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Abstract 

This dissertation discusses several closely related problems involving end attached polymers 

at interfaces. The studies share a numerical self-consistent field approach which is described 

in detail in Chapter l. 

In Chapter 2, we consider irreversible polymer brushes (polymers densely end tethered 

to a surface). First, we discuss the adequacy of second virial treatments of interchain 

interactions. Next we examine the extent of interbrush penetration between compressed 

polymer brushes, and its effect on the interactions between them. Then we identify scaling 

variables which control the behavior of polymer brushes in polymeric solvents. Finally we 

investigate brush configurations and interactions in mixed solvents, where nonmonotonic 

interaction profiles are predicted with a longer range weak attraction, and strong repulsion 

at shorter separations. 

In Chapter 3, we discuss the modification of spreading properties of a liquid on a solid 

surface by the addition of end-adsorbing polymers. An end-adsorption polymer additive 

can lead an otherwise non-spreading liquid to spread. A phase diagram for spreading of a 

liquid drop of fixed volume as a function of the concentration of end-adsorbing polymers 

and the energy of end-adsorption to the surface is obtained. The equilibrium thickness of 

a spread film is also calculated, and is shown to be closely related to the thickness of a 

self-assembled polymer brush in an unbounded fluid and relatively insensitive to the bare 

spreading power of the liquid or the Hamaker constant, which determine the equilibrium 

thickness of a film of a simple liquid. 

Finally, in Chapter 4, we study the interaction forces between two plates in a semi-dilute 

solution of polymers each having one weakly adsorbing end-group. This system exhibits 

both repulsive and attractive interactions of comparable magnitude and well-separated 

length scales. The repulsion has a length scale of the end-to-end distance of the end­

adsorbed polymer, and a magnitude which is proportional to the end-adsorption energy 

and the volume fraction of the polymer, and inversely proportional the chain molecular 

weight. At plate separations of order the correlation length of the solution, a depletion 

attraction sets in with a magnitude that scales with the bulk osmotic pressure. 
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Introduction 

Polymer additives have been used to modify the surface properties of technologically impor­

tant products since the earliest days of recorded history. For example, india ink, produced 

in India and China since before the Christian era, is made from carbon black and gum 

arabic, a naturally occurring plant gum containing complex biopolymers which contribute 

to the stability and adhesion of the ink. In modern times, polymers have become ubiquitous 

in industrial surface problems. Gum arabic, for example, finds application as a candy coat­

ing and in lithographic processes, in addition to its continued use in inks. In this century, 

and particularly since the development of modern polymer science in the 20s and 30s, new 

synthetic polymers have found applications to diverse surface problems including colloidal 

stabilization, thin film stabilization and tribology. 

The development of a more mature understanding of the physics of polymers since 

the 30s brings with it the opportunity to systematically tailor the polymers to optimize 

their effect on surfaces. Ideally this optimization is based on a clear understanding of the 

mechanisms through which the polymers affect surface properties. These mechanisms are 

as diverse as the different polymers used, which include simple linear polymers, polyelec­

trolytes, polymer gels, copolymers and complex biological polymers like those in gum arabic. 

However, much of the physics underlying individual polymer systems is universal, and it 

is this universal physics we address in this dissertation. In particular, we examine several 

problems involving linear polymer chains attached by one end to an interface, and the effect 

these chains have on the properties of the interface. 

In this dissertation, we focus on the two physical problems depicted in the cartoons 

below, the stabilization of colloidal suspensions and thin films. These two problems have in 

Figure 0.1: Polymers stabilize colloids and thin films. 

common some basic polymer physics, and it is the elucidation of these underlying principles 
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which is the central thread of the chapters which follow. For example, polymers end­

tethered to colloids as shown can adopt a large number of configurations, but when two 

such colloids approach one another, the number of available configurations is restricted. The 

entropy cost associated with this loss of configurations leads to repulsive forces between the 

colloids which stabilize the suspension. Thin film stabilization provides a second example. 

A nonwetting liquid solid pair can be compatiblized by the addition of a polymer which is 

soluble in the liquid and end-functionalized to adsorb on the solid. The liquid with this 

additive will self-assemble at the liquid solid interface, as shown, into a layer of adsorbed 

polymers (called a polymer brush) swollen with the small molecule liquid so as to minimally 

restrict the polymer configurations. The stability and thickness of the resulting film, as well 

as the grafting density and configuration of the polymer additive, will be determined by 

the balance of the adsorption energy, the configurational entropy of the polymers, and the 

chemical potential of the adsorbing polymer additive. These brief examples illustrate the 

sort of problems upon which we hope to shed some light in the chapters which follow. 

This dissertation is composed of three closely related studies which we have published 

in the last few years. All three studies involve end-attached polymers at interfaces, and 

they also share a common theoretical framework. On the other hand, the physical systems 

they describe are quite varied, and each requires its own introduction and literature survey. 

For this reason, and to avoid repetition, no extensive general introduction will be given 

here. Instead, after a short outline, we go directly to a general exposition of the theoretical 

framework underlying all of the work, given in Chapter 1, and then proceed to the individual 

studies. In order to highlight the common themes of the different studies, a short preface 

will precede each chapter explaining how it fits into the thesis as a whole. 

The first study, in Chapter 2, examines irreversibly adsorbed polymer brushes in ather­

mal solvent of various types. A polymer brush consists of end-grafted polymers at an 

interface grafted densely enough that they are stretched away from the interface. Three 

primary issues are addressed: the importance of higher order corrections in the virial expan­

sion for the excluded volume interactions between chains (beyond the second order term), 

the importance of interbrush penetration, and the effect of solvent size and concentration 

on polymer brushes. Numerical results of the type described in Chapter 1 are presented in 

the context of scaling arguments, and in general the calculations are limited to very simple 

cases in order to highlight the importance of entropic effects on polymer brush configuration 
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and interact ions. 

The second study, in Chapter 3, is an expanded examination of end-attached polymers 

in polymer solutions, which are discussed briefly in Chapter 2. In particular we are inter­

ested in polymers with an adsorbing group at one end whose adsorption density is set by 

chemical equilibrium between a reservoir and the interface (see the right-hand cartoon be­

low). These reversibly adsorbed (or self-assembled) polymer brushes differ from irreversibly 

Figure 0.2: Chains may be either permanently end-grafted or reversibly end-adsorbed. 

adsorbed polymer brush considered in Chapter 2 in a number of key areas, including their 

configurations under compression and the attendant force profiles. These brushes are ex­

amined in the context of stabilizing thin films, which share much of their basic physics with 

the colloidal interactions discussed in Chapter 2. 

In the last chapter of the thesis, we consider the interaction forces between two plates 

in a semi-dilute solution of polymers each having one weakly adsorbing end-group. This 

problem is related to the previous study of reversibly adsorbed polymer brushes, focusing on 

lower grafting densities instead. This system is of special interest because it exhibits both 

repulsive and attractive interactions of comparable magnitude and well-separated length 

scales, and has important consequences for colloidal stabilization. 
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Chapter 1 General Theoretical Development 

All of the studies described in this dissertation make use of a numerical self-consistent field 

approach to the calculation of configurational and thermodynamic properties of polymer 

solutions and blends. In this section we describe that approach, starting with a schematic 

explanation of the self-consistency condition. 

The essential idea behind our self-consistent field treatment is to reduce the intractable 

many chain problem of interacting polymers into a more manageable single chain problem, 

by treating the interactions with other chains through a mean field. Consider, for example, 

a polymer brush composed of identical polymer chains end grafted to a solid surface, as 

shown in the cartoon below. In our model, the single tagged chain (the dark one) interacts 

with the other chains in the system through a mean field, 7r, which is dependent only on 

average properties of the system. For example, let us assume that 7r depends on the average 

density profile(¢), so that 7r = 7r( (¢) ). The average density profile in turn depends upon the 

z 

(¢) __ t -~--~-
z 

Figure 1.1: In the mean field a single tagged chain (darker) interacts with its neighbors 
through a mean field. 

field 7r, which gives us a self-consistency condition, that is to find the field 7r* which satisfies 

7r[ ( ¢( 7r*))] = 7r*. Given ¢( 7r) and 7r( ¢) , the self-consistent solution 7r* is readily obtained 

by standard numerical methods. Therefore, the principal focus of the rest of the chapter is 

the derivation of convenient and computationally tractable self-consistent equations. 
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The three studies which constitute the bulk of this dissertation differ from one another 

in the details of the physical systems under examination, which has implications for the 

details of the theoretical treatment. Rather than to precisely describe the calculations for 

a particular study, we have chosen to derive the self-consistent equations in the simplest 

case for which all of the essential elements are present, namely an irreversibly grafted brush 

in a mixture of two monomeric solvents. The extension of this approach to the cases 

in the specific studies which follow is straightforward and not particularly illuminating. 

Therefore, these details will only be described in comments made in the individual studies. 

The formalism we use and variants of it are in wide use in this field; see for example 

Reference [1] and references therein. 

Before diving into the derivation, a few comments on the general nature of our model 

are in order. The smallest size scale generally treated in polymer physics is the persistence 

length of the polymer, generally a few angstroms, which is the length scale above which 

a polymer appears to be a continuous flexible chain [2]. Polymers, as they are conceived 

within polymer physics, are a string of ideal "monomers," each separated by one persistence 

length and occupying one cubic persistence length. For simplicity we consider solvents of 

the same size as a single such monomer, and set the persistence length equal to one. Other 

simplifications arise from this coarse grained approach also; chemical interactions are treated 

with a simple nearest neighbor term since the decay length of more detailed interactions 

would be less than a persistence length, and the system can be treated as incompressible 

since these are liquid phases and will have no significant variation in their density on the 

scale of the persistence length. Finally, the coarse grained nature of this model makes it 

especially suitable for calculation on a lattice. Because no meaningful predictions can be 

made on length scales smaller than the ideal monomer size, using this as the lattice spacing 

does not result in the loss of any additional information. 

Consider a system of np homopolymers, of degree of polymerization N and designated by 

the subscript P , grafted to a wall in a binary solvent mixture of two components designated 

by A and B. We assume that the monomers of the polymer and the solvent occupy a fixed 

volume of one unit, so that the total volume, V, is equal to npN + nA + nB where nA 

and nB are determined by the equality of chemical potential with the reservoir which has a 

volume fraction of species A given by <//ii. Each polymer is parametrized with a variable s 

that increases discretely along its length such that the s = 1 end is grafted to the surface at 
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z = 0, where z is the coordinate of the direction normal to the surface and is given in units 

of the persistence length. The free end of the chain is at s = N. Using this parametrization 

we define functions, r,, ( s), that specify the space curve occupied by the ,th polymer. 

s=N 

s = 1, r = 0 

Figure 1.2: The space curve occupied by a particular chain configuration. 

In order to arrive at our self-consistent field equations, we must begin with the full grand 

canonical partition function for the many chain system as described above, 

For clarity I will go over this rather lengthy expression a piece at a time. First we have 

n~! TI~~1 TI~=l f dr-,,(s) which is the product of all possible configurations of each segment 

s of every chain ,. The delta function 8[z-,,(1)] constrains the first segment of each chain 

to lie in the z = 0 plane, where z is the component of r normal to the surface. Next, 

nA!~s! TI~;;1 n:~!1 J drndr13, allows all possible combinations and configurations of solvent 

molecules. This is followed by the incompressibility constraint, which is written in terms of 

the dimensionless monomer density operators for the polymer 

np N 

ef>p(r) =LL 8(r - r -,, (s)) , (1.2) 
-,,=ls=l 

and the solvents 
nA 

¢>A(r) = L 8(r - rn)- (1.3) 
n=l 

The incompressibility constraint, f1r8 [ef>p(r) +¢A(r) +¢B(r)- 1], assures that no two 

species occupy the same point in space (which has been temporarily discretized) . This 

constraint implicity accomplishes the difficult task of choosing non-overlapping configura-
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tions for all of the polymers and solvent molecules. Next is the Hamiltonian, which has 

two terms, accounting for chain connectivity and local interactions respectively. Ho( { r}) 

accounts for the chain connectivity; for a ball and spring model of the polymer, Ho is a 

harmonic term which reflects the stretching of the monomers, and in a lattice model it con­

strains the sequential segments to be on adjacent sites. The second part of the Hamiltonian 

is an interaction term, 

~ L j drEnf3¢n(r)((¢13(r))) 
c, ,{3 

J drxPA¢P(r)((¢A(r))) + XPB¢P(r)((¢B(r))) + XAB¢A(r)((¢B(r))) 

1 A 1 A 1 A 

+2EAA<PA(r) + 2EBB<PB(r) + 2Eppq>p(r), (1.4) 

where Ec, f3 is the interaction energy between species a and /3, the sum over a and /3 accounts 

for all interaction pairs, the notation ((¢i(r))) is the monomer density of species i averaged 

over the nearest neighbors of site r , and XAB is the Flory interaction parameter which is 

commonly used in the polymer literature, 

1 1 
XAB = EAB - -EAA - -EBB· 

2 2 
(1.5) 

The chemical potential is obtained for an incompressible homogeneous solution in the reser-

voir, 

(1.6) 

where Fr ( n A, n B) is the free energy of the reservoir in the mean field approximation 

The partition function as written in Equation 1.1 is intractable because of the coupling 

between segments through the microscopic density operators; ¢p(r) , which depends upon 

the configuration of all chains , and ¢A(r) and ¢B(r), which depend upon the positions of 

all A and B molecules respectively. This difficulty is overcome by replacing the microscopic 

density operators with macroscopic field variables (one at each point in space) which do not 

depend upon the microscopic configuration. This transformation uncouples the equations 
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inside the integral, but it transfers the difficulty to the functional integration, which will 

contain all of the complexity of the original problem. We avoid this difficulty by evaluating 

the functional integration using a saddle point approximation, where the saddle point lies 

on the imaginary axis. 

The transformation to the macroscopic field variables is accomplished by insertion of 

the following identity 

1 = j V<I>p(r)o[¢p(r) - <l>p(r)] (1.8) 

and the standard integral representation for the delta functions, 

o[ <I> p(r) - ¢p(r )] = N j VW p(r) exp[iW p (r) ( <I> p(r) - ¢P (r) )] (1.9) 

where N is a constant. Anticipating that the saddle point lies on the imaginary axis, we 

replace Wp, WA, WB and II with their negative imaginary components. We also shift the 

variable Wp by ½/JEpp and shift the chemical potentials of A and B by ½/JEAA and ½/JEBB 

respectively so that the constant self-interaction terms do not appear in the self-consistent 

equations ( they cancel out of the partition function in any case). 

The partition function becomes 

N 4 j IT V<I> p(r)'DW p(r)V<I> A (r)'DWA (r)V<I> B(r)VW B(r)VII(r) 
r 

x exp[-W(<l>p, Wp,<l>A, WA,<I>B, WB,II)] (1.10) 

where 

w - log Qp(np, Wp) - qA(WA)ZA - qB(WB)ZB - J dr { -,BxPA<I> p(r)( (<I> A(r))) 

-/JXPB<l>p(r)((<I>B(r))) + XAB<I>A(r)((<I>B(r))) + II [<I>p(r) + <I> A(r) + <I>B(r) - 1) 

(1.11) 

Qp is the canonical partition function for the chains 

(1.12) 



9 

qA(WA) is the single particle partion function for the solvent, 

(1.13) 

and ZA is the fugacity of species A 

(1.14) 

Now we make our self-consistent mean field approximation using a saddle point method 

by approximating the functional integral by the maximum of its integrand on the imaginary 

axis. Thus the grand potential, W = W[¢P , wp, ¢A, WA, <PB, ws, 1r] where qip, wp , ¢A, WA, 

¢B, WE and 1r are the values of the functions for which W attains its minimum. Minimizing 

W with respect to the seven fields, we obtain the following seven self-consistent equations: 

WA(r) = -f3XPA((¢p(r))) - f3XAB((¢B(r))) + 1r(r) 

1 DQp 
Qp Dwp(r) 

<pp(r) + <PA(r) + ¢s(r) = 1 

DqAZA 
¢A(r) = DwA(r) = exp [wA + f3µA] 

DqsZB 
¢i(r) = DwB(r) = exp [ws + (3µ 8 ] 

(1.15) 

(1.16) 

( 1.17) 

(1.18) 

(1.19) 

(1.20) 

~P n~! JJJl f dr0 (s)O[z0 (1)]¢p(r) exp [-/JHo( { r 0 )) + / drwp(r)fp(r)] 

1 1 np N 

Qp np! ~ ~ 8(r - r,(s)) 

np N 

x Q}]_f dr,(s)8[z, (l)]exp [-,6H0 ({r,}) + j drwp(r)¢p(r)] 

L ~1 G(O, r ; s) J dr'G(r , r'; s) 
f dr'G(O , r'; 1) 

(1.21) 
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where 

N 

G ( r', r"; s) = II j dr 'Y ( s) 8 [ z7 ( 1)] exp [- /3 Ho ( { r 7}) + j drw p ( r) ¢ p ( r)] 
s=l 

(1.22) 

is the Green's function or two point correlation function, which is the contribution to the 

overall partition function from chain segments s units long which begin at r', and end at r". 

The calculaton of the Green's function is accomplished following the lattice method first 

proposed by DiMarzio and Rubin [3]. In this approach, the polymer configurations can be 

exactly enumerated on a lattice and the Green's functions are obtained using a recursion 

relation 

G ( r, r'; s) = ( ( G ( r, r'; s - 1)) ) exp [ w p ( r')] (1.23) 

and the initial condition 

G(r, r'; 0) = 8(r - r') exp [wp(r)], (1.24) 

where the notation ((G(r,r';s))) indicates the average of the Green's functions for chain 

segments s units long which start at rand end at the nearest neighbor sites of r'. Alternately, 

the Green's functions can be obtained in continuous space using a bead and spring model 

for the polymers. In that case, Ho({r7}) would give the contribution from intersegmental 

stretching, but in a lattice treatment it is simply a constraint. 

Some of the seven self-consistent equations can be easily solved before resorting to 

numerical methods. Specifically, substituting the values of WA and WB from Equations 1.16 

and 1.17 into the expression for ¢A(r) and ¢B(r) (Equations 1.19 and 1.20) and substituting 

these in turn into Equation 1.18 allows 1r to be expressed solely in terms of the different 

volume fractions. Likewise, substituting this expression for 1r into Equation 1.15 and using 

this result to obtain the Green's functions in Equation 1.21, we obtain three self-consistent 

equations in the variables ¢A, ¢Band q>p . Because of incompressibility (Equation 1.18) only 

two of these need to be solved numerically. The numerical procedure essentially consists of 

taking an initial guess at the ¢(r) profiles, and iteratively refining these profiles to minimize 

the difference between them and the calculated profiles. 

Once the self-consistent solution to these equations has been found, all of the thermody­

namic and configurational averages are readily obtained. For example, the density profiles 
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of the different species are given directly from the solutions of the self consistent equations. 

The average location of chain ends or other configurational properties are easily obtained 

from the Green's functions. The grand potential of the system is obtained from Equation 

1.11, and other thermodynamic properties like the lateral pressure or the forces between 

brushes is also readily obtained and will be discussed in later chapters. 

The solution of the self-consistent equations is accomplished by standard mathematical 

methods, and is relatively efficient. For example, complete configurational and thermody­

namic information for grafted chains of molecular weight up to several thousand monomers 

can be obtained using a standard computer workstation in a matter of minutes. This effi­

ciency is obtained without sacrificing details of the configurational information, or making 

any assumptions about the average chain density. Indeed, the lattice treatment of the chain 

statistics means that all configurations are enumerated, and that no approximations beyond 

the mean-field approximation are necessary. These strengths will be highlighted in the next 

chapter. 
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Chapter 2 Polymer Brushes: Scaling, Compression Forces, Interbrush 

Penetration, and Solvent Size Effects 

This work, published in slightly modified form under the title Polymer Brushes: Scaling, 

Compression Forces, Interbrush Penetration, and Solvent Size Effects, with Z.-G. Wang, is 

the first study I carried out at Caltech, and provides much of the groundwork for the studies 

which follow. I have removed most of the theoretical development, which is described in th e 

previous chapter, and made some other corrections and revisions to make the presentation 

of key results in Section 2.2.3 more consistent with results in later chapters. 

Reprinted in part with permission from The Journal of Physical Chemistry 1995, 99, 2833. 

Copyright @1995 American Chemical Society. 
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Abstract 

This work discusses results of a self-consistent field calculation of conformational and ther­

modynamic properties of polymers end-grafted to a surface in athermal solvents. Three 

primary issues are addressed. First, we address the question raised recently by Carignano 

and Szleifer as to whether the second virial treatment of previous numerical and analytical 

self-consistent field theories provides an adequate description of polymer brushes. We show 

that, for grafted chains that are sufficiently long, there exists a broad range of grafting 

densities where the lateral pressure and the brush thickness both scale as predicted by the 

second virial treatment. For shorter chains ( of 100 monomers or less) no distinct scaling 

regime is observed. A related effect due to finite chain lengths is the interpenetration of 

brushes upon compression and its importance to compression forces. We find that even 

for quite large chains (of up to 1000 monomers) there is significant interbrush penetration 

at high compression. However, the force profiles are relatively insensitive to penetration 

at such high compressions. Instead, finite chain lengths affect the interaction forces most 

prominently at the onset of the interactions. Next we address the crossover from wet brushes 

to dry brushes as the molecular weight of the solvent increases. This crossover is driven 

purely by entropic effects and is interpreted on the basis of the conformation of the poly­

meric solvent molecules in the vicinity of the brush. It is found that the state of the brush 

is determined by two crossover scaling variables, the ratio of the degree of polymerization 

of the free and grafted chains N1/N9 , and N1a 2 , where a is the grafting density. Finally 

we investigate brush configurations and interactions in mixed solvents. It is observed that 

for polymer brushes in a solution of mixed free polymers and monomers, there are three 

distinct regimes in the interactions between two brushes. Upon the onset of the interaction, 

the brushes attract one another as the solvent is transferred from an unfavorable proximity 

to the brush to the infinite reservoir. Then there is a very rapidly increasing repulsive force 

as the brushes begin to overlap and the remainder of the free polymer is removed from the 

system. Once all of the polymeric component has been squeezed out of the brushes, the 

compression becomes indistinguishable from the compression of brushes in a monomeric 

solvent. 
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2.1 Introduction 

Linear polymers end grafted to a surface or interface densely enough to substantially inter­

act with each other are called polymer brushes, and have been the subject of considerable 

theoretical and experimental investigation in the last two decades. The crowding of the 

grafted polymer chains causes them to stretch anisotropically away from the surface into 

configurations not seen in the bulk. The anisotropy of the brush environment also strongly 

affects other molecules which find themselves in or near the brush, especially species with 

substantial configurational freedom such as free (ungrafted) polymers. This leads to modi­

fication of the properties of the surface to which the brush is attached. 

Polymer brush problems are important in such diverse fields as colloidal stabilization 

and biomedicine. Colloids coated with a grafted polymer layer will repel one other due to 

unfavorable entropic interactions between their brush coated surfaces, thereby discouraging 

flocculation and stabilizing the suspension. These inter-particle interactions are sensitive to 

grafted polymer size and grafting density, and also to the solvent quality and composition. 

Thus, a thorough understanding of the factors influencing the brush interactions will enable 

a greater control of the stabilization process [1, 2]. Similarly, a careful choice of biopolymers 

grafted to a drug particle surface will control its interaction with other species in blood, 

and can effect a medically beneficial specificity in the drug's absorption [3, 4, 5]. 

Polymer brushes are also of theoretical importance as a model of the behavior of tethered 

polymers [6], arising, for example, when diblock copolymers adsorb at the interface between 

two incompatible fluids, or self assemble in their pure state in order to minimize contact 

between their incompatible blocks. In the strong segregation limit, the incompatible blocks 

of the copolymers will form what are essentially back to back polymer brushes. Thus the 

prediction of the complex copolymer morphologies is built upon the polymer brush theory 

and is sensitively dependent upon it [7, 8]. 

Experimentally, polymer brush configurations have been studied usmg various tech­

niques including synchrotron x-ray fluorescence, neutron scattering and nuclear-reaction 

analysis while force balance techniques have provided information about polymer brush 

interactions (for a short review of earlier theoretical and experimental work on polymer 

brushes , see Milner 's review article [9]) . 

The many aspects of the polymer brush problem have been examined by numerous 
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groups using a variety of approaches. In fact, the great variety of the systems under study 

(end-adsorbing, block copolymer or grafted chains in solvents of varying quality, composi­

tion, etc.) has perhaps obscured some fundamental entropic effects governing brush behav­

ior. There remain a few outstanding issues regarding these basic entropic effects which we 

will address in this paper. The first problem we address is the adequacy of second virial 

treatments of the excluded volume interaction. These treatments have recently been ques­

tioned in spite of their apparent success in describing brush profiles and heights. This raises 

the issue of finite chain length effects, which we examine as manifested by the interpene­

tration of two brushes under compression. Next we address the crossover from wet brushes 

in small monomeric solvents to dry brushes in large polymeric solvents. The two limiting 

cases are very well understood; however, it is not clear whether there exist any universal 

features in the intermediate solvent case. Finally we examine the effect of mixed solvents 

on polymer brushes, emphasizing again the universal features of the problem. 

Because so much work has been done on the polymer brush problem, our paper will 

unavoidably duplicate in some instances results which have been previously presented. This 

is necessary in order to present the varied brush phenomena in a unified context in which 

they are best understood. In the remainder of this introduction we will review some of the 

previous work on polymer brushes in order to frame and motivate our own work. 

The first theoretical investigations of the polymer brush problem were by Alexander 

[10] and de Gennes [11, 12, 13] in the late seventies. These authors made the simplifying 

assumption that the segment density profile is a step function of thickness h and that 

the free ends of the chains are distributed exclusively at the end of the brush. For a 

weakly interacting, moderately dense brush, with grafting density c, ( the number of chains 

per unit area) and polymerization index Ng, minimization of the free energy per chain 

f ~ h2 /Ng a2 + wc,NJ/h leads to h ~ (c,a2w)½Ng. For a polymer brush in a melt of 

free polymer of polymerization index Nt ~ Ng, the brush collapses completely and the 

application of an incompressibility condition yields h = Ngc,v , where v is the monomer 

volume. 

The simple scaling theory of Alexander and de Gennes was improved by Milner, Witten 

and Cates (hereafter MWC) [14] using an analytic local self consistent field (SCF) theory. 

They relax the assumption that the free ends of the chain are distributed exclusively at 

the extremity of the brush and instead determine their distribution self-consistently. The 
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chains are taken to be in the strongly-stretched long-chain limit, such that the deviation of 

a chain from its most probable configuration is neglected and it follows a deterministic path. 

Following this approach, expressions are derived for the free energy (including the prefac­

tors) and the distributions for individual segments as well as the overall segment density 

profile. The resulting density profile resembles a parabola, rather than the step function 

assumed by Alexander and de Gennes. A similar theory has been developed independently 

by Semenov [15] and Zhulina and coworkers [16]. 

The MWC parabolic profile is consistent with experimental density measurements [17] 

and agrees fairly well with numerical mean field [18, 19] and computer simulation results 

[20, 21] with a few significant exceptions. First of all , the MWC approach accounts for 

excluded volume interactions using only the second virial coefficient. Thus the theory is 

only strictly valid for brushes of very low density, i.e., aN9/ h « l. When higher graft ing 

densities are examined, the excluded volume interactions are underestimated compared to 

fully incompressible systems. Second, because the MWC theory incorporates the stretching 

energy through a Gaussian stretching term, the chains are infinitely extensible. This is 

expected to be a good approximation for moderate chain distortions, but in a moderately 

dense strongly-stretched brush, the chain height may be closer to the contour length than the 

radius of gyration. In this limit the finite extensibility of the chain is certainly important . 

Shim and Cates have addressed this problem in the context of the MWC model, using 

a non-Gaussian stretching term [22]. Finally, the segment density profile of the Milner 

theory terminates rather abruptly - dying off roughly linearly with (h - z) - at a well 

defined brush height h beyond which there is no segment density. This is of course a 

great improvement over the discontinuity in the step function profile of the scaling theory. 

However, numerical calculations and simulations of finite length grafted chains show an 

asymptotically decaying profile which is only identically zero beyond the fully extended 

length of the chain (i.e., <I>9(z > N9) = 0). 

Although the MWC parabolic brush theory differs substantially from the step function 

scaling argument, their common use of a Gaussian stretching term and a second virial 

coefficient excluded volume term in the free energy balance results in equivalent scaling 

of overall quantities such as the brush height h. Experimental results consistent with the 

predicted scaling of brush height have been obtained [23]. Also numerical calculations 

[18, 19, 24] and simulations [20, 21] for finite length chains appear to obey the predicted 
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h ~ Nga 3 scaling. The latter has been taken as a confirmation of the adequacy of the second 

virial treatment of the problem. However, recent work by Carignano and Szleifer [25] has 

called into question this conclusion. Carignano and Szleifer use a mean field approach 

to calculate a probability distribution function for a set of 2.85 x 106 self avoiding chain 

configurations of Ng = 50 by minimizing the free energy subject to an overall (i.e., polymer 

plus solvent) incompressibility constraint. The direct application of an incompressibility 

constraint is equivalent to using the full virial expansion. They find good agreement with 

recent molecular dynamics simulations by Grest [26] for both the shape and scaling of the 

density profile, and for the lateral pressure Ilg of the brush. While their results for the 
1 

shape and scaling of the density profile appear to agree with the h ~ Nga3 predictions 

of the analytical self consistent field theory, they do not observe the scaling of Ilg with a 

predicted by the second virial treatments. They conclude that, at least for chains of the size 

they examined, the second virial treatment of the analytical SCF theories is inadequate. 

Another important question which polymer brush theories must address is the com­

pression of two polymer brushes. This is obviously crucial to applying the polymer brush 

model to problems such as colloidal stabilization. The analytical MWC theory makes a 

good starting point. As a consequence of considering only each chain's most probable path, 

the MWC theory does not allow two brushes under compression to penetrate one another 

at all. The resulting force, like the profiles, is expected to be asymptotically correct as 

Ng ~ oo. However, for finite chains there are some corrections which must be considered. 

We have already mentioned that finite chains exhibit an asymptotically decaying "tail" 

in their uncompressed segment density profiles. These tails will obviously result in a weak 

long range onset of the repulsion between two brushes not captured in the parabolic model. 

Secondly, for finite chains we do not expect interpenetration to be negligible. In fact, 

computer simulations [27, 28] and numerical results for finite chains [29] show substantial 

inter-brush penetration. It seems intuitively likely that the extent of such interpenetration 

will increase with the extent of compression, and it is not yet clear what effect it will have 

on the calculated interactions between two brushes. 

In addition to grafted chain size and grafting density, the configuration and interactions 

of polymer brushes will also be determined by the properties of the solvent. Up to now 

we have described only polymer brushes in an athermal (good) small molecule solvent . In 

these conditions the polymers swell by absorbing solvent in order to maximize their entropy, 
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resulting in a "wet" brush state. This is in contrast to the situation of a "dry" brush, which 

occurs in an energetically unfavorable (bad) small molecule solvent or a large molecule 

solvent (NJ 2'. Ng)- In the dry brush, the grafted chains do not mix appreciably with 

the solvent. In the crossover region between these two cases, the extent of brush swelling 

is sensitive to the solvent quality, size and composition (in mixed solvent cases). The 

effect of small molecule solvent quality has been addressed extensively by analytical SCF 

techniques by Zhulina and coworkers [30] , and by numerical SCF techniques by Scheutjens 

and coworkers [31]. Calculations have also been performed on dry brushes in large molecule 

solvents NJ 2'. Ng [32]. However, the crossover regime 1 < NJ '.S Ng is less well understood. 

In his 1980 paper on polymer brushes, de Gennes works out a scaling argument from which 

it is possible to derive some asymptotic scalings for some regions of parameter space [13]. 

Zhulina and Borisov have extended their analytical local SCF approach to the problem [33]. 

Also, van Zanten has recently extended the mean field approach, originally developed by Lai 

and Halperin [34] for grafted chains of finite extensibility, to address the polymeric solvent 

case in both pure and mixed solvents of varying size and quality [35]. However, the polymer 

brush in a polymeric solvent is much less well understood than the small solvent case. 

The driving force behind brush collapse as the free polymer size increases is the config­

urational distortion of the free polymer in the anisotropic environment of the brush. This 

free chain stretching is also responsible for more complicated effects in mixed solvents. It 

was observed experimentally in 1975 that sterically stabilized colloidal suspensions (i.e., 

colloidal particles with grafted polymer chains on them) were destabilized upon addition 

of free polymer to the solvent and then restabilized at higher polymer content [l]. These 

effects have been studied using numerical polymer brush calculations by Scheutjens and 

coworkers and by analytical techniques by Wijmans and coworkers [2 , 36]. 

A polymer brush in a mixed solvent will be selectively permeable to free species of 

different sizes. Thus in a solution of free polymers in a monomeric solvent, the brush 

will swell by absorbing monomeric solvent but will exclude the free polymers. These local 

changes in relative solvent concentration have important consequences for brushes under 

compression. As the plates are compressed and solvent is transferred to the reservoir , 

the overall composition of the solvent between the brushes changes. This introduces an 

attractive regime of the interaction which is the essential cause of the destabilization of 

sterically stabilized colloidal suspensions upon the addition of free polymer to the solvent. 
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At higher compressions the larger solvent will be completely excluded from the brushes, 

leading to a repulsive interaction. The details of the mixed solvent brush interactions and the 

application of results from this problem to the more complex colloidal stabilizat ion problem 

are dependent on many factors including the relative size of the polymeric components and 

the grafted chains , any energetic interactions, any curvature of the grafting surfaces, etc. In 

order to isolate and understand the basic entropic origins of these effects, we will examine 

only the simplest case, Nh = Ng, Nh = l for athermal systems between flat walls, and 

relate our results back to simpler pure solvent effects. 

The detailed derivation of our self-consistent field method has already been presented 

in the general theoretical development in the last chapter. It is worth mentioning, however, 

that using the method described there, it is possible to calculate the configurations and 

interactions of polymer brushes of up to Ng = 1000 in a solvent of an arbitrary number 

of species of arbitrary molecular weight. Although it is possible to include enthalpic in­

teractions between the various species, as demonstrated in that development, we choose to 

suppress any energetic interactions in order to highlight the unique entropic effects associ­

ated with polymer brushes. 

We perform our calculations on a lattice for several reasons. First, lattice calculations 

allow the explicit consideration of finite chain size effects. Second, the method we present 

retains the finite extensibility of the grafted chains. Third, the incompressibility condition 

built into our model implicitly includes all terms of the virial expansion. Finally, the latt ice 

method we use need not include any vacancies, which allows us to make contact with the 

bulk free energy expressions for polymer mixing. Self consistent theories which treat more 

accurately the single chain's configuration have been developed by Carignano and Szleifer 

[25], but for our purposes the simpler lattice model suffices and has the additional benefit 

of allowing chain lengths up to Ng = 1000, which bring us clearly into the long chain limit 

described by the analytical theories. 

2.2 Results/Discussion 

In this section we present numerical results for polymer brushes in pure solvent and binary 

solvent mixtures. The principal points of interest are each presented below in subsections. 

First we test the adequacy of analytical predictions based solely on second virial interactions 
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for polymer brushes in a good monomeric solvent by an examination of the scaling of brush 

height h and lateral pressure Ilg with grafting density CJ. Then we examine the importance of 

finite chain effects, and especially interbrush penetration, on the interaction profiles for two 

brushes under compression in an athermal solvent. Next we examine the scaling of polymer 

brushes in pure solvents of arbitrary molecular weight 1 :S NJ :S Ng; in particular the 

collapse of the brush as NJ increases is elucidated by examining the unfavorable stretching 

of a free chain inside the brush. And finally we examine the effect of a mixed solvent on 

the configuration and interaction profiles of polymer brushes. 

2.2.1 Monomeric Solvent 

Scaling Relations 

As mentioned previously, the scaling relations for a polymer brush in a (good) monomeric 

solvent were first derived by Alexander [10] and de Gennes [11]. These authors made the 

simplifying assumptions that the segment density profile was a step function, and that the 

free ends of the chains were distributed exclusively at the outer extremity of the brush. 
I 

These assumptions lead to the prediction that h ~ Nga 3. 

The more detailed theory of Milner, Witten and Cates (MWC) [14] relaxes the assump­

tion in the Alexander and de Gennes theory that the free ends of the grafted chains are 

distributed exclusively at the extremity of the brush. Rather the free end distribution is 

determined using an analytic self-consistent theory which is asymptotically correct in the 

Ng --+ oo limit. This leads to a more physically reasonable parabolic density profile for 

the brush which compares well with a lattice self consistent field calculation by Hirz [19] 

using the second virial interaction. Both the scaling argument of Alexander and de Gennes 

and the MWC parabolic brush model account for excluded volume interactions solely by 
I 

a second virial interaction. This leads to their common scaling for h( ~ Nga 3) and other 

average quantities. 
I 

Clearly, the h ~ Nga3 is valid only within a certain range of grafting density. In 

particular, the brush height h should scale as a linear power of a as a --+ 1. On the 

other hand, when a is so small that the chains hardly touch each other, h should be of 

the order of the radius of gyration and should be independent of a. The average lateral 
I 

distance between grafted chains is roughly a-2. In order to have substantial stretching of 
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the chain, the natural radius of gyration of the chains must be larger than this distance, 

i.e., (j » N92va- 2 . To be consistent with our mean field calculation, we take v = ½-

In the high density region, in order that the effects of third and higher virial coefficients 

are insignificant, we must have 

or 
N (j 
_g_ « 1 

h • 

1 
A self consistent criterion is obtained by substituting h ~ N (j 3 into the above inequalities, 

2 1 
yielding, (j3 « 1 or (j « l. Thus we expect the (j3 scaling to hold for N9

1 « (j « l. Note, 

however, that a virial expansion to any number of terms will still result in h ~ Ng. Thus 

we expect only a lower bound Ng-l « (j to apply to this scaling. More importantly, this 
1 

implies that only the h ~ (j 3 can be taken as evidence of the adequacy of the second virial 

treatment [13]. 

From the preceding argument we conclude that in order to have a distinctive range of 
1 

(j where h scales as (j3, the grafted chain must be quite long. Moreover, the scaling of h 

with (j is neither the only test of the second virial treatment, nor a sufficient proof that this 

treatment has captured the most important physical effects. Indeed, the question of the 

conditions (grafted chain length, grafting density, and in some cases solvent quality) under 

which the scaling arguments apply, and even the existence of any such range of conditions, 

has been a subject of some controversy recently. 

The original MWC paper reports some results of Hirz for chains of Ng = 200, (j = 0.l 
1 

which obey the (j3 scaling for (j varying over a factor of six [14 , 19]. However, because of 

the weak dependence on (j, this corresponds to a variation of brush height of less than a 

factor of two. For this reason it is desirable to examine the scaling of other quantities than 

the brush height to test the predictions of scaling theories based on the retention of only the 

second virial coefficient. There are several possible quantities for which scaling predictions 

exist, including the free energy of the grafted chains and the lateral pressure of the brush, 

which is defined as 

(2.1) 

Shaffer has recently published Monte Carlo simulation results which suggest that the 

scaling of the free energy per chain is well described by second virial theories, even at fairly 

short chain lengths (Ng :'.S 80) [42]. In molecular dynamics simulations by Crest, however, 
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chains of 50 units did not obey the predicted scaling of brush height with grafting density 

at constant surface pressure. Of course the conditions under which the predicted scaling is 

observed is not necessarily the same for every quantity. Indeed, even the presentation of 

the data (for instance which combinations of variables are plotted) can affect whether the 

predicted scaling appears to hold. However, if the second virial picture is adequate, there 

should be some threshold conditions for chain length and grafting density above which the 

scaling of all properties is as predicted. 

Carignano and Szleifer [25] have examined the scaling of Ilg with c, for chains of Ng = 

50 in 8 solvents in an attempt to account for inconsistencies between the second virial 

treatment predictions and the simulation results of Grest [26] for lateral pressure. Both the 

scaling argument and the MWC parabolic brush theory predict the scaling Ilg ~ N c,x , where 

x = 5/3 in order to be consistent with our mean field approach or x = 11/6 from the scaling 

theories [10]. In a 8 solvent both approaches predict x = 2. Using the fully incompressible 

method mentioned in the introduction, they are able to reproduce the simulation results 

of Grest [26]. However, they find no distinct regime exhibiting the anticipated IT ~ c,2 

scaling. Rather they find a continuously changing c, dependence, which they attribute to 

the importance of later terms in the virial expansion. As further evidence of this assertion, 

they show that they can obtain good agreement with pressures calculated for a parabolic 

profile using the full virial expansion. It should be noted, however, that the parameter used 

to obtain this fit is not that obtained in the MWC theory, and gives poor agreement for brush 

height. They conclude that while the MWC and other analytical theories correctly predict 

the shape and scaling of the profile, they are inadequate for the prediction of more sensitive 

quantities, including the lateral pressure, at least for the chain lengths they considered 

(Ng :S 50). 

In order to test this conclusion, and to determine if and when the second virial treatment 

is adequate, we have calculated the scaling of both the brush height and the lateral pressure 

for brushes of Ng = 200 and 1000 (we have also calculated the pressure in the Ng = 50 case 

for comparison). In Figure 2.1 is plotted the brush height h versus the grafting density c, on 

a log-log scale. The height h is defined as twice the moment of the segment density profile, 

i.e., h = 2 x ~z zq> g (z). This definition ensures that for a step function profile h is simply 

the width of the step function. In the Ng = 200 case, we observe, as described by MWC, 
I 

a range of c, of almost one order of magnitude which scales nearly as c,3 . However, the 
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scaling must pass through this value, and for Ng = 200 a distinct regime of the predicted 

scaling is not clearly identifiable. For the Ng = 1000 case, on the other hand, the regime in 
I 

which the o-3 scaling applies has broadened considerably, and supports the validity of the 

second virial approach in this regime . 

..c:: 
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Figure 2.1: The brush height h versus grafting density a- for Ng = 200 ( dashed line) and 
1 

Ng = 1000 (dotted line) plotted on a log-log scale with the predicted Ngo- 3 scaling (small 
dotted lines). 

5 
Next we look for an equivalent regime exhibiting Ilg ~ 0-3 scaling as predicted by the 

second virial coefficient. In Figure 2.2 is plotted Ilg versus a- on a log-log scale. For Ng = 50 
5 

the scaling passes through 0-3 very quickly, confirming the finding of Carignano and Szleifer 

that no scaling existed in that case. However, for Ng = 200 the scaling passes through this 

value much more slowly, and for Ng= 1000 there is almost two orders of magnitude which 

exhibit nearly the predicted scaling. 

We conclude that because of the weak dependence on a- and the very general linear 
I 

scaling with Ng, the h ~ Ngo-3 scaling appears more general than the validity of the second 

virial treatment. In fact, the assumption that only the second virial coefficient interaction 

is significant appears to be justified over a non-vanishing range of a- only for rather large Ng 

(of at least several hundred units). This means that for many experimental and practical 
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Figure 2.2: The lateral pressure Ilg versus grafting density a for Ng = 1000 (dot dashed 
line), Ng = 200 (dashed line) and Ng = 50 (dotted line) plotted on a log-log scale. The 

5 
solid lines show the predicted as scaling. 

circumstances, a more detailed treatment than the second virial must be considered in 

order to correctly predict brush free energies and pressures. However, for larger chains 

(Ng 2:: 1000) the second virial approach does appear appropriate. 

Brushes Under Compression 

The most important direct application of polymer brushes is the steric stabilization of col­

loidal suspensions. Two surfaces coated with grafted polymer layers in a good monomeric 

solvent will repel one another due to unfavorable steric interactions between the two brushes 

as they begin to overlap. An understanding of the dependence of these interbrush interac­

tions on the brush parameters (i.e. , brush size Ng and density a in the athermal monomeric 

solvent case, and more generally the solvent quality, size and concentration as well) is 

clearly of great importance, and has been investigated theoretically [9 , 14, 24], experi­

mentally [5, 43], and by computer simulation [27, 44, 45] by many groups including those 

mentioned earlier. 

An important and unresolved question in the consideration of interbrush interactions 

is the extent to which the two brushes interpenetrate. The analytical theory of MWC, 
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which treats brushes in the long chain limit , allows no interbrush penetration at all. This 

assumption arises from the neglect of all but the most probable path for each chain. On the 

other hand, numerical treatments [2] and simulations [27, 28] of finite length chains show 

considerable interbrush penetration. It is intuitively clear that interbrush penetration will 

be unavoidable for relatively short chains. However, it is not so clear at what chain lengths 

or grafting densities it will become negligible. 

In order to determine the extent and importance of interbrush penetration, we have 

calculated the segment density profiles and force curves for two brushes under compression. 

In each case the calculation is performed twice, allowing and disallowing interpenetration. 

The force is defined F = - ait where the brush compression L is equal to ½ the distance 

between the two plates. In order to disallow interpenetration, we calculate the interaction 

profile of a single brush with a hard wall a distance L from the brush, since in the absence 

of interpenetration this is identical to one half of a two brush compression. We performed 

this calculation for brushes of Ng = 200 and Ng = 1000 units in monomeric solvent with 

a grafting density of u = 0.1 which falls in the strongly stretched regime for both brush 

lengths. In Figure 2.3 are presented the scaled segment density profiles for the two brush 

lengths as they are compressed. In each case curves are presented for brushes which were 

allowed (solid lines) and not allowed (dotted lines) to interpenetrate. In the upper frames 

the brushes are uncompressed and therefore there is no difference between the penetrat­

ing and nonpenetrating profiles. However, as the compression is increased, the extent of 

penetration becomes larger and larger. As expected these effects are more pronounced in 

the smaller brush (Ng = 200). In fact, the rather extreme lack of interpenetration in the 

Ng = 1000 and the sharp profile for the most compressed brush confirm the assumption 

that interpenetration is negligible for Ng ---+ oo. 

The profiles in Figure 2.3 gives us some insight into the extent of inter brush penetration 

for substantially compressed brushes. On the other hand, we expect the effect of interbrush 

penetration to have important effects on brush interactions at very slight compressions as 

well. In Figure 2.4 are plotted the force curves for the compression of the two brushes 

described above. In both cases the force is calculated both allowing and disallowing inter­

penetration. We observe first that for the compression values at which the most significant 
I 

interpenetration was observed (L/ Ngus = 0.54) , the force curves for all four cases are nearly 

identical. However, at the onset of the inter brush interactions, both chain size and interpen-



27 

Ng = 1000 

0.4 

00 ,e. 0.2 

0.0 
L/Ngcr"3= 0.86 

0.4 

00 ,e. 0.2 

0.0 
L/Ngcr113= 0.75 

0.4 

00 ,e. 0.2 

0.0 
L/Ngcr 113= 0.65 

0.4 

00 ,e. 0.2 

L/Ngcr 113= 0.54 
0.0 11=..__.1...__..L____,!,:,l:::="""'==ll:-___L _ ___L _ __;_,]!=~==l 

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 

Figure 2.3: The segment density profiles for brushes of N 9 = 1000, 200 at various compres­
sions in monomeric solvent with a= 0. 1 both allowing (solid line) and disallowing (dashed 
line) interbrush penetration. 

etration affect the interaction. The shorter chain has a longer range repulsive interaction 

with a more gradual onset regardless of interpenetration. This occurs because the shorter 

chains deviate more from the parabolic profile observed in the long chain limit. In this limit 

a well defined brush height is predicted, beyond which there will be no segment density. 

However, simulations and calculations for finite length chains predict a smoothly decaying 

asymptot ic "tail" as seen in the upper right frame of Figure 2.3. This tail becomes more 

prominent for shorter chains (e.g., see the upper right frame of Figure 2.3), leading to an 

earlier onset of repulsion. These tails will interact with each other, creating a weak long 

range repulsive interaction, even before the parabolic portion of the profiles interact. These 

conclusions are consistent with experimental findings [5]. 
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Figure 2.4: The force per unit area is plotted versus the compression L scaled by Ng. The 
inset shows the onset region in an expanded scale. Brushes of Ng = 200 ( dashed and dot­
dashed lines) and 1000 (solid and dotted lines) are shown allowing (solid and dashed lines) 
and disallowing ( dotted and dot-dashed lines) interpenetration. 

The onset of the repulsive interaction is especially sensitive to the question of interpen­

etration (see inset of Figure 2.4). This occurs because the asymptotically decaying tails 

of the brushes interact very weakly with one another. However, when interpenetration is 

disallowed, they are being compressed, in effect, by a hard wall. Thus at separations where 

only the asymptotic tails of the brushes are compressed, the effect of interpenetration will 

be substantial. From Figure 2.3 we see that the asymptotic tail of these profiles begins at 

L/Nga½ = 0.8, and it is observed in the inset of Figure 2.4 that the effect of interpenetra­

tion is quite strong beyond this point. The length and density of this tail are much greater 

for the smaller brush, and consequently the effect of interpenetration is greater as well. At 

greater compressions the forces associated with the compression of the parabolic portion of 

the brush dominate the end effects, and interpenetration becomes insignificant. 

The extent of equilibrium interbrush penetration has implications for the dynamics of 

polymer brush compression as well as for the equilibrium properties. Interpenetration will 

presumably occur by a slow mechanism involving chain rearrangement, while overall com­

pression of the individual brushes can occur rapidly along the existing contour of the grafted 
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chains. Thus we expect rapid compression to occur initially without substantial interpene­

tration, with interpenetration occurring on longer time scales leading to a relaxation of the 

repulsive interbrush forces. 

Before continuing it is worth mentioning the importance of short chain results. Although 

the use of relatively short chains (Ng :::::; 200) in some studies has been motivated by the 

inaccessibility ( experimental or computational) of longer chains, many of these studies have 

chosen such chain lengths because of the intrinsic importance of the system they address. 

An important case is the application of polymer brush theory to biomedical problems [5] 

where medical factors limit the choice of polymers. In such a case the analytical theories 

derived in the long chain limit are not appropriate, and numerical calculations such as those 

described here will be required to accurately understand the details of brush configurations 

and interactions. 

2.2.2 Polymeric Solvent 

The behavior of a polymer brush is complicated by the consideration of variable solvent 

conditions. A great deal of work has been done on brushes in monomeric solvents of varying 

quality (i.e., with varying enthalpic interactions with the brush), both analytically [30], 

numerically [22, 25], experimentally [46] and by computer simulation [47]. The case of 

athermal polymeric solvents is, by contrast, relatively unexplored. De Gennes [13] has 

made some preliminary scaling arguments regarding the intermediate size polymeric solvent 

conditions 1 < NJ < Ng, and Zhulina and Borisov [33] have developed an analytic self 

consistent field theory for approaching the problem. Brush behavior in a polymeric solvent 

has also been studied experimentally using nuclear reaction analysis [48]. 

In contrast to a polymer brush in a (good) monomeric solvent- which will absorb solvent 

and stretch to minimize excluded volume interactions- a polymer brush in a polymer melt 

of chains length (NJ ~ Ng) will collapse and expel nearly all of the solvent, leading to trivial 

scaling determined by incompressibility <I>g ~ 1 and L ~ Nga. This occurs primarily because 

the anisotropic environment of the brush stretches the polymeric solvent into unfavorable 

configurations. The solvents respond by leaving the brush, leading to its gradual collapse as 

the solvent distortions become more severe and the configurational entropy of the solvents 

becomes more important. In Figure 2.5 are displayed the segment density profiles for a brush 

of Ng = 400 monomers at grafting density a = 0.1 for variable solvent size as indicated. At 
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Figure 2.5: Segment density profiles for a brush (Ng = 400, O' = 0.1) are shown in solvents 
of N1 = 1 (solid line), NJ = 10 (dotted line), NJ = 50 (dashed line), N1 = Ng = 400 
( dot-dashed line). 

intermediate solvent molecular weights, the brush still absorbs solvent and stretches, but 

as N 1 goes to Ng, the solvent leaves the brush, which is collapsed to a step function like 

profile with no absorbed solvent. 

In the case of a polymer brush in a polymeric solvent, it is not possible to make the 

simple scaling predictions which have been made in the monomeric case. We can, however, 

determine the relevant scaling variables and make some predictions for certain limits. Fol­

lowing the treatment of de Gennes, we construct an expression for the brush and solvent 

free energy by adding the stretching and compression terms for the brush to the free energy 

of mixing for the brush and the solvent. As in the monomeric solvent case, we begin with 

the step function profile approximation so that cl> g = NgO" / h and cl> f = 1 - cl> g · We write 

the free energy 
h h2 N 

f / kT = -N cl> J log cl> J + - + hf 
O' f Ng 

(2.2) 

where the first term is the free energy of mixing for the free polymer (the grafted chain has 

no translational freedom and therefore no such term), the second is the elastic energy of 

stretching, the last is the elastic energy of compression, and numerical constants of order 
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unity have been omitted. After minimization of the free energy with respect to h and some 

algebra, we obtain 

From this expression it follows that <I>g and h can be written in terms of an unknown 

function g of two scaling variables, 

and (2.3) 

The validity of the approximations inherent in this approach are confirmed by the data 

presented in Table l. The individual input parameters, Ng, NJ and a are varied while 

holding the scaling variables X = NJ/Ng and Y = NJa 2 constant, and the reduced brush 

height h/ Nga is essentially unchanged. 

Table 2.1: The reduced brush height scales with NJ/ Ng and NJa2 

NJ/Ng NJa Ng NJ a h/Nga 

0.02 0.0036 800 16 0.015 4.12 
0.02 0.0036 450 9 0.020 4.16 
0.02 0.0036 200 4 0.030 4.26 
0.02 0.0036 50 1 0.060 4.52 

0.1 0.2304 1000 100 0.048 1.300 
0.1 0.2275 810 81 0.053 1.306 
0.1 0.2304 640 64 0.060 1.306 
0.1 0.2333 490 49 0.069 1.306 
0.1 0.2304 360 36 0.080 1.314 
0.1 0.2304 250 25 0.096 1.322 
0.1 0.2304 160 16 0.120 1.332 
0.1 0.2304 90 9 0.160 1.352 

We have examined the dependence of the brush height h with these variables and have 

made the following scaling observations. For a 2 NJ » l the solvent will not penetrate the 

brush at all regardless of the other scaling variable NJ/ Ng, resulting in the dry brush scaling 

h ~ Nga. For large free polymers NJ/Ng 2:: 1 grafted sparsely enough that the grafted 

chains interact with the solvent, the free chains screen the excluded volume interaction of 
l 

the grafted chains, leading to the ideal scaling h ~ Ng2 . And finally, in the small solvent 
l _! 

swollen brush regime, we have the scaling NJ ~ Ngas NJ 3 scaling. This last result was 
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predicted by de Gennes [13] and has been observed experimentally by Budkowski et al. [48]. 

The apparent success of the scaling argument in predicting the average description of the 

brush, i.e., brush height h, leads us to wonder whether the scaling behavior may not be more 

universal. Recall that the scaling of the Flory argument is preserved in the more detailed 

MWC theory. Thus we plot in Figure 2.6 the reduced segment density profiles from several 

of the brushes described in the lower group of data in table l. It is observed that despite 
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Figure 2.6: The segment density profiles for the brushes described in table 1 are plotted 
against z/Nga; + (Ng = 1000, NJ = 100, a= 0.048), □ (Ng = 640, NJ = 64, a = 0.060), ◊ 
(Ng= 250, NJ = 25, a= 0.096). 

the fact that the scaling argument treated the brush in an average way- equivalent to 

assuming a step function density profile-the shape of the profiles are superimposable when 

the quantities plotted are appropriately scaled. Thus it seems that not only the aggregate 

properties, such as brush height, but also the density profiles themselves are determined by 

the scaling combinations Ng/ NJ and NJa 2 (with the exception of some extreme cases such 

asa;:::;l). 

This is an especially interesting observation since the scaling of the extreme cases, NJ = 

1 or NJ 2: Ng, is relatively trivial. In the good monomeric solvent case, in the regime 

where second virial interactions dominate, the scaling follows quite directly from the free 
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energy expression given in the introduction. The dry brush scaling follows trivially from 

incompressibility, and is therefore certain to be universal. However, the existence of a 

universal scaling regime for grafted chains in intermediate solvent conditions, where a free 

polymer term enters the free energy expression, is far less obvious. 

Solvent Stretching 

As has already been mentioned, the unfavorable stretching of the polymeric solvent coils in 

the anisotropic environment of the brush drives the solvent out leading to the collapse of 

the brush. It is of interest then to know the extent of this stretching and how-it compares 

to a grafted chain. First, recall from the theory section that, in our calculation, the only 

difference between a grafted and a free chain is that one end of the grafted chain is fixed 

at the wall. Thus a solvent chain of NJ = Ng which finds itself with one end in layer z = 1 

will be stretched to precisely the same extent as a grafted chain. Chains not so close to 

the wall will be less distorted, and solvent chains in the isotropic environment sufficiently 

far outside the brush are completely unstretched. The relative solvent stretching (in the z 

coordinate) r(z) is given by the ratio of the square root of the mean squared end to end 

distance of the solvent chains as a function of the location of one end, and the bulk value 

of this same quantity, 

(2.4) 

where J(N1 - 1)/3 is the end to end distance in the bulk. 

In Figure 2.7a and bare plotted the relative solvent stretching r(z) versus end location 

for a free polymer NJ = 500 in a polymer brush (Ng = 500,o- = 0.05). In Figure 2.7a 

the solvent is purely polymeric, and in 2. 7b is a very dilute polymer solution in monomeric 

solvent ( <I>?s = 10-5 ) with a- = 0.05. For both solvent conditions the relative stretching 

goes up sharply inside the brush, reaching maximum values of 1. 7 and 10 times their value 

in the bulk respectively. The free polymer is substantially more stretched in the wet brush 

than in the dry brush. This result is required by the equivalence of the free chain with an 

end at the wall with a grafted chain. Thus, even when a brush is highly swollen and has a 

relatively low segment concentration, its extreme anisotropy makes it a highly unfavorable 

environment for a free polymer. There are two other features of interest on Figures 2. 7a 
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Figure 2.7: The solvent stretching in the z direction, r, is shown as a function of solvent 
end position for a free chain of NJ = 500 in a polymer brush in: a, a polymer melt solvent 
(Ng = NJ = 500, O' = 0.05); b, a very dilute monomer polymer/monomer blend solvent 
(Ng =NJ= 500, O' = 0.05, <I>'./8 = 10-5). 

and 2.7b, the minimum at the brush end in 2.7a and the dip in the extent of stretching 

right at the wall in 2. 7b. These features have the same origin, which is best understood 

by analogy to the case of a free polymer near a hard wall. Because polymer configurations 

which intersect the wall are disallowed, configurations lateral to the wall become relatively 

favored. This results in a swelling of the polymer in the lateral directions and a slight 

shrinkage in the direction perpendicular to the wall. The configurations of a polymer melt 

near a wall and other related problems have been studied recently by Theodorou [49]. This 

is also what is happening at the end of the brush, which functions as a sort of "soft wall," 

in Figure 2.7a. This "wall" in the case of the wet brush in Figure 2.7b is so soft that the 

stretching resulting from the anisotropy of the environment cancels the "soft wall" effect. 

However, lateral expansion occurs at the real wall (z = 0) in this case. This occurs because 

the dip in the brush segment density near the wall favors polymer configurations which 

swell in this region rather than moving into the denser brush region farther from the wall. 

In the polymer melt case there is no such dip in brush segment density at the wall, and 

consequently no such lateral stretching. 
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In addition to driving the collapse of the brush, the solvent stretching has several other 

implications which merit discussion. First of all, the anisotropic environment of the brush 

and the distorted configurations of species within it will affect the chemical reactions which 

take place there. This is of special interest in biological systems, since biopolymer reactivity 

is highly configuration dependent. Second, the solvent stretching in a brush will selectively 

affect the diffusion of polymeric species across membranes coated with a grafted polymer 

layer, favoring the diffusion of smaller species since these are better able to penetrate the 

brush. 

Finally, solvent stretching within a brush has implications for the compression forces of 

polymer brushes. The first and most obvious effect of increasing the solvent size is to collapse 

the brush, leading to more dense brushes and a compressed and therefore steeper repulsive 

interaction profile. A second, more subtle effect must also be considered. As the brushes are 

compressed, the solvent is transported from the vicinity of the brush to an isotropic reservoir 

of bulk solvent. This eliminates the stretching of those solvent molecules and lowers the 

overall free energy accordingly. As long as the free polymer is pure, incompressible and not 

larger than the grafted chains, NJ ~ Ng, this will always be a smaller effect than the brush 

compression, leading to an overall repulsive interaction between the brushes. However, 

when NJ > Ng the configurational entropy of the solvent can dominate that of the grafted 

chains, resulting in an attractive interaction between the two brushes. These dry brush 

effects (where NJ ~ Ng) have been studied by Shull using a numerical SCF theory for 

chains of up to 800 units long [32]. 

2.2.3 Mixed Solvents 

The interaction between two polymer brushes (where Ng ~ NJ) in a pure solvent is always 

repulsive because the favorable free energy change of the polymeric solvent, upon being 

transferred to the isotropic reservoir, is more than offset by the increase in the unfavorable 

steric interactions between the two brushes. In a mixed solvent, however, local variation 

in the relative concentration of the solvent species in and near the brush complicate the 

situation, and can lead to an attractive region in the compression force profile. In order 

to isolate the entropic effect of mixed solvents, without introducing too many additional 

parameters, we will focus on a mixed solvent of two chemically identical species, a majority 

monomeric component, and a minority polymer solvent of the same molecular weight as 
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the grafted chains, both in chemical equilibrium with a reservoir of volume fraction of free 

chains <l>7/5
• 

The interactions between polymer brushes in a dilute polymer solvent have been exam­

ined before by a number of groups including van Lent, Israels, Scheutjens and Fleer [2], who 

use a numerical SCF theory similar to our own and also summarize the previous work on 

the problem. However, they calculate interaction potentials for grafted chains in a mixed 

solvent with polymeric solvent molecules larger than the grafted chains. As mentioned in 

the previous section, it was subsequently shown by Shull [32] that even in an unmixed poly­

meric solvent of the sizes they examine (NJ» Ng), there will be an attractive portion of the 

interaction profile. To emphasize the effect of mixed solvents and eliminate the possibility 

of a molecular weight induced attraction, we consider Ng 2: NJ in a monomeric solvent and 

vary only <l>7/5
• 

We have already examined the stretching of a pure polymeric solvent in a polymer brush 

environment and the resulting collapse of the brush. In a mixed solvent system, however, 

the polymeric component can leave the vicinity of the brush while the brush remains swollen 

with the monomeric component. For solvents with a large size disparity, the brush will act as 

a semi-permeable membrane, completely excluding the polymeric component, while swelling 

with the monomeric component. The brush is then compressed by the osmotic pressure of 

the excluded polymer solvent, leading to a compressed density profile. In Figure 2.8 are 

shown the segment density profiles for a polymer brush (solid line), and the polymeric 

component of the solvent (dotted line). The first feature to notice in the uncompressed 

profile in the upper left is that while the brush is swollen considerably from its collapsed 

dry brush configuration in a pure polymer melt (h = 146 versus h = 53), it is compressed 

significantly relative to its size in a pure monomer solvent (h = 219) due to osmotic pressure 

of the polymeric solvent excluded from the brush. In fact, its profile resembles a parabolic 

profile clipped off at roughly z = 150. Next we notice that the polymeric solvent volume 

fraction inside the brush is essentially zero (at z :S 140), and it only reaches its bulk value 

beyond the end of the brush (at z = 165). As the brush is compressed in the later frames 

of Figure 2.8, the polymeric component of the solvent gradually leaves the gap. In fact, 

there is no appreciable increase in the grafted chain segment density until all of the free 

chains have left the gap. For this reason the onset of repulsive interactions between the two 

brushes is delayed by the presence of free chains, as is shown in the force profiles in Figure 
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Figure 2.8: T he segment density profiles for both the grafted (solid lines) and free chains 
(dotted lines) are shown for a polymer brush (N9 = NJ= 1000, a = 0.05) in a mixed solvent 
( <I> f = 0.3) at various compressions as indicated. 

2.9. In Figure 2.9 are presented the interaction profiles for the aforementioned brushes with 

variable polymer volume fraction as indicated. Comparing the force curve for the <I>?5 = 0.3 

(the dashed line) shown also in Figure 2.8, the onset of the repulsive interaction between 

opposed brushes is at approximately z = 150, which is consistent with the density profiles. 

Moreover, the force required to compress the brush at this point is exactly equal to the 

additional force required to further compress a brush in a monomeric solvent which has 

already been mechanically compressed to the same extent. This equivalence of osmotic and 

mechanical compression is shown in the inset in the upper right corner of Figure 2.9 , where 

the sum of the force curves and the osmotic pressures are plotted. Plotted this way, the 

compression profiles nearly superimpose once the delayed onset of interaction has been taken 

into consideration. This is not surprising, since at these compressions the solvent between 

the brush in mixed solvent is almost purely monomeric, thus the polymeric component in 

the reservoir has no impact on the additional force required to compress the brush. 

In addition to the repulsive steric interactions between the brushes, the mixed solvent 
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Figure 2.9: The force per unit area is shown versus compression for a polymer brush (N9 = 

NJ = 1000, a = 0.05) in a mixed solvent of bulk concentration of <l>'.;e5 = 0.0 (solid line), 
<I>7/8 = 0.1 (dotted line), <I>'./8 = 0.3 (dashed line), and <l>7/8 = 0.5 (dot-dashed line). 

case introduces weak attractive interactions between the brushes at the onset of interaction, 

as shown in the expanded scale at the bottom of Figure 2.9. The existence of an attractive 

region in the interaction profile will have negative consequences for the stabilizing effect 

of surface grafted polymers on colloidal suspensions when free polymers are present in 

solution. It was observed experimentally 20 years ago that the presence of free polymer had 

a destabilizing effect on sterically stabilized colloidal suspensions [1]. It was also observed 

that more concentrated polymer solutions restabilized the suspension. 

The mechanism of attractive interaction between polymer brushes in a mixed solvent is 

not specific to polymer brushes, and is more easily understood by a brief description of a 

simpler problem of the same origin: the attraction of hard walls in the presence of a mixed 

polymer/monomer solvent . The polymeric component of an athermal polymer/monomer 
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mixture is repelled by a hard wall because it has fewer configurations available to it than it 

does in the bulk. This repulsion is balanced by the free energy of mixing, resulting in the 

depletion of the polymer species near the wall. This depletion region extends a distance 

6 away from the wall roughly equal to the radius of gyration of the polymer in the bulk 

for a dilute solution, and the correlation length for a semi-dilute solution. When two such 

plates are compressed to a distance of less than 25, some of the fluid which remains in the 

unfavorable depletion region is transported to a bulk reservoir with the resulting free energy 

of mixing. This results in a reduction of the free energy of the system and an attraction 

between the plates ( of magnitude set by the osmotic pressure of the polymer solution) which 

continues until all of the solution has been transported from the vicinity of the plates to 

the reservoir. 

Likewise, the local concentration of polymers will be depleted both inside the brush and 

at the interface between a polymer brush and a polymer solution. This depletion leads to 

attraction between polymer brushes as seen in Figure 2.9. However, as the regions depleted 

of polymeric solvent begin to overlap, leading to attraction, the polymer brushes overlap 

also, leading to repulsion. Because the depletion of the polymeric solvent component extends 

slightly beyond the edge of the brush, attraction dominates at the onset of interaction. 

However, the repulsive interactions between the brushes soon take over. The magnitude of 

the depletion attraction is set by the osmotic pressure of the polymeric component of the 

solvent, and this leads the osmotic pressure adjusted force curves to superimpose in the 

upper right-hand inset of the figure. However, the magnitude of the attractive minimum 

in the force curves depends on the extent to which the depletion attraction overpowers the 

steric repulsion, which requires that the depleted region extend beyond the edge of the 

polymer brush. However, the extent to which the depleted region extends beyond the edge 

of the brush goes down with higher osmotic pressures, so that less and less of the osmotic 

attraction is felt before the repulsive interactions overwhelm the attractive interactions. 

Thus, for the data shown in Figure 2.9, the strength of the attraction is only 1.5%, 0.16% 

and 0.03% of the osmotic pressure for <P'78 = 0.1, 0.3, and 0.5 respectively. The net effect 

of increasing osmotic pressure is therefore a nonmonotonic dependence on <P'78
, with a 

maximum attractive force at roughly <P'78 = 0.3. Thus, a relatively small volume fraction of 

free polymer impurity is sufficient to establish an attractive interaction, which will become 

less important at higher polymer volume fractions. This is qualitatively consistent with 



40 

experimental observations, but it should be remembered that the case described here­

with athermal polymers, solvents and surface interactions-is highly idealized. On the 

other hand, this idealized system has the advantage of isolating the origin and magnitude 

of specific effects like the osmotic pressure attraction, without any confusion about the role 

of competing effects originating in interaction energies, or molecular weight dependence, or 

other factors. 

2.3 Summary 

In this paper we have attempted to resolve a few of the lingering questions about polymer 

brushes. First it was shown that because the linear dependence of brush height h on Ng 

is independent of the number of terms kept in the virial expansion, and because of the 

relatively weak ½ dependence on grafting density CJ", the segment density profiles are well 

predicted by the MWC theory [14] even when higher terms in the virial expansion are 

not negligible. At moderate chain lengths of Ng ~ 50, more than one term of the virial 

expansion is required to accurately describe the brush and to predict other quantities such 

as the lateral pressure Ilg [25]. However, for Ng of several hundred or more, a distinct 

regime does emerge in which the scaling predicted by second virial treatments is observed 

for the lateral pressure Ilg in addition to the brush height h and segment density profile 

qig(z). 

Next we examined the importance of finite length effects, and especially inter-chain 

penetration, on the interactions of polymer brushes under compression. It was observed 

that, despite appreciable interbrush penetration even for long highly stretched chains (Ng = 

1000, CJ"= 0.1), under high compression, the effect on the force profile at these compressions 

is minimal. By contrast, finite length effects are fairly dramatic at the onset of brush 

interactions. Weak long range interactions resulting from the overlap of the tail of the 

segment density profiles are much more pronounced for smaller chains, and are very sensitive 

to interbrush penetration. 

The more general problem of a polymer brush in a polymeric solvent was considered next. 

Following the scaling argument of de Gennes [13], we arrived at and verified two relevant 

scaling variables, NJ/ Ng and N10"2
, which determine not only the height but also the profile 

of brushes in the crossover from small to large solvents. The collapse of the brush during this 
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crossover was related to the stretching of the free polymer in the anisotropic environment of 

the brush. This in turn led to an examination of brushes in a mixed polymeric/monomeric 

solvent. It was observed that only the monomeric solvent would substantially penetrate 

the brush, and that the effect of the polymeric solvent is to compress the brush by osmotic 

pressure. The extent of this compression is determined by the volume fraction of the 

polymeric species in the reservoir cl>'.;e8. Finally, the interactions between such brushes in 

mixed solvents are examined. First a weak attractive interaction is observed, caused by the 

osmotic pressure of the solvent compressing the region depleted of free polymer near the 

brush. Then, as the two brushes begin to overlap, repulsive interactions begin to dominate. 

And once all of the polymeric solvent has left the brush, the force profiles are identical to 

those for the compression of a brush in a monomeric solvent with the exception of a shift of 

exactly the osmotic pressure of the solvent. The attractive interaction is not monotonic in 

cl>'./8
, and beyond some volume fraction the repulsive terms overpower the osmotic attraction 

leading to a purely repulsive interaction at high volume fractions. 
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Chapter 3 Effects of Polymer Brush Self-Assembly on Spreading and 

Thin Film Stability 

This work, published with Z.-G. Wang and M. Schick, extends the numerical and scaling 

results of the previous chapter by considering reversibly end-adsorbed polymers. Besides the 

addition of reversible adsorption, the focus of this paper is also shifted to an entirely different 

physical problem, and therefore requires a different background of experimental results, and 

modifications to the formulation of the model and the presentation of results. 

Reprinted with permission from Langmuir 1996, 12, 4950. 

Copyright @1996 American Chemical Society. 



47 

Abstract 

This paper discusses the modification of several spreading properties of a liquid on a solid 

surface by the addition of end-adsorbing polymers. End-adsorption of the polymers at the 

liquid-solid interface decreases the interfacial free energy. If this decrease is sufficient to 

overcome the negative spreading power of an otherwise non-spreading liquid, the liquid 

will spread on the surface. Using a self-consistent field method, we construct a phase 

diagram for spreading of a liquid drop of fixed volume as a function of the concentration of 

end-adsorbing polymers and the energy of end-adsorption to the surface. The equilibrium 

thickness of a spread film is also calculated and is shown to be closely related to the thickness 

of a self-assembled polymer brush in an unbounded fluid, but relatively insensitive to the 

bare spreading power of the liquid or the Hamaker constant which determine the equilibrium 

thickness of a film of a simple liquid. When a solid surface of a given area is covered by a 

film thicker than the predicted equilibrium thickness of a spread film, an instability due to 

the depletion attraction causes the excess liquid to form drops on top of the spread film of 

the equilibrium thickness. 
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3.1 Introduction 

The addition of end adsorbing polymers (EAP) to a compatible liquid can alter spreading 

and stabilize mechanically cast films. The polymer additive lowers the interfacial energy by 

adsorbing at the solid-liquid interface to form a self-assembled polymer brush (SAPB). The 

decrease in the interfacial free energy due to adsorption can become sufficiently large as to 

overcome the negative spreading power of an otherwise non-spreading liquid and cause it 

to spread. In this paper we discuss several key issues concerning spreading induced by the 

addition of EAPs: the quantity of EAP additive required to cause a nonspreading liquid­

solid pair to spread, the thickness of the resulting film, and the role and configuration of 

the SAPB within it . We also discuss the related problem of stabilizing mechanically cast 

films containing EAP additives. 

The need for stable thin films in industrial processes is widespread, ranging from the 

paint industry to semiconductor lithography [1 ]. The behavior of polymers in thin films, 

and the factors affecting film breakup and dewetting are also of considerable fundamental 

scientific interest . 

We study the change in spreading of an otherwise nonspreading liquid on a solid surface 

when an EAP species is added. In order to highlight the most fundamental processes, we 

consider the minimal set of parameters necessary to reproduce the observed phenomena. 

Specifically we study the spreading of a liquid film composed of an EAP additive- a linear 

polymer with a head group that is attracted to the solid-liquid interface- in a liquid which 

is a good solvent for the EAP. 

Special emphasis is given to the self-assembly of EAP brushes as it relates to spreading 

and film stabilization. We use a lattice self-consistent field method which provides complete 

configurational and thermodynamic information for chains of up to 1000 segments. To 

understand the origin of these phenomena, the numerical data is presented in the context 

of simpler scaling arguments. 

After a brief consideration of the background and theoretical preliminaries in Section 

3.2, we examine the self-assembly of an EAP brush in bulk liquid in Section 3.3, obtaining 

the surface excess free energy of brush formation, and the scaling behavior of an EAP brush 

in an unbounded liquid. The magnitude of the excess free energy due to end-adsorption 

relative to the (negative) spreading power sufficiently determines the thermodynamic ten-
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dency for spreading. Next, we consider the configurational and thermodynamic properties 

of a spreading film of finite thickness: in Section 3.4, we discuss the spreading of a liquid in 

equilibrium with a reservoir on a fixed area (an open system) , and in Section 3.5, we discuss 

the spreading of a finite drop on a surface of unlimited area, where we further distinguish 

between a drop of fixed volume and composition (a closed system) and a drop of fixed 

volume but variable composition determined by equilibrium with a reservoir (a semi-open 

system). The open and closed systems are directly related to experimental situations, while 

the semi-open system is a convenient conceptual construct for studying the thermodynam­

ics of the closed system. The analyses in these two sections provide the equilibrium film 

thickness ( of both the open and closed systems) and the phase diagram for spreading of a 

drop of fixed volume as a function of the amount of EAP additive and the adsorption energy 

of the head group. A key finding in Section 3.4 is the existence of a free energy minimum 

at film thickness roughly equal to the self-assembled brush height in the unbounded liquid. 

This minimum is due to the depletion attraction between end-adsorbed brush and the air­

liquid interface. In Section 3.6, the preceding results are used to discuss the stabilization 

of mechanically cast films. In particular we examine the protection an EAP additive pro­

vides against film rupture and dewetting of the solid and its effect on the uniformity of the 

film thickness in the context of experimental results of Yerushalmi-Rosen and Klein et al. 

[2, 3]. Finally, some concluding remarks are made in Section 3.7 about the strengths and 

weaknesses of EAP additives used to promote spreading or stabilize films. 

3.2 Background and theoretical considerations 

The spreading of a nonvolatile liquid on an ideal smooth surface has been understood in 

terms of the surface tensions of the relevant surfaces since it was formulated by Young 

more than 150 years ago [4]. The tendency for a liquid to spread on a solid surface is 

described by the spreading power, S, defined as S = rsA - ,SL - rLA, where ,sL and rLA 

are the interfacial free energies of the solid-liquid and liquid-air interfaces and rsA is the 

interfacial free energy between the bare solid and air. As the bare surface is not necessarily 

the equilibrium configuration, rs A is not necessarily the experimentally measured interfacial 

free energy between solid and air. If S > 0, the bare surface is definitely not the minimum 

free energy configuration, and the film will spread and thin. If S < 0 and the bare surface 
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is furthermore the configuration with the lowest free energy, spreading is unfavorable and 

the film will break up into droplets [5]. More detailed analyses of the microscopic shapes of 

droplets performed by de Gennes [6] and Brochard-Wyart et al. [7] predict that in addition 

to complete and partial wetting, certain combinations of the spreading power and van der 

Waals interactions will lead to "pseudo-partial" wetting, in which a droplet is surrounded 

by a microscopically thin wetting film. 

The spreading of a liquid-solid pair can be altered by addition of a solute species, es­

pecially a surfactant or polymer. Macromolecular additives will drastically increase the 

thickness of the interfacial region. End-adsorbing polymers (EAPs) aggregated at an inter­

face, for example, may be as thick as tens or hundreds of nanometers. Thus, for thin films 

the interfacial region may contain a nonvanishing part of the overall system volume and 

a majority of the surface active species, making it difficult to separate the interfacial and 

bulk energies. For this reason the behavior and interfacial free energy of polymers at an 

interface must be considered explicitly, and may depend on all of the variables of the system 

including film thickness and bulk composition. The spreading of a dilute or semi-dilute non­

adsorbing polymer solution in a non-volatile solvent has been studied by Halperin, Pincus 

and Alexander [8] and by Boudoussier [9]. In the former, a dilute polymer solution spread 

into a film thinner than the polymer's radius of gyration is studied. The configurational 

entropy cost of confining the polymer leads to a deformation of the film surface and an 

attractive interaction between polymer chains which may lead to a two-dimensional phase 

separation. Boudoussier studies a broader range of polymer concentrations, and predicts a 

phase diagram with four phases: a spread polymer solution film, a non-spread droplet of 

polymer solution, and two other phases in which these two states are in equilibrium with 

pure solvent films [9]. This is analogous to the "pseudo-partial" wetting of the pure liquid 

with the additional complication that the solution separates to form the surrounding, es­

sentially polymer-free, wetting film. These effects are purely entropic and can act only to 

disfavor the formation of uniform thin films. 

Adsorbing polymeric additives may favor spreading, and are therefore useful in the many 

applications where this is desirable. Polymers may adsorb at an interface either through 

an end group attracted to the interface, or through a uniform attractive interaction of the 

monomers with the interface, or a combination of the two. In this paper we consider end 

adsorbing polymers (EAPs), in particular a flexible EAP additive of N segments and volume 
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fraction <I> in a liquid which is a good (athermal) solvent for the polymer. The EAPs are 

assumed to be nonadsorbing at either the solid-liquid or liquid-air interface except for a 

functional group at one end of the chains which has an attachment energy of E (in units 

of kT) at the solid-liquid interface and is otherwise indistinguishable from the other chain 

segments. Thus we ignore aggregation of the head groups (micellization) and adsorption 

at the liquid-air interface. (These features will enrich the behavior of the system, but 

will not alter the essential conclusions of this study.) Further simplicity is achieved by 

considering an incompressible system with polymer segments chemically identical to the 

solvent molecules both with volume of one unit (equal to one cubic Kuhn length) . Thus the 

system volume V = nN + n 8 where n and n 8 are the number of EAPs and solvent molecules 

respectively. This constitutes the minimal set of parameters with which the wetting effects 

of EAP additives can be described. It reduces to Boudoussier's problem of nonadsorbing 

polymers when E = 0 and to Brochard-Wyart's problem of simple fluids characterized by H 

and S when no polymers are present. 

The chemical potentials of the EAP and solvent, µ and µ 8 respectively, are partial 

derivatives of the Helmholtz free energy F 

µ = (8F(n, n8 )) 

an ns 
(3.1) 

and F = nµ+n 8 µ 8 in the bulk, by virtue of the Euler theorem. Here we have made use of the 

incompressibility assumption and have ingored the inconsequential constant pV term. For 

an incompressible system n and n 8 , and thereforeµ and µ 8 , are not independent . Therefore, 

we use the notationµ to denote what in reality is an exchange chemical potential (i.e., the 

free energy change upon exchanging polymer and solvent with the reservoir). For open 

systems in equilibrium with a reservoir, either µ, or equivalently the reservoir composition 

<I>res, can be specified. Configurational information is obtained from the segment density 

profile <I>(z), which is the local volume fraction of EAP segments a distance z from the 

surface, averaged over the plane parallel to the surface. The adsorbed segment density 

profile <I>a(z) is the analogous profile for the adsorbed segments only, and of course the 

unadsorbed EAP chain density is given by the difference. The actual system composition 

is obtained by averaging over the thickness l of the film, <I> = z- 1 J~ <I>(z)dz, and the end 

attachment density, defined as the number of end-adsorbed chains per unit area, is given 
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by a= N-1 J~ <I>a(z)dz. 

All of the necessary thermodynamic and configurational quantities are efficiently ob­

tained using a lattice self-consistent field method described in Reference 10. The details 

of the calculation are spelled out in that reference, but in essence all of the configurations 

of the polymeric species are enumerated on a lattice, with the inter-chain and intra-chain 

interactions accounted for by a mean field which enforces incompressibility self-consistently. 

An extensive discussion of the virtues and limitations of various approaches to similar prob­

lems has been given in the literature [10, 11], and we will not approach the question here 

beyond noting that because this method explicitly considers incompressibility, rather than 

using a second virial approach, it can cover chain densities from the semi-dilute all the way 

up to the melt (at the mean field level). 

The use of EAPs described in the work is closely related to studies of the modification 

of wetting properties by irreversibly grafted polymer brush formation. The wetting of 

a polymer brush covered surface by a simple fluid or a mixture of two fluids has been 

studied by Johner and Marques [12]. They show that different interactions between the two 

liquids, the brush chains and the substrate can result in several novel layer configurations, 

as the brush "traps" one species selectively, and may alter the wetting properties of the 

underlying substrate. Leibler et al. [13] have studied the wetting of a grafted polymer 

surface by a melt of compatible chains using analytical methods and find that chains which 

are much smaller than the grafted chains will wet the surface, while chains which are 

much larger will not. These results are in agreement with more detailed self-consistent 

field calculations we have performed [14], and with the experimental results of Liu et al. 

[15]. They examined polystyrene (PS) films spread on the surface of polyvinylpyridine­

polystyrene block copolymer films oriented into lamellae with the PS block present at the 

vacuum interface and found that the homopolymer dewets the surface of the brush when 

its molecular weight is roughly five times that of the PS block of the copolymer. 

Recently Yerushalmi-Rosen and Klein et al. [2, 3] have studied the effect of polymer 

additives on the stability of spin cast oligostyrene films on silicon surfaces. They find 

that addition of high molecular weight polystyrene does not protect the film from the 

rapid rupture and subsequent dewetting of the silicon which is observed also for the pure 

oligostyrene film. However, if some of the polystyrene is replaced with end-functionalized 

polystyrene- which end-adsorbs on the silicon surface forming a polymer brush- the film 
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is stabilized against rupture and dewetting. Below some threshold for the total volume 

fraction of high molecular weight polystyrene, the film forms small "holes," which do not 

penetrate to the silicon surface, and do not appear to lead to dewetting of the silicon surface. 

We will comment on these experiments in some detail in Section 3.6. 

Finally, self-consistent and analytical mean field methods have been applied to the wet­

ting of a surface covered with an irreversibly grafted polymer brush. Schlanger, Leermakers 

and Koopal have applied self-consistent field methods to the wetting of bare and grafted 

surfaces by binary polymer solvent mixtures [16]. Dan has used analytic methods to study 

the effect of free polymer additive on the spreading of a partially wetting droplet on a sur­

face covered with grafted polymers [17]. Because the problem she studies is closely related 

to ours, we comment on her work in some detail. 

In Dan's calculation, it is assumed that the brush density can be approximated by 

a step-function profile of a thickness and density independent of the added free polymer 

chains. Using a mean-field square-gradient density functional for the free chains, she finds 

that spreading is favored when the concentration of the free chains exceeds a critical value 

(determined among other things by the polymer-surface interaction). However, this critical 

concentration is found to be lower for a repulsive polymer-surface interaction than for 

an attractive polymer-surface interaction - this is a rather counter intuitive result. We 

have independently performed a self-consistent field calculation for exactly the system Dan 

studies with a hard-wall polymer-surface interaction (where, by Dan's result, one expects 

to find maximum enhancement of spreading) and find that adding free polymers disfavors 

spreading at all concentrations. We thus believe her result is erroneous and is probably 

a consequence of assuming a constant, step-function-like brush profile unperturbed by the 

addition of free polymers. 

3.3 Self-assembled brush formation in an unbounded fluid 

3.3.1 Scaling behavior of self-assembled brushes 

In this section the configuration and free energy of a self-assembled brush of end adsorbing 

polymers (EAPs) in an unbounded fluid (Figure 3.1) of composition (volume fraction) <I> is 

examined. Theoretical treatment of end-attached polymers was pioneered by de Gennes [18] 

and Alexander [19] who approximated the profile of the brush as a step function of height h. 
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Figure 3.1: Schematic illustration of a self-assembled end-adsorbing polymer brush in an 
unbounded liquid. Notice the increased density and stretched configuration of the adsorbed 
chains. 

They used scaling arguments to predict successfully much of the behavior of brush systems 

for both irreversibly anchored and self-assembled brushes. Much subsequent study has been 

directed towards irreversibly grafted polymer brushes (fixed grafting density a) [11, 20, 21] . 

However, special features of self-assembled brushes- in particular the dependence of the 

grafting density on the other parameters of the system- lead to unique behavior relevant 

to our study. These scaling arguments clarify the interpretation of the numerical results of 

our more detailed self-consistent field calculation, and so we review them here. 

Scaling in low density limit 

Scaling predictions for reversibly adsorbed or self-assembled brushes compare quite well to 

the results of our self-consistent field calculation. In the low <I> limit, the grafted chains 

are laterally dilute and do not interact with one another. This condition is met when the 

distance between grafted chains is much larger than the unperturbed radius of gyration 

of the polymer1; a « ti. The chemical potential per adsorbed chain includes the lateral 

translational entropy on the surface, the end-adsorption energy, and the configurational 

entropy cost of a polymer attached to a hard wall2 and is of the order of the translational 

entropy of the isolated polymer chain in the bulk, 

1 <I> 
log a - E + - log N ~ log - . 

2 N 
(3.2) 

11n accord with our mean field approximation, we use exponents appropriate to gaussian rather than 
self-avoiding chains. 

2The entropy cost of a polymer near a hard wall is ( 1 1 - 1) log N where 1 1 = ½ for a mean field or 
gaussian chain. See Reference [22]. 
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This leads to the scaling prediction er ~ N-2 <f!e< which is observed on the left in Figure 

3.2. From this scaling we get a threshold for the dilute regime in terms of N and E, 
I 

<I> « N2 e-E. Because the adsorbed chains do not interact, their configuration, called the 

mushroom configuration, is independent of <I> and E. The mean field treatment is not an 

appropriate approach to the mushroom regime, and these results are shown primarily in 

order to present a complete and coherent description. More precise treatments of this regime 

require separate treatment of inter-chain and intra-chain interactions, as used, for example, 

by Carignano and Szleifer [23] 

10° 

1 ff 1 

1 ff2 

(J' 

-------------------------
--------

1 ff3 

1 ff4 

1 ff5 

1 ff6 

Figure 3.2: End adsorption density er versus the composition ( volume fraction) <I> in log-log 
scale for three end adsorption energies, E = 10 (solid line), 20 (dashed line), 30 (long-dashed 
line). The curves show three distinct scaling regimes; at low er, er ~ <I> ( er is not low enough 
to see this for all three curves), at intermediate er an intermediate scaling which gets broader 
and less steep as E increases, and at high er the linear scaling reappears. 

Scaling for brush in dilute solution 

An increase of the concentration of EAPs leads to a further increase in the adsorption 

density. Adsorption beyond the overlap density given by er ~ ¼ leads to stretching in the 

direction normal to the surface. This is the so-called polymer brush regime. If the EAP 

chains in solution are still dilute, then the only change in the free energy comes from the 

configurational entropy of the adsorbed chains. Following de Gennes we treat the brush as 

uniform in density with a height h. The free energy of a grafted chain includes a stretching 
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term and an excluded volume term, 

h2 
N(f 

f~-+N-N h • (3.3) 

1 
Minimizing with respect to h, one obtains the brush height h ~ N (!3, and therefore f ~ 

2 
N (f s. The free energy balance for a self-assembled brush is 

(3.4) 

which leads to a scaling of 

(3.5) 

Thus (f is weakly dependent on <P as observed in the plateau region of Figure 3.2. In the 
3 

limit of large E, the plateau becomes flat, and the scaling of (f becomes (f ~ (t:/N)z which 
1 1 1 

leads to h ~ N (f s ~ N 2 E 2 , independent of <P. 

Scaling for brush in concentrated solution 

When <P in the solution becomes comparable to the value in the brush, a new scaling regime 

is established. The density of the brush is approximately the same as the solution density, 

and since the solution does not penetrate the brush significantly, <P ~ N (f / h. Substituting 

the scalings for CJ" and h from the previous section, one finds that the lower limit of this 

regime is <P ~ N· The excluded volume interactions are screened at these higher densities 

so the stretching term balances E directly ( the lateral translational entropy also becomes 

unimportant at high densities) 

(3.6) 

I 1 
which leads to the scalings h ~ N 2 E 2 and 

(3.7) 

This predicted linear scaling is seen in the right-hand side of Figure 3.2 and in Figure 3.3. 

The threshold for the high density limit, <P ~ f.r, is consistent with what is shown in these 

figures. 
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Figure 3.3: End adsorption density er versus the composition (volume fraction) <I> in linear­
linear scale for three end adsorption energies, € = 10 (solid line), 20 (dashed line), 30 
(long-dashed line). The high <I> linear scaling is clearly visible in this figure. 

Self-regulation of chain configuration 

In the scalings described above, the adsorbed chain height h is weakly dependent on <I> 

or completely independent of it. Obviously, the chain height and configuration change 

in the transition between the scaling regimes since the mushroom configuration expected 

in the dilute limit is not the same as the brush configuration at higher EAP content. 

However, the scaling of the brush height in a concentrated solution is the same as the large 
1 1 

€ limit for a brush in dilute solution, h ~ N2 €2, and more importantly this configuration 

is independent of <I>. This can be understood phenomenologically as arising from the finite 

attachement energy €. As chain crowding and stretching increase, the free energy of an 

adsorbed chain increases until the configurational entropy cost of stretching equals €. The 

chains will stretch no further than this threshold because any additional configurational 

entropy cost would overpower the energetic attachment energy, resulting in desorption. 

The self-regulating brush height of self-assembled polymer brushes contrasts sharply with the 

behavior of irreversibly grafted polymer brushes [10, 24]. In Figure 3.4 the per chain segment 

density profiles <I> a ( z) / er are shown for chains in the different scaling regimes. In the low 

<I> limit, the adsorbed chains are in a mushroom configuration, which changes to a brush 

profile relatively insensitive to <I> in the brush regime. 



b 

------------N .____,, 

20 

15 

10 

5 

0 
0 

58 

10 20 30 40 50 
z 

Figure 3.4: The segment density profiles normalized by end attachment density for an EAP 
additive of N = 200, E = 20 with composition <I>-? 0 (solid line), 10-6 (dashed line), 10-3 

(long-dashed line), 0.1 (dotted line), 0.5 (dot-dashed line). The normal distance z is in units 
of the lattice spacing, which we take to be the Kuhn length. In the dilute limit the chains 
adopt a mushroom configuration, while for <I> > 0.1 the adsorbed chains are in the brush 
regime and their configuration is independent of concentration. 

3.3.2 Thermodynamics of end-adsorbed polymers in an unbounded liquid 

The appropriate thermodynamic potential for an interface in an unbounded liquid ( an open 

system) is the grand potential W(µ), which is defined 

W(µ) (3.8) 

where <I>(µ) is the composition which minimizes W subject to µ. The relevant quantity is 

the change in the grand potential when liquid from an infinite reservoir spreads on a surface 

to form a film covering an area A. Consideration of finite film effects is left to the next 

section. In this section we assume the film is thick enough so that the liquid-air interface 

does not interact with the polymer brush. Since Fres (<I>) = nµ + n 8 µ 8 , there is no polymer 

contribution to W by the reservoir, and 

(3.9) 
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F[<I>(µ)] - (nµ + nsµs) 

+A(,LA + 'Ysd-

For a fixed area A the grand potential per unit area is appropriate: 

1 
A~W(µ) 

~ [wfinal(µ) _ winitial(µ)] 

1 
A {F[<I>(µ)] - (nµ + n 5 µ 5 )} 

+bLA + 'YsL - 'YsA) 

Jex[<I>(µ)] - S 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where Jex(<I>) = ¼ {F[<I>(µ)] - (nµ + n 5 µ 5 )} is the excess free energy per unit area due to 

adsorption at the solid-liquid interface. 

The quantity Jex( <I>) shown in Figure 3.5 has a rather simple form- linear over most <I> 

on the scale shown in the figure- which is strikingly similar to the behavior of the density 

of end-adsorbed chains a- in Figure 3.3. This is a consequence of the self-regulating configu­

ration of the self-assembled polymer brush discussed above. Free energy contributions from 

stretching, excluded volume and attachment energy are, on a per adsorbed chain basis, in­

dependent of <I>, but a- increases linearly with <I>. And this leads to a simple proportionality 

between Jex( <I>) and <I> as observed. 

When Jex[<I>] :'.S S the excess free energy of the EAP brush is enough to overcome the 

unfavorable (since S < 0) interfacial free energy cost of spreading, and the liquid will spread 

on the surface. It is not known at this point what the thickness of the resulting film will 

be; it is only known that covering the bare surface is preferable to leaving it exposed to 

air. A representative value of S is shown on Figure 3.5 for an organic polymer 0.25kT / a2 

(indicated with a dashed horizontal line) where a is a Kuhn length or lattice spacing in the 

calculation. The intercept of Jex[<I>] with this line indicates the minimum EAP content <I> 

necessary to cause spreading. Thus for N = 200, E = 10 no spreading is expected at any 

EAP content up to pure EAP melt, while for E = 20 spreading will first occur at 13%, and 

at E = 30 only 3% EAP content is necessary. 
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Figure 3.5: The excess free energy per unit area, fex(<I>) for an unbounded liquid is shown 
as a function of composition (<I>) for N = 200, E = 10 (solid line) , 20 (dashed line) , 30 
(long-dashed line). The simple linear behavior is a consequence of the <I> independence of 
chain configuration and the simple linear dependence of a. 

3.4 Spreading from an infinite reservoir 

In the previous section it was determined under what conditions the driving force for self­

assembly of an EAP brush is sufficient to overcome the unfavorable surface tension cost 

to form a thick film. In this section the thickness and EAP configuration in such a film 

is addressed. Physically two types of films can be distinguished: a film covering a surface 

of fixed area and in equilibrium with a reservoir (an open system), and a film spread from 

a drop of liquid of fixed volume and composition on a surface of unlimited area (a closed 

system). In the first case, the amount of liquid on top of the surface is not fixed a priori, 

but rather is determined by the excess free energy per unit area. An excess free energy 

which decays monotonically with increasing thickness of the film implies the formation of a 

macroscopically thick film, whereas a free energy minimum at some finite thickness implies 

the formation of a microscopic layer of corresponding thickness [5, 25]. This section discusses 

the thermodynamics of the open system. This discussion is important for two reasons: first, 

the open system is conceptually simpler than the closed system and allows us to focus on 

the physics of polymer brush self-assembly in a film without having to consider constraints 

introduced by the fixed volume and composition. All of the thermodynamic information 
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for the open system can be used by appropriate thermodynamic transformation to study 

the behavior of a closed system; this will be discussed in the next section. Second, the 

behavior of an open system is directly related to the stability of the mechanically cast films 

discussed in Section 3.6. Indeed it will be shown that when the film thickness is larger than 

the equilibrium thickness predicted for the open system, the excess liquid will form droplets 

on top of the stable film , effectively creating a reservoir for the stable film. 

3.4.1 Self-assembled polymer brushes are cropped rather than squeezed 

reserv01r 

Figure 3.6: Schematic illustration of an open system film of thickness l. The film is in 
equilibrium with a reservoir of fixed chemical potential. 

When the thickness of the film l, shown schematically in Figure 3.6, is much larger than 

the thickness of the self-assembled polymer brush (SAPB) in an unbounded fluid h, the 

system is relatively insensitive to film thickness. However , for l ~ h the confinement of 

the SAPB becomes important. When the SAPB is confined to l < h, the chains begin 

to desorb. This is another consequence of the self-regulating configuration discussed in 

Section 3.3.1 above. The chains have adsorbed to the limit set by E, and therefore any 

additional configurational entropy cost of confinement surpasses the threshold , leading to 

desorption rather than compression. For this reason the profiles shown in Figure 3. 7 appear 

cropped rather than squeezed by the liquid-air interface. A way from the interface the local 

balance described in the scaling arguments and reflected in <I>a(z) is relatively unaffected. 

This is in sharp contrast to irreversibly grafted polymer brushes, which cannot desorb and 

are therefore squeezed as l decreases. In the irreversibly grafted case, the local density 

throughout the brush will increase and the shape of the profile will change (tending toward 

a flat profile as excluded volume interactions begin to dominate). The confinement of the 

SAPB to a thin film also has thermodynamic consequences which will be described after 
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the appropriate quantities are defined. 
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Figure 3. 7: The segment density profile is shown for several l as the film is increasingly 
confined. N = 200, E = 20, <I>res = 0.1, l = 50 (a), 40, (b), 30 (c), 20 (d), 10 (e). The 
normal distance z is in units of the lattice spacing. The solid lines show the end-adsorbed 
chains while the dotted lines show the free chains. For films of less than 30 lattice spacings 
the density of free chains is so small that it is not visible at this scale. Notice that the 
brush profile is unaffected by variations in the film thickness so long as l > h, leading to the 
nearly complete overlap of the brush profiles a and b. For thinner films l < h, the profile 
is cropped by the liquid-air interface rather than "squeezed," leaving the profile away from 
the film boundary largely unaffected. 

3.4.2 Open system thermodynamics 

The thermodynamics of this system are the same as described in the previous section with 

the addition of a van der Waal potential and of l-dependence to wfinal, Jex and 6..w . 

flw(µ, l) 

winitial = A,sA 

F[<I>(µ), l] - (nµ + nsµs) 

H 
+A(,LA + ,sL) + A 121rl2 

1 
A flW(µ,l) 

(3.15) 

(3.16) 

(3.17) 
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~ [ wfinal(µ, l) _ winitial] 

~ex H 
f [<P(µ), l] - S + 121rl2 

(3.18) 

(3 .19) 

Here His the Hamaker constant and is assumed to be positive [26]. The cost of confining a 

self-assembled EAP brush to a thin film is shown in Figure 3.8. As described in the previous 

section, the chains in the brush are not squeezed by the confinement, but instead selectively 

desorb, leading to a loss in adsorption energy. The free energy cost of confinement in Figure 

3.8 is nearly proportional to the decrease in er observed in Figure 3. 7. Thus, the cost of 

confinement of a self-assembled brush in a thin film arises from the decrease in adsorption 

density and the attendant decrease in the adsorption energy E, while for irreversibly grafted 

polymer brushes the increase in segment density is the origin of the free energy cost. An 

increase in the excess free energy as the brush is being compressed corresponds to a repulsive 

force between the solid-liquid and liquid-air interfaces. In fact, the results presented in 

Figure 3.8 can be applied almost quantitatively to the related problem of the interaction 

between two surfaces with reversibly formed brushes separated by 2l, after removing the 

S and H contributions (which, however, does not alter the repulsive nature of the force). 

The only correction comes from the possibility of interbrush penetration, which is minimal 

for long-chain brushes [10]. The behavior of the interaction forces between surfaces with 

weakly end-adsorbed polymers is explored more fully in Reference [27]. 

In addition to the prominent free energy cost of confinement, Figure 3.8 has a second 

feature with dramatic consequences for spreading. At a film thickness corresponding to 

the uncompressed brush height, there is a small minimum, shown in an expanded scale at 

the top of Figure 3.8, arising from the so-called depletion attraction [28]. This refers to 

the attractive interaction between interfaces in polymer solution, an effect first studied in 

the destabilization of colloidal suspensions in polymer solutions, and later shown to lead 

to an attraction between polymer brush coated surfaces in polymer solution [29, 24]. The 

driving force for the attraction is the configurational entropy cost of a polymer near a hard 

wall or other impenetrable interface. In the absence of other interactions, this entropy cost 

leads to a depletion in polymer concentration near the interfaces of length 8, which, in the 

semidilute regime, should be approximately the correlation length. When the two interfaces 

approach each other by a distance of less than 28, some polymer solution is moved from 



0.0470 

0.0468 

0.0466 

0.0464 

0.2 

0.1 
~ 

~ 

,,--..._ 

0.0 rn 
(I.) .... 
~ .___,, 

~ -0.1 
!~ 

<l 
-0.2 

-0.3 
0 

\, 
\ ~-
\ '' \ ' ', 

\. ' -, 

64 

I / 

\ I 

.I 

\ ' -....... \ ', -----------------------
\ ...... 
\ -----------------

', •• ,,.'-··-·-··-·-··-·-···-········-··-·-······-·-·-··-·····--

20 40 
l 

60 80 

Figure 3.8: The excess grand potential per unit area of the film is shown upon confinement 
to a film of thickness l (in units of the lattice spacing). N = 200, E = 20, µ = µ( q,res = 0.3) 
solid line,µ = µ(<I>res = 0.2) dotted line,µ =µ*= µ(<I>res = 0.1317) long-dashed line, 
µ = µ(<I>res = 0.1) dot-dashed line. All four curves show very small minima at l ~ h where 
they appear to become flat. The minimum in the µ( <I>res = 0.1) curve is shown above in an 
expanded scale, the minima in the other curves are quite similar. In all cases these minima 
are the global minima and thus l~ ~ h independent of q,res. 

its unfavorable position near the wall into the bulk state, and the attendant entropy gain 

causes the attraction. In our case the one hard wall is the air-liquid interface. The other 

wall is the interface of the liquid with the self-assembled polymer brush. Although not 

strictly a hard wall, the brush allows only very limited penetration of the free polymers and 

therefore results in a depletion of the free polymers near the tip of the brush, similar to a 

hard wall. 
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3.4.3 The equilibrium film thickness of an open system is nearly inde­

pendent of composition 

In the spreading problem the brush-liquid and liquid-air interfaces collapse into a single 

brush-air interface due to the depletion attraction at l ::::::: h. The minimum created by 

the depletion interaction in Figure 3.8 is necessarily shallow, especially compared to the 

large interfacial tensions and brush compression costs shown in the same figure. However, 

in the absence of additional effects not included in this paper, this free energy minimum 

determines the optimal film thickness l~ for the open system: 

at::,.w(µ, l) I = 0 az µ 
at l = l~. (3.20) 

Furthermore, it can be shown that the film at thickness l~ is stable against thermal fluctu­

ations, i.e., that the fluctuation in the film thickness around l~ is much smaller than both 

l~ and the width of the minimum3 . By virtue of the origin of the depletion attraction, the 

equilibrium film thickness of a spreading film in equilibrium with a reservoir is very nearly 

h, the brush height. Since the brush height is independent of <I> (see Section 3.3), the film 

thickness is independent of <I>. Thus the surprisingly simple and general conclusion of this 

section is that the film thickness of a spreading film in equilibrium with an infinite reservoir 

is independent of <I> and very nearly the height of the self-assembled polymer brush in an 

unbounded fluid. 

3.5 Spreading of a finite droplet of fixed composition 

In this section we consider the spreading of a drop of fixed volume and composition (a 

closed system) on a surface of unlimited area. This situation is most directly related to 

the experimental situation. The limited availability of EAPs leads to substantially different 

results than what is found for an open system. The thermodynamics for the closed system is 

discussed is Section 3.5.1. However, the film thickness and the phase diagram for the closed 

system are more conveniently obtained by constructing a semi-open system in which the 

volume of the liquid is fixed but the composition is allowed to vary according to equilibrium 

3For parameters used in the figures, the magnitude of thermal fluctuations is estimated as less than 2 
Kuhn lengths using the expression in Reference [30]. 
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with a reservoir of specified chemical potential. The relationship between the closed and the 

semi-open systems is discussed is Section 3.5.2. The two systems are shown schematically 

in Figures 3.9 and 3.10 respectively. 

<I>res = <I>film 

µres f:. µfilm 

Figure 3.9: Schematic illustration of the closed system of volume V spreading on the solid 
surface to form a pancake of thickness l. In the closed system the composition of the liquid 
is fixed. 

3.5.1 Closed system thermodynamics 

The appropriate thermodynamic potential for a closed system is the Helmholtz free energy 

change per unit volume b..f (<I>, l) upon spreading a droplet of fixed volume V and composi­

tion <I> with initially negligible interfacial area into a pancake-like film of uniform thickness 

l and resulting interfacial area V / l as shown in Figure 3. 9. The Helmholtz free energy of 

the initial state is 

(3 .21) 

where A is the area of the initially bare surface of the solid and f bulk( <I>) is the Helmholtz 

free energy per unit volume of a bulk liquid of composition <I>, and is therefore the limit 

f bulk( <I>) = lim1-, 00 f (<I>, l) = f res (<I>). The Helmholtz free energy of the final state is 

Thus 

pfinal( <I>, l) = V 
Vf(<I> , l) + ybLA +,sL) 

b..J(<I>, l) 

(
A V) 0 V H + - l /SA + l 121rl2 • 

b..F(<I>, l) 
V 

~ [ pfinal( <I>, l) _ pinitial( <I>)] 

J( <I> , l) _ 1res( <I>) 

(3.22) 

(3.23) 

(3.24) 
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(3.26) 

where Jex(<P,l) = l x [J(<P, l) - fres(<P)] is the same excess free energy per unit area as in 

the expression for 6.w [µ(<Pres), l] except that <Prather than µ(<Pres) is specified. 

As before, the equilibrium film thickness for a closed system is obtained by minimizing 

6.f(<P,l) with respect to l, at constant <P, 

86.J(<P,l)I =0 
al q> 

at l = z:. (3.27) 

If 6.f (<P, l) has a global minimum at a finite l, then the film will spread to a pancake of that 

thickness, while if the minimum falls at infinite l, the system forms a macroscopic droplet. 

3.5.2 Thermodynamic relationship of semi-open and closed systems 

---;a.. 
res ~ 

qires =J <I>film 

µres= µfilm 

Figure 3.10: Schematic illustration of the semi-open system of volume V spreading on 
the solid surface to form a pancake of thickness l. In the semi-open system the chemical 
potential µ is fixed, allowing for exchange with a reservoir. 

Although it is possible to study the closed system directly, it is more convenient and elucidat­

ing to obtain the same results by thermodynamic connection to the open system. In order to 

facilitate that comparison, we define a semi-open system in which the system volume is held 

fixed but the composition is allowed to vary to maintain a designated chemical potential. 

This system is illustrated in Figure 3.10. Because the volume of this system is fixed, the 

relevant thermodynamic potential is the grand potential per unit volume, 6.w(µ, l), which 

is defined 
1 1 

6.w(µ,l) = V6.W(µ,l) = y6.w(µ,l), (3.28) 



68 

where 6-W(µ,l) is the quantity defined in Section 3.3 Equation 3.12. The semi-open and 

closed potentials (6.w(µ, l) and 6-f ( <P, l) respectively) are compared term by term, 

1 { ~ex H } 6-w = l f [<I>(µ), l] - S + 121rl2 (3.29) 

6-f = ! {1~ex[<I> l] - S + __!_!_} 
l ' 121rl2 ' 

(3.30) 

which shows only one dissimilar term. Jex[<!>(µ), l] and Jex[<!>, l] differ in that µ is held 

constant in the semi-open system, while <I> is held constant in the closed system. However, 

l;0 which minimizes the semi-open system at µ also minimizes the closed system which has 

the same actual composition ( <I> = <I>(µ)), i.e., 

06.w(µ, l) I = 
[)l µ 

06.f[<I>(µ), l] I = O 
[)l <I> 

at l = l;0 = l~ (3.31) 

This is demonstrated by applying the chain rule to the semi-open system derivative 

06.w(µ, l) I 
[)l µ 

06.w(µ, l) I 
[)l µ,<I> 

+ 06.w(µ, l) I o<I> I . 
[)q> µ,l [)l µ 

(3.32) 

However, the term 

06.w(µ, l) I = 0 
[)q> µ,l 

(3.33) 

because the composition of an open system is determined by minimizing 6-w. Then, since 

06.w(µ, l) I = 86.f[<I>(µ), l] I 

[)l µ,<I> [)l <I> 
(3.34) 

the two derivatives are equal when the composition is the same. Thus l~ for the open system 

is equal to l~ for the equivalent closed system at <I>(µ). 

3.5.3 The equilibrium film thickness of a closed system depends upon 

composition 
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Figure 3.11: The excess grand potential per unit volume as a function of l (given in units of 
the lattice spacing). This figure is constructed from the data in Figure 8, and parameters 
of the system are the same as indicated there. Notice, however, that the location of the 
minimum in these figures is not independent of <Pres, and indeed can vary from less than h, 
to h at coexistence, and then, for nonspreading droplets, to infinity. The long-dashed line 
is at the coexistence µ and has two shallow equal minima at l ~ h and l -+ oo. 

To find the equilibrium film thickness, it is first necessary to obtain b..w(µ, l) which results 

directly from the data shown in Figure 3.8 after division by l. This data is presented in 

Figure 3.11. Notice that in this case the minima do not fall at l ~ h regardless of <I>. 

Instead the minimum falls at l -+ oo for nonspreading films, and at l < h for spreading 

films. Exactly at the threshold Jex (<I>, l) = S there are two minima of equal depth, one at 

l ~ h ( this feature is too small to be seen on the figure) and another at l -+ oo. At this 

chemical potential the droplet is in equilibrium with the spread film of thickness l ~ h. In 

Figure 3.12 l~ is shown as a function of <I> for E = 20. As additional EAP is added, the film 

thins. As more chains become adsorbed, they prefer to spread laterally to relieve crowding, 

even at the cost of some compression. This is in contrast to the open system in which l; is 

always h, independent of <I>. 

3.5.4 Phase diagram 

Another important feature of Figure 3.12 is the discontinuity in l~. At the spreading transi­

tion the film thickness goes from h discontinuously to oo. This corresponds to a discontinuity 
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Figure 3.12: The equilibrium droplet thickness l~ (in units of the lattice spacing) of a finite 
droplet spread on an infinite area as a function of the EAP content of the system <I> for 
N = 200, E = 20. At the coexistence curve l~ ~ h as in the open system, but as excess EAP 
is added beyond what is required to form a uniform film, the film spreads out, thinning the 
film at the expense of compressing the EAP brush. 

also in the actual composition of the system <I> at the transition from a uniform film to a 

bulk droplet state (althoughµ varies continuously; it is related to <I> by <I>= J~~ cI>(µ,z)dz). 

The state of a system with composition which falls between the allowed values for a bulk 

droplet or a uniform film is a bulk droplet state and a spread film state in coexistence 

(with the same µ) as shown in Figure 3.13. By plotting the transition from spreading to 

Figure 3.13: When the film is constrained to a thickness greater than the brush height, 
l > h, the excess fluid may dewet the surface of the EAP film as shown in this schematic 
illustration. 

nonspreading as a function of <I> and E, a phase diagram for the closed system is constructed, 

as shown in Figure 3.14. There are several features of the phase diagram worthy of special 
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Figure 3.14: The phase diagram for spreading as a function of the system composition <I> 

and end attachment energy E for N = 200. Notice that at high end attachment energy E, a 
vanishingly small quantity of EAP additive will result in some spreading, but a significantly 
larger quantity is required to convert the whole volume of the droplet to a uniform wetting 
layer. 

attention. First notice that there is a threshold E (about 10.5) below which even a melt 

of the EAP chains will not spread on the surface (this value depends, of course, on S and 

weakly on H). Above this threshold the amount of EAP additive required to stabilize a 

surface falls rapidly, and at E = 30, for example, only 3% EAP will cause some spreading 

and 9% percent will result in a uniform film. Addition of more EAP will result in some 

thinning of the film, as shown in Figure 3.12 above. 

3.6 Stabilization of mechanically cast films 

In the previous sections we have examined the spreading of a finite droplet into a thin film. 

In industrial applications, however, the reverse process of stabilizing a mechanically cast 

film against irregularity and rupture is often more important. In lithographic processes in 

the semiconductor industry, for example, it is often desirable to apply a uniform thin film 

by spin coating. If the liquid-solid pair being used has a negative S value, the film will not 

be stable and will break up into droplets. The addition of an EAP additive can change 

this, leading under the right circumstances to a stable film. The equilibrium thickness of 

the stabilized film depends upon the amount of EAP present. However , the mechanically 



72 

cast film will not necessarily have a thickness of precisely l~, leading to the possibility of 

film deformation or rupture. In this section the implications of equilibrium self-assembled 

polymer brush (SAPB) formation on the stability of films of arbitrary thickness and compo­

sition are described. The problem should be examined in several parts. First the formation 

of a stable liquid film which covers the solid surface is considered, and then the stability of 

such films against thickness irregularities. 

3.6.1 Covering the surface 

The formation of a film which will cover the solid-liquid surface depends upon the EAP 

content and adsorption energy E of the system as summarized in the phase diagram in 

Figure 3.14. If a mechanically spread film of any thickness has inadequate EAP content to 

spread ( <I> and E in the nonspreading portion of the phase diagram), the film can be expected 

to break up into droplets, leaving essentially the whole solid surface in contact with air. 

If, on the other hand, the EAP content puts the system in the spreading portion of the 

phase diagram, the liquid can be expected to cover a surface of area up to A covered = V/l~ 

(V is the volume of the cast film). If the area of the initially coated surface is greater 

than this, the film will dewet the surface to leave the excess area uncovered at equilibrium. 

Finally, if the EAP content puts the system in the coexistence regime, the lever rule can be 

used to determine what fraction of the volume is in the film and the area covered by that 

portion can be obtained as above. The remainder of the liquid can be expected to form 

bulk droplets on top of the spread film as indicated in Figure 3.13. 

3.6.2 Instability of thick films 

Provided that a spincast film is stable against dewetting as evaluated above, there remains 

the possibility that irregularities in the film thickness could occur, even while the bare solid 

surface is never exposed. In particular, it is clear from the preceding analysis that the 

equilibrium film thickness of an EAP system is always less than the thickness of the self­

assembled brush (for closed systems) or equal to it (for open systems). The film will remain 

stable against thickness irregularities for thickness less than l~. However, if a mechanically 

cast film is thicker than l~ , the excess liquid will form droplets on top of the film, effectively 

acting as a reservoir for the film beneath them and maintaining the thickness of the film at 
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There are some features of the depletion-attraction induced dewetting of the brush cov­

ered surface which distinguish it from the dewetting of the dry surface. First , the depletion 

attraction provides the only driving force for brush surface dewetting, and it is thus in­

dependent of S and any enthalpic interactions. This is intuitively reasonable because the 

dewetting of the brush exposes the same liquid area to air, and the rLA contribution to S 

is the same for the brush and the liquid (to a first approximation), since the segments are 

chemically identical. The van der Waals contribution is likewise negligible, since the liquid 

is on a layer of the same chemical composition which is already relatively thick. Although 

the depletion attraction free energy minimum leading to this dewetting is rather shallow, 

it is the sufficient to maintain film thickness against thermal fluctuations [30]. Therefore, 

it provides an adequate driving force for the breakup of the liquid into droplets above the 

EAP film. 

Recent experimental results of Yerushalmi-Rosen and Klein offer a possible example 

of the depletion attraction induced dewetting described above [2, 3]. They examined the 

stability of spincast oligostyrene films on silicon stabilized by self-assembled polystyrene 

brushes. These films form pockmark-like irregularities in the surface thickness which do not 

penetrate to the silicon substrate. We suggest that these are caused by the collapse of the 

liquid-air interface into the brush-liquid interface. They observe a subsequent stabilization 

of the film uniformity when additional EAP or unfunctionalized polystyrene is present 

which is not explained in our treatment. This may be due to the shallowness of the free 

energy minimum which is responsible for the equilibrium film thickness l~. Interactions 

neglected in our model may become comparable to the attraction arising from entropic 

depletion. If so, a more detailed model becomes necessary. In particular, the assumption 

that the surface tension contribution of the polymer and the monomer are identical, which 

results in a concentration-independent spreading power, may break down, especially as the 

concentration of unadsorbed chains above the brush goes from dilute to semi-dilute. 

The experiments in References [2] and [3] include consideration of an additional polymer 

species with no adsorbing group. We have also obtained results for this three component 

system, which, however, are not presented in this work for the sake of clarity. We found that , 

while the nonadsorbing polymer does modify the phase diagram for spreading (in particular 

widening the coexistence regime), it does not reduce or eliminate the depletion attraction, 

and therefore will not stabilize thin films or lead to films thicker than the equilibrium brush 
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height. 

3. 7 Concluding Remarks 

In concluding this study we will highlight the strengths of end-adsorbing polymer (EAP) 

additives as spreading agents and film stabilizers, and also review the complexity added to 

the problem upon formation of a self-assembled brush structure. 

The principal strength of an EAP additive is that it can induce spreading at liquid-solid 

interfaces which would otherwise not occur because of an unfavorable spreading coefficient 

S. Further, upon spreading, the properties of the film are largely independent of Sand the 

Hamaker constant H, and can be tailored by the characteristics and quantity of the EAP 

additive. The adsorbing head group and chain length can be specifically chosen to achieve 

a desirable thickness of the spreading film, which can be further modified by controlling the 

amount of additive used. 

Although S and H set the thickness of a thin film for simple liquids, their role is far 

less significant in films containing a self-assembled EAP brush. The van der Waals forces 

described by H become almost negligible (they are reduced by z-2). The role of S in an 

EAP system is to determine the minimum EAP content and E required for spreading. The 

resulting thickness for the EAP film is primarily set by h, the brush height, although in a 

closed system the excess EAP content does result in an indirect relationship of l~ and S. 

The results for spreading films lead us to some predictions about the stability of me­

chanically cast films. Some strong predictions about the EAP content required to cover 

the surface can be drawn from the phase diagram in Figure 3.14. We also predict that 

films mechanically spread thicker than l~ will be unstable and will break up into droplets of 

liquid above a swollen brush surface as shown in Figure 3.13. Two caveats must accompany 

this prediction. First, the driving force for this phenomena is the rather weak depletion 

attraction, which may be overwhelmed in a real system by factors not considered in the 

present model (but is robust against thermal fluctuations). Secondly, we make no predic­

tions about the kinetics of film breakup, which is likely to depend on many factors including 

the EAP content of the liquid film above the droplet, the interpenetration of the brush and 

unadsorbed polymers, and the presence of impurities. 
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Chapter 4 Forces Between Surfaces with Weakly End-Adsorbed 

Polymers 

This work, published with Z.-G. Wang, D. Zuckerman, R. Bruinsma and P. Pincus, extends 

the consideration of reversible adsorption to the limit of very weak adsorption. In this limit a 

new set of problems arise as well as a new set of analytical tools. In particular, the question 

of the sign, magnitude and length scale of the different forces caused by weakly adsorbing 

polymers are addressed by three complimentary methods; a phenomenological argument, 

a more thorough thermodynamic argument, and a detailed numerical analysis of the sort 

described in the previous chapters of this thesis. The phenomenological and numerical results 

are primarily the work of myself and Z.-G. Wang, while the thermodynamic analysis is 

primarily the work of D. Zuckerman, R. Bruinsma and P. Pincus. 

Reprinted with permission from Journal de Physique II 1997, 7, 1111. 

Copyright @1997 Les Editions de Physique. 
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Abstract 

We study the interaction forces between two plates in a semi-dilute solution of polymers each 

having one weakly adsorbing end-group. We show that this system exhibits both repulsive 

and attractive interactions of comparable magnitude and well-separated length scales: when 

the plate separation is within a range of order the end-to-end distance of the end-adsorbed 

polymer, repulsion arises with a magnitude of E N~3 where E is the end-adsorption energy, 

N is the degree of polymerization, a is the Kuhn length and <I> is the volume fraction of 

the polymer. This repulsion is due to desorption of the end-adsorbed chains. At plate 

separations of order the correlation length of the solution, a depletion attraction sets in 

with a magnitude that scales with the bulk osmotic pressure. 
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4.1 Introduction 

The importance of polymeric additives in mediating the interactions between colloidal par­

ticles has been understood longer even than has the basic nature of polymers themselves 

(for instance in the stabilization of ink by addition of polymers) [l]. The action of the 

polymers depends upon their physical properties and concentration. The contribution of 

a polymeric additive to interparticle interactions (and hence to colloidal stability) ranges 

from purely attractive ( destabilizing)- for flexible non-adsorbing homopolymers- to repul­

sive (stabilizing)- for irreversibly adsorbed polymers. In the first case the non-adsorbing 

chains are depleted near a colloid surface due to configurational entropy loss. This gives 

rise to an attractive interaction between the particles in which the osmotic pressure of the 

bulk compresses the gap in order to minimize the free energy cost of the depleted volume 

[2]. In fact, de Gennes [3] has shown that even the restriction to nonadsorbing chains is 

unnecessary to establish the sign of the interactions between two surfaces: for weakly ad­

sorbing homopolymer chains, it can be shown that the interaction is always attractive for 

systems in full equilibrium with the bulk (an exception to this is discussed later [4]). 

Irreversibly end-grafted polymers on the other hand form a hairy shell or corona around 

the particles which repel similarly coated particles by steric interactions [5]. This is not 

inconsistent with de Gennes 's theorem because irreversibly grafted chains are by definition 

not in equilibrium with the bulk. In this paper we will show that end-adsorbed chains 

with finite adsorption energy E produce repulsive interactions even in full equilibrium with 

the bulk1 . This repulsion can be understood as arising from the loss of adsorption energy 

when adsorbed chains are squeezed out of the gap. This is a subtle point, however, because 

uniformly adsorbing chains are likewise squeezed out of the gap, yet this leads to attraction 

rather than repulsion. The end-adsorbed chains are fundamentally different, however, in 

that they can adopt a prefered orientation with the functional group adsorbed at the wall. 

By virtue of their orientation, end-adsorbed chains are distinct from the other chains in 

the system. The adsorbed chains are distinguished in this respect over their whole length 

R (the end-to-end distance), even in a semidilute solution where the chain segments are 

generally indistinguishable on size scales larger than the correlation length ~ ( also called 

1This paper is concerned solely with the case of full equilibrium. In colloidal stabilization the system may 
not reach equilibrium during a Brownian collision, in which case a "restricted equilibrium" treatment such 
as is discussed in Reference (13] may be more appropriate. 
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the mesh size, which is the length scale beyond which intra-chain and inter-chain correlations 

are no longer distinguishable and is less than R for semi-dilute solutions [6]). When two 

such adsorbed layers on opposing walls begin to overlap, they will interact. The appropriate 

length scale for the interaction is thus the end-to-end distance of the adsorbed chain. The 

resulting repulsive interaction is in contrast with the attraction induced by chains which 

adsorb uniformly along their whole contour. The sign of the interaction is thus a consequence 

of the orientation of the chains and is perhaps most clearly understood by analogy with more 

familiar orientable systems such as magnetic fluids [7] . Magnetic particles can orient their 

magnetization at a wall. Two such walls will repel one another because of the frustration 

when the two opposite magnetizations meet in the midplane region, while ordinary surface 

adsorption of binary liquid mixtures always produces attraction between plates. Similarly, 

end adsorbed polymers will exhibit an orientation towards the surface, which will induce a 

repulsion between two such surfaces. This orientation arises from end-adsorption and not 

from the asymmetry of the molecule. In fact, telechelic or randomly functionalized chains 

can also be oriented this way, and will induce analogous repulsive interactions under certain 

circumstances. We will have more to say about other chain architectures in the conclusions, 

but for the sake of clarity will focus primarily on singly end-functionalized chains in the 

rest of the paper. 

The magnitude of the end-adsorption energy E will determine which interactions and 

length scales will be important. For very large E the configuration of the system will adjust 

itself to maximize the number of chain ends attached to the surface. In dense solutions 

or melts where the polymer density near the wall cannot be significantly increased, the 

chains are forced to stretch normal to the surface to allow more ends to attach. In more 

dilute systems this stretching is accompanied by a dramatic increase in the polymer density 

near the surface. The interactions induced by strongly adsorbing (high E) chains will be 

described briefly at the conclusion of this paper, but our primary focus in this work is 

weakly end-adsorbing chains. 

In the limit of weak end-adsorption (small E) in a semi-dilute solution, the overall seg­

ment density distribution is not significantly altered by adsorbing end-groups, since these 

account for only a small portion ( t:1) of the overall segment density. In this limit the overall 

segment density will still be depleted within a correlation length ~ of the wall, and this 

depletion will give rise to a depletion attraction between the surfaces exactly as in the limit 
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of zero E. The range of this depletion attraction is ~- This depletion attraction operates 

simultaneously with the above mentioned desorption repulsion, but with different ranges. 

If ~ is small compared to R, the short range attraction and the long range repulsion will 

not locally cancel. This separation assures us that there is no threshold value of E for the 

repulsive interaction, because any end adsorption will orient some chains, and this causes 

repulsion at length scale R. Thus, in the semi-dilute regime, where a « ~ « R (a is the 

Kuhn length), the interaction potential has both a long range (R) desorption repulsion and 

a shorter range (~) attraction, reminiscent of the DLVO interaction profile, where desorp­

tion and depletion are replaced by a long range electrostatic repulsion and a short range van 

der Waals attraction [8]. Colloids with weakly end-adsorbed polymers thus should show a 

rich phase behavior, including a transition from flocculation to stabilization as a function of 

the volume fraction of polymer <I> and E. Polymers with weak end-adsorption are currently 

under examination in atomic force studies of polymer surfaces [9]. 

In this short paper we will approach this problem through three complementary meth­

ods. In the next section we construct a phenomenological picture in the small E regime. By 

assuming that the overall segment density profile is not significantly altered upon introduc­

tion of a moderate adsorption energy at one chain end, a schematic segment density profile 

for adsorbed and nonadsorbed chains can be constructed. This profile leads to a scaling pre­

diction for the different interaction regimes between two plates and for the relevant length 

scales for the interaction. The most important omission of the phenomenological treatment 

is the coupling of the overall segment density near the wall with the adsorption energy E, 

which will cause some increase in the segment density near the wall in order to increase the 

number of adsorbed chain ends. This omission is corrected in Section 4.3 by a more careful 

thermodynamic treatment of the interaction in the regime ~ « h « R for moderate E. In 

that section we also comment upon the factors which limit the application of de Gennes 

theorem regarding the attractive interplate interactions in the presence of uniformly ad­

sorbing polymers in full equilibrium with the bulk. The thermodynamic analysis confirms 

the scaling prediction of the phenomenological treatment for the repulsive interaction in 

that regime. Confirmation of the other features of the phenomenological picture are given 

by a detailed numerical self-consistent field treatment described in Section 4.4. We take 

advantage of the broad range of parameters available to this calculation technique to make 

a connection between the weakly adsorbed chain limit examined in this paper, and earlier 
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results obtained for higher adsorption energies [10]. Finally, in the discussion and conclusion 

section, some rules of thumb are described for determining whether attractive, repulsive, or 

"DLVO type" interactions are to be expected under a given set of experimental conditions. 

4.2 Phenomenological Description 

We consider a semi-dilute solution of polymers of degree of polymerization N, with Kuhn 

length a, in a good (athermal) solvent. The volume fraction of polymer is <I>. The chains 

have a weak end-adsorption energy E, but no other segmental attraction to the surface. 

For simplicity, we assume that end-groups do not interact significantly with other segments 

or with one another, that is, we exclude the formation of micelles. For the purpose of 

simplicity, we address the regime in which the adsorption energy E is not sufficient to cause 

a significant local excess of monomer density near the surface and can be treated as a small 

perturbation to the case of nonadsorbing homopolymers near a hard wall; thus we limit our 

consideration in this section to cases where E is not much larger than kT. 

Chains with a weakly adsorbing head group will orient themselves so that chains near 

the surface will have their end-group attached to the wall. This adsorption should be 

essentially complete near the surface provided that E is more than a few kT, but will 

die off gradually for chains farther from the surface with a characteristic length scale of 
1 1 

the chain size R ~ N2a<I>-s [6]. The upper bound to the weak adsorption regime is 

defined such that there is no significant anisotropic stretching nor any significant increase 

in segment density near the surface. For larger E, a large increase in adsorption density leads 

to stretching normal to the surface which is characteristic of the so-called brush regime. In 
1 

the brush regime the chains stretch to a length D which scales with Naa-s where a is the 

dimensionless grafting density and is found by balancing chain stretching with adsorption 

energy [5, 11]. However, in the present work we concern ourselves with weak adsorption for 

which Rand D are comparable. 

In the weak end-adsorption regime, the concentration of polymer segments is depleted 
3 

within one correlation length ~ ~ a<l>-4 of the wall due to the restriction of chain config-

urations by the wall [6]. Scaling predictions of the profile and interfacial free energy for 

noninteracting or repulsive polymer chains have been worked out by de Gennes for segment­

wall interaction ranging from weakly attractive to repulsive [12] . For a noninteracting wall 
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the free energy of the interface is simply the work done against osmotic pressure II to remove 

the solute to a distance ( from the wall. 
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Figure 4.1: Schematic segment density profile cI>(z) for weakly end-adsorbed chains as a 
function of the distance z from the surface. The solid line is for chains with adsorbed end 
groups and the dashed line is for non-adsorbed chains. 

A schematic representation of the main features of the segment density profile is shown in 

Figure 4.1. Numerically obtained profiles are readily obtainable from detailed self-consistent 

field calculations discussed in Section 4.4 below, and are consistent with the figure over 

a broad range of semidilute concentrations and chain lengths. The segment density of 

adsorbed chains is indicated with a solid line and nonadsorbed chain segment density, with 

a dashed line. The chain density of adsorbed chains becomes significant in the region less 

than one end-to-end distance R away from the wall. Also there is a depletion of the segment 

density within a distance l from the wall due to the decrease in configurational entropy. 

We now consider the interaction between two surfaces of the type described above. 

Because the system has mirror symmetry, it is convenient to describe the plate separation 

by h, the distance between the hard wall and the plane of symmetry. Thus the actual plate 

separation is 2h. When the plate separation is many times the chain size R, there is no 

interaction. For half-plate-separation R > h > l , the proximity leads to the desorption of 

some chains in order to prevent the chain overlap from causing an increase in chain density 
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(which would cause an increase in the excluded volume interactions). The adsorption energy 

per unit area is simply the number of adsorbed chains per unit area times E, and can be 

expressed in terms of the segment density profile of adsorbed chains N~3 J <I>a(z)dz. For 

the sample profile in Figure 4.1, we obtain a force per unit area which is repulsive and is of 

magnitude E N~3 

For half-plate separation of less than the correlation length h < ~, the depletion at­

traction becomes important. Because the chain segment density is depleted near the wall, 

the bulk solution exerts an osmotic pressure on the depleted region. If the concentration 

between the plates is depleted, the osmotic pressure leads to an attraction between them. 

The magnitude of the attractive interaction is given by the osmotic pressure of the bulk 

solution TI, although it varies with the extent of depletion. 

When the free energy of a single chain between the plates- which consists of the end 

adsorption energy E and the cost of confinement between two plates separated by 2h­

exceeds the bulk chemical potential, µ, of the semidilute solution, 

(
a)½ Na

3 

- E + kT N 2h > µ ~ kT ~3<[> , ( 4.1) 

the chains will rapidly leave the gap [6]. Thus there will be some threshold spacing he at 

which the interplate chain density becomes vanishingly small (because the polymer concen­

tration in the gap is very low, it is appropriate to use the single chain expression for the 

confinement cost). Upon using~~ a<I>-314, the condition Equation 4.1 becomes 

(4.2) 

For h < he, the concentration between the plates becomes vanishingly small and the in­

teraction is simply the bulk osmotic pressure. The length he is not a new length scale in 

the problem, but rather the half-plate separation at which the monomer concentration is 

completely depleted, a process that began at h ~ e, Indeed, when E = 0, the threshold 

separation for all chains leaving the gap he is simply ½~ from Equation 4.2. The attractive 

contribution to the interaction begins when the depletion regimes on both surfaces overlap, 

at plate separation approximately twice the correlation length. Total chain exclusion, on 

the other hand, arises when the confinement of a single chain between the plates becomes 
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unfavorable; in the limit of small E, this happens at plate separation approximately one 

correlation length. Thus, the one half prefactor is retained because it arises naturally from 

the phenomenological picture, as two adsorbed layers give way to one, but should not be 

taken to indicate that this prediction is correct to a numerical factor. 

0 

R 

h 

Figure 4.2: Schematic force per unit area IId versus h, the half gap separation. 

From this phenomenological description a schematic force profile can be constructed, as 

is shown in Figure 4.2 . The profile has three principal features. At a distance of h ~ R, a 

repulsive interaction begins with a characteristic magnitude of E N~3 . At h ~~the depletion 

in polymer density decreases the repulsive contribution of the polymer chains and introduces 

an attractive osmotic term. The attraction grows as h decreases until, at h = he, all of the 

polymer has left the gap and the interaction is simply the osmotic pressure II. 

4.3 Thermodynamic Analysis for ( << h << R 

The prediction of a repulsive interaction between two plates, even in full equilibrium, is 

unusual and it is appropriate to give it a more careful thermodynamic treatment. We are 

interested in the disjoining pressure between two plates at separation 2h where~ « h « R 

and the solution is in the semidilute regime. 

We assume that the segment density <l> between the plates is uniform, although not 
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necessarily the same as the bulk segment density <I>b, and is in the semidilute regime <I> * « 
4 

<I> « 1, where <I> * is the overlap volume fraction (which depends on N as N-s) [6]. The 

entropic depletion in monomer density at distances less than~ from the wall will be described 

as a surface term. For E > kT, essentially all of the adsorbing ends should be adsorbed if 

h « R. Under these assumptions, the excess grand potential per unit area is 

6. w = c1 - + h f ( <1>) - µb - + ITb - - - <1> kT [ <I> ] h E e a3 a3 N 
(4.3) 

where f (<I>) is the Helmholtz free energy per unit volume of a semi-dilute solution of volume 

fraction <I> given by 

( 4.4) 

and c 1 and c2 are numerical constants of order unity. The first term is the cost of the 

depletion at the surface, the next three represent the contribution to 6-w from the interior 
3 

of the gap, and the last term is the adsorption energy. Taking~= a<I>-;r for the correlation 

length inside the plates, the grand potential can be expressed entirely in terms of <I> and is 

minimized with respect to <I> to yield the relation 

(4.5) 

where 

(4.6) 

is the chemical potential per monomer. Finally, the osmotic pressure ITb of the bulk semi­

dilute solution is 

In the limit h » e Equation 4.5 gives 

~ c2kT <I>¾ 
4 a 3 

5 µb<l>b 
---
9 a 3 

(4.7) 

(4.8) 

Substituting in the calculated expression for µb from Equation 4.6 leads to a monomer 
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density <I> between the plates which is always greater than or equal to the reservoir segment 

density: 

(4.9) 

Inserting Equation 4.8 in Equation 4.3 we obtain an expression for the disjoining pressure 

IId, which is the negative derivative of b.w with respect to h, 

db.w ab.w 
--- ---

dh 8h 

(4.10) 

which, using Equation 4.8, leads to 

(4.11) 

where we have used Equation 4.8. 

Because <I> 2:: <I>b it is clear that the disjoining pressure is repulsive (Ild 2:: 0). Moreover, 

when the bulk chemical potential (on a per segment basis) is far greater than the adsorption 

energy per segment 

(4.12) 

and therefore 

(4.13) 

then the expression for <I> in Equation 4.9 can be expanded about <I>b 

(4.14) 

Substituting this into Equation 4.11 we obtain, to leading order, 

(4.15) 

which is the result predicted on the basis of the phenomenological model. 

At first sight the prediction of a repulsive interaction between the plates appears to 
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contradict the theorem of de Gennes. However, this is not the case. In his treatment, de 

Gennes assumes that the same functional form of the free energy density l (<I>) describes both 

the free energy within the gap and in the bulk, and the effect of polymer-wall interaction 

amounts to a boundary condition [3]. This, together with the concavity of l (<I>) immediately 

leads to 6. W > 0 and IId < 0. In the case of end-adsorbed polymers, however, the free 

energy density in the gap has a different form than the free energy density in the bulk, 

l (<I>) = - N~3 <I>+ lb( <I>) where lb( <I>) has the same functional form as the bulk. The difference 

in the functional form of Helmholtz free energy density leads to the difference in interactions. 

In fact, a repulsive disjoining pressure can be shown to arise whenever there is a favorable 

energy contribution per particle in the gap. 

4.4 Numerical Results 

We now approach the problem with a detailed self-consistent field method, which gives 

us full configurational and thermodynamic information (at the mean-field level) for any 

adsorption energy E and for polymer volume fractions <I> from the semi-dilute all the way 

up to the melt. In this approach [13, 14] the many-body problem is reduced to a one­

body problem in a mean field which accounts for the effect of inter-chain and intra-chain 

interactions and polymer-solvent interactions. The one chain problem is solved exactly by 

enumerating all configurations on a lattice using a recursion relation. The field is obtained 

self-consistently by an incompressibility constraint which requires that the total chain and 

solvent volume fractions add up to unity. The Helmholtz free energy F is obtained from 

the partition function Q 

(4.16) 

where np and n 5 are the number of polymers and solvent molecules in the system and the 

excess grand potential 6. W is in turn obtained from the Helmholtz free energy F, which, 

for an incompressible system, is given by 

(4.17) 

where µp and µ 5 are the chemical potentials of the polymers and solvent molecules re­

spectively. Because the system is incompressible, n 5 a3 + npN a3 = V where we have set 
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both the monomer volume and the solvent molecule volume equal to a3 . Substituting 

n 8 = V/a3 - npN into Equation 4.17 we obtain 

(
µP ) V t::i. W = F - n N - - µ - -µ 

P N s a3 s (4.18) 

which can be expressed in the same form as Equation 4.3 in Section 4.3: 

(4.19) 

where µb is the exchange chemical potential per monomer of the polymer in the bulk 

(4.20) 

and the osmotic pressure is related to the solvent chemical potential 

( 4.21) 

and V lb = Fb is the Helmholtz free energy in the bulk. The force is simply the negative 

derivative of the grand potential with respect to h. 

( 4.22) 

Because of the mean-field nature of the calculation, results will scale with mean-field 

exponents. However, because this method enforces the incompressibility condition explicitly 

(as opposed to a second virial approach), it can consistently examine any value of E as well 

as a wide range of <I> without any of the difficulties encountered in analytical treatments. 

In Figure 4.3 the force profile is shown for a system of N = 2000, <I> = 0.005 and E = 10. 

The osmotic pressure II, polymer size R, correlation length ~ and total chain exclusion 

threshold he are shown, as is a scaling estimate of the magnitude of the repulsive force ( he 

was obtained from Equation 4.2 using appropriate prefactors and mean-field exponents for 

consistency with the calculation). All of the features predicted by the phenomenological 

model are observed. Similar agreement with the schematic density and force profiles and 

more generally with the phenomenological description of the system is found for a large 

range of N and <I> in the semidilute regime. The preceding section demonstrated that N~3 <I> 
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Figure 4.3: Force per unit area Ild versus h, the half gap separation for N = 2000, <I> = 0.005 
and E = 10. 

is the correct scaling for the repulsive interaction in the range ~ « h « R, while for the 

attractive interactions the osmotic pressure IIb gives the appropriate scale. In all cases, the 

depletion induced attraction obtained numerically indeed reaches a maximum magnitude of 

exactly the osmotic pressure IIb while the repulsive force reaches a maximum of magnitude 

E N~3 . The numerical prefactor for the repulsive force is about 0.6 independent of <I> in the 

range 0.005 :S <I> :S 0.2 for E = 10 and N = 2000. For lower E the assumption that all chain 

ends near the surface are adsorbed apparently breaks down and the numerical constant gets 

smaller and becomes dependent on <I>. For higher E chain stretching becomes important and 

the polymer brush picture is more appropriate [10]. 

4.5 Conclusions 

In this paper we have shown that weakly end-adsorbed polymers induce complex interac­

tions between interfaces which have implications for understanding the stability of colloidal 

suspensions. In contrast to homogeneously adsorbing chains which, according to the theo­

rem of de Gennes, always induce attractive interactions between surfaces when they are in 

complete equilibrium [3], end adsorbed chains induce repulsion at separations comparable 

to R and attraction at separations comparable to r The end-adsorption energy E plays 
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a crucial role in the restoration of the length scale R by orienting the polymers near the 

wall. In fact, even a uniformly adsorbed chain will have some orientation of nonadsorbed 

chain ends or "tails," and this has recently been shown by Semenov et al. to lead to a weak 

repulsive interaction for uniformly adsorbed polymers in full equilibrium [4]. This repulsion 

arises from considering the difference between the loops and tails, and is beyond the level 

of de Gennes theorem. 

Let us review scaling estimates for the magnitude of the forces and length scales relevant 

to the problem. These estimates provide rules of thumb, with which the importance of the 

attractive and repulsive interactions can readily be gauged, and a conclusion can be reached 

as to whether the brush, non-adsorbing or crossover description is most appropriate in a 

particular system. 

The interesting force profile described in this paper arises from the fact that two length 

scales are simultaneously active,~~ a<1>-v/(3v-l) ~ a<I>-¾ and R ~ (N a 3 /<I>O ½ ~ N½ a<I>-½. 

This occurs only in semi-dilute solution and for relatively weak end-adsorption (given by 

the criterion Equation 4.13. The magnitude of the depletion attraction in this regime is 

given by the bulk osmotic pressure of the system, II ~ kT~-3 ~ kT<I>t a- 3 [6], and the 

magnitude of the repulsive interaction is E N~3 . 

Although the treatment in Sections 4.2 and 4.3 assumes weak end-adsorption in the semi­

dilute regime, the prediction that the repulsive interaction scales as E N~3 is more robust, 

and is not limited by these assumptions. In dense solutions or melts, the correlation length 

tends toward the segment length, which causes the attractive portion of the interaction 

profile to disappear. However, the repulsive interaction will remain with a magnitude E N~3 , 

even as <I> tends toward one. In this high concentration regime, the local segment density 

at the wall cannot be significantly modified by either end-adsorption or the overlap of 

opposing adsorbed layers on surfaces at separations of less than 2R. Thus bringing the plates 

within 2R of one another will result in desorption and therefore repulsion of the same type 

described in Section 4.2. Similarly, for strong adsorption, even in dilute and semi-dilute 

solutions, the segment density at the wall will be quite high, characteristic of the brush 

regime with excluded volume interactions and stretching balancing the adsorption energy. 

As two brushes overlap from opposing plates, chains will desorb to avoid overcrowding. This 

leads to a repulsive interaction of magnitude E N~3 , where <I> is the local segment density 

within the brush. Because the segment density in the brush is higher than in the bulk 
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solution, there is no depletion attraction on length scales much larger than the segment 

length. Thus in either the melt or the strongly adsorbing cases, the repulsive interaction is 

given by E Jia,3 where <Ii is the local segment density. These conclusions have been confirmed 

by self-consistent field methods as described in Section 4.4, the semi-dilute in previouly 

published work [10] and the melt in unpublished results. 

The general picture developed in this paper is also applicable to amphiphilic molecules 

of more complex architectures than the singly end-functionalized chains discussed in this 

paper. The minimum necessary condition to observe an equilibrium repulsive interaction is 

that all ( or at least most) of the adsorbing species in a region larger than the correlation 

length are localized at the surface. In this case, the overlap of the adsorbed layers leads 

to a decrease in the adsorption density in order to maintain the local density of the rest 

of the chain segments. The decrease in adsorption density has an associated energy cost 

which leads to the repulsive interaction. This could equally well occur with telechelic chains 

with adsorbing groups at both ends, or even randomly functionalized chains, provided that 

the number of functional groups was small enough that most of them could be localized 

at the surface while still having the unfunctionalized portions of the chain extend into 

the solution a distance greater than the correlation length. However, these different chain 

architectures also introduce other complexities, including bridging of a single chain adsorbed 

on both plates [15]. This bridging can lead to an attractive interaction which is entropic 

in origin, and will act for the most part independently of the repulsive interaction caused 

by the removal of adsorbed chains. Thus more complex interaction profiles with multiple 

attractive and repulsive regions are possible. 
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