

the e/4 quasiparticle oscillation amplitude toggle between zero and non-zero.

The temperature behavior is also consistent with our analysis. The e/2 quasi-

particles involve only the bosonic charge mode, which propagates with velocity vc.

The e/4 quasiparticle, on the other hand, involves the slower neutral mode. If the

neutral mode is much slower than the charge mode, the neutral mode will dominate

the temperature scale of the e/4 oscillations, T ∗e/4. The temperature scale T ∗e/2 is much

larger since it is set by the charge velocity. According to our estimate in section 3.4,

the temperature T = 150mK is much higher than T ∗e/4, therefore the e/4 oscillation
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is strongly attenuated at that temperature and cannot be observed there.

It is tempting to accept the above explanation for the observed oscillations and

take the results of Ref. [47] to be the first observation of non-Abelian statistics. Yet,

there are a number of checks which can be performed to verify the nature and origin

of the observed oscillations. We discuss these checks and offer a critical analysis of

the observed oscillations in Ref. [89].

The different oscillation periods could arise without invoking non-Abelian statis-

tics. For example, if the dependence of the interference loop area on the side gate

voltage was not a simple linear dependence, perhaps due to density inhomogeneities

in the electron density distribution, then the inferred oscillation period would also

change with the side gate voltage. Coulomb blockade would also give rise to two dif-

ferent oscillation periods [58, 90, 89], though it is seems unlikely Coulomb blockade

is the origin of the two different periods in the interferometer of Ref. [47].

Additional measurements using the same experimental setup in different configu-

rations would help clarify the origin of the oscillations. If one of the point contacts is

turned off, i.e., it is completely transmitting, then tunneling at a single point contact

should give power law behavior of the current at low temperatures, and power law

behavior in temperature at low voltages, as shown in section 3.4. That would allow

disentangling the temperature behavior of the oscillatory interference current from

the temperature behavior of the effective tunneling strength at a single point contact.

Power laws would be a strong indication that it is indeed quasiparticles tunneling at

a single point contact.

It is also desirable to verify the relation between side gate voltage and the area

of the interference loop. For example, the magnetic field and side gate voltage can

be simultaneously varied, and the periodicity in the magnetic field can be used to

determine the change in area for different side gate voltages. Additional checks are

described in Ref. [89].

In conclusion, the results of Ref. [47] are, at first glance, consistent with the

picture of quasiparticles with non-Abelian statistics tunneling at the point contacts

and encircling trapped bulk quasiparticles. A number of additional measurements
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[89] can solidify the agreement between the experimental results and the non-Abelian

statistics scenario discussed in this chapter. If these additional measurements indeed

give the results predicted in this chapter, the interference experiment of [33] would

be a direct observation of a novel physical phenomena, non-Abelian statistics.
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Chapter 4

Quantum Hall States at ν = 2
k+2

Quantum Hall states in the second Landau level, 2 < ν < 4, sparked the study

of non-Abelian statistics in condensed matter systems. The observed quantum Hall

state at ν = 5/2 is the most well studied state in the second Landau level, and is the

most promising candidate for the observation of non-Abelian statistics. Due to the

difference of electron interactions in the first and second Landau levels, it is possible

that other observed states in the second Landau level are non-Abelian as well.

In this chapter, we study a family of quantum Hall states at filling ν = 2
k+2

, and

suggest them as candidates for states in the second Landau Level. In particular, the

observed fractions ν = 2+ 1
2

and ν = 2+ 2
5

fall in this family of states. We analyze the

edge theory of these states and calculate experimentally measurable quantities. We

then focus on the state ν = 2+ 2
5
, and compare it to other candidate states at the same

filling fraction. This state is of particular interest since it might support non-Abelian

statistics which are elaborate enough to enable universal quantum computation.

The work in this chapter has been published in Ref. [91].

4.1 Second Landau Level Quantum Hall States

The most robust state in the second Landau level (SLL) is the ν = 5/2 state

[33, 92, 73]. As a result of its even-denominator, it cannot belong to the usual hier-

archy/‘composite fermion’ sequence of Abelian states [20, 29, 31, 32, 93, 49] which

seems to explain all of the observed states in the lowest Landau level (LLL). The
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leading candidate theories of the ν = 5/2 state are non-Abelian: the Pfaffian state

[34, 68, 35] and its particle-hole conjugate, the anti-Pfaffian state [60, 64]. Thus, one

may wonder whether the other fractions observed in the second Landau level, such as

ν = 7/3, 12/5, 8/3 and 14/5 [92, 38, 94], are also non-Abelian even though they occur

at odd-denominator filling fractions. The state at ν = 12/5 = 2 + 2
5

has been the

subject of particular interest because its filling fraction is the particle-hole conjugate1

of that of the k = 3 Read-Rezayi state [37]. This is an exciting possibility because this

state is capable of supporting universal topological quantum computation [95, 50].

Alternatively, a state at the lowest level of a non-Abelian hierarchy built on a ν = 5/2

Pfaffian state also occurs at ν = 12/5 [96]. Finally, the ν = 12/5 state may simply be

the transposition to the second Landau level of the Abelian state which is believed

to occur at ν = 2/5.

The action of the edge of the level k-RR state [37] at filling fraction ν = k
k+2

is composed of charged and neutral sectors. The charged sector is described by a

chiral bosonic field propagating with velocity vc. The neutral sector is a chiral Zk

parafermionic theory [97] propagating with velocity vn. The Zk parafermion theory

is an SU(2)k/U(1) coset with central charge c = 2k−2
k+2

which can be represented by an

SU(2)k chiral Wess-Zumino-Witten (WZW) model in which the U(1) subgroup has

been gauged [98] (note that the gauge field is not minimally coupled [99]). Thus, we

can write:

S =
1

4πν

∫
dxdτ ∂xϕ∂ϕ + SWZW,k

+
k

4π

∫
dxdτ tr

(
Ax∂g · g−1 − Ag−1∂xg + AxgAg

−1 − AxA
)
, (4.1)

where ∂ ≡ i∂τ + vc∂x and A ≡ Aτ − ivnAx. The neutral sector is the sum of the

second and third terms which we will call SZk =
∫
LZk . The second term, the WZW

1We note that the k = 2, 3 RR states in the SLL appear to be weaker than the corresponding
RR states, in contrast with the LLL, where the Jain states are stronger than their particle-hole
conjugates.
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action, is given by:

SWZW,k =
k

16π

∫
dτdx tr

(
∂xg

−1∂g
)

− i
k

24π

∫
dxdτdr εµνλtr

(
∂µg g

−1∂νg g
−1 ∂λg g

−1
)
. (4.2)

The field g takes values in SU(2). The second integral is over any three-dimensional

manifold M which is bounded by the two-dimensional spacetime of the edge ∂M .

The value of this integral depends only on the values of the field g at the boundary

∂M . As a result of the gauging Equation 4.1, the primary fields Φj,m of this model

are essentially the spin-j primary fields of the WZW model , Equation 4.2, dressed

by charge-m Wilson lines of the U(1) gauge field; as a result of the latter, they are

invariant under the U(1) subset of the gauge group. The k(k + 1)/2 primary fields

Φj,m are, consequently, indexed by half-integers j,m satisfying 0 ≤ j ≤ k/2, m ∈

(−j,−j+1, . . . , j) with the identifications (j,m) ∼= (k
2
−j,m+ k

2
), (j,m) ∼= (j,m+k).

The field Φj,m has dimension ∆j,m = j(j+1)
k+2

− m2

k
. Of particular importance is the

parafermion field ψ1 ≡ Φ k
2
,− k

2
+1 of dimension ∆ = 1 − 1

k
. For k = 1, the theory

is trivial; the k = 1 RR state is simply the ν = 1/3 Laughlin state which has no

neutral sector. The k = 2 RR state is the Pfaffian state; in the special case k = 2, the

SU(2)2/U(1) coset can be alternately represented as a Majorana fermion. The three

primary fields are then Φ0,0 = 1, Φ1/2,1/2 = σ, Φ1,0 = ψ.

In the RR state, the electron creation operator is a charge-1 fermionic operator,

and hence must be a combination of charge and neutral operators:

Ψ†e = ψ1e
i k+2
k
φ, (4.3)

where ψ1 is the Zk parafermion field described above (simply the Majorana fermion in

the k = 2 case). With the bosonic field φ normalized as in Equation 4.1, the scaling

dimension of eiαφ is

dim[eiαφ] = ν
α2

2
. (4.4)
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Consequently, the electron operator has scaling dimension 3
2
. The neutral sector does

not enter the charge current, J = 1
2π
∂ϕ, so the level-k RR state has a quantized

Hall conductance σxy = k
k+2

e2

h
. If this fractional quantum Hall state occurs in the

second Landau level and the lowest Landau level (of both spins) is filled and inert,

then σxy =
(
2 + k

k+2

)
e2

h
. The energy momentum tensor is the sum of the two energy

momentum tensors, T = Tc + TZk . Consequently, the thermal Hall conductivity of

the level-k RR state is proportional to the sum of the two central charges [76]:

κRR
xy =

3k

k + 2

π2k2
B

3h
T. (4.5)

If this this fractional quantum Hall state occurs in the second Landau level, then

κxy =
(
2 + 3k

k+2

) π2k2
B

3h
T .

4.2 Particle-Hole Conjugation of Read-Rezayi states

Our goal is to analyze the particle-hole conjugates of the general level-k Read-Rezayi

states, which we call the level-k RR states. These states possess multiple gapless

modes of edge excitations, which are of particular interest for charge and heat trans-

port. We formulate the low-energy effective field theories of the edges of the level-k

RR states and show that an SU(2)k Kac-Moody symmetry emerges when the different

edge modes equilibrate. One notable feature is that the thermal Hall conductance

due to this state κxy = −
(

2k−2
k+2

)
π2k2

BT/3h, is opposite in sign to the electrical Hall

conductance, σxy = 2
k+2

e2

h
. We then focus on the k = 3 RR state and compare it to

other possible ν = 2 + 2/5 states. We show that charge transport through a quantum

point contact and thermal transport can distinguish this state from its competitors.

To find the edge structure of the level k anti-RR state (RR), we generalize the

analysis done for k = 1 in Ref. [100] and for k = 2 in Refs. [60, 64]. Ignoring filled

Landau levels (if any), we perform a particle-hole transformation of the partially filled

Landau level (the second Landau level in the case of ν = 12/5). The particle-hole

conjugate of a particular state can be built by placing that state, but with holes
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replacing electrons, on top of a filled LL of electrons. Using this construction, the

edge between the level-k RR state (ν = 1 − k
k+2

= 2
k+2

) and the vacuum (ν = 0)

is mapped to the edge between the level k-RR state (ν = k
k+2

) and a ν = 1 state.

Hence, the theory of this edge is described by a level k-RR edge theory and a counter

propagating bosonic charge mode which is the edge theory of the ν = 1 state. The

low-energy effective Lagrangian is:

LRR =
1

4π
∂xφ1(i∂τ + v1∂x)φ1 +

(
k + 2

k

)
1

4π
∂xφ2(−i∂τ + v2∂x)φ2 + LZk

− 2

4π
v12∂xφ1∂xφ2 + ξ(x)ψ1e

i k+2
k
φ2e−iφ1 + h.c., (4.6)

where φ1 is the ν = 1 edge charge mode, φ2 and the parafermions Zk belong to the

RR edge, and v12 > 0 is a repulsive density-density interaction along the edge.

The final term in Equation 4.6 is inter-mode electron tunneling which tunnels

electrons from the outer ν = 1 edge to the inner edge with a random coefficient ξ

which, for simplicity, we take to be of Gaussian white noise form: 〈ξ(x)ξ∗(x′)〉 =

Wδ(x − x′). In the absence of inter-mode tunneling, this theory will not realize the

universal value of the two-terminal conductance we seek, σxy = 1− k
k+2

. Heuristically,

if there are only two terminals, we cannot distinguish between forward and backward

propagation, and the charge conductivities of the filled Landau level and the RR

state of holes will add up in absolute value. The tunneling term allows the counter-

propagating modes to equilibrate and achieve a universal two-terminal conductance,

as is the case for the ν = 2/3 quantum Hall state [100].

To determine the relevance of the random inter-edge tunneling, we need to examine

the scaling dimension of W . In general, the Renormalization Group flow of the

strength of the tunneling, W , follows [101]:

dW

d`
= (3− 2∆)W (4.7)

where ∆ is the scaling dimension of the term coupled to the random ξ(x). In the

absence of density-density interactions, v12 = 0, the scaling dimension of the tunneling
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operator ψ1e
i k+2
k
φ2e−iφ1 is ∆ = 3

2
+ 1

2
= 2. The inter-mode electron tunneling term is

irrelavent in this case: dW/d` = −W , as may be seen by using the replica trick to

integrate out ξ. However, for v12 sufficiently large, W becomes relevant. To see this,

we introduce a new set of fields defined by

φρ = φ1 − φ2 , φσ = φ1 − φ2(k + 2)/k, (4.8)

corresponding to charged and neutral bosonic modes, respectively. In these variables,

the Lagrangian takes the form LRR = Lρ + Lσ + Ltun + Lρσ, with:

Lρ =
1

4π

(
k + 2

2

)
∂xφρ(i∂τ + vρ∂x)φρ,

Lσ =
1

4π

k

2
∂xφσ(−i∂τ + vσ∂x)φσ + LZk(vn),

Lρσ = 2vρσ∂xφσ∂xφρ,

Ltun = ξ(x)ψ1e
iφσ + ξ∗(x)ψ†1e

−iφσ , (4.9)

and vσ, vρ, vρσ are functions of v1,v2 and v12, e.g.,

4πvρσ = (k/2)2v1 + (k + 2/2)2v2 − (k(k + 2)/4 + (k/2)2)v12. (4.10)

If vρσ = 0, then the electron tunneling operator has scaling dimension [ψ1e
iφσ ] = 1

and the inter-mode electron tunneling term is relevant: dW/d` = W .

We now show that when the disorder is a relevant perturbation, the edge theory

flows to a new fixed point described by a freely-propagating charged boson (responsi-

ble for the universal quantized Hall conductance) and a backward propagating neutral

sector that possesses an SU(2) symmetry. We will argue that due to the disordered

tunneling the neutral modes will equilibrate and propagate at common average ve-

locity v̄ and show that the velocity mismatch and the mixing term Lρσ are irrelevant.

An SU(2) symmetry will thus emerge in the neutral sector. Note that for k = 2 this

reduces to the result obtained for the anti-Pfaffian [60, 64].
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Let us write the neutral sector action Lσ as LSU(2)k + Lδv, with:

LSU(2)k =
1

4π

k

2
∂xφσ(−i∂τ + v̄∂x)φσ + LZk(v̄), (4.11)

Lδv = (LZk(vn)− LZk(v̄)) +
1

4π

k

2
(vσ − v̄)(∂xφσ)2.

The Lagrangian LSU(2)k is, in fact, equivalent to (the opposite chirality version of)

the chiral WZW action, Equation 4.2: the chiral boson φσ restores the U(1) which

was gauged out in Equation 4.1. A simple way to see this is to note that the currents:

J+ =
√
kψ1e

iφσ , J− =
√
kψ†1e

−iφσ , Jz =
k

2
∂xφσ, (4.12)

obey the same SU(2)k Kac-Moody commutation relations as the WZW currents:

Ja = − ik
2π
tr
(
T ag−1(i∂τ − v̄∂x)g

)
, (4.13)

where T a, a = x, y, z are SU(2) generators and J± = Ja ± iJy.

We notice that the tunneling term Ltun can be written in terms of the currents:

Ltun = ξ(x)J+ + ξ∗(x)J−. (4.14)

It is convenient to use the WZW representation since the tunneling term can be

eliminated from the action by the gauge transformation g → gU with

U = Pe
i
v̄

∫ x dx′~ξ(x′)·~T (4.15)

where P denotes path ordering and ~ξ(x′) = (2Re(ξ(x′)),−2Im(ξ(x′)), 0). Under

this gauge transformation

LSU(2)k → LSU(2)k − ~ξ · ~J, (4.16)

thus with this gauge transformation we are able to eliminate the tunneling term Ltun
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from the action of the edge..

We now turn to the effect of this gauge transformation on the velocity anisotropy

terms. The velocity terms in Lσ can be written in the form:

vatr
(
Sa∂xg

−1∂xg
)
, (4.17)

where Sa is a matrix satisfying tr(SaTbTc) = δabδac and va, a = x, y, z can be expressed

in terms of vσ, vn. The matrix vaSa picks out the current Ja, Equation 4.13, from

the action, and gives it the velocity va. Let us separate the traceless part M of the

matrix vaSa:

M = vaSa − tr(vaSa)× I/3. (4.18)

Then Lδv takes the form Lδv = tr(M∂xg
−1∂xg) Under the gauge transformation

g → gU , Lδv → tr(M ′∂xg
−1∂xg), where M ′ = UMU † is random since the gauge

transformation is a function of ξ(x). The renormalization group flow of the mean

square average of M ′, WM ′ , is dWM ′/dl = (3− 2∆)WM ′ [101], where ∆ is the scaling

dimension of the term to which M ′ couples. In this case, M ′ couples to ∂xg
−1∂xg ∝ J2

which has scaling dimension ∆ = 2 (i.e. M ′ is a velocity). Hence WM ′ and the velocity

anisotropy are irrelevant. The part of the velocity term which is invariant under the

gauge transformation is the average velocity v̄ = tr(vaSa)/3.

The mixing term, Lρσ is irrelevant. It can be written as Lρσ = 2vρσ( 2
k
Jz) · ∂xφρ;

under the gauge transformation g → gU the current Jz gets rotated with a ran-

dom coefficient. Consequently, deviations from vρσ = 0 are irrelevant, much like the

velocity anisotropy term above.

4.3 Properties of anti-RR States

We have found that at the fixed point where the edge modes equilibrate due to

random electron tunneling, the edge theory of the anti-RR state is described by a

single bosonic charge mode, Lρ, and an SU(2)k neutral sector, LSU(2)k , moving in

the opposite direction. The electron operator of the ν = 1 edge in the unequilibrated
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theory with ξ = 0 in Equation 4.6 is eiφ1 , and can be rewritten in the form eiφ1 =

e−i
k
2
φσ ei

k+2
2
φρ . As a result of equilibration, the dimension of this operator changes,

from ∆e = 1/2 to ∆e = (k + 1)/2. (The conformal spin, the difference between the

right and left scaling dimensions, remains 1/2, however.) Noting that eiφ1 can be

rewritten as χ
m=−k/2
j=k/2 ei

k+2
2
φρ , we see that this operator is the lowest Jz eigenvalue, m,

of a multiplet χmj=k/2 e
i k+2

2
φρ with m = −k/2,−k/2 + 1, . . . , k/2. The other electron

creation operators in this SU(2) mutiplet are obtained by acting multiple times on eiφ1

with the raising operator J+ = ψ1e
iφσ ; thus, they create an electron in the original

ν = 1 edge and transfer multiple electrons from the RR edge to the ν = 1 edge. As a

result of equilibration, all k + 1 of these operators have the same scaling dimension.

When electrons tunnel between two level-k RR droplets, the tunneling conductance

G ∼ T 2k and, for finite V > T , Itun ∼ V 2k+1.

Quasiparticle operators can be obtained by the requirement that they are local

with respect to these electron operators. The allowed quasiparticle operators (modulo

the creation or annihilation of an electron) and their scaling dimensions are:

Φj,N
qp = χj e

i(j+N)φρ . (4.19)

The Jz eigenvalue is suppressed here; there is an SU(2) multiplet of each of these

operators all of which belong to the same quasiparticle species because they have

the same topological properties. Φj,N
qp has right scaling dimension (j +N)2/(k + 2)

and left scaling dimension j(j + 1)/(k + 2) and, therefore, total scaling dimension

[(j +N)2 + j(j + 1)] /(k+2) and topological spin [(j +N)2 − j(j + 1)] /(k+2). For k

even, N = 0, 1, . . . , k
2
. For k odd, N = 0, 1, . . . , k+1

2
for integer j and N = 0, 1, . . . , k−1

2

for half-integer j. Therefore, there are (k+ 1)(k+ 2)/2 different quasiparticle species.

This is also the ground state degeneracy of the RR theory on the torus (which is

10 in the case of the ν = 12/5 state). The corresponding RR state has the same

degeneracy. The minimal dimension of a quasiparticle operator is [Φ
1/2,0
qp ] = [Φ0,1

qp ] =

1
k+2

. Consequently, when quasiparticles tunnel between the edges at a point contact,

Rxx ∼ T−2k/(k+2) and, at finite V > T , Itun ∼ V (2−k)/(2+k).
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The thermal Hall conductivity of the anti-RR state is determined by the central

charge of the edge theory [76]. Ignoring the filled Landau levels, the central charge

of the bosonic charge sector is c = 1 and the central charge of the SU(2)k theory is

c = 3k/(k + 2). The thermal Hall conductivity of the anti-RR state is then:

κRR
xy =

(
1− 3k

k + 2

)
π2k2

B

3h
T. (4.20)

Thus, the conductivity due to the partially filled second Landau level is negative for

all k.

4.4 Candidate States for Filling 12/5

Focusing on the ν = 2/5 anti-RR state (k=3) its thermal Hall conductivity is −4
5

(in units of
π2k2

B

3h
T ), while the Abelian hierarchy state at ν = 2/5 has a positive

thermal Hall conductance of +2, and the ν = 2/5 non-Abelian hierarchy state of

Ref. [96], built on the ν = 1/2 Pfaffian state, would have a thermal Hall conductance

of +1
2
. We note that the construction of Ref.[96] can also produce a ν = 2/5 state

built on the anti-Pfaffian state, with thermal Hall conductance −3
2
. These thermal

conductivities are achieved at length scales longer that the equilibration length of

the edges. In the case of the ν = 12/5 state, the filled lower Landau level gives an

additional contribution of +2, which would make all of the thermal conductivities

positive, though differing in magnitude. Therefore, in order to distinguish the non-

Abelian ν = 12/5 states from the Abelian one through the signs of their thermal

Hall conductivities, it would be necessary to measure the thermal conductivity along

an edge between ν = 2 and ν = 2 + 2
5
, which would only have a contribution from

the partially-filled Landau level. On shorter length scales, the different modes on the

edge do not equilibrate, in which case both the anti-RR state and the non-Abelian

hierarchy state will have heat flow both upstream and downstream while the Abelian

state will have purely chiral heat transport. In this case, the filled Landau levels

simply give an additional contribution to the downstream heat transport.
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The difference between the various proposed ν = 12/5 states would also be evident

from the transport through a point contact. Such experiments have been performed

in the second Landau level [45]. As a result of weak quasiparticle tunneling from one

edge to the other, there is a non-zero longitudinal resistance (see, e.g., the appendices

of ref. [83]):

Rxx ∼ T 4∆qp−2 (4.21)

where ∆qp is the scaling dimension of the tunneling quasiparticle. At finite voltage

V > T , we instead have Itun ∼ V 4∆qp−1. In the Abelian hierarchy ν = 2/5 state, the

most relevant tunneling operator is that of the charge 2
5
e quasiparticle with ∆qp = 1

5

[49, 102], leading to Rxx ∼ T−6/5. In the non-Abelian hierarchy state of Ref. [96], the

most relevant tunneling operator is that of charge 1
5
e quasiparticles with dimension

∆qp = 9
80

, leading to Rxx ∼ T−31/20. Its sister state, built on the anti-Pfaffian, rather

than the Pfaffian has ∆qp = 19
80

, hence Rxx ∼ T−21/20. Finally, in the k = 3 RR

state, the operator Φ1/5 = Φ( 1
2

) e
i 1
2
φρ carries charge 1

5
e and has scaling dimension

∆qp = 1
5
, while the operator Φ2/5 = eiφρ carries charge 2

5
e and has the same scaling

dimension. Therefore, the longitudinal resistance in this theory will behave as Rxx ∼

T−6/5, precisely as in the Abelian hierarchy state. However, shot noise experiments

[70, 71, 44] can detect the charge of the tunneling quasiparticles. In the Abelian

hierarchy state, the current is carried by charge 2e/5 quasiparticles at the lowest

temperatures, where the most relevant operator (in the Renormalization Group sense)

will dominate. In the non-Abelian hierarchy state, charge e/5 quasiparticle tunneling

is the most relevant operator. In the k = 3 RR state, charge e/5 and charge 2e/5

quasiparticle tunneling are equally relevant, but the bare tunneling matrix element

for charge e/5 quasiparticles is presumably larger than for charge 2e/5 quasiparticles

(Γ2/5 ∼ (Γ1/5)2), so tunneling will be dominated by the former. In summary, we

expect shot noise experiments in either of the non-Abelian states to result in a charge

of e/5, as compared to charge 2e/5 in the Abelian state. The two non-Abelian states

can be distinguished from each other by the power-laws with which Rxx depends on

T or Itun on V for V > T in the limit of weak tunneling. In the opposite limit of
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Candidate State Rxx κxy e∗/e

k = 3 anti-RR T−6/5 −4/5 1/5
Generalized Hierarchy over Pf T−31/20 1/2 1/5

Generalized Hierarchy over Pf T−21/20 −3/2 1/5
Abelian Hierarchy T−6/5 +2 2/5

Table 4.1: Comparison between different candidate states for electrons at ν = 12/5.
We compare the state analyzed in this chapter, the k = 3 anti-RR state, the the gen-
eralized hierarchy states of Ref. [96], and to the Abelian hierarchy state [102]. Listed
are the longitudinal resistance in the presence of point contact, Rxx, the thermal Hall
conductivity due to the upper LL, κxy, and the charge of the quasiparticle with the
most relevant tunneling, e∗.

strong tunneling, the droplet effectively breaks in two and all that remains is the

weak tunneling of electrons between the two droplets. In this case, G ∼ T 4∆e−2; in

both the Abelian and non-Abelian hierarchy states, ∆e = 3/2 while in the k = 3 RR

state, ∆e = 2. These results are listed in Equation 4.4.

To conclude, we have studied the edge theory of the anti-RR states, a family of

quantum Hall states at filling fractions ν = 2
k+2

. These states are relevant to the

observed ν = 12/5 state. We compared the anti-RR state at k = 3 to other candidate

states for ν = 12/5. Quantitative measurements of quasiparticle charge, tunneling

exponents, and thermal condutance would allow the determination of the ground state

of electrons at filling ν = 12/5, and whether it is described by the k = 3 anti-RR

state or a different non-Abelian, or Abelian, state.
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Chapter 5

Multi-Channel Kondo Effect in QH
Edges

Following the general theme of this thesis, we will discuss in this chapter an exper-

iment which could reveal properties of non-Abelian quantum Hall states, including

the structure of the neutral part of the edge theory, through charge measurements.

In particular, this experiment might allow distinguishing between the Pfaffian and

anti-Pfaffian states, two states at the same filling fraction. This experiment involves

electron tunneling only, and therefore will not show a direct signature of fractional

non-Abelian statistics.

Non-Abelian quantum Hall states have sparked considerable interest recently be-

cause of their novel physical properties and their potential application to topological

quantum computing [103]. Though it is not known whether such states exist, it is

suspected that the observed plateaus at σxy = ν e2

h
with ν = 5/2 [33] and ν = 12/5

[38] are due to non-Abelian quantum Hall states.

The current evidence for the existence of non-Abelian quantum Hall states comes

primarily from numerical studies [39, 40, 43] which found that the ground states of

small numbers of electrons had large overlap with the Moore-Read Pfaffian wave-

function [34, 68, 35] and the particle-hole conjugate of the k = 3 Read-Rezayi (RR)

wavefunction [37, 91] at ν = 5/2 and ν = 12/5 respectively, and from recent noise and

tunneling measurements [44, 45]. It has been argued that these wavefunctions are

representatives of two universality classes which exhibit non-Abelian quasi-particle
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statistics, which is a necessary ingredient for topological quantum computing [50].

Recently, further numerical studies [62, 42] have bolstered the argument that these

states occur in the experiments of Refs. [33, 38].

Some theoretical proposals have been made to determine experimentally whether

or not the ν = 5/2 state possesses the non-Abelian quasi-particle statistics of the

Pfaffian [75, 56, 58, 57]. While fabricating high-mobility samples of mesoscopic size to

test these proposals presents a significant challenge, recent experiments on quantum

point contacts at ν = 5/2 give one reason to believe that such devices are within

reach [104]. Experiments on such devices have recently shed light, for the first time,

on quasiparticle properties at ν = 5/2. Shot noise [44] and non-linear current-voltage

characteristics [45] at quantum point contacts at ν = 5/2 are both consistent with a

quasi-particle charge of e/4, as required by the Moore-Read Pfaffian state.

However, a wrinkle in the theoretical picture appeared recently when it was real-

ized that another state, the ‘anti-Pfaffian’, is an equally good candidate at ν = 5/2

[60, 64]. The anti-Pfaffian is the conjugate of the Pfaffian under particle-hole symme-

try within a Landau level, which is an exact symmetry in the limit of large magnetic

field. This symmetry must be spontaneously broken in order for one of these two

degenerate ground states to occur; the system sizes studied in numerics on the torus

were simply too small to observe anything other than the symmetric combination of

the two [40]. In the case of numerics on the sphere [39], the finite geometry explicitly

breaks the symmetry; the anti-Pfaffian occurs at a different value of the magnetic

flux and was, consequently, missed.

The Pfaffian and anti-Pfaffian states differ significantly in the nature of their

edge excitations. This leads to a difference in tunneling characteristics and thermal

transport along the edge [64, 91]. Both states possess charge e/4 quasi-particles, so the

existing noise experiments do not allow one to distinguish between them [44]. Current-

voltage characteristics at a point contact can distinguish between the two states;

measurements appear to be more consistent with the anti-Pfaffian state although they

cannot fully rule out the Pfaffian [45]. Therefore, there is urgent need for further

experiments to determine not only whether the ν = 5/2 state is Abelian or non-
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Abelian, but to indicate which non-Abelian state.

We show that tunneling between a level-k Read-Rezayi (RR) quantum Hall state

and a quantum dot maps to k-channel Kondo problem, which is channel symmetric

without fine tuning. This would allow verifying some properties of the edge states,

and would provide a realization of the channel symmetric Kondo problem. The level-k

anti-RR state (chapter 4) maps to a channel asymmetric k-channel Kondo problem.

This chapter is based on the published article [105], by G. Fiete, W. Bishara and

C. Nayak.

5.1 Kondo Model Review

The Kondo model is a model of a localized point-like magnetic impurity interacting

with a Fermi sea of free electrons in three dimensions. There is vast literature on the

Kondo model. A classic review is [106], and a review of the Kondo model and its

literature can be found in [107].

The Hamiltonian for the Kondo model, for a single species of fermions, is

HKondo = H0[ψ] + λ ~S · ~s(0), (5.1)

where H0 is the the Hamiltonian of free electron, ~S is the spin of the impurity, and

~s(0) is the spin of the electrons at the position of the impurity:

~s(0) = ψ†α(0)~σαβψβ(0) (5.2)

If the magnetic impurity is a point-like impurity, then the problem is isotropic, and

the free electron Hamiltonian can be reduced to a chiral one-dimensional Hamiltonian

of radial degree of freedom, the incoming and outgoing isotropic modes. The one-

dimensional theory can be bosonized to give:

H0[ψ] =

∫
dx

vF
4π

(∂xϕ(x))2 , (5.3)
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with ψ(x) ∝ eiϕ(x). If there are a number of fermion species, the Hamiltonian becomes

HKondo =
∑
i

{
H0[ψi] + λi ~S · ~si(0)

}
. (5.4)

This is the multi-channel Kondo problem. If all the λi’s are equal, then Equa-

tion 5.4 is the channel symmetric Kondo model. The multi-channel Kondo problem is

interesting since it displays non-Fermi-Liquid behavior. For example, the k-channel,

channel symmetric Kondo model gives for the magnetic susceptibility of the impurity:

χimp ∝
(

1

T

) k−2
k+2

. (5.5)

For k = 2, the susceptibility has a logarithmic divergence, χimp ∝ ln(1/T ). For

k = 1, the magnetic susceptibility approaches a constant for low temperatures, remi-

niscent of the behavior of Fermi liquids.

It is useful in the study ff the Kondo model to relax the assumption of spin

isotropy. The spin-anisotropic coupling between the impurity and the fermi liquid

spin is usually written as:

λ⊥i
(
S+s−i (0) + S−s+

i (0)
)

+ λziS
zszi (0) (5.6)

5.2 Quantum Dot coupled to QH Edge

The experimental setup we have in mind is depicted in Figure 5.1. The bulk quantum

Hall state on the left is assumed to be in a non-Abelian fractional quantum Hall state

at ν = 2+k/(k+2) or ν = 2+2/(k+2), corresponding to a level-k Read-Rezayi state

or its particle hole conjugate, respectively (chapter 4). A quantum point contact may

be used to pinch off a finite region of the quantum Hall fluid and form a quantum dot

separated from the bulk by a tunneling barrier. We assume that the lower two Landau

levels are not pinched off and therefore do not backscatter at the point contact, i.e.

the barrier region is assumed to have ν = 2. For an infinite system, the edge modes of
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ν

bulk dot

ν
e− e−

Figure 5.1: (color online) Schematic of our model. Gates are shown in black. They
may be used to form a point contact to pinch off the dot from the rest of the quantum
Hall bulk. The gate on the right of the figure may be used to shift the energy levels
of the dot by changing its area S. The bulk is assumed to be at filling fraction
ν = 2 + k/(k + 2) or ν = 2 + 2/(k + 2). The white region between the dot and the
bulk is assumed to be at ν = 2. The charge on the dot may be measured capacitively
[108].

the quantum dot are gapless, but for a finite system they acquire a discrete spectrum

[109, 90]. We focus on fluctuations of the quantum dot charge Q ≡ e〈N̂e〉 near a

degeneracy point in the energy, that is when the energy of a dot with Ne electrons is

equal to that of a dot with Ne + 1 electrons:

E(Ne, S, B) = E(Ne + 1, S, B). (5.7)

The energy of the dot depends on its area S, which may be altered by a gate

potential shown in Figure 5.1; and on the magnetic field B. Adjusting either S or B

may be used to achieve the desired degeneracy and also to slightly tune away from

it. The charge of the dot can be measured capacitively [108].

We are interested in energy and temperature scales much less than the level-

spacing of the dot edge states. Under this assumption, only two levels on the quantum

dot (the degenerate or nearly degenerate ones) are important for the physics. In our

formulation, these two levels will act as an effective, local spin-1/2 degree of freedom.

The crucial feature of the Read-Rezayi states is that the coupling of their edge states

to this effective spin degree of freedom via electron tunneling to the dot can be

mapped to the k-channel Kondo model. (We emphasize that our analysis applies to

an effective spin degree of freedom which accounts for the charge on the dot; the

Read-Rezayi states and their particle-hole conjugates [91] are spin polarized, so there
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are no spin-flips in the quantum Hall edge states). This allows us to exploit known

results from the multi-channel Kondo models [110].

A detuning from degeneracy maps to the coupling of an external magnetic field to

the spin in the k-channel Kondo model. Thus, charge susceptibilities in our quantum

dot set-up can be obtained from magnetic susceptibility in the Kondo model. A

remarkable feature of the scenario we discuss here is that the channel isotropic limit

is automatically obtained for Read-Rezayi states without any fine tuning. Again, this

feature follows from the form of the coupling of the edge states to the quantum dot

degrees of freedom. On the other hand, for their particle-hole conjugates [60, 64,

91], the generic case is channel anisotropic. Since the channel isotropic and channel

anisotropic Kondo models are very different, one can exploit the thermodynamics of

the multi-channel Kondo model applied to the charge susceptibility to distinguish the

Pfaffian from the anti-Pfaffian. This is one of our central results.

5.3 Pfaffian Edge and Quantum Dot

We begin with the case of a quantum dot coupled to a bulk quantum Hall state in

the Moore-Read Pfaffian state, at filling fraction ν = 2 + 1/2. Here and henceforth,

we ignore the 2 filled lower Landau levels. The Hamiltonian for our problem is

H = Hedge +Hdot +Htun. (5.8)

where Hedge is the Hamiltonian of the inner half filled Landau level. This is justified

by the sequence of modes pinched off in a point contact [44]. The edge theory for the

Pfaffian state is the product of a free, charged chiral bosonic sector and a neutral Ma-

jorana sector. The edge Hamiltonian takes the form (note the different normalization

in section 5.1)

Hedge =

∫
dx

(
vc

(k + 2)/k

4π
(∂xϕ(x))2 + ivnψ∂xψ

)
, (5.9)
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Here, k = 2 and vn < vc is the velocity of the neutral mode(s). The Hamiltonian of

the dot describes a two level system which we can take to be “empty” or “occupied”

(later to be mapped to “up” or “down”) [111, 112]. It thus has a fermionic character

and we label the fermionic annihilation (creation) operator for this state d (d†). Thus,

Hdot = εd d
†d, (5.10)

where εd = 0 at the degeneracy point and εd 6= 0 when one is tuned away from

degeneracy. The tunneling Hamiltonian is

Htun = t(d†Ψe(0) + Ψ†e(0)d) + V d†dΨ†e(0)Ψe(0), (5.11)

where t is the tunneling amplitude to the dot; x = 0 is the location of the point

contact; V is the Coulomb repulsion between the edge and the dot, and Ψe (Ψ†e) is

the annihilation (creation) operator for the electron,

Ψ†e = ψei2ϕ. (5.12)

With the above normalization, the scaling dimension of eiαϕ is dim[eiαϕ] = ν α
2

2
,

so that the dimension of the electron operator is

dim[Ψe] = 3/2. (5.13)

As a result of the scaling dim of Ψe, t is naively irrelevant in the Renormalization

Group sense:

dt

d`
= (1− dim[Ψe]) t+O(tV ) +O(t3)

= −1

2
t+O(tV ) +O(t3). (5.14)

However, for V sufficiently large, t flows to the 2-channel Kondo fixed point, not to

t = 0. (One might guess this from the second term above, but we will show this
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directly.) To see this, we we apply a unitary transformation U = e2id†dϕ(0) to H,

which rotates ϕ(0) out of the tunneling term. H now takes the form

UHU † = Hedge +Hdot + t ψ(d− d†)

+ (V − 2vc) d
†d ∂xϕ(0). (5.15)

For V − 2vc = 0, this is a purely quadratic theory which can be solved exactly. Thus,

t is clearly relevant in this limit; we will see below that it is actually relevant over

a range of values of V . Note that only the Majorana combination d− d† couples to

the the quantum Hall edge. This is precisely the same feature which leads to non-

Fermi liquid behavior in the two-channel Kondo problem [113]: the spectral function

Im
〈
d†d
〉

has both a δ-function piece, coming from d† + d and a Lorentzian piece

coming from d−d†. As we will see, the coupling of a quantum dot to an anti-Pfaffian

quantum Hall state does not have this property.

To see the connection to the two-channel Kondo model, it is useful to represent

the two-level system on the dot by a spin:

S† = d†; S− = d;

and Sz = d†d− 1
2
. (5.16)

(up to Klein factors we have suppressed.) Then, we apply a unitary transformation

U = eiαS
zϕ(0) to H as before, but now we take α = 2 −

√
2, i.e. rather than fully

rotate ϕ(0) out of the tunneling term, we partially rotate it. H now takes the form:

UHU † = Hedge + εdS
z + (V − vcα)Sz∂xϕ(0)

+t(ψ†e−i
√

2ϕ(0)S† + ψei
√

2ϕ(0)S−). (5.17)

We now compare this to the Hamiltonian for the Kondo model (see Equation 5.6):

Himp = λ⊥(J+(0)S− + J−(0)S+) + λzJ
z(0)Sz + hSz, (5.18)
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where ~S is the impurity spin; ~J(0) is conduction electron spin density at the impurity

site; λ⊥, λz are the exchange couplings which are not assumed to be equal; and h

is the magnetic field. The impurity spin only interacts with conduction electrons in

the s-wave channel about the origin. Retaining only this channel, we have a chiral

one-dimensional problem in which the impurity is at the origin and the incoming and

outgoing modes are right-moving modes at x < 0 and x > 0, respectively. Affleck and

Ludwig observed [114, 110] that the Hamiltonian of the conduction electrons Hcond

in the k-channel Kondo model admits a conformal decomposition,

Hcond = HU(1) +HSU(2)k +HSU(k)2 . (5.19)

This decomposition follows from simply using the appropriate combinations of

electron fields. The Hamiltonian HU(1) involves only the totally charge mode, which in

the bosonized version is simply ϕρ(x) = 1
k

∑
i ϕi(x). The HamiltonianHSU(2)k involves

the combinations of fields representing the spin density. The remaining degrees of

freedom enter HSU(k)2 .

The spin density combination of fields,

Ja =
∑
i

ψ†i,ασ
a
αβψi,β (5.20)

obey the SU(2)k Kac-Moody algebra:

[Jam, J
b
n] = iεabcJ cn+m + nkδa,bδm+n,0, (5.21)

where the labels n,m correspond to the spatial Fourier transform components of the

spin currents. For k = 2, we can express the Ja in terms of a Majorana fermion, ψ,

and a free boson ϕ:

J† =
√

2ψei
√

2ϕ, J− =
√

2ψe−i
√

2ϕ, Jz =
√

2∂xϕ. (5.22)

The operators ψ and ϕ have a complicated, non-local relation to the original conduc-
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tion electron operators, but they have the virtue of satisfying the SU(2)2 Kac-Moody

algebra via Equation 5.22.

Substituting Equation 5.22 into Equation 5.18, we see that our problem in Equa-

tion 5.17 maps onto the 2-channel Kondo model with anisotropic exchange if we

identify

λ⊥ = t,
√

2λz = V − (2−
√

2)vc,

h = εd. (5.23)

For λz < 0, the Kondo model is ferromagnetic. In the ferromagnetic Kondo

model, the coupling to the impurity is irrelevant, as we naively expected above in

Equation 5.14. However, when V is sufficiently large, λz > 0, corresponding to

the antiferromagnetic Kondo model. In this case, the Hamiltonian is controlled in

the infrared by the exchange and channel isotropic antiferromagnetic spin-1/2 2-

channel Kondo fixed point [115]. This fixed point is characterized by non-Fermi liquid

correlations, including anomalous exponents for the temperature dependence of the

impurity contribution to the specific heat and spin susceptibility and the magnetic

field dependence of the zero-temperature magnetization. The latter two translate to

the charge susceptibility and charge of the quantum dot [110]:

χcharge ∝ ln (TK/T ) , ∆Q ∝ VG ln (kBTK/e
∗VG) , (5.24)

where the Kondo temperature depends on non-universal values vn, t and is given by

TK ∝ exp(−c1vn/t) with c1 > 0. Here, ∆Q = Q − e(Ne + 1
2
) is the charge on the

dot measured relative to the average electron number at the degeneracy point of the

energy. In the case k = 2, which corresponds to the Pfaffian state, possibly realized at

ν = 5/2, there are logarithmic corrections: Ordinarily, fine tuning would be required

to realize channel isotropy in the Kondo model [116] but, as we have seen, the coupling

between a quantum dot and the edge of a Pfaffian quantum Hall state automatically
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realizes the channel isotropic 2-channel Kondo model.

5.4 Anti-Pfaffian and Quantum Dot

We now turn to the coupling of the anti-Pfaffian state to the two degenerate levels of

the quantum dot. The edge theory of the anti-Pfaffian state is [60, 64]:

LPf =
2

4π
∂xφρ(∂t − vρ∂x)φρ + iψa(−∂t − vσ∂x)ψa. (5.25)

There is a charged boson φρ and three counter-propagating Majorana fermions ψa,

a = 1, 2, 3. There are three different dimension-3/2 electron operators, ψae
2iφρ . The

combination (ψ1−iψ2)e2iφρ is inherited from the electron operator of the ν = 1 integer

quantum Hall state in which a Pfaffian state of holes forms (see chapter 4). Thus, we

expect it to have the largest tunneling amplitude. The other two electron operators

are complicated charge-e combinations of the ν = 1 electron operator and the electron

operator of the Pfaffian state of holes. The tunneling Hamiltonian is (the repeated

index a is summed over):

Htun =
(
taψae

−2iφρd† + h.c.
)

+ V d†d∂xφρ (5.26)

Performing a unitary transformation as before to rotate out the φρ dependence of the

first term, we obtain UHU † = Hedge +Hdot + H̃tun where

H̃tun =
(
taψad

† + h.c.
)

+ (V − 2vc) d
†d∂xφρ

= iχ1

(
λ1(d† − d)/i+ λ′1(d† + d)

)
+iλ2χ2(d† + d) + (V − 2vc) d

†d ∂xφρ (5.27)

where χ1 = uaψa/
√
u2, χ2 = waψa/

√
w2, ua = Re ta, va = Im ta, wa = va−ua(u·v/u2),

λ1 =
√
u2, λ2 =

√
w2, λ′1 = u · v/

√
u2, and {χ1, χ2} = 0. Note that, for generic tas,

both (d† − d) and (d† + d)/i couple to the edge modes, as in the one-channel Kondo

model. This is in contrast to the Pfaffian case, in which only (d† − d) couples to the
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edge modes, as in the two-channel Kondo model. At the Toulouse point, the one-

channel Kondo model can be mapped to a form similar to Equation 5.27 with V = 2vc.

The charge susceptibility and charge of the quantum dot have the temperature and

voltage dependence characteristic of a Fermi liquid:

χcharge ∝ const. , ∆Q ∝ VG. (5.28)

Consequently, measurements of the behavior of the dot would distinguish the Pfaffian

and anti-Pfaffian states.

5.5 Read-Rezayi State and Quantum Dot

Now we analyze the Read-Rezayi state with filling k/(k+ 2), generalizing our discus-

sion in section 5.3 of the Pfaffian state, which is the k = 2 case. The k = 1 case is

the Laughlin ν = 1/3 state, while the k = 3 case is the 3/5 Read-Rezayi state. The

edge Hamiltonian of a Read-Rezayi state has the form (section 4.1):

Hedge = Hc +HZk (5.29)

with Hc the same as the first term in Eq. (5.9). HZk can be written as a gauged

SU(2)k WZW model in which the U(1) subgroup has been gauged, thereby realizing

an SU(2)k/U(1) coset with central charge c = 3k
k+2
− 1 = 2k−2

k+2
, but we will not need

this representation here.

The electron operator now takes the form:

Ψ†e = ψ1e
i k+2
k
ϕ, (5.30)

where ψ1 is a parafermion field. Since dim[ψ1] = 1 − 1/k, dim[Ψe] = 3/2, the same

scaling dimension of an electron operator in the Pfaffian edge.

As before, we apply a unitary transformation U = eiαS
zϕ(0) to H, which now takes
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the form

UHU † = Hedge +Hdot + (V − vcα)Sz∂xϕ(0)

+t(ψ†1e
−iα̃ϕ(0)S† + ψ1e

iα̃ϕ(0)S−) (5.31)

where α̃ ≡ k+2
k
− α. The choice α∗ = k+2

k
−
√

k+2
k

√
2
k

makes the connection to

the k-channel Kondo problem explicit because the SU(2)k current operators can be

represented in terms of the Zk parafermions [117]:

J† =
√
kψ1e

iβϕ, J− =
√
kψ†1e

−iβϕ, Jz =
k

2
β∂xϕ, (5.32)

where β =
√

2(k + 2)/k. Substituting these expressions into Equation 5.18 we see

that our problem, Equation 5.31, is equivalent to the k-channel Kondo problem if we

identify

λ⊥ = t,

βλz = V − vcα∗,

, h = εd. (5.33)

For V > vcα
∗, this is the antiferromagnetic Kondo problem, which has an inter-

mediate coupling fixed point. Thus, we see that the Read-Rezayi states offer a novel

scenario to realize the non-Fermi liquid behavior of the k-channel Kondo model,

χcharge ∝ T−(k−2)/(k+2),∆Q ∝ VG
2/k (5.34)

which would otherwise require an incredible amount of fine-tuning for k ≥ 3. More-

over, observing the predicted non-Fermi liquid behavior would provide strong evidence

that the quantum Hall state is of the Read-Rezayi type.

It can also be shown that the particle-hole conjugate of the Read-Rezayi state

at ν = 2 + 2/(k + 2) generalizes the result obtained above for the anti-Pfaffian: the

Kondo model realized is not channel isotropic [118].
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5.6 Summary

In summary, we have shown that a quantum dot coupled via tunneling to a Pfaf-

fian quantum Hall state realizes the channel isotropic 2-channel Kondo model while

a quantum dot coupled to a Read-Rezayi state of filling factor ν = 2 + k/(k + 2)

leads to a channel isotropic k-channel Kondo problem, both without any fine tun-

ing of parameters. These systems will thus exhibit all the known non-Fermi liquid

properties in their thermodynamics, expressed through the charge on the dot, which

may be measured capacitively. Because the coupling of a quantum dot to an anti-

Pfaffian state generically exhibits Fermi liquid properties our results may be used to

distinguish between the two leading candidate states for ν = 5/2, the Pfaffian and

the anti-Pfaffian.
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Chapter 6

Sagnac Interference in Carbon
Nanotubes

The method of bosonization, which is used extensively in the study of quantum Hall

edge theories, has application in many one-dimensional systems. In this chapter, we

use bosonization to study Sagnac interference in non-chiral Carbon nanotube loops,

motivated by the experimental results reported in Ref. [119].

Unlike quantum Hall edges, where the Luttinger parameter of the bosonized edge

theory is fixed to rational number set by the topological bulk state, the Luttinger

parameter in a Carbon nanotube has no such constraint. In addition to explaining

the origin of the Sagnac interference in Carbon nanotube loops, we make quantitative

predictions regarding the interference amplitude as a function of temperature, bias

voltage and Luttinger liquid parameter.

6.1 Introduction

One of the most tantalizing effects predicted by quantum mechanics is the appearance

of interference fringes when two matter beams come together. These fringes provided

the ultimate testimony to the pertinence of quantum mechanics and the Schrödinger

equation. Interferometry of light is employed in many precision measurement devices.

The Mach-Zehnder interferometer produces interference between two beams travers-

ing two distinct paths, one of which passes through a test chamber containing, for

instance, a dilute gas (see Figure 6.1); this setup was originally used to measure the
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refraction index of the gas in the chamber. Fabry-Perot interferometer recombines a

series of beams, where the n’th beam traverses the optical path between two mirrors

or through a loop n times. The narrowness of the resulting interference peaks allows a

precise measurement of a light beam’s wave length, and is commonly used to measure

the Zeeman splitting of an atom in a magnetic field. The most sensitive of all inter-

ference constructs, however, is the Sagnac interference[120]. In this setup, a light (or

matter [121]) beam is split into two beams, which traverse the interferometer’s loop

both clock wise and counter clock wise, before being recombined. In this case, the

interference fringes arise due to an absolute rotation, and provide the most accurate

measure of the angular velocity of the device. This was used by Michelson to measure

the absolute rotation of the Earth. More recently, the Sagnac interference effect was

cleverly used to measure time reversal symmetry breaking in superconductors [122].

Quantum mechanics opened the way for matter-wave interferometry. Electron in-

terferometry is a powerful probe of interaction effects on low-energy phases of quan-

tum matter, as demonstrated by numerous examples. Mach-Zehnder interferometers

reveal Aharonov-Bohm oscillations and quantum hall effect edge channels[123, 124,

125, 126, 127], and can probe exotic fractional quantum Hall states[128, 58, 129]. Sim-

ilarly, two-path Mach-Zehnder interferometers can probe correlated states of quantum

dots[130, 131]. Of particular interest to us are metallic carbon nanotubes. The Lut-

tinger liquid behavior in these systems[132, 133, 134] was partially verified through

the observation of Fabry-Perot interference in finite sections of the nanotube [135].

The Fabry-Perot interference should, in principle, allow the observation of spin-charge

separation and determination of the interaction parameters of the Luttinger liquid

[136]. But the similar energy scales of the spin and charge modes’ interference pat-

terns has made such experimental observation challenging.

The most sensitive interferometer of all, however, the Sagnac interferometer, has

not been seriously explored yet in the context of interacting electronic systems. In

Ref. [119] we proposed that this interference naturally occurs in metallic armchair

nanotube loops (Figure 6.2). Instead of rotation, the Sagnac interference arises due

to the band velocity difference between right- and left-moving electrons about each
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Figure 6.1: (a) In a Mach-Zehnder interferometer the input beam is split into two
beams which traverse independent paths before being recombined. (b) In a Fabry-
Perot interferometer a beam is split into a deflected ray, which is recombined at the
output with a ray that traverses a loop. (c) The Sagnac interferometer splits the
beam into a two beams which traverse the loop in two opposite orientations, and get
recombined at the output. This allows a very sensitive measurement of the angular
velocity of the interferometer, as it results in a different relative speed in the clockwise
and counterclockwise rays. Clear rectangles represent beam-splitters, and patterned
rectangles represent mirrors.
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Figure 6.2: Schematic of a nanotube loop reported in Ref. [119]. This geometry
allows electrons to tunnel from the point X on the loop to a distant point X’ on the
other end of the loop, and vice versa. We refer to this process as cross-loop tunneling.
An electron entering from the left can traverse the loop moving right with velocity
vR, without scattering, or tunnel from X to X’ and traverse the loop moving left with
velocity vL.

Dirac node [137]. This velocity difference is present whenever the electronic Fermi

surface is tuned away from the Dirac points at half-filling, as shown in Figure 6.3(a).

The operating principle of the electronic Sagnac effect has the same origin as the

universal conductance fluctuations, and weak-localization effects in disordered two-

dimensional electron gases [138, 139, 140]. In nanotubes, it can also appear due to

band-scattering in a pair of impurities [141].

Because the Sagnac effect involves electrons traversing the same path in two dif-

ferent directions, rather than repeating the same path as in Fabry-Perot interference,

the phase accumulation is extremely small. Therefore Sagnac interference exhibits

large-period conductance fluctuations as a function of gate- and source-drain volt-

ages, and is expected to persist to high temperatures in comparison to Fabry-Perot

interference, which is more sensitive to thermal dephasing. This interference mode

should thus be able to reveal much more precise information about the unique state

of interacting electrons in thin quantum wires.

Our goal in this manuscript is to thoroughly explore the range and robustness

of the Sagnac interference mode, concentrating on armchair Carbon nanotubes. The

questions we will ask concern the amplitude of this interference mode as a function

of the temperature, gate and source-drain voltage, and Luttinger parameter of the

nanotube.

This chapter is organized as follows. In section 6.2, as a warm-up, we analyze
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Figure 6.3: (a) The energy spectrum of an armchair nanotube. When the chemical
potential is tuned away from the degeneracy points by a gate voltage, the left and
right movers in each node will have different velocities, which leads to the Sagnac
interference in the loop geometry. (b) This figure shows right and left moving electrons
in node 1. The loop was unraveled in this figure, so the tunneling appears to be non-
local, from point X to point X ′, the two ends of the loop. The scattering shown in
figure is from a right moving electron from a given node at point X to a left moving
electron, of the same node, at point X ′, and vice versa. This scattering gives rise
to the Sagnac interference. (c) Sagnac interference can also arise without the loop
geometry through inter-node tunneling, since right movers at node 2 have the same
velocity as left movers at node 1.

the simpler case of Sagnac interference in a single channel of right- and left-moving

electrons. In subsection 6.2.1 we introduce the model of a single channel with a

linearized spectrum, and the cross-loop tunneling which will give rise to the Sagnac

interference. In subsection 6.2.2 and subsection 6.2.3 we set up the non-equilibrium

perturbative calculation of the conductance in the presence of cross-loop tunneling,

and in subsection 6.2.4 and subsection 6.2.5 we analyze the behavior of the oscillating

conductance as a function of gate and bias voltages and temperature. In Section

section 6.3 we repeat the above steps for the physically relevant case of Carbon

nanotubes, including spin and node degeneracies in the calculation, and remark on

the similarities and differences from the single channel case. Finally we conclude with

a discussion of the experimental implications of our calculations.
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6.2 Sagnac interference in a single channel

As discussed in the introduction, the Sagnac interference in the loop geometry is due

the the asymmetry between the velocities of the left and right moving electrons. To

demonstrate this in the simplest form, we first study in this section a single channel

with a single type of left and right movers. In a carbon nanotube, there will be four

such channels due to spin and node degeneracies.

6.2.1 The Model

We start with a single one dimensional channel of electrons and a linearized spectrum,

with different left and right mover velocities, and a density-density interaction. The

Hamiltonian density for this system is:

H1ch = −i~vRψ†R∂xψR + i~vLψ†L∂xψL

+ λ
(
ψ†RψR + ψ†LψL

)2

(6.1)

where the operator ψ†R/L creates a right/left moving electron, with the velocity:

vR/L = vF ± u. (6.2)

The scattering we are interested in is the one which takes a right moving electron at

one side of the loop, point X is Figure 6.2, and scatters it to a left moving electron

at the other side of the loop, point X ′, and vice versa. This process has been dubbed

Cross-Loop scattering in Ref. [[119]].If we choose our coordinate along the loop such

that the point X corresponds to x = 0 and the point X ′ corresponds to x = L, then

this scattering process is described by the Hamiltonian:

Hbs = Γ1ψ
†
R(0)ψL(L) + h.c.

+Γ2ψ
†
L(0)ψR(L) + h.c. (6.3)



91

In the presence of the quartic density-density interactions in the Hamiltonian,

Equation 6.1, it is useful to use the standard bosonization procedure , since the Hamil-

tonian is quadratic in terms of the bosonic fields. The electron fields are bosonized

as follows:

ψR/L ∼ ei(φ±θ) (6.4)

where θ and φ are bosonic fields that satisfy the commutation relations [θ(x), φ(x′)] =

i(π/2)sgn(x−x′); also, the total density and the current density are given by 1
π
∇θ =

ρR + ρL, and 1
π
∇φ = ρR − ρL, respectively. The Hamiltonian in terms of the bosonic

fields becomes:

H1ch =
~v
2π

∫
dx

[
1

g
(∇θ)2 + g(∇φ)2 + 2

u

v
∇θ∇φ

]
(6.5)

where g =
(

1 + 2λ
π~vF

)−1/2

is the Luttinger interaction parameter and v = vF/g. This

is the familiar Hamiltonian of a 1D interacting electron system, with the addition of

the u term which gives left and right moving particles different velocities. Indeed,

this Hamiltonian can be easily diagonalized and the left and right velocities turn out

to be for a general value of the interaction parameter g:

vR/L = v ± u =
vF
g
± u. (6.6)

Our goal is to calculate the effects of the Sagnac interference as seen in the con-

ductance as a function of the applied bias and gate voltages, and as a function of

temperature. Due to the applied voltages the system is not in equilibrium, and we

must turn to the Keldysh non-equilibrium formalism [142, 143]. Below we carry out

this analysis first for the simplified electron gas with the scattering Hamiltonian Hbs,

Equation 6.3, as a perturbation.



92

6.2.2 Non-Equilibrium correlation functions and conductance

The response of the loop to a bias source-drain voltage can be analyzed using the

non-equilibrium Keldysh formalism. Following Ref.[136], we assume that in the dis-

tant past, before turning on the backscattering, the left and right moving electrons

separately had well defined thermal distributions set by separate chemical potentials.

The density matrix corresponding to this initial distribution at temperature T = 1/β

is:

ρ̂V =
1

ZV
e−βĤV , (6.7)

with ZV = Tr[e−βĤV ] and the Hamiltonian which takes into account the applied

voltages is:

HV = H1ch − e
Vsd
2

(NR −NL)− αeVg (NR +NL)

= H1ch − e
Vsd
2

∫
dx
∇φ
π
− αeVg

∫
dx
∇θ
π

(6.8)

The gate voltage, Vg, simply couples to the total charge density, with α being

a geometrical factor of the system, while the source-drain voltage, Vsd, induces the

imbalance in the chemical potentials of the left and right movers.

As explained in Ref. [136], both Vsd and Vg can be eliminated from the un-

perturbed action by an appropriate unitary transformation, which is equivalent to

shifting the bosonic fields by a function of space and time; this is easy to see if one

writes down the Lagrangian including the voltages[119]. The equivalent shifts for the

case at hand are:

θ → θ +
αg2eVg

~vF
1

1− g2u2/v2
F

x− eVsd
2~

t,

φ→ φ− αg2eVg
~vF

u/vF
1− g2u2/v2

F

x, (6.9)

These shifts remove the voltages from the Hamiltonian HV and therefore all the

correlations to appear in the calculation will be equilibrium correlation functions

with respect to H1ch. The dependance on the applied voltages now appears in the
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time(−)

(+)

Figure 6.4: The Keldysh contour used in the non-equilibrium calculation. The
Keldysh time ordering operator TK orders operators along the contour, so fields on
the (+) branch is always at an earlier time than fields on the (-) branch.

scattering Hamiltonian, Hbs, due to the shifted bosonic fields.

Let us now focus our attention at the charge current, which in the bosonic language

is Î = (e/π)∂tθ. After performing the unitary transformation described above we can

write the formal expression for the expectation value of the current in the usual

interaction picture [136]:

〈I〉 = I0 +
1

ZV=0

Tr
(
e−βH1chT̂K

{
ÎK(x, t)e−i

∫
C dt
′H′bs(t

′)
})

(6.10)

T̂K is the time ordering operator along the Keldysh contour shown in Figure 6.4,

and ÎK(x, t) is the symmetrized current operator with respect to the two branches

of the contour. The current I0 = e2Vsd/h is the ideal current that would flow in

the absence of backscattering in a completely transmitting channel, and it explicitly

appears due to the shift of the θ field. The Hamiltonian H ′bs denotes the scattering

Hamiltonian Hbs with the properly shifted bosonic fields. The expression for the

current can be expanded in powers of H ′bs, and all the correlation functions to appear

in this expansion are equilibrium correlation functions at temperature 1/β. If we

denote by θ+ and θ− the fields on the forward branch and backward branch of the

Keldysh contour respectively, then time ordering along the contour means that θ+θ+

correlations have the usual time ordering, θ−θ− are anti-time ordered, and θ+(t) is

always earlier in time that θ−(t′). The same applies for all the fields.

It is useful to apply a Keldysh rotation to the fields, θ± = θ ± i
2
θ̃, and similarly

for φ. The correlation function 〈TK θ̃(t)θ̃(t′)〉 vanishes by construction, and we define
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:

Cθ(x, t;x′, t′) =〈TKθ(x, t)θ(x′, t′)〉

=
1

2
〈{θ̂(x, t), θ̂(x′, t′)}〉

Rθ(x, t;x′, t′) =〈TKθ(x, t)θ̃(x′, t′)〉

=− iΘ(t− t′)〈[θ̂(x, t), θ̂(x′, t′)]〉 (6.11)

and similarly for the φj fields, and for the mixed correlations:

Cθφ(x, t;x′, t′) =〈TKθ(x, t)φ(x′, t′)〉

=
1

2
〈{θ̂(x, t), φ̂(x′, t′)}〉

Rθφ(x, t;x′, t′) =〈TKθ(x, t)φ̃(x′, t′)〉

=− iΘ(t− t′)〈[θ̂(x, t), φ̂(x′, t′)]〉 (6.12)

where operators with a hat are simply the time dependent operators with no time

ordering. As explained above, these correlation function are to be evaluated in equilib-

rium, and therefore are easily explicitly calculated (section 6.B). Due to translational

invariance in time and space, these correlations are functions of x− x′ and t− t′, for

example:

Cθφ(x, t) ≡ Cθφ(x, t; 0, 0) =

1

4

[
log

(
vR sinh

(
(vRt− x)π

βvR

))
− log

(
vL sinh

(
(vLt+ x)π

βvL

))]
. (6.13)

6.2.3 Perturbation Theory

The Sagnac interference fringes occur already with weak bakcscattering at the base

of the loop, and can be deduced from a perturbation analysis of the tunneling Hamil-

tonian, Equation 6.3. As outlined above, to calculate the current, I1ch = 〈 e
π
∂tθ〉,
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we absorb the gate and bias voltages, Vg and Vsd respectively, in the shifts in Equa-

tion 6.9, which allow us to move the voltages from the unperturbed Hamiltonian H1ch

to the backscattering perturbation, Hbs. Then, we expand the formal expression we

found for the current using the Keldysh technique, Equation 6.10, in powers of Hbs,

and use Wick’s theorem to evaluate the resulting contributions.

To lowest nontrivial order, which is second order in Hbs, we obtain after a lengthy

calculation:

I1ch =
e2Vsd
h

+ Ico + Iinco (6.14)

The first term is simply the current that would flow through the system in the absence

of backscattering. The coherent current, Ico, oscillates with the gate voltages Vg, and

is given by:

Ico =cΓ1Γ2 cos

(
2ug2Lα

~2v2
F (1− g2u2/v2

F )
Vg

)
×∫

dt sin(
eVsd

~
t) e−Cco(L,t) sin(Rco(L, t)) (6.15)

where c is a constant of order unity, and we assume that Γi are real for simplicity.

The incoherent current, Iinco, is independent of the gate voltage, and is given by:

Iinco =

c

(
Γ2

1

∑
η=±

∫
dt sin(

eVsd
~
t) e−C

η
inco(L,t) sin(Rinco(L, t))

)

+ c (Γ1 → Γ2, L→ −L) (6.16)

The functions Cco, C
±
inco, Rco and Rinco are complicated combinations of the cor-

relation functions defined in subsection 6.2.2 and are given explicitly in section 6.B.

These functions do not simplify, partly due to the fact that the correlation functions

in this problem are not symmetric under x → −x since left and right movers have

different velocities.
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6.2.4 Voltage dependence of the single-mode Sagnac inter-

ference

The voltage current characteristics given in Equation 6.14 - Equation 6.16 can be

evaluated numerically to obtain the voltage and temperature dependence of the single-

mode Sagnac interference. The period of the interference as a function of the gate

voltage (Ico) are easily observed to be (for small u/vF ):

∆V Sagnac
g ≈ vF

u

π~2vF
αg2L

=
vF
u

∆V FP
g (6.17)

where ∆V FP
g is the period in gate voltage for Fabry-Perot interference. Fabry-Perot

interference occurs whenever part of the wave’s trajectory can be repeated. Since

the Sagnac interference involves traversing the same path in two different directions,

the phase difference accumulated in the process is much smaller than the difference

incurred by repeating part of the path, and therefore the period of the Sagnac in-

terference is much larger than the period of the Fabry-Perot interference. Such large

period oscillations have been experimentally observed in Carbon nanotubes, in the

loop geometry, as reported in Ref.[119], in addition to the shorter period Fabry-Perot

oscillations.

For a given gate voltage, both the coherent and incoherent parts of the current

oscillate with the bias voltage Vsd. This oscillation is due to the fact that in the

presence of bias voltage, the Fermi energy of the left- and right- moving electrons are

different by Vsd, and hence their Fermi wavevectors are different also and they would

acquire different phases traversing the loop. This oscillation will be present even for

no velocity detuning, u = 0. When the detuning is finite, u 6= 0, the differential

conductance G1ch = ∂I1ch/∂Vsd will show a beating pattern due to the two different

left and right moving excitation velocities. Here we are only considering the Sagnac

oscillations arising from the cross-loop tunneling, Equation 6.3. Figure 6.5 shows the

oscillations of the differential conductance at a fixed gate voltage. For non-interacting

electrons, the beating pattern corresponds to the addition of two harmonics with



97

Figure 6.5: Differential conductance oscillations of a single channel of fermions, as
a function of bias voltage Vsd, for velocity detuning u/vF = 0.1 and interaction
strength g = 0.5. The beating is due to the only two voltage oscillation frequencies
in the problem, Ω1 = eL

~(v+u)
and Ω2 = eL

~(v−u)
, where v = vF/g. The voltage is in

units of ~vF/eL. The shorter voltage oscillation periods is ∆Vsd = 2π
(

Ω1+Ω2

2

)−1 ≈
12.5 ~vF/eL, and the large oscillation period is ∆Vsd = 2π

(
Ω1−Ω2

2

)−1 ≈ 250 ~vF/eL.

two different frequencies in voltage, sin(ΩRVsd) and sin(ΩLVsd), with ΩR/L = eL
~vR/L

and vR/L = vF ± u. The beating pattern will then display fast oscillations with

voltage period ∆V fast
sd = 2π

(
|ΩR+ΩL|

2

)−1

, and slow voltage oscillations with period

∆V slow
sd = 2π

(
ΩR−ΩL

2

)−1
. For interacting fermions, g 6= 1, the oscillations will not

be simple harmonic oscillations. Still, the periods will be evident and will have the

same functional form, in terms of vR/L, as the frequencies in the non-interacting

case. The periods ∆V fast
sd and ∆V slow

sd do depend on g through velocities vL and vR,

vR/L = vF
g
± u ( Equation 6.6).

These oscillation, generally, lie atop a powerlaw behavior of the differential con-

ductance as a function of Vsd, as expected from the known behavior of the conductance

in the presence of impurity backscattering [144]. For backscattering from an impu-

rity in a Luttinger liquid, the backscattered current, for low temperature, behaves as

I ∝ V 2g−1
sd . We chose to plot the Sagnac oscillations as a function of Vsd (Figure 6.5)

for the interaction parameter g = 0.5 since for that value the corresponding power

law would be I ∝ V 0
sd, and the contribution of such a powerlaw to the differential

conductance would vanish, making the oscillation atop this powerlaw more visible.
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6.2.5 Temperature dependence of the single-mode Sagnac in-

terference

Next we consider the temperature dependence of the gate-voltage driven oscillations

in the coherent part of the current. As argued in Ref. [119], the large period Sagnac

oscillations are expected to be observed at much higher temperature than the shorter

period Fabry-Perot oscillations. This difference in temperature behavior can be easily

understood by examining the phase giving rise to the interference in both cases. In

the Fabry-Perot case for a loop, the lowest order interference is between a beam of

electrons which is not scattered, and a beam of electrons which, due to scattering at

the base of the loop, does a roundtrip between the the two scattering points. The

phase difference between these two beams at energy E is ∆φFP = kRL = 1
vR
LE

~ .

Finite temperature effectively causes uncertainty of order T in the energy E, and the

interference pattern will be washed out when the uncertainty of the the phase ∆φFP

is of order 2π, which happens at a temperature TFP = 2π~
L
vR.

In the Sagnac case, the interference is between a beam that traverses the loop

moving left and one which traverses the loop moving right. The phase difference

between these two beams at energy E is ∆φSAG = kLL− kRL =
(

1
vL
− 1

vR

)
LE

~ , and

this interference will be washed out at temperature TSAG = 2π~
L

(
1
vL
− 1

vR

)−1

. For

non-interacting electrons the right and left moving velocities are vR/L = vF ±u. Thus

to lowest order in u/vF , the highest temperatures for observing interference according

to the argument above are:

TFP ≈
π~vF
L

; TSAG ≈
π~vF
L

vF
u

= TFP ·
vF
u

(6.18)

For non-interacting electrons, we expect the Sagnac interference to survive to a tem-

perature higher by a factor of vF/u than the corresponding Fabry-Perot temper-

ature. We will show through explicit calculation that this is indeed true for the

non-interacting case. For interacting electrons, we will see that TSAG will still be

considerably larger than TFP , but their ratio is less than the dramatic vF/u ratio.
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Figure 6.6: Coherent Sagnac oscillation amplitude vs. temperature for different values
of (vF/u), for noninteracting electrons (g = 1). The slowest decaying plot corresponds
to vF/u = 100, and the fastest decaying plot corresponds to vF/u=10. Temperature
is given in units of ~vF/kBL.

To explore the Sagnac temperature range, we evaluate the amplitude of the co-

herent oscillations (the oscillations in Vg) as a function of temperature, for different

interaction parameters g and different ratios of u/vF . For non-interacting electrons,

g = 1, we find that the Sagnac oscillations indeed survive up to a high temperature,

which is a factor of vF/u higher than the corresponding Fabry-Perot oscillations. Fig-

ure 6.6 plots the oscillation amplitude as a function of temperature, normalized by its

zero-temperature value, and for different values of u/vF . The functional dependence

on temperature is given approximately by:

Gco(T )

Gco(T = 0)
=

(
2πkBLT

~vF

)(
u

vF

)
1

sinh(2πkBT
L

~vF
u
vF

)
(6.19)

This result is similar to the exact form of the temperature dependence of the Fabry-

Perot interference amplitude [145], with the only difference being the factor of u/vF .

Therefore, the Sagnac oscillations of non-interacting electrons indeed survive up to a

temperatures which are a factor of vF/u larger than the Fabry-Perot oscillations.

For interacting electrons, g 6= 1, the Sagnac interference still survives up to tem-

peratures significantly higher than the corresponding Fabry-Perot temperature scales,

but the enhancement is suppressed compared to that of non-interacting electrons. Fig-

ure 6.7 shows the Sagnac temperature scale T ∗ vs. u/vF for three different values
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Figure 6.7: T ∗ vs. u/vF , where T ∗ is the temperature at which the coherent differ-
ential conductance (the part of the conductance which oscillates with gate voltage)
reaches e−1 of its zero temperature value. For a non-interacting system, g = 1, the
single channel case gives the same temperature dependence as the case with spin
and node degeneracies, T ∗ ∝ vF/u. The single channel temperature dependence is
given for g = 0.5 (squares, dashed), and g = 0.25 (diamonds, dashed). The Carbon
nanotube temperature dependence is given for g = 0.5 (triangles), and g = 0.25 (in-
verted triangles). Temperature is given in units of ~vF/kBL. For reference, the T ∗

corresponding to the g = 1 Fabry-Perot oscillations is also plotted.

of the interaction parameter g, where we define T ∗ to be the temperature at which

the amplitude of the oscillations reaches e−1 of its amplitude at zero temperature.

For non-interacting electrons T ∗ is strongly dependent on the ratio u/vF as discussed

above. For the interaction parameter values g = 0.5 and g = 0.25 (Dashed lines), the

temperature T ∗ is only weakly dependent on the ratio u/vF . As an example for the

resulting enhancement of the Sagnac compared to the Fabry Perot interference, con-

sider g = 0.25, where the T ∗ temperature scale for the Sagnac oscillations is roughly

1.6 ~vF/kBL, a factor of 4 enhancement over T ∗ of the non-interacting Fabry-Perot

oscillations which is 0.42 ~vF/kBL, despite the suppression of the Sagnac T ∗ due to

interactions. As can be seen in the figure, for g = 0.5 the enhancement is about

7. While it is difficult to extract the analytic dependence of the temperature on the

interaction parameter, one can repeat our calculation for any value of g.
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6.3 Interference in Nanotubes

Equipped with our understanding of the single-channel Sagnac interference, we can

now consider the likely physical system where it may be observed: a metallic Carbon

nanotube with four different Dirac nodes. We now add the spin and node degeneracies

of a Carbon nanotube, and examine their effect on the Sagnac interference pattern

voltage and temperature dependence.

6.3.1 The Model

The energy spectrum of a Carbon nanotube is shown in Figure 6.3 a. This spectrum

is usually linearized around the Fermi surface, which yields four chiral modes, two

left moving and two right moving (not including spin), with linear dispersion. These

modes can be bosonized and treated within the Luttinger Liquid theory framework, as

we have done in the single channel case in the previous sections. All these modes are

usually assumed to have the same velocity, the Fermi velocity vF . For the purposes of

this chapter, it is important to notice that when the Fermi surface is away from the

degeneracy points where the upper and lower bands meet, linearizing the spectrum

actually gives two different velocities which we shall note v± = vF ±u. The linearized

Hamiltonian density is, then:

H4ch = i
2∑

a=1

∑
σ=↑,↓

(
vRaψ

†
Raσ∂xψRaσ − vLaψ

†
Laσ∂xψRaσ

)

+ λ

[
2∑

a=1

∑
σ=↑,↓

(
ψ†RaσψRaσ + ψ†LaσψLaσ

)]2

(6.20)

where ψR/Laα stands for a right/left moving electron at node a with spin σ, and

we added a total charge density interaction term. The velocities that appear in the
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Hamiltonian are:

vR/L1σ = vF ± u = v±

vR/L2σ = vF ∓ u = v∓. (6.21)

Thus for u > 0, at node 1 right movers are faster than left movers, while at node

2 the opposite is true. Now, the nonlinearity of the elctronic spectrum in a Carbon

nanotube needs to be taken into account when considering the velocity difference,

u; it depends on the detuning of the chemical potential away from the degeneracy

points.

The scattering process we are interested in is very similar to the one we had in

the single channel case. We need to consider a term that scatters a right mover at

one end of the loop to a left mover at the other end of the loop, conserving spin and

node quantum numbers,

Hbs =
∑

σ,a=1,2

[
Γ1ψ

†
Raσ(0)ψLaσ(L) + h.c.

+Γ2ψ
†
Laσ(0)ψRaσ(L) + h.c.

]
. (6.22)

Next we bosonize the electron field operators in the nanotube. The slowly oscil-

lating parts can be written as:

ψR/Laσ ∼ ei(φaσ±θaσ) (6.23)

where θaσ and φaσ are bosonic fields that satisfy the commutation relations [θaσ(x), φa′σ′(x
′)] =

i(π/2)δa,a′δσ,σ′sgn(x− x′). The Hamiltonian in terms of the bosonic fields is [119]:

H4ch = ~vF
2π

∑
σ,a=1,2

∫
dx
[
(∇θaσ)2 + (∇φaσ)2

+(−1)a+12 u
vF
∇φaσ∇θaσ

]
+
∫
dxλ

( ∑
σ,a=1, 2

1
π
∇θσa

)2

.
(6.24)

If the velocities of all branches of the spectrum were equal, i.e. u = 0, then the Hamil-
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tonian HB would be diagonalized by the spin and node symmetric and antisymmetric

combinations of the θ’s and φ’s [133]. By diagonalizing we mean a linear mapping

of the φ and θ fields such that the Hamiltonian takes the form of four independent

channels, each resembling of H1ch, Equation 6.5. When u 6= 0, there still exists a

local transformation θaσ =
∑

j=1..4 (Ajaσθj +Bj
aσφj) that diagonalizes the Hamilto-

nian, but it is a more complicated combination of the fields that depends on u and

λ, and mixes the theta and φ fields, which makes the conductance calculation quite

cumbersome. While the details of this transformation are given in section 6.A, the

diagonal Hamiltonian is:

H4ch =
∑
j=3,4

~vj
2π

∫
dx

[
1

gj
(∇θj)2 + gj (∇φj)2

]
+
∑
j=1,2

~vF
2π

∫
dx
[
(∇θj)2 + (∇φj)2

+(−1)j+12
u

vF
∇φj∇θj

]
. (6.25)

The fields θ1/2 and φ1/2 are the spin antisymmetric combinations of θ1/2σ and φ1/2σ

respectively. Since the interaction term in Equation 6.20 involves only the spin sym-

metric combinations, the spin antisymmetric combinations are untouched and still

have the left and right moving velocities as in Equation 6.21. On the other hand,

the fields θ3/4 and φ3/4 are not simply the remaining symmetric combination and mix

the remaining θ’s and φ’s. These fields have the same left and right moving velocity,

which is:

v3/4 =
vF√

2

√√√√
1 +

1

g2
+ 2

u2

v2
F

±

√(
1− 1

g2

)2

+ 8
u2

v2
F

(
1 +

1

g2

)
(6.26)

where g =
(

1 + 8λ
π~vF

)−1/2

is the Luttinger parameter.[146]

Fortunately, for the region of parameters which is of interest, namely strong in-

teractions, g ≤ 0.5 and u/vF ≤ 0.1, the exact change of basis required to diagonalize

the spin symmetric part of the Hamiltonian is very close to the usual node symmet-
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ric/antisymetric basis. This can be explicitly seen, for example, from the velocities of

these modes. For this entire range of parameters, the velocities of the diagonal fields,

given by Equation 6.26, are at most 1% different from the values we expect for the

left-right symmetric system, which are vF/g and vF . Due to the strong interactions in

this spin symmetric sector, the velocity asymmetry is unimportant, and it is for this

reason that we choose to still use the node symmetric-antisymmetric basis and treat

these fields as the diagonal ones. In section 6.A we elaborate on and justify this ap-

proximation. Note that the velocity asymmetry is still apparent in the non-interacting

spin antisymmetric modes labeled by j = 1 and j = 2 in Equation 6.25.

6.3.2 Perturbation Theory

Using the diagonal form of the Hamiltonian with the above approximation, we proceed

to calculate the current, I = (e/π)〈
∑

aσ ∂tθaσ〉, as in section 6.2. The applied voltages

now couple to the total density and total number of left movers and right movers:

HV = H4ch − e
Vsd
2

(NR −NL)− αeVg (NR +NL)

= H4ch − e
Vsd
2

∫
dx
∑
σ,a

∇φaσ
π
− eVg

∫
dx
∑
σ,a

∇θaσ
π

(6.27)

The external voltages can be removed from the Hamiltonian by the appropriate shift

of the bosonic fields:

θaσ → θaσ +
αg2eVg

~vF
1

1− g2u2/v2
F

x− eVsd
2~

t,

φaσ → φaσ + (−1)a
αg2eVg

~vF
u/vF

1− g2u2/v2
F

x. (6.28)

Again we use the Keldysh contour to write the formal expression for the current,

as in Equation 6.10, and expand it to lowest order in the appropriate H ′bs which

contains the voltage dependence due to the shifts of the fields. The approximation

we made above, namely that it is the node symmetric/antisymmetric combination

which diagonalize the Hamiltonian, allows us to write the current in a very similar
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form to the single channel case:

I4ch = 4
e2Vsd
h

+ Ĩco + Ĩinco (6.29)

The first term on the right hand side of Equation 6.29 is the current that would

flow in the nanotube in the absence of backscattering. The second term is the coherent

current which oscillates with the gate voltage:

Ĩco =cΓ1Γ2 cos

(
2ug2Lα

~2v2
F (1− g2u2/v2

F )
Vg

)
×∫

dt sin(
eVsd

~
t) e−C̃co(L,t) sin(R̃co(L, t)) (6.30)

and the third term is the incoherent current, which is independent of the gate voltage:

Ĩinco =

c

(
Γ2

1

∑
η=±

∫
dt sin(

eVsd
~
t) e−C̃

η
inco(L,t) sin(R̃inco(L, t))

)
+

c (Γ1 → Γ2, L→ −L) (6.31)

The function C̃co, C̃
±
inco, R̃co and R̃inco are related to the single channel correlation

functions as explained in section 6.B.

6.3.3 Temperature and Voltage Dependence in Carbon Nan-

otubes

As in the single channel case, we find there is a coherent part of the interference

current which oscillates as a function of the gate voltage with a large period, much

larger than the Fabry-Perot oscillation period, as seen explicitly from the voltage

dependence of Ĩco.

The differential conductance ∂I4ch/∂Vsd, on the other hand, displays a beating

pattern, but a more complicated one than in the single-channel case, since there

are four different velocities in the problem now: vF ± u, v3 ≈ vF and v4 ≈ vF/g.
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Figure 6.8: (a) Differential conductance oscillations for a nanotube, i.e. including
both spins and both nodes in the spectrum, for velocity detuning u/vF = 0.1, and
interaction strength g = 0.5. In the nanotube case, the beating is due to the four
voltage frequencies in the problem, Ωi = eL

~vi , where v1/2 = vF ± u, v3 ≈ vF and
v4 ≈ vF/g. (b) The voltage Fourier transform of the oscillations in (a) clearly displays
the four dominant frequencies , Ω1−4, corresponding to the four velocities in the
problem, and encode the nanotube parameters vF , g and u/vF .

Figure 6.8 shows the differential conductance of the nanotube, ∂I4ch/∂Vsd, and its

Fourier transform. From the Fourier analysis we see that clearly there are four dom-

inant frequencies, which correspond to the four different velocities of the collective

modes in the nanotube. Thus a careful observation of the large-period, and robust,

Sangac interference allows, in principle, to extract the nanotube parameters, namely

the interaction strength g and the velocity mismatch u from the Fourier transform of

the conductance as a function of bias voltage, up to temperatures much higher than

the Fabry-Perot oscillations temperatures.

The temperature dependence of the Sagnac interference in the nanotube case is
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qualitatively similar to the single channel case. In the absence of interactions (g = 1),

the interference can be observed to the scale T ∗ proportional to vF/u; in the presence

of strong interactions, however, T ∗ becomes only weakly dependent on u. Unlike the

single channel case, T ∗ in the nanotube case is also only very weakly dependent on

g in the range g ≤ 0.5. This is due to the fact that only one of the four modes

which diagonalize the Hamiltonian are interacting and depend on g. For the same

reason, T ∗ is higher in the case of the nanotube than in the single channel case, i.e.

the reduction of T ∗ due to interactions is not as severe in the nanotube case. The

temperature dependence on u and g is plotted in Figure 6.7. In the range mentioned

above, T ∗SAG ≈ 2.8 ~vF
kBL
≈ 7T ∗FP .

6.4 Summary and Conclusions

In this work we investigated the conductance oscillations in carbon nanotubes

due to Sagnac interference. In addition to theoretical interest in this large-period

interference mode, the motivation for our study also comes from a recent experimental

realization of carbon nanotube loops [119]. The same effect can also be obtained

without the loop geometry by inter-node tunneling [141], since right movers at one

node of the nanotube move with the same velocity as left movers at the other node.

This inter-node tunneling is shown in Figure 6.3(c).

The source of the Sagnac conductance oscillations is the difference in the veloc-

ities of left and right moving excitations in a carbon nanotube when the chemical

potential is tuned away from half filling. Compared to the more familiar Fabry-Perot

oscillations [135], Sagnac oscillations are expected to have a much larger period in

gate voltage, and, as we show, in non-interacting wires survive to a temperature a

factor of vF/u higher than that required to observe Fabry-Perot oscillations.

In interacting electronic wires, the above temperature estimation for free fermions

does not apply. Our results for a single channel Luttinger liquid are that TSAG

becomes only weakly dependent on vF/u, although still strongly dependent on g.
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From our g = 0.5, 0.25 results, the enhancement of relative to the FP interference is

roughly: TSAG ≈ 15g TFP in the range u/vF < 0.1.

For a strongly interacting armchair nanotube, g ≤ 0.5, we find that TSAG becomes

not only weakly dependent on vF/u, but also nearly independent of g. The Sagnac

interference is expected to survive upto T ∗SAG ∼ 3 ~vF
kBL
≈ 7 − 8T ∗FP . Considering

that Fabry-Perot oscillations have been observed in nanotubes up to T = 10K [135],

Sagnac oscillations should be observed up to about 70K in nanotubes, despite the

strong interactions.

There is also something to be learnt from examining the behavior of the conduc-

tance as a function of the applied voltages. We saw that Sagnac oscillations would

have a large period of oscillations in the applied gate voltage Vg; this period itself

is a function of the gate voltage, through the dependence of the velocity difference

vR − vL = 2u. Using typical values of a nanotube parameters (e.g. Ref. [119]),

vF = 8 ·105m/s, L = 7µm, g = 0.3 and α = 1/30, the period of oscillation in the gate

voltage would be ∆Vg = 2π~vF
eL

1
αg2

vF
u
≈ 17V , consistent with the observed oscillations

in Ref. [119].

On the other hand, oscillations of the conductance as a function of the applied

bias voltage Vsd depend not only on the bare velocities, but also on the interaction

strength. A Fourier transform of the Sagnac oscillations as a function of Vsd, we show,

contains four different frequencies corresponding to the four different velocities in the

problem, which are roughly vF ±u,vF and vF/g. Using the same parameters as above

we get ∆Vsd = 2π~vF
eL
≈ 0.5mV . This period is much smaller than the bandwidth

of a nanotube which is a few eV, so in principle many oscillation periods can be

observed and the longer period oscillations should also be measurable, allowing the

slower frequency oscillations to appear in the Fourier transform. Observation of these

frequencies would allow us to read off the parameters of the nanotube, vF , u and g, at

temperatures up to T ∗SAG ≈ 70mK, which is higher than the temperatures associated

with Fabry-Perot oscillations.

In the single channel case, for non-interacting electrons, we were able to extract

an analytic expression for the temperature behavior of the conductance gate voltage
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oscillations :

Gco(T )

Gco(T = 0)
=

(
2πkBLT

~vF

)(
u

vF

)
1

sinh(2πkBT
L

~vF
u
vF

)
(6.32)

and it is apparent how the ratio vF/u directly enters the temperature scale. Unfor-

tunately, we were so far unable to extract analytic expression for TSAG in terms of g

and u/vF for the interacting single channel or interacting nanotube cases, inspite of

the progress on the qualitative understanding our numerical results allow. Such an

analytical understanding should be the focus of a future effort.

As can be observed in Figure 6.1 and Figure 6.2, the paths giving rise to the Sagnac

intereference are similar to the paths that give rise to weak localization phenomena

in 2d disordered conductors. In this work we also essentially show that even in the

presence of strong interactions, the interference survives. It is tempting to extrapolate

from our results that weak localization should also survive strong interactions. This,

however, is presumably true so long that scattering events are dominated by small

momentum transfer. Nevertheless, our results suggest that a Luttinger liquid with

charge and spin modes will still exhibit weak-localization effects, but suppressed,

and only weakly dependent on the detuning between counter propogating electrons.

Therefore the magnetoresistance should also be strongly suppressed at low fields.

6.A Diagonalizing the Hamiltonian with Degen-

eracies

In this appendix we show how to diagonalize the Hamiltonian H4ch of Equation 6.24,

where diagonalizing entails finding the appropriate change of basis that will transform

H4ch to the sum of four Hamiltonians, each having a form resembling the single

channel H1ch of Equation 6.5. We also explain here the approximations we have used

in our calculation.

The first step in the diagonalization of HB is to change the basis from the spin
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up/down to the spin symmetric/antisymmetic basis at each node:

θa± =
θa↑ ± θa,↓√

2
(6.33)

applying the same transformation to the φ’s as well. We notice that the density-

density interaction term involves only the spin symmetric fields θa+, hence the spin

antisymmetric fields decouple and appear as two non-interacting (g = 1) copies of

the single channel problem, described by the Hamiltonian H1ch, with right moving

velocity of vF ± u and left moving velocities of vF ∓ u. These are the fields labeled

with j = 1 and j = 2 in Equation 6.25.

The Hamiltonian for the spin symmetric fields has a similar form to our starting

point Hamiltonian, H4ch:

H+ =
~vF
2π

∑
a=1,2

∫
dx
[
(∇θa+)2 + (∇φa+)2 (6.34)

+(−1)a+12
u

vF
∇φa+∇θa+

]
+

∫
dx 2λ

(∑
a=1, 2

1

π
∇θa+

)2

In the absence of the u term, H+ is easily diagonalized by taking the node sym-

metric and antisymmetric combinations of the fields:

θ3/4 =
θ1+ ± θ2+√

2
(6.35)

The resulting diagonal Hamiltonian would be:

H+|u=0 =
~v3

2π

∫
dx

[
1

g3

(∇θ3)2 + g3(∇φ3)2

]
+

~v4

2π

∫
dx

[
1

g4

(∇θ4)2 + g4(∇φ4)2

]
(6.36)

with v3 = vF , v4 = vF/g, g3 = 1 and g4 = g.

When we consider u 6= 0, it is still possible to apply a g and u dependent transfor-

mation to the fields, that will restore H+ to the form in Equation 6.36, with velocities
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v3/4 given by Equation 6.26. The field mixing this transformation entails, however,

considerably complicates the book keeping in our perturbative calculation. Fortu-

nately, we can show that a good approximation is to simply set u to zero in H+ when

the interactions are strong, and simply use the transformation given by Equation 6.35.

The first indication that this approximation is valid is that the exact velocities v3/4

differ from the u = 0 velocities by at most 1% in the entire range of parameters we

are interested in, which is u/vF ≤ 0.1 and g ≤ 0.5

Another indication that this approximation is valid comes from the analysis of

the single channel problem in section 6.2. In the single channel case we derived exact

expressions for the Sagnac interference, and found that for g = 0.5 and g = 0.25,

the temperature dependence is only weakly dependent on u/vF ; furthermore u only

enters directly in the expression for the oscillation period of the conductance as a

function of gate voltage, the dependence we have explicitly in our expression for the

coherent current Ico, Equation 6.15.

Finally, we can also calculate the exact combination of fields that diagonalizes

H+, and verify that indeed they are very close to the node symmetric/antisymmetric

combinations for the range of g and u of interest. As an example, the explicit change

of basis from the node symmetric/antisymmetric basis to the diagonalizing basis for

g = 1/2, to second order in u/vF , is:

I4x4 +


− 71

144
( u
vF

)2 0 0 2
√

2
3

( u
vF

)

0 − 89
144

( u
vF

)2 5
3
√

2
( u
vF

) 0

0 −2
√

2
3

( u
vF

) −29
36

( u
vF

)2 0

− 5
3
√

2
( u
vF

) 0 0 −11
36

( u
vF

)2

 (6.37)

We see that the is matrix is close to the identity matrix I4x4, since u
vF
� 1. The

deviation from the identity becomes even smaller for smaller g. Note that for g ≈ 1

the corresponding change of basis matrix is not close to the identity matrix and our

approximation fails. This can be seen immediately for the zero interactions case,

g = 1, since when u 6= 0 the standard symmetric/anti-symmetric combinations of
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fields do not diagonalize the Hamiltonian of the system.

We stress that setting u to zero in H+ is simply a good numerical approximation

which simplifies the calculation, and not equivalent to setting u to zero in the entire

problem, as u still appears in spin anti-symmetric part of the Hamiltonian (where

g = 1), and also in the gate voltage dependence.

6.B Correlation functions

Let us now connect the explicit expressions for the coherent and incoherent currents

given in subsection 6.2.3 and section 6.3, Equation 6.15 and Equation 6.16, using the

correlation functions defined in subsection 6.2.2.

It is useful to define the following combination of Cθ:

Cθ(x, t) = Cθ(0, 0)− Cθ(x, t) (6.38)

and similarly for Cφ.

In the single channel case discussed in section 6.2, there are only a single θ field and

a single φ field, with the Hamiltonian given by Equation 6.5. Since the Hamiltonian

is quadratic we can easily evaluate all the equilibrium correlation functions at finite

temperature, paying attention to the different time orderings that appear as a result

of the two branches of the Keldysh contour. The results for finite temperature is:

Cθ(x, t) =
g

4

[
log

(
βvL
πδ

sinh

(
π(x+ vLt− iδ)

βvL

))
+ log

(
βvR
πδ

sinh

(
π(x− vRt+ iδ)

βvR

))
+ (x→ −x, t→ −t)

]
;

(6.39)

Rθ(x, t) = −π
2
g

[
Θ(x)Θ(t− x

vR
) + Θ(−x)Θ(t− |x|

vL
)

]
(6.40)

where δ is a short distance cutoff, vR/L = vF/g±u, and Θ(x) is the step function.

As mentioned in Ref. [145], it is important to remember that the step functions

are not infinitely sharp, and have a transition width of order a, the cutoff. The
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functions Cφ(x, t) and Rφ(x, t) are obtained from Cθ(x, t) and Rθ(x, t) by replacing

the prefactor g with 1
g
. The function Cθφ is given in Equation 6.12, and:

Rθφ(x, t) = (6.41)

− π

2
Θ(t) [Θ(x)Θ(x− vRt)−Θ(−x)Θ(|x| − vLt)] .

The currents are expressed in integrals over complicated combinations of such correla-

tion functions. For example, the coherent part of the current, given by Equation 6.15,

involves the following combinations:

Cco(L, t) = 2Cθφ(L, t)− 2Cθφ(−L, t) (6.42)

+ 2Cθ(0, t)− 2Cθ(L, 0) + Cθ(L, t) + Cθ(−L, t)

+ 2Cφ(L, 0)− 2Cφ(0, t) + Cφ(L, t) + Cφ(−L, t)

and

Rco(L, t) = Rθφ(L, t)−Rθφ(−L, t) (6.43)

+Rθ(0, t) +
1

2
Rθ(L, t) +

1

2
Rθ(−L, t)

−Rφ(0, t) +
1

2
Rφ(L, t) +

1

2
Rφ(−L, t)

The corresponding functions for the incoherent current are :

C±inco(L, t) = ±
(
2Cθφ(L, t)− 2Cθφ(−L, t)

)
(6.44)

+ 2Cθ(0, t)− 2Cθ(L, 0) + Cθ(L, t) + Cθ(−L, t)

+ 2Cφ(L, 0) + 2Cφ(0, t)− Cφ(L, t)− Cφ(−L, t)



114

and

Rinco(L, t) = Rθ(0, t) +
1

2
Rθ(L, t) +

1

2
Rθ(−L, t)

+Rφ(0, t)− 1

2
Rφ(L, t)− 1

2
Rφ(−L, t).

In a Carbon nanotube there are four channels, rather than a single one. In the non-

interacting case, g = 1, all these channels are independent and we would recover the

results of the single channel. Equation 6.42 and Equation 6.43 still apply for this case.

When g 6= 1, the different channels are coupled through the interaction, and we must

find the correct combinations of the fields θiσ and φiσ which decouple and therefore

diagonalize the Hamiltonian. These combinations are discussed in section 6.A. This

change of basis is in general a function of u/vF and g, and it mixes the θ and φ

fields, which in turn complicates the functions Cco and Rco further. Luckily, the

interactions in Carbon nanotubes are strong, g ≈ 0.3, and in that range, the change

of basis is very close to the usual spin/node symmetric/antisymmetric change of

basis. If we approximate the diagonalizing fields by these symmetric/antisymmetric

combinations, then Equation 6.42 and Equation 6.43 would apply provided we make

the following substitutions:

Cθ(x, t)→ 1

4

∑
j=1..4

Cθj(x, t) (6.45)

Where each θj has a different set of values for vR, vL and g to be used in Equation 6.39.

The fields θ1 and θ2 correspond to the spin asymmetric combinations, which decouple

from the interaction, and hence have g = 1, and velocities vR = vF±u and vL = vF∓u.

The fields θ3 and θ4 both have the same left and right mover velocities, v3 and v4

respectively, given by Equation 6.26, and interaction parameters 1 and g, respectively.
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