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Abstract 

Oscillations in the field potential recorded from piriform cortex can be broadly catego­

rized into slow and fast frequency ranges. The slow wave is correlated with respiration 

and sniffing. During respiration it is typically in the 1-4 Hz range but during sniffing 

it increases in frequency and is often referred to as the theta rhythm (4-12 Hz). The 

faster oscillations (30-50 Hz, also called gamma) appear in response to odor stimuli 

and are always modulated by the slower rhythm. Oscillations in the field potential 

are believed to reflect synchronized synaptic input to the dendrites of pyramidal neu­

rons in the piriform cortex. In this thesis I use a combination of experimental and 

computer simulation techniques to study the consequences of pyramidal cell input 

meant to approximate the temporal characteristics of cortical oscillations. 

Because the precise spatial and temporal control of synaptic inputs is not possible 

in an experimental preparation, I constructed a detailed biophysical simulation of a 

layer II pyramidal cell from piriform cortex where such control would be possible. The 

passive and active properties of this model were tuned to experimental measurements 

that I made from pyramidal cells in vitro. The model was able to match a wide 

range of physiological behavior including subthreshold oscillations and responses to 

multiple levels of current injection. Spatio-temporal patterns of synaptic input that 

have been suggested to underlie gamma oscillations in piriform cortex were then used 

as input to the model. The effects of a single such pattern of input were longer 

lasting than the duration of a single gamma oscillation suggesting that a pyramidal 

cell integrates input over multiple gamma oscillations during the course of bursts of 

gamma oscillations modulated by the respiratory / theta rhythm. When bursts of 

gamma activity in the model were separated by 650 msec or more, the first burst 

had no effect on the second, implying that these neurons might be able to isolate the 

effects of sufficiently spaced sniffs or bouts of sniffing. 

To determine how well current injections with the temporal characteristics of cor-



Vl 

tical oscillations might be represented in the spike trains of pyramidal cells, I used 

a reconstruction algorithm to estimate the structure of the stimulus from spike train 

data. By comparing the estimate to the actual stimulus I was able to quantify the 

amount of stimulus information contained in the spike train. I found that stimuli 

filtered at frequencies of 0-10 Hz and 4-12 Hz were much better represented in the 

pyramidal cell spike trains than 0-40 Hz stimuli designed to include the entire fre­

quency range of cortical oscillations. The effects of norepinephrine ( a neuromodulator 

released during arousal) on spike coding were also studied. I found that while nore­

pinephrine increased the amount of stimulus information in the spike train, a change 

in decoding strategy to extract this information from the spike train was not required. 
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1 

Introduction 

They have turned phlogiston into a vague principle which consequently 

adapts itself to all explanations for which it may be required. Sometimes 

this principle has weight1 and sometimes it has not; sometimes it is free 

and sometimes it is fire combined with the earthly element; sometimes it 

passes through the pores of vessels and sometimes they are impervious to 

it. It is a veritable Proteus changing in form at each principle. 

Antoine-Laurent Lavoisier (1743-1794) 

Although the efforts of neurobiologists have been successful in correlating behavior 

to neural activity and localizing function within the brain, little progress has been 

made in producing a convincing theory of how neurons function in groups. In this 

sense, neurobiology is undeveloped relative to most of modern science because it lacks 

the central paradigms which seem to characterize other areas of scientific endeavor so 

well. There is nothing that approximates a periodic table as in chemistry, or quantum 

theory as in physics, or even a central dogma as in molecular biology. There are a 

few theories that appear to be universally accepted by neurobiologists such as the 

neuron doctrine which states that neurons are distinct cellular and computational 

elements in the brain (see Shepherd, 1991, for a history of this doctrine); however, 

there does not appear to be a universally accepted theory of how groups of neurons 

process or code information. Some progress has been made in the study of central 

pattern generators where much of the behavior that is seen experimentally has been 

successfully replicated in computer simulations (see Marder and Calabrese (1996)), 
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but often these simulations have been so complex that one may argue that they 

amount to moving a preparation from the electrophysiologist's recording chamber to 

the computer screen. Some efforts have been made to develop a quantitative theory 

of central pattern generators, but these are far from complete (Kopell, 1988). In the 

case of the mammalian brain, experimental data is sparse, computer simulations are 

crude, and mathematical theories are speculative at best. 

In this sense, neuroscience is much like alchemy was before it became chemistry. 

Today's neuroscientists, much like the alchemists of the 17th century, have amassed 

a large but most likely inadequate amount of data in what has essentially been a 

theoretical vacuum. The absence of well constrained hypotheses meant that each 

alchemist could formulate his or her own hypothesis and the lack of data made most 

hypotheses equally plausible. In the worst cases, the dearth of data prompted many 

alchemists to ascribe supernatural causes to the phenomena they were observing. 

Unfortunately, some respected contemporary scientists have followed in this tradition 

by explaining the nebulous concept of consciousness through an evocation of dual­

ism (Eccles 1994) and hitherto unformulated physical theories (Penrose 1989) . More 

"mundane" but equally poorly constrained hypotheses of neural information process­

ing have been developed around the cortical oscillations which are present in most 

brain areas. 

The primary goal of this thesis is to help constrain some of these theories of cortical 

oscillations by asking what they mean in terms of the behavior of a single neuron in 

the piriform (olfactory) cortex. For the remainder of this chapter I will provide 

background on the piriform cortex and a summary of experimental and simulation 

data on cortical oscillations. I will then turn my attention to how I intend to clarify 

issues pertaining to oscillations and conclude with an overview of this thesis. 
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1.1 Cortical oscillations 

1. 1.1 Evidence of cortical oscillations 

The term cortical oscillations refers to the rhythmic fluctuations that are seen m 

the electroencephalogram (EEG). Because the EEG falls under the rubric of field 

potential recordings, an understanding of the physical basis for field potentials is 

required before an interpretation of EEG data can be attempted. 

The electric field around a neuron can be related to the extracellular current that 

is generated when a ligand- or voltage-gated conductance is activated. A neuron can 

be thought of as a complex circuit consisting of resistors, capacitors, and batteries 

and like any circuit it must obey Kirchoff's Law which states that the sum of all 

currents entering and leaving a node must equal zero. This means, for example, that 

a synaptic current entering the dendrite will necessarily have to exit somewhere to 

complete the circuit. The current generated extracellularly by this process is related 

to the field potential. A graphical depiction of this is shown in figure 1.1. 

The EEG refers to field potential recordings made over a large cortical area using 

an array of electrodes or a single large electrode. Recordings are usually made from 

the cortical surface or the scalp. EEGs are typically classified according to their 

frequency which ranges from 1-100 Hz. In the following sections the discussion is 

restricted to gamma (30-50 Hz) and theta (4-12 Hz) frequencies. 

One of the first examples of cortical oscillations was presented fifty-five years ago 

when Adrian recorded from the olfactory system of the hedgehog and found oscillatory 

activity in the olfactory bulb and piriform lobe in response to odor stimuli (Adrian 

1942). Since then oscillations have also been observed in the visual, somatosensory, 

motor, and auditory cortices as well as in the hippocampus (see Ketchum and Haberly 

(1991) and Gray (1994) for comprehensive surveys). Furthermore, oscillations have 

recently been observed to occur in the brain areas of a number of invertebrate species 

as well (see Hildebrand and Shepherd (1997) for a review and comparison to cortical 

oscillations). 
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Figure 1.1: A model cell shows the distribution of current sources and sinks and 
extracellular isopotential contours at the moment when the cell is receiving excitatory 
input all along its apical dendrite. The thick contour shows the area of zero potential. 
Contour lines above the zero line give negative potentials. Below the zero line are 
positive potentials. Minus signs represent current sinks ( current flowing into the cell) 
while the plus sign depicts a current source ( current flowing out of the cell). 
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1. 1.2 Oscillations and behavior 

Since Adrian's early work, a number of studies (mostly by Freeman and colleagues) 

have examined the effects of different behaviors on the pattern of oscillations in pir­

iform cortex. An early study by Freeman (1960) showed that spontaneous piriform 

cortex activity in the awake cat showed a slow wave in the EEG that correlated to 

the respiratory rhythm, on top of which bursts of fast oscillations (gamma frequency) 

were sometimes superimposed. An example of this data is shown in figure 1.2. Fur­

thermore, he found that the presentation of meat, fish, and milk odors produced an 

increase in the amplitude of the fast oscillations in hungry, but not satiated cats. Re­

sults from Bressler (1988) demonstrated that the conditioning of stimuli also affected 

the oscillatory response of piriform cortex, further supporting the idea that context 

affects oscillations. 

Results from other cortical areas suggest that oscillations arise primarily when 

the animal is attending. For example, Murthy and Fetz (1996) have found that 

oscillatory activity (20-40 Hz) occurred most often in sensorimotor cortices of the 

monkey during untrained exploratory behavior and much less often during trained 

repetitive wrist motions. Similarly, Nicolelis and colleagues (1995) found an increase 

in 7-12 Hz oscillations across areas in the brain stem, thalamus, and cortex of the rat 

during attentive states. Hippocampal studies in the rat have also revealed increases 

in theta (Ranck 1973) and gamma activity (Bragin et al. 1995) during exploratory 

behaviors. 

1.1.3 Theories of cortical oscillations 

The ubiquity of cortical oscillations has prompted many investigators to suggest that 

they must reflect some fundamental property of neural computation. In this section 

I briefly summarize different theories regarding the functional significance of oscilla­

tions. 

The carrier wave hypothesis holds that amplitude modulated patterns of cor­

tical oscillations reflect information processing. Bressler (1990) and Freeman and 
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Figure 1.2: Examples of EEG recordings from awake-behaving cat (Freeman, 1960). 
Top trace shows EEG response when the cat is sniffing. Note how respiration/sniffing 
modulates fast oscillations (gamma frequency) into bursts. Bottom trace shows an 
EEG recording at greater temporal resolution. 
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colleagues (Freeman and Barrie 1994) are its main proponents. Recordings from elec­

trode arrays over piriform cortex indicated changes in the spatial patterns of EEGs in 

response to conditioned stimuli (Bressler 1988) and earlier work by Freeman (1960) 

had indicated that the motivational state of the animal had a large effect on EEG 

activity. Findings such as these suggested that EEG patterns coded for the context of 

the stimulus as well as the stimulus itself (Freeman and Barrie 1994). Freeman then 

postulated that a perceptual state might be represented in limit cycle type attractors 

as revealed by EEG recordings (Freeman 1991). Later theoretical work suggested 

that perceptions might instead be represented by chaotic attractors (Freeman and 

Barrie 1994); however, more recent experimental work has discounted the possibility 

of even uncovering attractor dynamics from EEG recordings (Barrie et al. 1996). A 

less speculative interpretation of coherent oscillations by Bressler (1990) suggested 

that oscillations act to facilitate information transfer between different brain areas by 

synchronizing spikes that are bound for projection areas. 

Despite the discovery of cortical stimulus induced oscillations in the 1940's, the 

present excitement over this phenomenon can be traced to an experimental study by 

Gray and colleagues in 1989 which demonstrated coherent oscillations in area 17 of 

the anesthetized cat in response to stimuli. More precisely, this study showed that two 

bars moving in concert across the visual field of the cat were able to elicit synchronous 

oscillations, but when the bars moved in opposite directions, oscillations became 

significantly less coherent. These results were interpreted in the context of an earlier 

theoretical paper by von der Malsburg and Schneider who had constructed an abstract 

model to demonstrate how auditory stimuli can be recognized in a noisy background 

(von der Malsburg and Schneider 1986). This work suggested that this could be 

accomplished through a synchronization of spikes among neurons that coded for the 

same stimulus. The authors further speculated that such a mechanism could account 

for "selective attention" in other sensory modalities as well. This idea was refined into 

the more popular binding hypothesis in a study that analyzed coherent oscillations in 

the cat visual system (Eckhorn et al. 1988) and found stimulus induced oscillations 

over distant areas of the visual cortex. Briefly stated, the binding hypothesis suggests 
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that different features of a single stimulus are "bound" together through synchronous 

neural activity in different brain areas. 

In response to the speculation that coherent oscillations may represent a mecha­

nism for binding stimulus features, Wilson and Bower (1991) constructed a biologi­

cally realistic model of visual cortex to study the function and generation of stimulus 

induced coherent oscillations. The main conclusion of this work was that oscillatory 

behavior is a natural outcome of network architecture and is not stimulus dependent. 

Furthermore, coherent oscillations only appear when repeated trials are averaged, 

suggesting that such a mechanism would not be sufficient for binding the features of 

a stimulus during a single trial. Instead, these authors speculate that oscillations act 

to coordinate neural activity within and between cortical areas. 

A more recent theory goes one step further and suggests that gamma oscillations 

reflect the clocking of cortical computations ( Jefferys et al. 1996). This work draws 

its inspiration from hippocampal experimental (Traub et al. 1996a, Whittington et 

al. 1995) and modeling (Traub et al. 1996b) studies which suggest that networks of 

inhibitory interneurons are tonically activated in the gamma range by slow excitation 

mediated by metabotropic glutamate receptors. These cells then form networks of 

interneurons that fire synchronously in the gamma range. The inhibitory network is 

able to sustain this oscillatory activity independent of fast excitation coming from 

pyramidal cells, but inhibitory cells are still able to entrain pyramidal cells through 

fast GABAA inhibition. This has led Jefferys, Traub, and Whittington (1996) to 

suggest that the inhibitory neurons act as "clocks" which synchronize the activity of 

pyramidal cells which play the role of "central processing units." 

Other hypotheses implicate cortical oscillations in attention and learning. For ex­

ample, Murthy and Fetz (1996) have found that exploratory behaviors induce gamma 

oscillations in the sensorimotor cortices of monkey. In one case, researchers have used 

the presence of oscillations during attentive behavior to speculate about their pos­

sible function as a hallmark for consciousness (Crick and Koch 1990). The learning 

hypothesis as put forth by Wolf Singer (1993) states that oscillations may act to 

modulate synaptic plasticity. For example, the degree of synchrony in cell firing that 
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would supposedly underlie oscillations could determine whether a synapse will show 

long term depression or long term potentiation. Thus, the plasticity of synapses may 

be determined by when synaptic input arrives relative to the phase of the oscillation. 

1.1.4 Analysis and critique of oscillation hypotheses 

One thing that should be clear from this brief review of cortical oscillations is that 

much like the phlogiston of Lavoisier's time they appear to have a certain protean 

quality about them. Some researchers see them when the animal is attending, others 

during the presentation of a particular stimulus, and still others when the animal 

is anesthetized. One difficulty in sorting out the different hypotheses of cortical os­

cillations is that they all appear somewhat vague and the veracity of one does not 

necessarily exclude the others. For example, there is no reason to imagine that if os­

cillations are involved in attentive behavior that they do not also reflect some kind of 

cortical clocking. Some assessment of the different hypotheses can be made by exam­

ining the experimental data. For example, both the binding and attention hypotheses 

are problematic because oscillations vary tremendously upon repeated presentation 

of a single stimulus (Freeman 1960, Freeman and Barrie 1994) and oscillations are 

apparently even present in the anesthetized cat (Gray et al. 1989). 

The ideas that oscillations may simply reflect the coordination of neural activity, 

or the clocking of cortical computation, are attractive in that they do not appear to 

contradict any of the experimental data, yet taken to their logical extreme these the­

ories would suggest that oscillations merely indicate that a particular cortical area is 

active. If this is indeed the case, then cortical oscillations as a ubiquitous phenomenon 

become considerably less interesting, unless we ask what kind of computations occur 

during the time scale of the oscillations in different brain areas. In order to do this we 

must understand the synaptic and single cell activity that underlie these oscillations. 

Given that different cortical areas have different neural architectures, we can be cer­

tain that the computations that underlie oscillations in different brain areas will also 

be different. However, the homogeneity within individual cortical regions might mean 
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that oscillations in a particular area may reflect a specific neural computation. In 

order to assess this possibility, however, we must first understand the neural activity 

that occurs during the course of a single oscillation. Luckily, such an understanding 

is possible under certain experimental conditions in the piriform cortex to which we 

now turn our attention. 

1.2 Overview of the piriform cortex 

In vertebrates, odorants come into contact with receptor cells in the nasal epithelium 

which then project to the olfactory bulb which in turn projects to piriform cortex 

(see Buck, 1996, for a review of vertebrate olfactory system). Piriform cortex makes 

strong feedback connections to the bulb as well. Projections from the piriform cortex 

also go to the olfactory tubercle, the olfactory peduncle, and the superior collicu­

lus. Reciprocal connections are made with the amygdala and entorhinal cortex as 

well. The entorhinal cortex projects to the hippocampus, and it is believed that the 

piriform cortex's proximity to the hippocampus may explain the evocative nature of 

olfactory memory (Slotnick et al. 1991). Piriform cortex also projects to a neorcorti­

cal olfactory area in the orbitofrontal cortex via direct and transthalamic pathways. 

Neuromodulatory inputs come from basal forebrain (cholinergic) and brainstem (no­

radrenergic, serotonergic, and dopaminergic). The hypothalamus also provides input. 

Figure 1.3 summarizes piriform cortex connectivity to other brain areas. More com­

plete reviews of piriform cortex connectivity can be obtained in Haberly (1990b) and 

Lynch and Granger (1991). 

A number of features make piriform cortex unique among primary sensory corti­

cal areas. Unlike primary auditory, visual, and somatosensory cortices, it receives its 

afferent input directly from the olfactory bulb, rather than via the thalamus. Also, it 

has a trilaminar structure in contrast to the six layered neocortex of primary cortices 

for other sensory modalities. Phylogenetically it is much older than neocortical areas 

and is commonly referred to as paleocortex. Interestingly, piriform cortex is surpris­

ingly similar among reptiles and mammals (Haberly 1990a). This is striking when one 
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Figure 1.3: Piriform cortex connectivity to other brain areas. 

compares the dramatic changes that have occurred in auditory, visual, and somatosen­

sory cortices in the 200 million years since the evolutionary history of reptiles and 

mammals diverged, suggesting that perhaps piriform cortex has been in some sense 

optimized for solving the computational problems associated with olfaction (Haberly 

1990a). 

Piriform cortex also distinguishes itself as a key player in certain types of epilepsy. 

Its role in this disease is beyond the scope of this thesis and so a brief review of recent 

work in this regard has been placed in appendix A. 

1.2.1 Neural architecture 

Piriform cortex has three layers, typically labeled I, II, and III where I is the most 

superficial and III is the deepest. Superficial pyramidal cells, which are the subject 
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of this thesis, have their apical dendrites in layer I, their somata in layer II, and 

their basal dendrites in layer III (Haberly 1983). Deep pyramidal cells are oriented 

identically in piriform cortex except that their somata are located exclusively in layer 

III (Tseng and Haberly 1989b). Both types of pyramidal neurons are believed to be 

excitatory (Haberly 1990b ). Multipolar neurons have their somata located in layer 

III but their dendritic arborizations are organized radially and are confined to layer 

III (Tseng and Haberly 1989b ). It is unclear whether these neurons are excitatory 

or inhibitory. Many anatomically characterized multipolar neurons in layer III show 

the presence of GABA and glutamic acid decarboxylase ( an enzyme necessary for the 

production of GABA) (Haberly et al. 1987); however, intracellular studies suggest a 

greater similarity to the deep pyramidal neurons (Tseng and Haberly 1989a) which 

are excitatory. Two broad classes of inhibitory neurons exist. One appears to be 

primarily activated by afferent projections and generates a very slow ]{+ -mediated 

inhibition and the other is excited by input from pyramidal neurons and is responsible 

for generating a fast cz- -mediated inhibition (Tseng and Haberly 1988). 

The neural circuitry of piriform cortex is illustrated in figure 1.4. Afferent input 

originating in the mitral and tufted cells of the bulb arrives in layer Ia of the piriform 

cortex where it makes contact with pyramidal cells and feedforward inhibitory cells 

(Price 1973, Haberly and Behan 1983). Pyramidal cells then send projections to 

other pyramidal cells within the piriform cortex (Heimer 1968, Haberly and Behan 

1983, Haberly and Presto 1986). Caudally directed projections from rostrally located 

pyramidal cells terminate on the superficial lb portion of pyramidal cell dendrites 

(Heimer 1968, Luskin and Price 1983). Likewise, rostrally directed projections from 

caudally located neurons terminate on the deep lb portion of pyramidal cell dendrites 

(Luskin and Price 1983). Local excitatory connections appear to be made on the 

basal dendrites of pyramidal neurons (Haberly and Presto 1986). Multipolar neurons 

receive input from pyramidal cells and project to thalamus (Price et al. 1991). The 

feedforward ]{+ -mediated inhibition acts on pyramidal cell dendrites primarily in 

layer I (Tseng and Haberly 1988). A fast cz- -mediated inhibition is active across the 

entire apical dendrite, but the inhibition present in the proximal dendrite and soma 
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Figure 1.4: Left half shows morphology of different cell classes in piriform cortex and 
the anatomical layers where they are located. SP, superficial pyramidal cell; DP, deep 
pyramidal cell; MS, spiny multipolar cell; S, semilunar cell; H, superficial horizontal 
cell; G, small globular soma cell; M, multipolar aspiny cell. With the exception of 
SP, DP, and MS cells, almost nothing is known about the physiology of the other cell 
classes. Piriform cortex layers are shown on the left. En refers to the endopiriform 
nucleus. Left side of figure is adapted from Haberly, 1990b. The right side of the 
figure shows a simplified diagram of the neural circuitry impinging on an SP cell. 
FF and FB refer to feedforward and feed back inhibitory cells respectively. Single 
arrowheads signify local connections and double arrowheads signify distant ones. 

appears to be controlled independently (Kanter et al. 1996). 

1.2.2 Response to olfactory stimuli in the piriform cortex 

Olfactory responses in piriform cortex have been characterized using a variety of 

methods. Human positron emission tomography (PET) studies show a bilateral ac­

tivation of piriform cortex in response to odorant presentation (Zatorre et al. 1992), 

corroborating clinical evidence that had suggested the piriform cortex is involved in 

odor discrimination and identification (Levin et al. 1985, Zatorre and Jones-Cotman 

1991). Technical barriers preventing the magnetic resonance imaging (MRI) of pir-­

iform cortex in the human brain have recently been overcome in a functional MRI 

study which agrees with the results of the PET study, but has higher spatial resolution 
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(Yang et al. 1997). Mapping studies using 2-deoxyglucose staining show an increase 

in piriform cortex activity in response to odor stimuli, but in contrast to neocortical 

studies using the same technique, there is no indication that staining patterns code 

for stimuli (Cattarelli et al. 1988). Extensive EEG studies have been performed by 

Walter Freeman and colleagues examining changes in the EEG in response to stimuli 

in several different behavioral contexts (see Freeman (1975) for review). Some of 

these results were discussed in section 1.1.2. 

Single unit recordings in anesthetized rats (Nemitz and Goldberg 1983) show exci­

tatory and suppressive responses of single piriform cortex neurons in response to odor 

stimuli. Excitatory responses typically consisted of phasic discharges of 1-12 spikes 

lasting up 1.2 s (Nemitz and Goldberg 1983); however, similar firing rates appear 

to be present in awake-behaving rats in the absence of odor stimulation (McCollum 

et al. 1991). A more comprehensive recent study examined the activity of piriform 

cortex single unit response to odorants in the context of reward following an olfactory 

discrimination task (Schoenbaum and Eichenbaum 1995). These researchers found 

that a minority of cells fired in response to single odors, while most fired in response 

to several different ones. Furthermore, activity was affected by identity and reward 

associations. Spiking rates appeared to be in agreement with previous studies (Ne­

mitz and Goldberg 1983, McCollum et al. 1991). Experiments in awake-behaving and 

anesthetized monkey (Tanabe et al. 1975) yield results that are similar to those seen 

in rats, demonstrating broadly tuned excitatory and suppressive responses to odor 

stimuli. 

1.2.3 Function within the olfactory system 

The computational function of the piriform cortex within the olfactory system is am­

biguous. Lesions in piriform cortex in humans interfere with the ability to identify, 

match, and discriminate between odors (Jones-Cotman and Zatorre 1993, Abraham 

and Mathai 1983, Eichenbaum et al. 1983, Jones-Cotman and Zatorre 1988) without 

abolishing the sense of smell or interfering with adaptation or discrimination of odor 
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intensity (Eichenbaum et al. 1983, Abraham and Mathai 1983). However, these re­

sults are difficult to interpret because lesions in orbitofrontal cortex appear to cause 

similar deficits (Potter and Butters 1980, Jones-Gotman and Zatorre 1993). Since 

piriform cortex projects to orbitofrontal cortex, it is unclear whether these deficits 

are specifically a result of piriform cortex damage or simply a lack of olfactory input 

to the orbitofrontal region. 

Several hypotheses of piriform cortex computational function have also been devel­

oped on the basis of mathematical and biophysical models. None of these hypotheses 

contradict the lesion studies cited above, but they differ amongst themselves in terms 

of the computational mechanisms by which piriform cortex identifies different odors. 

Most of these models (Wilson and Bower 1988, Hasselmo et al. 1992, Barkai et al. 

1994) contend that the piriform cortex acts as a kind of associative memory. In an 

associative memory, a set of patterns is stored in a network of neurons ( artificial 

or biological) in such a way that when a new pattern is presented to the network, 

it reacts by producing the stored pattern which is most similar to the pattern that 

has been presented. In this sense, associative memories are content addressable, 

because they are able to recall stored patterns on the basis of the "content" of a 

presented pattern (Hertz et al. 1991 ). The contention that piriform cortex acts as 

an associative memory is partially based on perceived similarities between the neural 

architecture of piriform cortex and the connectivity patterns used in abstract models 

of neural networks (Hopfield 1982). For example, piriform cortex receives distributed 

input and pyramidal cells make dense connections with each other, attributes that 

are reminiscent of Hopfield-type networks (Haberly and Bower 1989). A more thor­

ough assessment of computational models of piriform cortex function is presented in 

appendix B. 

1.2.4 CSD analysis 

I have just finished discussing the possible computational role of piriform cortex in 

odorant identification. Earlier in this chapter it was mentioned that fast oscillations 
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appear in the piriform cortex in response to odor stimuli. It would therefore be useful 

to understand the physiological behavior that might underlie these oscillations since 

this might provide insight into how piriform cortex accomplishes odor identification. 

Recent studies have moved in this direction by helping to elucidate the synaptic 

activity that may underlie fast oscillations. These are discussed below. 

If a brain area has a laminar organization and the neural circuitry is well un­

derstood, current source density ( CSD) analysis can be used to elucidate the spatio­

temporal patterns of synaptic input that underlie field potential recordings. By cal­

culating the gradient of the field potential along the depth of a brain structure, one 

can locate current sources and sinks in space and time. These current sources and 

sinks can then be correlated to currents induced by different synaptic pathways. It 

is thus possible to understand the synaptic activity that underlies the field potential. 

A more detailed explanation of this technique and its applications can be found in 

Mitzdorf (1985). 

Haberly and colleagues have used the evoked potential induced by a strong shock 

to the LOT (piriform cortex afferent pathway) to perform a CSD analysis in the 

piriform cortex (Ketchum and Haberly 1993a, Rodriguez and Haberly 1989). They 

found a stereotyped spatio-temporal pattern of synaptic input in response to this 

stimulus. A systems model was then constructed to match CSD data with what 

is known about the spatial distribution of synaptic inputs on pyramidal neurons 

(Ketchum and Haberly 1993b). Although a strong shock to the LOT is a somewhat 

artificial stimulus, a weak shock is able to elicit an oscillatory field potential in the 40 

Hz (i.e., gamma) range (Ketchum and Haberly 1993c). Interestingly, each oscillation 

appears to reflect the pattern of synaptic input seen in the strong shock case. A 

comparison of CSD results from strong and weak shock results is shown in figure 1.5. 

Ketchum and Haberly (1993c) have suggested that this pattern may also underlie 

the gamma oscillations seen in response to odor stimuli in awake-behaving animals. 

Surprisingly the patterns are almost identical in opossum (Rodriguez and Haberly 

1989) and rat (Ketchum and Haberly 1993a) despite the approximately 100 million 

years that separate these animals phylogenetically. This suggests that this pattern of 
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synaptic input may be central to the computational function of the piriform cortex 

(Ketchum and Haberly 1993a). Chapter three of this thesis deals with the possible 

computational implications of this pattern of synaptic input. 

1.3 Overview of this thesis 

In this thesis I examine the response properties of a single layer II piriform pyrami­

dal neuron using experimental slice techniques and a biologically realistic single cell 

simulation. The thrust of this work is to understand how single pyramidal cells re­

spond to stimuli that are temporally structured to approximate the oscillations seen 

in piriform cortex. 

Chapter 2 describes a detailed single cell simulation of a layer II pyramidal cell from 

piriform cortex. Model morphology was taken from an anatomical reconstruction of a 

stained neuron. Parameters describing the passive electrical properties of the neuron 

were derived from experimental data recorded in the lab. The simulation's behavior 

was tuned to match experiments showing subthreshold and suprathreshold behavior 

in pyramidal cells. Experimental and modeling results showing that the injection of 

current noise can increase and sustain subthreshold oscillations are also discussed. 

The work described here establishes the single cell model that is used to study the 

effects of physiologically plausible patterns of synaptic input in the next chapter. 

Chapter 3 describes the single cell model's response to patterns of synaptic input 

believed to underlie the gamma oscillations seen in piriform cortex. The effects of 

this pattern of input on the electrotonic structure of the neuron and its somatic 

spiking patterns are discussed in detail. The possibility that spike timing may reveal 

information about the synaptic origin of input is also explored. Multiple iterations 

of the pattern believed to underlie gamma oscillations are repeated to simulate the 

gamma bursts seen riding on top of respiratory waves in the EEG of awake-behaving 

animals. Results demonstrate that the effects induced by individual gamma inputs is 
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Figure 1.5: CSD results from strong (top) and weak (bottom) LOT shocks. Bottom 
trace is reminiscent of the fast oscillations seen in the EEG of awake-behaving animals 
and appears to be a repetition of CSD pattern seen in the strong shock case. CSD 
analysis allows one to deduce the pattern of synaptic input underlying field potential 
data. The pattern underlying this data is used as a stimulus for a single cell model 
in chapter 3. Top is taken from Ketchum and Haberly, 1993a, and bottom from 
Ketchum and Haberly, 1993b. 
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longer lasting than the duration of a single gamma oscillation. However, when bursts 

are separated by a sufficient amount of time, they are essentially independent of each 

other. The implications of this result in the context of the computational meaning of 

gamma and theta oscillations is discussed. 

Chapter 4 uses information theoretic techniques to explore the extent to which 

spike trains from piriform cortex pyramidal cells can represent stimuli which approx­

imate the temporal structure of cortical oscillations. Results showed that stimuli 

that were filtered at frequencies of 0-10 Hz and 4-12 Hz ( approximating slow oscil­

lations) were represented in spike trains twice as well as stimuli filtered at 0-40 Hz 

(meant to include all oscillation frequencies, including the gamma frequency). The 

effects of norepinephrine ( a neuromodulator believed to be present during arousal) on 

spike coding were also explored. Norepinephrine was found to increase the amount 

of stimulus information in the spike train while decreasing the amount of stimulus 

information that is represented per spike. 

Chapter 5 concludes this thesis with a summary of the contributions of this work 

to research in neuroscience and discusses directions for future research. 
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2 

Realistic Simulation of a Pyramidal Cell 

Based on In Vitro Experiments 

2.1 Abstract 

We constructed a detailed compartmental model of a layer II piriform cortex pyra­

midal cell using a digital reconstruction of a stained neuron. The passive properties 

of the model were fitted to data that we collected from whole-cell recordings in slice. 

Active properties were modeled using only conductances experimentally shown or 

suggested to exist. The model is able to replicate a wide range of behavior seen 

experimentally including spike timing, spike shape, subthreshold oscillations, and dy­

namic response over a wide stimulus range. One aspect of pyramidal cell behavior 

that we were unable to initially model were the low frequency oscillations that follow 

brief spike trains. However, after adding noise to the current injection we were able 

to elicit the persistent oscillations seen experimentally. Experimental noise injections 

yielded similar results and also allowed us to quantify pyramidal cells' subthreshold 

frequency responses for comparison to our model. We conclude that our model is 

a good phenomenological representation of a pyramidal cell and discuss the possible 

role of noise in the real neuron. 

2.2 Introduction 

The primary purpose for constructing the model presented here was to test its re­

sponse to patterns of synaptic input believed to underlie the cortical oscillations 
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described in chapter 1. However, in order to have confidence that the conclusions 

gleaned from such a simulation study could be applied to the biological system, it 

was necessary to build a model that was constrained by experimental data whenever 

possible. Therefore, we performed a number of in vitro experiments to parameter­

ize the active and passive properties of the neuron that had not been described by 

previous experimental studies. Specifically, we felt that any realistic representation 

of a piriform cortex pyramidal cell would require the characterization of its passive 

properties using the whole-cell recording technique as well as a description of voltage­

dependent subthreshold oscillations since these properties would undoubtedly affect 

a neuron's response to temporally structured stimuli. 

Once tuned, parameters in the model were fixed, and it was used to explore the 

subthreshold membrane oscillations observed in these neurons. The model predicted 

and experiments confirmed that the presence of noise in the current injections used 

to stimulate simulated and real pyramidal cells was able to generate subthreshold 

oscillations in the 4-12 Hz range. This area of the frequency spectrum is biologically 

important because it falls into the range of the theta frequency which roughly ap­

proximates the rat's sniffing rate (Macrides et al. 1982) and slow EEG activity in the 

olfactory cortex (Woolley and Timiras 1965). This result suggests that unpatterned 

input in the piriform pyramidal neuron may still produce a patterned response (i.e., 

subthreshold oscillations in the theta frequency range) and underscores the impor­

tance of building realistic single cell models. 

Previous efforts to model piriform cortex pyramidal cells have focused on the 

construction of simplified representations of neurons that were designed to only be 

used in network simulations (Wilson and Bower 1992, Barkai et al. 1994). In contrast 

to these studies, the model presented here is more realistic and able to match a 

wider range of physiological behavior including spiking behavior and subthreshold 

oscillations that match data from experimental recordings. 
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2.3 Methods 

2.3.1 Experimental slice procedures 

Slice preparation Female Sprague-Dawley rats of 3-5 months (for sharp record­

ings) and 6-8 weeks (for whole-cell recordings) in age were decapitated under ether 

anesthesia following procedures approved by the animal care and use committee at 

Caltech (protocol #1156). The brains were removed and bathed in cooled medium 

previously bubbled with 95% 0 2 and 5% CO2 during the slicing procedure. A vi­

bratome ( OTS 3000M) was used to cut five coronal 400 µm thick slices from every 

brain starting at 0.4 mm caudal to the anterior commissure. Slices were kept at room 

temperature in vials containing medium bubbled with the gas mixture described above 

for 2 hours before recording. The medium used to bathe the slices was made with 

distilled water and consisted of (in mM): N aHCO3 26, NaCl 124, KCl 5, K H2 PO4 

1.2, CaCl2 2.4, MgSO4 1.3, and dextrose 10. In addition, kynurenic acid (661 µM) 

was added to the medium used to bathe the slices in the vials and during slicing to 

prevent neuronal damage due to excitotoxicity; however, medium without kynurenic 

acid was used to perfuse the slices during the course of experiments. During record­

ing, the slice was placed at the bottom of a submersion-type slice chamber, with the 

temperature maintained at 31-34 °C. Medium passed through the chamber at a rate 

of approximately 2.5 ml/min. When channel blockers were added (see below), record­

ings were collected after perfusing the slice for six minutes which our measurements 

indicated was the time necessary for cell properties to stabilize. In those recordings 

where channel blockers were used, only one recording was made per slice. 

Cell identification All recordings were made from Layer II of piriform cortex. This 

cell layer is clearly visible as a translucent strip when the slice is transilluminated 

and has been shown to contain the cell bodies of superficial pyramidal cells (Haberly 

1985). In addition, the physiology of these neurons is well characterized (Barkai and 

Hasselmo 1994, Tseng and Haberly 1989a) to the extent that these neurons can be 

identified by their physiology alone. A schematic representation of the slice is shown 
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in figure 2.1. 

2.3.2 Recording procedures 

Intracellular recordings were performed using two different electrode techniques, whole­

cell and sharp electrode. Neuronal spike trains used in calculating frequency vs. 

current (F /I) curves were obtained with sharp electrodes because their fine tips pre­

vent the washout effects commonly seen with whole-cell electrodes (Horn and Marty 

1988, Pusch and Neher 1988). The electrical leak introduced into the cell with sharp 

electrodes has little effect on action potential generation (Staley et al. 1992). Sharp 

electrodes were filled with 3 M potassium acetate solution and had impedances of 

75-130 Mn. 

Whole cell recording techniques were used for all other experimental procedures, 

as this technique minimizes disturbances of the neuron's passive electrical properties 

(Staley et al. 1992). Electrodes used for whole cell recording had impedances of 

2.5-10.0 Mn and were filled with one of two solutions. Solution 1 contained (in 

mM): potassium gluconate 140, HEP ES 10, NaCl 10, EGTA 0.2, MgATP 2, and 

N aGT P 0.2 with pH 7.5 adjusted with KOH and osmolarity of 300 mosm. Solution 

2 contained (also in mM): potassium gluconate 120, KCl 10, EGT A 10, HEP ES 

10, MgCl2 2, CaCl2 2, Na 2 ATP 2, with pH 7.3 adjusted with KOH and osmolarity 

290 mosm (Major et al. 1994). Both electrode solutions were passed through a 0.02 

µm filter before use. More than one solution was used in order to explore the possible 

ways in which the solution could affect the behavior of the neuron. We found that 

changing electrode solutions had no effect on results. To account for the presence 

of diffusion potentials due to the use of gluconate electrode solutions, we subtracted 

8 m V from our membrane potential recordings in accordance with a previous study 

that had measured this to be the diffusion potential for gluconate solutions (Zhang 

and Krnjevic 1993). 

A Neurodata two channel amplifier (Neurodata Instruments Corp., NY, NY) was 

used to inject current and record membrane potential for both sharp and whole-
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Figure 2.1: Diagram of slice recording. Whole-cell and sharp current clamp recordings 
are taken from layer II where the somata of superficial pyramidal cells are densely 
packed. Layer II is clearly discernible from the other layers during electrode place­
ment. 

cell recordings. For some whole-cell experiments, an Axoclamp 2A amplifier (Axon 

Instruments, Foster City, CA) was also used. Stimulation was controlled by software 

developed in our laboratory. Data was recorded on VHS videotape using a Neurodata 

4 channel Neuro-Corder and digitized with a MetraByte A/D converter. 

In order to minimize the effects of stray capacitance on the measurement of time 

constants, we used a wave function generator (Wavetek, San Diego, CA) to drive 

a sinusoidal current ( 1 kHz) through the electrode prior to entering the slice. By 

plotting current against voltage, Lisajous plots were obtained. A phase lag between 

the current and voltage traces was represented by an elliptical Lisajous figure and 

indicated the presence of uncompensated stray capacitance. Capacitance compensa­

tion and bridge balance were adjusted until the ellipse resembled a single horizontal 

line which indicated that the bridge was completely balanced and the electrode ca­

pacitance was completely compensated. This technique is similar to those used in 

other studies (Major et al. 1994, Park et al. 1983). 

Stimulating with broadband noise We used broadband noise in our current in­

jections to examine the subthreshold frequency response characteristics of piriform 
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pyramidal cells. White noise was generated using the MATLAB (Mathworks, Nat­

ick, MA) random number generator and was normally distributed around a mean 

of zero. The noise was then saved to a file and used repeatedly to stimulate the 

cell at different levels of depolarization. During stimulation, the noise stimulus was 

sampled at 10 kHz. Periods of depolarization lasted 4.0 s. Experiments were done 

using the whole-cell technique because patch electrodes responded better to fluctu­

ating inputs, produced less noisy recordings, and preserved the electrical integrity of 

the neuron. However, as previously mentioned, whole-cell recording always raises the 

issue of wash-out, which may affect the active properties of the neuron. We ultimately 

decided that for this series of experiments this was the lesser of two evils. 

Pharmacology To block synaptic currents in the pyramidal cell, we used 6-cyano-

7-nitroquinoxaline-2,3-dione (CNQX) (Research Biochemicals International, Natick, 

MA) to block AMPA-type glutamate receptors, DL-2-amino-5-phosphonovaleric acid 

(APV) (Sigma, St. Louis, MO) to block NMDA-type glutamate receptors, and pi­

crotoxin (PCTX) (Research Biochemicals International) to block GABAA receptors. 

Slices were always bathed for at least 6 minutes prior to recording. 

For experiments where sodium channels were blocked, we used tetrodotoxin (TTX) 

(Research Biochemicals International). Recordings were started 6 minutes or more 

after the initial application to the bath, although TTX efficacy was often evident in 

1-2 minutes following application when action potentials could no longer be elicited 

by depolarizing pulses. Cesium chloride was sometimes used with TTX as a general 

potassium channel blocker. 

2.3.3 Analysis of experimental data 

Complete current vs. voltage (I-V) curves were obtained for each cell by injecting a 

series of 600 msec long current pulses into the cell. Injections generally started at -0.4 

or -0.2 nA and proceeded by regular increments until the neuron began to fire. Up to 

25 voltage traces were averaged for each current level to minimize the effects of noise. 

Trials containing spontaneous EPSPs were discarded so as not to affect time constant 
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calculations, although these were rare. Based on these measurements, cellular input 

resistance was calculated by taking the slope of the linear regression fit to the linear 

portion of the I-V curve. Values for To and r 1 for charging and decaying portions 

of the pulses were obtained using the graphical method of exponential peeling (Rall 

1969). We found the more general Levenberg-Marquardt method for nonlinear curve­

fitting (Press et al. 1992) did not generate results that were as accurate. All curve 

fitting and exponential peeling was done on a Sun workstation using MAT LAB and 

analysis software developed in the lab. Statistical analysis was done using EXCEL 

(Microsoft, Redmond, WA). 

F /I curves were obtained by calculating the inverse of the interspike interval (in 

Hz) and plotting this against time of spike occurrence and magnitude of current 

injection in a three-dimensional plot. 

2.3.4 Modeling techniques 

Approach to modeling At the present time many single-cell simulations are con­

sidered realistic in the sense that they are constructed from realistic dendritic mor­

phologies and possess passive and active membrane properties that have been ex­

perimentally determined. Nonetheless, many caveats come with this approach to 

"realistic" modeling. For example, voltage-clamp data often comes from experiments 

that were not done at body temperature. Even when care is taken to perform ex­

periments under conditions that are as physiological as possible, the modeler is still 

left guessing with regards to the positioning of different currents in the model, the 

uniformity of membrane resistance, etc. Although our approach to constructing our 

single cell model is similar to others, we additionally require that our model closely 

match the integrative behavior of a real pyramidal cell. For example, instead of sim­

ply setting voltage-gated current densities and passive transient properties based on 

experimental data and setting channel densities so that the cell can simply spike, we 

require that our model be able to match a real pyramidal cell's behavior over multiple 

stimulus levels. Our matching requirements include realistic spike timings and spike 
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shape as well as subthreshold behavior. By adhering to these strict requirements, we 

feel more confident that our model can tell us something about the behavior of real 

pyramidal cells even if the biophysical details of our implementation are off. 

Simulator Our pyramidal cell model was implemented on version 1.4 of the GENE­

SIS neural simulator (Bower and Beeman 1995) using the Hines method of integration 

(Hines 1984) for the fast and accurate solutions of branched dendritic trees. Simula­

tions were performed on several Sun SPARC 2, 10, and 20 workstations using a time 

step of 10 µs which produced numerically accurate results. It took approximately 10 

minutes to generate 1.0 s of simulated activity on a SPARC 20 workstation. 

Cell morphology The morphology of the model neuron was based on the digitized 

image of a biocytin stained layer II pyramidal cell (provided by Mark Domroese in the 

laboratory of Lew Haberly at the University of Wisconsin, Madison). The cell was 

digitally reconstructed using NED, a neural editing and tracing system developed in 

John Miller's laboratory at the University of California, Berkeley. The digital recon­

struction was then converted into a model cell with 503 electrical compartments. The 

soma of the cell was represented by a single spherical compartment with a diameter 

of 10.43 µm. The digital reconstruction and electrotonic representation of the cell are 

shown in figure 2.2. 

Modeling spmes It has been shown previously (Larkman 1991) that dendritic 

spines constitute a significant portion of total neuronal membrane surface area, con­

tributing significantly to the passive properties of cells (Wilson 1992, De Schutter 

and Bower 1994a). Accordingly, as in previous modeling efforts (Rapp et al. 1994, De 

Schutter and Bower 1994a), the passive effects of the spines were modeled in the cur­

rent simulations by increasing the membrane area of dendritic regions where spines 

are known to exist. Unfortunately, the exact number of spines on piriform pyramidal 

cells is not yet known; therefore, spines were added to the model based on data from 

visual cortex pyramidal neurons indicating densities of 1.3 mm-1 of dendritic length 

(Larkman 1991). Consistent with previous anatomical work on piriform pyramidal 
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Figure 2.2: A: Digitized representation of the neuron morphology used in this simu­
lation. B: A dendrogram representing the electrotonic structure of the model neuron. 
Note that the most distal portions of the apical and basal dendrites are approxi­
mately equidistant from the soma. Electrotonic distance from the most distal tips of 
the dendrites to the soma is approximately 1 >.. 

cells (Haberly 1983), these spines were added evenly to the surface area of the basal 

and apical dendrites, but not on the apical trunk or soma, where spines are rare. The 

added area was calculated by modeling each spine as a cylinder with one closed end. 

Values for spine diameter (0.40 µm) (Haberly and Presto 1986) and length (0.75 µm) 

(Haberly 1983) were taken from anatomical studies of piriform pyramidal cells. 

Calculating passive properties The passive properties of the model were estab­

lished based on experimentally obtained values for input resistance (Rin), membrane 

time constant ( To), and first equalizing time constant ( Ti). Note again that experi­

mental values for passive properties were obtained in slices bathed in Cs+ and TTX 

in order to prevent the contamination of transient responses by voltage-gated cur­

rents. We arrived at a value for Rm (transmembrane resistance in units of kD, • cm2) 

by varying this parameter in the model until Rin was in the range of experimental 

values. The axial resistance had only a small effect on the value of Rin· Once this 

had been done, we were able to calculate a value for Cm based on To in the following 

way. Assuming a neuron is approximated as a cylinder of finite length with sealed 
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ends and is also considered entirely passive (with uniform axial and transmembrane 

resistance), decay transients can be expressed as the following sum: 

(2.1) 

(Rall, 1969) 

where To is the membrane time constant, Tn's (for n > 1) are equalizing time constants, 

and Cn represent constants. The membrane time constant ( To) can be expressed as: 

(2.2) 

where Rm is unit transmembrane resistance and Cm is unit membrane capacitance. 

Equalizing time constants represent the time it takes for charge to equalize over 

shorter lengths of cylinder as n increases (Rall 1989). Unlike To, equalizing time 

constants also depend on axial resistance and so Ra was varied until we were able to 

obtain reasonable fits to the experimentally determined values for T1 . Previous studies 

have used identical approaches to fit passive model parameters to experimental data 

(Rapp et al. 1994, Major et al. 1994). 

Equations used to model voltage- and Ca2+-dependent currents Voltage­

gated currents were modeled using the standard Hodgkin-Huxley formalism (Hodgkin 

and Huxley 1952): 

(2.3) 

where lion represents the current characterized by a particular ionic conductance, 

m is the voltage and time dependent activation gate, h is the voltage- and time­

dependent inactivation gate, and z is the calcium- and time-dependent activation 

gate for calcium activated conductances. E is the membrane potential and Erev is 

the reversal potential for the ionic current. The voltage-dependent gates are described 

by the following equation: 
om 
at 

moo - m 
(2.4) 
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idem for h 

where m00 is the steady state activation and Tm is the time constant for activation. 

Calcium-dependent gates were modeled using the Hodgkin-Huxley formalism as 

well, except that they were dependent on calcium concentration instead of membrane 

potential. This method was also used by Traub et al. (1991) to model a calcium­

dependent potassium current in their simulation of a hippocampal pyramidal cell. 

Because the extremely steep Ca2+ concentration gradient across the cell mem­

brane makes the Ca2+ current nonohmic, better performance was obtained using the 

Goldman-Hodgkin-Katz (GHK) equation (Goldman 1943, Hodgkin and Katz 1949): 

I 
_ p 2 EF2 [Ca2+]i - [Ca2+]aexp(-zFE/RT) 

ca2+ - Z ----------------
RT 1.0-exp(-zFE/RT) 

(2.5) 

where Pis permeability (distance/time) and is modeled in the same way that con­

ductance was modeled for the voltage-dependent currents; z has a value of 2 ( the 

valance of Ca2+); E is membrane potential; F is Faraday's constant; R is the gas 

constant; and T is temperature. The external concentration of Ca2+ ([Ca2+] 0 ) is 

set to 2 mM. In order to account for the change in membrane resistance that will 

accompany the opening of Ca2+ channels, we calculate Ca2+ conductance by finding 

the chord conductance (Jack et al. 1988): 

(2.6) 

where Eca2+ is calculated using a variation of the Goldman-Hodgkin-Katz voltage 

equation that takes into account both monovalent and divalent ions (Jan and Jan 

1976): 

E _ RT 1 (-b+Jb2 -4ac) 
ca2+ - F n 2a (2.7) 

where 
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C = -4[Ca2+]o - PNa+/ca2+[Na+]o - PK+/ca2+[K+] 0 (2.10) 

and Px;ca2+ represents the permeability ratio of ion X to Ca2+. Because Ca2+ chan­

nels are impermeable to Mg 2+ and cz- ions, they are not included in the above 

equations. PK/ca2+ and PNa/ca2+ represent permeability ratios for the L-type Ca2+ 

channel and have values of 3.33 x 10-4 and 8.54 7 x 10-4 respectively (Hille 1992). 

When the model is in its resting state, it has a calcium reversal potential of 67.4 m V 

which is consistent with the values of 40-70 m V seen experimentally (Hille 1992). 

Changes in calcium channel permeability are modeled using the Hodgkin-Huxley for­

malism with the permeability taking the place of conductance. 

Calcium dynamics There is little experimental data on the calcium dynamics 

in piriform pyramidal neurons; nonetheless, because we incorporated a calcium­

dependent current into our model, it was necessary for us to construct an ad-hoc 

model that would at least operate within a plausible range. In order to do this, we 

borrowed from several previously existing models of calcium dynamics. To model cal­

cium diffusion within the soma, we used a 40 shell model which was identical to that 

used by Sala and Hernandez-Cruz (1990). To convert current through the calcium 

channels into calcium concentration in the outermost shell, we used the following 

equation: 
d[Ca2+] [Ca2+] 

d = Blca2+ -t T 
(2.11) 

where B is a scaling factor with value 22.4 x 105 mM/nA and T is the decay time 

constant with value 5 msec. This model generated realistic calcium concentrations 

with values ranging from the baseline 50 nM to the micromolar range. Values for B 

and T were obtained by searching for values which allowed us to realistically model 

the ARP current without generating unrealistic values for calcium concentration. 

Parameters for the kinetics of ionic currents Parameters for current kinetics 

were modeled to specifically fit voltage-clamp data from piriform pyramidal cells when 

available (CaF, CaS, KA, KM, KARP). For some channels (NaF, NaP, Kdr), however, 
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there are no published records of voltage clamp data. In these cases voltage clamp 

data was used from the closely related hippocampal pyramidal neurons. The sources 

for kinetic parameters are discussed below. The parameters used to model different 

voltage-gated conductances are shown in table 2.1. 

Fast and persistent sodium currents Parameters for the fast sodium current 

were obtained from a model study by Traub et al. (1991) of a CA3 hippocampal 

pyramidal cell. Slight modifications were made to these parameters in order to shift 

the midpoint of the activation curve to higher membrane potentials. This was done 

in order to increase the threshold of sodium spiking in the model so that it would 

better represent the piriform pyramidal cell (Tseng and Haberly 1989a). 

In order to replicate physiological results accurately, it was necessary to include a 

persistent sodium conductance in this model, even though there is, as yet, no direct 

experimental evidence for this conductance. This is the only conductance we have 

included in the model with no direct experimental evidence. We found that without 

this current, curves plotting spike count vs. current injection were much steeper 

than what we found experimentally. This conductance has been shown to exist in 

hippocampal pyramidal cells (French et al. 1990). In the current model, kinetic 

equations for the persistent sodium current come from a study by McCormick and 

Huguenard (1992). Again, the activation curve was shifted to the right in order to 

adjust model behavior to match the spiking threshold seen experimentally (Tseng 

and Haberly 1989a). 

The delayed rectifier Parameters for the delayed rectifier are identical to those 

used in Traub et al. 's (1991) model of a hippocampal pyramidal cell (Traub et al. 

1991). 

Potassium A-current Banks et al. (1996) recently characterized the A-current 

in piriform pyramidal neurons of the rat. We used the parameters obtained in this 

study to model the A-current in our simulation. 
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Table 2.1: Parameters for active currents used in the model. The first column lists 
the currents using their abbreviated names: NaF (fast sodium), NaP (persistent 
sodium), Kdr (potassium delayed rectifier), Kfir (potassium fast inward rectifier), KM 
(potassium M-current), KARP (slow calcium activated potassium current), CaF (fast 
calcium), CaS (slow calcium). The column labeled "Power" contains the exponents 
to which the respective gates are raised. Other columns are self-explanatory. 

----1:, ~N 

~ ... 6 
~ 0) 

c:, ~ ½' 
~ Q f: ....... 

----0) 

~ f: ....... 

..... 
ci 
00 
N 

·+ ol<!:l. ... cs 

N 

ll) 
ll) 

C!it ... cs 

C!~; .... C. 
>< ., 
+ 
C! ... 

-~ffi; 
NI .., --0. 

>< 
Cl) 

00 
N ..... 
ci 

..... 

~ 
co 

·+ ol<!:l. ... cs 

:;lt.· .... I 
+ 
~ C. 
... >< "' ., 01 
0 C! ... 

..... 

ll) 
ll) 

0 
~ 
N 

C!it ... cs 

0 
~ ... 
+' 

~~ 
0 
0 C. 
I ~ 

..... 

0 
0) 

I 

0 
~ 

C!it ... cs 

...__, 
0. 

~ 
ll) 

ci 

0 
0) 

I 

C!it ... cs 

-
;I'° ll)Q() 

<0 ~, 
"' 0 --0. 

~ 
"<I' 
0 
ci 

..... 

~ ..... ..... 

0) 
00 
ci ..... 
+ 

..... 

co 
0) 

I 

~ ..... 

C!it ... cs 

ll) 
0 
0 
0 
ci 

..... 

co 
0) 

I 

..., 
>< 
~ 

Cl) 
Cl) 

r:n 

q ..... 
+ 

N 

k, 
c:, 

C) 

q 
M 

+ 

..... 

..., 
>< 
~ 

Cl) 
Cl) 

r:n 

q 
M 

+ 

... C. 

~ 
+ 
0 ... 

..... 

0 
ci -+ 

~ 
C. 

0 >< . ., 
g+ 

"'t 
C. 

~ 

-



34 

Non-inactivating muscarinic potassium current Support for the existence of a 

slow non-inactivating muscarinic potassium current (M-current) in the piriform pyra­

midal cell comes from both voltage clamp (Constanti and Galvan 1983, Constanti and 

Sim 1987a) and pharmacological studies (Constanti and Sim 1987b) in the guinea pig. 

Unfortunately, these studies were not complete enough to fully model the activation 

and time constant of these channels. However, Constanti and Galvan (1983a) have 

reported that the olfactory M-current is very similar to that found in bullfrog sym­

pathetic ganglion cells which has been carefully described and modeled (Yamada et 

al. 1989). The current model uses this description with kinetics that are three times 

faster than those used by Yamada et al. This was necessary in order for the model to 

replicate the fast adaptation seen experimentally. It was also necessary because the 

kinetics which Yamada et al. used were based on experiments done at 22 °C and the 

recordings described in this chapter were done at 31-34 °C. 

Fast inward rectifying potassium current The fast inward rectifier is a well 

characterized voltage-gated current in the piriform pyramidal cell. However, it only 

becomes significantly active at membrane potentials more negative than -100 m V 

(Constanti and Galvan 1983). Because it is unlikely that a neuron will ever reach 

this level of hyperpolarization under healthy physiological conditions, this current 

was excluded from our simulations. 

Slow and fast calcium currents Evidence for the existence of a voltage-activated 

Ca2+ current comes from voltage clamp studies in the guinea-pig olfactory cortex 

(Constanti et al. 1985). Unfortunately, this study made no effort to determine the 

number of channel types that underlie this Ca2+ current. In this study, we began our 

modeling efforts by trying to model the current with a single set of kinetics, but were 

unable to match experimental data under these conditions. Instead, it was necessary 

to include two sets of distinct Ca2+ channel kinetics: one with low-threshold and fast 

inactivation ( CaF, for C a2+ fast) and the other with higher threshold and much slower 

inactivation (CaS, for Ca2+ slow). The low-threshold rapidly inactivating current 
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resembles the calcium T-current which is also present in hippocampal pyramidal 

neurons (Fisher et al. 1990). The second current has slower inactivation and becomes 

active at more depolarized levels. It is difficult to classify this conductance as a known 

calcium current because it differs significantly from the N, L, and P-types that have 

been found in hippocampal pyramidal neurons (Fisher et al. 1990, Mintz et al. 1992). 

Most likely, this current represents an amalgamation of the non-T type currents found 

in the piriform pyramidal neuron. CaS appears faster than P and L-type currents 

and becomes active at lower membrane potentials than N and L-type currents (Regan 

1991, Tsien et al. 1988). Nonetheless, combining the CaF and CaS currents allows the 

model to accurately replicate the calcium current seen under voltage clamp ( Constanti 

et al. 1985). An additional explanation for the lack of agreement between CaS and 

the calcium currents found in the hippocampus is that the currents analogous to the 

N, P, and L- types in the piriform cortex may have different kinetics from the ones 

found in hippocampus. It is known, for example, that N and P-type currents can 

differ significantly between cell types (Mintz et al. 1992, Tsien et al. 1988). 

Calcium-dependent after-hyperpolarizing potassium current The presence 

of a slow calcium-dependent potassium current is supported by voltage clamp and 

pharmacological evidence in the guinea-pig (Constanti and Sim 1987a). The kinetics 

and biophysics of calcium dependent potassium conductances have been shown to 

be quite complex (Sah 1995). For example, studies of hippocampal neurons have 

shown that some Ca2+-dependent potassium currents can be significantly activated 

by C a2+ released from internal stores, rather than channels in the plasma membrane 

(Uneyama et al. 1993). Because there is very little data available in piriform pyramidal 

cells concerning the complex dynamics that underlie this current, we have chosen to 

implement a relatively simple model of calcium dynamics (see equation 2.11 above). 

Parameters for the current are shown in table 2.1. Other single cell simulations have 

used identical methods to model calcium dynamics and Ca2+-activated potassium 

currents (Traub et al. 1991, De Schutter and Bower 1994b ). 
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Location of voltage-gated currents All of the voltage-gated channels described 

here were located in the somatic compartment of the model. The dendrite was mod­

eled as entirely passive. Recent work has shown that a number of voltage-gated 

membrane currents are present in the dendrites of hippocampal (Spruston et al. 

1995, Magee and Johnston 1995) and neocortical (Stuart and Sakmann 1994) pyra­

midal neurons. The existence of voltage-gated currents in layer II piriform pyramidal 

cells is not yet known, but one study has suggested that at least one subtype of 

N-type calcium channels that is present in hippocampal and neocortical dendrites is 

absent from the apical dendrites of the piriform pyramidal neurons (Westenbroek et 

al. 1992). Layer II pyramidal neurons also tend to have relatively short apical den­

drites which suggests that EPSPs may not require the same level of amplification to 

reach the soma that might be required in some neocortical pyramidal neurons. Fur­

thermore, a study by Stuart and Sakmann (1995) shows that amplification of EPSPs 

in neocortical cells are amplified by axosomatic, not dendritic, sodium currents (Stu­

art and Sakmann 1995). Recent studies have also suggested that the active properties 

of the pyramidal cell dendrite may serve a role primarily in the plasticity of synapses 

(Magee and Johnston 1997, Markram et al. 1997), not in the temporal patterns of 

firing seen in the soma and axonal initial segment. For all the reasons cited above, 

we chose not to include active conductances in the dendrites of our model. 

Quantifying comparisons between experimental and modeled records In­

dividual channel densities were varied until the model could replicate the active be­

havior seen in the real cell. Three criteria were used to judge the quality of the fit. 

The first was a similarity in spike shape and subthreshold depolarizations during the 

course of a current pulse. The second was in the pattern of spiking activity over the 

course of a single depolarizing current pulse. The third was how the neuron responded 

to current injections of varying intensities. 

To compare subthreshold behavior in the model and experimental neurons, we 

compared power spectra of membrane potential over the range of 1-100 Hz and at 

different average membrane potentials. 
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2.4 Results 

2.4.1 Current voltage relations in pyramidal cells 

Physiology In this study we initially recorded from 16 pyramidal neurons using the 

whole-cell recording technique to obtain the data used to fit the passive properties 

of our model. The results for one cell are shown in figure 2.3. Part A shows the 

response to current injection in the presence of normal slice medium and part B 

shows the response in the presense of TTX and Cs+. A comparison of A and B 

shows that the blockade of active conductances greatly increases the input resistance 

and time constant of these cells. The sag at hyperpolarizing levels in B indicates that 

not all the active conductances are blocked with TTX and Cs+; however, the level of 

hyperpolarization needed to see this sag suggests that it does not interfere with the 

determination of time constants for these cells in a physiological range. 

Figure 2.3C plots the I/V curve for the data presented in parts A and B. In the 

absence of blockers (n=16), pyramidal neurons had an average input resistance of 

98.3 MO (S.E. 16.0). When TT X and Cs+ were added to the bath, input resistance 

increased 54 percent on average from its previous value. Significant increases were 

also seen in the duration of To and r 1 after the addition of blockers. This suggests 

that active conductances contribute substantially to the ostensibly passive properties 

of a pyramidal neuron in its resting state. A comparison of passive data taken from 

cells in the presence and absence of blockers is shown in table 2.2. 

Model Results and Mechanisms Because the passive properties of the model 

were tuned on the responses of pyramidal cells to current injection in the presence 

of TTX and Cs+, the model replicates these results well except for the slight sags 

seen in the experimental recordings. The second column of traces in figure 2.3 shows 

the current-voltage relation for the model cell. As in the experimental I-V curve, the 

input resistance of the model cell increases substantially (38 percent) in the absence 

of K+ and Na+ currents (meant to simulate the effects of Cs+ and TTX). 

In order to calibrate the model's passive properties, we used the data collected 
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Figure 2.3: Whole-cell recordings of passive properties of layer II pyramidal cell. 
Experimental traces in A and B show responses to current steps from the same neuron. 
Top trace (A) shows response in the absence of voltage-gated channel blockers. B 
shows response in the presence of 5 mM Cs+ and 1 µM TTX. Current steps of equal 
magnitude were used to generate both traces. Part C of the experimental recordings 
shows an I-V curve for the same neuron used in parts A and B. Open squares represent 
data points collected in the absence of blockers and filled boxes in the presence of 
Cs+ and TTX. Membrane potential in C is taken from the portion of graphs A and 
B indicated by the line segment at the bottom right of these traces. I-V relations 
in both the presence and absence of blockers appear linear, but the I-V relation for 
the Cs+ /TTX block shows a much steeper slope, indicating a higher input resistance. 
The second column of traces shows the responses of the simulated neuron. The results 
shown in part B of the simulated data traces show simulation results when Na+ and 
I{+ currents are removed. This was done to simulate the effects of Cs+ and TTX. In 
part C of the simulated data, the blocker-free I-V curve stops short because greater 
levels current injection induced spiking. 
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Table 2.2: Experimental data from whole-cell recordings in layer II pyramidal neurons. 
The first row shows data from cells where blockers were never added. The second 
and third rows are meant to provide a comparison of cell properties before and after 
Cs+ and TTX were added to the bath and so only include a subset of the 16 neurons 
sampled above. A comparison of the second and third rows shows that voltage­
gated currents can appreciably affect the ostensibly passive properties of a neuron. 
Following the addition of blockers, time constants become twice as long and input 
resistance increases by approximately 50 percent. 

n R.M.P. Rin To(charge) T1(charge) To( discharge) T1(discharge) 

(mV) (MO) (msec) (msec) (msec) (msec) 

no blockers 16 -70.3 98.3 10.41 0.87 11.76 1.25 
(0.78) (16.0) (0.84) (0.13) (0.96) (0.19) 

no blockers 10 -70.5 80.7 11.10 0.81 11.58 1.00 
(3.2) (14.2) (1.13) (0.33) (1.10) (0.31) 

blockers 10 -62.6 120.8 24.29 1.26 23.18 1.45 
(5.2) (25.0) (2. 72) (0.21) (2.42) (0.19) 



40 

from whole-cell recordings. The overall input resistance of the model cell was 62 MD 

( closest experimental recording: 60 MD). By removing all the voltage-gated conduc­

tances from the model and setting Rm to 30 kDcm2 and Ra to 350 Dem, the model 

displayed time constants that fell well within the range seen experimentally with To 

and T1 taking values of 23.56 msec and 2.10 msec ( closest experimental recording: 

2.25 msec) respectively. Setting the parameters for passive behavior allowed us to 

explore the electrotonic structure of the neuron as well. Figure 2.2 B shows a den­

drogram representing the electrotonic structure of the piriform pyramidal cell. The 

electrotonic extent of the apical tree is similar to that seen in hippocampal neurons 

(Major et al., 1994); however, unlike hippocampal (Major et al. 1994) and neocortical 

(Zador et al. 1995) pyramidal cells, the electrotonic extent of the basal and apical 

dendrites is approximately equal. 

To match F /I data recorded with sharp electrodes, we first had to adjust passive 

parameters in the soma to simulate the electrical leak caused by the sharp electrode. 

The parameter Rm in the soma was set to 0.24 kDcm2 achieving an Rin of 21.6 MD 

and a charging time constant of 5.35 msec. Experimental data show values of 24 +/-
9 (SD) MD for RN (Barkai and Hasselmo 1994) and 8.2 + /- .9 (SE) msec (Tseng 

and Haberly 1989b) for membrane time constant. 

2.4.2 The relationship between current injection and spik­

ing frequency 

Physiology The first column in figure 2.4 shows the spiking responses of an exper­

imentally recorded pyramidal cell to current injection. As is characteristic of these 

cells, increased current injection results in an increasing number of spikes with two 

rapid spikes at the beginning of the pulse followed by spikes at longer intervals which 

slowly increase with the duration of the stimulation. These data are summarized in 

figure 2.5A in the form of spike count/current plots where spike numbers are plotted 

against threshold normalized current injection. Using the S-1 method described by 

Barkai and Hasselmo (1994), we obtain S-1 values ranging from 1.1-23.4 (n=5: S-1:1-



41 

10, n=7: S-I:11-20, n=l: S-I >20) which agree with previous studies (Barkai and 

Hasselmo 1994). 

Model A comparison of the model and real neuron's response to current injection 

is shown in figure 2.4. The results of the model under similar levels of depolarizing 

current injection are shown in the records of figure 2.5. As in the real data, increased 

current injection produces an increased spiking output of the modeled cell. Figure 2.5 

shows a more quantitative measure of similarity between model and experiment in 

the form of spike number vs. current injection and F /I plots. The model is able to 

capture the qualitative features of pyramidal cell behavior, most notably the almost 

linear relationship between spike number and current injection and the steep fall off 

in the F /I curves across different levels of current injection. 

2.4.3 Detailed timing of action potentials in response to 

current injection 

Physiology In addition to their general increase in spiking frequency, figure 2.4 

experimental traces also indicate that layer II pyramidal cells in slice generate char­

acteristic action potential timings in response to current injection. When current 

injection is just over spiking threshold, a single action potential is produced on the 

sharp rising edge of the membrane potential. As current injection levels are increased, 

this spike is followed rapidly by a second action potential with subsequent spikes 

occurring with increasing delay. It should be noted that even with large current in­

jections, the first two action potentials typically occur in rapid succession. Following 

these two action potentials, there is rapid adaptation from the initially fast spiking 

of the first two spikes. This is followed by a much more gradual adaptation during 

which the interspike interval increases only very slowly. This is most clearly seen in 

the F /I curves shown in figure 2.5 where frequency falls off very rapidly with time of 

occurrence in the spike train. This is characteristic of most of the neurons we have 

recorded from as well as previous reports (Tseng and Haberly 1989b ). 



A 

.75J 

B 

C 

D 

EXPERIMENT 

0.90 

1.00 

1.24 

42 

L .73f 

SIMULATION 

0.94 

1.00 

IL 
300ms 

1.26 

1.32 

0.94 

1.00 

1.19 

1.25 

........ 
I .__ 

L 

i 
l.. 

Figure 2.4: Comparison of spike trains from experimental recordings and the model. 
Experimental and simulated data are shown on the same x- and y- scale. Traces in 
the left column show an example of an experimental recording. Center column shows 
response of the model to similar levels of current injection. Rightmost column shows 
results from the model with the addition of white noise (sampled at 1 kHz with 
standard deviation: 0.060 nA) to the current injection. Numbers beneath each trace 
represent the threshold normalized current injection. A. Responses to subthreshold 
current injection. The fast spikes seen in later traces appear to ride on top of the 
short latency hump seen here. B. Traces show a single spike in response to threshold 
level current injection. C. This comparison illustrates the model's ability to replicate 
the fast spike doublet that occurs at the beginning of many pyramidal neuron spike 
trains. Subthreshold oscillations seen in the experimental traces following spikes are 
also seen in the model. D. Again, spiking patterns and subthreshold events in the 
model and experimental data show great similarities. The simulation results where 
noise was added to the current injection are especially successful in recreating the 
persistent su bthreshold oscillations that are seen in the experimental traces ( C-D). A 
small hyperpolarization following the end of the depolarizing pulse is also present in 
the experimental and simulated traces. 
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Figure 2.5: Comparison of input/output data from experiment and simulation. A: 
Spike count during injection of 1 sec constant current pulses of different magnitudes. 
X-axis shows input current over current required to cause the neuron to spike. B: 
F /I curves show instantaneous frequency plotted against current amplitude and spike 
time during the depolarizing pulse. Experimental data come from the same neuron. 
Simulated data come from the same simulation run. For clarity, only a subset of 
points was used to generate experimental F /I curves. 

Model A closer examination of the simulation results in figure 2.4C indicates that 

the model replicates the timing of spike trains quite accurately, especially immediately 

after the onset of current injection. The more quantitative measure of similarity 

between experimental and simulated data shown in figure 2.5 also indicates a close 

correspondence between the experimental and modeled data. 

The most challenging aspect of constructing the model was generating the very 

fast spikes that came at the beginning of a spike train. In the model, this behavior 

was due primarily to the presence of NaP and the precise level of A-current. The 

N aP current activates rapidly and remains active as long as the cell is depolarized. 

This causes the cell to initially spike rapidly until the KM current is activated. The 

A-current channel density is critical in controlling the latency of the first spike and 
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hence the rapid spiking seen at the beginning of piriform pyramidal cell spike trains. 

Increasing the A-current channel density generally increased the latency of the first 

spike and the interval between the rapid spikes at the beginning of the train. 

The other characteristic pattern of firing of these cells is the spiking adaptation 

that occurs following the first two spikes. Adaptation appears to be a discontinuous 

process in the piriform pyramidal cell with the instantaneous frequency of spikes 

falling at first rapidly from hundreds of Hz to tens of Hz and then slowing down 

more gradually. In the model, the KM current was primarily responsible for the 

initial fast adaptation and the KAHP for the slower adaptation typically seen at the 

end of spike trains. This fits well with experimental data which indicate that the 

KAHP current is significantly slower than KM in these neurons ( Constanti and Sim 

1987a). Calcium channels also played a role in this behavior by regulating the activity 

of KAHP. 

2.4.4 Subthreshold oscillations in membrane potential fol­

lowing current injection 

Physiology The final characteristic of pyramidal cell response to current injection 

that we examined is the presence of subthreshold oscillations shown in figure 2.4 C 

and D. These oscillations are generally seen following the spikes that occur early 

during the current injection and appear to be in roughly the 10 Hz range. Typically, 

late occurring action potentials appear to be triggered by the rising edge of these 

oscillations. 

Model A closer examination of the response of the model to current injection 

demonstrates that the model, on its own, is capable of accurately replicating the 

hump in membrane voltage following the onset of subthreshold current injection (fig­

ure 2.4 III A). However, the model by itself does not replicate the subthreshold voltage 

oscillations that persist during the current injection at suprathreshold levels. While 

two cycles of damped oscillations are clearly present following the first 3 spikes in the 
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simulated spike train in figure 2.4 C, persistent oscillations are absent. However, as 

we discuss in greater detail later, addition of noise can generate persistent oscillations 

in the model (third column in figure 2.4). 

2.4.5 The effects of individual membrane currents on the 

behavior of the model 

Each of the currents in the model appears to serve a distinct function in the cell. Spike 

width and height are determined almost entirely by the relative channel densities of 

the NaF and Kdr currents. The Kdr current is also primarily responsible for the 

amount of undershoot. The role of other currents is restricted primarily to spike 

spacing and the structure of subthreshold events. 

An effort was made to also model the more subtle aspects of subthreshold events 

in order to expand the model's explanatory power. A hump on which the early fast 

spikes ride is evident in both the experimental and model traces (see figure 2.4). In 

the model this is largely the result of delayed KM activation cutting off depolarization 

due to NaP. Similarly the damped subthreshold oscillations seen following spikes in 

figure 2.4 are a result of the interplay between NaP, Kdr, and KM. 

Figure 2.6 summarizes the activation of the different membrane currents during the 

course of a spike train. The graphs for the N aF and CaF currents show only significant 

conductance changes during action potentials, suggesting that these currents do not 

play a role in subthreshold events. In contrast, conductances for NaP, CaS, Kdr, 

and KM do change during the course of the subthreshold oscillations and the voltage 

ramps that precede spiking. These conductances also show changes during spiking. 

The KM current differs from the other currents that are active during spiking because 

it entirely misses the first spike. It is this behavior that underlies the short interspike 

interval between the first two spikes in the train. When the neuron is no longer spiking 

the KM conductance slowly decreases. The KARP conductance is the longest lasting 

and slowest of all the currents. Its response to spiking is seen only as small ripples 

riding on top of a much more slowly acting conductance. Even after the current step 
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is over, the conductance stays active for hundreds of milliseconds. 

The same currents (N aP, KM, Kdr) that are responsible for the damped subthresh­

old oscillations seen in the model in the absence of noise also underlie the persistent 

oscillations seen in the presence of noise ( see below). 

2.4.6 Robustness of model to changes in channel densities 

In order to test the robustness of the model, we systematically varied each of the 

channel densities for each current by 20 percent above and below the values used in 

the simulations discussed in this chapter. The resulting spike count vs. normalized 

current injection traces are plotted with the normal model response in figure 2.7. As 

the figure illustrates, the model is very robust to 20 percent fluctuations in channel 

density. The sole exception is the persistent sodium current where a 20 percent 

decrease in channel density generates a response curve that is much steeper than 

what is normally seen. Although the graph in figure 2. 7 measures model response 

only by plotting spike count vs. normalized current injection, we also found that 

the form of the model's response to individual current injections following 20 percent 

variations in channel densities did not change significantly from the control condition. 

For the sake of brevity, this data is not shown here. 

2.4. 7 Generating subthreshold membrane oscillations with 
. 

noise 

Model The third column in figure 2.4 shows how the addition of noise sampled 

at 1 kHz with SD 0.075 nA improves the match of modeled data to experimental 

recordings by introducing persisting subthreshold oscillations. White noise sampled 

at 1 kHz was added to the current injection values with standard deviations of 0.025, 

0.075, 0.100, and 0.200 nA. The results of the simulations are shown in figure 2.8. As 

can be clearly seen, the presence of noise appears to give rise to the persistent low 

frequency oscillations seen in the experimental traces. 

The presence of persistent oscillations appears to be dependent on the level of 
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Figure 2.6: Active conductances underlying behavior seen in spike trains. A plot of 
membrane potential during the course of a spike train is shown in the trace labeled 
Vm, Conductance traces illustrate the role of different voltage-gated conductances 
in different aspects of pyramidal cell behavior. The trace labeled NaF represents 
conductance changes associated with the fast sodium current. NaF appears to only 
contribute significantly to the formation of spikes, remaining inactive when the neu­
ron is not spiking. The trace labeled NaP represents the activity of the persistent 
sodium conductance. It is active during spiking, but also at subthreshold potentials. 
It appears to form a hump beneath the first two fast spikes and is present during 
the subthreshold oscillations that follow the spike train. It is also active between 
spikes. The two calcium currents modeled CaS (slow calcium) and CaF (fast cal­
cium) are both active during spiking, although CaS is also active at subthreshold 
potentials. Potassium currents are labeled Kdr ( delayed rectifier), KM (M-current ), 
and KARP (after hyperpolarizing current). Kdr appears to be active during spiking 
and subthreshold events. KM shows a significant amount of activity during spiking 
but is longer lasting in response to spikes than Kdr. It also shows a significant level 
of steady state activity in response to the depolarizing pulse and is active during 
the subthreshold events seen in the voltage trace (Vm)- In contrast, the A current is 
active during spiking, but mostly absent during subthreshold activity. KARP is the 
slowest of all the currents and shows a monotonic increase in response to the spike 
train, decaying only slightly following the end of the current pulse. 
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Figure 2. 7: Robustness of model to 20 percent changes in individual channel densities. 
Curves represent simulation results where a particular channel density was increased 
or decreased by 20 percent. Points represented by filled squares constitute the nor­
mal response curve. These results indicate that the model is considerably robust to 
changes in individual channel densities. The sole exception is the NaP current. A 
20 percent decrease in NaP channel density generates a response curve that is much 
steeper than what is normally seen in experiments and the model. This curve is 
indicated by the left pointing arrow in the figure. 

depolarization and the magnitude of noise. Figure 2.8 A shows no oscillations in 

the model's response when noise with 0.075 nA SD is injected at resting potential. 

Yet this is the same level of noise used in part C where persistent subthreshold 

oscillations are most obvious. This suggests that these oscillations should only be 

seen at depolarized levels. The amount of noise also appears to be critical as can be 

seen from a comparison of parts B-D where mean current injection is kept constant 

and only the amount of noise is varied. In part B, where the noise has a value of 

0.025 nA SD, the model's response shows no persistent subthreshold oscillations as is 

the case in simulation runs where no noise has been added to the current injection. 

At 0.075 nA SD noise, the persistent oscillations seen in the experimental traces of 
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Figure 2.8: Traces generated by simulations where noise has been added to the current 
injected into the model. Numbers beneath each trace indicate the standard deviation 
of the noise in nA. All noise injections have a mean of O nA. The addition of noise 
produces traces that can better replicate the subthreshold events seen in experimental 
recordings. Trace A shows model response to 0. 75 nA SD current injection at resting 
potential. Although this is the same noise level used to generate results shown in C, 
no subthreshold oscillations are seen. 
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figure 2.4 C are clearly replicated in the simulation results. At 0.10 nA SD noise, 

the spike failures seen in figure 2.4 D are also seen in the model; however, at much 

higher noise levels (0.20 nA SD), the model appears to fire regularly and subthreshold 

oscillations are no longer seen. 

Testing effects of noise physiologically As just described in our model, the 

addition of broadband noise gives rise to the persistent subthreshold oscillations seen 

experimentally. Although no noise had to be added to the experimental preparation 

to elicit subthreshold oscillations, biological neurons have intrinsic noise generating 

mechanisms which are absent in most single cell simulations. While simulations of 

neurons are based on the deterministic Hodgkin-Huxley equations, the active currents 

in real neurons are the result of the stochastic processes that underlie the opening 

and closing of individual ion channels. It is conceivable that if many of the voltage­

gated channels are densely packed in a small region of the cell (e.g., the axon hillock), 

the stochastic behavior of a small number of channels may have an effect similar to 

the injection of noisy current in the model. Ideally one would test this hypothesis by 

simply removing the noise from the biological neuron and seeing if this also eliminated 

subthreshold oscillations. However, such an approach (for example, cooling the cell) 

would also severely affect channel kinetics (Hodgkin and Huxley 1952). Therefore, we 

decided to explore the role of noise in the experimental preparation by looking to see 

whether or not subthreshold oscillations could be enhanced by adding noise to the 

constant current pulses used to stimulate pyramidal cells in slice. Furthermore, we 

felt that a broadband noise stimulus would be ideal for characterizing the neuron's 

subthreshold frequency response which could then be compared to our model's. 

Results were obtained from 23 cells in 10 eight-week-old rats. Part A of figure 2.9 

shows an example of the subthreshold response of a neuron injected with noise (SD 

= 0.05 nA). Part B shows the neuron's response to injected noise (SD = 0.10 nA) 

over a broad range of membrane potentials (-75 to -60 m V) and for frequencies up to 

100 Hz. Two things are immediately obvious about the graph in part B. First, most 

of the power seems to be concentrated in the 1-20 Hz range and the second is that 



51 

B 
4000 

N 
I 3000 EXPERIMENT 

---C\I 2000 > 
E 

A 
1000 

0 -72 
-68 

~:~'. . .Ea -64 N 
80 100 -60 ~ 

1200 
SIMULATION 

N 
I 800 
---C\I 

> 400 E 

0 

Figure 2.9: Part A shows sample subthreshold responses of a real neuron to injection 
of broadband noise (SD = 0.1 nA). Power spectra used in data analysis were taken 
over the time indicated by the thick line at the top of the traces. This was done to 
avoid the possible artifact resulting from the neuron's charging time. The top trace 
part B shows a real neuron's subthreshold frequency response plotted as power vs. 
frequency vs. mean membrane potential. Most of the power is contained within a 
frequency range of 0-30 Hz. Interestingly, low frequency components tend to increase 
in power as membrane potential becomes more depolarized. The lower trace in part 
B shows results from the model when the same stimulus used for experimental record­
ings was applied to the model. Qualitatively, the simulation's subthreshold response 
appears to be similar to that of the real neurons with most power being concentrated 
in the 0-30 H z range and an increase in the power of lower frequency components 
occurring as the membrane potential becomes more depolarized. 
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there appears to be an increase in power as the cell is increasingly depolarized. The 

first point suggests that the neuron's subthreshold response to stimulus is essentially 

blind to events that occur at frequencies above 20 Hz, while the second point suggests 

that the neuron's frequency response is voltage-dependent; specifically, greater levels 

of depolarization amplify frequency components in the 4-12 Hz range. This effect 

is shown in figure 2.10 where the neuron's response to noisy current injections at 

different levels of depolarization is compared. As the figure shows, a depolarization 

that is just under threshold tends to amplify membrane potential fluctuations in the 

4-12 Hz range. When the neuron is brought to a suprathreshold level but an area 

of the trace is examined where no spikes have occurred, subthreshold oscillations are 

amplified to a significantly greater extent. 

To characterize the amount of depolarization-dependent amplification of different 

frequency components, we measured the slope of linear regression fits to power plot­

ted against membrane potential on a log scale. An example of a log plot of power 

vs. membrane potential for frequency ranges of 4-12 Hz and 30-50 Hz and the corre­

sponding regression lines is shown in part A of figure 2.11. A positive slope indicates 

increasing amplification of a frequency component, while a negative slope indicates 

a dampening of oscillations in that frequency range. The steepness of the slope re­

flects the magnitude of the amplification of subthreshold oscillations as a function of 

membrane potential. Part A of figure 2.11 shows that frequency components in the 

4-12 Hz range are significantly amplified while those in the 30-50 Hz range remain 

approximately constant over increasing levels of depolarization. This point is reiter­

ated in part B of the figure where the slopes of the linear regression lines are plotted 

against power over 4 Hz bins for a frequency range of 0-100 Hz. What is immediately 

obvious is that frequency components in the 0-16 Hz range show significantly higher 

slopes than higher frequencies. However, only frequency components in the 4-12 Hz 

range always showed a positive slope out of the 23 neurons we recorded from for this 

series of experiments. The presence of negative slopes for the 0-4 Hz bin is most likely 

due to sampling error because this bin would include oscillations that have such low 

frequencies that they occur only a few times during the course of stimulation and 
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Figure 2.10: Waveforms containing white noise (SD = 0.1 nA) were added to depo­
larizing constant current pulses. The mean from the resulting changes in membrane 
potential was subtracted from each trace and the result was then bandpass filtered 
at 4-12 Hz in order to generate the graphs in this figure. The thin solid line rep­
resents the response of a real and simulated neuron at baseline while the thin gray 
dashed line represents the response of the neuron to a depolarization that is just below 
threshold levels. The thick black dashed line represents the response of the neuron 
at suprathreshold levels but in a region of the trace where the neuron is not actually 
firing. Both experimental and simulated traces show a depolarization dependent am­
plification of oscillations in the 4-12 Hz that is especially prominent at suprathreshold 
levels. In the model, this amplification effect is dependent on the presence of the per­
sistent sodium current (NaP). As is shown in the graph in the lower right, elimination 
of the N aP current results in a dampening of oscillations at the more depolarized level 
indicated by the gray dashed line. Gray dashed and solid lines are taken at the same 
mean membrane potentials in both top and bottom traces. To test the possibility 
that N aP underlies amplification of subthreshold oscillations in the real neuron, we 
added TTX and found that it eliminated depolarization-dependent amplification of 
subthreshold oscillations. 
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hence have variable power from trial to trial. However, this argument would not hold 

at higher frequencies and in those cases it appears that there is little amplification or 

dampening in comparison to what is seen in the 0-16 Hz range. 

To ensure that the voltage-dependent amplification of subthreshold oscillations 

was not an artifact of the electronics we were using, we performed the same noise 

injections we had used for the real pyramidal cell on a simple RC circuit and found 

that there was no voltage-dependent amplification of 4-12 Hz components of the 

stimulus. Additionally, because our model had shown that depolarization-dependent 

amplification of subthreshold oscillations requires the presence of the NaP current, 

we added 2 µM TTX to the slice bath to explore this possibility in the real neuron. 

The results of this experiment are shown in figure 2.10. TTX clearly eliminates the 

amplification of subthreshold oscillations in the 4-12 Hz range. Unfortunately, at the 

present time there is no specific blocker known to block NaP without also blocking 

NaF (Adams and Swanson 1996), so the possibility that NaF may play a role in this 

phenomenon can not be ruled out. Nonetheless, this experiment clearly shows that 

the amplification effect is dependent on sodium currents. The effects of TTX for 

multiple cells are shown in figure 2.12. Again, TTX appears to wipe out the effects 

of amplification. Similarly, we tested the effects of synaptic blockers (30 µM CNQX, 

100 µM APV, 50 µM PCTX) and found that these had no effect (see figure 2.12). 

Comparison of model to physiology Figures 2.10, 2.11, and 2.12 compare the 

subthreshold responses of the model to our physiological recordings. In figure 2.10 

we find that the levels of amplification of subthreshold responses in the model are 

comparable to those seen in the physiological case. Similarly, removal of N aP ap­

pears to eliminate this amplification much as TTX does for the real neuron. The 

one difference is that in the model, removal of NaP appears to result in a dampen­

ing of the 4-12 Hz oscillations rather than the simple elimination of amplification. 

When comparing the amplification of different frequency components over a 0-100 

Hz range, the model is qualitatively similar in that lower frequency components are 

in general more greatly amplified than higher frequency components; however, the 
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Figure 2.11: Part A shows a logarithmic plot of power in the 4-12 Hz (x's) and 
30-50 Hz (o's) range versus mean membrane potential for an experimental recording 
where a neuron has been injected with broadband noise with a standard deviation of 
0.10 nA. This graph shows that low frequency components that fall within the theta 
range ( 4-12 Hz) are significantly amplified as mean membrane potential increases, 
while higher frequency components representing the gamma range (30-50 Hz) are not. 
This is illustrated by a comparison of the slopes of the linear regression fits to the data 
shown as solid lines. Although the points plotted for some frequency ranges deviated 
significantly from linearity, the slope measure is still a useful measure to indicate the 
presence or absence of voltage-dependent amplifications of different frequency ranges. 
It is also a more intuitive measure than those that would be used by nonlinear fitting 
methods. The slopes of linear regression lines for data similarly plotted at frequency 
increments of 4 Hz are used to generate data for the bar graphs shown in part B. 
The top graph in part B shows results from 23 experimental recordings where white 
noise with SD 0.10 nA was added to the current injection. Error bars represent 
standard deviation. Asterisks indicate that all recordings showed a positive slope 
over the marked frequency range. Comparison with simulation results in the lower 
trace in part B show qualitatively similar results with the main difference being that 
experimental results show a much more selective amplification of components in the 
0-12 Hz range. 
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Figure 2.12: Part A shows the effects of synaptic blockers (n = 5) on the 
depolarization-dependent amplification of 4-12 Hz oscillations when cells are stim­
ulated with broadband noise (SD = 0.1 nA). Synaptic blockers appear to have no 
significant effect. Part B shows the effects of sodium channel blocker TTX which ef­
fectively wipes out all depolarization-dependent amplification (n = 5). Part C shows 
a similar bar graph for the pyramidal cell simulation which shows a depolarization­
dependent dampening of subthreshold oscillations in contrast to the simple elimina­
tion of depolarization-dependent amplification seen in part B. 

fall off in voltage-dependent amplification levels from low to high frequencies is sig­

nificantly less steep. Lastly, in figure 2.12, the pharmacological effects of TTX on 

the depolarization-dependent amplification of 4-12 Hz are compared to the effects of 

removing the NaP current in the model. Removal of NaP in the model resulted in 

a significant depolarization-dependent dampening of subthreshold oscillations in the 

4-12 H z range, suggesting that NaP's role in the model and real neuron may differ 

to some extent. 
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2.5 Discussion 

In this chapter we have presented a realistic simulation of a single layer II pyramidal 

neuron from piriform cortex based on a morphology taken from a stained neuron. 

Using passive data from whole-cell recordings, we derived values for Rm, Ra, and 

Cm. Voltage-activated currents were added based on experimental evidence and were 

modeled using voltage-clamp data for the piriform pyramidal neuron when possible. 

The channel densities of these currents were then varied until the model could re­

produce spike trains that resembled in vitro data. F /I curves were used to further 

constrain the model to experimental data and to ensure that it had a dynamic range 

similar to what is seen experimentally. Furthermore, we characterized the subthresh­

old frequency response in the real cell and found that our model could qualitatively 

match this behavior as well. 

2.5.1 Response of pyramidal cells to current injection 

As described in the results , the spiking behavior of the model was tuned by comparison 

to current injection results for 12 pyramidal cells. While 12 cells are a minimal sample 

for this purpose, our overall description of the firing properties of these cells closely 

matches the more extensive study of the same cells published previously by Barkai 

and Hasselmo (1994). For example, these authors report S-I values which range 1-23, 

and we find with our smaller sample values that range 1.1-23.4. Accordingly, we are 

confident that spiking behavior on which the model was tuned was accurate. 

Where the present data differ substantially from previous reports is when the 

values obtained with whole-cell recording techniques in our experiments are compared 

to previous sharp electrode recordings. Whole cell techniques reveal substantially 

higher membrane input resistances than sharp electrode studies (Staley et al. 1992). 

In the case of the piriform cortex pyramidal cell, the previous sharp electrode study by 

Barkai and Hasselmo (1994) shows an average resting membrane potential (R.M.P.) 

of -76 m V and an average input resistance (Rin) of 24 MO. Similarly, a study by 

Tseng and Haberly (1989b) shows a R.M.P. of -74.3 m V, and an Rin of 38.5 MO. 
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In contrast, whole-cell recordings in this study generated values of -69.6 m V for the 

resting membrane potential and 98.3 Mn for Rin· However, previous sharp recordings 

of membrane time constant did not differ significantly from whole-cell results with 

Tseng and Haberly's (1989b) sharp electrode study reporting an average membrane 

time constant of 8.2 msec, while we found a value of 10.02 msec for the charging 

portion of the voltage curve and 11.03 msec for the discharge. 

Our whole-cell results are additionally interesting because they are taken from 

adult animals (8 week old rats). The vast majority of whole-cell studies are done 

in immature animals (1-3 weeks) because these preparations typically give a higher 

yield of successful recordings. Because we are interested in how the fully developed 

brain functions, we felt we should only record from neurons taken from adult brain 

even if our yield would be lower. Interestingly, a comparison with results from a 

whole-cell study done on piriform pyramidal cells from immature animals (9-18 day 

old rats) shows a significant difference in the input resistance of layer II cells (Banks 

et al. 1996). This study showed average input resistances of 178 Mn for layer II 

pyramidal cells, while our results give us a value of 98.3 Mn (a 45% smaller value). 

Unfortunately, we know of no whole-cell studies other than our own which look at the 

transient properties of piriform pyramidal cells (i.e., that derive values for To and r 1 ) 

and so we can not compare these results to those from younger animals. Comparisons 

of input resistances in the hippocampal cells of young and adult animals show a similar 

trend where older animals tend to show lower input resistances than younger animals 

(Zhang and Krnjevic 1993, Cherubini et al. 1989). 

2.5.2 Functional significance of different voltage-gated con­

ductances 

The model described here contains seven voltage-gated currents ( excluding Kfir). It 

is unlikely that we have accounted for all of the currents present in the real piriform 

pyramidal neuron. Experimental studies of hippocampal pyramidal cells suggest the 

existence of at least 17 currents in hippocampal neurons (Brown et al. 1990). The 
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cerebellar Purkinje cell is known to possess at least 10 distinct currents (De Schutter 

and Bower 1994b ). In the absence of more detailed information on the currents 

present in the layer II pyramidal cell, we erred on the side of the conservative, only 

adding conductances if the match to physiology absolutely required it. In the next 

sections we will consider the appropriateness of the choices we have made for the 

presence and parameterization of individual conductances. 

In the present model, the KM current was primarily responsible for the initial 

fast spike train adaptation and the KAHP current for the slower adaptation typically 

seen at the end of spike trains. There is voltage clamp data that indicates that the 

KAHP current is significantly slower than KM in these particular neurons ( Constanti 

and Sim 1987a) which does not contradict our assertion; however, we know of no 

experimental studies that have tested the validity of our model directly. In principle, 

the predicted roles for the KM and KAHP conductances in these neurons could be 

tested pharmacologically. For example, carbachol is known to have an effect on 

KM and KAHP currents (Constanti and Sim 1987a) and has been shown to greatly 

reduce adaptation while slowing the decay of F /I curves in these neurons (Barkai 

and Hasselmo 1994, Hasselmo and Bower 1992). However, these previous studies 

used relatively high concentrations of carbachol (20 mM) which is know to reduce 

the activity of both KM and KAHP (Constanti and Sim 1987a). We would predict 

that lower carbachol concentrations in the range of 1-2 mM, which would selectively 

suppress the KAHP current, should affect adaptation later in a spike train elicited by 

a constant current pulse. This effect could then be compared to the more dramatic 

change in adaptation caused by higher concentrations of carbachol. 

We found that the addition of a persistent sodium current (NaP) to our model 

greatly improved its performance. Specifically, we found that this current produced 

better S-I results and was also involved in the subthreshold oscillations following 

a train of action potentials. Furthermore, this current appeared to play a role in 

the fast spikes that are often seen at the beginning of a spike train. Although we 

know of no channel blockers that are specific to the NaP current, we predict that the 

addition of Ca 2+ channel blockers should have no effect on subthreshold oscillations. 
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Interestingly, a study by Llinas and colleagues (1991) has shown that subthreshold 

oscillations in neocortical neurons are also dependent on a NaP-type current. 

2.5.3 Subthreshold oscillations induced by noise 

One interesting result from our simulation work is that broadband noise in the cur­

rent injection can elicit the persistent subthreshold oscillations that we saw in our 

experimental data. At first glance the addition of current noise may seem like an im­

plausible physiological explanation for the presence of subthreshold oscillations. How­

ever, one must consider the differences between a detailed single cell simulation and a 

real neuron. Almost all single cell simulations use the deterministic Hodgkin-Huxley 

equations to model voltage-gated conductances. Yet, in real neurons voltage-gated 

conductances are generated by discrete channels that operate on stochastic principles 

(Hille 1992). This suggests that noise might be intrinsic to real neurons. 

Furthermore, studies of the distribution of Na+ channels in neurons have indicated 

that high densities of Na+ channels exist at the axon hillock ( Angeli des et al. 1988) 

where they are kept from diffusing into the soma (Kobayashi et al. 1992). A high 

concentration of channels in an electrotonically compact area such as the axon hillock 

may allow events at the single channel level to have macroscopic consequences. One 

simulation study has already suggested that stochastic channel-based simulations 

can display macroscopic behavior that diverges from the standard Hodgkin-Huxley 

model (Strassberg and DeFelice 1993). Unfortunately, this study did not address the 

issue of subthreshold oscillations. Ideally one would want to test the noise-induction 

of subthreshold oscillations experimentally. However, reducing channel noise (for 

example by cooling) would affect the kinetics of the channels (Hodgkin and Huxley 

1952) which would make the interpretation of any results considerably more difficult. 

Perhaps the most interesting aspect of the noise induced subthreshold oscillations 

is their functional implications. We showed experimentally that the addition of noise 

to a constant current pulse selectively amplifies oscillations in the membrane potential 

in the 4-12 Hz range. This frequency range is biologically relevant because it approx-
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imates the sniffing rate (Macrides et al. 1982) and the EEG oscillations observed in 

piriform cortex (Woolley and Timiras 1965). Under more physiological conditions, 

synaptic background activity may act to induce subthreshold oscillations which may 

then lock to the sniffing rate or incoming activity from the olfactory bulb. Network 

modeling work done previously in our lab utilized a pyramidal cell model that showed 

no intrinsic subthreshold oscillations, yet showed that the network as a whole acted 

like an oscillator in the gamma ( 30-80 Hz) and theta ( 4-12 Hz) frequency ranges 

(Wilson and Bower 1992). Perhaps intrinsic oscillations in networks and single cells 

can interact constructively to amplify neural signals or reduce noise in the system. 

These questions are likely to be answered when single cell neurons with realistic sub­

threshold membrane properties are introduced into network models. 
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3 

Pyramidal Cell Response to 

Physiologically Plausible Patterns of 

Synaptic Input 

3.1 Abstract 

Fast oscillations (30-50 Hz) modulated in bursts by the sniffing rate ( 4-12 Hz) are 

observed in response to odor stimuli in the piriform cortex of animals (Freeman 1960, 

Woolley and Timiras 1965). Recent current source density (CSD) studies (Ketchum 

and Haberly 1993a, Ketchum and Haberly 1993b, Ketchum and Haberly 1993c) have 

revealed the spatio-temporal patterns of synaptic activity that might underlie fast 

oscillations. In this study we use these patterns (gamma inputs) of input to study the 

response of a simulated pyramidal cell from piriform cortex and determine the possible 

computational utility of such a fixed pattern. Our findings show the following: 1. This 

spatio-temporal pattern of synaptic input can generate patterns of spike timing that 

indicate the origin of the synaptic input. 2. The fast GABAA inhibition that is part 

of this input pattern is able to increase the temporal requirements of suprathreshold 

excitation but does not act to bin spikes. 3. The physiological effects of a single 

gamma input last up to 4 times as long as a single gamma oscillation. 4. A gap on 

the order of 650 msec is required to space out bursts of gamma inputs such that one 

burst does not affect the pyramidal cell's reponse to the second. 
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3.2 Introduction 

Experimental work in a variety of systems has demonstrated the reliability of spike 

timing in response to multiple trials of identical stimuli. In the behaving monkey, 

spikes from individual units have been shown to line up in repeated trials with tem­

poral jitter on the order of only a few miliseconds (Bair and Koch 1996). Additional 

studies (Bialek et al. 1991, Theunissen et al. 1996) in insects using information theo­

retic approaches have established that the precise timing of individual spikes carries 

a significant amount of information about the stimulus. One may deduce from these 

data that the temporal structure of synaptic inputs to single neurons must be tightly 

controlled in order to reliably reproduce spike timings in repeated trials. 

Unfortunately, technical limitations stand in the way of determining the temporal 

structure of synaptic input to individual neurons in awake-behaving, or even anes­

thetized animals. Nonetheless, if the brain structure is laminar and a single neuronal 

population predominates, it is possible to apply current source density (CSD) analysis 

(see Mitzdorf, 1985, for review) to elucidate the spatio-temporal pattern of synaptic 

inputs to a population of neurons. This is done by calculating current sources and 

sinks at incremental depths and then correlating the sources and sinks to synaptic 

activity. Since synaptic inputs in many cortical areas are segregated along the den­

dritic tree of pyramidal neurons according to origin and type, one may further deduce 

which pathways are responsible for generating individual sources and sinks. The CSD 

approach is thus ideal for cortical areas where synaptic pathways are well known and 

areas have a precise laminar organization. 

CSD studies in the piriform cortex of the rat and opossum have revealed a stereo­

typed spatio-temporal pattern of synaptic input to pyramidal neurons in response to 

a strong shock to the lateral olfactory tract (LOT) which carries afferent input from 

the olfactory bulb (Rodriguez and Haberly 1989, Ketchum and Haberly 1993a). In­

terestingly, the pattern of synaptic activity revealed in both of these studies is almost 

identical despite the approximately 100 million years that separate these species in 

evolutionary development (Ketchum and Haberly 1993a). This remarkable level of 
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conservation in synaptic behavior suggests that the particular spatio-temporal pattern 

of synaptic input revealed by the CSD analysis may be vital in the proper functioning 

of the olfactory systems of each of these species. When a weak shock is administered 

to the LOT, the field potential pattern elicited is highly reminiscent of the gamma 

oscillations seen in awake-behaving rats (Ketchum and Haberly 1993c). This result 

provides additional evidence that such patterns of synaptic activity may underlie 

neural behavior in the awake-behaving animal. CSD analysis based on these field 

potential oscillations reveals a repetition of the pattern seen in the strong shock case. 

Ketchum and Haberly (1993b) constructed a systems model in order to replicate the 

strong shock CSD results. Using this model and physiological and anatomical data 

about the piriform cortex, they were able to estimate the spike arrival time distribu­

tions for different synaptic pathways terminating on the apical branches of pyramidal 

neurons. 

Previous work in our laboratory (Wilson and Bower 1991, Wilson and Bower 

1992, De Schutter and Bower 1994b, De Schutter and Bower 1994a) has suggested 

that the biological details of single cells and networks are of paramount importance 

in determining the computational properties of these structures. We therefore used 

Ketchum and Haberly's arrival time distributions to stimulate our realistic model of 

a piriform pyramidal cell ( chapter 2) in order to determine what the computational 

consequences of this stereotyped pattern of synaptic activity might be. By using only 

a single iteration of the CSD-inspired pattern of synaptic input we were able to model 

the cell's response to the synaptic input underlying a single gamma oscillation. EEG 

recordings from awake-behaving rats had indicated that a burst of theta modulated 

gamma oscillations consisted of an average of 7.2 gamma cycles (Woolley and Timiras 

1965); therefore, we simulated burst activity by repeating the synaptic input pattern 

eight times. 

Although previous studies have examined the effects of synchronous vs. asyn­

chronous synaptic inputs (Agmon-Snir and Segev 1993, Murthy and Fetz 1994, Bernan­

der et al. 1994) and random background synaptic activity (Bernander et al. 1991, 

Rapp et al. 1992), we know of no studies where physiologically plausible and exper-
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imentally determined patterns of synaptic input have been used to study single cell 

behavior. The results presented here suggest that a biologically realistic pattern of 

synaptic input allows for greater complexity in the behavior of a neuron than these 

previous studies would suggest. 

3.3 Methods 

All modeling work was done usmg vers10n 1.4 of the GENESIS neural simulator 

(Bower and Beeman 1995). The cell morphology, distribution and parameterization of 

voltage-gated conductances, and passive properties of the model cell were all identical 

to those described in chapter 2. The only difference was the addition of synaptic 

channels that is described here. Dr. Lewis Haberly of the University of Wisconsin, 

Madison, assisted us with determining the boundaries of anatomical layers in the 

model cell by observing the stained neuron from which the cell morphology was 

taken. In this study, we further expand the model by adding synaptic channels to 

the dendritic tree and controlling the timing of synaptic inputs. 

Synaptic conductances Spikes arriving at synapses were represented by unit im­

pulses. All synaptic conductances ( except those mediated by NM DA receptors) were 

modeled using the following impulse response: 

(3.1) 

with time to peak given by 

(3.2) 

where G(t) is conductance, g is maximal conductance, t is time, and T1 and T2 are 

time constants. Parameters for all synaptic conductances are shown in the table 3.1. 

The location and properties of individual receptor types are described below. 
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Table 3.1: Synaptic conductance parameters. NM DA conductance is implemented 
using the Holmes and Levy (1991) model. 

Type Location 71 (ms) ,2( ms) tpeak( ms) Erev( m V) density 
(mS/cm2

) 

non-NMDA Ia 1.50 3.00 2.08 0.0 11.62 
NMDA Ia See Caption 0.05 

non-NMDA superficial lb idem 2.4 
NMDA superficial lb idem 0.3 

non-NMDA deep lb idem 2.4 
NMDA deep lb idem 0.3 

GABAA II 1.00 5.50 2.08 -60.0 4.0 
GABAs Ia 150.00 180.00 164.09 -90.0 0.4 

3.3.1 Synaptic structure of the model 

Layer Ia The lateral olfactory tract (LOT) carries axons from mitral and tufted · 

cells in the olfactory bulb to the piriform cortex. Anatomical and physiological evi­

dence show that afferent axons arriving via the LOT make excitatory connections ex­

clusively onto the portion of pyramidal cell apical dendrites found in layer la (Heimer 

1968, Rodriguez and Haberly 1989, Ketchum and Haberly 1993a, Price 1973, Haberly 

and Behan 1983). Pharmacological experiments performed in rat piriform cortex slices 

show that LOT induced excitation of pyramidal neurons is mediated by both NM DA 

and non-NM DA receptors in layer la (Jung et al. 1990, Kanter and Haberly 1990). 

A slow acting GAB As I{+ -mediated inhibition is also present in layer I (Tseng and 

Haberly 1988). This inhibition is believed to originate in feedforward inhibitory neu­

rons which are excited by LOT afferents (Tseng and Haberly 1988). In the model, 

afferent excitation (with NMDA and non-NM DA components) and GABAs inhi­

bition are restricted to layer la. 

The time constants for the non-NM DA synapses were chosen to fit experimental 

data on the time course of non-NM DA conductances in hippocampal pyramidal 

cells (Mason et al. 1991). Our model of NM DA-mediated synapses was identical to 

that used by Holmes and Levy (1991). Time constants for GABAB synapses were 

chosen to match experimental data on the time course of GAB As responses in rat 
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hippocampal neurons (Ling and Benardo 1994). The times to peak of all synaptic 

conductances are shown in table 3.1. 

Layer lb Anatomical studies in piriform cortex show that layer lb contains pro-

. jections from pyramidal cells in different areas of piriform cortex, as well as from 

other olfactory areas (Luskin and Price 1983). This layer can be further subdivided 

into superficial and deep areas. Physiological and anatomical evidence suggest that 

the superficial area contains caudally directed excitatory fibers from rostrally located 

piriform pyramidal neurons while deep lb contains rostrally directed excitatory fibers 

originating in more caudally located piriform pyramidal neurons (Luskin and Price 

1983, Rodriguez and Haberly 1989, Ketchum and Haberly 1993a). Pharmacological 

studies show the presence of both NM DA and non-NM DA type responses through­

out layer lb (Jung et al. 1990, Kanter and Haberly 1990). Experimental evidence 

further suggests that the NM DA component in layer lb is significantly stronger than 

that found in layer Ia (Kanter and Haberly 1990). This layer therefore had a higher 

NM DA channel density. 

Layer II Layer II of the piriform cortex contains the somata of the superficial 

pyramidal neurons. Physiological studies have shown the presence of a fast GABAA 

inhibition localized to layer II (Tseng and Haberly 1988, Kanter et al. 1996) and this 

is the sole location of the fast GABAA inhibition in the model. However, very recent 

work by Kanter et al. (1996) has shown the presence of a dendritic GABAA-mediated 

inhibition that exists in layer l dendritic areas. This newly discovered GABAA medi­

ated inhibition appears to operate independently of the layer II inhibition and seems 

to be primarily involved in the regulation of LTP (Kanter et al. 1996). Since these 

simulations do not address questions of synaptic plasticity, we have not included this 

synaptic current in our single cell model. 

Layer II inhibition in the model differed from other types of synaptic input in 

that its amplitude was kept relatively constant (scaled to be able to cancel coinci­

dent suprathreshold excitation). This was done based on results from hippocampus 
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that show single GABAergic neurons (mediating GABAA inhibition) capable of ef­

fectively phasing spikes in hippocampal pyramidal neurons (Cobb et al. 1995) and 

furthermore that these interneurons contact up to 1000 pyramidal cells (Li et al. 

1992, Siket al. 1995). Recent hippocampal studies have also shown that networks of 

• inhibitory neurons can become tonically activated such that they fire synchronously 

and independently of fast excitation from the pyramidal neurons that they inhibit 

(Whittington et al. 1995). Given these results, one might expect that this inhibi­

tion would not necessarily scale with the excitatory input that an individual cell is 

receiving. Also, since a single spike in an inhibitory interneuron is capable of having 

a dramatic effect on a pyramidal neuron, inhibition may very well be the result of a 

single synaptic event. Therefore, we should expect a constant amplitude for GABAA 

inhibition. 

Layer III The basal dendrites of superficial pyramidal neurons and the somata of 

deep pyramidal neurons are located in layer III. Anatomical studies indicate that 

connections between local pyramidal cells are made on the basal dendrites of deep 

and superficial pyramidal neurons (Haberly and Presto 1986). Unfortunately, little 

is known about basal dendrite physiology and so we have chosen not to incorporate 

this system into our model. 

Figures 3.1 and 3.2 summarize the synaptic receptor and pathway information 

described above. 

3.3.2 Synaptic background activity 

In order to better simulate the behavior of the cell in the awake-behaving animal, 

synaptic background activity was added to the model. In the absence of odor stimuli, 

single unit recordings from the piriform cortex of behaving rats reveals two types of 

spontaneously firing neurons: class I neurons had mean firing rates of less than 10 Hz 

(believed to be pyramidal cells) while class II (believed to be inhibitory interneurons) 

showed firing rates of 30-100 Hz (McCollum et al. 1991). We modeled this activ­

ity by using mean frequency values of 7 Hz for excitatory synapses and 50 Hz for 
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Figure 3.1: An anatomical representation of the model cell. Differently shaded areas 
represent anatomical layers within the piriform cortex and are labeled on the left. 
The soma ( shown as a black sphere) is located in layer IL The receptors present in 
each layer in the model are listed on the left. All intracellular recordings shown in 
this chapter are recorded from the soma unless otherwise indicated. 

inhibitory ones. Pyramidal neurons are believed to have on the order of 10,000 exci­

tatory synapses (Larkman 1991); however, for reasons of computational efficiency, we 

modeled only 1022 background excitatory synapses. Similarly, only 66 GABAA and 

200 GAB A 8 background synapses were included in the model. In order to normalize 

for the greater number of synapses found in the real neuron, we used the following 

formula to calculate the effective mean frequency of individual modeled synapses: 

N0 
w=-

M 
(3.3) 

(Rapp et al. 1992) 

where w represents the effective mean frequency, N is the number of synapses in the 

real neuron, q is rate of firing in the biological system, and M is the actual number 

of synapses in the model. An identical procedure has been used in other single cell 

models (De Schutter and Bower 1994a, Rapp et al. 1992). For excitatory background 

synapses, an w value of 70 Hz was used. Assuming that 20% of all synapses are 
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I olfactory bulb, I 
mitraVtufted ce11I------------

piriform cortex, 
feedforward inhibitory cells (K+) 

piriform cortex, 
pyramidal cells from rostral areas 

piriform cortex, 
local pyramidal cells 

axon 

piriform cortex, 
pyramidal cells from caudal areas 

piriform cortex, 
feedback inhibitory cells (Cr) 

Figure 3.2: Input to piriform pyramidal cells is segregated to different layers depend­
ing on its origin. Afferent input terminates in layer la. Associative input to layer 
lb tends to come from distant rostral and caudal pyramidal cells, while layer III in­
put tends to come from local pyramidal cells. Because of the dearth of information 
about basalar inputs, this pathway is not incorporated into the model. All superficial 
pyramidal cells have their cell bodies in cortical layer II. 

inhibitory (Peters 1987) and that there are equal numbers of GABAA and GABAB 

synapses, we calculated w values of 950 Hz and 312 Hz for GABAA and GABAB 

synapses respectively. 

Intracellular recordings from the motor cortex of conscious cat show that neuron 

resting potentials are typically 5-20 m V more depolarized than those seen in the in 

vitro motor cortex (Baranyi et al. 1993). Channel densities for background excitatory 

channels were adjusted to raise the resting potential of the model cell to the range 

seen by Baranyi and colleagues (1993). Channel densities for inhibitory background 

synapses were similar to those for excitatory background channels. Resting membrane 

potential in the presence of background activity was in the neighborhood of -62 mV. 

3.3.3 Spike arrival times 

Spike arrival times were modeled using results from a systems simulation constructed 

by Ketchum and Haberly (1993b) to explain the spatio-temporal pattern of sources 

and sinks seen in experimental current source density studies (Ketchum and Haberly 
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1993a, Rodriguez and Haberly 1989). In the Ketchum and Haberly (1993b) simula­

tion, distributions of spike arrival times are derived for different excitatory pathways 

on the basis of anatomical and physiological data. These distributions when con­

volved with synaptic response functions in a cable representation of a population of 

piriform pyramidal cells was able to replicate experimental CSD data. 

Since we are using these distributions to model input to a single piriform pyramdal 

neuron, we discretize the arrival time distributions such that they each represent 

histograms with a total of 100-300 synaptic events per excitatory pathway. This 

is based on the assumption that each pathway should be capable of generating an 

action potential and from studies of hippocampal neurons that indicate that epsps 

that are elicited by single axonal spikes range in amplitude from 30 to 665 µ V (Sayer 

et al. 1990, Sayer et al. 1989, McNaughton et al. 1981). Figure 3.3 shows arrival time 

distributions used for excitatory pathways. 

3.4 Results 

Gamma oscillations (30-50 Hz) in the piriform cortex are typically evoked by the 

presence of odors in a context-dependent way (e.g., a hungry animal responding to 

food smells) in awake-behaving animals (Freeman 1960, Woolley and Timiras 1965). 

Gamma activity is further modulated by slower oscillations (1-4 Hz) that are corre­

lated with respiration (Freeman 1959, Freeman 1960, Woolley and Timiras 1965) in 

such a way that a burst of gamma oscillations is superimposed on a single respiratory 

wave. During periods of sniffing, the slow wave increases in frequency to match the 

sniffing rate (Freeman 1960) which more closely approximates the theta rhythm (4-12 

Hz) (Macri des et al. 1982). Periods of burst activity are usually separated by periods 

of relative quiescence. 

The current source density analysis of Ketchum and Haberly (1993abc) suggests 

that piriform cortex pyramidal cells are subjected to repeated sequences of distal to 

proximal synaptic activation on their apical dendrites during each gamma oscillation 

in the EEG. For the remainder of this chapter we will refer to the pattern of synaptic 
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Figure 3.3: Model response to synaptic input believed to underlie a single gamma 
oscillation. Graphs on left show spike arrival time histograms for different path­
ways. Excitatory input along different pathways typically consisted of on the order 
of hundreds of spikes per spike arrival time histogram. The graphs on the right show 
summed synaptic input over respective dendritic layers for different pathways. Inset 
shows simultaneous intracellular recording. 

activity believed to underlie a single gamma oscillation as a "gamma sequence." When 

this pattern is repeated many times to simulate burst activity, it will be called a "burst 

sequence." In the results that follow we describe the response of our model cell to the 

patterns of synaptic input believed to underlie gamma and respiratory oscillations. 

In the first section we examine the cell's response to realistic patterns of background 

synaptic input. This is later used as the baseline activity under which all subsequent 

simulations are performed. In the next section, we describe the model's response to 

the pattern of synaptic input believed to underlie a single gamma oscillation. The 

changes induced by this pattern of synaptic activity are longer lasting than the 25 

msec duration of the gamma oscillations normally seen in the EEG and in the next 

section of the results we discuss the implications of these longer lasting effects in 
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the context of activity that takes place over the duration of a respiratory oscillation 

(100-250 msec). We begin with our results concerning random background synaptic 

input. 

3.4.1 Response to random synaptic input 

Random background activity was scaled to increase resting membrane potential by 

7 m V in keeping with studies that compare resting potential in slice to intracellular 

recordings from awake animals (Baranyi et al. 1993). Having done this and using 

the rates of background firing described in our methods section, we obtained the 

baseline shown in figure 3.4 with standard deviation (SD) 0.43 mV. Addition of 

random synaptic input had two important consequences. First, it had a dramatic 

effect on the passive properties of the neuron by increasing the electrotonic length of 

the apical dendrite by as much as a factor of two and concomitantly decreasing the 

passive time constant from 23.6 to 9. 7 msec. Bernander et al. (1991) reported similar 

results for their neocortical model with the electrotonic length of the cell changing 

by a factor of 3 and time constant decreasing by a factor of 10. The change in 

electrotonic structure is shown in figure 3.4. The decrease in time constant suggests 

that a neuron's integration time might be much shorter in the awake animal than 

slice data may suggest. 

A second consequence of random synaptic input deals with the induced fluctua­

tions in membrane potential. We compared the power spectra of membrane potential 

fluctuations in the presence and absence of voltage-gated currents and found that the 

cell's response differed significantly in each of those cases. Figure 3.5 shows the power 

spectra in the active and passive cases. The spectra associated with the absence of 

active conductances show a roughly monotonic decrease in power from low to high 

frequencies. This is in marked contrast to power spectra taken from instances where 

active conductances were includt'.d in the model. In these cases, an increase in power 

is seen in the frequency range of 5-15 Hz. This effect is not particularly sensitive 

to the types of synaptic input used (non-NM DA, GAB AA, and GABAB), since it 



~ ~ 
• 

250ms 

I I 

74 

no synaptic input 

I 
basal 

I 

'-
ll .. 

~L 
10 µm 

I -
I 

random synaptic input 

basal apical 

1• 

Figure 3.4: Changes in electrotonic structure due to the addition of random synaptic 
input. Random synaptic input increases the electrotonic length of the apical dendrite 
by approximately 50%. Membrane potential in the presence of synaptic background 
activity is shown at bottom. 
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is robust to the combination of synaptic inputs used in generating background noise 

(see Figure 3.5). Although different combinations of synaptic channel types used to 

induce background activity have an effect on the amplitude of the power spectra, the 

spectral profile remains constant. This suggests that synaptic noise of almost any 

type is capable of inducing low frequency (5-15 Hz) subthreshold oscillations. In 

chapter 2 we reported that the injection of broadband noise in piriform pyramidal 

neurons resulted in subthreshold oscillations in the theta rhythm range (4-12 Hz). 

Here we show that such oscillations may also be induced by background synaptic 

input. This result suggests that cortical neurons may be oscillating at physiologically 

relevant rhythms even in the absence of sensory stimulation (see Discussion). 

3.4.2 Response to a single gamma sequence of synaptic in­

put 

Timing of synaptic conductances and changes in membrane potential Fig­

ure 3.3 illustrates several different measures of the model's response to a single gamma 

sequence. Histograms for spike arrival times for different synaptic pathways are shown 

to the left of the schematized cell. Continuous forms of these histograms were used 

by Ketchum and Haberly ( 1993b) in their systems model analysis of piriform cortex 

CSD data. 

Graphs of total synaptic conductance summed over different layers of the apical 

tree are shown to the right and indicate the different time courses of the induced 

synaptic conductances. A peak in afferent synaptic conductance clearly occurs first 

followed by a peak in fast GABAA inhibition followed by peaks in associative excita­

tion in layer lb. Interestingly, the peak GABAB inhibition occurs long after the rest 

of the synaptic conductance sequence has ended with a peak at roughly 170 msec. 

The graph of membrane potential in the figure 3.3 inset marked "intracellular" 

shows a single spike that is generated by the gamma sequence. Synaptic inputs 

were never scaled so high that a single gamma sequence could generate more than 

a single spike. This was done to conform to experimental data in awake behaving 
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Figure 3.5: Power spectra of membrane potential recorded over 20 sec in the pres­
ence of synaptic noise. Power spectra were taken in the presence and absence of 
voltage-gated channels. Spectra taken in the presence of voltage-gated channels 
show an amplification of frequency components in the 5-15 H z range ( approximately 
theta/sniffing rhythm). Graphs on the right two-thirds of the figure show that differ­
ent combinations of synaptic channels do not have a significant effect on the profile 
of power spectra. 
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animals which seems to suggest that piriform pyramidal cells generally do not spike at 

rates higher than 10 Hz (Schoenbaum and Eichenbaum 1995, Mc Collum et al. 1991 ). 

Additionally, intracellular recordings from piriform cortex pyramidal cells indicate 

that a strong shock to the LOT only elicits a single spike from individual neurons 

(Haberly and Bower 1984). The intracellular trace also shows that examination of 

a cell's membrane potential often gives little or no information about the complex 

patterns of synaptic input that the cell might be receiving. 

Effect of synaptic conductances on dendritic electrotonic structure In fig­

ure 3.6 we examine the effects of a gamma sequence on the electrotonic structure of 

the apical dendritic tree. The apical tree is represented by a dendrogram where each 

layer is differentially shaded and segment length is indicative of electrotonic length. 

Each dendrogram is taken at the peak of summed synaptic conductance for different 

pathways. Here we use electrotonic length to measure changes in the passive struc­

ture of the model, but we do not mean to imply that changes in electrotonic length 

proportionally translate into changes in the efficacy of synaptic inputs. Although 

changes in the passive structure of the cell will have an impact on the efficacy of 

synaptic inputs, this will also depend on other factors such as the reversal potential 

of the synaptic conductance and the membrane potential of segments where synaptic 

input is arriving. 

Changes in electrotonic structure occur in the following sequence. Dramatic 

changes in the electrotonic length of layer Ia compartments are seen within 4.0 msec 

(from onset of gamma sequence) where the average electrotonic length in this layer 

increases by approximately a factor of two. This is followed by a 50 percent increase 

in layer II at 11.5 msec in response to GABAA input. Superficial and deep lb exci­

tatory inputs then exert their peak influence on the electrotonic structure of the cell 

at 14 and 21 msec. Finally peak effects for GABAB inhibition occur at 167 msec. 

There are two interesting things to note about this sequence of events. The first is 

that excitatory inputs exert their effects on the electrotonic structure of the model in 

a distal to proximal direction. Past work has shown that this progression is optimal 
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Figure 3.6: Changes in electrotonic structure of neuron during the course of a single 
gamma oscillation. Dendrogram in upper right shows the cell's electrotonic structure 
in the presence of synaptic noise prior to gamma-type synaptic input. Subsequent 
dendrograms are taken at times when the synaptic conductance elicited by activity 
along a particular pathway has peaked. The level of synaptic conductance induced 
by activity along different pathways was shown in figure 3.3. The time at which 
the dendrogram was taken and the pathway induced synaptic conductance that has 
peaked at that moment are shown beneath each dendrogram. Times correspond to 
the times shown in figure 3.3. At the peak of afferent excitation, the most distal por­
tions of the apical dendrite show a dramatic increase in electrotonic length while the 
remaining dendrite maintains the electrotonic structure it had at baseline. GABAA 
inhibition is next to peak and dramatically increases the electrotonic length of the 
most proximal dendritic segments thereby isolating the soma from excitatory input. 
While proximal segments are electrotonically extended, excitation arriving via the 
associative superficial lb pathway peaks. This is followed by peak deep lb excitatory 
input which occurs just as the proximal portion of the dendritic tree is recovering 
from GABAA inhibition. GABAB inhibition is the last to peak (167 msec later) by 
which point dendritic segments proximal of layer la have settled down to baseline 
conditions, but la segments have become elongated, suggesting that the electrotonic 
effect of this inhibition is felt only by incoming afferent input. 
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for exciting a neuron (Rall 1964). The second is that the GABAA effects are maximal 

between the peak synaptic conductance of excitatory pathways in Ia and lb. This 

may act to segregate Ia and lb inputs. 

Consequences of synaptic timing for somatic spike generation The strength 

of both afferent (Ia) and associative (lb) excitatory inputs were adjusted so that each 

pathway was able to generate a somatic spike. Inhibitory inputs were not changed at 

all. Figure 3. 7 shows the results of these simulations. When afferent and associative 

excitatory inputs were both present ( normal situation for gamma sequence) a spike 

was generated with the same timing as when only afferent excitation was present. This 

indicates that when both afferent and associative excitation are present at levels where 

each is capable of eliciting an action potential by itself, the spike that was elicited by 

afferent excitation will be present, while the spike that would have been elicited by 

associative excitation is suppressed. As shown in figure 3. 7, when afferent excitation 

is removed, the associative spike returns. The associative spike suppression in the 

presence of an afferent spike is a combined result of voltage-gated K+ currents that 

are activated by the afferent spike and the presence of GABAA inhibition preceding 

associative excitation. 

3.4.3 Response to multiple gamma sequences within a burst 

sequence 

Impact of a single gamma sequence within a burst sequence One fundamen­

tal question that we wanted to answer is how individual gamma sequences interact 

with each other to affect the behavior of the neuron during the course of a burst 

sequence. We examined this first by looking at the impact on the electrotonic struc­

ture of the apical dendrite of a single gamma sequence. Figure 3.8 shows the results. 

For the sake of illustration, background synaptic activity was removed from these 

simulations. As can be seen in the figure, the electrotonic structure of the neuron is 

significantly altered from baseline even at 25 msec following the onset of the gamma 
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Figure 3. 7: Spike timing can yield information about the origin of synaptic excitation. 
Using the pattern of excitation and inhibition believed to underlie gamma oscillations 
in awake behaving animals, afferent (Ia) and associative (superficial and deep lb) 
excitatory inputs were each scaled to the point where each alone could elicit a spike. 
Afferent stimulation (gray line) produced a spike that took place 10 msec before 
the spike produced by associative input alone (dashed line). When the afferent and 
associative inputs used to generate the aforementioned spikes were combined, a single 
spike (solid black line) was generated at the same position as the spike elicited by 
afferent stimulation alone. The large difference in timing between the two spikes 
suggests that spike timing may contain information about the origin of excitation. 
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Figure 3.8: The duration of changes in the electrotonic structure of the piriform 
pyramidal cell exceeds the 25 msec interval time between the gamma sequences that 
make up a theta sequence. Prior to the initiation of a single gamma sequence, the 
electrotonic structure of the apical dendrite is at baseline as shown on the left of 
the figure. Prior to the initiation of a second gamma sequence 25 msec later, the 
electrotonic structure of the cell shows persistent changes, specifically elongations in 
the layer lb and II portions of the dendrite. Changes induced from a single gamma 
sequence persist long after the last presynaptic spike has arrived at the dendrite. Even 
225 msec later, layer Ia shows elongation resulting from GABAB synaptic activity. 

sequence. At this time a second gamma sequence would be initiated as part of a 

burst sequence, yet it is clear that the electrotonic structure of the cell retains the 

influence of the previous gamma sequence. While segments in the Ia portion of the 

dendrite have reset to their baseline electrotonic lengths, segments in layers lb and II 

are still significantly extended. This means that when synaptic input from a second 

gamma oscillation impinges on the cell, it will be filtered through an apical dendritic 

tree whose electrotonic structure has been determined by the previous gamma input. 

If individual gamma inputs during a burst act relatively independently of each 

other, then one would expect that the number of spikes produced by a particular 

sequence of gamma inputs should be conserved when the ordering of individual gamma 

inputs is rearranged. To test this possibility, we changed the ordering of gamma inputs 

which had elicited two spikes during the course of a burst so that the strongest gamma 
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inputs were clustered around the center of the burst. A comparison of these simulation 

runs before and after the rearrangement is shown in part A of figure 3.9. When the 

inputs were rearranged the burst produced a total of one spike where it had produced 

two previously. This was due to the hyperpolarization mediated by voltage-gated 

J{+ channels following the induction of a spike. These results show that individual 

gamma inputs do not act independently of each other, but rath~r have a strong effect 

on each other. More precisely, this result shows that not only the amplitude, but also 

the temporal position of a gamma input within a burst determines whether or not 

that input will be suprathreshold. 

To characterize the impact of a single gamma input on the course of a burst, we 

ran pairs of simulations where model parameters (including synaptic noise) were kept 

identical except for the amplitude of the first gamma sequence in the burst sequence. 

In one case (shown in part B of figure 3.9), a subthreshold input was scaled to be 

suprathreshold and the responses from the two runs were compared. This change 

resulted in the cancellation of a spike that had previously resulted from the second 

gamma sequence. It should further be noted that the two traces did not reconverge for 

106 msec (to within 100 µV) suggesting that the effects of a single gamma oscillation 

can be long lasting within a burst sequence. A less extreme divergence in behavior 

was observed when the first subthreshold input was scaled to a different subthreshold 

level. The results of these simulation runs are shown in part C of figure 3.9. Although 

this change was more subtle than turning a subthreshold input into a suprathreshold 

one, its effects were still long lasting. A reconvergence of the two traces (to within 

100 µ V) was only observed after 87 msec. 

Effects of GABAA inhibition during a burst Initial simulations showed that 

GABAA mediated inhibition was able to alter the timing of individual spikes. We 

anticipated therefore that the GABAA inhibition would act to bin spikes during the 

course of a theta burst. However, when we ran multiple simulations with and without 

GABAA inhibition, we found that this was not the case. Figure 3.10 shows multi­

ple overlaid graphs of intracellular activity during the course of a theta burst in the 
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Figure 3.9: To simulate theta activity, the spatio-temporal pattern of synaptic input 
believed to underlie gamma oscillations was repeated eight times, scaling the strength 
of each iteration of the pattern randomly. The diameter of the circles is proportional 
to the strength of individual gamma inputs. Hatched circles represent suprathreshold 
synaptic input in the presence of only baseline noise. Arrows mark the beginnings 
of different gamma sequences. In part A, eight input patterns which produce two 
spikes in one case (solid line) are rearranged in time such that the strongest inputs 
are clustered in the middle ( dotted line). In all parts of the figure the baseline noise 
was identical in the pairs of traces. In the case where the two suprathreshold inputs 
are clustered, only one spike is produced. This suggests that the timing of a synaptic 
input is as important as the amplitude in determining whether or not the cell will fire 
during the course of theta activity. In part B, the patterns of stimulation are identical 
except that in one case the first iteration of gamma activity is suprathreshold (solid 
line) and in the second it is subthreshold (dotted line). The effects of changing a 
single input from sub to suprathreshold are long lasting. It takes 106 msec for the 
two traces to converge ( .6. Vm < 100µ V) again. This result also shows that responses 
to individual iterations of the synaptic pattern underlying the gamma oscillations are 
not independent from other iterations during the course of theta activity. Part C 
shows the effects of changing the amplitude of a subthreshold input to a subthreshold 
input with a different strength. As was the case in part B, the effects of this change 
last beyond the duration of a single iteration of gamma input with reconvergence 
( within 100 µ V) of the traces taking place after 87 msec. 
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presence and absence of GABAA inhibition. Beneath each series of traces is a his­

togram of spike times for each time interval between successive GABAA inhibitory 

inputs. Each trace on the left side of the figure (GABAA inhibition present) is paired 

with a trace on the right side (GAB AA not present) with both traces identical in 

the amplitude of individual gamma inputs and synaptic noise. Therefore, differences 

between the two halves of the figure are entirely due to the effects of GABAA inhi­

bition. The two primary differences are in the total number of spikes (presence of 

GABAA inhibition causes a decrease) and in the standard deviation of spike timings 

between GABAA inhibitions (presence of GABAA increases standard deviation val­

ues). The latter result suggested that GABAA input does not act to bin spikes in a 

single neuron. 

This prompted us to examine the effects of GABAA by comparing traces that 

were identical except for the presence of GABAA inhibition. Two examples of such 

comparisons are shown in figure 3.11. In one case (part A), the two traces are almost 

identical with spikes lining up almost perfectly despite the fact that one trace was 

generated in the presence of GABAA inhibition and the other was not. Part B, 

however, shows a very different story. In this case GABAA inhibition shifts the 

timing of the first spike by almost 10 msec and eliminates a second spike entirely. This 

figure therefore suggests that GAB AA input may increase the temporal requirements 

for spiking. If excitatory input arrives at "good" times as it does in part A, then the 

neuron will spike; however, if it arrives at "bad" times it will not spike as is the case 

in part B. 

3.4.4 Consequences of delays between burst sequences 

Previous sections showed that gamma sequences did not have independent effects on 

a pyramidal neuron during the course of a burst. A single gamma input could exert 

an effect that would last in excess of 100 msec. This prompted us to ask how far 

apart two bursts would have to be in order for them to have no effect on each other. 

The results of these simulations are shown in figure 3.12. A sequence of two bursts 
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Figure 3.10: Dependence of spike timing on GABAA inhibition. Each trace on the 
left has an identical companion on the right which lacks GAB AA inhibition. Presence 
of GABAA inhibition reduces the total number of spikes but increases the standard 
deviation of spike times in bins demarcated by onset of GABAA inhibition (indicated 
by dotted lines in figure). 
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Figure 3.11: GABAA inhibition increases temporal requirements for spiking. Part 
A compares two traces where baseline noise and patterns of synaptic excitation are 
identical during the course of theta activity. The solid line trace includes GABAA 
inhibition whereas the trace made from the dotted line does not. In the case where 
GAB AA inhibition is present, only one spike is elicited during the course of theta 
activity. In the absence of GABAA inhibition two spikes are present. The first spike 
appears approximately 10 msec before the spike elicited in the presence of GABAA 
inhibition showing that GABAA inhibition can delay the onset of spiking. The second 
spike is not present when GABAA inhibition is active indicating that GABAA inhi­
bition can increase the temporal requirements for suprathreshold excitation. Part 
B shows what happens when excitation arrives during "permissive" times. Spikes 
overlap in the presence and absence of GABAA inhibition. 

is shown in each of the traces where the first two bursts are different and the second 

two are the same. If activity in the first burst has no effect on the second, then we 

will expect the second set to overlap perfectly. This is not the case in the top set of 

traces, nor is it the case in the middle set where bursts are separated by 325 msec. 

The long lasting effect of a burst is primarily due to the late onset of the GABAB 

inhibition that is initiated by the first burst. In the bottom set of traces we see that 

an interburst separation time of 650 msec is sufficient to eliminate the effect of the 

first burst on the second. Of course the length of the "sufficient" gap is dependent 

on primarily the strength of GABAB activity in the first burst and the number of 

gamma sequences in the first burst. Had the first burst consisted of fewer gamma 

sequences, the gap would not have to be as long. 

To better quantify the relationship between the number of gamma sequences and 

the strength of the GABAB inhibition, we generated multiple GABAB inputs at 25 
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Figure 3.12: Temporal gaps between burst sequences determine how activity in the 
first burst will effect activity in the second. Gamma sequences underlying the two 
bursts in each set of traces is the same. Top set show burst sequences separated by 
25 msec. Middle traces show bursts separated by 325 msec and bottom bursts are 
separated by 650 msec. Top two sets of traces show that activity in the second burst 
is clearly dependent on activity in the first. Bottom trace shows that the second burst 
is independent of activity in the first. In the biological network, GABAB inhibition 
may act to space out bursts so that they have minimal effects on each other. Top 
portions of spikes are truncated for the purpose of illustration. 
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Figure 3.13: The effects of multiple GABAB inputs. The model activates a GABAB 
input during each gamma oscillation. For this figure GABAB inputs were repeated 
at 25 msec intervals. Left graph shows the relationship between number of GABAB 
inputs and peak hyperpolarization. Right graph plots number of GABAB inputs 
against time to peak hyperpolarization. The relationship is roughly linear with peak 
times ranging from 246 msec to 493 msec. 

msec intervals and then plotted the time to peak hyperpolarization and the level of 

peak hyperpolarization vs. the number of GAB AB inputs. The results of this analysis 

are shown in figure 3.13 and suggest that the hyperpolarizing effect of the GABAB 

inhibition will begin to saturate after approximately 8 repetitions while the time to 

peak only doubles as the number of repetitions increases from 1 to 15. 

3.5 Discussion 

In this chapter we have studied the response of a realistic single cell simulation to 

patterns of synaptic input believed to underlie gamma and theta oscillations in the 

piriform cortex. Past single cell models have examined the effects of idealized patterns 

of synaptic input (i.e., sparse vs. localized, synchronous vs. periodic, etc.) on the 

behavior of single neurons (Agmon-Snir and Segev 1993, Murthy and Fetz 1994, 

Bernander et al. 1994, Bernander et al. 1991, Rapp et al. 1992). Our study differs from 

this past work because the patterns of input are tied to specific biological phenomena. 

In the discussion below we explore some of the computational implications of our 

results and their possible importance in the context of network functioning. 
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3.5.1 Patterned response to unpatterned stimuli 

Our model shows that temporally unpatterned synaptic input is capable of generating 

subthreshold membrane oscillations in the range of 5 to 15 Hz. This frequency range 

correlates nicely with the theta frequency ( 4-12 Hz) seen in EEG recordings from 

the piriform cortex of awake behaving animals which is further correlated to a rat's 

sniffing rate (Macrides et al. 1982). The synaptically induced subthreshold oscillations 

suggested to exist by our model could be used to sensitize the cell to inputs that arrive 

at the theta or sniffing frequency. 

In our single cell simulations, we showed that the synaptically induced subthresh­

old oscillations in the theta range are generated by voltage-gated conductances. Inter­

estingly, a network model of the piriform cortex developed in our laboratory (Wilson 

and Bower 1992) whose component pyramidal neurons were incapable of generating 

voltage-dependent subthreshold oscillations was still able to reproduce realistic EEG 

patterns, including theta modulation of gamma frequency activity. This suggests 

that the temporal relationships established by the network architecture are sufficient 

for generating aggregate activity that occurs on the time scale of the theta/sniffing 

frequency. An additionally interesting fact about this network model was that it was 

able to generate realistic EEGs in response to random input. This result showed that 

network connections alone can account for intrinsic rhythms at which the network 

operates. The single cell model presented here suggests that individual neurons may 

display oscillatory behavior that matches network rhythms. A similar phenomenon 

has been observed in the inferior olive where both neurons and the network are tuned 

to oscillate at similar frequencies (Lampl and Yarom 1997, Manor et al. 1997). In 

that case, individual neurons do not display spontaneous oscillations; however, when 

coupled with other neurons, subthreshold oscillations are generated which help to 

sustain the network level oscillation (Manor et al. 1997). 
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3.5.2 Biological plausibility of gamma sequences 

The spatio-temporal patterns of synaptic input that are used as input to our model 

are derived from a systems model (Ketchum and Haberly 1993b) meant to replicate 

experimental CSD data. These patterns of synaptic activation are therefore biolog­

ically plausible in the sense that they were generated in the context of constraints 

imposed by experimental data. A question arises, however, as to whether or not the 

gamma sequence taken from the Ketchum-Haberly model is appropriate as input to 

a single cell. The crux of this question lies in the fact that CSD data comes from field 

potentials that are a function of a population of neurons rather than a single one. 

One could argue that such data reflects the "average" activity of a population rather 

than single neurons; however, oscillatory field potentials suggest a degree of synchrony 

among neurons (Freeman 1975). Therefore, an equally plausible explanation of the 

data would be to interpret the CSD data as reflecting many neurons receiving similar 

spatio-temporal patterns of synaptic input. 

A second caveat to consider is that the CSD data was collected from anesthetized 

animals responding to a shock administered to the LOT (Ketchum and Haberly 

1993b, Ketchum and Haberly 1993c). It is difficult to assess a priori how results from 

anesthetized animals may relate to functioning in awake behaving animals. However, 

the similarity of the oscillatory field potential elicited by a weak shock to the LOT 

in anesthetized animals (Ketchum and Haberly 1993c) to the fast oscillations seen 

in awake behaving animals is at least suggestive that CSD results may apply to the 

functioning of piriform cortex under more physiological conditions. 

3.5.3 Computational utility of gamma sequence structure 

A gamma sequence consists of afferent excitation followed by shunting inhibition fol­

lowed by excitation from association pathways and ending with a late K+-mediated 

inhibition. Experimental evidence and simulations suggest that this sequence of 

events may be stereotyped and underlie the fast (gamma) oscillations seen in olfactory 

cortex EEGs (Ketchum and Haberly 1993a, Ketchum and Haberly 1993b, Ketchum 
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and Haberly 1993c). In this chapter we examined some of the consequences of such 

stimulation on the behavior of a single pyramidal neuron. 

One interesting result in this regard was how spike timing during the course of 

gamma activity reflected the origin of synaptic input that was used to excite the 

neuron. When afferent or a combination of afferent and associative excitation excited 

the cell to suprathreshold levels, the neuron generated a single spike at time t. When 

associative inputs alone were suprathreshold, a spike was generated at time t + 10 

msec. This result suggests that, at least in principle, it is possible to deduce the 

origin of the synaptic input responsible for generating a spike in the pyramidal cell 

simply from the timing of the spike. 

This idea prompted us to ask if the biological system could make use of such 

information from the spike timing. First we had to consider this question in the 

context of multiple gamma sequences. In the real brain, multiple gamma sequences 

would be occurring at 25 msec intervals and this could result in the blurring of 

associative input from one gamma sequence with afferent input from the next. This 

would not, however, be the case for the first gamma sequence in a burst sequence 

where afferent input would be unadulterated by a previous gamma sequence, and 

associative input, even if it were corrupted by subsequent afferent input, would still 

represent recurrent input (from cortex to bulb to cortex feedback loop) (Ketchum 

and Haberly 1993c). Therefore, in theory, this information could be extracted from 

the first gamma sequence in a theta sequence. The brain could then use the timing 

of spikes initiated by afferent input in the first gamma sequence as a timing signal 

indicating the onset of an olfactory stimulus or even a sniff as distinguished from 

spikes generated by inputs originating from within the network or recurrent activity. 

3.5.4 Information processing in the context of a burst se­

quence 

Our simulations showed that individual gamma sequences had an effect on the be­

havior of the cell that lasted longer than the 25 msec interval that separated gamma 
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sequences during the course of a burst sequence. Therefore, the cell did not reset 

to a baseline state following each gamma sequence. However, when burst sequences 

were separated by 650 msec or more, the structure of a previous burst sequence had 

no impact on the subsequent burst sequence. In the biological system, such delays 

can be accomplished through the slow acting GABAB inhibition. In this sense, one 

may imagine that from the perspective of a single cell, burst activity might, when 

properly spaced, appear packaged and self-contained. On the other hand, the cell 

is strongly affected by past gamma activity during a burst sequence. In this sense, 

gamma activity is not self-contained. 

Ketchum and Haberly ( 1993c) showed that only the first oscillatory cycle in the 

gamma-like activity elicited by a LOT weak shock stimulus is directly evoked by 

the shock. Further oscillations appeared to be the product of neural circuitry. This 

would suggest that neural activity during the course of burst activity pertains to 

neural activity being generated by several different olfactory areas (i.e., olfactory bulb, 

orbitofrontal cortex, etc.), rather than being directly elicited by the odor stimulus. 

Only the first gamma oscillation would pertain to activity generated by a direct 

response to odorants. As previously mentioned, the onset and termination of these 

bursts is dependent on the passive respiration rate or sniffing duration (Freeman 

1960). During passive respiration the slow wave has a frequency of 1-2 Hz (Freeman 

1960) which would be sufficient to separate bursts such that activity in one burst 

would not affect a subsequent burst; however, during sniffing, bursts are spaced more 

closely (Woolley and Timiras 1965) together suggesting that there would not be a 

sufficient period of quiescence to erase the effects of a previous burst. Yet it is 

possible that periods of sniffing may be separated sufficiently to isolate groups of 

bursts associated with bouts of sniffing. In this way, quiescent periods would be 

sufficiently long so that pyramidal cells could reset themselves before the next group 

of sniffs. Pyramidal cells could then process olfactory information associated with 

one bout of sniffing without being affected by previous bouts of sniffing. 
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4 

Spike Train Coding of Temporally 

Structured Stimuli 

4.1 Abstract 

Information theoretic techniques were used to quantify the amount of stimulus in­

formation in the spike trains of pyramidal cells from piriform cortex. Stimuli were 

current injections administered through patch electrodes to the somata of pyrami­

dal cells in a brain slice preparation. All stimuli had the characteristics of Gaussian 

noise but were differentially bandpass filtered at 0-10 Hz, 4-12 Hz, and 0-40 Hz to 

approximate (respectively) the temporal structures of pyramidal cell spike rate, the 

sniffing rate / theta frequency, and a broader band stimulus meant to encompass 

all frequencies including the EEG gamma rhythm. A DC offset was added to the 

stimulus to achieve the 1-10 Hz spike rates seen in awake behaving and anesthetized 

animals. The amount of stimulus information in the spike train can be determined 

by reconstructing the stimulus and quantitatively comparing the reconstruction to 

the original stimulus. Our results showed that stimuli in the 0-10 Hz and 4-12 Hz 

ranges were represented in the neural spike trains twice as well as stimuli in the 0-40 

Hz range. Furthermore, the amount of stimulus information in the spike train was 

highly correlated to the mean firing rate. Finally, we added norepinephrine (NE) to 

our slices during the course of stimulation to mimic the release of this neuromodulator 

during arousal. We observed that NE substantially increases the amount of stimulus 

information in the spike train. Furthermore, we found that the presence of NE does 

not usually require a change in the linear decoding procedure for spike trains, sug-
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gesting that neurons may not have to change their spike train decoding strategy if a 

presynaptic neuron was modulated by NE. 

4.2 Introduction 

In the previous chapter, we discussed the response of a realistic model to the types 

of synaptic input believed to underlie gamma and theta oscillations in the piriform 

cortex. In this chapter, we explore how well piriform pyramidal cell spike trains 

encode stimuli with the temporal structure of these oscillations by using information 

theoretic techniques to quantify the amount of stimulus information contained in 

spike trains. 

Similar techniques have been successfully applied to quantify the amount of infor­

mation in spike trains from neurons in the blowfly visual system (Bialek et al. 1991), 

the cricket cercel system (Theunissen et al. 1996), and sensory neurons in the electric 

fish (Wessel et al. 1996). All of these studies (as well as this one) essentially attempt 

to reconstruct a known stimulus from neural spike train data. In all past applications 

of this technique (see Rieke et al., 1997, for extensive review), the stimulus has been 

a sensory one and the neural spike trains have usually come from sensory neurons 

(Wessel et al. 1996, Bialek et al. 1991) or neurons that are very close to the periphery 

(Gabbiani et al. 1996, Roddey and Jacobs 1996, Bialek et al. 1991). The stimulus 

always consisted of bandlimited Gaussian noise in the particular sensory modality. 

For example, in the case of the electric fish (Wessel et al. 1996), the stimulus was 

a fluctuating voltage signal with the characteristics of Gaussian noise bandpassed at 

0-200 Hz. Unfortunately, it was not possible for us to use a sensory stimulus in the 

case of piriform cortex pyramidal neurons because the olfactory stimulus space is too 

vast (Buck and Axel 1991) and too poorly understood (Cain 1978) for us to sample 

in the way that is required by the stimulus reconstruction technique. Instead, we 

used a noisy current injection administered through a patch electrode to the somata 

of pyramidal cells in a piriform cortex slice. This is not meant to represent a sensory 

stimulus. Rather, it is meant to approximate the current that would be entering 
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the soma of the neuron via the dendrites; therefore, our stimuli were bandpassed 

to reflect the field potential oscillations that are believed to represent synchronous 

synaptic input to the pyramidal cell dendrites (Freeman 1975, Ketchum and Haberly 

1993c). 

Additionally, we explore the role of norepinephrine on the information content of 

pyramidal cell spike trains. NE is a neuromodulator produced in the locus coeruleus 

by neurons projecting to areas throughout the cerebral cortex (Foote et al. 1983). Be­

haviorally, NE release has been associated with arousal and attention (Aston-Jones 

and Bloom 1981, Aston-Jones et al. 1994) and may be present in the piriform cortex 

during periods of arousal when gamma oscillations are recorded in response to odor 

stimuli (Freeman 1960). Previous studies have shown that application of NE to corti­

cal pyramidal cells increases the number of action potentials generated in response to 

constant current pulses (Madison and Nicoll 1982); however, the significance of this 

increase in the context of spike train information content has never been explored. In 

this chapter, we elucidate the role of NE in this respect in piriform cortex pyramidal 

neurons by quantifying changes in the quality of the stimulus representation in the 

spike train before and after application of NE. 

4.3 Methods 

A schematic of the methods described in this chapter is displayed in figure 4.1. 

Experimental procedures Experiments were performed on slices from four week 

old female Sprague-Dawley rats. Animals were decapitated under ether anesthesia 

following procedures approved by the animal care and use committee at Caltech (pro­

tocol #1156). Brains were removed and bathed in cooled medium bubbled with 95% 

0 2 and 5% CO2 during the slicing procedure. Five coronal sections 400 µm thick were 

cut starting roughly 0.4 mm caudal to the anterior commissure. Slices were incubated 

at 35 °C for 35 minutes and then transferred to vials at room temperature. Bathing 

medium contained (in mM): NaHCO3 26, NaCl 124, KCl 5, KH2PO4 1.2, CaCl2 
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Figure 4.1: Schematic of experimental and data analysis methods used in this chapter. 

2.4, MgS04 1.3, and dextrose 10. Vials and incubation chamber were bubbled with 

the gas mixture previously mentioned. To prevent the damaging effects of excitotoxi­

city, the bathing medium contained 661 µM kynurenic acid; however, kynurenic acid 

was not present during recordings. During recording procedures the temperature of 

the slice chamber was maintained at 28.0 to 34.1 °C. Bubbled medium was passed 

through the chamber at a rate of approximately 3.5 ml/min. Synaptic blockers (in 

µM: APV 100, CNQX 30, Picrotoxin 50) were present during all recordings in or­

der to minimize noise introduced by random synaptic inputs. Data acquisition and 

stimulus delivery software was developed in the lab. 

Piriform cortex pyramidal cells are easily identified by their somatic position in 

layer II and their distinctive response to current injection (Haberly 1983, Barkai and 

Hasselmo 1994). Electrodes were positioned on the somata of pyramidal cells under 

visual guidance using a Zeiss Axioskop microscope. All recordings were done using 

the whole-cell technique on cells where seals of at least 10 Gn had been achieved. 

Patch electrodes (impedances: 4-8 MO) contained (in mM): potassium gluconate 
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120, KCl 10, EGT A 10, HEP ES 10, MgCl2 2, CaCl2 2, and N a2 AT P 2, with pH 

7.3 adjusted with KOH and osmolarity 290 mosm (Major et al. 1994). Only cells 

with resting potentials of -60 m V or less (relative to bath potential) and initial spike 

heights of at least 80 m V were examined. 

Stimuli usually lasted for 30 min, during which time enough spikes could generally 

be collected to construct adequate Kolmogorov-Wiener (KW) filters that are required 

for the reconstruction technique. Because we needed long periods of steady firing, 

concentrations of 10-100 µM NA were used in the data reported here, even though 

lower concentrations ( as low as 1 µM) were able to transiently increase the spike rate. 

Stimulus characteristics The calculation of KW filters requires that we use Gaus­

sian noise as our stimulus; however, we found it was necessary to add a small DC 

current (0.05-0.30 nA) to the stimulus in order to generate spiking rates similar to 

those seen ( roughly 1-10 Hz) in anesthetized and awake-behaving animals (Mc Col­

lum et al. 1991, Nemitz and Goldberg 1983). This resulted in a net DC membrane 

potential depolarization of 5 - 34 m V (mean = 14.5 m V) which is similar in mag­

nitude to reported differences in resting membrane potential between neurons from 

slices and awake animals (Baranyi et al. 1993). This stimulus produced peak to peak 

fluctuations in membrane potential that had a standard deviation (SD) of 2-9 m V, 

resulting in stationary spiking frequencies between 1 and 7 Hz. Higher steady state 

spiking rates could not be attained for the required durations in healthy cells. 

Data analysis The Kolmogorov-Wiener (KW) filter (Weiner 1949) guarantees the 

best linear estimation (in a mean square error sense) of the stimulus. Given the spike 

train and known stimulus, the KW filter is computed from: 

( 4.1) 

where Jc is the cutoff frequency of the stimulus, Ssx is the Fourier transform of the 

cross-correlation of the stimulus and spike train, and Sxx is the Fourier transform of 

the autocorrelation of the spike train. When h( t) is convolved with the neural spike 
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train, an estimate of the stimulus ( Sest) is obtained. To quantify the quality of the 

reconstruction, the noise is first defined 

n(t) = Sest(t) - s(t), ( 4.2) 

where s(t) represents the actual stimulus. The total energy in the stimulus is repre­

sented by 

2 lie 
CJ = df Sss(f), 

-Jc 
( 4.3) 

where Sss is the power spectrum of the stimulus. The mean square error of the 

reconstruction can be calculated from 

2 lie E = df Snn(f), 
-Jc 

( 4.4) 

where Snn is the power spectrum of the noise. A normalized measure of the quality 

of the reconstruction comes from the coding fraction(,) (Gabbiani and Koch 1996) 

( 4.5) 

When the reconstruction is identical to the stimulus 1 = 1, and when it is no better 

than chance (i.e., compared to a random signal), , = 0. 

Finally, to measure the mutual information (between the stimulus and spike train) 

per unit time, the following expression is used (Wessel et al. 1996): 

(4.6) 

where It is in units of bits/ sec. The coding efficiency, Is, which represents the amount 

of stimulus information per spike is obtanied by dividing It by the mean firing rate. 

A detailed explanation of these techniques and their applications can be found in 

reference (Rieke et al. 1997). 

All data analysis and stimulus construction were done using MATLAB (Math­

works , Natick, MA). 
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4.4 Results 

4.4.1 Suitability and stability of KW filters 

Stimulus reconstructions accomplished using KW filters require that a system be 

time-invariant. In the case of a neuron, this means that a neuron's response to input 

must be consistent over the time during which spike train data is collected for use 

in constructing a KW filter. To measure constancy of response, we interspersed 

stimulus repeats that were 10 sec in duration among 10 sec segments that were all 

different from each other. The repeats were then used to generate a raster plot 

which indicated that the 10 sec period was more than ample time for the neuron to 

respond to the repeated stimulus without being affected by the previous 10 sec of 

novel stimulation. If the spike trains elicited by the repeated stimulus over time were 

constant, then the neuron's response was considered time-invariant. Once periods 

of time-invariance were established, only spike train data from those periods were 

used to calculate KW filters. Furthermore only a single repeat and all of the novel 

segments were used to construct KW filters since this technique requires the use of 

a non-repeating stimulus. Because we found that periods of time-invariance in the 

response properties of neurons tended to always correlate with steady firing rates 

over time, we sometimes calculated KW filters from stimuli that were non-repeating 

but showed steady firing rates through their entire duration. The results of these 

experiments were not distinguishable as a class from those experiments that were 

done with the periodic stimulus repeats included. 

The results of our test for time-invariance for a typical pyramidal cell are shown 

in figure 4.2. The number of spikes generated in response to the repeated stimulus 

decreases over the course of one minute and then remains constant for the remaining 

19 minutes of the stimulation period which gives us an adequate number of spikes 

for construction of our KW filter (more on this below). Interestingly, the adaptation 

process involves a decrease in the number of spikes elicited by the repeated stimulus; 

however, the spikes that remain occur at similar temporal positions with regard to 

spikes that had occurred before adaptation. In this sense the spike trains generated 
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in the adapted neuron simply resemble sparser responses to the stimulus than before 

adaptation took place. Neurons in the rest of our sample showed the same type of 

response with periods of adaptation lasting from 20 to 320 sec (mean = 70 sec, n = 
10). 

Although most spike coding studies to date (Rieke et al. 1997) have found that 

a linear decoding strategy has been successful in extracting information from a spike 

train, there is no reason to assume that a neuron's spike train will be amenable to a 

linear decoding strategy. In generating stimulus reconstructions with KW filters, one 

is treating each spike in the same way (i.e., convolving each spike with the same filter) 

and ignoring any information that might be contained in the second order statistics 

of the spike train. One can test for the quality of the linear reconstruction by plotting 

the stimulus values conditional on the values of the reconstruction. If this relationship 

is linear, then this indicates that nonlinear terms would not significantly improve the 

quality of the reconstruction. Deviations from a straight line, however, would suggest 

that nonlinear terms may significantly improve the decoding process. Figure 4.3 shows 

the results of such an analysis for neurons that were stimulated with stimuli that were 

bandpassed at 0-10 Hz, 4-12 Hz, and 0-40 Hz. A linear relationship between the 

values of the stimulus reconstruction and the actual stimulus is seen in each case with 

deviations from linearity occurring in the data from neurons stimulated with 0-10 Hz 

and 4-12 Hz stimuli at extreme values of the stimulus reconstruction. To assess the 

possible impact of these deviations on the quality of our reconstruction, we compared 

the number of points in the stimulus that fall into the nonlinear range of the plot 

to the total number of points in the stimulus. We found that these points generally 

accounted for less than 10% of the total number of stimulus points, suggesting that 

even in the case where a nonlinear decoding strategy could improve the reconstruction 

quality, the improvement would not be significant. Examples of this analysis are 

shown in figure 4.3 where points in the nonlinear region of the stimulus estimate vs. 

stimulus plots account for no more than 4% of the stimulus values. 

The final issue we must address in order to be confident of any results gleaned 

from our reconstructions is the stability of our KW filters. If the number of spikes 
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Figure 4.2: Raster plot illustrating pyramidal cell spike trains in response to the 
repeated current injection waveform shown at the bottom. Following an initial period 
of adaptation lasting approximately 60 sec, the neuron displays an invariant response 
to the repeated stimulus for the remaining 19 min of the recording duration. Only 
spike train data from such periods of time-invariance in the neural response can be 
used to calculate KW filters. 
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Figure 4.3: The appropriateness of a linear decoding method can be determined by 
plotting values of the known stimulus conditional on values in the stimulus reconstruc­
tion. Consistent deviations from linearity would suggest that nonlinear terms might 
improve the quality of the stimulus reconstruction. Two of the examples shown here 
show deviations from linearity; however, stimulus values in the range of deviation con­
stitute a very small portion of the stimulus values as illustrated by the stimulus value 
histograms in the column on the right. Shaded regions in the histogram represent the 
stimulus values in the nonlinear portions of the plots on the left. Percentages repre­
sent the portion of the values in the nonlinear range compared to the total number 
of stimulus values. 
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in the spike train used to construct the KW filter is too small, then the filter can be 

biased to reflect features of the stimulus that underlie that particular spike train and 

will not have general applicability to decoding spikes that might occur in the context 

of a different stimulus. In order to determine the requisite number of spikes needed 

for a high quality KW filter, we first generated a series of filters calculated from spike 

trains that contained an increasing number of spikes. These filters were then used to 

reconstruct the stimulus from a portion of the spike train that had not been used in 

the calculation of the KW filter. The coding fraction of the reconstruction was then 

compared to the coding fraction achieved by using the KW filter that was calculated 

with the highest number of spikes from the sample. This data for five different cells 

is shown in figure 4.4. By 500 spikes the average coding fraction achieved is 95% the 

value of the coding fraction achieved with the highest number of spikes from each 

sample; therefore, we decided that a minimum sample of 500 spikes is sufficient for 

calculating a stable KW filter. KW filters for the neurons described in this chapter 

were calculated from spike trains that contained 502-11,806 spikes. 

4.4.2 Reconstruction quality and stimulus characteristics 

Because the KW filter essentially reflects the stimulus features that occur around an 

action potential, its structure is highly dependent on the frequency characteristics 

of the stimulus and the active and passive properties of the neuron. Therefore, one 

would ideally want to use a stimulus that is similar to the somatic currents that the 

piriform pyramidal cell experiences during awake-behavior. Studies in other systems 

have shown that reconstructions can be dramatically improved when using biologically 

relevant stimuli (Rieke et al. 1995). Unfortunately, such data is not available for 

piriform cortex. Instead we have chosen to bandpass our stimuli to reflect EEG 

rhythms which are believed to reflect synchronized synaptic input to the pyramidal 

cell. Stimuli band passed at 0-10 Hz were meant to reflect the spiking rate that 

is seen in piriform cortex pyramidal cells responding to odor stimuli (Nemitz and 

Goldberg 1983). Those bandpassed at 4-12 Hz were meant to approximate the theta 
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Figure 4.4: Plot of the number of spikes in the data used to calculate KW filters 
vs. the quality of the reconstruction achieved with those filters. A 60 sec portion of 
the spike train that is not contained in the data set used to calculate the filters is 
reconstructed and its coding fraction is measured. The quality of the filter ( shown 
on y-axis) is measured by dividing the coding fraction achieved with a filter utilizing 
data consisting of n (shown on x-axis) spikes by the coding fraction achieved with 
the maximum number of spikes recorded in each trial (range: 1800 to 7000). 

rhythm seen in the cortical EEG during sniffing and exploratory behavior (Woolley 

and Timiras 1965, Macrides et al. 1982, Ranck 1973). Stimuli with frequencies of 

0-40 Hz were meant to encompass the spectral range of the respiratory waves (1-2 

Hz), theta rhythm ( 4-12 Hz), and gamma rhythm (roughly 40 H z ) that are recorded 

from piriform cortex in awake-behaving animals (Woolley and Timiras 1965, Freeman 

1960). The wide frequency range of these stimuli was also meant to account for the 

dendritic filtering effects that are likely to play a role as synaptic input makes its 

way from the dendrite to the soma (Rall 1989). A stimulus that was bandpassed 

at 0-400 Hz was used to generate a filter that was not limited by the bandwidth of 
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the stimulus. This was done primarily to generate a filter that was shaped by the 

properties of the neuron rather than the stimulus. 

The KW filters calculated from each of our stimuli are shown in figure 4.5. The 

zero point in the filter graphs represents the time at which a spike would occur. 

Negative times represent the stimulus features that tend to precede a spike while 

positive times represent stimulus features that tend to follow a spike. A typical filter 

resulting from the 0-10 Hz stimulus shows a positive peak at the zero point that 

is preceded by a strongly negative peak. The amplitude of the positive peak is a 

reflection of the level current injection required to elicit a spike while the width of the 

peak appears to reflect the bandwidth of the stimulus. The width of the negative peak 

also appears to be bandlimited in this respect. The negative peak is not repeated 

at positive times suggesting that a more hyperpolarizing current tends to precede 

spikes. It is likely to reflect the "anode-break" type response that is seen in cells with 

Hodgkin-Huxley type conductances (Hodgkin and Huxley 1952). This phenomenon 

involves the generation of a spike following a hyperpolarization and subsequent return 

to resting potential. In the Hodgkin-Huxley model, the physiological mechanism 

governing this is a deinactivation of the Na+ channel (Hodgkin and Huxley 1952). 

Interestingly, when a 4-12 Hz stimulus is used, the filter appears to be symmetric. 

Although negative peaks precede and follow the zero point, it is difficult to ascribe a 

physiological meaning to them. Since a spike that would occur at the zero point would 

only be dependent on the stimulus that precedes it and the positive peak in this filter 

is surrounded by two negative peaks that are approximately equal in amplitude, it is 

likely that the negative peaks are a reflection of the stimulus rather than a neuronal 

property. Because the 4-12 Hz stimulus has a narrower bandwidth than other stimuli 

used here, any positive peak in the stimulus will more likely be preceded and followed 

by a negative peak. As an example of this, consider a stimulus that contains a single 

frequency (very narrow bandwidth). In this case any positive peak will always be 

surrounded by negative peaks. 

The 0-40 Hz stimulus generates an asymmetrical filter resembling the 0-10 Hz 

filter. The primary difference between the two is that the negative peak does not 
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appear bandlimited by the stimulus as in the case of the 0-10 Hz stimulus, while 

the positive peak is bandlimited as in the previous case. Finally, the 0-400 Hz filter 

is similar to the 0-40 Hz stimulus except that the negative peak is absent and the 

positive peak is no longer bandlimited. 

As a final assessment of the filters and the stimuli used to calculate them, we 

compared the coding fractions and coding efficiencies achieved by each one. One im­

portant caveat to consider in interpreting these results is that we were unable achieve 

prolonged spike rates that were higher than roughly 7 Hz. Although higher spike 

rates could be achieved transiently for periods of up to one minute, the cell quickly 

adapted, and in cases where a DC offset was added to compensate for this adaptation, 

the cell became sick and often ceased to fire altogether. Therefore, regardless of the 

stimulus characteristics, spike rates were always less than 8 Hz. 

Table 4.1 shows the coding fractions, 1 , the amount of stimulus information, 

It, and the coding efficiencies, Is, achieved for different stimuli. Recall that coding 

fraction is a measure of the quality of the stimulus reconstruction while stimulus 

information represents an absolute measure in bits/sec of the amount of information 

about the stimulus that is conveyed per unit time in the spike train. The highest 

coding fractions (, values of 0.33 and 0.38) were achieved with stimuli that were 

band passed at 4-12 Hz stimuli. Cells that were stimulated with the 0-10 Hz stimulus 

also showed relatively high coding fractions with values of 0.14-0.30 (mean= 0.24, n 

= 8). In contrast, results using the 0-40 Hz stimulus never showed coding fractions 

greater than 0.16 (min= 0.08, mean= 0.12, n = 5) despite the fact that spiking rates 

for these trials ( mean = 5. 2 Hz) were higher than those for trials using the 0-10 Hz 

and 4-12 Hz stimuli (mean spike rates of 3.3 Hz and 3.5 Hz respectively). Results 

from the 0-400 Hz stimulus produced a negligible coding fraction (0.0037) and, for 

that reason, we chose to only use this stimulus once. 

While coding fractions achieved with the 0-40 Hz stimulus were on average sub­

stantially lower than those obtained by using lower frequency stimuli, the amount of 

stimulus information shows an opposite trend with spike trains generated by the 0-40 

Hz showing higher levels of stimulus information than those generated by the 0-10 
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Figure 4.5: Comparison of KW filters and reconstructions achieved with different 
stimuli. Filters and bandwidth of stimuli are shown in the left column. Spike trains on 
the right are convolved with KW filters on the left to obtain a stimulus reconstruction 
( solid line) to be compared to the actual stimulus ( dotted line). Negative times in 
filter graphs show the structure of the stimulus that tends to precede the occurrence 
of a spike, while positive times show the structure of the stimulus that tends to follow 
a spike. DC offset is subtracted from all reconstruction graphs. 
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Table 4.1: Coding Statistics for Different Stimuli 

Results Using 0-40 Hz Stimulus 
cell spike rate ' It Is 

(Hz) (bits/ sec) (bits/ spike) 

A 2.6 0.10 6.8 2.6 
B 2.8 0.08 8.7 3.1 
C 6.5 0.14 11.0 1.7 
D 6.6 0.14 11.9 1.8 
E 7.6 0.16 11.4 1.5 

mean 5.2 0.12 10.0 2.1 

Results Using 0-10 Hz Stimulus 
cell spike rate 

' 
It Is 

(Hz) (bits/ sec) (bits/ spike) 

F 4.1 0.28 6.6 1.6 
G 4.1 0.30 6.6 1.6 
H 4.4 0.26 5.7 1.3 
I 2.4 0.14 2.5 1.1 
J 4.4 0.29 6.4 1.5 
K 3.3 0.28 5.9 1.8 
L 2.5 0.20 4.1 1.7 
M 1.5 0.16 2.8 1.9 

mean 3.3 0.24 5.1 1.6 

Results Using 4-12 Hz Stimulus 
cell spike rate ' It Is 

(Hz) (bits/ sec) (bits/ spike) 

N 2.9 0.33 6.8 2.2 
0 4.2 0.38 8.0 1.9 

mean 3.5 0.35 7.4 2.0 

Results Using 0-400 Hz Stimulus 
cell spike rate 

' 
It Is 

(Hz) (bits/ sec) (bits/ spike) 

p 1.6 0.0037 2.1 1.3 
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Hz and 4-12 Hz stimuli (see table 4.1 for comparison). This difference can be ac-

counted for by the fact that higher bandwidth stimuli contain more information than 

those with lower bandwidth; therefore, a spike train will have to contain a greater 

amount of information to represent a higher bandwidth stimulus. This is illustrated 

by results showing that spike trains generated by 0-40 Hz stimuli that on average 

contained 10.0 bits/ sec of stimulus information could only produce stimulus estimates 

that had a mean coding fraction of 0.12, while a mean stimulus information level of 

5.1 bits/ sec in the case of the 0-10 Hz stimuli resulted in an average coding fraction 

of 0.24. 

Although the type of stimulus we used had an effect on the coding fraction we 

could achieve with our reconstructions, when the stimulus type was kept constant, the 

quality of the reconstruction appeared to be highly correlated with the mean spike 

rate. For example, we calculated correlation coefficients for spike rate and coding 

fraction for neurons that were stimulated with stimuli that were bandpassed at 0-10 

Hz and 0-40 Hz and obtained values of 0.88 and 0.97 respectively. 

A summary of coding efficiency results is shown in table 4.1. In contrast to the 

coding fraction results, the 0-40 Hz stimulus produced the highest coding efficiency 

(max Is = 3.1 bits/spike, mean Is = 2.1 bits/spike); however, the range of coding 

efficiencies for these neurons overlapped with those where stimuli in the 0-10 Hz and 

4-12 Hz range were used. 

4.4.3 Effects of norepinephrine 

Norepinephrine (NE) is generally believed to be released into the cortex by the locus 

coereleus during periods of arousal (Aston-Jones et al. 1994). The locus coereleus 

makes extensive projections to the piriform cortex (Foote et al. 1983) and recent 

studies (Vanier and Bower 1993, Hasselmo et al. 1997) have shown NE to affect the 

synaptic efficacy of different pathways in piriform cortex. Furthermore, studies in 

hippocampal pyramidal cells have shown that NE can greatly increase a neuron's 

excitability independent of synaptic effects (Madison and Nicoll 1982). To explore 
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Figure 4.6: Effects of propanolol (/3 - adrenergic receptor blocker) and phentolamine 
( o: - adrenergic receptor blocker) on NE's ability to increase firing rate during the 
course of a stimulus. Phentolamine (10 µM) does not appear to diminish the NE­
induced increase in firing rate, while propanolol (10 µM) causes a slight decrease 
in firing rate following application of NE. These results suggest that NE-induced 
increases in firing rate are mediated by the /3 - adrenergic receptor. Data comes from 
three different pyramidal cells. 

the way in which NE might affect spike coding in piriform cortex pyramidal cells, we 

performed the information theoretic analysis described above using spike trains that 

were generated in the presence and absence of NE. 

The stimuli used for these experiments were bandpassed at 0-10 Hz and 4-12 

Hz since the results described above had indicated that pyramidal cell spike trains 

represent higher frequency stimuli significantly worse than low frequency stimuli. 

When NE was added to the bath during the course of stimulation, it always (n = 20) 

increased the mean firing rate of the neuron. NE-induced increases in spike rate were 

diminished or altogether eliminated by the presence of the /3-adrenergic antagonist 

propanolol (n = 5), but not by phentolamine (n = 5), an o:-adrenergic antagonist. 

These pharmacological data are illustrated in figure 4.6. NE-induced excitability in 

hippocampal pyramidal cells has been shown to be mediated by /3-adrenergic receptors 

as well (Madison and Nicoll 1986a, Madison and Nicoll 1986b ). 

As with previous data, we used stimulus repeats in order to assess the time-
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invariance of the neuron's response. Figure 4. 7 shows a raster plot of spike trains 

generated in response to stimulus repeats before and after the addition of NE. As 

can be clearly seen, there appear to be two periods of stable response, one in the 

absence of NE and one in the presence of it. Data from each of these periods is used 

to generate KW filters for the reconstruction of stimuli in the presence and absence of 

NE. Interestingly, when the raster data in figure 4. 7 is examined closely, one notices 

that addition of NE results in an increase in the total number of spikes that are 

elicited by the stimulus while retaining the number and temporal position of spikes 

that had occurred previous to the addition of NE. Also, the bottom row in the raster 

plot representing the neuron's response prior to adaptation is identical to the rows 

showing the neural response after the addition of NE. 

NE-induced changes in spike coding were measured by comparing coding fraction 

and coding efficiency for stimulus repeats and non-repeats before and after the ad­

dition of NE. An example of such data for a typical cell is shown in figure 4.8. As 

the figure illustrates, NE causes an increase in mean firing rate while increasing the 

coding fraction and decreasing coding efficiency. 

To assess the effect NE had on stimulus information content in the spike train, we 

calculated changes in,, ft, and 18 • In every case examined (n = 6) the presence of NE 

increased the coding fraction ( on average from 0.27 to 0.33 for non-repeats and 0.25 

to 0.32 for repeats), suggesting that NE acts to improve the stimulus representation 

in the spike train. An example of this for one cell is shown in figure 4.8. Increases in 

coding fraction for all cells ranged from 17% to 89% for reconstructions of stimulus 

repeats and 10% to 72% for reconstructions of non-repeats. Likewise, stimulus infor­

mation shows increases 19% to 118% for repeats and 6% to 110% for non-repeats. See 

table 4.2 for measurements regarding coding fraction and stimulus information. In 

the cases where changes in coding efficiency were statistically significant (n = 5/6, p 

< 0.05, Student's t-test), decreases of 13-21% for repeats and 11-33% for non-repeats 

were observed. Table 4.3 contains coding efficiency data for all neurons. 

To understand how NE increases the coding fraction, we compared reconstructions 

of repeats that were accomplished in the absence and presence of NE. As figure 4.9 
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Figure 4. 7: Raster plot showing spike trains over time in response to a repeated 
stimulus. The spikes that were present prior to the addition of NE continue to be 
present following the application of the drug; however, the total number of spikes 
increases. The raster plot shows two clear regions of steady state neural response 
that are demarcated by the application of NE. Data from these regions is used to 
calculate two separate KW filters, one to decode spike trains recorded in the absence 
of NE and one to decode them in the presence of NE. 
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Table 4.2: Effect of NE on stimulus representation. .0.e signifies changes in the 
neuron's encoding properties following the addition of NE. This measure is explained 
in the text. Level of statistical significance is indicated by asterisks: one asterisk (p < 
0.05), two asterisks (p < 0.005), three asterisks (p < 0.0001). Values in italics indicate 
statistical insignificance (p > 0.05). Statistical significance is assessed using Student's 
t-test in all cases. Cells J-M were stimulated with current injection waveforms that 
were bandpass filtered at 0-10 Hz. Stimuli for cells N and O were filtered at 4-12 Hz. 

Coding Fraction 
cell spike rate /pre-/ 1post-N E ti, 1pre-/1post-NE ti, ~e 

pre- / post-NE repeats repeats non-repeats non-repeats 
(Hz) (%) (%) (%) 

J 4.4 / 6.3 o.3o / o.35 17*** 0.29 / o.32 10* 4 
K 3.3 / 5.9 0.25 / o.37 45*** 0.28 / 0.33 16** 18 
L 2.5 / 4.7 0.21 / 0.26 26*** 0.20 / 0.28 36*** 2 
M 1.5 / 3.5 0.13 / 0.25 89*** 0.16 / 0.28 72*** 6 
N 2.9 / 3.9 0.27 / 0.32 18*** 0.33 / 0.37 13** 1 
0 4.2 / 6.9 0.32 / 0.40 27*** 0.38 / 0.42 10** 22 

mean 3.1 / 5.2 0.25 / o.32 37 0.27 / 0.33 27 8.8 

Stimulus Information 
cell spike rate It,pre-/ It,post-N E ~It It,pre-/ It,post-NE ~It 

pre- / post-NE repeats repeats non-repeats non-repeats 
(Hz) (bits/ sec) (%) (bits/ sec) (%) 

J 4.4 / 6.3 6.3 / 8.3 32*** 6.4 / 6.8 6 
K 3.3 / 5.9 5.1 / 8.3 63*** 5.9 / 1.1 20** 
L 2.5 / 4.7 4.2 / 5.3 26*** 4.1 / 5.8 41 *** 
M 1.5 / 3.5 2.2 / 4.8 118*** 3.0 / 6.3 110*** 
N 2.9 / 3.9 5.7 / 6.8 19*** 6.8 / 8.2 21 ** 
0 4.2 / 6.9 6.4 / 9.o 41 *** 8.2 / 9.7 18** 

mean 3.1 / 5.2 5.o / 1.1 50 5.7 / 7.3 36 
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Table 4.3: Effect of NE on coding efficiency. See previous table caption for an expla­
nation of asterisks. 

Coding Efficiency 
cell fs,pre-/ fs,post-N E t)._fs fs,pre-/ fs,post-NE !).Is 

repeats repeats non-repeats non-repeats 
(bits/ spike) (%) (bits/spike) (%) 

J 1.4 / 1.3 -13*** 1.5 / 1.1 -24*** 
K 1.6 / 1.4 -13*** 1.8 / 1.2 -33*** 
L 1.6 / 1.1 -30*** 1.7 / 1.3 -24*** 
M 1.5 / 1.5 -1 1.9 / 1.7 -13* 
N 2.1 / 1.8 -13*** 2.2 / 2.0 -11* 
0 1.6 I 1.3 -21 *** 1.9 / 1.4 -29*** 

mean 1.6 / 1.4 -15 1.8 / 1.4 -22 

illustrates, NE does not appear to significantly change the structure of the KW filter. 

Instead it improves reconstruction quality by increasing the number of spikes elicited 

by the stimulus. Since each spike is convolved with a KW filter, the greater number 

of spikes elicited by NE essentially represents a greater sampling of the stimulus by 

the neuron. In fact, we found that we could mimic the effects of NE by increasing 

the DC offset in our current injection during the course of stimulation. When this 

was done we were able to increase a neuron's firing rate from 2.8 to 6.2 Hz which 

was accompanied by an increase in coding fraction from 0.24 to 0.38. 

Although our analysis had suggested that changes in coding fraction were accom­

plished mainly through an increase in spike rate, we wanted to quantify differences 

between KW filters since these differences would imply differences in the way a spike 

must be decoded to extract stimulus information. Because the shape of the KW 

filter is partially shaped by the active properties of the neuron and NE is known to 

strongly diminish a potassium current in piriform pyramidal cells ( Constanti and Sim 

1987a), we expected a change in the structure of the KW filter after the application 

of NE. However, when filters generated in the presence and absence of NE were used 

to reconstruct the stimulus from spike trains recorded in the presence of NE, few 

differences between the reconstructions could be seen (figure 4.10). Interestingly, the 
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Figure 4.8: Changes in coding statistics in response to the application of NE. Appli­
cation of NE appears to increase the spike rate and coding fraction while decreasing 
the coding efficiency for this particular cell. Data for non-repeats are indicated by 
the x's. Data for repeats are shown by the circles. Gray circles and x's represent 
data recorded prior to the application of NE, while black data points represent data 
recorded after the application of NE. The solid lines represent means for stimulus 
repeat data while the dashed lines represent means for stimulus non-repeats data. 
Shading of the lines is done for purely illustrative purposes. Lines correspond to data 
points on which they are superimposed. 

only consistent change in the filter structure caused by NE was a reduction in the pos­

itive peak amplitude which presumably reflects a decrease in the amount of current 

injection required for the neuron to reach threshold. This result is consistent with 

the finding that NE reduces a very slow potassium current (see KARP in chapter 2) 

which has a time to peak of approximately 1 sec and is believed to be involved in 

regulating adaptation in this class of neurons ( Constanti and Sim 1987a). Presum­

ably, the reduction of this current would increase the excitability of this neuron and 

this would be reflected in the smaller peak in the NE filter when compared to the 

non-NE filter. Because this membrane current is so slow it would not tend to play 

a significant role in structuring the width of our filters given the frequency range of 

our stimuli. 

To quantify the similarity between filters, we first convolved a filter, h(t), cal­

culated from data in the absence of NE with a spike train, { ti} NE, generated in 

the presence of NE and calculated the mean coding fraction, 1 ( h( t), { ti} NE), for 

the resulting stimulus reconstruction. This was then compared to ,(h(t)NE, {ti}NE), 

the mean coding fraction achieved by a stimulus reconstruction using the NE filter, 

30 
min 



116 

0.1 ,--------r-----

0.05 

<( 
C 

0 

0.05 

0 

II 
II . 

I I 
11 
11 
II 
II 
11 ,, 
•' I 

t 

1 

0.06 

0.04 

~0.02 

0 

-0.02 
-1 0 1 

sec 

0.06 

0.04 

~ 0.02 

0 

-0.02 
-1 0 1 

sec 
no NE 

NE 

2 stimulus 
sec ----------

Figure 4.9: Stimulus reconstructions achieved in the absence and presence of NE. 
Filters used for the reconstructions are shown on the right and appear very similar. 
Spike trains generated in response to a stimulus repeat before and after application of 
NE are shown on the left where comparisons of the stimulus reconstructions achieved 
in the presence and absence of NE are compared. The higher quality reconstruction 
that is achieved in the presence of NE appears to be primarily the result of an increase 
in the number of spikes elicited by the stimulus. In this regard, NE permits the neuron 
to sample more features of the stimulus. Arrows indicate stimulus features that are 
only present in the NE reconstruction. All data come from the same cell. 

h(t)NE, using the following expression for difference in stimulus encoding: 

(4.7) 

measured as a percentage. 

In four of the six cells examined, ~e was very small ( 1 % - 6%). This implies that 

in these cases NE allows the neuron to encode a higher fraction of the stimulus in the 

spike train without changing the way in which individual spikes must be decoded. 

The values of ~e for the two cells which showed the most significant changes in their 

KW filters were 18% and 22%. 
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Figure 4.10: Comparison of reconstructions achieved when a spike train recorded 
in the presence of NE is convolved with KW filters that were obtained from the 
same cell using spike train data in the presence and absence of NE. The dashed line 
represents the stimulus while the gray line represents the reconstruction associated 
with filter generated in the absence of NE. The black solid line represents the filter 
and reconstruction associated with the presence of NE. Differences in coding fraction 
between the two reconstructions is only 2% ( see text for explanation of .6.e), suggesting 
that NE does not significantly change the properties of the filter. 

4.5 Discussion 

The goal of this chapter was to characterize the amount of stimulus information that 

is contained in pyramidal cell spike trains using stimuli with different kinds of tempo­

ral structure. We also examined the role that NE plays in modulating the amount of 

information in the spike train and the strategy required for decoding it. Our results 

can be summarized as follows. Stimuli that contained gamma frequency components 

( 0-40 Hz) were much more poorly represented by physiological spike rates than lower 

frequency stimuli (0-10 Hz and 4-12 Hz). The addition of NE increased spike rates, 

coding fraction, and stimulus information, but decreased coding efficiency. Interest­

ingly, the changes induced by NE did not result in a significant change in the structure 

of the reconstruction filters, suggesting that NE may increase the amount information 

in a spike train without requiring a change in the linear decoding strategy. In the 

discussion below we discuss some of the caveats associated with our methodology as 

well as the possible computational significance of the aforementioned results. 
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4.5.1 Limitations of Linear Reconstruction Technique 

In interpreting the results of our analysis, we must understand the limitations of 

the linear reconstruction technique in general and in the context of how it has been 

applied here in particular. For example, this technique requires that we use Gaussian 

noise as our stimulus; however, statistical analyses of the environment (Olshausen 

and Field 1996) suggest that naturally occurring sensory stimuli are anything but 

noisy. Furthermore, studies of spike trains from bullfrog auditory neurons show that 

stimuli with the spectral characteristics of naturally occurring frog calls are far better 

represented than broadband noise (Rieke et al. 1995). Although we have made efforts 

to construct our stimulus based on the frequencies present in the EEG and pyramidal 

cell spike rates in vivo, it is probable that a more "natural" stimulus might have been 

represented more accurately. 

A second issue we must contend with is the failure of the linear decoding scheme 

for some extreme (in the sense of a distribution) values of the stimulus. Although 

our analysis suggests that possible improvements that might result by the addition 

of nonlinear terms to the decoding process would be trivial because of the rarity of 

these extreme values, it is certainly possible that such events are more common in 

natural stimuli. Therefore, this issue warrants future investigation; however, it is 

equally possible that a natural stimulus may well cover a smaller range of values than 

those used by us. 

4.5.2 Effects of different bandpassed stimuli 

One of the primary goals of this chapter was to establish the extent to which stimuli 

with different frequency characteristics can be represented in pyramidal cell spike 

trains. Numerous authors have suggested that oscillations or events that take place 

on the same time scale as oscillations have a special significance in the context of 

neural processing. For example, some authors have suggested that fast oscillations 

(i.e., gamma, roughly 40 Hz) may reflect heightened attentiveness to a stimulus 

(Murthy and Fetz 1996). Others have suggested that slower oscillations may reflect 
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the computational parsing of information (Wilson and Bower 1992). Yet one must 

keep in mind that ultimately the importance of a stimulus is generally determined 

by whether or not it can generate a spike since this is the only thing that can be 

detected by the rest of the brain. 

Our results suggest that the spike trains of individual pyramidal cells are capable 

of representing a substantial portion of stimuli that are bandpassed at 0-10 Hz and 

4-12 Hz, while stimuli that were bandpassed at 0-40 Hz were represented half as 

well. Given that the filters generated by each of these stimuli consisted of only a 

single positive peak and the high degree of correlation that we found between spike 

rate and coding fraction, the inability of the neuron to accurately represent higher 

frequency stimuli may be entirely due to its limited spiking rate. As was previously 

mentioned, spike rates in the piriform cortex of rats typically show firing rates of 

1-10 Hz (Nemitz and Goldberg 1983, McCollum et al. 1991) and, as we discovered 

in this study, it was not possible to obtain higher rates of firing for the durations 

of time that are required by the reconstruction technique. Therefore, the neuron's 

inability to accurately represent higher frequency stimuli may be limited in the awake 

behaving animal as well. However, given that spike rates are considerably higher 

prior to adaptation, it is possible that better representations of a stimulus may be 

accomplished in the biological system for brief periods of time. Unfortunately, the 

reconstruction technique described here requires long periods of time-invariance in 

the response which made it impossible to explore spike coding prior to adaptation. 

The way in which the stimuli were bandpassed also appeared to affect the way 

in which negative peaks in the stimulus were represented. The reconstructions of 

both the 0-10 Hz and 0-40 Hz stimuli showed a very poor representation of the 

negative portions of the stimulus (see figure 4.5) while the 4-12 Hz stimulus was well 

represented in these areas. This is likely the result of the narrower frequency band 

occupied by this stimulus. When a spike occurs in response to this stimulus, it can 

only be preceded or followed by an oscillation in the narrow frequency range of 4-12 

Hz while in the case of the other stimuli, a broader range is possible. Therefore, the 

ability of the neuron to represent negative peaks in the spike train may be more a 
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result of the mathematical properties of the stimulus rather than any physiological 

aspect of the neuron ( although this certainly can not be ruled out). The possibility 

that the higher quality reconstructions possible with the 4-12 Hz stimulus are more 

a quality of the stimulus rather than the neuron should not trivialize this result since 

the occurrence of stimuli in this frequency range in awake behaving animals would 

also be better represented for the same reasons. 

The structure of the of KW filters gives us insight into the properties of the neurons 

we are studying. For example, the structure of a filter at negative times (i.e., times 

before the occurrence of a spike) reflects the integration time of the neuron in the 

sense that it tells us how much stimulus history plays a role in the generation of a spike 

(Theunissen et al. 1996). However, the structure of the filter is bandlimited by the 

frequency range of the stimulus; therefore, such interpretations must be approached 

with caution. Previous studies (Theunissen et al. 1996, Bialek et al. 1991) have used 

broadband noise as stimuli, so that significant filter features reflect neuronal rather 

than stimulus properties; however, this approach carries a caveat with it as well. For 

example, one can consider a neuron where a hyperpolarization must have a duration 

of at least 100 msec in order to elicit a spike via the "anode break" mechanism, while 

a depolarization must last only 10 msec to elicit a spike. One might then expect that a 

stimulus in the 0-10 Hz range would produce a very different ratio of spikes generated 

by depolarization to spikes generated by hyperpolarization than a stimulus that was 

bandlimited at 0-100 Hz where one would expect a much higher proportion of spikes 

to be caused by depolarization. This point once again underscores the importance of 

using a naturally occurring stimulus. 

Keeping these cautionary notes in mind, we can still discern the properties of the 

filter that are likely to reflect neuronal rather than stimulus properties. For example, 

the negative peaks preceding the zero-centered positive peaks in the filters generated 

from the 0-10 Hz and 0-40 Hz stimuli likely reflect some "anode-break" type behavior 

in these neurons since there is no reason that this asymmetry should exist given the 

stimulus frequency characteristics. However, the width of the zero-centered positive 

peak appears to be largely determined by the stimulus bandwidth in all of the filters 
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( except those calculated from the 0-400 H z stimulus), yet the height of this positive 

peak reflects the amount of stimulus current necessary on average to evoke a spike. 

4.5.3 N orepinephrine and spike coding 

When NE was added to pyramidal cells during the course of stimulation, the firing 

rates of these neurons was increased. Accompanying this increase in firing rate was an 

increase in coding fraction and decrease in coding efficiency. Furthermore, the filters 

calculated from spike trains in the presence and absence of NE were very similar and 

almost identical coding fractions could be achieved using the non-NE filter to decode 

the spike train elicited in the presence of NE. 

Previous authors (Segal and Bloom 1976, Madison and Nicoll 1982, Hasselmo et 

al. 1997) have suggested that NE may improve the cortical "signal to noise" ratio; 

however, no efforts have ever been made to quantify this in an information theoretic 

way. For example, Madison and Nicoll (1982) have suggested that NE-induced in­

creases in excitability might contribute to a better representation of the signal. The 

data supporting this speculation was an increase in the number of spikes elicited 

by constant current pulses following the application of NE. However, the putative 

improvement in the quality of the signal representation was never quantified. Addi­

tionally, stimuli resembling constant current pulses are unlikely to occur in the brain 

which further complicates any conclusions that could be drawn from this study. In 

this chapter, we have used more realistic fluctuating stimuli to quantify the improve­

ment of the stimulus representation in the spike train. We found that the amount of 

stimulus information in the spike train could increase by as much as 118% following 

application of NE. This result suggests that if NE does indeed act to improve the 

cortical "signal to noise" ratio, it may accomplish this partially by improving the 

stimulus representation in the spike trains of neurons. 

In order to ascribe a biological meaning to these results, we must first assess 

how decoding in terms of the reconstruction technique relates to any decoding that 

would be done by a biological neuron. The analysis presented here establishes a 
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Figure 4.11: Possible advantage of having NE increase the number of spikes without 
changing the decoding strategy. A neuron receives input from a neuron that is then 
modulated by NE. How does it utilize spike train information in the modulated spike 
train? The study presented here suggests that the postsynaptic neuron receives a 
more informative spike train but does not have to change its decoding strategy to 
make sense of it. 

statistical relationship between a current injection stimulus to the soma and the 

resulting spike train. The relationship between stimulus and spike train establishes 

theoretical boundaries regarding how much stimulus information can be extracted 

from a spike train given our experimental conditions. Assuming that our analysis is 

as accurate as possible, a postsynaptic neuron under the same experimental conditions 

could extract an equal or lesser amount of information, but never more. For example, 

a previous study has shown that neurons that are postsynaptic to electroreceptor cells 

in the electric fish extract only a subset of the stimulus features that are present in 

the receptor cell spike trains (Gabbiani et al. 1996). The study presented here does 

not speculate on what features a postsynaptic neuron may extract from a spike train, 

but rather it establishes the maximum amount of stimulus information that could be 

extracted from the spike train using a linear decoding method. The finding that NE 

does not necessitate a change in decoding strategy in most of the cells we examined 

suggests that the statistical relationship between the stimulus and the spike train 
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elicited by it does not change following application of NE ( at least for the stimuli we 

chose to use); therefore, a downstream neuron is not required to change the way in 

which those spikes are utilized in order to preserve their information content. 

Given the above caveats, the results presented in this chapter offer a possible 

solution to an important neural problem: How does a postsynaptic neuron interpret 

a presynaptic spike train that has been altered by the presence of NE? Our results 

suggest that a neuron is not required to change its decoding strategy in most cases to 

extract information from a presynaptic spike train that has been modulated by NE 

(figure 4.11). However, the luxury of maintaining a constant decoding strategy comes 

at a cost. Increases in the amount of spike train information require the production of 

a greater number of spikes, but these spikes each represent a smaller or equal amount 

of information about the stimulus ( as measured by the coding efficiency). Since each 

spike has an energetic cost associated with it, the increase in spike train information 

associated with application of NE comes at a greater metabolic cost. Presumably, in 

a system as distributed as the brain, it is important to maintain consistency in the 

way information is coded, even if this consistency comes at a higher energetic cost. 
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5 

Conclusions 

In this chapter, I will discuss the contributions of the studies described in this thesis 

to the field of neuroscience and suggest future directions for research. 

5.1 Contributions of this work 

5.1.1 Pyramidal cell properties and single cell modeling 

Previous models of piriform cortex pyramidal neurons have been used in network 

simulations (Wilson and Bower 1992, Barkai et al. 1994) and to test interpretations 

of voltage-clamp data (Banks et al. 1996); however, these models have been much 

simpler than the one I have presented here. For example, the pyramidal cell repre­

sentations used in the Wilson and Bower (1992) model were integrate and fire units 

with passive properties based on sharp electrode data. When computer technology 

allowed for more sophisticated network simulations of piriform cortex, Barkai et al. 

(1994) constructed a model using pyramidal cells with three compartments and active 

behavior that was matched to experimental recordings (Barkai and Hasselmo 1994); 

however, this model was based on passive properties taken from sharp electrode data 

and was never able to replicate the fast adaptation or subthreshold oscillations that 

are observed experimentally. A simpler model of a pyramidal cell was constructed 

by Banks et al. (1996) to test the effects of different membrane distributions of the 

A-current on voltage-clamp recordings. This model had 21 compartments but did not 

attempt to model spiking behavior in the cell. The only active property it possessed 

was the A-current. 

The model of a piriform cortex pyramidal neuron that has been presented here is 
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different from these previous studies in that it is more detailed and it has been able 

to match more of the experimentally recorded behavior of a real neuron. It is more 

detailed in the sense that it is based on a realistic dendritic morphology and has been 

matched to the passive properties of adult neurons with data from whole-cell record­

ings. It is more realistic because it can replicate the fast adaptation and subthreshold 

oscillations that are seen experimentally. It also suggested a novel explanation for the 

presence of subthreshold oscillations. While previous studies (Llinas et al. 1991, Gut­

freund et al. 1995) have suggested that intrinsic subthreshold oscillations are simply 

the result of the interplay between different membrane currents, the modeling work 

presented here has suggested that membrane currents may generate oscillations with 

the help of intrinsic noise. Unfortunately, it was not possible to remove noise from the 

biological neuron, so this remains an untested hypothesis; however, the amplification 

of subthreshold oscillations in the 4-12 Hz range through the current injection of 

broadband noise is certainly consistent with this hypothesis. 

5.1.2 Consequences of physiologically plausible patterns of 

synaptic input 

Most previous single cell modeling studies have dealt with characterizing the re­

sponses of neurons to idealized patterns of synaptic input (Agmon-Snir and Segev 

1993, Murthy and Fetz 1994, Bernander et al. 1994, Bernander et al. 1991, Rapp et 

al. 1992). In this thesis, I have presented a study which explores the significance of a 

physiologically plausible pattern of synaptic input for the behavior of a single pyrami­

dal neuron. The results of these simulations provide an exception to a hypothesis put 

forth by Jefferys, Traub, and Whittingon that the gamma rhythm reflects the clock­

ing of cortical computations. These authors make an analogy to digital computer 

technology and compare pyramidal cells to central processing units (CPUs) while 

inhibitory neurons acting through GABAA-mediated inhibition are said to behave 

like computer clocks. In assessing the validity of this assertion, one must examine 

how computations actually occur in digital computers. The CPU is responsible for 
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carrying out all computations while the clock demarcates the beginning and end of a 

computation. Although an individual program may define a fixed sequence of com­

putations over multiple clock cycles, there is nothing in the hardware of the computer 

that requires that a computation in one clock cycle be dependent on a computation 

in the previous clock cycle. However, the modeling results presented here suggest 

that the effects of single input patterns believed to underlie gamma oscillations last 

much longer than the duration of a single gamma oscillation which Jeffrys and col­

leagues consider a reflection of cortical clocking. Because synaptic inputs were tuned 

to the time courses associated with experimentally recorded synaptic currents, it is 

unlikely that the model would be so far off that effects that were shown to last 100 

msec ( duration of 4 gamma oscillations) could last only 25 msec in reality. Instead 

the model suggests that the much slower GABAs mediated inhibition might act to 

space out bursts of gamma activity so that a new burst would not be affected by the 

activity induced by previous bursts. In this sense, the GABAs inhibition may serve 

more of a clocking function in piriform cortex than the GABAA inhibition. 

5.1.3 Spike coding in pyramidal neurons 

The information theoretic analysis of piriform cortex pyramidal cell spike trains that 

is presented here is the first such investigation of a mammalian cortical neuron. The 

results presented here show that stimuli that incorporate the frequency of gamma 

oscillations (0-40 Hz) are only half as well represented as stimuli that encompass 

the in vivo spike rates of pyramidal cells (0-10 Hz) or the theta rhythm (4-12 Hz). 

However, previous studies have shown that multiple neurons may be able to encode a 

larger portion of stimuli that are otherwise poorly represented by individual neurons 

(Theunissen et al. 1996). The investigation presented here can not rule out the 

possibility that such multicellular coding may take place in the piriform cortex where 

a group of neurons all receive the same stimulus but each cell encodes a separate 

portion of it. 

When Madison and Nicoll (1982) showed that NE can act to increase excitability 
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in hippocampal pyramidal cells, they suggested that this might somehow increase the 

neuronal "signal to noise" ratio. However, a precise mechanism by which this might 

be accomplished was never described nor did they attempt to quantify the putative 

improvement in signal representation. In the work presented in this thesis I have used 

the stimulus reconstruction technique (Bialek et al. 1991) to quantify an increase in 

spike train information induced by the application of NE. Furthermore, I show that 

for the stimuli I use, the presence of NE does not require a change in the linear spike 

decoding strategy. This result suggests that a neuron downstream of one that has 

been modulated by NE would not be required to change the way in which it processes 

spikes in order to maintain the stimulus representation in the spike train. 

5.2 Future directions 

The research reported here opens up a number of intriguing possibilities for future 

investigation. Some of these are briefly discussed here. 

Given that past network models of piriform cortex have been based on pyramidal 

cell representations that are considerably less realistic than the detailed biophysical 

simulation described here, the incorporation of a simplified version of my single cell 

model should increase the level of confidence in the realism of a future network simula­

tion. Although most of the dendritic complexity of the detailed simulation will have 

to be sacrificed in the name of computational feasibility, a simplified model would 

still display the active behavior of the full model since active conductances are re­

stricted to the soma. Introduction of a simplified version of the model into a network 

would also allow an investigator to study the functional implications of subthreshold 

oscillations at the network level. 

The information theoretic analysis of pyramidal cell spike trains suggests a number 

of avenues of inquiry. The work reported here utilized stimuli that were meant to 

approximate the temporal characteristics of field potential oscillations thought to 

reflect synaptic currents; however, the currents that enter the soma from the dendrites 

are most likely filtered in ways that may not be deducible from the field potentials 
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(Nunez 1981 ). The results in this study suggest that the type of stimulus used has a 

large role to play in the extent to which stimulus is represented in the spike train. It 

would therefore be useful to use a stimulus that more accurately represented somatic 

current input during an odor stimulus. Such a stimulus could be constructed by 

studying the statistics of intracellular fluctuations in membrane potential recorded in 

vivo from pyramidal cells during the course of odor stimulation. 

The effects of NE on the information content and decoding requirements of spike 

trains raise a more general question: How similar are the effects of other neuro­

modulators on spike train information content? It is known that acetylcholine can 

increase excitability in piriform cortex pyramidal cells in much the some way that 

NE does (Constanti and Sim 1987a, Hasselmo and Bower 1992). It would therefore 

be interesting to see if this neuromodulator also increased spike train information 

content without requiring a change in the decoding strategy. Although the effects of 

dopamine and serotonin on piriform cortex pyramidal cells have not been studied, re­

sults from hippocampal pyramidal neurons suggest that these neuromodulators may 

change spike coding in ways that are different from NE. For example, dopamine is 

known to decrease neuronal excitability by increasing a Ca 2+ -activated potassium 

conductance (Benardo and Prince 1982) and decreasing a sodium current (Cantrell 

et al. 1997). The effects of serotonin are similar to NE in the sense that the excitabil­

ity of the neuron is ultimately increased; however, recent studies have suggested that 

serotonin modulates not only a Ca2+-dependent potassium current, but also an in­

ward rectifying potassium current (Okuhara and Beck 1994) as well as N- and P-type 

calcium currents (Foehring 1996). It would be intersting to see if the these modula­

tors preserve the structure of the reconstruction filters in the same way that NE did. 

Intuitively, one might expect that a structure as complex as the brain might bene­

fit from maintaining consistency in spike coding regardless of what neuromodulators 

might be present. 
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Appendix A: Role of piriform cortex in 

limbic epileptogenesis 

The work reviewed in this appendix has little direct bearing on the research presented 

in this thesis. However, given that my stay at Caltech has been fonded by the gov­

ernment, I felt obliged to provide at least one example of how a better understanding 

of piriform cortex might benefit the public. 

The piriform cortex has recently attracted the attention of epilepsy researchers 

(see Loscher and Ebert, 1996, for a comprehensive and up-to-date review). Epilep­

tic states can be induced in animals through kindling. This paradigm involves the 

periodic stimulation of cortical areas (typically in the limbic system) via chronically 

implanted electrodes. Although stimulation levels are initially subconvulsive, gen­

eralized seizures will eventually occur if the stimulation is continued. Interestingly, 

the piriform cortex has the lowest threshold of all limbic structures for induction 

of seizures via kindling (Racine et al. 1989). Additionally, even when seizures are 

induced in other areas of the limbic system (i.e., amygdala or hippocampus), the 

piriform cortex is the first area to show the interictal discharge which is considered a 

hallmark of many types of epilepsy (Kairiss et al. 1984). Further evidence of the cru­

cial role that piriform cortex plays in the generation of limbic system seizures comes 

from studies which show that bilateral lesioning of the piriform cortex is successful in 

halting generalized seizures when kindling has taken place in the hippocampus and 

olfactory bulb (McIntyre and Kelly 1990). Although the precise reason has yet to be 

determined, it is believed that the central role piriform cortex plays in limbic epilep­

togenesis is most likely a result of the dense interconnectivity of excitatory elements 

within the cortex or possibly its proximity to certain motor structures (Loscher and 

Ebert 1996). 

Unfortunately, almost all of our knowledge of the piriform cortex and its role in 
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epilepsy comes from animal models. Some circumstantial evidence, however, suggests 

that piriform cortex may play a role in human epilepsy as well. For example, gener­

alized convulsions can be induced in human following stimulation of the uncus, the 

area which contains piriform cortex in humans (Penfield and Kristiansen 1951 ). In 

another study, uncinate fits were prevented by olfactory stimulation during olfactory 

auras (sensations preceding the onset of a seizure) (Efron 1956). One interpretation of 

this finding is that the piriform cortex is so involved in the perception of the stimulus 

that it can not be recruited in the spread of epileptic activity (Loscher and Ebert 

1996). 

Epilepsy affects approximately one percent of the global population, making it the 

second most common neurological illness (Martin 1991). At present, 10-20% of all 

epilepsies can not be treated with drugs (Theodore 1992) and often must be treated 

surgically. The majority of surgical patients suffer from temporal lobe epilepsy ( en­

copassing the limbic system in humans) which is often treated by removal of portions 

of the amygdala and hippocampus. Tragically, these areas play an essential role in 

emotion and memory and their lesioning often has dire consequences for patients 

(Bauer et al. 1993, Adolphs et al. 1994). If the animal data discussed above can be 

generalized to humans, it is possible that removal of the piriform cortex may negate 

the necessity of removing areas in the amygdala or hippocampus that may be more 

essential to a patient's quality of life. Unfortunately, no studies assessing the value of 

piriform cortex removal in humans have been performed to date (Loscher and Ebert 

1996). 
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Appendix B: Computational models of 

piriform cortex 

A summary and critique of various computational models of piriform cortex is pro­

vided here for those readers who would be interested in a deeper analysis than the 

one provided in the introduction. 

Wilson and Bower (1989) constructed a biologically realistic model of piriform 

cortex that was able to behave much like an associative memory. It was able to 

reconstruct partially degraded patterns of olfactory input, but was also able to dis­

criminate between similar odor patterns. In this simulation, only synaptic connections 

between inhibitory neurons and pyramidal cells and between pyramidal cells ( asso­

ciation pathways) were modifiable. The success of the model suggested that these 

pathways could be the site of synaptic plasticity in the real cortex as well. Further 

modeling work by Hasselmo et al. (1992) used a more abstract neural network archi­

tecture to study the effects of cholinergic modulation. Here too, associative memory 

function was accomplished via plasticity in the association fiber pathways. A later 

detailed biophysical simulation also supported this finding (Barkai et al. 1994). 

Ambros-Ingerson, Granger, and Lynch constructed a model which identified odors 

through hierarchical clustering. These simulations had biologically plausible patterns 

of connectivity but lacked much of the biophysical detail contained in other realistic 

simulations (Wilson and Bower 1988, Barkai et al. 1994). Yet, unlike the previously 

discussed models, this simulation included a model of the bulb which made reciprocal 

connections with the piriform cortex. Odor identification was accomplished by an 

iterative process whereby the network clustered inputs into successively more exclu­

sive groups of neural activity. Therefore, the first iteration of network activity may 

evoke a pattern of network activity that is general for all "fruity" smells , while the 

last may generate a pattern that is only active for "banana." This model assumes 
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that plasticity in the synapses of the afferent layer of piriform cortex are primarily 

responsible for accomplishing this. 

A more recent conceptual model by Hopfield (1995) departs from traditional mod­

els of associative memory and suggests that odors are coded in piriform cortex by spike 

timings relative to subthreshold oscillations. In this model, the olfactory bulb pro­

vides input to the piriform cortex that codes for different odorant intensities that 

make up a smell. For example, one smell might be represented by an intensity vector 

that codes for three individual odorants (e.g., with concentration ratios of 1:3:2). The 

strength of bulbar input for individual odorants then determines how soon a piriform 

cortex cell will fire relative to subthreshold oscillations always present in piriform cor­

tex neurons. An input representing a high concentration of odorant would make the 

cortical cell fire early in the upswing of the subthreshold oscillation, while a weaker 

input representing lower concentration would make the cell fire later. In this way, the 

piriform cortex would generate a temporal code based on spike timing to read out 

the odorant concentration vector and "recognize" the smell. 

One advantage of the associative memory models is that they make predictions 

that are easily tested experimentally. For example, the Wilson-Bower (1988) model 

and those developed by Hasselmo and colleagues (Hasselmo et al. 1992, Barkai et al. 

1994) all require that the primary location of synaptic plasticity be in the association 

fiber pathway. Experimental evidence from slice experiments does indeed show that 

long term potentiation (LTP) induced along the association pathway is significantly 

stronger than what is seen in the afferent pathway (Kanter and Haberly 1990). This 

seems to contradict an assumption of the hierarchical clustering model which made 

the afferent pathway the primary site of potentiation; however, in vivo experiments 

have shown the presence of significant levels of LTP in the afferent pathway following 

learning (Roman et al. 1987). Given the presence of NM DA receptors in both Ia 

(afferent) and lb (associative) layers of pyramidal cell dendrites, it is likely that LTP 

occurs at both pathways and that perhaps the present models are incomplete. 

The success of abstract neural networks has prompted many researchers to suggest 

that different brain areas may serve as some form of associative memory. For exam-
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ple, associative memory models exist for hippocampus (Treves and Rolls 1994) and 

the inferotemporal (IT) area of visual cortex as well (Rolls 1994). It is conceivable 

that many if not all brain areas subserve some type of associative memory function. 

Perhaps then a better question would be: If both area IT and piriform cortex sub­

serve associative memory function, why are their structures so different? Given that 

one area deals with olfactory information and the other with visual suggests that 

the architectures of these brain areas are likely to reflect the computational problems 

associated with their respective senses. Unfortunately, the piriform cortex associative 

memory models discussed here use only idealized inputs that are unlikely to reflect 

the temporal or spatial structure of real olfactory input. The Hop:field (1995) model 

made some attempt to correlate the mechanism of odor recognition with the structure 

of olfactory stimuli, but its conceptual nature makes it difficult to test experimentally. 

Although the above models are valiant attempts at explaining the function of pir­

iform cortex, a complete model will necessarily require an understanding of olfactory 

stimulus space and the significance of input from the olfactory bulb. At present, 

olfactory stimulus space is poorly understood because the sensory transduction pro­

cess remains murky. There was some reason for optimism in 1991 when Buck and 

Axel discovered a gene family that was thought to encode olfactory receptor proteins. 

Unfortunately, with the exception of one controversial report (Raming et al. 1993), 

these genes have yet to be functionally expressed and recent work (Mombaerts 1996) 

suggests that this gene family may be more important in olfactory system develop­

ment. 

Some intuition about the purpose of piriform cortex may come from looking at 

invertebrate olfactory systems. Interestingly, the neural architecture of insect olfac­

tory systems is very similar to that of vertebrates' (for a review see Hildebrand and 

Shepherd ( 1997)), suggesting that the structure of these brain areas may reflect the 

computational challenges surrounding olfaction. For example, the mammalian olfac­

tory system begins with odorant receptor cells in the mucus covered nasal epithelium 

which then project to anatomical structures called glomeruli in the olfactory bulb. 

Output from the bulb is then sent to the piriform cortex. Similarly, odorant recep-
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tor cells in the insect antenna are surrounded by lymph. These cells also project to 

glomerular structures, but in the antennal lobe which then projects to the mushroom 

body which is believed, much like the piriform cortex, to be involved in olfactory 

memory (Connolly et al. 1996). Responses to olfactory stimuli are also similar. For 

example, both mammalian piriform cortex (Adrian 1942, Freeman 1960) and the in­

sect mushroom body (Laurent and Naraghi 1994) have oscillatory responses to odor 

stimuli. The accessibility of insect olfactory areas and the ability to easily do exper­

iments in the absence of anesthesia may make the insect a good model system from 

which ideas about piriform cortex can be developed. Unfortunately, at present the 

nature of olfactory stimulus space for insects is no better understood than it is for 

vertebrates. In the meantime, additional insights are likely to come from work being 

done to develop an artificial nose (Dickinson et al. 1996, Lonergan et al. 1996). These 

efforts are likely to uncover many of the algorithmic issues associated with olfaction 

much like computer vision has done for visual physiology (Marr 1982). 
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