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SUMMARY
This paper pressnts a method (Cor solving the two
dlmensional cascoade {low orobleme, This method of solution
" utilizes the slopes of the alpfoll instead of the airfoil
ahapo as ias been.doge in most previous solutlionz, The
value of this step is the numericai accuracy gained in
solvin; for the veloclity distribution directly, without
tlie differentiation required in other methoéa.
An application of this method 1s made to s three
bladed axlcl (low purp using a standard HACA 4400 series

airfoll for the blade shapes,
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NOTATIONS URPEN Us3.uD
conastant used in the truqéfcrmauion geries,
radius of the clircle in the:s.-plaue.
constanﬁ usad in the trengformation series.

LAk

ons-half chord length of the flat piule

conabant used in determination of the zesgloe
in ihe series approximation.

pnars
coafficlent of 1ift for a cescade airfoll,

distuice between alrTolls of the cascade meage
ured along the Jdirection of the cascade angle,

e

s

veloeity potentianl "uiction for the cescade,

number of divisions into whisch the cirele of
the § =plane is :divided for the transformation
aerles approxivalion,
local velocity at any polnt on a cascads alrfoll,
punsp sectlon radlus except as noteds

gap/chord ratlo for the cascade.

constant used in determination of the sine part
in the serles approximation,

horizontal cowsponent of Cree stream veloclty.
SUW+iV” free stiream veloclty in the cascade plane,
velocity leaving the cascade of airfoils,
veloeclity entering the cunacade of alrfoils,
vertlical component of free stresm velocity.
horizontal component in the Z -plene.

vertical component in the Z -nlane,

SX+LiY cascade plane,
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anzle of attack of \/ with reapcet to the chord
of the airfoile.

cascade engle measured between the Y -axis and
line of the cascade drawn throush the leading
cdzes of the airfoils in the cancade,

circulation shout an airfoll in the cascadod

anzle of veloelty leaving the cascade measured
with refsrence to & llne drawn through the
treiling edszes of the alrfeolls in the cascade,

angle of veloclty entering the caascade measured
with reference to a line drawn through the
lesding edges of the alirfoils in the cascadee.

indicates a perturbation function in the transe
forration, E AX (& )J e

constant used in the transTormation of the X-
component of the cascade airfoll,

constant used in the transformation of the Xe
component of the casacade airfoil,

=§'+in plane of the circle into which the cascade
is transforued,

vertical component in the S -plane .

= W engular sectors into whieh the circle is

divided to determine the transformation series

approximation,

horizontal componeat in the b} -plane.

angular notation for polar coordinates in the
¥ -plane, :

anzle in the 8 -plane corresponding to the leading
edge of the airfoil in the Z -plane,

angle in the 3 ~plane correspondling to the trailing
edze of the airfoll in the Z -plane,

conatant in the flat plate cascade transformation
determined by the cascade dimensions,
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€ =X constant used to replace X for the
final transforrmation,

Subscripts

0 to N-l, Used to designate the values of @
when the clrele in the § -plane 1s dlvided
inte I parts,

Q0 to®0 , Used to degignate the coefficients
of the serles summation,

I to "2F % Used to des
in the series approxi

N=I : . :

0 to 7= . Used to designate the values used
in determining the coeffleisnts “or the series
approximation,

2

iznate the coefficients
mations,

Superscripts
prime ‘-indicates a first derivative.

double prime indicates a second derivative.

vii
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PART - 1
INTHODUCTIUN

This paper presents a method for solving the tﬁo dimen
gional flow problem in a c¢sscade of alrfoils., The two dimen-
sional problem must be considered when the airfolls of the
cascade are so far apart that the form of the flow cannot be
determined from the directlon and the cross-sectional area
of the passa e between the mirfoila. This 1s the sltuaticn
that exists in wmost puwps aﬁd compressors where the airfoils
do not have a very apprecliable overlap.

#We speak of pumps.and compressors as being two dimen-
sional flow probles, Tbis is true if we make the assumption
that the flow pfoceeda throuzh the vane bystem of the pump
along concentric cylindrical surfaces, This assumptlion will
not be too far off when the purmp is operating within the
vicinity of itds best efflcleﬁcg point because the {low pattern
approximates that of an ideal fluld, The two dimensional
plcture is then obtained by unrclling the coﬂcentric cvline
drical surlace.

In makling a theoretical analvsis of the floﬁ we can
consider the vane gystem stationary. This can be done due
to the fact that the relative flaw through such a moving
syatem alony a congtant radius dbeys Bernoulli's equation
in the same manney as for the absolutse [low throu:zh the

aystem at rest,



The final asvumption to be made in connection with the
treatment presented by this paper is a frictionless fluid.
This assumption does much to simplify the calculations and
does not Lhrow the results very far off as shown by experience
with other éroblems of & similar nature,

The pump to which the two-dimensional solution of the
flow pattern was applied 1ls & Feerless lO-~PL propellor pump.
This puwnp was used beceuse it will socon be tested in the
Hydrodynamics Laboratory at the California Ihstitute of
Technology and will thus offer a means of checking the ac-
curacy of the method,

Previously two lines of attack haﬁa been employed for
the general solutlon of the twoedimensional flow problem for
a cascade. The {lrst seelts to reduce the unknown flow through
the cascade to the known flow around a cirecle by a group of
conformal transfornations. The second atiempts to modify
the flow about an individual airfoil by evsaluating an intere
ference function arlsling from the presence of the other
airfolls 1n the cascade. The interference method is thoroughly
described in the paper of Katzoff, Pinn, and Laurence (1l).
Advantagcé are claimed for thls method particularly in
solving the inverse problem, thét is, finding the airfoll in
a cascade for a glven vaelocity distribution.

One of ine eafliast papers on a method {or the exact

solutlion of flow past an arbltrary alrfoil cascade is that
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of wells (2), Hé used a transformation that takes e cascade
of flat plates to e circle, The use of this tranalormation
on a given cascade ylelds a shape that more or less resembles
a circle., This stepe 1ls then modified to an eozxact circle by
a method similaer to that of Theordorsen and Gerrick (3).

Thils method 1s quite lengthy and as a result does not prove.
to be very practical. This princirle is also simllar to

that usod by CGarrick (4) and also Futterperl (5)., The method
of Nowell's (6) is somewhat differ¢nt from the above mothods,.
The difference lies in the fact that two transformations aré
used to chanje the cascade to a near cirele, The first transe
formation changes the cascade to a single S shaped airfoil
and ths second transformation changes this sinzle alirfoll

to a near circle,

Goldstelin and Jerison (7) have recently worked out a
seneral solution for the inverse cascade problem by an
adaptation of the interference method, Diessendruck (8),
uslng the 1nterference method, hag recently solved the flow
solution of particular thin blade cascade problems., There
are secveral other approximate solutions for the general
cascade and exact solutlons for speclfic cascade shapes
that wlll not be mentlioned here,

The numerical work for the general solution of the
cascade flow 18 naturelly zreat, due to the famct that in

cagcade transformations singularities are located guite

\
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close to the circle into which the cascade is transformed,
This means that the solutlon will not converge too rapldly
so that several iterations are necessar; to produce the re-
qulred accuracye In spite of the labor invelved, however,
thia category is the wost valuable due to itds generallty.
All of the above methods work directly frbm the airfoil
shapes.. In this paper a different approsch is made in that
& method utilizln; the slope curves of the atrfoil, instead
of tﬁe airfoil itself, is used to solve the reneral cascade
flow problems. There are two reasons for using this method,
First, by solvin:; the problem usin; the slope curve of an
alrfoll, a differentiation neccssary in the other msfhodu
is elinminated in solving for the veloclity diatributions
This means that errors which enter into tihie computations are
no lonzer magnifiecd by a differentiation and accuracy should
therefore be improved, Secondly, since theuaccurac; nas
been improved, the number of lteratlions nececssar;y to obtalin
the desired aécuracg should be less, or possibly fewer terms
may be used in the perturbation surmmation with the. same

number of iterations involved.
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PART 11
TEL CASCADE TrRANSFORMATION

The purpose of the transformation 1s to change the
complicated two dimensional flow pattern of a cascade of
infinite airfolls into the flow pattern around an infinlte
cylinder whieh can be readily solved, 'This is accomplished
in the following menner. )

The eguation (%)

=[P, nins +ei§ b R

T Ja=xs I3-ax bhi
tranaforms a cascade of straight llines into a circle as
shown in Fiz. 1, The vortex and source at 3= “Q/'X.
corresponds to Z = -0 and the vortex asnd sink at
'5'-'-"*'“/1— corres.pon.:’ls to 2= +4+00 , This mecans the {low
from the source in the F- plane as shown in Fig. 1 is
egquivalent to rectilinear low in the Z ~plane parallel
to the X-axls, while the flow from the vortexes is equiva-
lent to rectilinear flow parallel to the Y-axis, both flows
being in the positivc direction. Thus, the resultant flow
at the cascade alrfoil is the vectér sum of thesce two {low
veloclties, In the Yedirection a point helf way between
two consecutlve stralght lines is at infinit. in the :f‘

plane, belng at positive infinit; with respect to the

lower strajight line and negative infinity with respect to
the upper streizht line,

For convenience, let us make the circle one of unit
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radius and replace U by e—v thus obtainin:z the following

equations

o
—_

. 1-‘* - -y
d | 4%, e S ig S+e
= — | € ‘0 + € IO =
The parameter W 1s related to the chord-gap ratio, and
this relationship is established in the folléwin; manner.,

e know that at the edges of the straight line airfoils, we

have

dz 3 —L§ fi | l i.@ | SRMYY | T :
ER “E*‘*—J te [$+e“»” S - © a8

Since 'S==C*¢on the circle which transforms to the straizht

line, we ean simplify the above equation obtailning (9 )

aftf_

et¥+ |

Denotinz the two roots by ¢T for the trailing edie and ¢L

tan P =

taneg (4)

for the leading ed;_:_e of the straight line and noting ¢L= st ¢,—)
we cen obtain the chord length., .This 1s done by substituting
the.values of @ on the circle for the leadin; and trailing
edzes of the stralght line into the expression for 2 and
taking the difference of the two values. In this manner,

we obtain (9)

26: %.I—E{-[Slnﬂ 'tQ‘n-‘ 25m@ =~ Cos B I°3 25”’"1” (5)
\2coshzy+2cos2g " [2 coshiy+ 2 coszg +2Co58

Knowing b, d, and ® , we can solve this equatlon for W

and thus we have determined the relationship between the
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chord-gap ratio and ¥ .
Let us introduce the followin:; changzes in the btrans-
formation. First, let the chord length of the straight

line equal unity, The Histance between the alrfoils be-

comes f%:: S « By a simple translation, we obtain the
following; trans{ormation
: +y : =
o e A SO, e +3 L8 s+Ee _
= — + e 6
Z -2 Z‘ﬂ'[e ’03 et¥_- % & ‘Og g-e¥ il

This makes the transfor&atioa of the cascade of straiht
lines as shown in Fig, 2, If a curve representing an ailr-
foil with both thickness and camber is drawn in the Z-plane
in place of the straight line airfoil, the transformation
does not go into a ecircle, but the variation from the clrcle
wlll not be very great if thickness and camber are small

as ia " the case in the typical airfoils In order to elimin-
ate the varlations in the circle caused by thickness and

-

camber, perturbations of the form

ozo: An"'ib"‘\

R
are added to egquation 6 to change the transformation again
into a verfect circle. A perturbatlion of this type will
also changze the X values as weli as the y values of the

equation, These chanzes are as follows:

AX(CZ)) = T [An cos(ng) + Ba Sim (mpj]
n=
B, + E [ia,, cosp) — An 5‘m(m¢3]

ne

LY (?)



In order to keep the chord length of the airfoll at unlty,

a factor € must be .introduced to account for chan-/es in

length of ths transformation caused by AX(B) as well as a

F

conatant § to sccount for any translation of the airfoll

caused by AX(@) « The transformation now has the following

foe)

Z=(+e)f®) + 3 —-————A“;iB” T :

=0

: . ty ‘ i
ol BRI 3 Pl 4 P S RO TR K
where (@) = b Zf[e 'og % + € /Og Y

and ¥= €;¢ on the unit cirele, Rewrliting the equation
‘in x and y, we have "
X=(1+€)f(®) + ax@) + 8
g= ay®
Thls will give the tramsformation as shown in Fig. 3.
At the leading and tralling sdgzes of the alrfoil
.37’; =(+€) F(®) + 2x@) =0
where f (@) = J[f @) and AX(®) = ILax @)
do Jg

(’+€)7[I(¢) = _Ax'(qs) (10)

where Q= ¢@,. Or @

Knowing ¢'r and ¢‘_ » € can be determined by dividing the

Therefore

change in length due to the perturbations by the lenzth

without the perturbations, Thus



PR £(#:) + £ @) - X)) + AX(B) |
F(®r) = £ () e

is determined from the fact that x=1 at @, .

Therelore | = (I+€) (@) + AX(E) + &
and S =1 =(+¢€)Ff(®,) + Ax(¢,), (12)

@, and @, are destermined fron eq'ation 10 and jet @,
and @, are necessary to determine € which is a part of
equation 10, Thils must therefore be done by successilve
aporoximaetions, First, make the assumption that ¢ =0 and
determline @, and @, then using these values determine
from equation 11, Using the new value of € redetermine
¢L and ¢& « Hepeat this e¢ycle until there is no a{\qrﬁnt
change in € or @, and & . Once this is done § can also
be determined because @, and € are now known.

The only thing hecessary to complete the transformation

is a method of deterviniﬁf the A's and B's of the sumnmation

N=

There are many ways of doing this but the following method
wasg ussad in obtaining the results for this paper.

Divlde the circle into an odd number of sectors, the
greater the accuracy desired the greater the number of
divisions that should be used, Usinz the straight line
traﬁsformation as a first approximation, the values of x

ffor the various ¢j divisions can be determined., Then from



the shape of the airfoil, the y components can be deterrined
at sach of the culculated lengths, tnowing the y;'s and ¢U'S,
the series can now be found., A4An example of the method used
will be worked.out for 5 divisions of the circle (see Fii. 4),
but the seme procedure can be used for any number ol odud
divisions,

- Knowing the y components for the various angles, we
write the following equations

Hb"-' B.t+ B, t B,

Y, = B,t B cose+ B, cosze ~ A, 3/m6 - A, sim 26
Y, = Bot B coszet B, cos46 -~ A, 5/m26 — Ay S/n 46

and so on to ‘J‘,. where $, =6, $, =28 , etc., YNoting that 46--6

and 36=-26, we can by addition and subtrection of the egua-

tions determine the lollowinyg equations:
(jo = B.+ B, + BL

b T &

Hz* 95
5; - Y, = -2A, sin@ —2A, SINLO

2B, +2B,cos6+2B, Co526

Z B, + 2 B cos?0 +2B,C088

Y -4 = -2A,Sn26 —2A. 56
g1 oy

Let Co= Yy, Ci2 Y1t Ys, Co= Yot Ys » and solving
for Be, B, and Ba., we obtain

B. 3’—(c,+ ¢+ Co)

1]

B,

-5?,-(60 +(, €08 0 1 Cq COS2O)

B, = %..(c,+ C, Cos28 + (L COS 8)
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oimilarly, letting 5=Y,-Y, and S, Y,-4 , we obtain
A = %(s, Sine +S,5/n26)
Aa 32:.(5,5}-,.20 rS2S/me)

Tables listing the solutions of the coefficients for any
number of noints as solved by this method sre given in
Sturpff's, "Tafeln Und Aufzaben Zur Harmonlschen Analyse
Und Periodogrammrechnung" (10). These tables were used in
obtalning the results for this naper,

For the transformation,

‘j = B,* E’ [B,, Cos (ng) — An S/'-n(w):\ 118}
and d" = 2[ '
: -— = - N B, i ('nd) - 7N An CC'SC"W’E)

df

iie sec that if we have a method of obtaining s WE

Q.'Q_
RleC

. can use this to determine the coefficlents, Such a method
would have several advantaes over determining the coef-
ficients from the shape of'the airfoil, Pirst, the slopes
are used in determining the veloéitj distribution about

the airfoil, and since the polution of the velocity distrie
buticn is the primary purposé of the transformation, this
sives you the direct solution. 3econdly, the errors ine
volved in obtaining the coefficients from y are majnifled
many btimes in obtaining g% from y, because the coeil'iclents
are multiplied by 7 , so the errors 1n each coefliclent

dJ

are now N times as lar:e, Golng from = to ys howsver,

dg
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any errors mude orzinally ere reduced by an integration
inatead of magnified,

A method of determining %% is as follows, Take the
airfoll shape and from this determine gg as g Tunction of
X« 3Since dﬁ = dx diy » 28 2 Tirst approximation we use

d¢ = dp & |
the straight line transformation and obtain x and gﬁ for
the @; 's into which the circle is divided. Xnowing x, %%
can be determined from the curves made from the airfell
shape, Uie now have a {irst approximatlon to %% « Using
this we determine the coefficlents for the summnation, and
thus obtain AX(@®) from equation 7, Inowlng AX(#),we
obtain @, #., € and 8 as deseribed on page 9, This zlves
the first approximation to the final transformation in the
form of equation 9., Hy using the.new transformation to
obtalin X and g% » and repeating the procedure siven above,
a new and better approximation to the final tranasformation
is obtained, Thls is repeated until very little change
is obtained between two successlve approximations, With
this, we have the final solution for the trensformation

0

of a cascade of airfolls to a circle,

Wwe now proceed to the caleulation of the flow around
the cascade, i/rlting the potentiul function for the flow
about the circle, for the stralizht line transformation

ag shown in ¥Fig. 2, we have (9 )



-A(@+x Woe { =) i .
F: —vs e ( ),o e_+._. +e‘(e+x)/° ._SLC; + Aﬂ :YL—C i
2mT S 3 - S
e'¥-3 e T 3t-2%F  (14)

.
By comparison with the [(inal transformation equation, we

sea that the only change in the veloecity potential funection

i‘-‘
&

the factor (I+ e) , and thus obtaln

_vs@u i), oy e n 4
F-— _[e /osgw_ 4.( *)Ibg 31‘6 > Lq_(f’;e)l.?j'- CW (10)

ev-3 - Y

This 13 for a velocity in thie Z2 eplane of

-4 ol . -
Ye " - Al ghe ot X=-oo

]

-A% L1 =4
and Ve +f——€@ ab < X & et

These are datermined as follows:

GE) -(35) (B) .=ve-det

: 1

The velocity at the airfoil.boundary 1s given in the seme

(;}—g)ﬁ i =<§l§)5=e;p(%§) g ® w-4iv

This can be rewritten in the following way on the airfoll
il = AV = (dF Q_Q)
dg dz
"7'? I Z¢ e
S'l-_ cly‘ 7 oj 2# c

F34




then

2 Aallia
F=Vvira for+ < L9R

Q-

Cég =V(i+e) § (@) + T—(vlrtf) z’_g R _8: gl eRa
: , dg coshzp—coszg

Q.

f = (+ € (@) + oX@) + i ayle)

Q.

Iet q be the local total velocity, then @ = futys e

» -
e Te L 7 SN IO
andd we nave

. i ) I .
& _ 25(“")[&)5)\‘}’ cos(x+B)simg - sinh¥ Sinfx+@)cosp * Zys Sinh2¥

v a - (16)
(cosh 2y = cos2d) |[ive) fto) + ax@] + [ayte)
If we satisfy the Kutta condition at the traliling
edze wo obtaln
[ cos é; . sin Br
= SInx+§) = - cos(x+

2VS cosh ¥ i Sinh ¥ (x+@) (17)
80 the veloeity distribution becomes
[ - zs(’——’e>[‘°sw Cos(x+R)(sin ~ singy = SITh ¥ Sin(acs E)(cos - Cos gr) (16)
\Y; i (coshzy ~cos2g) y[(,+e)f;(¢)+ox,@yz+ [43'@_7;

with this equation, we have the complete solution for
the two dimensional flow abeocut alrfdils in a cascade,

<

It should be noted, Lowever, that the velocity esntering

45
B

the cascade 18 not the velocity used in the eguation,
The entering velocity must be altered as ghown in the
velocity dlagram (Fiz, 5) to obtain the velocity used in

the equation,
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PART 1III
NUMERICAL PROCTDURE FOR Tii% CASCADE TW&?SFOﬁVATIGH
The procedure is given in the following steps,
l. Plot the ai*?cil section on a large sheet of zraph paper
using sn expanded scale in the y-directlon for accurecy.
I'akke the plot In sueh a manner that the leseding ed:e of
the 2irfoil is tangent to the line x=0 and tﬁe trailing
edge tangent to the line xs=l, From this plot, make accu-
rate measurements of the slooe( ) of the airfoll and
plot these against x, It ig meurtant thiat this curve
be accurate, thﬂOIOPe, it should be checked by inte. rating
back to see 1f the airfoell shepe results. The gap-chord
ratiof (8) and the cascade angle ( 8) are lknown. Using

these, the value of ¥ 1ia determined from the esquation

V(cosh 2¥+ coszg)k +cos@
ﬁsh 2V +cos2 @)L —CoS@

! -1 sin@ 3
+ Sing tan = X

fcoshzp +coszg)e 25

2. With YV determinad evaluate the functions £(@) and f’(¢)

i |
- os ¢ log

where

el cosh¥+ cos ¢ tan’ Sind| e
7((¢) Pes 7T[ cos@ @sh% -Cos g + sm@ Sinhy :

5 sin@ Sinky cosg — cos g coshy sm¢
(sinh¥)* + (sing)*

and  F(®)=

Plot these functions aguinst P . we see that F(T+@)= 1- /&)
') )

and f{7f*¢)= - f(#) s 80 that only half the range f{rom

0 to 27 needs to be plotted,

e g - o P B W - W - - L. - - - - . —— -

This 1s equatlon 5 rewritten. ]
##iquation 6 rewrltten using P e g

(52
n
©
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3. Divide the circle into (N) odd divislons so that @j= J =

with 4= 0,4,2,----¥-/ , Por the first approximation,
let X = F(®;) and (3.3) = £(#)
J

Using this, determine

(dy) (dx ( )
where (dy). 1s obtained from the plot of %% prepared in
step 1. From the values of (dS obtain
o @
d_‘." = ZL 7 8, sm(mﬁ) - NAn Cos(zﬁ)]

by uaing the tabvle for the value of N selected from Stumpff's,
"Tafeln Und Aufgaben Zur Illarmonischen Analyse Und rerlodo-
gramnrechnung.® (10)#

3(a)e We ses that at theileading and trailing edzes of

the airfoil %g goes to inlinity while & goes Lo zero,

Jp

thua glving en indeterminate quantlty, If the nose or
trailinz edzes of the zirfoll can be aporoximated by a
circle or parabola, the following methods can be used for

determining %% in the vicinlty where these values

#For the [irat gpproximation, a smgller number of
divisions (N) can be used and this increased in the later
approximations to obtain the finsl desaired accurecyje. In
obtaining the results for this paper 11 divisions were
used on the {irst approximatlion aund this inecreaszed to 17
for the remaining approximations. ‘'hese tables are included
in appendix A.



D B

become indeterminate. In the case of d4 circle, the zeneral

equation is (X- O.—Yb r (LJ" b)” g Tnl-’in"' the first

derivative with respect to @ , we obtain()( a.) Jx +(H b)d‘d’o

and
dy¥ _ _ (x-a) dx
dg  (4-b) dg

As the nose of the airfoil is approached Y-b and gg

50 to zero. Applying L'Hospitel's rule, wo obtain

dx\* d*x
4 _ _ (Fg) +®-2) ‘G
J¢ dy
dg
As the nose 1ls approached gg and X go to zero and we obtain
in the limit
(8, - o5
dg ¢ d A7y :

In the case of a parabola, the general equation is
(@x+by -<)*= A(bx-ay +d) . PFollowing the same procedure

as above, we obtaln

g%
4y za_(ag—:s+b%%)g;+ za.(axfbg-c)—/-\b] ds*

Jg ~2b[a g+ bY]
b[%-ﬁ-bdﬂ ;
As the nose is apiroached, 3% and x go to zero, ¢ aporoaches

#. ,and Y approaches Y, . We obtain in the limit

fliiatie S0

In the case where a simple parsbola 1s used, A4=0 giving



vialech holds over the entire range that the equation aporoxi-
mates the nose of the airfoll, In the cases above, however,
where 3; is found only at the nose, there will be a small
range in which %% 8 Indeterminaete. This ie the range
between the nose and the point where g—;% becomes small
enough to be rsad from the curve of dy versus X, If

J ax
we plot - k] agailnat @ , the value of (%ﬁ) plotted

dg Plg
azalnst @ will enable us to 'ill in the curve in this
resion and estimate quite accurately the walue of g—;
in the Intermedlate ranie. The above discussion has dealt
wlith tho nose of the eairfoil, but it is obvious that the
same procedure can ve anplled to tne tralling edse,

Jince

X =(+ e)f(¢) TAX@B)+ S (o juatlon 9),

ot
s

n %%‘, = (1+e)f (9) + 2X'@)

whore £() = # [‘ SM@ MY sing +cose coshy cosg _ sin@Sinhy cosg - cOs@eoshy sing ) sm¢‘°‘s'¢ﬂ

SIDR ¥ + sintg (Sinty +sin*g)"

N=L
aid o x(B)= 3 A costng) - By sin(n)]
n=|

. s e ' o 1 2 % $a% P2 y . 3 d;x
Again 10 is noted that for the lrst aprroximation =2 = 7‘(¢)

£, “Tho anzles correaponding to the leadlins edre ¢‘_&md

the tralling ed e ¢T are [irst approximated by f'(¢) =0



Succeedin; determinations of the angles sre made by the
equations — (I+ 6)7“@1) = aX(#;) ana -(I+6€) f'(¢t-) = AX'(¢,_)
Initinlly, let €= O and determine #, and @ by plotting

- ff(b) and AX'(¢) against @ and reading the intersoction,

2 o RO i Rt R s
Usins these. values, determins € from the equation

I = F($n) t f(b) — aX(B1) + AX(E)
£ (%) - 7‘(¢‘)

#ith this value of € , replot — (I+ €)F(#) and read the

new intersections, Hepeat this procedure untll there 1s
no apprecisble change in the values of ¢.,. ana ¢4_ ¢ “hen

3

this ls done, determine ths constant S from the equation.

S = | - (I+e)f(%) - AX(%,)
b The new expression for x is now X=(+ 5)7((¢) +AX(@) + §
use this expression to determine

X, =(1+€)f(@)+ ax(®;)+ §
(45). = (e flp) + 208y

from j=o, 1,2 - N-l, Using these new valuss, determine

.
=
o
:
:
g
L
S
Fis
¥
g
L2

tiie value off € previously
determined in the first ap-lication of step 4 in obtaine
ing @, and @, + Alter dstermining: tihe new P,and
¢ » Tepeat step b and obtain new values for d¥ .

Continue this cyele of steps 4 aud 5, unkll the new



-

valuescﬂ?(dg) obtalned show very little chan;e over the

dJdé/;
previoua values.,

7T« The Futta condition gives the circulation around any

airfoll in the cascade as

___E_ - . S8 & . sIn &,
s T o YWRAR) T e ey

The velocity diagram for the cascade is shown in Flg. S.
i@ can solve for XE from Fig. 5 in terms of Yi and obtain

Cot Ye = cosh¥ - cosd, cob 2 coth ¥ sin B,

(19)
cosh¥ + cosg, coshy + Cos ¢y

The angle of attack o4 for any incldence angle 52 cen be

ffound from the relationship

¥

Sinhw cot ¥i + Sin @,

t(l'h(ot+€) = (20)
tanh Y(cosh¥+ cosp,)
and for eny exit angle Je the relationship is
tan (%+0) = sinh V¥ cot Ye—sin @r 2
tanh¥(cosh ¥ - Cosgr) W

The 1ift coeflicient is ziven by the equation C, = 137
based on ths mean veloclty and the chord (in thls case
‘equal to unity). Putting [7 into the eguation, we obltain
cos #; . 5Ind
C,= 45| —I sin(x+g) -~ 228z cosu+p 22
k Cosh ¥ ¢) Sinh ¥ Sl (22
€« Having satisfled thie Kutta condition, we can now deter-

mine the velocity dist{ribution about the airfoll as a

function of ¢ by the following relationship,



-]

-CE _ S(1+ & cosh¥ cosre)sing - Sing) - SInh Y sin+g)(cosP - Cosﬁ’)i&
v [smh*y + sin*é] V@+ €) 1@+ ax@)" +[24(0)

Probably the easlest way to plot the complete distributlion

of velocity about the airfoil is to plot X , g—,—’é s and g-g

azainst ¢ « This is done from the equations

= (1+€)f®) + AX@B) + §
" = 1+ 4@ + 2X@)
: 9 = AY(8)

The plot or X enables us to find the position in the Z =

d

Q..

plene corresponding to any chosen valus of @ , while the

plot of the other two factore enables us to deterwine thne

radical |+ €)fe) + ax @) +[a4'®]" for any @ . Thus
mowing @ and the above values, we can determine the vmlooity
Gistribution about the airfoil for any arnzle of attack.

------- - - - - - > - S - - . S N G e R S . S M . e -

#This is equation 18 rewritten.
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PART IV
CALCULATIONS AND HE3SULTS
Three cascade sectlions wers calculatec for the pump.
They are the hub, mid-section of the blads, and tip of
the blade, Since the hub blade sectlonlis thickest ana the
cascade at the hub has the lowest gapechord ratio, the hub
solution offers the most interesting results., For this
reason, tlic complete ouicuiations are ziven fér the hub
gection, while only ths results are presented for the other
two sectlons, Enough of the results for these scctliona
are listed, however, to zive some 1ldea of the rapldlty of

the convergence with successive approximations,



(a)
Hub &1rfoil'§§ta
Tho hub soction .is made of NAGA alrfoll 4412, The
dimensions were altered from thosé’of NACA report 460 (11)
to bring the nose tangent to the line x=0, The folloiing ,

table gzivea the dimensions used in this paper {or the

airfoil,
alrfoil station upper surface lower surface
X100 Yx100 Yxioo.
0 0 0
1425 : 2,13 —1,74
245 3408 —2.26
540 . 4.43 : —-2,79
75 | 5447 —3.,03
10,0 6 e3l ~3.14
15.0 7.62 ~B515
2040 , 8455 - —=2,99
25,0 1% I —-274
30.0 D54 ~De48
40,0 9461 =1,99
5040 0.03 —1.56
60,0 8,01 " dadd
7040 6460 =074
30,0 4,83 —0e45
90 40 . R2.68 —0425
95,0 1.45 =018



The leading edge of the airfoll is given by the follow-
ing equation _
(x-.0158) + ¥* = (,0188)
The tralling edge is approximeted by
(z-.0013) + y* = (.0013)°
Using this date, we determlne the slope curves for the
airfoil glven in Flge 6.
Pump Data
Section radius = 1.80"!
Chord length = 5,251
Cascade angle = § = 56,40°

The pump is an axial flow type with thiree blades,



25
Xs
Calculations

From the muqtion

'n’ 2 'é—COSQ = ‘/-,'—_-(coshz;v-rcoszp) +cosg " sm@fcm" sing@

25 V-'—(cosh 2W+coszp) ~ (038 Vi(coshzp +cos 28)

and letting P = V.af(gos;, Ly +coszf , we can solve for W
b . ° ® oy v i

ie have % - %fg = 04369, 8 = 56,4 , sinf = 0,833,

end cos @ = 0,553

Then we obtain

-l ~ oz .
04553 log .If_*_'_%-_;.;.;gﬂ 666 tan _.‘:..g._’.i?. = g.71
L

By trial end error, we obtain
P= 0,664 and ¥ = 0,390

he eguation for (@) is

=-_,_ S P / coshy+Cosd : =) th;!
7L(¢) 2 1r( i os coshy/—cos¢+smeﬁm smh;k)

Thus we have,

2 X o Ynm Le0T77+C0BE o o ! sing
£ (@) F 1 04102 log $eUlFeO88 4+ 0,507 tan RS

The equation for ffﬁois-

7('(¢) _ 5 S/ SImhY Cosg — cosg Coshy Sing
' 4 Sinh*p + sin*@

Thus we have,

/ = 0123 cosg — 0,220 sin g
7 ®) Te100 F 8in'g -

These equations are plotted and the curves are shown in

Flge 7 and 8,



Dividing the circle into 11 sectors, we obtaln the
followin: table
s % 4=fe) | ?;F)J s £®) (‘Jw”)x,. (%g);
0 0 0.836 0,769 0.020 0.0153
1 32473 0,999 - 0,032 ;-0.158 0.0050
4 64,45 0.940  — 0,149 -0.251 0.0374
3 28,19 0.870 =-0,208 ~0.,285 0.04869
4 130,91 0.788 ~0.354 —=0,194 0.,0649
& 163,64 0385 —0,750 — 0,025 0.,018c
6 196,36 C.02 - 0,230 0,710 — 00,1651
7 239.08 0.022 04120 —0,350 . =0.,03596
8 261 .82 06109 0.176 - 04017 - 0.00350
9 294,55 C.228 0252 0.049 00125
10 237,27 0e428 0,495 C.043 0.0213
Uélng table 1 in apnendix A, we obtnin the following

equation

AY(p) = (T! ?[ NnB,snné)~ NAn COS(‘M’]
where A, = = 0,0315 B = = 00,0268

2A,= + 00,0316 2B;= + 0.0454

34;= — 0,0178 BBy= = 0.0254

4A,= + 0,0102 4b.= + 00,0176

S5A5= — 00,0062 5Bg= — 00,0239

From this, we obtain

5
AX(8) = S
N

-l -

e

[A,, cos(ng) + B, sin(n ¢‘)}



3 2% 2 g A b Y Lo . -
and differentiating this, we zet

§
AX'(¢) = EE-‘hAn‘s'm (mg) + nBx ¢°5(7’¢-))

LY
From the plet of fY¢),lvm see that ¢5:= 29.5° and
= T + 29,5  as a first approximation, Plotting —AXI(¢)
on f%¢)in the vicinity of thess two values, we obtain
$.=30.4"and B = T +42.6°, Since the first approxi-
wations are all crude, there 18 no need to resolve for
¢, and @ after obtalning € for this first approximatlon,
Thus we Cind
) = 1.000, F(B) = 0.010, AX(B)= — 0,020, AX(B) = 0,086

1= FO) G- )+ AXR)

F(#) - F(8)
| =0+ €) f(#) - AX@B,)=—0.077
(I +e)f@) + %[A,, cos(ng) + Bx 5'4h(71¢]+ 3

n=1

j_g = (1+¢€) @) + %E-nA,, sin(ng) + 7’Bn°°5("’¢)]

n=\

iherefore

> aen.
" n

(1.097) f () +AX@)—0.,077
(1.007) £ (8) + axe)

S =



For the second approximation, we divide the cirecle lnto
17 sectors, Since we will use this same number of divisions
for the rest of the approximestions, the following table

'
is glven using the ¢J S obtalned from table 2 of appendlx As

J #; #(#;) ()
0 0 0,836 0,789
A 21,18 0.996 0.128
2 42,35 04989 — 0,093
3 65463 04942 — 04149
L4 84.71 0.881 - 0,161
B 105,88 04809 - 0.227
6 127,06 04709 — 04310
7 148,29 04545 ~ 04510
8 169,41 04316 ~ 0,842
9 190,59 0,055 — 0,410
10 211,76 0,000 0,025
11 232,94 0,030 04130
12 264,12 0,088 0,184
13 275 430 0153 0,201
14 206 457 0,238 260
15 317475 0357 0,368
16 338,92 04545 04665



For the second approximation we obtain the following

table,
X; =(+)f(#) (g§)=o+afhw

JAx(#)  +ax@)+§ ax(®) 4 ax'(@) ( %‘2 )XJ- (%;)J

0 =0.020 0,821 —0,013 0.831 0,023 0.0161
1 -0,022 0,904 0,007 C,148 0,009 0.0013
2 =0,018 0,980 0,002 =0,100 =0.270 0,0270
B =0 ,025 0,831 =—0.,032 =0,185 —0,248 040484
4 ~0,035 0.85¢ =0.017 =0.2156 =0.219 0.,0471
5 =0.,036 0,774 0,008 ~=0,241  -0,100 00454
6 =0,032 0,660 0,013  =0,327  =0,147 0.0481
7T =0.018 0,503 = 0,065  =—0,495 =0,082 040406
8 0,029 0,209 0,156 . =0,769 0,052  =0.0400
G 0,077 0081 ' 0,079  =0.571 0,414 -0,1538
10 0.079 0,002 =0,081 -0.053 - ~0.0900%
11 0,046 = 0,002 ' —0,087 04055 o OO0
12 0,082 0,042 =0.046, 0,134 —0,172 —0,0231
13 0,005 0,096 —0,052 04168 ~0.031 = —0C,0052
14 =0,014  0.170 -0,042 0.243 04030 0.,0073
15 =0,021  0.204 0,004 0.436 0.055 040237
16 ~0,018 (/) 0,503, 0,004 0,734 0,043 0,0315

#5ec page 30 for details of how these walues were
determined.,
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e see that numbers 10 aend 11 of the second approxi-
mation are too closec to the leading nge to nllow %%
to be read from the curve, .The equatlon for the curve at
the lesding cdze 1s the following cirele,

2
(x -0.0188) + Y* = (0.0158)

From thls, we obtain

cnss(£3) = (8]

2
more 9K < (4 e)£lh) + OXD)
and il
/" 0,123 8ing=-0,220 cosg 0,123 cosg-0,220 sing .
f(®)= T.10  51inip [6.150 + eInfg)t (2 singcosg
Since =T+ 42.6, we obtain #£'()=0.244 and  AX{#)=-0.000
T
and thus get (45) = 0.179
) & 33 4

Therefore, we have

(%L =~0,0531
5

By plotting ‘jjﬁ azainst ¢ and reading the values for
10 and 11 from the plot, we obtaln values for those points
where %g cannot be directly determined, The value at ¢,
‘13 bctween the two points and allows us to £ill in the

range for the mlssing points gulte readily.



Using table 2 1in appendix A, we obtalin the following

coefficients

A= - 0,0397 B, = - 0.0360
24,= 040295 28, = + 0,0298
3Ag= - 0,0142 .- 3B, =-0,0110
4A = + 0,0134 4B, =+ 0,0190
5h= — 0,0091 5B = - 0,0060
BAg= + 0,00353 6B, = + 0.0084

- TA,= ~ 00,0027 78, = - 0,0050
8Ag= - 0,000¢ | 8B, = + 0,0036

B
where O X(#) z [A*n cos(ng) + B, sm('n@
Azl

8
AX(@) = EE N AnSintne) + NBy, cos(n¢§)
Nz -

Plotting. - aAX(@)on (I+€)f(®) s where € here 1s the

previousgly determined € ,\we obtain from the interscections

$.= 27.4° and @=T+ 35.8° ., Then, £(¢,)= 1,000, f(4)=0,003,
AX($)==-0,082, AX(B,) = 0,069, € = 0,104, and§=-0,104 +0,032=-0,072
The € 1In this case being close enough to the original € ,

the procedure need not be reneated,

Thus, we have

(1,104)f(®) + AX(#) — 0,072

w
]

‘d% = (1.1&4){@) + AX(®)



14
15
16
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For the third

table s

AX(#;)
-0,027
- 0,029
- 0,040
= 0,047

f o 0.046 /

—0,039
~ 0,028
—- 0,004
04041
0,082
0,073
040563
0,035
0,017
- 0,003
~ 04016

mined,

X;
04524
0,998
0.980
0,921
0.855
0,783
0,683
04526
0.318
0.071
0,001
04015
04060
0.114
0,188
04306
0,504

-32 -

approximation, we obtain the following

AX(®)
Ce0U3S
— 0.019
— 0,030
— 0,008
0.015
0,020
0e044
C.089
0e145
C.047
— 0,063
T Ee8
— 00561
— 0,047
—C,080
= 0,053
—0.,016

(53),
J
0,852
O.l22
— 04133
= 0,173
— 0,185
— 0,231
— 0,298
—0a474
=078
—0.406
— 04035
04097
04130
0175
G.237
04395
0719

()
0,021

0,009
- 0.266
— 04245
~ 04,220
~0.192
~0,153
— 04002

0.035

C.382
~0.420
~04108
-0,013

0,038

C.054

04045

#3ee page 33 for details of how this value was deter-

(59),
0,0179
0,0011

0.,0354 |

0.0424
0,0407
0;0444
0.,0457
0.0436
= 0.,0274
— 041550
— 0,1000%
—0.0412
- 0,0137
- 0,0023
0.0060C
0,0213
0,0324



S5

For @= T + 35,8° , we obtain
£(8) = 0.380 and  AX'(B)= 0,020

-

Since

(g—g);: o-.owg(‘c’,—%.)t and (%%‘,L': 0,451

we obtain

Q-

Gyt 7 s
(dﬁ),- 0,0845

A
By plotting 3%’ against ¢ and readin: the value for
number 10 from the plot, we obtain the value of %% at
thls point for which 3% cannot be read,

At this time, a check can be made which will show
if the %% is' approaching close to the final solution,
We know there can ﬁe né constant term for A&?V), there-
fore, Z:(jg) = 0, For the second approximntion, we obtain
éﬁ;)--o 0127 and For the thivd approximation Z{ )- - 0.0087
;glch indicates the third approximetion is fairlb Llosq to

the answer.
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Using tuble 2 frow appendix A, we cobtain the cceffl=-

clients for the third approximations

A, = - 0,0381 B, = — 0.0347
oA, =  0.,0286 2B, =  0,0308
3A,= - 0.0134 3By = ~ 0.0162
an, = 0,0121 4B,=  0,0211

. BA = — 0,0053 5B, = — 0,0066
6A,=  0,0026 6B; = 0,0094
TA, = - 0.0033 7B, = — 0,0039
Bh,= — 040005 8By =  0.0051

Azein plotting —ax'($) on (1+€) f(#) , we obtein @ = 27,4
and =T+ 56.1°. for the final epproximation using the
new € o Then £ (@,)=1.000, £(8)=0,003, AX(#,)=-0,051,
AOX(8.) = 0,071, and € = 0,105, and therefore,
$= - 0,105 + 0,031 = — 0,074 )
Thus, we nave

x = (1,108) f@#) + AX®) — 0,072

& _ gariF '

% = (1.100)f(¢)+ax (®)
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Por the fourth approximation, we obtalin the following

table °

I AX(B)
0 ~0.026
1 - 0,028
2 - 0,038
3 — 0,044
4 = 0,043
b = 04038
6 =0.,027
7

8

9

~ 0,006
04037
04080

10 0.076

6 4 5 0,053

12 0,035

13 0,015

.14 —0.001

16 — 0,015

16 —0,024

X

3
0.824
C.008
0,980
0.923
0,857
C.,782

0,682

0,522
0,312
0'667
0.002
0,013
0.088
0.110
G188

C.306

AX(#) (%) (ﬁ)xj (37;’2,
0.006 0.866.  0.021 -  ©0,0180
~ 0,021 04120 04009 040011
~ 0,026 =0,120 —0,266 0,034
— 0,002 —0,167 —0.245 040410
0,011 = 0,180  —0,201 0.0418
04019 — 0,232 —0,101 0.0443
0,041 — 0,301 —0,152 00458
0,078 = 04485 —0,000 0.0436
0,137 =0,793 0.040 —0,0317
0.087 — 0.386 0.396  —04,1521
— 0,059 — 0,031 . ~0.0980%
— 0,057 0.086 —0,475 —0,0409"
— 0,056 0,126 —0,114 —0.0142
w3088 - T00M8 U L0880, 0088
~0,047 0,240 0,038  0,0091
~ 0,030 0.298 0,055 0,0219
— 04,02 0,715 0.045 0.03522

. Wy - . . — - - ——_— -~

356 for detagils of how this value was detere

#5ee paue

mined.,
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Por @ = T+ 36,1, we obtain

F@) = 0.3% and AX{#)= 0,025
Therefore (S’_‘JS = 0.406
deg
gy _
and (3;)& = 0,0800

Agein by plotting: %g against ¢ , we are able to obtain
the indeterminate point 10, By plotting (I+¢)#@ on
~ AX(#) , we obtain @,= T+ 36,1 and @, = 27.4°

Then F(#;) = 1.000, f(h)= 0,003, AX@r=-0.,032, AX(A)= 0.071
and therefore, € = 0,106 and &= — 0.,075
3ince there was not much change in %ﬁ for the last two
‘&pafoximations, we use this last approximation as the final
answer, Thus we have,

x = (1,108) @) + AX®) - 0,075

vy = 8Y4@)

For the coefficients, we have

A, = - 0.0392 B, = - 0,0345
oA, = 0.,0285 2B, =  0,0299
3, = - 0,0138 3B, = — 0.0152
4h, = 0,0125 " 4Bez=  0,0201

" SAg = ~ 0,0055 5Bg= - 040064
6A, = 0.0080 6B =  0,0098
A, = - 040035 7B, = - 0,0031

8Ag = — 0,0007 8Bg =  0,0046



The equation for the 1lift coefficlent is

C.

n

¢os @
43S I sim - Smé,
[coshv (x+86) o cos (x+ 8
‘Since §=1,16, COS$ =0,088, 5N =0,460, Coshy=1,077

SInh¥=0,400, sing = 0,833, and cosg = 0,853,
we have :
CL = BeB2 Sm(x+f) — 5438 COS(x+8)

By rewriting, we obtain

C.L=6459 sin (x + 2,00°)
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Por convenience of showing the convergence of the successlive
aperoxinations, a table of %% for the various approxie-

mations is given,

(53
| d¢J.
s ond srd | 4th
B Approx, Approx., APDTOX o
0 0.,0101 - 0,0179 0,0180
1 0,0013 0.,0011 0,0011
2 0,0270 0.0354 00343
3 0.0484 - Qs0424 0.0410
4 0,0471 0,0407 0,0418
5 040454 0.,0444 0.0443
6 0.0481 . 040457 0.0458
7 00405 0,0436 0.0436
8 — 040400 = 040274 — 0.,0317 3
9 — 041638 — 041550 ~ 041521
10 — 040900 — 0,1000 — 0,0960
11 — 0,0400 — 0,0412 —~ 00409
12 . — 0.0231 - 0,0137 = — 0.0142
13 — 00,0052 — 0.0023 — 0.0031
14 040073 © 0,0090 0 ,0001
15 0.0257 0.0213 00,0219

16 00315 | 0.0324 C.0322



30w
(b)
WideSection Alrfeoll Data
The mid-section 1s wade of HACA airfoll 4409.
| Pump ﬁata'
 Section redius = 2,801
Chord length = 2.91%!
Cascade angle = 71435°
Prom the above data, we obtain $%==0.664 and ¥ = 0,950
For this section, four approxi@aticna were used as before,
%gL will be liéted for the apprnximations to show the

-gspead of convergence,

Using the final epproximation, we obtain for the

¥

solution

| ¢ =60,7° @ =T+71.1°
€ =0.08) ~ $=-0.083
x = (1.081) AB) + Ax#)~0.053
Y= ay@

For the coefficients, we have

4= — 0.,0135  B,= ~ 0.,0374

24, = 0,005 2B,=  0,0427
3A,= — 0,0001 3B,= — 0,0058
4, =  0,0007 48,=  0.0055
SAg= — 0,0001 5By = — 0.0022
6A,= 0.,0004  6B,= 0,0013.
7A,= — 0,0004 7B,= — 0,0014
BA; =  0.0004 8Bg=  0.0014

The equation of the 1lift coefficient is

C.=7.18 sin(x+ 5,84°)
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Table of(%%‘For Kid-3ection
3

end
ADDTOXe

C.0075
— 0,0047
—0,0044

\0.0145

00,0350

0.0521

0.9615

0.,0549

0,0158
—0,05636
—-0,0802

—0.0800

—0,0545
—0,0201
040059
0,0243
0,0232

Srd
Approx.

00075

—0.0051

—0,0042

0.,0126
C.0328
0.0621
.0,0625

0.,0539

0.0148

-0,0538
—0,0786
—0,0750
—0,0490
~0,0210
0,0062
00,0245
0.,02353

4th
APpPIOX.,

0.0075
¥ 00047
— 040042

0,0120

10,0331

00,0622

0,0620

0.,0540

00,0158
- 0,0535
—0,0784
—0.0750

-0,0208
040075
0,0248
0,0231
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Tip-Secéion Alrfoil Data |
The tip-section 1s made of WACA airfoll 44086,
Pump ﬁata
Sectlon r?ar._lius = 4,00
Chord length = 2,88
Cazcads angie = 78,12°
From the above data, we obtain :IS'T = 0,986 and ¥ =1,284
For this section, four approximationa were used, (iﬁ)
will again be 1lsted to show convergonce .
Again, using the final approximation, we obtain for

the {inal solution

g =71,0° g=T+81,7°

€ = 0,048 8§ = — 0,032

x = (1.048) f@)+ax@) — 0,032
Y= ay@e)

For‘the‘coefficlents, we have
A= - 0,0035 B, = — 0,0266

2A,=  0,0009 9B, =  0,0399
3A;=  0,0041 8B,= — 0,0019
4A,=  0,0016 4B,=  0,0007
BAg=  0,0016 5Bg= — 0,0017
6A;= — 0,0001 68,= — 0,0002
74,= - 0,0001 78,= — 0,0004
BA,= ~ 0,0013 8Bg= — 0,0003

The eguatlon of the 1ift coefflelent 1s
C.= 6.808in («+3,84°)
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Table of (

end
APprox.

—0,0035
—0,01581
—=0,0137
—(0,0010
0,0103
0.0417
0.,0654
0.0482
0,0209

—0,0227

~0,0550
~0,0636
—0,0510
~0,0180
0.0127
0,0288
0.0141

gl

d¢J
3rd

Approx,

—0,0147

—0,0132

—0,003¢
0401956
0.0424
040540

' 0,0475
0,0211

—0.0240

—0,0575

—0,0616

—0,0485

—0,0180
0,0187
040308
0,0142

‘For Tip=-Section

4th
Approx,

~0,0035
—0,0147
—0,0134
—0,40040
040196
0,0425
040543
0.,0480
0,0210
- 0.,0251
—0.,0575
—0,0626
—0,0485
—0,0180
0,0128
0,0312 °
0.0142
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PART .V
DISCUSHIICN, OF THE C@LOULATgONS

An examination of the %% tables for the sucgcessive
approximations shows the maximur varietion between the
third and fourth approximations to be 0,004 for the hub,
04001 for the mid-section, and 0,001 for the tipe-section,
The tables are piven to foupr decimal places in order to
show the conveérgence more clearly, but for the practical
case three decimal places are sufriciént. Thus, we see
that for all practical purposes three approximations were
sufilelent for ihe hub cascade., Purther examination of the
cdata shows that the tipe-sectlon converged more rapidly
then the other two sections, This was as expected, first
necause Lhe gap-chord ratioc wes the largﬁst,’placing the
sinzularities in the "§ ~plane farther away from the cirele,
and secondly because the éirfoil was thinner, thus having
smaller perturbatlions. The second approximation for the
tip section appears to be accurute onough for all practical
pPUrposes.

It stiould be kept in mind that all the airfoil sections
used were of the NACA4400 serles, and therefore, all had
the same camber, The effect of .camber variation on the
rapldity of the convergence acis in the same manner as
thickness, tﬁat 18, increasing carber tends to cut down
the rapldness of convergence, Since a constant camber was

used for the three sections, none of this ia shown by the
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dataj; but it is expected that the camber ef{ect will be
lesé than that of thickness,

In @islicenus! book (12), a plot of lattice effect
coefficlent (K) is made azaninst the gap-chord ratio for
various vane angles, Thesé curves are for flat plates,
and K is defined as the valuec by whlch the slope of the
1ift curve for an individual flat plate musf be multiplied :
to obtain that for a plate 1in & cascade, Feading K for
the lattice conditions for the pump, we obtain K=1,08,
1.17, and 1,08 for,the'hub, mid-sectioﬁ, end tip, respoce
tively. The slope of the 11ft curve for a single flat
plate is g& =2T, Wultiplyling by ¥ gives %% = B6.9%, 7.35,
and 6,79 as the aiope for s lattice of flat plates, Com=
pering these values with the actual ones,-g%.= 8459, 7418,
and 6,80, we see the same trend exlsts, and thpéa values
are close to those obtalned from the above curvé. This
shows that tue thickness and camber ipvolved do not have
much eftfect on the slope of the 1ift curves . |

In the outer sections, the gap-chord ratio is quite
" large, therefore, it would be expected that iha hehavior
for the airfoil in the cascade would be similar to a single
airfbil, particularly near the angle of zero lift, We see
that the zero 1ift ahgle is the same (~3.84°) for thesé

two sections, and this value is also very similar to the

zero 1ift angle for the single airfoll as shown in the



HACA TR #460 (11). Por the hubesection, howaver, the value
of the zero 11ft angle (+2,00°) does not compare favorﬁbly
with. the value for the single airfcil, which is approximately’
equal to —4 ., Thls shows that the three varisbles, ths
cascade an:le, sap=-chord ratlio, and airfoll thickness,.have
combined in such a manner as to cause this change.

Some idea of ihe effect of tlic cascade anile on both

dc.
dac

“with the results of Katzoff, Finn, and Leurence (1). They

and the zero 1lift angle can be determined by comparison

wofked out the rssults fcf a cascade composed of HACA 4412
airfolls, with cascade anzle equal to zero, and & gap-chord
ratio of 1,032, This compsares very closéiy-withAtha hub
caécade for the pump of HACA 4412 airfolls, a gap~chord
ratio of l.18, and eéscude angle egual to 56;4°. The :
results of the cascade for the cascade angle equal zero

- $ive the angle of zero 11ft as =5.94 and the slope of the
1ift curve as 5.76. Qoﬁpaﬁing with the cescade for the |
pump, we have tbé‘zero 1ift engle aqual-?.&d’and the slope
of the 1ift curve equal 6.50. Sincé tiie only variable‘ia
esgentially the cascade angle, we gec that ss thlas angle
068 to zeve it reduces the slope of the 1ift curve and
{increaseslthe zero 1ift angle. Since Lhé angle of zero
1ift for the slingle eirfell 1s about —4', we see that at

some ansle in between the sbove anglas, the effect of the

sap=chord ratio is balanced by the cmscade angle to give
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the same anzle of zero lift a8 the single alrfoil. The
effect on the slope of the 1ift curve could have been
predictesd from the K curves mentiéned on page 44, From
these curves we obtain the slope of the 1lift curve squal
4.08 for a éaacade of flat plate airfoils with ;erovéaacada
angle, which checks very closeiy.to that of the NACA 4412
eirfoils, Since these curves predict that the slope will
continuously éacraésa a8 the baacada angle goes to zero,
an&‘thm slope as calculated for the sinsle alrfoil is equal
to 5.8, the polnt where the same gsro 1lift aggle is obtaine

ed for tﬂa”cascade and single airfoll will not 51Ve'equal
. 8lopes of the 1lif't curves, r

For the three cascades computed in this peper, the
curves of maximum velocity on the;uppeb sﬁrface versus
anle' of attack were obtained, snd are shown in Fig. S.
The values of the mmximnm ﬁelocity were obtained by plotting
the veloclty asainst the paréﬁﬁtar g of tﬁ@'ﬁ -plane,
and determining the maximum velocity Moc tha sapvs
fiending the value ofv¢ ngosite t&@ maximum veloeity, the
point on the airfoil where this mexilamum occurs can then
be obtained by substituting this velue of $ in the final
axpression 6btained for x.

The tip and mide-sectlion airfoils being quite far ﬁpart
show maximum velocity curves that are similar to thosa\

which would beexpected for single airfolils of these thicke



nesses. The thickest of the two airfoils has the highest
maxlmua veloclty at low angles of attack, whlle the thinnest
alrfoll shows ﬁhe most rapid rise of meximum velocity
with anzle of attack, qu the hub sectlon, howover, we
see that it has lower velécitias than the mid-section at low
angzles of attaeclk, Since the hubessction is thickest, this
is the opposite of what 1s expected, This condition is
due to the change of circulation around the hub=section
because of the cescade effects, Comparing the equatlions
of the 1ift coefficient ( C. ) for the two sections, we see
that the angle of zero lift for the hub-section was moved
1.84° in the diroection of positive un;le of attacks Thus,
we see that the circulation has been quite radically changed
for the sanme anglé of attack, I1f we move over on the curve
of maximum velocity for the hubesection 1.24°, we see that
thla'velodlty will exceed that of the mid-section at the
point 1.84‘away. This 1is what we would expect, because
this condition is for appfoxlmately the same circulation
around each airfoll, |

The complete veloclity distribution curves are zlven
for the hub cascade with both zéro and e five degree anile
of attack in fijgres 10 and 11, PFrom figure 10, we see that
the maxinmmﬁvelocity on the upper surface of the airfoil
is execeedsd b, the maximum velocity on the lower surfaces

This 1s because the zero anile of attack 18 so near the
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gero ‘1ift angle. Fdr the five degree angle of attack,
this condition disappears,‘as shown 1in fizure 11, because
the angzle of attack 1§ now sufficlently larger than the
zero 1ift angle.

Thé curves of maximum velocity enable us to predict
incipient cavitation for the pump.' The flow rate divided
by the inlet area gives the veloclityv perpendicular to the
cascadeo, and the r.p.m. enables us to find the relative
velocity parsllel to the cascade, This relative velocity
is in the opﬁosite direction of thre pu#p rotation. The
‘vactor sum of these two veloclities determines the direétion
and magnitude of the inlet velocity to the cascade, Thus,
we know Vi and ¥i s a8 shown in figure 6, and can determine
the angle of attack from 'equatlion 20, The maznitude of

(the velocity used in equation 18) 1s given by the equatlion

Vi= Vi + (‘;_Egy - V—‘g cos ¥i

Having determined the angzle of attack and the veloecltiy,
we can read the waximum vaioclty from the curves of figure 9,
Cevitation occurs when the pressure in the fluld reaches
itd¢ vapor preasuré which i1s determined by the temperature.
e can write the Bermoulli equation for the éirfoil as
follows: |
2, 3

Baigvi= $++%



or
Z(P; P)"'V; - Cb'

Po 1s the statlc pressure aheéd of the pﬁmp vaneé in the
inlet to the pump, Vi is the entering velocity relative

to the‘pump vanes, and P 1s the vapdr pressure, Since

all these values are known, we can solve for § and from

the curves, determline the anile of attack at which this

valuo occurs, If it is the same or less than thé angle

of attaock originally determined for V from the puEp conw
ditiéna, then cavitatién will result, If it is largef'

than the angle of attéck originally determined, then vae
vitation will not result, To find the exact point for in-
cipient cavitation, we see that various flow rates and r.p.de
must be tried until the angle of atteck determined by these

" two quantities is the same as the one read from the curve,
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- CASCADE VELOCITY DIAGRAM

FIGURE &5
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For exasmple, with HN=11 M= e
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