
ON A PROBLEM IN GEOMETRIC MEASURE 

THEORY RELATED TO SPHERE AND 

CIRCLE PACKING 

Thesis by 

Themistoklis Mitsis 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1998 

(Submitted March 16, 1998) 



Our revels are now ended ... These our actors, 

As I foretold you, were all spirits, and 

Are melted into air, into thin air, 

And, like the baseless fabric of this vision, 

The cloud-capped towers, the gorgeous palaces, 

The solemn temples, the great globe itself, 

Yea, all which it inherit, shall dissolve, 

And, like this insubstantial pageant faded, 

Leave not a rack behind: we are such stuff 

As dreams are made on; and our little life 

Is rounded with a sleep ... 

William Shakespeare 
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IV 

Abstract 

In this thesis we prove that a Borel set which contains spheres centered 

at all points of a Borel set of Hausdorff dimension greater than 1 must 

have positive Lebesgue measure, and , using the same method, we re­

derive a special case of Stein's spherical means maximal inequality. We 

also prove the corresponding result for circles, provided that the set of 

centers has Hausdorff dimension greater than 3/2. 
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INTRODUCTION 1 

Introduction 

By the term packing problem we usually refer to the following type of 

question: given a collection of geometric objects in a Euclidean space is 

it possible to find a set of Lebesgue measure zero containing a translate, 

or a congruent copy of dilates of every object in the collection? 

The beginning of the study of packing problems can be traced to 

Besicovitch who, as early as 1919, solved the "Kakeya problem" by 

constructing a compact set of plane measure zero containing a line 

segment in every direction. The monograph by Falconer [5] contains 

a fairly extensive account of the history of the subject, as well as its 

applications to other areas of mathematics. 

In this thesis we are concerned with the problem of investigating 

the relation between the measure of the union of a set of spheres or 

circles and the metric properties of the set of their centers. 

To begin with, a partial answer to the above question comes from 

the work of Stein [14] on the spherical means maximal operator. 
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For f E Cc(IRd), define 

where sd-l is the (d-1)-dimensional sphere and dais surface measure. 

Then we have the following: 

THEOREM 0.1. Suppose that d 2". 3, p > d~l . Then there exists a 

constant C > 0 that depends only on d and p such that 

Using this result one can easily prove the following: 

THEOREM 0.2. Let F C JRd, d 2". 3, be a set of positive Lebesgue 

m easure. If E C ]Rd is a set which contains spheres centered at all 

points of F , then E has positive Lebesgue measure. 

The two-dimensional case was settled by Bourgain [2] , who proved 

that the conclusion of the above theorem still holds if d = 2, and, 

independently, by Marstrand [9], who used purely geometric methods. 

THEOREM 0.3. Let F C IR2 be a set of positive Lebesgue measure. 

If E c IR2 is a set that contains circles centered at all points of F , then 

E has positive plane measure. 
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This should be contrasted with a construction due to Talagrand 

[15] . 

THEOREM 0.4. There is a set of plane measure zero containing for 

each .T on a given straight line, a circle centered at .1:. 

It is , therefore, natural to ask whether one can weaken the condition 

that the set Fin the above theorems should be of postive measure. The 

main results in this thesis are the following: 

THEOREM 1. Let F C !Rd, d ~ 3, be a Borel set of Hausdorff 

dimension s, s > l. If E C ]Rd is a Borel set that contains spheres 

centered at each point of F, then E has positive Lebesgue m easure . 

THEOREM 2. Let F C IR2 be a Borel set of Hausdorff dimension 

s, s > 3/2. If E C IR2 is a Borel set that contains circles centered at 

each point of F, then E has positive Lebesgue m easure. 

The thesis is organized as follows: 

In Chapter 1 we state some geometric lemmas needed later on, in Chap­

ter 2 we prove Theorem 1 and construct a counterexample related to 

it , in Chapter 3 we prove Theorem 2, and finally, in Chapter 4, we dis­

cuss the possibility of weakening the condition s > 3/2 in Theorem 2. 
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Throughout this thesis, a, ;S b means a, ::; Ab for some absolute con-

stant A, and similarly with a, 2:, b and a, ~ b. We will denote Lebesgue 

measure by I • J. 



1. BACKGROUND 

CHAPTER 1 

Background 

We start with some notation: 

B(x, r) is the open disk (or ball) with center .T and radius r. 

C(.r, r) is the circle (or sphere) with center .T and radius r. 

5 

C8(x, r) is the 5-neighborhood of the circle ( or sphere) C(.r, r ), i.e., the 

set {y E IR.d: r - 5 < Ix - YI < r + 5}. 

If C ( x , r) and C (y, s) are circles, then define 

d((.r , y), (r, s)) = Ix - YI+ Ir - sl 

~((x,y), (r, s)) = llx -yl - Ir - s11 

Note that~ = 0 if and only if the circles are internally tangent, that 

is, they are tangent and one is contained in the bounded component 

of the complement of the other. In what follows, we assume that the 

centers of all circles ( or spheres) in question are contained in the disk 

B(O, 1/4) and that their radii are in the interval [1/2, 2]. 

The following lemma gives estimates on the size of the intersection 

of two annuli in terms of their relative position and their degree of 

tangency. The reader is referred to Wolff [17] for a proof. 
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LEMMA 1.1. Suppose that r =/- s, 0 < 8 < l. Then there exists an 

absolute constant A 0 such that: 

1. C0 (.r✓ , r) n C 0 (y, s) is contained in a 8-neighborhood of arc length 

ll+8 t d t th • t ( ) x-y 
I _ I+" cen ,ere a, . ,e pow,, .r✓ - r • sgn r - s -1 _ 1 . X y V X y 

2. The area of intersection satisfies 

0 0 52 
IC (x, r) n C (y, s)I < Ao--;::==== 

- J ( 8 + ~) ( 8 + d) 

Furthermore we have the higher dimensional analogue whose proof 

we omit. 

LEMMA 1. 2. Suppose that C 0 ( x, r), C 0 (y, s) are spheres in ffi.d, d 2:: 

3, such that r =/- s. Then for O < 8 < l 

IC
0
(x,r)nC0(y,s)l~(j r I + x-y 

The following lemma is essentially Marstrand's three circle lemma 

[9]. It is a quantitative version of the following fact known as the circles 

of Apollonius: 

Given three circles which are not internally tangent at a single point, 

there are at most two other circles that are internally tangent to the 

given ones. 
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FIGURE 1. The circles of Apollonius. 

LEMMA 1.3. There exists a constant A1 such that if E, t, ,\ E (0, 1) 

satisfy ,\ 2: A1 J1 then for three fixed circles C(.Ti, ri), i = 1, 2, 3 and 

for 8 :::; E the set 

{(x,r) E ffi.2 x IR: ~((x,r), (.Ti,ri)) < E Vi, 

d((x,r), (xi,ri)) > t Vi, 

C8 (x, r) n C8(xi, ri) =/- (/J Vi, 

dist(C8(.T, r) n C8(xi, ri), C8(.T, r) n C 8 (xj, rj)) 2: ,\ 

Vi, j : i =/- j} 
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is contained in the union of two ellipsoids in IR3 each of diameter ;S >..E2 . 

A proof of the preceding result can be found in Wolff [17]. 

We conclude this chapter with some facts from Geometric Measure 

Theory. We refer the reader to Falconer [5] for definitions , proofs and 

details . In what follows, Hs denotes s-dimensional Hausdorff measure. 

THEOREM 1.1. Let E be a Borel set in !Rd and let s > 0. As­

sume that H s(E) > 0. Then there exists a nontrivial finite measure /J, 

supported on E such that p,( B ( x, r)) :S rs for :r E !Rn and r > 0. 

If E is an s-set, i.e., 0 < H s(E) < oo, then a point .r, E E is called 

regular if the upper and the lower densities at .r are equal to one; 

otherwise x is called irregular. An s-set E is said to be irregular if Hs­

almost all of its points are irregular. Irregular 1-sets are characterized 

by the following: 

THEOREM 1. 2. A 1-set in IR2 is irregular if and only if it has pro­

jections of linear Lebesgue measure zero in two distinct directions. 

In fact, one can say much more. 

THEOREM 1.3. Let E be an irregular 1-set in IR2 . Then proj0(E) 

has linear Lebesgue measure zero for almost all 0 E [O , 1r) , where proj0 
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denotes orthogonal projection from JR.2 onto the line through the origin 

making angle 0 with some fixed axis. 
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CHAPTER 2 

The higher dimensional case 

In this chapter we assume that d 2'. 3. 

For f: JRd---+ IR, t5 > 0 small, we define M8: B(O, 1/4) ---+ IR by 

Theorem 1 will be a consequence of the following L2 ---+ L2 maximal 

inequality: 

PROPOSITION 2.1. Let F C B(O, 1/ 4) be a compact set in ]Rd such 

that there exist s > 1 and a finit e measure µ, supported on F with 

µ,(B(.1; ,r)):::; r 8 for x E ]Rd and r > 0. Then there exists a constant A 

that depends only on s such that 

( ) 

1/2 l (Md(.1;))2 dµ,(.-r) :::; AIIJll2 

for small t5 > 0 and all f. 

In order to prove Proposition 2.1 we need the following weighted 

version of Schur 's Lemma: 
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LEMMA 2.1. Let (S, µ,) be a measure space, and let C > 0. Suppose 

K is a measurable kernel on S x S and w is a measurable function on 

S such that 

ls IK(x, y)w(y)ldµ,(y) :s; Clw(x)I Vx ES 

ls IK(x, y)w(.r,)ldµ,(x) :s; Clw(y)I Vy ES 

Then for J E L2 
( S) the function T J defined by 

TJ(x) = ls K(.r,,y)J(y)dµ,(y) 

is well defined almost everywhere, is in L2 (S), and satisfies IITJll2 :s; 

PROOF. Let 

I= ls IK(x,y)f(y)ldµ,(y) 

Then by Holder 's inequality 

Therefore 



2. THE HIGHER DIMENSIONAL CASE 

=Ch w(x) (1 IK(.cr, y)J lwty)J lf(y)J
2

d11,(y)) dµ,(x) 

= C fs 1J (y)J
2 

Jwty) J (1 IK(x, y)w(x)Jdµ,(.cr)) dµ,(y) 

~ C fs if(y)J2d11,(y). 

12 

□ 

PROOF OF PROPOSITION 2.1. Decompose IR_d into disjoint cubes 

{ Qj} of the form 

where k1 , ... , kd E Z. Then 

Note that if x, y E Qj then 

Therefore, if ,r,j is the center of the cube Q j and if we let a.j = µ,( Q j) 

then 

l (Mof(x))2dµ,(.cr) ;S L aj(M2of(xj))2 (1) 
J 

Since JC8 (x, r)I ~ 5, we can choose rj E [1/2, 2] such that 
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It follows that 

By duality, there exists {bj} with I:,jb] = l such that 

= :, ( ;;= b;a)f' L •(x, ,,,) J(y)dy) 

2 

= J, (J (f(y) ;;= b;a;;'xc"{x,,,, J(Y)) dy) 

2 

'.o :, II JIil j ( ;;= b;a]I' Xc"{x, ,,,) (y) ) 

2 

dy 

= J2 IIJII ~ J (:z= bibja;
12

aY
2
xc26(xi,ri)nC26(xjn)(Y) ) dy 

1.,J 

1.,J 

where the last inequality follows from Lemma 1.2. Now let 

1/2 1/2 
Q,. Q,. 

K (i, j)= 1
• 

1 

!xi - .xj l + 8 

13 

(3) 
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Then, by Holder's inequality, 

For each i,j let ii,j E Qi be such that 

1 . 1 = min ----
lii,j - .Tjl + D xEQ; 1.1: - .Tjl + D 

Then for all j we have 

L K(i,j)w(i) = w(j) LI-Ti_ :JI+ D 
1, 1, 

:s:; Cw(j) 

14 

(4) 

where the last inequality follows from the fact that a measure satisfying 

the condition in the statement of Theorem 1 has uniformly bounded 

potential (see [5]). 
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L K(i,j)w(j) ;S Cw(i), Vi 
j 

Hence, by Lemma 2.1, we have 

It follows from 1, 2, 3, 4, and 5 that 

where A depends only on the measure of F and on s. 

Note that if we let 

15 

(5) 

□ 

then, using Fatou's Lemma, we obtain the 8-free version of Proposi-

tion 2.1 as follows: 

J(Af(x))Pdµ,(x) = f supsupinf ( 1 8/ )I f . lf (y) ldy ) p dµ(x) 
t £ 8<£ C x, t J cb(x,t) 

::::;: supinff sup (1c8/ )I f . lf (y) ldy)p dµ(x) 
E 8<£ t X, t }Cb(x,t ) 

:S: j (M8f( .1; ))Pdµ,(.r) 

:S 11!11~ 
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PROOF OF THEOREM 1. We may assume that F C B(0, ¼)- Sup­

pose that IEl=O and choose t so that 1 < t < s. Then there exist a 

compact set E 1 C E, a compact set F1 C F with Ht(F1 ) > 0, and 

a positive number r, such that , for each x E F 1, there is a sphere 

centered at .T with radius r(.-r) E (r, 2r) which intersects E 1 in set of 

surface measure at least rd-l (.T). Without loss of generality we may 

assume that r = l. It follows that for all x E Fi 

where Ef is the 8-neighborhood of the set E 1 . 

By Theorem 1.1, there exists a nontrivial finite measureµ, supported 

on F 1 such that µ(B(x, r)) :::; rt, for x E IRd, r > 0. Therefore, by 

Proposition 2.1 , we have 

The right-hand side of the above inequality tends to zero as 8 ---+ 0, so 

we get a contradiction. □ 

We will show that we cannot drop the condition s > 1 in Theorem 1. 

PROPOSITION 2.2. There exists a set of d-dimensional Lebesgue 

measure zero containing for each x E [O, 1] x { 0} x - -- x { 0}, a sphere 

d-l 

centered at x. 
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PROOF. The idea, which goes back to Davies [4], is to parametrize 

the set of radii using a suitable irregular 1-set. 

Divide the unit square [O, 1] x [O, 1] C ~ 2 into 16 disjoint squares of 

side 1/ 4. Let S(i,j) l :::; i, j :::; 4 be those squares (indexed from bottom 

to top, left to right). Let 

Apply the same procedure to each of s(l,2), s(1,4), s(4,1), s(4,3), and let 

E 2 be the union of the new squares. Continuing in the same manner we 

obtain a decreasing sequence of compact sets {En}- Let E = n~=l En. 

Then E is a 1-set such that 

where I· I is linear Lebesgue measure, and proj 0 , proj1r;2 , proj1r;4 denote, 

respectively, orthogonal projection onto the x-axis, the y-axis, and the 

line through the origin making angle 1r / 4 with the x-axis. It follows 

from Theorem 1.2 that E is irregular. 

Let 

A= LJ {(.r1, ... ,xd): (.r1-a) 2 +.r~+-··+.1:~=a,2+b} 
(a,b)EE 

= LJ {(x1, ... ,.1:d): x~ = 2ax1 + b- .Ti - • • • - .1:t1} 
(a,b)EE 
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FIGURE 2. Construction of the parameter set E. 

Since proj 0 (E) = [O, 1], A contains a sphere centered at each point of 

{(a,O, .. . , 0) : a, E [O, 1]}. 

Fix s1, . .. , sd-l· Then 
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= { s1} X { s2} X • • • X { Sd-1} X B 

where 

B has measure zero if and only if {2as1 + b: (a, b) E E} has measure 

zero. But £ 1( {2as1 + b : (a, b) E E}) = 0 for almost all s1 E IR 

by Theorem 1.3. Therefore, by Fubini, A has d-dimensional measure 

zero. □ 

It is interesting to note that using Proposition 2.1, we obtain a 

geometric proof of the following special case of the spherical means 

maximal theorem in JRd: 

COROLLARY 2.1. There exists an absolute constant C such that 

for small 8 > 0 and all f. 

PROOF. Decompose ]Rd into disjoint cubes {Q1} of diameter 1/2. 

Then by Proposition 2.1, we have that for all j 
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For each j let 

Then there exists an integer N such that 

card(J(j)) < N \:/j 

L XI(j)(k) < N \:/k 

j 

Also, for each k let f k = f XQk, so that 

Note that if k (/_ I(j) then XQ1Mofk = 0. It follows that 

{ (Mof(x)) 2dx 
JN.3 

= L 1Q ·(Mof(x))2d.T 
J J 

'o ~ k, ( ~M,J,(x)) 

2 

dx 

=LL r Mofk(x)Mofz(.T)dx 
j k,l }Qj 

::; L L (1 . (Mofk(x))2dx) 

112 (1 . (Mof1(x))
2
dx) 

112 

j k ,lEI(j) Q1 Q1 

;SL L llfklbllf1ll2 
j k,lEI(j) 

::; NL L llfkll~ 
j kEI(j) 

20 
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= N LL XI(j)(k) llfk ll~ 
k j 

:::; N
2 L llfkll~ 

k 

= N
2 llfll~ 

□ 
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CHAPTER 3 

The two-dimensional case 

Before we proceed with the proof of Theorem 2, it might be instructive 

to discuss briefly the underlying ideas. It turns out that the two­

dimensional problem can be reduced to estimating the measure of a 

family of thin annuli . By Lemma 1.1, the measure of the intersec­

tion of two annuli is large when the corresponding circles are internally 

tangent. It is, therefore, essential that we be able to control the to­

tal number of such tangencies. To this end, we employ Marstrand's 

three circle lemma together with a suitable counting argument. This 

approach was first used in Kolasa and Wolff [8], and, subsequently, by 

Schlag [10], [11], [12]. We should, however, mention that , in contrast 

with the afforementioned authors, we do not make any cardinality es­

timates since these are not particularly useful in the case of general 

Hausdorff measures. 

The motivation for the combinatorial part of the proof is the fol­

lowing observation (see [6] for more details): 



3. THE TWO-DIMENSIONAL CASE 

FIGURE 3 . Tangential and transversal intersection of 

two annuli . 

23 

PROPOSITION 3 .1. Let { Cj }f=,1 be a family of distinct circles such 

that no three are tangent at a single point. Then 

where Ci II Cj means that Ci and Cj are internally tangent. 

PROOF. Let Q = {(i,j1,J2,j3): Ci II Cjk, k = 1,2,3}. 

Fix j 1,32,j3. Then, by the circles of Apollonius, there are at most two 

choices for j. Therefore , 

card(Q) ~ 2N(N - l)(N - 2) < 2N3 
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On the other hand, if we let n(i) = card( {j : C II Cj} ), then 

N 

Q = U ({i} x {(j1 ,J2,J3): ci II cjk, k = 1,2,3}) 
i=l 

Hence 

N 

card(Q) 2 L n(i)(n(i) - l)(n(i) - 2) 
i=l 

N 

2 I:(n(i) - 2)3 

i=l 

It follows that 

N 

card({(i,j): C II Cj}) = I:n(i) 
i=l 

N 

= L(n(i) - 2) + 2N 
i=l 

:S ( card( Q)) 1/
3 N 2

/
3 + 2N 

< N5/3 
~ 

□ 

The proof of Theorem 2 will be a quantitative version of Proposi­

tion 3.1, with Lemma 1.3 playing the role of the restriction imposed by 

the circles of Apollonius. 
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PROOF OF THEOREM 2. We may assume that F C B(O, ¾)- Sup­

pose that IEI = 0 and choose s1 so that 3/2 < s1 < s. Then there 

exist a compact set E 1 C E , a compact set F1 c F with '}-{ 51 (F1) > 0 

and a positive number r, such that, for each x E F1 , there is a circle 

centered at x with radius r ( x) E ( r, 2r) which intersects E 1 in a set of 

angle measure at least 1r. Without loss of generality we may assume 

that r = 1. 

By Theorem 1.1, there exists a nontrivial finite measureµ, supported 

on F1 such that µ(B(x ,r)) ~ r 51 , for x E JR.2 , r > 0. 

Let { .ri}iEI be a maximal 5-separated set of points in Fi, and let 

ai = µ,( B (xi, D)). Choose ri > 0 such that 

(6) 

where Ef is the ()-neighborhood of E1 . 

Let "' be the infimum of those .,\ > 0 such that there exists J C I 

satisfying 

and for all j E J 

l{x E C8(.Tj,rj)nEf: I:aiXC6(xi,ri)(.r) ~>-} I~ l1C'5(.Tj,rj)I 
iEI 
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Choose N large enough so that 

3 7 + 2s1 - 1 
S1-2 > --N--

and 

N 2 
- N 2s1 + 1 

N 2 - N - 2 < 3 

Let C2 > 1 be a large constant to be determined later on. 

Define /3 : [8, 1] x [8, 1] ---+ IR by 

/3(t, E) = 

2s1 +1 2__JJ__ 
if t 3 < C N-

2 E 2 

Then, for small 8, /3 has the following properties: 

L /3(82\ 8i) < M 
62k<l 
621~1 

where M is a constant that depends only on N and on s1 . 

Define for all i, j E I and t, E E [8, 1] 

26 

(7) 

(8) 

(9) 
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At,E(j) = {XE C
8
(xj, rj) : L a,iXC6(xi,r i )(x) 2'. !(3(t, E)i} 

iESt, , (j) 

CLAIM 3.1. There exist t, EE [8, 1] and a set of indices J such that 

and 

PROOF. Let 

lo= {j EI: l{--r E C8
(xj,rj) n Ef: L a,iXC6(xi,r;_)(x) :S i} I 

iEJ 

By the minimality of"", we have 

Therefore, if l' is the complement of 10 , then 

L a,j 21µ,(F1) 
jEJ' 

(10) 

and for all j E J' 
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Hence, using 6 we obtain 

For each j E J' let 

28 

(11) 

Bj = {XE C8
(.Tj, rj) n Ef: L a,iXC6(xi,ri)(-T) > ~} (12) 

iEI 

Then for all j E J' 

Bj c LJ A62 k, 621 (j) 
k,l 

Indeed, suppose there existed j E J' , x E Bj such that for all k, l with 

:::; ! ~ I: 13( 82\ 82
1
) 

k ,l 

K, 
< 2, contradicting 12. 

It follows that for all j E J' there exist k, l such that 

(13) 

In fact, if this were not the case, we would have that for some j E J' 

IBjl:::; I LJk,l Ao2k,021(j) I 

:::; L IA02k,021U)I 
k,l 
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1 
< 4IC8(xj, rj)I, which contradicts 11. 

Finally, let 

Then, by 13 

J' = LJ J(k, l) 
k,l 

We claim that there exist t = 82k ,E = 821 such that 

If not , then we would have 

L°'j::; I: I: °'j 
jEJ' k,l jEJ(k,l) 

1 
< 2µ(F1), contradicting 10. 

□ 

Fix t, EE [8, 1] as above. Then there are two cases: 
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It follows from the definition of r,, that there exists a set of indices J C I 

such that 

and 

I { XE C8
(xj , rj) n Ef: L aiXC6(x;,r;)(.x):::; 2K,} I ~ i1c0

(.xj, rj)I 
iEI 

for all j E J. 

Let 

Q = {(j, j1,J2,j3): j E J, J1,J2,J3 E J, J1,J2,J3 E St,f(j) 

· 8 8 8 8 /3(t, E) 
d1st(C (xj, rj) n C (xJk' rJk), C (xj, rj) n C (xj1, rj1)) ~ CiM 

\/k, l k =/= l} 

where C1 > 1 is a constant to be determined before C2. 

Further, define the following sets of indices: 

Q1 = {(j1 ,J2,J3): ::lj such that (j,j1,J2,J3) E Q} 



For J1 E Q2 let 

Let 

3. THE TWO-DIMENSIONAL CASE 

= {j3 : :3j2 such that (j1 , J2, j3) E Q1} 

R = L °'J°'h ahaj3 

(j,j1 ,h,ja)EQ 

Note that if C2 is large enough, then 

31 

where A1 is the constant in Lemma 1.3. It follows that if (j1, j 2, j 3) E Q1 

then the set { x j : (j, j 1 , j 2 , j 3 ) E Q} is contained in the union of two 

E 
ellipsoids of diameter ;S /32 ( ) . Hence 

t ,E 

Furthermore, if j 1 E Q2 and j 2 E Q(j1) then there exists j such that 

It follows that for fixed J1 E Q2 the set { Xj2 : j 2 E Q(j1)} is contained 

in a disk with center Xj 1 and radius 4t . Hence 

L ah ;S ts1 

j2EQ(h) 
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Therefore, 

(14) 

Now fix j E J. 

CLAIM 3.2. There are three subsets D 1 , D 2 , D3 of At,E(j) such that 

and 

provided that C1 is large enough. 

PROOF. We use complex notation. If O ::; 01 ::; 02 ::; 21r let 

Then there exist O = 01 < · · · < 07 = 21r such that 

Let 
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Note that for all l 

Therefore, 

It follows that if we choose C1 large enough, then we have 

For each k let 

Then 

(32( )!: < 1 (J(t, E) !5:.d K, t, E u X ~ Dk M 2 

s; L ailDk n C 6(xi, ri)I 
iESk 

s; L ailC6(xj , rj) n C 6(xi , ri)I 
iESk 

52 
< ~a--~ L 1- rz: 

. s vtE 
iE k 

where the last inequality follows from Lemma 1.1. Therefore, 

Lai 2: iK,(3
2 (t, E)~ 

iEDk 
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□ 
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By Lemma 1.1 , if i E St,E(j) then 

Therefore, i1 E Sk, i 2 E S1, k i=- l implies that 

2A(J(t, E) 
C2 

> (J(t, E) 
- C1M 
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provided that C2 is sufficiently large. It follows that if Jk E Sk, k = 

1, 2, 3, then (j,j1,j2,j3) E Q. Hence 

R 2'. L aj L aj1 ahaj3 

jEJ JIES1 
j2ES2 
j3ES3 

If we compare the above equation with 14, and then use 7, we obtain 

Fix j E J. Then we have 
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= r K,f3(t, E) dx 
J At,.(j) M 

;S L ai[C"(xi,ri)nC"(xj , ri)l 
iESt,e(j) 

where we have used Lemma 1.1 and the definition of At,E (j). 
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Note that the set { xi : i E St,E(j)} is contained in a disk of radius 

2t. Therefore, 

It follows that 

L ai ;S tsi 

iESt,e (j) 

t si -1/2 
K, < 5---­~ El/2j32(t, E) 

Using 8, we obtain r;, ;S 5. We conclude that, in either case 

To complete the proof, notice that 

(15) 

;S 1 Lai l{.r E C"(.Tj,rj) nEf: LaiXco(x;,r;)(x) :S 2r;,} I 
jEJ iE / 
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l 8 
~ 8',,IE1 I 

~ IEfl (16) 

where the last inequality follows from 15. 

If we let 8 ---+ 0 then the right-hand side of 16 tends to zero, which 

is a contradiction. □ 
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CHAPTER 4 

Possible improvements 

As we discussed at the beginning of Section 3, the proof of Theorem 2 

was motivated by a result of combinatorial nature, namely Proposi­

tion 3.1, which asserts that if one is given a family of N circles such 

that no three of them are internally tangent at a point, then there is a 

bound of the form CN513 on the total number of tangencies. 

This, however, is far from being sharp. Clarkson, Edelsbrunner, 

Guibas, Sharir and Welzl [3] developed a technique which leads to 

a bound of the form CEN3/2+E VE > 0, suggesting that it might be 

possible to weaken the conditions > 3/2 in Theorem 2. Indeed, Wolff 

[16] proved the following L3 ---+ L3 maximal inequality: 

THEOREM 4.1. For x1 E JR, let 

1 1 Mof (x1) = sup 8 IJI 
rE[l/2,2] IC (x, r)I C6(x ,r) 

x2EIR 

Using this, he proved, in the same paper, the following: 
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THEOREM 4.2. If a S 1 and if E is a set in the plane which con­

tains circles centered at all points of a set with Hausdorff dimension at 

least a, then E has Hausdorff dimension at least 1 + a. 

The preceding result suggests that a set E as in the statement of 

Theorem 2 has to be fairly large. In view of this and the analogy 

between Proposition 2.1 and the spherical means maximal theorem, it 

seems reasonable to make the following conjecture which would imply 

that Theorem 2 is true for all s > 1. 

CONJECTURE 1. For 8 > 0 small, f IR.2 
---+ IR., define Ms 

B(O, 1/ 4) ---+ IR., by 

Let F c B(O, 1/4) be a compact set in IR.2 such that there exists > 1 

and a finite measure µ supported on F with µ( B ( x, r)) S r 8
, for .T E IR. 2 

and r > 0. Then there exists a constant A that depends only on s, such 

that 

( r ) 1/p(s) 
j F (Mof(x))P(s)dµ,(.x) S Allfllp(s)· (15) 

Note that in order for the above inequality to hold , it is necessary 

that p(s) ?::'. 4 - s. To see that, let I= [-1/8 , 1/8], and let EC I be a 

CantorsetofHausdorffdimensions-1. ThenH8
-

1(EnB(0,8)) ~ 5s-l_ 
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Define 

Fs =IX (En B(O, 0112)) 

and 

Notice that 

Therefore, using 15 

= i53p(s) /2 

On the other hand 

Hence 

1 ~ _3_ 
(52 O 2p(s) < (5 2p(s) 

~ 

which is possible only if p(s) 2: 4 - s. 

Now we will present a heuristic argument affording evidence that 

the techniques in [3] might be used to prove that Theorem 2 is true 

for all s > 1. Assume that E is compact, IEI = 0, and suppose that F 
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satisfies the following regularity condition: There exists a non-trivial 

finite measure µ, supported on F such that µ( B ( x, r)) ~ r5, for all 

.T E F, r > 0. Let {xJf=1 be a maximal o-separated subset of F. 

B = {(i,j): C(xi,ri), C(xj,rj) intersect at an angle;: 1r/100} 

Now suppose that if i # j then 

Choose E > 0 such that E > ½ ( 1 - ¼). It follows from the remarks at 

the beginning of this chapter that IAI ,S N~+E. 

By an argument similar to the one used in the proof of Theorem 1, 

one shows that 
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Letting 8 ----t 0, we get a contradiction. 
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We conclude by presenting an alternate way to attack the two-

dimensional problem (see Schlag[ll]). 

the space of Bessel potentials, with norm llf lla,p = llgllp• Here G°' is 

the Bessel kernel, i.e., the inverse Fourier transform of the function 

The Bessel capacity of a set E c !Rd is defined as 

Ba,p(E) = inf{IIJll~,P: J ~ l on E} 

The relation between capacity and Hausdorff dimension is given by the 

following result due to Havin and Maz 'ya [7]: 

THEOREM 4.3. Let EC !Rd be a Borel set. If p > l , etp::; d, then 

We refer the reader to the Appendix for a proof of a generalization 

of the preceding result. 

Furthermore, for f E C~(IR2), define 

where dCJ is arc measure. 



4. POSSIBLE IMPROVEMENTS 42 

Sogge [13] made the following conjecture regarding the above op-

erator: 

CONJECTURE 2. For all E > 0, there exists AE > 0, such that 

(18) 

for all i E C~(IR2). 

We will show how 18 would imply that the conclusion of Theorem 2 

holds for all s > 1. As before, suppose that IEl=0 and choose s1 and 

b > 0, so that 1 < 1 + b < s1 < s. Then there exist a compact set 

E 1 C E and a compact set F1 C F with 'H81 (Fi) > 0 such that for each 

x E F 1 there is a circle centered at x with radius r(x) E (1, 2) which 

intersects E 1 in a set of angle measure at least 1r. Let .E1 = { ( x, r( x)) : 

x E Fi}. Then there exists a sequence {in} in C~(IR2) such that in?::: 1 

on E1 and llinll4---+ 0 as n---+ oo. Choose 'ljJ E C~(IR2) such that 'I/J = 1 

on (1, 2) and define 

9n(.x, t) = 9J1fn (.x, t)'lj)(t) 

Then 9n ,2: 1 on E1. Hence, by 18 

111 

I 
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Letting n ----+ oo we obtain B
1

;
2

_ 818,
4
(E

1
) = 0, and therefore, by Theo-

rem 5.1 

contradicting the choice of [J. 
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Appendix 

Here we prove a generalization of Theorem 4.3. 

Let V 1 ,P2 (IR.d1 x 1R_d2 ), p1 > 1, p2 > 1 be the space of all functions 

with finite II · llp1,p2 norm, where 

For a > 0, define the space 

The mixed-norm capacity of E C IR_d = 1R_d1 x 1R_d2 is defined as 

THEOREM. Let EC IR_d = 1R_d1 x 1R_d2 be a Borel set. 
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PROOF. Without loss of generality we may assume that EC [O, l]d. 

Letµ be a finite measure supported on E, and let u be a non-negative 

CC: function such that u ~ 1 on E. Then 

µ,(E) :SJ u(.r)dµ(x) 

= J Ga* D°'u(x)dµ(.r) 

= J D°'u(y) J G0 (x - y)dµ,(.r)dy 

where q1, q2 are the conjugate exponents of p1, P2 respectively, and D°'u 

is the fractional derivative operator acting on u, defined as the inverse 

Fourier transform of the function (1 + l~l 2)°'12u(O. 

For each n ~ 0 we subdivide ]Rd into disjoint dyadic cubes of side 

2-n , so that each cube of side 2-k is split into 2d cubes of side 2-(k+l). 

If Q is such a dyadic cube then l(Q) denotes its sidelength and Q the 

cube with the same center as Q and sidelength 3l(Q). 

Let 

lxl°'-d, if O < 1-rl :S 1, 

o, if lxl > 1. 
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It follows from the properties of the Bessel kernel (see, e.g., [1]) that 

there exist constants a and A such that 

and 

Therefore, 

=B+B' 

B' is easy to estimate. By Minkowski's inequality for integrals , we have 

On the other hand 
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n=O 

where b is a positive number. 

Suppose that P1 S P2 and that H_s+e( E) > 0 for some E > 0. Then 

there exists a nontrivial finite measure µ, supported on E such that 

µ,(B(x, r)) S rs+e for all x E !Rd, r > 0. It follows that 

00 

= cLt1(q2(d-a+8)-d1~-d2) L µ,(Q)µ,(Qt2-l 

n=O l(Q)=2-11 

oo 2n(q2(d-a+8)-d1 ~-d2) 

< C ,(E) ~ ql < CX) ~ µ L 2n(q2-l)(s+e) 
n=O 
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provided that 8 has been chosen so that p28 < E. 
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Now suppose that p2 s; p1 and that H_HE(E) > 0 for some E > 0. 

Then, as above, there exists a nontrivial finite measure supported on 

E such that µ,(B(x, r)) s; rt+£ for all x E IRd, r > 0. It follows that 

00 

= cI::: 2n(qi(d-a+8)-d2~-d1) L µ,(Q)µ(Q)q1-l 

n=O l(Q)=2-n 

oo 
2

n(q1(d-a+8)-d2ll-d1) 

L q2 

< Cµ,(E) ----- < oo ~ 2n(q1 -l)(t+E) 
n=O 

provided that p18 < E. 

It follows that µ(E) ;S llulla,p1 ,p2 • By assumption, Ba,p1 ,p2 (E) = 0. 

Therefore µ,(E) = 0 which is a contradiction. □ 
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