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Abstract 

We study in light of recent ellipsometry, vapor pressure isotherm and specific heat 

measurements on the thermodynamics of adsorbed films on graphite, the connection 

between the layering phase diagrams of thin films on periodic substrates and the ther­

modynamics of the solid-vapor interface of a semi-infinite crystal. The latter is the 

limit of the former when the film becomes infinitely thick, and we are interested in 

connecting this limiting behavior to the thermodynamics of films of finite thickness . 

We argue that the concepts of surface roughening, preroughening and reconstruction 

provide a quantitatively useful framework within which to discuss this connection. 

Through general renormalization group arguments and, in more detail, through a 

self-consistent mean field treatment that explicitly accounts for all relevant phases, 

we show that the same types of interactions that lead to these different surface phases 

lead also to the reentrant layering transitions seen in the recent experiments . By ap­

propriate tuning of the mean-field parameters we can semi-quantitatively reconstruct 

all the observed experimental phase diagrams. It turns out that certain experimental 

phase diagrams with "zippers" require that the preroughening transition become first 

order. Our renormalization group arguments predict such behavior in certain pa­

rameter ranges . In addition, for different parameters we predict the existence of an, 

as yet unobserved, 0DOF phase with spontaneously broken particle-hole symmetry 

and continuously varying surface height with an accompanying intermeshing layer­

ing phase diagram and we describe a microscopic model which shows such behavior. 

The underlying lattice in the experiments is triangular, and this actually enhances 

the stability of the disordered flat phase and the corresponding reentrant layering 

transitions in the films. 
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Chapter 1 Introduction 

1.1 Surface critical phenomena 

The study of interfaces between two different thermodynamic phases has yielded a 

remarkable variety of interesting phenomena. Some of the most fascinating behavior 

occurs at the interface between a bulk semi-infinite crystal and its vapor. When 

the temperature is below the bulk triple point, Tt (the temperature at which the 

crystal melts in the presence of the vapor) , the thermodynamics of the bulk crystal 

is smooth and nonsingular. The crystal surface, on the other hand, can exist in 

many different phases. The simplest phase is the fiat phase in which the surface looks 

essentially like a bulk crystalline plane. This phase is characterized by the existence of 

a positive surface step free energy, fs , which discourages the formation of plateaux or 

depressions in the surface. Although a finite density of such imperfections will always 

be entropically favored, the probability of their occurrence will decrease exponentially 

with their size. Furthermore, if the number of particles is such that the surface layer 

is incomplete, phase separation will occur and a single one-dimensional interface will 

separate two macroscopic flat regions with unit height difference between them. 

The flat phase is a special case of more general reconstructed phases. Here the 

surface layer, though only partially complete, nevertheless forms a periodic structure, 

commensurate with the underlying bulk crystal lattice plane, but with a larger unit 

cell, and a corresponding rational filling fraction, 0R. There are analogous step free 

energies, fs,R, which discourage configurations of particles which deviate from perfect 

periodicity. If the number of particles is such that the overall filling fraction, 0, of 

the surface layer deviates from 0R , the surface will again phase separate with a single 

one-dimensional interface separating two (possibly different) reconstructed phases. In 

the event that the two phases are different, coexistence requires that the surface free 

energies must match. 
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Very different in character from the flat and reconstructed phases is the rough 

phase. At and above the roughening temperature, Tr < Tt , the flat phase step free 

energy vanishes and it becomes entropically favorable for the surface to wander. To 

describe this quantitatively, let r = n 1a + n 2b, where n 1 and n 2 are integers , and a 

and b are primitive vectors, label the lattice points in the underlying crystal plane. 

Let h(r) be the (integer) height of the surface above the lattice point r. Then, at 

the roughening temperature , the variance of h(r) diverges. More specifically, at and 

above Tr, the height-height correlation function , 

1 
G(r - r') = -([h(r) - h(r')]2), 

2 

increases logarithmically with separation: 

(1.1) 

(1.2) 

where a0 = lal, say, is a microscopic length scale, and KR(T) may be thought of as a 

renormalized surface tilt modulus. In the flat and reconstructed phases, the variance, 

([h(r) - (h(r) )]2 ), is finite and equal to the larger limit of G(r). 

A useful way to visualize surface structure is the following "directed line" represen­

tation ( see Fig. 1.1): The presence of a difference in height between two neighboring 

sites on the surface is shown by a line running between the two sites (this corresponds 

to the presence of a step). An arrow is drawn on each line segment so that , looking 

along the arrow, the right side is a region with height one unit greater that the left 

side. There is a step energy cost J per unit length of the line. Here and henceforth 

we impose the restriction that nearest neighbor sites can differ in height by at most 

one atomic step; this condition is actually quite well obeyed in most experimental 

systems. With this representation in mind the reason for roughening is clear : At low 

temperatures the entropy is not very effective in reducing the free energy f s = j -Ts 

per unit length of the surface step. The free energy is dominated by the step energy 

J and consequently there are only a very small number of thermally activated steps 
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(a) 

n 

(b) 

Figure 1.1: Sample surface configurations. (a) Flat phase with one thermally excited 
island. (b) Rough phase with a proliferation of steps. 

and the surface is fl.at (Fig. 1.l(a)) . At higher temperatures the step wandering en­

tropy begins to play an important role. At and above the roughening temperature 

the entropy contribution drives f s to zero and steps proliferate as shown Fig. 1.1 (b). 

The transition into the rough phase is in the universality class of the Kosterlitz­

Thouless transition [22] , which also describes the low temperature magnetic ordering 

in the two-dimensional XY-model and the superfluid ordering in thin 4 H e films. 

A consequence of this is that right at the roughening temperature , T = Tr, the 

renormalized tilt modulus has the universal value KR(Tr) = ~. The value of KR jumps 

discontinuously to infinity below Tr, and decreases monotonically with T above Tr. 

In the XY-model the heights , h ( r) , appear in a dual representation of the original 

two-component spin model, and 1/k3 TKR(T) is proportional to the spin stiffness 

(or superfluid density), Y. There is an inverse relation, T ex 1/Txy, between the 

temperatures in the two models since the fl.at phase, with K R(T) = oo, corresponds 

to the disordered phase of the magnet (or superfluid) , with i = 0 [l ]. 
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(a) (b) 

(c) 

Figure 1.2: Caricatures of the surface phases discussed here: (a) Flat (b) DOF (c) 
Reconstructed (d) Rough. 

It turns out that there is yet another class of possible surface phases that may 

occur. These are the disordered.fiat (DOF) phases [2, 3, 4, 5] which may be thought of 

as intermediate between the reconstructed and rough phases. As an example, consider 

the (100) surface of a cubic crystal, and suppose that the atomic interactions are 

such that at low temperatures a kind of antiferromagnetic reconstructed phase with a 

checkerboard pattern ( 0 R = ½) is stabilized. Now, as the temperature rises, this phase 

may proceed directly through a roughening transition, analogous to that for the flat 

phase (but with a form of long ranged antiferromagnetic order persisting). However , 

it is also possible, if the checkerboard pattern is only weakly stable, for the system 

to undergo an Ising transition which destroys long range antiferromagnetic order 

without roughening the surface. The surface layer is then basically a two-dimensional 

lattice gas at half filling. This phase is called the disordered fiat phase. Raising the 

temperature further finally roughens the surface completely. It is also possible to enter 

the DO F phase directly from the flat phase [2, 3, 4, 5]. The transition is driven by 

the entropy gain entailed by a disordered surface, and can occur even if the energetics 

favors the flat phase. Note that this transition causes a discontinuous change in the 

occupancy of the surface layer. If the total number of particles is fixed, this means 

that the surface must phase separate into two disordered flat phases , one with an 

extra half layer of atoms, the other with a half layer of "holes." The phase transition, 



5 

at a temperature Tpr < Tr, is called preroughening and lies in a different universality 

class from that of all the other transitions discussed so far. For example, the specific 

heat exponent, a, can take any value between the Kosterlitz-Thouless value, a= -oo, 

and the four-state Potts value, a = i, depending upon the system parameters and, 

in particular, upon the precise strength of the tendency toward reconstruction [4] 

(the more nearly stable the reconstructed phase, the larger the value of a). It turns 

out [57] as discussed later in this thesis that the preroughening transition can even 

be driven first order, a possibility that was missed in earlier studies [2, 3, 4, 5]. 

The disordering of the checkerboard phase is only one example of a DOF phase. 

In principle, corresponding to any reconstructed phase is a disordered flat phase with 

the same coverage, 0R, separated from it by an Ising- ( or perhaps Potts-) type phase 

transition. However, we shall see that DO F phases may also exist even without a 

corresponding reconstructed phase ever being stable. This is crucial for the triangu­

lar lattice substrates relevant to the experiments, where the analogue of the 0R = ½ 

"antiferromagnetic" checkerboard reconstructed phase is frustrated and does not ex­

ist. Nevertheless, as we shall see, a 0 = ½ disordered flat phase does exist , and is 

even more stable than its square lattice counterpart! In fact , there are conditions [57] 

under which a disordered flat phase with continuously varying surface coverage, 0(T) , 

can exist. This 0DOF phase was first proposed by den Nijs [4] as a consequence of 

particle-hole symmetry breaking corner interactions. However, we find [57] that the 

same physics that gives rise to the first order preroughening mentioned above can, 

for different parameters, lead to a spontaneous breaking of particle-hole symmetry 

and a corresponding 0DOF phase in a completely particle-hole symmetric model. 

Whether or not a given system will exhibit a disordered flat phase depends upon the 

detailed atomic interactions. It is clear that a rather sensitive balance of nearest and 

further neighbor interactions may be required [2 , 3, 4, 5]. A two component "alloy" 

(discussed in section 4.8) seems to be required for the appearance of 0DOF behavior. 

The preceding section provides an introduction to the main phenomena discussed 

in this thesis. Before proceeding further it is useful to take a step back and review 

the field a little more systematically. Important experimental work is discussed in 
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the next section and theory is discussed in section 1.3. 

1.2 Experiment 

Historically experimental work was directed mostly towards understanding monolayer 

physics. Monolayer physics is very rich and there was ( and still is) much to be 

understood about films which are at most one atomic layer in thickness. Despite 

the beautiful KTNHY theory [32, 33], 2D melting is not a fully solved problem, in 

part because of strong translational symmetry breaking due to the presence of a 

corrugated substrate potential. Moreover, there are a wide variety of registered and 

incommensurate phases and transitions between these phases. These phenomena have 

been explored experimentally using techniques such as heat capacity measurements , 

x-ray scattering, vapor pressure isotherms, neutron diffraction and low energy electron 

diffraction [43, 44, 45, 46, 47, 48, 49]. The focus of this work will, however , be on 

multilayer phenomena. The celebrated experiments of Thorny and Duval [39 , 40] 

in 1969 were among the earliest ones in which multilayer films were studied. They 

observed layer by layer growth of adsorbate films on exfoliated graphite ( commercially 

known as Grafoam) substrates , mapping out high resolution isotherms for the growth 

of xenon and krypton films. Since then there have been numerous experiments to 

probe the properties of thick films. We will only touch on a few of these that are 

relevant to our analysis. Various reviews ( e.g. [42] and references therein) contain 

further details. 

Youn, Meng and Hess [41, 42] undertook ellipsometry studies of xenon , argon and 

krypton on highly oriented pyrolytic graphite. (Ellipsometry is an optical technique 

which probes the film thickness by measuring the ratio p of the reflection coefficients 

for s- and p-polarized light and the reflective phase delay ~ between the two polar­

izations. By finding the phase delay ~o due to the bare substrate and the shifted 

delay ~ 1 with the adsorbed film , the film thickness can be accurately measured.) 

Youn et al. measured the evolution of film thickness with vapor pressure for several 

isotherms and their results were striking. There was very clear evidence for reentrant 
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Figure 1.3: Ellipsometry isotherms for Argon on Graphite. 11 is an ellipsometric 
output signal which is related to the adsorbate thickness. The interleaving of the 
layering chemical potentials of the low and high temperature isotherms is evident. 
From H . S. Youn and G. B. Hess , Phys. Rev. Lett. 64, 918 (1990) . 

layering. One of their plots , for argon on graphite is shown in Fig. 1.3. From this 

figure it is seen that at low temperatures (66.9 K) there are sharp steps from one film 

thickness to the next. As the temperature is raised , the steps disappear but at yet 

higher temperature (72 .7 K) there is reentrance: The steps reappear but they occur 

between half integer average-heights. Finally, at the highest temperatures (79 .6 K) 

the film is in the rough phase and the growth is continuous once again. 

Goodstein's group at Caltech then carried out several interesting experiments [52 , 

53 , 54, 55 , 56] on the layer by layer growth of rare gas adsorbates on graphite foam. 

Using a custom made adiabatic scanning ratio calorimeter they were able obtain a 

detailed picture of the phase diagrams of krypton and argon on graphite from the 

second layer upwards. (One of their aims was to probe the system in regimes which 

were complimentary to both the ellipsomery data [41 , 42] which studied thick films 

and x-ray studies [51] which probed thin film properties.) The Caltech group found 
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Figure 1.4: Phase diagram for Argon on Graphite, From Day et al. [52]. The variable 
plotted on the vertical axis is related to the pressure of the vapor. 

evidence for several additional phase transitions (including registry transitions, and 

individual layer melting) not seen in the ellipsometry data. Substrate induced freezing 

was observed for films of thickness greater than four layers in agreement with [59]. The 

second layer was found to act as an independent 2D system but with very different 

characteristics from the monolayer. The presence ofreentrant layering was confirmed. 

Moreover, it was found that the low temperature layering lines appear to connect to 

the higher temperature reentrant transitions through a line of heat capacity peaks. 

Another important result was the discovery by Lysek et al. [55] that pores and 

wedges in the graphite substrate make capillary condensation an extremely important 

consideration even at fairly modes coverage. In fact some of the conclusions of [59] 

and other experiments were called into question because capillary condensation dom­

inates layer-by-layer growth for films above about four atomic layers thick. Weber 

and Goodstein [58] are presently involved in experiments which will lead to a better 

understanding of these problems and how to circumvent them. 

Finally we mention a recent x-ray reflection study of argon on MgO by Rieu­

tord et al. [ 60]. This technique ( on films adsorbed on single-crystal surfaces) yields 

information about both the quantity of adsorbate on the surface and about the struc-
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tural state of the top layer. There appears to be evidence of preroughening in this 

system too; moreover the experiment yields confirming evidence that the half-filled 

disordered flat layer is in a liquid phase. 

1.3 Theory 

Equilibrium crystal shapes have been studied for a long time. The first important 

theoretical work was a famous paper by Wulff in 1901 [6]. Wulff found equilibrium 

macroscopic crystal shapes by minimizing the solid-vapor interfacial energy F(T, w) = 

fow dSJ(in, T) with respect to the shape, w, of the crystal and subject to the constraint 

the the volume V(w) = fw dw remains constant. Here J(in, T) is the interfacial free 

energy per unit area when the surface is oriented in a direction in with respect to some 

fixed axis. Wulff constructed an explicit method (now called the Wulff construction) 

to solve this problem (see Fig. 1.5) for a given J(in, T). This method was later 

generalized [8] and details can be now found in standard textbooks [9]. The essential 

result found by Wulff is that only certain highly symmetric directions , in , at which 

f has corners will appear as facets on an equilibrium crystal surface. Finding the 

function f ( in, T), however , is far from trivial and requires a detailed microscopic 

calculation. Our concern in this thesis is not with the theoretical calculation off but 

with with the equilibrium surface structure on an equilibrium facet , in , determined 

by a given f . 

The solid on solid (SOS) models are very useful in the study of thermal roughening 

and other surface phase transitions, given a choice of in [10, 11 , 12]. The roughening 

transition for such faces occurs when f (in, T) -----t 0. If in is not a symmetry direction 

for the crystal but is only tipped slightly from a symmetry direction ( a crystal can 

be made to grow in such a direction by externally applied boundary conditions) then 

there will be a finite number of steps on the surface even in the ground state ( the 

surface will be a vicinal surface as shown in Fig. 1.6) and the ordered phase is one with 

parallel steps, a striped phase. When the temperature of this system is increased, the 

stripes disorder as described by Pokrovsky and Talapov and others [16 , 17, 18]. Here 
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Wulff Crystal Shope 
Plot (equatorial (perspective) 

plane) 

Figure 1.5 : The Wulff Construction: The first column shows polar plots of .f (m, T) 
for a simple cubic crystal at three different temperatures. TR is the roughening 
temperature, above which f (m, T) is completely analytic. The second and third 
columns show the corresponding crystal shapes. (From C. Rottman and M. Wortis , 
Phys. Rep. 103, 59 (1984).) 

we will restrict our considerations to directions m which are symmetry directions of 

the crystal. 

Some of the earliest work on the statistical mechanics of surfaces was done by 

Burton , Cabrera and Frank [13 , 14]. They realized the importance of steps and 

topological defects like screw dislocations as nuclei for crystal growth. In addition, 

using a two state Ising model to model the surface physics , they speculated that the 

crystal surface at high temperatures does not merely have isolated thermally induced 

steps with an exponentially low density as had been earlier thought [15] but that 

there is actually a phase transition to a completely disordered phase, similar to the 

DOF phase discussed earlier. 

The original belief of Burton et al. and others [14, 19] that the transition was 

in the Ising universality class was subsequently found to be incorrect. Monte Carlo 

(MC) simulations [20] showed that near the disordering temperature an effective two 

layer approach is inadequate: Even if the MC simulation starts out with a flat surface 

close to the disordering temperature, as the simulation proceeds large clusters form 

and smaller clusters form on the large clusters and the concept of a reference height 
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Figure 1.6: Striped phase at finite temperature. /3 is the angle of deviation from 
a symmetry direction. From P. Chaikin and T. Lubensky, Principles of Condensed 
Matter Physics, Cambridge University Press, New York (1995). 

becomes meaningless. This led Chui and Weeks [21] to introduce a discrete Gaussian 

model with Hamiltonian 

(1.3) 

where hj denotes the surface height at site j, and c5 indexes nearest neighbors. At a 

given site the height variable can take any integer value. They showed that this model 

is exactly mappable to the neutral 2D lattice coulomb gas which had already been 

shown to be in a very different universality class by Kosterlitz and Thouless [22, 23]. 

Soon after this work, Jose et al. [1] showed quite generally that any nearest neighbor 

SOS model can be mapped onto a planar XY-type model by a duality transformation. 

This mapping (which can easily be generalized to include longer range interactions) 

has been of great importance in unifying the description of systems which had earlier 

seemed quite unrelated. 

The six-vertex (6V) models constitute another extremely useful class of models 

(for a variety of systems including ice [24] hence the alternate name ice-type models) 

for surface reconstruction and roughening. 6V models are defined on a square lattice 

with the one additional condition that there always has to be a height difference 

between nearest neighbors. Hence the lines denoting the steps form the bonds of a 

regular lattice. In the ice-type models a certain energy is assigned to each vertex (i.e. 

each intersection of step-lines) rather than to each line segment. There are exactly 

6 possible different vertex configurations (Fig. 1.7) . In the most general model each 
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Figure 1. 7: The six vertex model. Shown below each vertex is a schematic of the 
corresponding surface configuration. 

vertex could have a different energy ( except that symmetry considerations require 

that E5 = E6 for a system with periodic boundary conditions). For simplicity (and 

because there are generally certain symmetries is real systems) various additional 

symmetries are imposed on the Ei- For example in one early 6V model (suggested by 

F. Rys in 1963 [25]) the choice 

(1.4) 

was made. This choice of energies defines the F-model. Clearly the ground state of 

this model will consist exclusively of vertices v5 and v6 and has a twofold degenerate 

checkerboard structure (one of which is shown in Fig. 1.8(b)). The F-model was 

solved exactly by Lieb [26 , 27, 28] and a more general model with E1 = E2 , E3 = E4 , 

and E5 = E6 was solved subsequently [29, 30]. The phase diagram for this model is 

shown in Fig. 1.8. Here a = e-q/T, b = e-q/T, and c = e-Es/T _ Regions I and II 

correspond to surface phases where almost all of the vertices are only of type 1 and 2 

or of type 3 and 4. Thus in these phases the surface is tilted at 45° with respect to the 

(100) axis (Fig. 1.8). Region III corresponds to the reconstructed checkerboard phase 

and region IV is the disordered (rough) phase. The line from (0,1) to (1 ,0) is the 

roughening transition line; this transition is in the Kosterlitz-Thouless universality 

class [31]. 
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Figure 1.8: (a) Phase diagram for the generalized F-model. (b) Surface configuration 
in the ground state (III). ( c) Surface configuration in phase I. 

Some years ago K. Rommelse and M. den Nijs [2 , 3, 4] investigated the effects of 

inter-step interaction in the model for roughening described similar to the discrete 

Gaussian model described by equation 1.3 (recall that there was a step energy J per 

unit length in that model but no additional step-step interaction energy). A step-step 

interaction is exactly equivalent to introducing a next-nearest neighbor interaction in 

HDc and such an interaction is very reasonable on physical grounds. The model of 

Rommelse and den Nijs is therefore a combination of the F-model and the general 

step-energy models described above: Steps are represented by directed lines with 

an energy li/2 per unit length. Moreover step intersections (vertices) are assigned 

energies as in the F-model: (t:1 = t:2 = t:3 = t:4 = 212 > 0 and t:5 = E5 = 0). This 

model is quite different from the ordinary F-model because there is no requirement 

that the network of steps form an ordered lattice. The Hamiltonian for this model 

can be expressed concisely as: 

(1.5) 

where hi represents the column height of the SOS model; the first summation is over 

nearest neighbors and the second is over next nearest neighbors. In addition, the 
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RSOS condition ( which mandates that the height difference between nearest neighbors 

can be at most one unit) is imposed as usual. 

The inclusion of the next-nearest neighbor interaction introduces very interest­

ing and non-trivial consequences. It implies that there is no cost to putting two 

antiparallel directed lines next to each but that two parallel lines will have higher 

energy and will thus "repel" each other as in Fig. 1.9 . At low temperature the line 

(a) (b) 

Figure 1.9: (a) Positive interaction energy repels two parallel steps. (b) No repulsion 
between antiparallel steps. 

density on the surface is low and step-step interaction is not an issue. At higher 

temperatures , however, when the line density increases, one might expect the energy 

cost of parallel lines to dictate that adjacent arrows be anti-parallel. If one disre­

gards the direction of the arrows, the line geometry looks essentially exactly like the 

line geometry in the rough phase ( compare Fig. 1. 10 with Fig. 1.1 (b)) however once 

Figure 1.10: The Disordered Flat Phase for the same line geometry as in Fig. 1.1; the 
arrow configuration is quite different however. 

arrows are considered, a crucial difference emerges: the inter-step interaction now 

introduces a long range arrow order; adjacent arrows point in opposite directions. 

This arrow-ordered but line-disordered phase is the new disordered flat (DOF) phase. 
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In terms of surface structure the long range arrow order means that an up-step is 

typically fo llowed by a down-step and vice-versa. Thus the surface is essentially flat 

(i.e. limli-Jl-+oo((hi - hJ)2 ) ➔ const < oo). 

Rommelse and den Nijs formalize the above arguments by expressing the partition 

function of the system as 

ZRsos = L e-E({s(r)} ,K) • ZF-modeI({s(r)},L) 
{s(r)} 

(1.6) 

where the summation is over all possible undirected networks of lines ( the undirected 

lines can be realized as domain walls of a two state classical Ising model with exchange 

constant J = kbT K for a particular configuration of spins , { s(r)}). ZF-model is the 

partition function due to different arrow arrangements on a given set of Ising walls. 

The interplay between Ising and F-model transitions leads to the DOF phase and the 

novel preroughening transition. 

As an aside it should be noted that a spin-1 quantum chain is equivalent to a highly 

anisotropic RSOS model with next-nearest neighbor interactions [2] . This equivalence 

has been exploited to elucidate the properties of valence bond solid phases in spin 

chains and to clarify the Haldane conj ecture. 

1.4 Layering critical phenomena 

Everything we have discussed so far relates to a free surface on a bulk semi-infinite 

crystal. This is important because it means that the potential experienced by an atom 

on the surface is an exactly periodic function of the number of layers : if a completed 

layer contains NA atoms, the addition to the surface of a further NA atoms yields 

a state thermodynamically indistinguishable from the original. It is this property 

that makes roughening and preroughening so different from more conventional two­

dimensional critical phenomena. 

For films of finite thickness there are two complimentary regimes: One is the limit 

of single layer phenomena. Monolayer and submonolayer physics is a vast subject; 
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important phenomena which it encompasses include the 2-D dislocation mediated 

melting of Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) [22 , 23, 32, 33, 34], 

commensurate-incommensurate phase transitions [35, 36, 37, 38], and a whole zoo of 

reconstruction transitions. 

The other interesting limit is the thick film limit. Here the existence of a substrate 

at some depth below the surface of the crystal breaks the translational symmetry 

present in a semi-infinite crystal formed for example by considering a crystalline slab 

of finite thickness, or by growing a finite number of layers of the crystal on a smooth 

substrate made of a different material, For surface transitions like roughening and 

preroughening which involve an infinite number of layers , this broken symmetry pro­

foundly alters the nature of the phase transition. Thermodynamics will no longer 

be periodic in the number of layers, and the types of surface phases may change 

drastically from layer to layer. Nevertheless, for a sufficiently large number of lay­

ers, the surface thermodynamics must, in some way, approach that of the perfect, 

bulk crystal surface. Conversely, the bulk surface phases and phase transitions must 

be reflected somehow in the behavior of a finite but sufficiently thick film . Moti­

vated by the results of some recent experiments on rare gases adsorbed on graphite 

substrates [41, 52, 53, 54], our purpose will be to explore precisely this latter issue. 

1.5 Outline 

In this thesis we will examine various solid-on-solid models of surface critical phe­

nomena in the presence of a substrate potential. It is our aim to understand the 

conditions under which ordinary preroughening, first order preroughening, 0DOF 

preroughening , or perhaps something entirely different occur. Much can be under­

stood qualitatively based on the sine-Gordon ( closely related to the Coulomb gas) 

representation of the roughening and preroughening transitions [4], generalized to in­

clude a substrate potential. However our main quantitative tool will be a mean field 

theory sophisticated enough to account for all of the possible surface phases. Since 

the issue here is really the topology of the phase diagram, rather than the nature 
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of the critical points (which are all Ising-like for finite layer thickness n , and , in any 

case, the experiments do not resolve detailed critical behavior) one can go a long way 

with mean field theory, even to the point of obtaining semi-quantitative results. 

In Chapter 2 we will summarize the various possible layering diagrams derived in 

later chapters. 

In Chapter 3 we introduce the restricted solid-on-solid (RSOS) models of crystal­

vapor interfaces and discuss their general properties. A great deal of intuition can 

be obtained by considering the limit of a strong substrate potential and restricting 

the model to a small number (two or three) of layers. One then obtains effective 

spin-j (with j = ½ or j = 1) Ising models whose phase diagrams can be understood 

quite generally. A plaquette mean field formalism is then developed for later detailed 

computations. 

In Chapter 4 we will use generalized sine-Gordon models along with renormaliza­

tion group arguments to discuss the phenomenology of the layering phase diagram. 

In so doing we will uncover the four basic classes of layering behavior for thick films 

shown in Figs. 2.l(b-d). 

In Chapter 5 we explore solutions to the mean field equations, classifying, to 

some extent , the possible phase diagrams. In addition we explore a number of phase 

diagrams that do not have sine-Gordon model descriptions, namely those that involve 

reconstruction. As alluded to above, some of these mimic closely some of the phase 

diagrams involving preroughening, but there are significant experimentally observable 

differences. 

In Chapter 6 we conclude by comparing the theoretical and experimental phase 

diagrams. We also describe future work that might help in the search for new exper­

imental systems that display the so far unobserved phase diagrams. 

Various appendices contain more technical derivations. App. A contains a formal 

development of consistent plaquette mean field theories. In App. B explicit expres­

sions for the free energies on various lattices and for various plaquettes are derived and 

in App. C the equivalence between the staggered BCSOS model and the Ashkin-Teller 

model is made explicit. 
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Chapter 2 Phase Diagrams 

For future reference and in order to motivate some of the calculations and models of 

later chapters we collect some of our main results in this chapter. While this is by 

no means a complete summary of our work, this collection of phase diagrams does 

include the most essential results. 

All phase diagrams in Fig. 2 .1 have been computed using a sophisticated plaquette 

mean field theory, to be introduced in later sections, applied to the restricted solid­

on-solid (RSOS) model. The model, which will be introduced in detail in Chap. 3, 

contains two parameters, K = li/kBT and L = 12 /kBT, where 11 and 12 are, 

respectively, nearest and second nearest neighbor interactions between the surface 

heights , h(r). For present purposes one need only know that positive 11 energetically 

favors neighboring columns of equal height , while negative 11 favors a unit height 

difference; 12 is always kept positive, and favors second neighboring columns of equal 

height . The first plot, Fig. 2 .1 (A) , is the bulk interface phase diagram for this model. 

We see clearly here five of the six different phases we have discussed ( the 0 DO F 

phase does not appear in this model) , and the transition lines between them. The 

inset to Fig. 2.l(A) shows the sixth possible phase, the 0DOF phase. In the center 

of Figs. 2.l(B) and 2.l(C) are shown various paths through the bulk phase diagram. 

Associated with each of these paths is a layering phase diagram, Figs. 2.l(A)(a-d) , 

2.l(B)(e-h) corresponding to the same RSOS model but now including a substrate 

potential. 

Path 1 shows ordinary surface roughening behavior. The relation between this 

behavior and layering critical phenomena is actually well known (see especially [61]) : 

the roughening temperature , Tr, is the accumulation point for the sequence of critical 

points, Tc ,n, that terminate the first order layering transitions at lower temperatures 

[see Fig. 2.l(B)(a)]. The nth layering line separates phases with approximately integer 

film thicknesses, n - 1 and n, and ends in an Ising critcial point, T c,n · 
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Figure 2.1: A: Global phase diagram, as computed using a plaquette mean field theory 
on a square lattice, for the RSOS model of a bulk interface, with K = Ii/kBT 
and L = 12 / kBT the nearest and next nearest neighbor interactions, showing the 
six possible different surface phases. The inset shows schematically an alternative 
scenario containing the 0DOF phase. This scenario is not found in the RSOS model 
we study (hence the remaining questions about how some of the transition lines 
connect up), but is expected to appear in other models. 
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Figure 2.1 : B : Paths 1-3 represent possible experimental trajectories through this 
phase diagram. The surrounding figures show the layering phase diagrams associ­
ated with these paths when a substrate potential is included: (a) Pure roughening 
behavior and associated low temperature layering transitions, path 1. (b) Contin­
uous preroughening behavior and associated reentrant layering, path 2. (c) 0DOF 
phase behavior and associated intermeshing, path 3'. ( d) First order preroughening 
behavior and associated zippering , path 3. 
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Figure 2.1: C: Paths 4-7 represent additional trajectories through the phase dia­
gram. ( e) DO F to Reconstructed behavior and associated antiferromagnetic transi­
tions within each layer , path 4. (f) First order flat to reconstructed behavior, similar 
to 2.l(B)(d) but with layering lines reversed . (g) Reconstructed rough behavior and 
associated surrounding antiferromagnetic line, path 5. (h) F irst order reconstructed 
to flat behavior , similar to 2.l(B)(d) but with a surrounding antiferromagnetic line. 
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Paths 2, 3 and 3' cut, in various ways , through the J 1 > 0 portion of the DO F 

phase, and are the primary focus of this paper. Path 2 corresponds to ordinary 

preroughening. Den Nijs has proposed some possible associated layering phase dia­

grams [5] . The basic idea is that there should be two sequences of layering transitions. 

At low temperatures, T :::_, Tpr, there is a sequence of first order layering transitions 

between integer coverages, while at higher temperatures , Tpr :::_, T :::_, Tr , there is a 

sequence of first order layering transitions between integer-plus-one-half ( or, more 

generally, integer-plus-BR) coverages. The second set of lines must therefore be reen­

trant, with upper and lower endpoints Tc,n and T;;,, respectively. The low temperature 

set have only upper endpoints, T;. The temperatures Tc,n still t end to Tr as n ---+ oo. 

What was not previously understood is in what way (if at all) the endpoints T;;, and 

T; are connected together. Den Nijs [5] suggests two possibilities: (a) T; and T;;, are 

Ising critical points, as are Tc,n, with T;, T;;,---+ Tpr, and are not connected in any way 

[Fig. 2.l(B)(b)] ; (b) T;;, and T; are triple points, "zipped" together by a sequence of 

first order lines, with T;, T;;,---+ T0 [Fig. 2.l(B)(d)]. We distinguish between Tpr and T0 

for reasons that will become clear below. Another possibility ( c) is that the two sets 

of layering lines intermesh, with distinct limits T; ---+ T} and T;;, ---+ T} where T} < T} 

[Fig. 2.l(B)(c)]. The high resolution heat capacity studies [52, 53 , 54] suggest possi­

bility (b). We will show that , depending on parameters , all of these possibilities, as 

well as others, can occur . Possibility (a) indeed corresponds to a continuous prerough­

ening transition, path 2; while (b) corresponds to a first order transition between flat 

and DOF phases (To denoting then the first order preroughening temperature), path 

3; and (c) to a 0DOF phase in the temperature interval T} ::::; T ::::; T} , path 3'. 

The bulk interface transitions T} and T} are also Ising like, and in the 0 DO F phase 

one has a continuously varying surface coverage, 0 ::::; 0(T) ::::; ½ with 0(T}) = 0 and 

0(T}) = ½-

Although not relevant to present experiments, one may also cut through the DOF 

phase with J 1 < 0, ending with a reconstructed phase at lower temperatures. This 

is represented by path 4, and the associated layering phase diagram is shown in 

Fig. 2.l(C)(e). Here there is only one set of layering lines, between half-integer cov-
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erages. However , for each given film thickness an Ising antiferromagnetic ordering 

transition takes place at intermediate temperatures. This transition becomes the 

DOF-Reconstructed phase boundary on the bulk interface. The roughening transi­

tion at higher temperatures is again reflected in the sequence of Ising critical points , 

Path 5 shows behavior for larger I 11 I/ 12 , where the surface roughens before it 

deconstructs , yielding an intermediate reconstructed rough phase. The associated 

layering phase diagram [Fig. 2.l(C)(g)] displays a sequence of layering transitions be­

tween half-integer film thicknesses lying completely within an antiferromagnetic phase 

boundary. The nature of the order within this boundary is quite subtle, correspond­

ing to antiferromagnetic order in the magnitude of the mean square fluctuations of 

each column height, not in the column heights themselves. The latter symmetry is 

broken only below Tc,n. 

We also show layering phase diagrams for somewhat fanciful continuations of 

paths 1 and 5 which cross the first order flat to reconstructed phase boundary [see 

Figs . 2.l(C)(f,h)]. There is no experimental evidence for 11 changing sign as a func­

tion of T, but the resulting phase diagrams, while not associated in any way with the 

DOF phase, are remarkably similar in appearance to Fig. 2.l(B)(d) , associated with 

first order preroughening, and the experimental results for Argon and Krypton on 

graphite [52, 53, 56]. The continuation of path 1, shown in Fig. 2.l(C)(f), is identical 

to Fig. 2.l(B)(d) , except that the integer and half-integer layering lines are inter­

changed . Ellipsometry [41] and vapor pressure isotherm measurements [52 , 53, 54, 62], 

however, are sufficiently accurate to rule out such an interchange. The continuation 

of path 5 shown in Fig. 2.l(C)(h) has the two sets of layering lines in the correct 

order, but , just as in Fig. 2.l(C)(f)) , they are surrounded by an antiferromagnetic 

Ising phase boundary. Once again, there is no evidence for the latter in any of the 

experiments . 

As mentioned , the experimental graphite subtsrate lattice is triangular. Indica­

tions are that the reentrant layerings nevertheless occur at half filling. Although 

0 R = ½ reconstructed phases , such those with every second row missing, do exist on a 
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t riangular lattice, they do not arise in a natural way if the interactions are isotropic. 

It is likely, t hen, t hat for the models we consider here there is no stable half filled 

reconstructed phase. Until now, this was thought to be a problem for the DOF phase 

interpretation of reentrant layering [5]. What we will show, however , is that the ab­

sence of a reconstructed phase actually enhances the DO F phase , and that there are 

two factors that one must consider in determining the filling fraction, 0, at which it 

occurs. Thus, although it is energetics that favors a DO F phase with filling fraction 

0 R , it is entropy that drives the preroughening transition and disfavors integer filling 

fractions. In the absence of the former , the latter will t end to form a DOF phase half 

way between the two bounding integer coverages even in the absence of an "attract­

ing" incipient reconstructed phase, just as seen in the experiments. The triangular 

lattice bulk interface phase diagram, as computed using our plaquette mean field the­

ory, is shown in Fig. 2.2 . As can be seen, the main difference between this figure and 

Fig. 2.l(A) is the absence of the reconstructed and reconstructed rough phases, and 

the correpsondingly expanded DO F phase. The K > 0 portion of the phase diagram 

is, however , qualitatively unchanged . 

0 .3 

Flat 

K 
0 .2 

·0 .1 ~----------~~ -~ 
0 .0 0.2 0.4 0 .6 0 .8 1 .0 

L 

Figure 2.2: Global phase diagram, as computed using a plaquette mean field theory on 
a triangular lattice, for the RSOS model of a bulk interface. The reconstructed and 
reconstructed rough phases, and transitions associated with them , are now absent , 
leading to a much enlarged DOF phase. The behavior for K > 0, however , is 
qualitatively unchanged from that for a square lattice, Fig. 2.l(A) . 
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Chapter 3 Models and methods 

3 .1 Solid on solid models 

Solid on solid (SOS) models are conventionally used to model interface phenomena. 

In these models the vapor phase above the surface is taken to be a perfect vacuum, 

while the solid phase below is taken to be a perfect crystal, and surface overhangs 

are ignored. The surface is then defined by a set of column heights, h(r), above a 

two dimensional lattice spanned by the index r. To begin with we shall assume a 

simple square lattice with h(r) taking integer values. Later on we shall discuss the 

experimentally more relevant case of a triangular lattice. In fact, the bulk crystals 

considered here have a face centered cubic structure in which sequential layers of 

atoms sit in the interstices of the previous layer. Although, for a given r, h(r) 

can change only in integer steps, neighboring heights will then differ by noninteger 

amounts. For simplicity of modelling, we shall ignore this complication and take the 

triangular lattices to lie one on top of the other so that all h( r) are integers. In 

the restricted solid on solid (RSOS) models , the further constraint is imposed that 

neighboring column heights can differ by at most unity. This reflects the physical 

constraint that it is energetically unfavorable to form steps of greater than unit height. 

In the RSOS models the energy barrier against such steps is simply taken to be infinite. 

This constraint greatly reduces the number of surface configurations and therefore 

simplifies certain analytic and numerical calculations (see below) without affecting 

the basic physics. It also decreases the configurational entropy, and roughness , of the 

surface relative to that of, say, the interface between oppositely magnetized domains 

in a three-dimensional Ising model. This tends to stabilize more delicate phases , like 

the disordered flat phase, which rely on a critical balance between configurational 

entropy and step free energy barriers. Clearly, whether the SOS model , RSOS model , 

or something in between , is most appropriate depends upon the details of the system 
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being modeled. 

Following den Nijs [4], we first consider the RSOS Hamiltonian on a square lattice, 

H 
1 1 
-Ji L [h(r) - h(r')] 2 + -J2 L [h(r) - h(r")]2 
2 

<r,r'> 2 (r ,r") 

+ LV[h(r)], (3.1) 
r 

where the first sum is over nearest neighbors and the second sum is over second (i .e. 

diagonal) neighbors. We assume 12 > 0 always, but J1 can be either positive or 

negative. The external potential, V(h) [in the absence of which, (3 .1) is precisely the 

model treated in [4]] is due to the substrate, and takes the form [61] (see Fig. 3.1) 

{ 
hD.µ + v(h), 

V(h) = 
oo, h < 0, 

(3 .2) 

with v(h) ~ ch-a for large h. For a van der Waals substrate potential, a = 2 and 

c > 0. The linear coefficient, D.µ = µcoex - µ , is the deviation of the chemical 

potential from bulk solid-vapor coexistence. For D.µ > 0 the bulk phase is vapor , 

while for D.µ < 0 the bulk phase is solid. A true bulk equilibrium interface exists 

only for D.µ = 0 (precisely analogous to external magnetic field H = 0 in an Ising 

model). If J1 and J2 are both positive, then at zero temperature the interface is 

perfectly flat and its equilibrium position is at the minimum, h0 (D.µ, T = 0) , of V(h) 

( over integer values of h). For small D.µ the minimum diverges as 

(3.3) 

It is for this reason that absorption isotherms, which essentially measure heq(D.µ, T) = 
(h(r)) as a function of D.µ for fixed T , are often plotted versus D.µ-½: the steps due 

to the sequence of layer completions then occur with roughly equal spacing [52, 53]. 

The physics behind (3.1) is as follows . Consider first a bulk interface with V _ 0. 

If 11 is positive and large compared to J2 , the energetics give preference to a flat 

interface, and the model will produce a standard roughening transition with increasing 
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Figure 3.1: Substrate potential, V(h). 

temperature when K _ li/kBT and L = 12/kBT are sufficiently small. If 11 < 0 

and is large in magnitude compared to 12 , neighboring column heights prefer to differ 

by unity. However , since 12 prefers that diagonal nearest neighbor column heights 

have equal height, an antiferromagnetic order is stabilized at low temperature: this 

is the checkerboard reconstructed phase. As K decreases , this phase roughens, but 

still retains a generalized long-range antiferromagnetic order [2]. A second Ising­

like transition, at higher temperature, into a fully rough phase is required to finally 

eliminate this residual order. However , if 11 < 0 is sufficiently small in magnitude, 

the antiferromagnetic order can be lost , via an Ising transition, before the surface 

roughens: this is the transition to the disordered flat phase. This phase actually 

persists also for 11 > 0, but small: the entropy gain from disordering the surface 

more than offsets the loss of ferromagnetic energy. Fig. 2 in [ 4] and Fig. 2 .1 of this 

work show how these four phases fit together. 

Now, how are these phases affected by the presence of V ( h)? The effect on the 

rough phases is catastrophic! Since V(h) prefers a set of values of h near h0 (f::.µ) , 

the correlation function G(r) [see (1.1)] must always remain finite as Jrl ----1 oo. The 

logarithmic divergence in (1.2) must saturate. We may estimate the saturation value 

as follows: assuming that the interface does not wander too far from the minimum, 
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it will be governed by the effective Hamiltonian 

- _ H ett 1 j 2 [ I 
1
2 )2] H eff = -- = - d r K R 'v'h + "'(h - ho 

ks T 2 
(3.4) 

where 

(3.5) 

is the curvature at the minimum, and KR is the effective long wavelength (renormal­

ized) tilt modulus [see (1.1)] in the absence of V . This Hamiltonian is Gaussian, and 

yields 

(3.6) 

which also estimates the saturation value of G(r). The final inequality t ells us, self 

consistently, that although the interface width diverges logarithmically as D..µ ➔ 0, 

the interface remains sufficiently close to ho that the quadratic approximation remains 

valid. 

Clearly, the flat phases will be affected by the potential in much more subtle ways. 

They will , of course, remain flat. The question we address is the nature of the various 

transitions between them in the presence of V ( h). 

3.2 Effective layer Hamiltonians 

From the general Hamiltonian (3.1) one can derive various approximate effective 

Hamiltionians for describing the thermodynamics of individual layers. The basic 
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idea is that if the effective potential, V ( h), increases rapidly to either side of the 

minimum near h0 (D.µ), then large deviations of the column heights from h0 will be 

strongly discouraged, and, to a good approximation, one can suppress all values of 

h( r) outside of some narrow range. If this range encompasses an integer 2j + 1 of 

values, one then has reduced the full Hamiltonian to one of a classical spin-j Ising 

model. It will transpire that a description of the thin film analogue of the disordered 

flat phase requires j :2: 1. However, we will begin our discussion with the simpler 

spin-½ model. 

3.2.1 Spin-j Ising models 

A spin- ½ description is valid if the substrate potential is so strong as to allow essen­

tially only one value of the column heights, except when the value of D.µ is such that 

two column heights , say n and n + 1, are nearly degenerate in energy. In this latter 

situation the true minimum of V(h) lies near n+ ½, and V(n) ~ V(n+ 1). Physically, 

we expect this to be a valid description for films only a few layers thick. We define 

the spin-½ variables s(r) via 

{

-1 
s(r) = 

1 

ifh(r)=n 

if h(r) = n+ 1. 
(3.7) 

Ignoring all other possible values of h(r), the Hamiltonian now becomes 

- 1 ~ 2 H ~ 1{½ = 2K L [s(r) - s(r')] 
(rr' ) 

+ ~L L [s(r) - s(r11 )]2 - h L s(r) 
(rr11 ) r 

(3.8) 

an effective magnetic field, and we have dropped an overall constant term, C = 

½[V(n) + V(n + l)]NA where NA is the number of atoms per layer. We should 

really distinguish between the coupling constants K and L that appear in (3.8) and 

those that appear in (3.1) because the former are effective parameters that will differ 
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somewhat from the latter in a way that depends upon how good an approximation the 

spin-½ model is. For simplicity of notat ion , however, we will not make this distinction 

explicit. For L = 0 this is the standard two-dimensional Ising Hamiltonian. If K > 0 

the model is ferromagnetic , and when H = 0 there is a phase transition to a state 

with finite magnetization as K increases through a critical value K = Kc [see Fig. 

3.2(a)]. If K < 0 the model is antiferromagnetic. Since H does not couple directly to 

the staggered magnetization order parameter in this case, there is a line of transitions , 

K = Kc(H) [see Fig. 3.2(b )], to states with finite staggered magnetization. Thus, 

although H polarizes the spins somewhat, antiferromagnetic order survives if H is 

not too large. Clearly, one must have Kc(0) = -Kc. This line terminates at T = 0 

(K = -oo) for a critical value of the field , H = ±He, with He = -2]1 . Since 

L > 0 encourages the alignment of diagonal nearest neighbor spins, it enhances both 

ferromagnetic and antiferromagnetic order. If L is not too large, the phase diagrams 

are qualitatively unchanged. 

For large L > 0, new behavior occurs. Suppose K = 0. Then the two interpen­

etrating sublattices are decoupled , and L provides a nearest neighbor ferromagnetic 

coupling within each one. Thus, at H = 0 and a critical value , L = Kc, the two 

sublattices will independently order ferromagnetically. We may view a small value 

of K as a perturbation on this behavior , which then determines how these two sub­

lattices orient relative to one another. If K > 0 (but arbitrarily small) the two will 

order parallel to each other , yielding an overall ferromagnetic state; if K < 0 (but 

arbitrarily small) the two will order antiparallel to each other, yielding an overall 

antiferromagnetic state. There is therefore a first order transition from one ordered 

state to the other when K reverses sign at large enough L. 

For nonzero H the ferromagnetic part of the critical line is destroyed (see Fig. 3.3(b)) , 

but the antiferromagnetic part survives, and must merge somehow with the extension 

of the first order decoupling line, K = 0, L > Kc. For large L it is easy to see that 

the latter moves to negative J1 '.::::' - ½I HI since a finite K < 0 is now required to 

overturn one sublattice against the field. For small L the transition remains second 

order. How the two behaviors connect at intermediate L is surprisingly complicat ed: 
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Figure 3. 2: (a) Ferromagnetic and (b) antiferromagnetic Ising phase diagrams for 
L = 0. 

for smaller H the two meet in a tricritical point, while for larger H the second order 

line ends in a critical endpoint on the first order line, while the first order line ends 

in an Ising critical point inside the antiferromagnetic phase. A tetracritical point, at 

a particular value of H = Hc4 , separates these two behaviors. The phase diagrams in 

the H-T plane are shown in Fig. 3.3(a). A three-dimensional phase diagram in the 

full H-K-L space is shown in Fig. 3.3(b). All this will be described in more detail in 

Chapter 5. 

Let us now understand the relationship between this phase diagram and the lay­

ering transitions in the solid-on-solid model. Consider first K > 0 and L = 0. At 

low temperature K will be larger than K c, and as H passes through zero a first order 

transition will take place between the spin down ferromagnetic phase and the spin 
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Fig. 3.2(b) is recovered as J2/IJ1I ➔ 0. The paths labelled (i) ,(ii) , (iii) , and (iv) 
refer to the corresponding parts of Fig. 5 .1. (b) Three-dimensional plot , with det ails 
of the tricritcial and critical endpoint structure shown. 
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up ferromagnetic phase. This corresponds to a first order layering transition (as a 

function of 6µ) between n completed layers , with a dilute gas of atoms (whose den­

sity varies continuously with H < 0) in the partially completed (n + l)st layer , and 

n + 1 completed layers with a dilute gas of "holes" ( whose density varies continuously 

with H > 0) in the (n + l)st layer, occuring precisely when V(n) and V(n + 1) are 

degenerate. This first order line terminates in an Ising critical point, above which the 

layers grow continuously. 

As 6µ decreases further, V(n + 2) eventually becomes degenerate with V(n + 1), 

and we leave the domain of validity of the Ising model (3.8). However, we may now 

ignore the nth layer, which is essentially full and inert, and consider a new effective 

Ising model, of the same form as (3.8), for the (n + l)st and (n + 2)nd layers. The 

effective parameters will be slightly different since the precise shape of V ( h) has 

changed, but the same physics will now repeat , with H = ½[V(n + 1) - V(n + 2)]. In 

particular , a new layering transition between n + 1 and n + 2 layers will now occur. 

Repeating this whole process indefinitely generates the entire infinite sequence of 

layering transitions. Of course, our assumption that V(h) effectively isolates only 

two layers breaks down as the number of layers increases, but the picture actually 

remains valid. The point is that K prefers a flat surface, and Huse [61] has shown that 

the endpoints of the layering transitions accumulate at the roughening transition from 

the low temperature side. Therefore the renormalized tilt modulus , KR, in (3.4) is 

still infinite, and the interface is flat right through the Ising transition. It is therefore 

a combination of a weak minimum in V ( h) and the fact that Tc,n < Tr that maintains 

the correctness of our simple picture. These results are qualitatively unaffected if 

L > 0 since L just enhances the stability of the flat phase somewhat. 

Consider next K < 0. The original RSOS Hamiltonian does not really make 

sense in this case if 12 = 0 since the surface will always be rough: in the absence of a 

strongly localizing substrate potential , one needs a finite 12 to stabilize a flat surface 

at low temperatures. The corresponding effective layer Hamiltonian must then have 

a positive L . At low temperatures, then , the first order layering lines now broaden 

out into second order lobes enclosing checkerboard ordered phases that exist in the 
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interval -He(T) < H < He(T) [see Figs. 3.2(b) and 3.3(a)]. As above, there will 

be one such lobe for each value of n. If V(h) is sufficiently steep so that H passes 

through He before V(n+2)- V(n+ 1) becomes smaller than 8111 1, then the transition 

line reaches right to T = 0 and is completely disjoint from the checkerboard phases at 

neighboring coverages. In principle, all of the complicated triple point or critical end 

point structure will appear as well. This is shown at the bottom of Fig. 2.l(B)(d). If, 

on the other hand, V ( n + 2) - V ( n + 1) becomes smaller than 8 I 11 I before H passes 

through He, the neighboring lobes will overlap and one will have a.first order transition 

between neighboring checkerboard phases at low temperature. This must happen for 

sufficiently large n, and is shown in the upper left hand parts of Fig. 2.l(B)(d). 

What happens at higher temperatures? There are two possibilities, depending 

upon the relative strengths of 1
1 

and 1
2

. If 1
2 

is large compared to 1
1

, then the layer­

ing tendency is stronger than the reconstruction tendency, and will survive to higher 

temperatures. Therefore, as the temperature rises , first the reconstructed phase dis­

orders, while the strong L continues to maintain a flat , roughly half-filled surface. The 

second order antiferromagnetic Ising transitions then terminate at critical endpoints 

on the first order layering lines. As the film thickens the reconstruction transitions ac­

cumulate at the bulk surface reconstruction transition, T = TR. Meanwhile , the first 

order layering lines terminate at Ising critical points , Te,n, at higher temperatures. 

These critical points accumulate at the bulk surface roughening transition, T = Tr. 

The bulk surface phase in the interval TR < T < Tr is precisely the disordered flat 

phase. This scenario is pictured in Fig. 2.l(B)(d). 

If, on the other hand, 1
1 

is large compared to 1
2

, the reconstruction tendency 

1s stronger than the layering tendency. Therefore, as the temperature rises , the 

layering critical points, T = Te,n will occur completely within the reconstructed 

phase. A single second order reconstruction transition line will now enclose all of 

the layering transition lines ( for sufficiently large n), terminating at the bulk surface 

rough-to-reconstructed-rough transition. The layering endpoints will accumulate at 

a lower temperature, T = Tr , corresponding to the bulk surface reconstructed-flat to 

reconstructed-rough transition. This scenario is pictured in Fig. 2.l(C)(g). 
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Even more interesting behavior occurs if the effective coupling, K , changes sign 

as a function of temperature at a value of L larger than Le. One can then obtain 

a phase diagram that looks very much like that shown in Fig. 2.l(B)(d) , which , as 

mentioned is seen in experiments. 

In Fig. 2.l(C)(f) we show the case where J 1 is antiferromagnetic at low temper­

atures, turning ferromagnetic at high temperatures. The result is similar to that 

shown in Fig. 2.l (B)(d) , including a zig-zagging line of first order transitions that 

zip together the two sets of layering lines, differing only in that it is now the integer 

layering lines that are reentrant. In the bulk interface limit t here are still two phase 

transitions. The surface is reconstructed at low temperatures, converts to the flat 

phase via a first order t ransit ion at T = TR, and finally roughens at T = Tr. The 

two sets of layering triple points, TJ and T~ must accumulate at the same point, 

T = TR, because when J 1 = 0 only J2 stabilizes the flat surface. For thick films J2 

does not distinguish between half-integer and integer layers , so the switch from one 

to the other must take place essent ially at constant temperature. 

In Fig. 2.l(C)(h) we show what happens if J 1 is ferromagnetic at low temperatures 

and ant iferromagnetic at higher temperatures. The possible behaviors are identical 

at high temperatures to those shown in Fig. 2.l C) (e). The only difference is t hat 

at low temperatures a new series of layering t ransitions between integer coverages 

takes over. These connect to the half-integer layering t ransitions in the same way 

as shown in Fig. 2.l(f) , except t hat high and low temperatures are reversed . In t he 

bulk interface limit t here are now t hree t ransit ions: a fi rst order transit ion from flat 

to reconst ructed flat at low temperatures , fo llowed by a roughening t ransition to t he 

film analogue of the reconstructed rough phase , fo llowed finally by an Ising transition 

to the rough phase. 

In neither of t he two scenarios shown in Figs. 2.l(C)(f) and (h) is preroughening 

involved because the reconstructed surface never disorders, but simply converts to 

the flat phase when J 1 changes sign . We emphasize these scenarios only because 

they mimic Fig. 2. l(B) (d) but contain completely different physics. Fig. 2. l (C)(h) is 

especially similar since it is t he half-integer layering lines that are reentrant. In both 
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phase diagrams, the first order zipper appears. The difference now is that there is 

a higher temperature Ising line below which the rough surface reconstructs. For the 

experiments that we will discuss , these scenarios are unlikely as there does not seem 

to be any indication that reconstruction takes place. 

Although checkerboard reconstruction is described by the effective spin-½ Hamil­

tonian , the layering behavior discussed in the previous paragraphs is not since it 

involves three values of n. To derive the layering behavior from the RSOS model one 

must use at least a spin-1 Hamiltonian, which takes the general form 

1-l1 iK (?;)[s(r) - s(r')]
2 

+ iL (~/s(r) - s(r")]
2 

- h L s ( r) + h2 L s ( r )2, (3.9) 
r r 

where we have used the parabolic form, -hs + h2s2
, with h2 = H2/k3 T, to fit V(h) 

for h = n - l , n, n + l , and dropped an overall constant C1 = V(n)NA. Clearly the 

two parameters h, h2 are all that are required. The restricted solid on solid (RSOS) 

condition now comes into play: since nearest neighbor sites can differ in height by 

at most unity, spin configurations in which s(r) = + 1 and s(r') = -1 for nearest 

neighbor sites r and r' are disallowed - in effect K = oo for ls(r) - s(r')I = 2. 

Detailed computations of the layering behavior described in the previous paragraphs 

using this model will be presented in Chapter 5. 

3.2.2 Film analogue of the DOF phase 

The spin-1 model is also required to understand the film analogue of the DO F phase. 

Recall that preroughening involves a transition from a flat phase to a disordered 

reconstructed phase (i.e. , a disordered flat phase). In the context of a thin film, the 

disordered flat phase will correspond to a checkerboard phase that has "melted," but 

nevertheless retains a preference for a certain density of atoms, namely a half filled 

layer. To describe this properly the model must allow for two such phases: one with 

an extra half layer on top of the flat phase, and one with a half layer missing from 
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the fl at phase. This is crucial because it will turn out that these two phases arise 

from a kind of symmetry breaking in the flat phase. Given this , it is clear that three 

different layers enter the physics in a crucial way, and the effective layer Hamiltonian 

must allow three different values of the spin. 

The disordered flat phase on a bulk crystal interface occurs for small K and 

moderat e, but sufficiently large L > 0, in order that lh(r) - h(r")I = 2, where r and 

r" are second neighbors , is discouraged . The surface therefore is not rough, yet K and 

L are weak enough that h( r) does not condense into a flat or reconstructed phase, 

preferring instead to t ake advantage of the entropy gain associated with a half-filled 

disordered layer . Clearly J1 can have either sign, but we will be interested in J1 > 0 

so that the flat phase eventually stabilizes at low temperature. In the context of a 

thin film we are therefore asking the following question: if H = 0 but H2 2: 0 (so 

that s = 0 is nominally preferred) are there conditions under which both K and L 

are positive (so that , again , s = 0 is nominally preferred), and yet a spontaneously 

broken symmetry exists with M = (s (r) ) -/= 0? Clearly the ground state of 1{1 

under these conditions is s(r) - 0, but there may be an entropy driven transition 

to a state with M -/= 0 in some interval of temperatures. At high temperatures this 

symmetry breaking will be destroyed due to complete disordering of the film . At low 

temperatures it will be destroyed as energetics wins out over entropy. Although this 

scenario yields reentrant behavior of the type we seek, a calculation is required to see 

which of Figs. 2.l(B)(b-d) give the correct global picture. Note that it is the absence 

of reconstruction in the DO F phase that eliminates the Ising line that is present in 

Fig. 2.l(C)(h). 

3.3 Mean field formalism 

The main calculational tool that we will use to explore the questions raised in the 

previous subsection is a self-consistent mean field formalism. The standard mean 

field formalism replaces each individual fluctuating spin or height variable by an 

effective continuous single site magnetization , or average height , which adjusts self-
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consistently to the effective field generated by its neighbors . Equivalently, the free 

energy is computed in a saddle point approximation , with the phase space location 

of the saddle point determining the single site magnetizations. Since all sites are 

equivalent in a ferromagnetic state, such an essentially single spin theory suffices 

to capture the basic physics. For antiferromagnetism on a square lattice, the two 

sublattices are inequivalent , but if the individual spins interact only with nearest 

neighbors there is no ambiguity in the local effective field . The single spin mean field 

theory then again suffices to capture the basic physics. However, if one wishes to 

describe ordering into a state involving subtle competition between correlations, one 

must improve the level of approximation by treating the fluctuations within plaquettes 

of nearby spins exactly. Interactions between different plaquettes are still treated self­

consistently. The general formalism for doing this is outlined in Appendix A. In our 

case we are seeking a state that is formed by a delicate balance of nearest neighbor 

and next nearest neighbor interactions. We therefore must keep enough spins that 

both types of interaction are present within a plaquette. For the square lattice we 

shall analyze a model using four spins in a given plaquette [see Fig. 3.4(a)]. For 

the t riangular lattice we shall analyze two models , one with six spin plaquettes [see 

Fig. 3.4(b)], and one with seven spin plaquettes [see Fig. 3.4(c)]. 

(a) (b) (c) 

Figure 3.4: (a) Four spin plaquette for the square lattice containing two spins from 
each of the two sublattices. (b) Six spin plaquette for the triangular lattice which 
violates the full rotaional symmetry of the lattice, but treats the three sublattices 
symmetrically, keeping two spins from each. ( c) Seven spin plaquette for the trian­
gular lattice which has the full rotational symmetry of the lattice, but breaks the 
symmetry between the three sublattices. 
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3.3.1 Square lattice 

In order to apply the mean field formalism of App . A we need to tile the entire lattice 

with copies of the chosen plaquette, carefully distinguishing between intraplaquette 

and interplaquette interactions. This tiling is not unique, but for the square lattice 

plaquette there is a natural choice which is shown in Fig. 3.5. Let us begin by ignoring 

the RSOS constraint . Applying the formalism of App. A to the Hamiltonian (3.9) , 

t he single plaquette Hamiltonian corresponding to Fig. 3.5 is 

- (4) 
Ho 1K[(s1 - s2)

2 + (s2 - s 3)
2 

+ (s3 - S4)
2 + (s4 - s1)2] 

+ 1 [ 2 2] 
2L (s1 - s3) + (s2 - s 4) 

+ h- [ 2 2 2 2] 
2 S1 + S2 + S3 + S4 , (3.10) 

where h2 = h 2 + >-.1K + ~>-.2L , arises from multiplying out (s i - sj )
2 t erms for i and j 

on different plaquettes. The interplaquette scale factors , >-.1 and >-.2 , nominally equal 

to unity, have been introduced for later convenience. Interactions between plaquettes 

then involve only products of pairs of single spins, so we need only introduce fields, 

H a, conjugate to the individual spins, CJ a, a = l , 2, 3, 4. Defining the single plaquette 

free energy, ip (4){Ha} via (A .5) we obtain the free energy functional 

_F(
4

) { H pa; CJ pa} = L <{)(4
) { H Pa} 

p 

L(HPa + h pa)CJPa 
Pa 

A 1K L (<Jp1CJ?i4 + CJP2CJA 3 + CJP2CJP3l + <Jp3CJP3 4 ) 
p 

A 2L L(<Jp1CJP13 + <Jp2CJP14 + <Jp2CJP24 
p 

+ <Jp2CJP34 + <Jp3CJP3l + <Jp3<Jp41), (3.11) 

where Pi, P2 , A and P4 are neighboring plaquettes to P (see Fig. 3.5) , and <{)(4
) will 

be computed explicitly in Chapter 5. Since the ordered phases we seek are all either 
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ferromagnetic or antiferromagnetic we now take 

<7p1 

The free energy per spin is then 

~F(
4)(HA, HE; MA , MB)= l<J?(4)(HA, HE) 

1 1 
2(HA + hA)MA - 2(HB + hB)MB 

3 2 2 >-1KMAJ\![B - ->-2L(J\![A + MB) . 
4 

(3 .12) 

(3.13) 

Differentiating with respect to MA and MB we obtain the first set of saddle point 

conditions [see the first line of (A .9)] 

(3.14) 

The mean field free energy per spin is finally obtained by substitut ing these relations 

into (3 .13) [this intermediate form represents the Bogoliubov free energy - see (A.16)] 

and then minimizing over HA and HE. This is equivalent to solving the second set of 

saddle point equations [see the second line of (A.9)] 

(3.15) 

where, agam, (3.14) should be substituted for the MA and MB dependence. We 

emphasize that the order is important here: the alternative of using (3 .15) first to 

eliminate MA and MB often leads to a free energy in which the saddle point is not a 

minimum. It is also worth commenting that , as discussed in App . A, consistency of 
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the theory implies that the saddle point conditions guarantee that 

(3.16) 

This allows one to follow the alternative route of inverting (3.14) to eliminate HA and 

HB in favor of MA and MB , and computing the Helmholtz free energy 

(3. 17) 

where <J>(4) (MA, MB) is obtained from <J> (4) (HA , H B) through this elimination. The 

equilibrium magnetizations are then obtained via the equations of state 

1 1 8A(4l 1 1 8A(4l 
2hA = N 8MA) 2hB = N 8MB. (3.18) 

The advantage here is that A (4) is a bona fide mean field free energy depending only 

on the M variables, and we avoid the "mixed" representation containing all three sets 

of variables, h , Hand M. 

3.3.2 The RSOS condition 

Let us now t urn to the inclusion of the RSOS condition. Recall that this condition 

requires that nearest neighbor spins differ by at most one, implying a nearest neighbor 

interaction vR(s - s') such that 

(3. 19) 
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o P3 • o Pz • 

• 0 • 0 • 0 

Figure 3.5: A natural tiling of the full square lattice by the four spin plaquette which 
maintains the symmetry of the lattice as well as the symmetry between the two 
sublattices. 

where 0(x) is the step function [we take 0(0) = 1]. The condition is crucial for 

stabilizing the bulk crystal surface when K < 0 since without it nearest neighbor 

column height differences would diverge. Within a plaquette, i. e. in the computation 

of <I> , this condition is easily accounted for simply by eliminating from the trace 

those spin configurations that violate it. However , between plaquettes greater care 

must be taken because one must now include the RSOS condition explicitly in the 

interplaquette interaction term, A , defined in (A.1). The difficulty lies in the fact that 

vR(s) is not simply expressible as a polynomial in s. For integer values of s, vR(s) is 

the large A limit of VA ( s) = As2 
( s 2 

- 1). This form leads to new interaction terms sf SJ 

and sf s1. Unfortunately, within the mean field approximation, the integer variable s 

is replaced by a continuous variable a-, and the fact that VA ( s) -+ -oo as A -+ oo 

for O < s2 < 1 leads to thermodynamic instabilities. The form vA(s) = As2 (s 2 
- 1) 2 

is healthier in this regard, but now involves even higher powers of the spins and still 

unphysically restricts the continuous variable a- to the values 0, ±1 when A -+ oo. 

One really needs vA(s) = A0(lsl - 1) , but this is nonpolynomial. 

Our solution to this problem is to keep the RSOS condition within a plaquette, 

but "soften" it between plaquettes. The condition 's main role is to discourage large 

nearest neighbor column height differences, and its exact form is a matter of conve-
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mence. We will consider then two "soft" forms for vR( s) . Note that for K > 0 it is 

safe to simply take vR (s ) = 0, but for sufficiently large K < 0 this choice becomes 

unstable to unbounded height differences between neighboring plaquettes. One solu­

tion then is to set vR(s) = (..\1 (K) - l)Ks2 [effectively replacing K by ..\1 (K)K for 

all interplaquette interactions] with O < ..\(K) ~ 1 a smooth function of K which 

decreases as K becomes more negative, thereby cancelling at least part of the nearest 

neighbor interaction between plaquettes. At the same time one might enhance the 

interplaquette second neighbor coupling, replacing L by ..\2 (K)L with ..\2 (K) > 1. 

This allows L to stabilize the reconstructed phase. It was precisely for this reason ( as 

well as others - see below) that we introduced ..\1 and ..\2 in (3.11). Our second choice 

is to take v R ( s) = As4, with fixed A > 0 of order unity chosen for convenience. This 

form guarantees thermodynamic stability without ad hoc variation of coefficients , at 

the expense of introducing higher powers of the spins. Unfortunately, it does allow 

ever larger nearest neighbor plaquette height differences as K becomes more negative, 

violating the expected equivalence of all plaquettes. 

One is actually led to considering linear rescalings of the interplaquette interac­

tions for other reasons. For example, the relative number of nearest neighbor and 

next neighbor bonds internal to the plaquette in Fig. 3.4(a) (namely 2:1) does not 

match the relative number in the full lattice ( namely 1: 1) . One might therefore in­

troduce phenomenological scale factors into the terms in (3.11) that couple to the 

environment , i. e. replace K by ..\1K and L by ..\2 L , and adjust ..\ 1 and ..\ 2 according 

to one's prejudice, or simply to optimize comparison with experiment. 

It should now be clear how to write down spin-j Hamiltonians for arbitrary j , 

even j ----+ oo. Keeping more layers should improve the accuracy of the approximation 

for thicker films. Similarly, the construction of the mean field theory is identical. The 

major differences are that the site free energy, <P , becomes more complicated because 

there are more spin configurations to trace over . 
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Figure 3.6: A possible tiling of the full triangular lattice by the six spin plaquette. 
Note that two different orientations of the original plaquette are required , and that 
the tiling is far from unique. 

3.3.3 Triangular lattice 

The second neighbor interaction divides the triangular lattice into three equivalent 

triangular sublattices, A , B and C. We consider mean field theories based on each of 

the two plaquettes of spins shown in Figs. 3.4(b) and 3.4(c). In the first , we keep two 

spins from each sublattice. In the second we keep a hexagonal plaquette of seven spins 

that contains the full rotational symmetry of the triangular lattice, but unfortunat ely 

does not treat the three sublattices symmetrically: three spins are kept from each of 

two of the sublattices, but ony one spin from the third. In neither case are all spins 

equivalent , which we will remedy somewhat by, again, introducing fudge factors , Ai, 

that scale the couplings to the surroundings. 

In principle, to distinguish the three sublattices , we need three magnetic fields , 

hA, hB and he, with corresponding sublattice magnetizations, MA, MB and M c. 

However , since even with negative K frustration dictates that there are no phases 

that spontaneously break the symmetry between the three sublattices, we will keep 

only one field , h, and assume the sublattice magnetizations to have all the same value, 

Af. Note that this is a statement about the exact behavior of the model. The mean 
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field approximation may well predict unphysical phases with broken symmetry. For 

this reason we will restrict triangular lattice computations to K > 0. In discussing 

the effects of reconstructed phases we will always use a square lattice. 

In order to apply the formalism of App. A we must again tile the plane with 

the basic plaquette. If one remains completely faithful to the triangular lattice, this 

turns out to be very unnatural. Examples of tilings are shown in Figs. 3.6 and 

Fig. 3.7. The hexagonal tiling maintains the rotational symmetry of the lattice, 

but has a "chirality," and therefore breaks the inversion symmetry. The triangular 

tiling is clearly highly nonunique, requires two different orientations of the basic 

plaquette, and breaks the rotational symmetry of the lattice more badly than does 

the triangle itself. The nonuniqueness reflects itself in the differing identifications of 

interplaquette and intraplaquette interactions implied by each possible t iling. For 

example , the symmetry of the triangle would normally imply equivalency of the three 

corner sites and equivalency of the three noncorner sites. However, in the tiling 

shown in Fig. 3.6 the top corner site connects to four different plaquettes through 

nearest neighbor bonds , while the right and left corner sites connect to three and to 

two different plaquettes , respectively. All six sites are therefore distinguishable and 

will have potentially different order parameter values. This is not only inconvenient 

for eventually solving the mean field equations , but may also give rise to unphysical 

reconstructed phases. It seems clear that this will be true for any tiling with this 

plaquette. 

Only by distorting the triangular lattice somewhat can one preserve the full sym­

metries of the plaquettes in the tiling: see Figs. 3.8 and 3.9. The drawback is t hat 

identifying second neighbors becomes ambiguous ( see below). In particular , t here 

is no way to preserve both the rotational symmetry and the property that second 

neighbor bonds join sites only on the same sublattice. Notice in any case that both 

in Figs . 3.6 , 3.7 and in Figs . 3.8 , 3.9, that different tiles contain different orientations 

of the sublattices A , B and C , so any reconstructed phase that is uniform on each 

sublattice will not have the same periodicity as the tiling. A different choice of six 

spin plaquette, say, would have to made to respect this periodicity (for example a 
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Figure 3.7: A possible tiling of the full triangular lattice by the seven spin plaquette. 
Other possible tilings differ only by translation or mirror reflection. 

parallelogram of two rows of three spins), but such a choice would generally violate 

the rotational symmetry even further. Since we work only in the mean field approxi­

mation and with ferromagnetic interactions we feel that maintainance of qualitative 

symmetries is more important than that of quantitative details of interactions. In 

any case, our hope is that the basic physics should be dominated by the interactions 

within the plaquette, which are treated exactly. We emphasize that we go through 

all this trouble of embedding the plaquette in a real lattice only to ensure that we 

obtain a fully consistent mean field theory (see App. A and discussions therein). 

Keeping the above physical considerations in mind , we now write down the appro­

priate free energies . Detailed expressions and comparisons of the expressions obtained 

from the distorted and undistorted lattices are contained in App. B. Here we exhibit 

only the simplified expressions valid in the unreconstructed phases . 

First , the single plaquette Hamiltonian corresponding to Fig. 3.4(b) is given by 
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Figure 3.8: A more symmetric tiling of a distorted triangular lattice by the six spin 
plaquette. Two different orientations of the original plaquette are still required , but 
the tiling is unique up to translations. Choice of second neighbor interactions becomes 
ambiguous , but unreconstructed phases should not be sensitive to this . 
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Figure 3.9: A more symmetric tiling of a distorted triangular lattice by the seven 
spin plaquette. The tiling is unique up to translations. Choice of second neighbor 
interactions becomes ambiguous, but unreconstructed phases should not be sensitive 
to this. 
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+ (s5 - s5) 2 + (s3 - s5) 2 + (s1 - s3) 2 

+ (s2 - s3) 2 + (s3 - s5) 2 + (s2 - s5)2] 

+ ~L[(s1 - s5)2 + (s2 - s6 )
2 + (s3 - s4) 2] 

+ h~ out [ 2 + 2 + 2] + h~ in [ 2 2 2] 
2 8 1 S4 8 6 2 S2 + S3 + S5 , (3.20) 

where h~ut = h2+2>..1K +~>..2L and hi:;= h2+>..1K +~>..2L. The scale factors, >-.1 and 

>-. 2 , have again been introduced for later convenience. Let 1>(6) be the plaquette free 

energy defined in (A.1) (to be computed explicitly in Chapter 5) . Ignoring once again 

the RSOS condition between plaquettes , the free energy functional corresponding to 

Fig. 3.8 is then (see App. B) 

~ ,r(5) (H- H · M - ~ 5 ) - !n,(5) (H· H ) N.r in, out, in, l\llout -
6 

'±' in, out 

1 

2[(Hout + h)Mout +(Hin+ h)Min] 

1 2 2 
-A1K(3Mout +Min+ 2MinMout) 
2 

A2L(MJut +Mi~+ 3MinMout), (3.21) 

Here Mout is the magnetization on the three corner sites of the plaquette, while Min 

is the magnetization on the three edge sites. Except for very special values of )..1 and 

)..2 the two will in general be different in the mean field approximation. The same 

considerations apply to the fields Hout and Hin· 

Similarly, the plaquette Hamiltonian corresponding to the hexagonal plaquette in 

Fig. 3.4(c) is given by 

1 [ 2 2 )2 
2K (s1 - s2) + (s2 - s5) + (s5 ~ S7 

+ (s7 - s5)2 + (s5 - s3) 2 + (s3 - s1) 2 

+ (s1 - s4) 2 + (s2 - s4)2 

+ (s3 - s4)2 + (s5 - s4) 2 + (s5 - s4)2 + (s7 - s4)2] 

1 [ 2 2 2 + 2L (s1 - s5) + (s1 - s5) + (s2 - s6 ) 

+ (s5 - s5)2 + (s3 - s7 )
2] 
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+ r,,out[82 + 8 2 + 8 2 + 8 2 + 8 2 + 8 2] + 'f,, in 8 2 2 1 2 3 5 6 7 2 4, (3.22) 

where 'fi3ut = h2 + ~>-1K + 2>-2L and h~n = h2 + 3>.2L. If <1>(7) is the corresponding 

plaquette free energy, the mean field free energy corresponding to Fig. 3.9 is then (see 

App. B) 

(3 .23) 

Here J\l[0 ut is the magnetization on the outer ring of sites , while M in is the magneti­

zation on the inner site. Fields Hin and Hout are defined similarly. 
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Chapter 4 Sine-Gordon phenomenology: 

first order preroughening and zippering 

In this chapter we develop a general, large length-scale "hydrodynamic" theory of the 

layering phase diagram. This will serve as a rigorous guide to the different classes of 

behavior available to the system. A full microscopic calculation is still required to 

determine the behavior of any given model. The plaquette mean field formalism will 

be applied to this end in later chapters. 

The basic idea we exploit is that roughening and preroughening are large scale 

phenomena, governed by only a few renormalized parameters. The small scale struc­

ture of the surface (be it locally disordered, flat , or possibly even reconstruct ed) 

feeds into these parameters, but is otherwise irrelevant to the large scale behavior. 

Of course, a phase transition in the local structure could preempt the onset of long 

range roughening or preroughening correlations (for example, it might induce some 

kind of critical endpoint with the roughening or preroughening line then ending on 

a first order line) , but we assume this not to be the case. Imagine, then , that the 

system is close to a roughening or preroughening transition so that the correlation 

length is very large. The way we would formally derive the large scale theory is to 

perform some kind of renormalization group transformation on the Hamiltonian of 

the system, iterating it until we enter the neighborhood of the fixed point that gov­

erns the transition. If we are not precisely at criticality, further iteration will move 

the Hamiltonian away from the fixed point once more, but along a very restricted 

set of paths. The point is that during the approach to the fixed point all irrelevant 

variables have decayed away. Only one (or perhaps two, as we shall see) relevant 

variables remain, and it is their eventual growth that moves the Hamiltonian away 

from the fixed point. However the dimension of this "escape manifold" is just the 

number of relevant variables. If we then stop the renormalization process on some 
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matching boundary, not too far from the fixed point , we may parameterize the final 

theory with these one or two renormalized variables. 

4.1 Sine-Gordon-type models 

In many problems the detailed analysis of the fixed point region cannot be performed 

explicitly. The advantage in the present case is that this region may be characterized 

simply and completely by a sine-Gordon type model: 

( 4.1) 

with 

(4.2) 

where h(r) represents a coarse grained continuous surface height field , K 0 is a partially 

renormalized surface stiffness , y0 represents the the fundamental Fourier component 

of the partially renormalized atomic periodic modulation , u0 the next harmonic, and 

½ub[h] is a partially renormalized substrate potential. The fixed point is actually a 

fixed line on which only K 0 is nonzero , and the critical behavior has already been 

alluded to in (1.2). As we will discuss in detail below, for pure Kosterlitz-Thouless 

roughening .we may set u0 = 0, but in order to discuss preroughening we must some­

times keep u0 i= 0 [4] . All higher harmonics, however, are irrelevant and may be 

assumed to have decayed to zero in the neighborhood of the fixed line. The substrate 

potential grows steeper under renormalization , and the form ( 4.1) is valid only in 

the thick film limit where V[h] is extremely weak, so that the partially renormalized 

V0 (h) is weak as well. Since V[h] has power law behavior (3 .2) for large h, V0 [h] will 

as well. The quadratic form , 

(4.3) 
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[see also (3.4)] with a renormalized curvature, ,.,,0 , suffices for thick films . Huse [61] 

has written down general functional recursion relations for any potential , V0 [h], and 

treated in detail the case u0 = 0, i. e. the interplay between roughening and layering. 

Here we will extend key parts of that analysis to the preroughening regime, u 0 -/= 0. 

It will transpire that u0 > 0 and u0 < 0 can yield very different behaviors, and this 

gives rise to very interesting physics in the layering phase diagram. 

To formalize what we have said so far we write down the renormalization group 

recursion relations for the Hamiltonian ( 4.1) [ 61]: 

dK 
dl 
dy 

dl 
du 

dl 
d"' 
dl 

(2 - 1r / K)y + (4n2 
/ K A2)yu 

(2 - 4n / K)u - ( n 2 /KA 2)y2 

( 4.4) 

where A ~ ~ is the (nonuniversal) momentum space cutoff due to the lattice. The 

flow parameter , l , is related to the spatial rescaling factor b via b = b0e1
, where b0 is 

the initial rescaling factor required to enter the neighborhood of the fixed line and is 

assumed to depend smoothly on the parameters of the initial RSOS model , say. The 

recursion relations are valid for small y, u and "' and we have the initial conditions 

K(l = 0) = K 0 , y(l = 0) = y0 , u(l = 0) = u0 and ,.,,(z = 0) = "'o , which are assume to 

lie on some trajectory incoming toward the fixed line. 

4.2 Roughening and preroughening 

Let us now consider the various possible behaviors as a function of initial condition. 

Consider first the substrate free case, "'o = 0. For small enough K 0 (Ko ::., 1r / 2 for 

small y and u) bothy and u flow to zero as l -+ oo , while the stiffness K(l) -+ KR(K0 ) , 

its fully renormalized value which then appears in (1.2). This corresponds to the rough 

phase. 
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For intermediate values of Ko ( 1r / 2 ;::., K o ::., 21r for small y and u) u( l ) still flows 

to zero , and may be ignored , but if y0 =/- 0, y(l) eventually begins to grow again, as 

does K ( l) . The strengthening corrugation potential, and increasing surface stiffness, 

signal the onset of a flat phase. Notice that if y0 > 0 the minima of the corruga­

tion potential occur at integer h, while if y 0 < 0 they occur at half-integer h. Since 

Yo (J1 , J2, T ) is a renormalized parameter we may, in fact , imagine that as a result of 

short scale fluctuations it might change sign. The minima then switch abrupt ly from 

integer to half-integer. This precisely describes the physics of preroughening, with the 

preroughening critical line corresponding to y 0 (T) = 0 [4]. The sign reversal is driven 

precisely by the ent ropy of small scale roughness discussed in previous chapters. As 

we shall see below, a negative value of y0 could also be associated with a reconstructed 

surface, which may also roughen while maintaining a form of long range reconstructed 

order . The sine-Gordon Hamiltonian does not distinguish between t hese two cases, 

though the dependence of the partially renormalized parameters on the original model 

parameters would of course be different (possibly even singular if a surface reconstruc­

tion transition takes place). For y0 = O the fixed line is again st able, and we will have 

u(l ) ➔ 0 and K (l) ➔ K R, with 1r / 2 < K R < 21r. The critical surface is therefore 

rough, but with a larger renormalized stiffness t han is generically possible: the short 

range fluctuations have renormalized away t he strongest Fourier component of the 

corrugation potential. 

Finally, for even larger K 0 (Ko ;:_, 21r for small y and u) bothy and u are relevant , 

so even if y0 = 0 the second harmonic of the corrugation potent ial will grow and 

the surface will flatten. Notice then that there are twice as many minima. This 

will be discussed in detail below. In principle, if we had a second free parameter 

at our disposal, we might imagine that both y0 and u0 could be made to vanish. 

Flat tening would then take place only when the third harmonic became relevant , i.e. 

for K 0 > 91r / 2. This situation, however , does not seem to be experimentally relevant 1 

If y0 is not precisely zero then both u and y will grow under renormalization , 

1Generally, the rigorous statement is that if the pth one is the first nonvanishing Fourier compo­
nent, the surface will be rough for K R = lim1--; 00 K ( l ) < 1rp

2 /2 . Generically this will only happen if 
one has p - 1 control variables to tune. 
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and the interesting question then arises of how the two Fourier components might 

constructively or deconstructively interfere in the final renormalized corrugation po­

tential. We shall explore these effects in detail below, seeing that they have very 

strong effects on both the surface and layering phase diagrams. 

4.3 Roughening and layering 

Since u is strongly irrelevant for K 0 :S 21r , the asymptotic behavior in the roughening 

and preroughening regions may be addressed simply by setting u = 0 in the recursion 

relations, ( 4.4). The usual roughening transition may then be described by studying 

the region where the starting manifold , (y0 (T) , K 0 (T)) , crosses the critical trajectory 

into the fixed point at y = 0, K = 1r /2. For small y and ..\ = 2 - 1r / K this trajectory 

is defined by ,,\ = fj, where fj _ ( 4-/21r / A 2 )y. Correct to quadratic order in ,,\ and fj , 

the recursion relations simplify to 

(4 .5) 

The flows generated by these equations are shown in Fig. 4.1. By integrating the flows 

in region II of this figure, from the starting manifold to some noncritical matching 

manifold , for example..\= AJ > 0, Huse [61] has shown that the Ising layering critical 

points , Tc,n, approach the bulk roughening t emperature, Tr , from below asymptoti­

cally as 
47r2 

Tr - Tc n CX: 2 
' (2 + a) 2 ln (n/ii) 

(4.6) 

where a, defined below (3.2) , describes the power law tail of the substrate potential , 

ii is a nonuniversal amplitude determined by the strength of the substrate potential , 

and the overall constant of proportionality depends on the detailed mapping of the 

original model onto the sine-Gordon model. 
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III' 
~ 
~ 

Figure 4.1: Renormalization group flows generated by equations (4.5). Regions I , II 
and III are bounded by the two separatrices that flow into and out of the Kosterlitz­
Thouless fixed point at i) = >. = 0. The thicker two flow lines represent possible 
trajectories of the system as temperature is varied . The path on the upper left corre­
sponds to conventional roughening, while the path on the right represents prerough­
ening ( at the point (Ax, 0)) followed by roughening. The solid lines drawn at A = AJ 
and f; = i) f represent two possible noncritical manifolds at which the renormalization 
flows can be stopped. 
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4.4 Preroughening and reentrant layering 

Preroughening, on the other hand, corresponds to the rather different situation in 

which the starting manifold begins in region III of Fig. 4.1. As the temperature rises 

the manifold crosses f; = 0 into region III' at some positive value ,\0 of A. Precisely 

at f; = 0 the system is on the fixed line and the interface is rough. On either side 

of f; = 0 the renormalization group trajectories move away from the fixed line into 

an ordered phase. As before, region III corresponds to the flat phase. Region III' 

corresponds to the DO F phase. Since f; < 0 in the DO F phase, the minima in the 

corrugation potential occur at half-integer h. The fractional filling, 0, of the top layer 

of the interface then jumps discontinuously from 0 = 0 to 0 = ½ at preroughening. 

As the temperature continues to rise, the trajectory eventually crosses into region II' 

and then into region I'. The latter corresponds to the transition from the DO F to 

the rough phase. In the presence of a substrate potential regions II' and III' give 

rise to first order layering transitions between half-integer coverages. The Huse [ 61] 

computation for the critical points goes through in exactly the same way and leads 

once again to (4.6) for the Tc,n [see Fig. 2.l(c)] . 

The effect of the substrate on preroughening is quite different. The bulk critical 

behavior is now determined by the rate at which flows are pushed away from the 

fixed line for small f;. This is completely determined by the value, >-x , at which the 

starting manifold crosses the f; = 0 axis. In particular, f; itself now plays the role of 

the deviation from criticality, the Kosterlitz-Thouless fixed point no longer plays any 

role, and the flows are completely confined to regions III and III'. The solutions to 

the flow equations in these regions are given by 

"'( l) 

f;( l) 

>-(l) 

-sgn(f;o)Bocsch(Bol + </>o) 

-B0 coth(Bol + </>o), (4.7) 
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B2 
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A~ - Y6 = A(l) 2 
- y(l) 2 > O 

- n --- < 0. 1 1 (Ao - Bo) 
2 Ao+ Bo 

(4.8) 

We run the flows until li,i(l)I = YJ, some fixed value. The corresponding value lf of l 

is then 

1 • h -1 (B / ~ ) <Po --sm o YJ - -
Bo Bo 

~ -~ sinh-1(Ax / YJ) - ~ ln(liiol / Ax) , 
Ax AX 

( 4.9) 

where the second line is valid for y0 « A0 . At this point we have 

(4.10) 

Following Huse [61], for given values of y and A, there will be a critical value of 

K = Kc(y, A) at which the Ising layering critical point occurs. Let us define 

( 4.11) 

Then, as y ---t 0, we locate the value of Ko at which the critical point occurs by 

demanding that 

(4.12) 

which yields 

(4.13) 

where 

(4.14) 

Finally, from (3.3) for a van der Waals substrate we have Ko= a(a + l) c/h0 (6.µ) 2+a., 

with the nth layering line corresponding to ho ( 6.µ) = n - ½ for y0 > 0 and to 
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h0 (D.µ) = n for y0 < 0 (i.e. exact degeneracy of two neighboring minima in the 

renormalized corrugation potential). This yields immediately [see Fig. 2.l(c)] 

Tpr -T~ ex Yo~ 2.\o(n+ /n)(2+aJ>-ol2
, y0 > 0 

T:_ -Tpr ex -yo~ 2.\o(n-/n)(2+aJ>-ol2
, y0 < 0 (4.15) 

where n±(>.x) = [a(a + l)c/~±(>.x)J1!(2+a) is a nonuniversal amplitude. Once again 

the overall constants of proportionality are determined by the detailed mapping of 

the original model onto the sine-Gordon model. We see then that the critical points 

have a power law rather than logarithmic approach the preroughening point. The 

power is nonuniversal, depending on >-x, and vanishes as the Kosterlitz-Thouless 

point is approached. We have therefore established Fig. 2.l(c) as the correct thick 

film layering phase diagram corresponding to a preroughening trajectory such as that 

shown in Fig. 4.1. 

4.5 Recursion relations when u is relevant 

We have seen that the experimental phase diagrams for Argon and Krypton on 

graphite show rather different behavior, with apparent first order lines that "zip" 

the integer and half-integer layering lines together. It is possible that these tran­

sitions arise from some confluence of preroughening and two-dimensional melting 

phenomena, where the melting and preroughening temperatures are nearly the same. 

This is certainly true in the first two layers where two dimensional triple points are 

observed [52, 53]. However it seems an unlikely coincidence that such a confluence 

would survive, as seen, to much thicker films, where the energetics of melting and 

preroughening ought to be distinct. Here we offer a much simpler and more natural 

explanation, phrased entirely within the physics of the sine-Gordon model. More 

detailed comparisons between theory and experiment will made in Chapter 6 

The idea now is to consider values of K 0 in the region where u becomes relevant. 

Typically, u will be of order unity in the original model, so if K 0 is significantly larger 
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than 27r then even when y _ 0 the renormalization group flows will never come close 

to the fixed line, and there will be no simple analytic description of the behavior. 

We therefore assume that K 0 is sufficiently close to 27r that, in the absence of y, u0 

may be assumed small. Defining y = ,f2,7ry / A 2 , fl = 4J°27ru / A 2 and µ = 2 - 47r / K, 

correct to quadratic order in these variables the recursion relations ( 4.4) simplify to 

dr., 

dl 
dy 
dl 
dµ 
dl 
du 

dl 

If Yo « u0 these further simplify to 

3_ 1 _ ,fj, __ 
-y+-µy+-uy 
2 4 4 

µu- V2y2. (4.16) 

( 4.17) 

the first three of which are identical to (4.4) withµ replacing,\ and fl replacing fj. 

The solutions, in the equivalent to region II , are 

u(l) Ao sec(A0 l + 00 ); µ(l) = A 0 tan(A0l + 00 ) (4.18) 

with A5 = u5 - µ 2 > 0 and 00 = tan-1 (µ 0 /A0 ). These solutions hold up until y;::::;; fl. 

In the absence of y0 we would integrate these equations until µ = µ( l1) µ1 > 0 

[and lu(l1)1 = u1 where (u1)2 = A5 + (µ1) 2
] reaches some final value [just as in 

Ruse's analysis of (4.5)]. If y0 were to remain zero for all µ0 (or, equivalently, K 0 ) , 

we would then predict, , as a function of µ0 , first order layering lines terminating in 

Ising critical points every half layer. However, since y0 vanishes only at the putative 

preroughening point, we conclude that there is only a single value of µ0 at which this 

analysis is correct . Since we assume the model to be in region II, rather than region 

I, the bulk interface would be in the flat phase. In thick films we would therefore 
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observe first order transitions every half layer, with Ising critical points observed only, 

perhaps , for an initial finite set of layers ( the closer the initial values to the incoming 

separatrix, the greater the number of critical points) . 

What happens away from this value of µ 0 depends upon the growth of y0 under 

renormalization. If y0 is so small that yJ = Yo exp(! ZJ) « uJ, then we may still use 

( 4. 18), and stop integrating at lJ as before. Thus, as y0 passes through zero , the 

contribution , yJ , of the lowest harmonic to the corrugation potential is linear in y0 . 

If, however, yJ -;:_, u f then we should stop integrating at l f such that y( l f) = y f ~ µJ , 

say, some final value. There is then a regime in the integration where y(l) ",?:_, u( l) , 

and the solutions (4. 18) are no longer valid . If u(l) is not too much smaller than YJ 

we may use the fact that y is rapidly varying relative to u and µ. Thus in the time 

it takes y(l) to go from u( l) to YJ it is easy to see that u(l) and µ(l) change only by 

O(y7) , which we assume to be much smaller than u(l). Thus u1 and µ1 are essentially 

the unperturbed values ofµ and u at which y(l) "crosses" u(l) . If, on the other hand, 

u(l) and µ(l) are very small compared to YJ, then we may essentially delete all but 

y(l) from the right hand sides of (4 .16) : the flows are driven entirely by y( l). The 

final values, UJ and fJ,J , are then of order YJ << YJ-

To summarize, then , we are interested in the final renormalized form of the cor­

rugation potential. The above analysis shows that for small y0 , t he amplit ude of t he 

fundamental Fourier component varies linearly with y0 and changes sign precisely 

when y0 does , while the amplit ude of the second harmonic can be taken as fixed. For 

larger y0 , the rat io of the amplitudes, y1/u1, is nonlinear, but monotonically increas­

ing in y0 . This is all we need to know for the purposes of t he following analysis. 

4.6 Thermodynamics of the bulk interface when u 

is relevant 

Now that we have understood the general structure of the fully renormalized Hamil­

tonian, we must understand its thermodynamics. We are in a regime in which the 
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corrugation potential wins out over thermal fluctuations, leading to a flat phase in 

which the interface height sits at a minimum of the potential. Since thermal fluc­

tuations have not been completely integrated out [Kt = 41r / (2 - µt) is still finite -

this was necessitated by the restricted regime in which the flow equations are valid] 

this is not entirely accurate: the interface still has fluctuations about this minimum. 

Since Kt is large, however , these fluctuations may be taken as small (so long as one 

is not too close to any second order phase transition - see further below) , leading to 

some slight renormalization of the corrugation potential, but not altering its basic 

form . Including the substrate potential , we therefore arrive, essentially rigorously, at 

the following single variable free energy functional which completely determines the 

thermodynamics: 

(4 .19) 

where the absolute minimum of f(h) determines the equilibrium average interface 

height , and YR and UR are mildly renormalized versions of Yt = (A 2 / -/21r )flt and 

Ut = (A2 / 4-/21r)ut into which K 1 has been completely subsumed. Similarly for 

"'R ~ "'t = "'o exp(2lt ), where we assume that "'o is sufficiently small that lt is set 

only by the bulk interface recursion relations. This means , for example, that "'R is 

linearly related to "'o • We reiterate that the validity of this free energy presumes 

that the essential physics lies only in the large scale, coarse grained fluctuations. It 

is also possible that small scale energetics of the original model preempt this physics 

at some temperature, beyond which (4.19) , and the entire sine-Gordon analysis , fails 

(see further below). The control variable is YR , which switches sign, while UR may be 

taken as fixed and nonzero , but either positive or negative. 

4.6. l UR > 0: first order preroughening and zippering 

Begin with the bulk interface, "'R = 0. Suppose first that uR > 0, and imagine 

beginning with YR » UR , then decreasing YR through zero , and ending with YR « 
-UR- The evolution of the corrugation potential is shown in Fig. 4.2(a). We see that 
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when YR= 4uR local minima develop at half-integer h. Since these local minima are 

not absolute minima, the surface height remains an integer. As YR decreases these 

local minima decrease, and precisely at YR = 0 they become degenerate with the 

integer minima. For YR < 0 the half integer minima lie below the integer minima, 

and therefore define the equilibrium surface height. We therefore have a .first order 

transition from the flat to the DO F phase. The preroughening line therefore has a 

tricritical point precisely where the fully renormalized stiffness reaches 21r. 

For clarity, this picture is contrasted in Fig. 4.2(b) with the standard prerough­

ening case in which UR= 0. There, at YR= 0 the corrugation potential is competely 

flat and the interface is free to wander. 

Consider now the addition of the substrate potential, K,R· Since K,R will vary only 

slowly with film thickness , our control variable is h0 . Minimizing ( 4.19) yields the 

equation 

Suppose first that YR = 0, in which case we require 

. K,R 
sm(41rh) = ---(h - h0 ). 

47rUR 

( 4.20) 

(4.21) 

By periodicity we may suppose that n S ho S n + ½. The local minima closest to h0 

which solve this equation lie just above n and just below n + ½. When h0 = n + ¼ 

they are symmetrically located and degenerate. They exist for sufficiently small K,R, 

namely 

( 4.22) 

Thus for sufficiently thick films we will have, with increasing h0 , a first order transition 

precisely at ho = n + ¼ from slightly more than n layers to slightly less than n + ½ 

layers. As ho increases further, h will increase to slightly more than n + ½ layers 

until, precisely at ho = n + ¾, there is transition to slightly less than n + 1 layers. If 

(4.22) is not satisfied the substrate wipes out the corrugation and the film will grow 

continuously until ( 4.22) is satisfied. The closer we are to the triple point, the larger 
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Figure 4.2: (a) Corrugation potential for the bulk interface ("'R = 0) with UR > 0 as 
a function of YR· There is a first order preroughening transition at YR = 0 when the 
integer minima exchange stability with the half-integer minima. (b) For comparison, 
the corrugation potential in the continuous preroughening case, UR = 0. 
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will be r;,R and the thicker the film required to see layering. 

In the opposite limit, where IYRI > 4uR, we may ignore UR and obtain essentially 

the same picture as above, but with twice the period. Thus if YR > 0 there are first 

order transitions between essentially integer interface heights precisely at h0 = n + ½, 

while if YR < 0 the transitions are between essentially half-integer interface heights 

precisely at ho = n. Both sets of transitions are wiped out unless r;,R < (21r )2yR. 

The interesting question is what happens for 0 < IYRI < 4uR. Clearly the local 

minima at half-integer h are most stable if h0 = n + ½. This minimum can be an 

absolute minimum only if r;,R is sufficiently large, namely 

( 4.23) 

for small r;,R/uR and YR/uR, which will be valid for thick films close to the bulk first 

order transition at YR = 0. If this inequality is violated , which will always occur 

for sufficiently thick flims , only the transitions between integer surface heights (for 

YR > 0) or half-integer surface heights (for YR < 0) will be observed. If the inequality 

is satisfied, both sets of transitions will be seen. For r;,R larger than r;,k , we may 

compute the range, 6h0 , of h0 around n + ½ (YR > 0) or n (YR < 0) over which the 

new minimum is stable. Indeed one finds that 

(4.24) 

Thus r;,k(YR) is a triple point , with two new first order transitions ext ending out 

linearly from the horizontal layering lines at larger IYRI - At YR = 0 these new lines 

are precisely the transitions at n ± ¼ found above. In the thick film limit , r;,R ➔ 0 one 

sees from (4 .24) that these lines are essentially straight. We have therefore confirmed 

precisely the zippering picture shown in Fig. 2.l(d). 

Finally, since r;,R ~ l / n 2+a. and , inverting (4.23) , the triple point position, Yk(r;,R) ~ 

r;,R/l6uR, vanishes linearly with r;,R, the two sequences of triple points on either side 
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of YR = 0 converge to the bulk interface first order preroughening temperature , T0 , 

also as [T~·2 - T10 [ ~ l /n2+a (with a = 2 for a van der Waals substrate potential). 

To complete the analysis, we discuss the question of how Fig. 2.l(d) converts 

to Fig. 2.l(c) , either as ""R increases or as K0 decreases into the region where u is 

irrelevant . We shall see that if ""R/uR is sufficiently large, the triple points are wiped 

out and replaced by ordinary Ising critical points. We wish to understand how this 

happens in detail. 

We have already seen that when YR = 0 the first order transitions at h0 = n ± 

! disappear if ""R/uR > ( 41r )2
. More generally, the critical point that signals the 

first appearance of the first order transition occurs when the line representing the 

right hand side of ( 4.20) precisely kisses an inflection point of the left hand side [see 

Fig. 4.3(a)] . For YR = 0 this inflection point is at h = n ± ¼, and the slope at this 

point gives the above critical value, ""R / 41ruR = kc(YR = 0) - 41r. For YR =/= 0 but 

small one finds that the inflection points are at 

±(hinfl - n) 

( 4.25) 

and the ( negative of the) slope is 

( 4.26) 

with corresponding value of h0, 

( 4.27) 

This is larger than kc(0) , meaning that the first order transition is more stable for 

YR =/= 0, existing for larger ""R / uR. Note that this computation assumes , effectively, 

KR --+ oo so that mean field theory is exact. This is fine for first order transitions , 
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but for second order transitions there will , in fact, be fluctuation corrections to this 

behavior so that both the exact position of the critical point and the critical behavior 

(which will be that of the two-dimensional Ising model) will be different. 

We expect , then, that the stability of the first order transition will continue to 

increase as YR increases. As further evidence for this we may examine the stability of 

the triple point , Yh· As shown in Fig. 4.4, the triple point becomes a tricritical point , 

and then a critical point when KR / uR becomes so large that the pair of inflection 

points on either side of h = n + ½ m erge with the one at h = n + ½, forming a single 

.fifth degree inflection point ( which, within Landau theory, defines a tricritical point). 

The vanishing of the third derivative at h = n + ½ occurs when YR/uR = 16. The 

slope at this point is then kti = 12n. Thus only for KR/uR > 3(4n)2 is the triple 

point washed out. This is quite a bit larger than the value, ( 4n )2
, at which the first 

order transition disappears at YR = 0. 

We finally obtain, then , the following picture of the disappearance of the zipper 

with increasing KR and/or decreasing UR. The zipper , for a given value of h0 , first 

breaks in the middle (YR= 0) , forming a pair of two-pronged forks. The prongs then 

become shorter, eventually retracting into the triple point . Precisely at the point 

where the prongs disappear, the triple point becomes a tricritical point. Beyond this 

the tricritical point becomes a simple Ising critical point , and locally the picture is 

now indistinguishable from Fig. 2.l(c). Now, KR decreases as h0 increases. Hence 

as long as uR > 0 remains fixed as the film thickens, this process occurs in reverse 

order , with the zipper reappearing for sufficiently thick films. In the higher, three 

dimensional space, (ho, YR/uR, KR / uR) , this process can be viewed as a sequence of 

plane sections of the usual tricritical surface [see Fig. 4.5]. Consequently, as K 0 

decreases toward the point at which u become irrelevant , one has UR -t 0, and ever 

thicker films will be required to see the zipper. This means that integer and half­

integer layering transitions "unzip" from the bottom, becoming fully unzipped all 

the way to infinite layer thickness precisely when u becomes marginal. Note that 

the mapping of the original model onto this fully renormalized description may lead 

to some nonmonotonic dependence of the renormalized parameters on the original 
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Figure 4.3 : Graphical solutions of equation ( 4.20) for UR > 0 which relates the layering 
phase diagram to the behavior of the bulk interface in the first order preroughening 
regime. (a) Inflection points and the first appearance of first order layering lines in 
the zipper regime. (b) Equal areas construction for the position of the fi rst order 
zipper layering line. (c) The triple point. (d) Ordinary layering beyond the triple 
point. 
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Figure 4.4: From triple point to tricriticality in the layering phase diagram for UR > 0. 
(a) continuous increase in fi lm thickness ( shown as path a in part ( c) of this figure) . 
(b) corresponds to path b of part ( c). ( c) Schemat ic phase diagram, assuming for 
now that the substrate potential "'R is constant , independent of film thickness , with 
= "'R < "'cR· (d) When "'R = 481r and YR/uR = 16 the three inflection points merge 
into a single fifth order inflection point and triple point becomes a tricritical point; 
path d in part ( f) of this figure. ( e) Ordinary first order layering beyond the tricritical 
point (path ( e) in part ( f)). 
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ones ( thus, for example, uR, YR and t,,R are all functions of 11 , 12 and T). In thinner 

films one may therefore see behaviors different from the asymptotic behaviors we have 

found. 

4.6.2 uR < 0: Spontaneously broken particle-hole symmetry 

and inter lacing 

We next consider the case uR < 0, which turns out to yield completely different 

behavior. The evolution of the substrate potential as YR goes through zero is shown in 

Fig. 4.6 . This figure is actually identical to Fig. 4.2(a) turned upside down. The major 

difference now is that the absolute minima at integer h = n split continuously in two at 

YR= 4luRI- The two new minima lie at h = n±0(yR) where 0(yR) grows continuously 

from zero. Again , since this transition is continuous, fluctuation corrections will alter 

its nature and position. The transition, which appears as a classical Landau mean 

field critical point in our theory, must become a two-dimensional Ising critical point 

with 0(yR) ~ IYR - Y1tl 118 and YR :::, 4luRI- At YR = 0 one has , by symmetry, 

0(0) = ¼ so that the equilibrium mean surface heights are now h = n ± ¼, rather 

than h = n or h = n + ½ as found when uR > 0. For YR < 0 the minima at 

h = n + 0(yR) and h = n + l - 0(yR) move together , eventually merging at h = n + ½ 

when YR = -yR ?:., 4uR. The merging also corresponds to a two-dimensional Ising 

critical point, with ½ - 0(yR) ~ IYR + Y1tl 1
/
3

. For YR < -yR only minima at h = n + ½ 

remain , signifying the usual DOF phase. 

Thus instead of the preroughening line simply becoming first order, it splits into 

two second order Ising lines , with a new intervening phase, which we call the 0 DO F 

phase [4], with continuously varying mean surface height. Den Nijs [4] first introduced 

this phase as a consequence of particle-hole symmetry violating terms in the Hamilto­

nian (which we neglect throughout this work) , completely analogous to magnetic field 

terms in an Ising model. Here we find this phase as a result of spontaneous breaking 

of particle-hole symmetry driven by UR < 0. 

The layering phase diagram is now very simple to describe. In the presence of the 
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Figure 4.6: Evolution of the bulk interface corrugation potential for UR < 0. The new 
0DOF phase appears for an intermediate range of YR· 

substrate potential it is clear by symmetry that neighboring minima can be degenerate 

only when h0 = n or h0 = n + ½. If h0 = n + ½ degenerate minima are, for large 

positive YR , h ~ n and h c::::: n + l , signifying the usual first order transitions between 

essentially integer film thicknesses. However, when YR :::., Yk the degeneracy is between 

h ~ n+0(yR) and h '.::::'. n+ l-0(yR) (approximate equality only due to the perturbative 

effect of K,R on the positions of the minima). When YR ,<, -yJ?_ these two minima 

merge, and the film thickness then varies continuously around h = n + ½ for small 

deviations of ho from n + ½. The layering line therefore terminates there in an Ising 

critical point. On the other hand , if ho = n degenerate minima are, for large negative 

YR , h '.::::'. n ± ¼- When YR ,<, -yJ?_ the degeneracy is between h '.::::'. n ± 0(yR) , and when 

YR:::., Yk these two minima merge. The film thickness then varies continuously around 

h = n for small deviations of h0 from n. The layering line therefore again terminates 

in an Ising critical point , but this time as YR increases rather than decreases. In 

the intermediate regime, -yJ?_ :::., YR :S Yk, both sets of lines exist . Thus, unlike the 

case UR = 0 where the two sets of lines are pushed apart so that there is a small 

region about YR = 0 where the film can grow continuously, the two sets, though 

independent and nonintersecting, are interlaced so that at no time can one have 
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Figure 4.7: Intermeshing layering phase diagram for uR < 0. The two sequences 
of layering critical points approach the boundaries of the 0 DO F phase as the film 
thickens. 

unbounded continuous film growth (see Fig. 4.7). Note, however, that if one varies 

YR in an oscillatory fashion as h0 increases , one can in principle follow a snake-like 

path to grow an arbitrarily thick film without ever crossing a layering line. This 

is another signal that the bulk interface transition is second order rather than first 

order. As n ➔ oo the two sets of Ising critical points converge to the bulk interface 

Ising transitions at YR = ±y<k_, with Tf,n - TJ , TJ - TJ,n ~ n-(2+0
) , just as for first 

order preroughening. 

4.7 Global phase diagram 

The computations in this section are relevant both to roughening and preroughening 

phenomena on the bulk interface and to layering phenomena in film growth. The 

results for UR =/= 0 are new and , as we have seen, have strong impact on the phase 

diagrams . In particular, some previous results in the literature [4] require some revi­

sion. 

Thus , Fig. 2 in Ref. [4] shows the Ising transition between DOF and reconstructed 

phases joining the preroughening line precisely at the point labelled N where 'U be­

comes relevant. We believe this to be incorrect: the point N will generically lie to the 
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left (toward smaller L = 12/kBT) of the Ising line, which we expect , assuming that 

UR > 0 for the RSOS model, to join the .first order preroughening line at a critical end 

point N' distinct from N [see Fig. 2.l(a)]. The point N is therefore tricritical, rather 

than bicritical as proposed by den Nijs [4]. The physics of the Ising line is separate 

from that of the preroughening line (in fact, for a triangular lattice substrate the 

reconstructed phase, and hence the Ising line, is completely absent) , and we see no 

reason why they should be connected at N . Our plaquette mean field calculations will 

lend further credence to the distinction between N and N'. We shall find , however, 

that the first order transition remains extremely weak, which may explain why it was 

not seen in earlier numerical investigations of the RSOS model. 

Alternatively, if UR < 0 the preroughening line splits into two Ising lines at the 

point N, with the new 0DOF phase in between [see the inset to Fig. 2.l(a)]. This type 

of behavior is not seen in the RSOS model , but has been seen in the two-dimensional 

Ashkin-Teller model [68], which may also be interpreted as a interface model but 

different from the RSOS model that we have fo cussed on so far. The connection 

between the Ashkin-Teller model and a Solid-on-Solid model is explored further in 

the next section . 

4.8 An explicit model with a 0DOF phase 

In our considerations of the sine-Gordon phenomenology above we found that if 

U R < 0 when YR changes sign, then the preroughening transition occurs with a con­

tinuous variation of surface height even in the absence of a substrate (in contrast to 

"conventional" preroughening where there there is an abrupt change from integer to 

half-integer average surface height) . In this section we discuss the two component 

BCSOS model; this is a bona fide microscopic model which will have an intermeshed 

phase diagram. This model was first introduced in another context by [65] and certain 

aspects of its phase diagram were discussed recently in [66] 
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4.8.1 The two component BCSOS Model 

The BCSOS model is a solid on solid model with a (100) body centered cubic struc­

ture. There is always a height difference between nearest neighbors . Moreover, since 

a two component model is being considered , there are two species of atoms, A and 

B and nearest neighbors are required to be of different species. (These restrictions 

are not necessarily unrealistic: NaCl has precisely this structure.) It is convenient 

to represent steps appearing between different heights by directed lines just as was 

done in the in the discussion of the ice type models. If there were only one species 

of atom, then there would be exactly six different types of vertex configurations that 

could occur. ( As we have already discussed in the context of the 6 vertex model). The 

presence of two species gives rise to 12 different vertex configurations; these are shown 

in Fig. 4.8. We will sometimes be refer to this model as the staggered-6V model. We 

take the boltzmann weights to be a= e-1
A, b = e-Js and c = 1 where JA and JB 

are positive vertex energies. It is clear that if one atom, say of type A, occupies a 

V3 

a C 

-$-7 
boltzmann 

a C 

:1; ~hts 

Figure 4.8: The 12 distinct vertices in the two component BCSOS model along with 
their boltzmann weights. 

site whose height (relative to some reference zero height) is an even number then all 

atoms of species A will have even surface height regardless of the phase of the film. 

Henceforth we will assume that A atoms have even integer heights and B atoms have 

odd integer heights. One sample configuration of the system is shown in Fig. 4.9. 

For the purposes of establishing the correspondence of this model to the Ashkin­

Teller (AT) model (details can be found in App. C) it is convenient to treat it as a 

staggered 8-vertex model with boltzmann weights equal to zero for the vertices shown 
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Figure 4.9: A sample configuration of the two component BCSOS model. Note that 
all A sites are at even integer heights and all B sites are odd. 

in Fig. 4.10 and the weights of Fig. 4.8 for the other vertices. It should be emphasized 

that the additional vertices that are being introduced in Fig. 4.10 have no consistent 

interpretation in terms of surface heights and are only used to facilitate the mapping 

to the AT model. From equation (C.5) which relates the staggered BCSOS model 

++ 
boltzmann weight d=O 

Figure 4.10: Vertices added on (with zero weight) to allow the staggered-6V model 
to be considered as a staggered-SY model. 

to the AT model , the phase diagram of the staggered BCSOS model can be mapped 

out; it is shown in Fig. 4.ll(a). There is a line of continuously varying exponents 

which splits into two Ising lines. In region I the average height of the surface is an 

even integer and the A sublattice is essentially completely ordered while the B lattice 

is disordered with about half the B-atoms at a height one layer above the A lattice 

height and half of the B-atoms one layer below. In region III the B lattice is ordered 

and the A lattice is disordered. In region II both sublattices are ordered. If, as the 

temperature is varied, the system follows the path PQ shown in the figure, then 

there will be two Ising transitions with continuous surface height growth between 

these transitions. When, in addition , a substrate potential is present and the full 
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Figure 4.11: (a) Staggered BCSOS model phase diagram. The line labelled PQ is a 
path through phase space that would yield the layering diagram shown in (b). 

chemical potential vs. temperature phase diagram is mapped out, it will be as shown 

in Fig. 4 .11 (b). It should be noted that the filling factor of the top layer , 0, ranges 

continuously from Oto 1 (rather than from 0 to half as in previous sections) because 

we have chosen to define one unit of height as one layer of A atoms or one layer of B 

atoms instead of as being the sum of one layer of each. 
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Chapter 5 Calculational results 

5.1 Single spin computations 

Many of the phases we are interested in can be investigated , often analytically, within 

a simple single spin mean field formalism. In order to gain insight we begin with these 

computations. This allows one to discuss not only the usual layering phenomena, but 

also the interplay between the thin film analogues of reconstruction and roughening. 

In particular , we shall elucidate the nature of the reconstructed rough phase. Multi­

spin plaquettes will be used later to improve the accuracy of the calculations as well 

as to describe phases that the single spin theory misses. 

5.1.1 Spin-½ computations: tricriticality and tetracriticality 

in reconstructed layering 

If in addition, one is interested only in phenomena involving at most two different 

layers, a spin- ½ model suffices. The Hamiltonian is given by equation (3.8) , and its 

basic phenomenology was outlined in Sec. 3.2.1. Here we fill in some of the det ails 

via explicit computations . 

Applying the formalism of App . A, the single site mean field free energy functional 

-KL CYi CYj - LL CYi CYk 
(ij ) (ik) 

L(Hi + h i )CYi - L ln cosh(Hi)- (5.1) 

We assume that L > 0, but that K can have either sign. The first of the saddle 

point equations, (A.9) , yields CYi = - tanh (Hi). Subst ituting this relation into (5 .1) 
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we obtain the Bogoliubov mean field free energy 

(5.2) 

where the mean field Helmholtz free energy is [see also equation (3.17) and the dis­

cussion preceeding it] 

A{CJi} -KI:CJWj - L LCJWk 

(ij) (ik) 

1 

2 L[(l - CJi) ln(l - CJi) 

i 

(5.3) 

We restrict our attention to a bipartite lattice, with sublattices A and B. Let there be 

q1 nearest neighbors and q2 next nearest neighbors. We assume that the only relevant 

phases are those with uniform magnetization, CJi = mA for i E A and CJi = mB for 

i E B , on each sublattice, with corresponding fields hA and hB. The ferromagnetic 

and antiferromagnetic order parameters are, respectively, m = ½(mA + mB) and 

mt = ½(mA -mB) , with corresponding conjugate fields h = hA +hB and ht= hA -hB. 

In terms of these (5.2) becomes 

F{hi}/N = f(h, ht)= min[a(m, mt) - hm - Mmt], 
m,mt 

(5.4) 

where the Helmholtz free energy per site is 

(5.5) 
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and where c = K q1 + Lq2 and ct -Kq1 + Lq2 . Notice that c > ct whenever 

K > 0 and ct > c whenever K < 0. When both K and L are positive we expect 

mA = mB = m and mt = 0. In this case a(m) is identical to the mean field free 

energy of a model with nearest neighbor interactions only, but effective coupling 

K ef f = K + q2L / q1 , and we learn nothing new. The second neighbor coupling gives 

rise to interesting new physics , then , only in the antiferromagnetic regime, K < 0. 

Let us then use (5 .4) to understand the onset of antiferromagnetism. The antiferro­

magnetic-paramagnetic phase boundary is located by considering the stability of the 

paramagnetic phase, where mt = 0, to nonzero mt. To this end , let m 0 (h) be the 

value of m that minimizes the right hand side of (5.4) with mt _ 0 and ht = 0, i. e., 

m 0 (h) = tanh[cm0 (h) + h], (5.6) 

and let the corresponding free energy be f O ( h). To see if this is the true minimum we 

Taylor expand the right hand side of (5 .4) in the deviations t5m = m - m 0(h) and mt 

( maintaining ht = 0) . Since we expect any phase transition to be driven by the onset 

of mt , we further minimize the resulting expression over t5m for a given mt , yielding 

t5m 

(5 .7) 

We obtain then the result 

1 
fo(mo) + 2 r tmt2 + utmt4 

+ vtmt6 + wtmts + O(mt10) , (5.8) 
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1 - ct(1 - m5) 

(1 - m5) 

(1 - 3m5) - c(l + 3m5)(l - m5) 
12(1 - m5)3[l - c(l - m5)] 

2 mo 2 

6(1 - m5) 5 [1 - c( l - m5)]3 [(mo - 3) 

+ 3c(m6 + 3)(1 - m6) 

6c2 (1 + m6)(1 - m6) 2
]. (5.9) 

We have therefore obtained a standard Landau free energy functional for mt. Thus, 

if ut > 0, there is an instability toward antiferromagnetism when rt < 0. The 

antiferromagnetic critical point therefore occurs when 

(5.10) 

where TJ = (IJ1 lq1 + J2q2 )/kB = JJ/k3 is the transition temperature at h = 0. Note 

that T /TJ < 1. For very large h, m 0 ( h) will be very close to unity, and rt > 0. 

As h decreases, for a given fixed T < TJ, m 0 (h) decreases and eventually the phase 

boundary will be reached for some critical h = ht (T) , which increases as T decreases. 

Below the transition mt increases continuously from zero as mt ~ (ht -h)f3 with (3 = ½ 

in this mean field approximation ( an exact theory would yield the two-dimensional 

Ising result (3 = ½). 

Another possibility is that ut < 0 but vt > 0. In this case the transition will 

be first order, with the minimum at mt = 0 trading stability with two degenerate 

minima at nonzero mt. The point ut = rt = 0 where the transition converts from 

second to first order is then a tricritical point. From (5.9) we see that ut is positive 

for 
_ T/T, (1- m5)(l + 3m5) 

C= o> 2 1-3m0 
(5.11) 

where To = (q2l2 - q1II1l)/kB = lo/k3. This inequality will be valid for sufficiently 

small m0 . Therefore the antiferromagnetic transition line will be second order if T / TJ 
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(i) 

(ii) 

(iii) 

(iv) 

Figure 5.1: Behavior of the free energy in the vicinity of the tetracritical point. The 
sequences shown correspond to paths (i),(ii),(iii),(iv) in figure (3.3a) 

is large enough. On the other hand, the simultaneous condition rt = 0 and ut = 0 

then yields a tricritical point, Ttri , at 

(5.12) 

This actually leads to line of tricritical points in the K-L plane. It is easy to check 

that ut remains negative for all T < Ttri· 

When T < Ttri the transition line is no longer given by rt = 0. Rather, one must 

look to see when the minimum at mt = 0 is no longer the absolute minimum. For 

small negative ut one then finds a first order transition at rt = ut2 /2vt > 0 at which 

mt jumps from zero to mt = J-ut /2vt. The transition therefore takes place before 

the putative second order line at rt = 0. 

The tricritical point exists so long as vt > 0. One may check the sign of vt on the 

tricritical line and verify that it is positive for 

kB! > ll - v33 ~ 0.8759. 
JJ 6 

(5.13) 

( 11 - v133) / 6 is tetracritical since rt, u t , and v t all vanish 
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simultaneously. For k3 T/JJ < (11-v'33)/6 new behavior occurs. In Fig. 5.1 we 

show the structure of the minima in the free energy, (5.8). One finds that the tricrit­

ical point now becomes a critical end point which terminates the second order line 

before the first order line ends. The first order line now terminates in a critical point 

completely within the antiferromagnetic phase (see Fig. 3.3). Thus at t emperatures 

below the critical end point , as a function of magnetic field, there is a first order 

transition to the antiferromagnetic phase, while above it the transition is second or­

der. However , at temperatures above, but close to the critical end point, the second 

order transition is followed by a first order transition from one nonzero value of mt 

to another. The projection of these lines into the K-L plane is shown at the bottom 

of Fig. 3.3(d). Note that the antiferromagnetic transition in the model with nearest 

neighbor interactions only ( J2 = 0) is always second order. 

5.1.2 Spin-I computations: the reconstructed rough phase 

We consider next the spin-1 model (3.9) . This will allow us to deal with phases and 

phase transitions involving three different layer thicknesses. It will turn out that 

this model contains essentially all the physics needed to explain all the phases in the 

exact Hamiltonian. The simplest application is to layering in the ferromagnetic regime 

where the spin-1 model exhibits two layering transitions at low temperatures: between 

the phase with m ~ -1 and the phase with m ~ 0 and between the phase with m ~ 0 

and the phase with m ~ 1. However the results here do not contain any new physics, 

and the extension to the full layering phase diagram, Fig. 2.1 (b) , is clear. In this 

subsection, therefore, we focus instead on the film analogue of the reconstructed 

rough phase, and transitions from it to the reconstructed flat and disordered flat 

phases. All of these may be elucidated from the single site mean field theory. Only 

the preroughening transition between the flat and disordered flat phases requires the 

retention of a plaquette of spins, and this will be discussed in Sec. 5.2. 

For the spin-½ model the RSOS condition was redundant because the spins could 

take only two values. In the spin-1 case we must include it explicitly. Since we are 
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still dealing only with single site mean field theories the condition must be imposed 

on the mean field alone and the discussion in Sec. 3.3.2 is relevant . We choose to 

approximate the RSOS condition by a nearest neighbor quartic interaction. Thus we 

consider the mean field theory of the Hamiltonian 

il' 1 

(5.14) 

with K' = J{/k3T > 0, h2 = h2 + ½Kq1 + ¼K'q1 + ½Lq2 and we have used the fact 

that sf= si· 

Since the interactions between spins now include quadratic terms the formalism 

in App. A tells us that the most general single site free energy functional we need to 

consider is 

(5. 15) 

The full mean field free energy functional is now obtained by associating independent 

saddle point theory variables O"i with Si and Ti with s; , yielding 

F - (K + 2K') LO"iO"j + ~K' LTiTj 
(ij ) 2 (ij ) 

LL O"iO"k - L(Hi + h)O"i 
(ik) 

L(H2,i - h2)Ti + L <P(Hi, H2,i)- (5.16) 

The only coupling between the O"'s and the T's is indirectly through the coupling of 

the H 's and H 2 's in <P. Notice the antiferromagnetic coupling between the T's. 

To elucidate the nature of the reconstructed rough phase, specialize to h 0. 
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What we will show is that when 11 < 0 and 12 is not too large there exists a phase 

in which Hi, CJi - 0, but Ti has long range antiferromagnetic order. This means that 

the magnetization vanishes on all sites , but there is antiferromagnetic order in the 

magnitude of the .fiu ctuations on each site. This is intuitively plausible because if 

we consider the special case 12 = 0, the exact T = 0 ground state of H~ has si = 0 

on one sublattice and si = ±1 randomly on the other sublattice. Thus even though 

(si) = 0 everywhere, sf alternates between O and 1. Note that the RSOS condition 

is required to stabilize this state: in its absence the ground state would have si = 1 

on one sublattice and si = -1 on the other. Similarly, in our mean field treatment 

we expect such a state to exist only in a certain range of sufficiently large 1{. At 

high enough temperature we expect this order to be destroyed , signaling the film 

analogue of the reconstructed rough to fully rough transition [The negative part of 

the K-axis in Fig. 2.l(A)]. We shall also see below that inclusion of 12 > 0 allows for 

a transition to a phase with true antiferromagnetic order in the si· This corresponds 

to the film analogue of the reconstructed rough to reconstructed flat transition [path 

5 in Fig. 2.l(C)]. This is again intuitively plausible because 12 > 0 will force the 

ground state to break the symmetry of si = ±1 on the second sublattice, forcing 

all these si to take a common value. There will then be a first order layering-type 

transition as a function of field , h , between the state with alternating O's and l 's and 

that with alternating O's and -1 's. When 12 is large enough we shall find that the 

antiferromagnetic order can be lost with increasing temperature before the layering 

line terminates, corresponding to reconstructed flat to disordered flat transition [path 

4 in Fig. 2.l(B)]. Thus long range positional order in the O's and l 's (or O's and -l 's) 

can be lost while still maintaining a broken symmetry between l 's and - 1 's. This 

is the film analogue of the K < 0 region of the DOF phase. As mentioned earlier , 

to describe the film analogue of the preroughening transition in the K > 0 region of 

Fig. 2.l(A) will require a plaquette of more than one spin (see Sec. 5.2 below) . 

Specializing the free energy functional (5.16) to a two sublattice stucture for CJi , 
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Ti and H2 i we have , 

f F/N 

Variation with respect to H 2A, H 2B yields 

2e-H2 A cosh(HA) 

1 + 2e- H2 A cosh(HA) 

2e-H28 cosh(HB) 

1 + 2e-H2s cosh(HB) • 

Variation with respect to HA and HB yields 

mB = 

2e-H2 A sinh(HA) 

1 + 2e- IhA cosh(HA) 

2e-H23 sinh(HB) 

1 + 2e-H23 cosh(HB) • 

(5.17) 

(5.18) 

(5.19) 

Inverting these and substituting them back into (5.17) we obtain the Bogoliubov free 

energy 

1( I 1 2 2 
!Bog - 2 K + 2K )q1mAmB - 4Lq2(mA + mB) 

1 - 2h(mA + mB) 

3 1 ~ 
+ 4K'q1TATB + 2(TA + TB)[h2 - ln(2)] + ln(3) 

1 1 
+ 2(1 - TA) ln(l - TA)+ 2(1 - TB) ln(l - TB) 

1 
+ 4 (TA + m A) ln (TA + m A) 
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1 
+ 4(TA - mA) ln(TA - mA) 

1 
+ 4(Ts + ms) ln(Ts + m 3 ) 

1 
+ 4(Ts - ms) ln(Ts - m 3 ) . (5 .20) 

Focusing first on the reconstructed rough phase, we set h = 0 and assume that 

mA = ms = 0. Minimizing !Bog with respect to TA and Ts then yields 

2e-½ I<'q1(rs-ro) 

1 + 2 e-½I<'q1(rs-ro) 

2e-½ J{' Ql (r A -To) 

1 + 2 e-½ J{'q1(TA-TO) l 
(5 .21) 

where To = -{h2/ K'q1 and h2 was defined below (5 .14). At high temperatures we 

expect TA = TB = T with 0 ::::; f- ::::; 1 satisfying 

(5.22) 

As T decreases we expect an instability either to a state with Tt = ½(TA - Ts) =I= 0, 

but mA = m 3 = 0 still , or to a state with mA = ms = m =I= 0, but Tt = 0. Treating 

the first case first , let T = ½(TA+ Ts) and 6T = T - f-. Completely analogous to the 

computation leading to (5.8) , we expand the free energy in a double Taylor series in 

Tt and 5T. Mininimizing the result over 6T we find 

(5.23) 

Substituting this into the free energy we obtain the Landau expansion in Tt alone: 

(5.24) 

with 

Jo 
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+ T ln(T) + (1 - T) ln(l - T) 

--1(1 - )- 1 3K' T - T - - ql 
2 

~[(l - Tt3 + T-3] 
12 
1 [(l - T)-2 - T-2]2 

8 3K'qi/2 + T-1(1 - T) - 1 • 
(5.25) 

There is a unique minimum at Tt = 0 for T-1 (1 - T) - 1 = 3K'qif2. Therefore the 

critical point occurs at a temperature Tc determined by 

(5.26) 

(5.27) 

It is easy to check that ut > 0 at this point. Since T(l - T) ::; ¼ it is clear that 

Tt = 0 for T > ¼- Whether or not solutions to (5.25) , (5.26) exist depends on the 

temperature independent parameter To= -(2H2 + J1q1 + J2q2 + J{qi/2)/3 J{q1 (recall 

that H 2 = k3Th2 is the curvature of the substrate potential). For example, if To= i 
then T = i for all T, and we have Tc= ~- If H2 = 0 on a square lattice (q1 = 4) then 

this situation corresponds to I 11 I/ J{ = ~- The maximal Tc is ¼ and corresponds to 

Tc= ½- This occurs for To= (2 - ln (2))/4 '.::::'. 0.3267. The general solution for To given 

any 0 < Tc < 1 is 

To Tc(l - Tc){ (1 - Tct 1 + ln[Tc/2(1 - Tc)]} 

~ { Tc ln (Tc/2) --+ 0, Tc--+ 0 

1 - (1 - Tc) ln[2(1 - Tc)] --+ 1, Tc--+ l. 
(5 .28) 

Treating now the second case, we take Tt = 0 and expand the free energy in {JT 

and m. Again, minimizing the result with respect to 6T for given m we obtain 

(5.29) 
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Substituting this back into the free energy we obtain a Landau expansion in m alone: 

1 2 4 6 
!Bog = Jo+ 2rm + um + O(m ), (5.30) 

with 

r f- 1 
- (K + 2K')q1 - Lq2 

u (2f-2 + f- 3 ) /36 > 0. (5.31) 

There is a phase transition to a ferromagnetic phase at r = 0. This yields implies a 

critical temperature T0 determined by 

(5.32) 

The temperatures Tc and T0 coincide when 11 , l{ , 12 and h2 satisfy the constraint 

To= p(l - p){p- 1 + ln[(l - p)/2p]} 

p (l1q1 + 2l{q1 + l2q2)/(3l{qi/2). (5.33) 

where To was defined below (5.27). For given 11 , l{ and h2 it is easy to check that 

for h larger than that satsfying (5.33) one has T0 > Tc: the instability to the thin 

film analogue of the DOF phase occurs first , with a transition to a reconstructed 

checkerboard state occuring only at lower temperature. Conversely, for smaller 12 

one has Tc > T0 : the transition to the film analogue of the reconstructed rough phase 

occurs first , with the transition to the true antiferromagnetic state occuring only at 

lower temperature. The special value of 12 at which T0 = Tc is bicritical with a direct 

transition from the paramagnetic to antiferromagnetic state. In Fig. 5.2 we show a 

numerical computation of the full phase diagram in the H-T plane for various values 

of 12. 
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Figure 5.2: Spin-1 phase diagrams showing the thin film analogues of the recon­
structed flat , reconstructed rough and disordered flat phases as the second neighbor 
coupling , J2 , varies: (a) small J 2 , showing the termination of the antiferromagnetic 
layering line inside the reconstructed rough phase; (b) bicritical value of J2 , showing 
a direct transition from the rough to antiferromagnetic phase; ( c) large J2 , showing 
first the appearance of the DO F phase, followed by the antiferromagnetic phase. 
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5.2 Correspondence between microscopic and sine-

Gordon theory 

So far we have discussed two rather different approaches in our study of surface phase 

transitions. 

We began our study by looking at solid-on-solid models. These are microscopic 

system dependent models ( with parameters like the nearest and next nearest neigh­

bour interaction strengths, lattice structure, chemical potential, substrate strength 

etc. ). Such an approach is useful when detailed comparisons with experiment or first 

principles simulations are to be made. 

In Chapter 4 we adopted a different point of view: Since much of t he interest­

ing physics should be amenable to a long wavelength coarse grained description , we 

examined a sine-Gordon (SG) Hamiltonian ( 4.1) with partially renormalized param­

eters y0, u0, K0 and an effective substrate potential Vo[h]. It is easy to find the flow 

equations of this model under renormalization and one can get detailed information 

about the manner in which the roughening and preroughening critical points of a film 

approach bulk behavior as the film thickens. Moreover , simple assumptions about the 

behavior of y0 (T) (namely that it changes sign at some temperature Tc) and about 

u0 lead to phase diagrams which are qualitatively identical to the experimental dat a. 

We have not yet made precise the connection between these two approaches. In 

order to use the sine-Gordon type Hamiltonian for specific microscopic systems, a 

method of mapping the discret e lattice based parameters of the RSOS model into 

the partially renormalized parameters of the SG Hamiltonian is needed . The renor­

malization connection between the 8-vertex model (which includes a special type of 

roughening model, the BCSOS model) and the Gaussian model has been studied in 

[64, 67]. The main goal of these studies was t o find which Gausssian operators are 

generated by specific 8-vertex operators. While t his approach yields much useful in­

formation about t he relevance of specific operators and about the universality class of 

t he Hamiltonians, it does not provide an explicit mapping between the RSOS Hamil­

tonian and the corresponding Gaussian Hamiltonian . The restricted SOS condition 
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further complicates attempts to find the precise correspondence between the micro­

scopic and coarse grained models. In the mean field approximation, however , it is 

possible to find the approximate mapping between the RSOS and the SG model ; we 

do this below. 

5.2.1 Single Site Theory 

We first consider the single site MFT for the bulk crystal-vapor interface (no sub­

strate). The Hamiltonian is 

where a 

energy 

1-{ 

(5.34) 

( q1 K + q2 L) / 2. The formalism of App. A leads to the single site free 

(5.35) 

where g = ~ is a more convenient variable than the Hi used in the appendix and 

"°'oo -o:(s-9)2 

( ) 
~s=-oo se 

O" g = L ~-oo e - o:(s-9)2 
(5.36) 

results from the second saddle point equation ( equation A.9). Physically O"(g) corre­

sponds to the equilibrium film thickness. Since the system is periodic (with period 

equal to the layer thickness) in the absence of a substrate, we expect that there will 

be an infinite number of minima in the free energy, each corresponding to a thermo­

dynamically stable configuration of the film . The equilibrium values {g0} are found 

by finding saddle points of !MF with respect tog and the equilibrium film thickness is 

then given by O"(g0). It is easy to show from equation (5 .35) that !MF (g+n) = !MF(g) 

for any integer n. In order to get an approximate expression for ! MF which retains 

this periodicity one must find an approximation which does not truncate the sum in 

equation (5 .35) . 
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A good way to do this is to use the Poisson summation formula 

00 00 1= L f(k) = L f(x)e-i 21rmx dx. 
k=-oo m=-oo -oo 

(5.37) 

Using this we find 

(5.38) 

Because of the factor e-n
2

1r
2 
/a. in sum, this new series is very rapidly convergent and 

for most purposes it is adequate to keep the first few terms. Moreover each term in 

this series is manifestly periodic in g. Thus we have 

YR cos(21rg) 

uR cos( 41rg) + O(y'k_) (5.39) 

where YR = 2e-1r
2 

/a. and UR ~ O(yk,) « YR· It is clear that in the single site mean field 

theory YR is always positive so that !MF is minimized for integer valued g. Neglecting 

higher order terms, a-(g) = g - (1ryR/a)sin(21rg) , so that the film height is always 

integer valued in the single site mean field approximation in the absence of a substrate 

and there is no possibility of a disordered flat phase. We shall see below that the 

plaquette MFT does give a DOF phase. Another thing that becomes clear is that 

in MFT the true rough phase is absent because the free energy remains corrugated 

even at high temperatures (the coefficient YR ~ e-T here). One can however take 

care of this problem by arguing that the surface will be rough once the amplitude of 

the corrugation falls below some value. 

5.2.2 Plaquette Theory 

We have claimed earlier that the plaquette MFT is expected to be more accurate than 

the single site theory because additional degrees of freedom are taken into account . We 

shall show that for a square lattice a 2 x 2 plaquette is enough to ensure the presence 



93 

of a DOF phase. In our treatment of the plaquette theory we shall also include the 

effect of a substrate potential. This discussion will be confined to attractive coupling 

between nearest neighbors . Similar (but more involved) calculations can be carried 

out for repulsive nearest neighbor interactions and these would yield reconstructed 

phases. 

The Hamiltonian we work with is the same as the one in equation (5 .34) except 

that we now add a t erm ½K: L i[si - h0 ]2 which models the presence of a substrate. K: 

depends on the strength of the effective substrate potential and h0 indicat es the film 

the height at which the potential is a minimum. 2x2 plaquettes are then laid down on 

the square lattice and the Hamiltonian is rewritten as 1-{ = L p [h p + hi nterplaq] where 

P denotes a sum over plaquettes and (in the notation of Fig. 3. 5) , 

hp 1 2 2 

2K[(sp1 - Sp2) + (sP2 - SsP3 ) 

+(sp3 - Sp4 )2 + (sp4 - sP1) 2] 

+}L[(sPl - Sp3 )2 + (sP2 - sp4)2] 

+(K + ~L)(si1 + si2 + si3 + si4 ) 

1 [ 2 ( 2 + 2K: (sPl - ho) + Sp2 - h0 ) 

+(sp3 - ho)2 + (sp4 - ho)2] , (5.40) 

and hinterpl aq contains terms which 'couple neighboring plaquettes such as -(K/ 2)sp1sp32, 

-(L/ 2) sP2sA4 etc. From App. A, the mean field free energy per site is found to be 

1 - -

4
N [ (1-{ - 1-{Bog)1{

8 0
g + FBog] 

-(K + (3/ 2)L )0"2 + gO" - (1 / 4) log Z Bog · (5 .41 ) 

Here N is the number of plaquettes in the system, while ZBog = L ~
1

,82 ,83 ,84 exp[-hp + 

g (s1 + s2 + s3 + s4 )] is an effective "partition function" and O"(g) = ¼ 
8 111

8~
80

g is the 

average film thickness . The prime on the summation in ZBog is a reminder that 

the RSOS condition must be obeyed , i. e. for all s1, one must have 1s1 - s21 :S 1, 
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I s2 - S3 I ::; 1, I s 1 - s 4 1 ::; 1. If s 1 is considered as an unconstrained variable, then 

for s1 = n , the RSOS condition allows only 19 different configurations for the other 

variables. The energy Ei of the i th configuration (the labelling is arbitrary) can be 

written as Ei = ain2 +bin+ci where ai, bi and ci are configuration dependent constants. 

(For instance, for the configuration [: : ] , a1 = 4K + 6L + 2"" , b1 = -4g - 4h0 t,,, 

c1 = 2t,,h~.) Hence the partition function is 

19 oo 

Zaog = L L exp(-ain2 
- bin - ci)- (5.42) 

i=l n= -oo 

Each sum over n can be reexpressed in terms of periodic functions using equation 

(5.38) with the result 

~ µ 2 
Zaog = VA exp( - 2t,,h~ + 

2
A) [A+Bcos(21rµ / A) 

+ C cos( 41rµ/ A) + . .. ] (5.43) 

where 

A 8K + 12L+4"" 

µ 4g + 4h0 "" 

A 1 + 4exp [-(r,, + 4K + 5L)] 

+4exp [-(r,, + 4K + 5L)/2] 

+2 exp [-(r,, + 6K + 3L)/2] 

+8 exp [-(3"" + 14K + 13L)/ 8] 

B 2 exp( - 21r2 
/ A)(l + 4 exp[- (r,, + 4K + 5L)] 

-4exp [-(r,, + 4K + 5L)/2] 

-2 exp [-(r,, + 6K + 3L)/2]) 

C 2 exp( - 81r2 / A)(l + 4exp[-(r,, + 4K + 5L)] 

+4 exp[-(r,, + 4K + 5L)/2] 

+exp[- (""+ 6K + 3L)/2] 



95 

-8 exp[-(311;+ 14K + 13£)/8]) 

From equation (5 .41) and equation (5.42) we find 

!MF(0) = YR cos(21r0) - UR cos(41r0) 
K; 

+ 2[(0 - ho) - d(0)] 2 + const . 

(5 .44) 

(5.45) 

This free energy is now in the SG form. Here a new variational parameter 0 = µ / A= 

4(g+h0 11;)/ A has been introduced , and d(0) = (21ryR/ A) sin(21r0)+(41ruR/ A) sin(41r0). 

The sine-Gordon parameters can be expressed in terms of K , L and 11; as 

YR 

(5.46) 

The relation between the film thickness and the variational paramet er 0 is J = 

(si) -1-l = 0 - d(0) The equilibrium film thickness is found by determining the 00 Bog 

which minimizes the expression for !MF (equation (5.45)) and using this 00 in the 

expression J = 0 - d(0). 

It is not hard to see that Y R is positive at low temperature (large K = l i/T , 

L = J2 / T) but at high temperatures it changes sign. This is because YR~ B / (4A) 

and from equation (5 .44) we see that A > 0 always but B changes sign. Hence the 

plaquette theory does display the disordered flat phase. It should also be noted that 

the substrate potential has been changed from quadratic to a more complicated form 

in this expansion and that the gradient term K Rl'v s12 is absent in this approximation. 
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Chapter 6 Conclusions 

In this last section we briefly compare the theoretical results we have obtained from 

the RSOS and sine-Gordon models with the results of the experiments on noble gases 

on graphite substrates [41, 52, 53, 54, 62] and discuss other possible interpretations 

of the data. We end by discussing work for the future. 

6.1 Comparison with experiment 

If we accept the premise that the RSOS model indeed captures the essential physics 

of the thin film equilibria, and that the experimental measurements have not missed 

any significant features in the phase diagram, then it is difficult not to conclude that 

the reentrant layering is indeed a reflection of the DO F phase on the bulk interface. 

Thus, although Figs. 2.l(h,i), which involve reconstruction, show phase diagrams 

remarkably similar to Fig. 2.l(d) there are also distinct differences. In Fig. 2.l(h) the 

experimental vapor pressure isotherms will have steps at the wrong coverages, which 

seems ruled out by the experimental data. Similarly in Fig. 2.l(i) , although the steps 

in the vapor pressure isotherms now occur at the correct coverages, there is a film 

analogue of the transition from the rough to reconstructed rough phase at higher 

temperatures that is not seen in the experiments. This transition is second order , 

rather than first order, so it might be more difficult to see. Both these scenarios, 

however , leave open the question of what kind of triangular lattice reconstructed 

and reconstructed rough phases might replace the square lattice checkerboard phase. 

Direct probes of the surface structure through scattering measurements would be 

required to see if, in fact, the upper layer of the film has nontrivial spatial order. 

On the other hand, accepting the premise that the DO F phase is responsible for 

the reentrant layering, and the fact that there is not expected to be a reconstructed 

phase on the triangular lattice, we have seen that the phase boundary between the 
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flat and DO F phases extends, in principle, to arbitrarily large J2 / J1 . However , the 

Kosterlitz-Thouless theory tells us that only a finite segment of this boundary can be 

a continuous transition . The majority of this boundary must therefore be first order, 

and in retrospect it may not be too surprising then that the experimental data show 

evidence of a first order preroughening transition. 

One might be concerned by the fact that the real underlying lattice structure of 

argon on graphite is FCC rather than triangular. As mentioned in the introduction, 

this means that although individual layers indeed form two-dimensional triangular 

lattices , they do not lie directly on top of one another, but are displaced horizontally 

from one another so that subsequent layers lie in the interstices of the preceding ones. 

In principle this will affect the quantitative predictions of the RSOS model. This 

certainly should be checked, but all evidence so far indicat es that the results are 

not particularly sensitive to lattice structure. In the present work we have considered 

both square and triangular lattices while, for example, the original work of Rommelse 

and den Nijs was based on a BCC lattice [2 , 3]. 

Another possibility is that a lattice model is simply insufficient for describing the 

properties of the film. Such would be the case, for example, if two-dimensional melting 

were to occur. The lattice model cannot describe a phase where incommensurability 

effects occur, i.e., when the film is in a floating solid phase, with a lattice structure 

incommensurate with that of the substrate. Such phases indeed occur in very thin 

films: the data in Fig. 1 of [56] clearly show two dimensional melting lines , as well as 

triple points where two-dimensional liquid, vapor and solid coexist , in the first two 

or three layers of argon on graphite. The RSOS model is clearly inadequate if such 

phases were to persist in the upper layers of arbitrarily thick films . 

In a recent letter , Phillips , Zhang and Larese [62] (PZL) take precisely this point of 

view. They report a Monte Carlo simulation of up to several thousand Lennard-Jones 

argon atoms on a two-dimensional substrate, with an extent such that about 1000 

atoms fill one layer , and studied films up to about three layers thick. They found the 

usual layering transitions at lower temperatures, and smooth, continuous growth of 

the film at higher temperatures. However , at intermediate temperatures they found, 



98 

as a function of increasing coverage ( or , equivalently, increasing chemical potential) 

at fixed temperature, a sudden increase in the occupation of the fourth layer at the 

expense of t he occupation of the third layer just before third layer completion . This 

is accompanied by a positional disordering of t he third layer , which is interpreted as 

a melting transition. As more particles are added , the density in the third layer in­

creases again , and at a nominal coverage of about 3½ layers the third layer apparently 

resolidifies. This resolidification , apparently induced by the hydrostatic pressure of 

the particles above due to the binding energy of the substrate, is argued to give rise 

to the steps in the vapor pressure isotherms in the reentrant layering regime. This 

process is argued to repeat itself layer by layer as the film grows. Since their scenario 

involves both liquid and solid phases in the film PZL question the use [56] of the 

RSOS lattice model. 

There are various problems with this scenario. First of all , the behavior of t he 

third layer is rather different from that of higher layers , where our D O F phase inter­

pretation is claimed to be valid , and is t herefore not a good basis fo r generalization. 

Thus, although the first and second layers of argon have independent two-dimensional 

solid , liquid and gas phases, complete with critical points, triple points and melt ing 

t ransitions, the fourth , fifth and sixth layers behave rather differently. In particular , 

they do not have triple points or two-dimensional liquid-gas critical points , but they 

do have low temperature layering t ransitions at integer layer coverages, and higher 

temperature "reentrant" layering transit ions at half-integer coverages, "zipped" to the 

low temperature layering t ransitions by a the zig-zagging line of heat capacity peaks. 

The t hird layer , on the other hand, is an intermediate case, showing both types of 

behavior : t here is a two-dimensional triple point and a two-dimensional crit ical point, 

but there is also t he fi rst reentrant layering t ransition, marked by coexistence between 

2½ and 3½ layers, which entrains the melting of the third layer. It is not surprising, 

then , that PZL see evidence of melting associated with that rather complicated situ­

ation, but the very different nature of t he phase diagram for thicker films makes us 

skept ical of the generalizations they draw from that observation. 

There are also two quantitative reasons for doubting the PZL scenario in third 
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and higher layers. First, if they were due to solidification we would expect the vertical 

steps in adsorption isotherms that are the signature of the phenomenon to be roughly 

10% of a layer in height, the typical density difference between liquids and solids (note , 

in fact , that for continuous two-dimensional melting there is no density difference at 

all). Instead, all of the data, including PZL 's own isotherms, consistently show steps 

ofroughly a full layer. Second, the hydrostatic pressure that is supposed to induce the 

transition is negligible in the third layer and smaller yet in higher layers . This point 

shows up clearly in the energetics: the binding energy of the third layer is little more 

than k8 T /10 , and decreases as the cube of the film thickness. The canonical ensemble 

simulation method used by these authors does not allow a direct reconstruction of the 

isotherms , so no prediction is given for the size of the discontinuous step, nor is any 

other direct thermodynamic evidence given for this freezing transition. The apparent 

absence of melting phenomena leads us to believe that the RSOS model provides an 

adequate description of the thicker films in which the physics approaches that of the 

bulk interface. The DOF phase predicted by this model then produces the full step 

reentrant layering transitions ( coexistence between n+ ½ and n-½ layers). This, along 

with the natural explanation of the "zipper" in terms of a first order preroughening 

transition, demonstrates that the RSOS model has remarkable descriptive powers 

and the agreement of its predictions with the experimental data is striking. Its very 

simplicity, that is a shortcoming in thinner films, becomes a virtue in thicker films. 

6.2 Future work 

Given the RSOS model parameters J1 and J2 the theory developed in the present 

work then allows reasonable estimates of the renormalized sine-Gordon parameters 

y and u that determine the actual phase boundaries. Perhaps the largest gap in 

our theoretical understanding of the reentrant layering phenomenon is the connection 

between the microscopic interparticle interactions and these effective RSOS model 

parameters. If one models the particles, as in [62], using a Lennard-Jones potential 

with hard core radius !7 and attractive minimum depth -E, the question is whether 



100 

there is a reasonably well defined mapping 11 = 11 ( O", E, T) and 12 = 12 (O", E, T), and 

if so what range of 11 and 12 the mapping covers for physically motivated ranges of O" 

and E. In particular , can the effective 12 be made small enough to produce continuous 

preroughening, and do any of the corresponding Lennard-Jones potentials match that 

of a real material? Answering this question theoretically would require extending the 

PZL simulations to other Lennard-Jones potentials besides that of argon and to much 

thicker films. 

Another point is that we have seen that the one component RSOS model we 

study does not produce a 0DOF phase. The two component BCSOS model does 

have a 0 DO F phase but it there would be considerable experimental difficulty in 

investigating such a two adsorbate system assuming that one existed. If this phase 

is, in fact, experimentally realizable for a system with a single adsorbate species (as 

opposed to "Alloys"- see App. C) then we conclude, at the very least, that something 

beyond an RSOS model with only first and second neighbor interactions is required. 

One can therefore ask: What potential would be required in order to generate a 

0 DO F phase in a one component system? 

To conclude, recent experiments have shown that there is much new interesting 

physics to be found in thin film and bulk interface studies. The present work will 

hopefully motivate future experimental efforts in search of the as yet unseen phases 

and phase diagrams that we have found. 
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Plaquette mean field 

In this appendix we outline the general formalism for constructing consistent mean 

field theories, using plaquettes of arbitrary size, based on any given Hamiltonian. By 

consistent we mean that the mean field free energy should obey all thermodynamic 

principles. We guarantee this by demonstrating that the mean field theory becomes 

exact for a limiting case of a certain model Hamiltonian closely related to the original 

given one. The formalism we present here is a fairly straightforward generalization of 

that described in Ref. [63] . 

The idea is to treat each plaquette as a single site with a set of internal variables, 

each of which may interact with the internal variables on other plaquettes. If we 

label the plaquettes by an index P , we denote the complete set of internal variables 

by { S Pa} , a = 1, ... , K . Often the different plaquettes will be ident ical copies of one 

another , but this is not assumed in general. The internal variables will include, for 

example, not only the height variables hi within the plaquette P , but also all powers 

and products of them, h;, h f, hihj , h; hjhi (with i, j and k all in P) , etc. We consider 

then a rather general reduced Hamiltonian, ii,= 1-l / k3 T , of the form 

ii, = LHp{SPa}- LhPaSPa +A{SPa } , (A.1) 
P P,a 

where Hp{SPa } depends only on the internal variables in plaquette P , and the con­

jugate fields , hpa, should not be confused with the original height variables , hi . If 

the plaquettes are identical Hp will not depend on P. The potential A contains 

all interactions between different plaquettes. These interactions are forbidden from 

containing products of the Spa within the same plaquette, P. Technically this means 

t hat the derivative aA/ 8S Pa is independent of S P/3 for all /3 = l , . .. , K , and hence 
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that A is a sum of terms multilinear in the SPa.· From a practical point of view 

this means that a term like ( hi - hj )2 must be multiplied out so that h; and hJ are 

included in Hp for their respective plaquettes, while the cross term hihj is included in 

A (assuming that i and j lie in different plaquettes , otherwise the entire term belongs 

in Hp). The conjugate fields hpa. are introduced in a term separate from il,p and A 

for later convenience. The partition function, 

(A.2) 

is then a functional integral over some fundamental field S out of which the S Pa. are 

constructed. The reduced free energy is F/kBT = P = -ln(Z). 

We now introduce independent continuous variables a-pa and their conjugate fields 

HPa as follows: we first use the variables a-pa to represent the variables Spa. simply 

by introducing appropriate delta-functions: 

Z{hPa} = J Dse- 'E,p 'H,p{SPo.} 

X /Do-IT cS(o-pc, - Spa)e-A{O"Pa}+'E,P,ah pc,O"Po._ 
P,a 

(A.3) 

We then introduce the HPa by using the usual Fourier representation of the delta­

function: 

(A.4) 

where the integral is over a vertical contour C , extending from c - ioo to c + ioo in 

the complex H-plane, where c is an arbitrary real number, which will later be chosen 

for convenience to satisfy a certain saddle point condition. If we define the single 

plaquette reduced free energies, <I> p, via 

(A.5) 
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then the partition function may be written 

(A.6) 

where n = 1, but for convenience has been introduced as a free parameter, and the 

free energy functional is 

F{Hpc,, !JPc:, ; hPc,} - L <Pp{Hpc,} 
p 

+ L[A{ !Jpc,} - (Hpc, + hpc,)!7Pc,]. 
P,c, 

(A.7) 

We now consider the saddle point approximation, which becomes exact in the limit 

n ---+ oo: define the mean field reduced free energy 

(A.8) 

where { Hie,, !7ic,} satisfy the saddle point equations 

0 =} 

0 =} (A.9) 

where the subscript O indicates evaluation at the saddle point. Clearly the solutions 

must be real, and we may specify the number c in (A.4) to be Hie, for the correspond­

ing contour . We emphasize that because the integration is over complex values of the 

Hpc,, FMF is not in general the minimum of F over all Hpc, and !7pc, , not even over 

all real values of Hpc, and !7pc,. The direction of steepest descent through the saddle 

point is often a nontrivial angle in the complex plane. However, if there are multiple 

saddle points one must obviously choose the one with minimal free energy. We will 

discuss at the end how to define FM F through a proper extremum principle. The first 

equation gives the mean field approximation for - at;o. = (Spc,J in terms the effective 

single plaquette free energy, <PP, while the second equation gives the effective fields , 
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HPa, acting on plaquette P due to the external field , hpo., as well as the mean fields , 

CTP'a', on plaquettes, P' , with which it interacts. The latter then serve as inputs to <1_} 

in the first equation. Notice that 

+ (A. 10) 

where t he last equality follows because the saddle point equations cause the second 

term to vanish identically. This proves consistency, namely that CT Pa = ( S Pa) MF 

is indeed the mean field average of S Pa . Consistency is in fact guaranteed by the 

deeper result that the limit n ----+ oo may be realized as an explicit model [ 63]: it is 

straightforward to show that for general integer n 2'. 1 the partition function , Zn may 

be obtained from the Hamiltonian 

Hn t L 1ip {S~~ } - L hpa,_ '2:,Po. + nA{ ~;:,Pa} 
l=l P P,o. n 

(A.11) 
l=l 

where { S~~}i~1 are n identical copies of the original { S Pa} with identical single 

plaquette Hamiltonians, Ho, interacting only through their mean values, { ¾ '2:,Po.} , 

which appear in A. The form (A.6) follows by introducing the Fourier representation 

of the delta functions o(nCTpa - '5:,Pa ) and integrating out the {S~~} as before. In the 

limit n ----+ oo the saddle point equations represent an exact solution to this model. 

It is worth reemphasizing that the free energy, (A.8), depends only on the fields, 

{hPo. }- Given only PMF{hPa } the mean field averages {CTio.} must be obtained 

through (A.10). It is sometimes preferable to perform a Legendre transformation 

and work with a free energy that depends explicitly only on the { CTio. }. We define 

t hen the Helmholtz free energy 

AMF{CT;a,_} = PMF + Lhpa,_CT;(Y. (A .12) 
P, o. 
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in which (A .10) is used to eliminate the {hPa}- Equivalently, we have 

A MF {o-ia} = L<Pp{HPa}- LHPaO"ia +A{o-ia} (A.13) 
P P,a 

in which the first line of (A.9) is used to eliminate the { HPa} in favor of the { o-i°' }. 

The result is explicitly independent of the { hpa } , which are then computed from A MF 

via 
h _ 8AM F 

Pa - £::i o 
UO" pa 

(A.14) 

From (A.13) we see that the computation of AMF from the functional :F given in 

(A.7) is easier than the computation of P MF since it involves solving only one of the 

saddle point equations, (A.9). 

One might be concerned about an obvious ambiguity in the definition of H p. 

Clearly terms like ~ P,a hpaSPa, which are linear in the SPa, could also be included in 

the single plaquette part of the Hamiltonian , therebye changing the form of the single 

plaquette free energy, <P p . Fortunately the saddle point equations are insensitive to 

this ambiguity [63], which is easily seen only to result in a corresponding shift in the 

{ H pa }: the sum, Hi°' + hpa, is unchanged and from (A.9) one immediately sees that 

the physical quantities , { O"pa} , are therefore unaffected. Notice from the second line 

of (A .9) that if A is independent of a particular Spa, then one immediately has the 

solution HPa = - hpa - Therefore unless Spa appears inside a nontrivial interplaquette 

interaction , one may simply include the term hpaSPa in i/., p and set the corresponding 

H p°' to zero. Therefore, the number of free minimization parameters, {HPa } , that 

need to be introduced depends only on the complexity of A and not on that of H p. 

For example, if interactions in the roughening model take the form ( hi - hj )2
, only 

fields conjugate to the individual {hi} need be introduced since h; (as well as hihj 

for i and j in the same plaquette) appear only in single plaquette terms . 

It is worth commenting on the relation between this formalism and the intuitive 

idea of mean field theory where one makes a distinction between a particular pla­

quette of variables, Sa, which is treated exactly, and its "environment ," which then 
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interacts with the Sa only through its average properties. In the present formalism 

these notions are made precise through the distinction between the plaquette free 

energy, <I>, which contains an explicit trace over the fluctuating internal Spa, and the 

interplaquette interactions, A , which contain only the nonfluctuating CJPa· Now, in 

the intuitive picture it is not obvious precisely what aspects of the average environ­

mental behavior are relevant. For example, suppose the fundamental field has spin 

j , taking values Si = -j, -j + l , . .. , j on each site i with corresponding equilibrium 

probabilities Pi ( si). In principle all of these 2j independent probabilities on each site 

ought to be determined self consistently in the mean field theory. Equivalently, we 

may determine the mean powers, (s:(1') = "'£i=-j zmpi(l) , m = 1, ... , 2j (m = 1 cor­

responding to the order parameter). Within the formalism, however , the powers s:(1' 

must be contained in the { S Pa}, and their averages contained in the { CJ Pa}. The 

consistency of the theory indeed demands that all of these variables ( and more if the 

plaquettes contain more than one site) enter appropriately, though, as we have seen, 

great simplifications occur for those that do not appear explicitly in the interplaquette 

interaction term, A. 

Finally, in order to define the theory through a true extremum principle, we 

make the connection to the Bogoliuibov method for constructing mean field theories. 

The Bogoliubov inequality states that for any two Hamiltonians if_ and H 1, with 

corresponding reduced free energies P and P1, 

(A. 15) 

where the average is with respect to H 1. The strategy is to pick an appropriate family 

of exactly soluble model Hamiltonians, H 1(>..) , depending on a set of free parameters 

generically denoted by >... One then defines the Bogoliubov mean field free energy via 

Fsag = min{P1(>..) + (if_ - H1(>..) )i }. 
>-

(A.16) 

Can one connect this procedure to the saddle point method above? The answer is 
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yes: Fs09 is precisely equal to PMF with the choice 

H1 = L H P { Spa }+ L HpaSPa· (A.17) 
P P,a 

The minimization is over real values of the { H Pa}. It may seem curious that the 

{ CT Pa} do not appear explicitly anywhere. In fact , the functional being minimized on 

the right hand side of (A.16) is precisely :F { H Pa, CT pa { Hpa } ; hpa } in which the first 

line of (A.9) has already been substituted for the dependence of the { CT pa } on the 

{ H Pa}. This parametric dependence of the { CT Pa} on the { H Pa} defines a particular 

trajectory which not only is guaranteed to pass through the saddle point, but for 

which the saddle point is actually an extremum. 

The Bogoliubov procedure often produces an inconsistent free energy. The pro­

cedure above is guaranteed not to suffer from this problem. The key ingredient , as 

we have seen, is that a free minimization parameter , HPa, should be introduced for 

each and every single plaquette variable, Spa, that appears in A. This can actually 

be seen directly within the Bogoliubov procedure: just as H pa in (A.7) vanishes if 

the corresponding CT Pa does not appear in A { CT Pa}, it is easy to show that the same is 

true in (A.17). Thus (A.17) is the most general form of H1(,\) that one need consider. 
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Appendix B Free energies: 

interplaquette contribution 

Using the formalism developed in App. A, the free energy functional corresponding 

to the tiling shown in Fig. 3.8 is given by: 

_F(5
) { H pa; O"pa} = I>p(G) { H pa } 

L(HPa + h pa) O"Pa 
Pa 

p 

>-1K L[o-n ( O"Q1 1 + O"Q26 + O"Q54 ) 
p 

+ O"p2(0"Q54 + O"Q52) + O"p3 (0"Q2 3 + O"Q36 ) 

+ O"p4 (0"Q45 + O"Q46 + O"Q5l + O"Q52) + O"p5 (0"Q44 + O"Q45 ) 

+ O"p5 (0"Q23 + O"Q2l + O"Q4 4 )] 

>-2L L[o-n (o-Q1 3 + O"Q23 + O"Q52) 
p 

+ O"P2 (0"Q2 6 + O"Q45 + O"Q5l + O"Q 55) 

+ O"p4 (0"Q44 + O"Q4 3 + O"Q53 + O"Qs4) 

+ O"p5 (0"Q23 + O"Q42 + O"Q46 + O"Qs2) 

>-1K L O"p10"P46 
p 

>-2L L(O"P10"P14 + O"p1 0"P45 + O"p20"P46) 
p 

+ (P-+ Q) , (B.1) 

where we have defined two sublattices, P and Q, for the two different plaquette 

orientations, and the plaquette labels are shown in Fig. 3.8. The final t erm, denoted 

symbolically, is the interaction between plaquettes on the same sublattice, Q, and 
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takes the same form as the two previous terms. The scale factors , >.1 and >-2 , have 

again been int roduced . Notice that t here is no obvious rotational symmetry to the 

interactions , and hence that the saddle point values of the O"p0 will all be different 

even in the unreconstructed phases. 

Similarly, the free energy functional corresponding to the tiling shown in Fig. 4.1 

is given by 

_F(6) { H pc,; O"pc, } = L <!)(6) { H pc, } 

L(Hpc, + hpc, )O"pc, 
Po 

p 

>-1KL[O"p1(0"Q24 + O"Q36 ) + O"p2 0"Q2 2 + O"p3 0"Q33 
p 

+ O"p 4(0"Q2 l + O"Qs6) + O"P5 0"Q55 + O"p5 (0"Q3l + O"Qs4 )] 

a1 L[O"P2 (0"Q23 + O"Q25 + O"Q33 + O"Qs5 ) 
p 

+ O" p3 (0"Q32 + O"Q35 + O"Q22 + O"Q55) 

+ O"p5 (0"Q52 + O"Q53 + O"Q2 2 + O"Q33 )] 

a2 L[O"p1 (O"Q25 + O"Q35 ) + O"p2 (0"Q36 + O"Qs6 ) 
p 

+ O"p3 (0"Q24 + O"Qs4 ) + O"p4 (0"Q23 + O"Qs3 ) 

+ O"p5 (0"Q2l + O"Q3l) + O"p5 (0"Q32 + O"Qs2 )] 

/3 L[O"p1 0"Q1l + O"p4 0"Q44 + O"p5 0"Q56 ] 
p 

'"'f L[O"p 1 (O"Q22 + O"Q33) + O"p2 (0"Q2l + O"Q24 ) 
p 

+ O"p3 (0"Q3 l + O"Q36 ) + O"p4 (0"Q22 + O"Qs5 ) 

+ O"p5 (0"Qs4 + O"Qs6 ) + O"p5(0"Q33 + O"Q s5 ) 

1 
26 L[O"p 1(0"Pi6 + O"P24 ) + O" p4 (0"P36 + O"P5 l ) 

p 

1 
+ O"p5 ( O"p44 + O"p61 ) l - 26 (P -+ Q) (B.2) 

where the plaquette labels are shown in Fig. 4.1, and where the final t erm is again 

the interaction between plaquettes on the same sublattice, Q, and takes the same 

form as the immediately preceding term. We choose the coefficients a:1 , a:2 , /3 , '"'I , 
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c5 in order to best mimic the interplaquette interactions on the original undistorted 

lattice. In order to obtain the same overall interaction between each site and the other 

plaquettes we require 2)11 K + 2a2 + {3 + 2--y + 25 = 4>.1K + 5>.2L (for the corner sites) 

and >. 1K + 4a1 + 2a2 + 2--y = 2>.1K + 5>.2L (for the edge sites). This also ensures the 

correct values of h~n and hgut quoted below (3 .20). By somewhat arbitrarily matching 

up the various bonds in Figs. 3.8 and 4.1, we take 

(B.3) 

Finally specializing to the unreconstructed phases where the O" 's take the value Maut 

on the corner sites and Min on the edge sites, we obtain the free energy 

h :F(5)(Hin, Haut; Min, Maut) = i<f:>(5)(Hin, Haut ) 

1 

2[(Haut + h)l\1aut +(Hin+ h)Min] 

1 2 1 2 
(>-1K + 

2
/3 + c5)Maut - (

2
>-1K + 2a1)Min 

2(a2 + ,)MautMin· (B.4) 

Substituting (B.3) yields the final result , (3.21), on which we base our computations. 

The seven site plaquette tiling shown in Fig. 3.9 yields the free energy 

:F(7){Hp n ; O"pn } = L<f:>(7){HPn} 
p 

L(HPn + hpn )O"Pn 
Po 

1 
->-1KL[O"p1(0"p6 5 + O"PJG + O"p1 7) + (5 t erms) 
2 p 
1 
->-2L L[Clp1 (Clp61 + Clp62 + O"PJ4 + O"P23 ) 
2 p 

+ (5 terms)] 

1 
2A2L L Clp4 (Cl?i 7 + 0"?26 + 0"?33 

p 

+ O"P4l + O"Ps2 + O"p55), (B.5) 
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where the plaquette labels are shown in Fig. 3.9. Similarly, the tiling in Fig. 4.2 yields 

;:-(7){Hpa;JPcx } = L<J)(7){HPa } 
p 

L(HPa + hpa )<7Pa 
Pa 

(B.6) 

In order to best match the overall interactions between a given site and other plaque­

ttes in (B.5) and (B.6) we choose 

(B.7) 

Specializing to unreconstructed phases the J's take the value Mout on the outer ring 

of six sites and the value Min on the central site, we obtain 

t ;:-(7l(Hin, H aut; Min , Mout ) = t<P(7l(Hin, Hout) 

1 

7[6(Hout + h)Mout +(Hin+ h).l\1in] 

1 ( 2 12 
7 6>-.1K + 6a + 12/3)Mout - -;(YMoutMin· (B.8) 

Substituting (B.7) yields the final result , (3.23) , on which we base our computations. 

In fact, since the tiling in Fig. 3.9 (unlike that in Fig. 3.8) retains the rotational 

symmetry of the plaquette , one may also simplify (B.5) using Mout and Min · The 

result is in fact identical to (3.23) , which further supports the choice of parameters, 

(B.7) . 
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Appendix C The staggered BCSOS and 

Ashkin-Teller Equivalence 

In this appendix we show the equivalence of the staggered BCSOS model ( described 

in section 4. 8 of the text) to the Ashkin-Teller model. 

We proceed as follows: We have already observed in section 4.8.1 that the stag­

gered BCSOS model is equivalent to a staggered 8-vertex (8V) model. It is now shown 

that the free energy of the staggered 8V model is invariant under a certain symmetry 

operation and this fact is used to obtain a more convenient 8V model. We show that 

this modified 8V model is exactly mappable to a system of interpenetrating Ising 

spins with four-spin interactions. Finally we show that the isotropic AT model can 

be mapped onto exactly the same Ising system. Hence the desired equivalence follows , 

providing us with an explicit solid-on-solid model that contains a 0DOF phase, and 

corresponding intermeshed layering phase diagram. 

C.0.1 A symmetry property 

Denote the partition function of the staggered 8V model by Z ( a, b, c, d I b, a, c, d), 

where the notation is obvious. ( a,b ,c and d are the boltzmann weights of Fig. 4.8.) 

Here we show that Z(a, b, c, d I b, a , c, d) = Z(c, d , a, b I c, d, b, a). To see this we use 

the fact that the vertices of the 8V model can be thought of as lying on one of two 

sublattices L1 and L2. For a given configuration , on any edge of the lattice reverse 

the direction of the arrow only if the edge is horizontal (vertical) and there is a site of 

sublattice L 2 immediately at the right (bottom) of the edge. If the vertices are labeled 

by vi, (i = 1, . .. , 8) then under this transformation: v1 B v5, v2 B v6, v3 B v7, and 

v4 B v8 on both sublattices and we have generated a new configuration. The weight 

of each configuration of the original model can be thought of as the weight of this 
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resultant configuration in a different 8V model and so have: 

Z(a', b' , c' , d' I b' , a' , c', d') = Z(a , b, c, d I b, a, c, d) = Z(c, d, a, b I c, d, b, a) . 

and the original 8V model can be replaced by the model in Fig. C.1 instead . 

v, 

a'=c a'=c b'=d b'=d c'=a c'=a d'=b 

-$- -$- -$- -$- -$- -$--$-
¼ ¼ ¼ ¼ ¼ +. +. 
a'=c a'=c b'=d b'=d c'=b c'=b d'=a d'=a 

Figure C .1: A modified staggered-SY model equivalent to the original model. 

C.0.2 Mapping to an Ising model 

An Ising spin model with four-spin interactions is associated with the staggered 8V 

model introduced above as follows: On each face of this 8V model we place an Ising 

spin and assume that spin on one special site, S0 , is fixed so that it can only point 

up . A correspondence between the 8V configurations and the spin configurations is 

established as follows : If the arrow on an edge points to the right or up (left or down) 

then the product of the spins on either side of the edge is + 1 ( -1). We see that for 

each arrow configuration there is a unique spin configuration when we fix one spin. 

Thus there is a clear correspondence between an Ising spin system where interactions 

around a vertex (i .e. 4-spin interactions) are allowed and the staggered 8V model. If 

a Hamiltonian of the form (see Fig. C.2) 

H = -P L SiASJA - Q L Sk8 S18 - R L SiASJASk8S18 (C.1) 
(ij)E A (kl )EB V 
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Figure C.2: Four-spin interaction Ising model isomorphic to the staggered 8V model 
of the preceding section. The vertices of the 8V model are shown in grey. The two 
spin interactions on the two sublattices are labelled by coupling constants P and Q 
while the 4-spin interaction is labelled by R in the figure. 

is chosen and we take the staggered 8V weights to be 

a1 exp(P+Q+R) 

b1 exp ( - P - Q + R) 

c1 exp ( - P + Q - R) 

d' exp(Q- P- R) (C.2) 

then the spin and staggered 8V Boltzmann weights for a given set of isomorphic 

configurations is the same. Freeing the constraint on the one special spin we have 

Zspin = 2Zstaggered sv. Thus the staggered 8V model is isomorphic to this Ising model. 

C.0.3 The Ashkin-Teller Model 

In this section the symmetric Ashkin-Teller (AT) model [69] and an equivalent four 

coupled spin Ising model are described. Together with the mapping of the previous 
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section this will complete the mapping of the BCSOS model to the AT model. 

The AT model is defined on a simple square lattice. On each lattice site i there 

are two Ising spins si and CJi · Spins on nearest neighbor sites are coupled by two and 

four spin interactions: 

H AT= - 2JKsi sj + KCJi CJj + K 4 s i sjCJi CJ1). 
(ij) 

(C .3) 

This defines the isotropic AT model. (More generally the two-spin couplings could 

have been different for the s and CJ spins, but this is not necessary for our purposes.) 

If a duality transformation is performed on one set of spins (say the CJ spins ; see [31] 

for details) then the AT model can be expressed as a system of two interpenetrating 

square Ising lattices with 4-spin interactions precisely as in the previous section with 

the same Hamiltonian (C .1) . The relation between P , Q and R of (C.1) and K and 

K4 of C.3 is: 

a' exp(P + Q + R) = e2K + K4 (l + e-4K) / v'2 

b' exp ( - P - Q + R ) = 0 

d' (C.4) 

The relation between the boltzman weights of two component BCSOS model and 

those of the staggered 8V model after use of the symmetry operation were a' = l , 

b' = 0, c' = exp(-JA), d' = exp(-JB) - (JA and 18 are defined in section 4.8.1.) 

Using C.4 we find 

J A 2K4 + ln cosh(2K) 

- ln tanh(2K) . (C .5) 
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0·6 

F 

C 

III 
G 

0 D II B 

IV o' 

c' 

F 

-0 ·6 

V 

- 0 · 6 0 0 ·6 - K, 

Figure C.3 : Isotropic Ashkin-Teller model phase diagram; from R.J. Baxter, Exactly 
Solved Models in Statistical Mechanics, Academic, London (1982) . The region around 
the point F is of particular interest to us . Line EF is a line of continuously varying 
exponents while FC and F B are Ising lines. 

These equations are the main results of this appendix. This completes the mapping 

of the BCSOS model into the isotropic AT model. The AT model has been studied 

extensively. Its phase diagram is shown in Fig. C .3. The corresponding BCSOS phase 

diagram is shown in Fig. 4.11. 
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