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Abstract 

The perturbation theory of non-commutatively integrable systems is revisited from the 

point of view of non-Abelian symmetry groups. Using a coordinate system intrinsic to the 

geometry of the -symmetry, we generalize well-known estimates of Nekhoroshev (1977) in 

a class of systems having almost G-invariant Hamiltonians. These estimates are shown to 

have a natural interpretation in terms of momentum maps and co-adjoint orbits. 
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Overture 

A detailed exposition of the results to be expounded in this dissertation will be offered 

in the Introduction. While some of these results are sketched here, the main task at hand 

is to describe, informally and in plain language, the questions and problems motivating our 

work, as well as the ideas and point of view leading us ultimately to answers. It will be 

illustrative to keep two examples in mind that serve as good prototypes for the larger class 

of systems that will be studied later. 

Two simple Hamiltonian systems 

Example A. Consider the ( classical) motion of a point mass m moving through or

dinary three-dimensional space, free of external forces including gravity. The linear mo

mentum J1in of the mass is conserved, so that the motion is in a straight line at constant 

speed. 

Example B . Alternatively, suppose that our point mass is constrained to move on 

the surface of a smooth sphere, the only external force being the normal force necessary 

to maintain the constraint. In this case the angular momentum J ang is conserved and the 

motion is along great circles of the sphere at constant speed . 

A / J,;" Jang B 

·''m /'r' . . / \ l:. , ,, \ , 
r:-, 

X 



THE COMPLEXITY OF PERTURBED MOTIONS X I 

Both Examples A and B possess a conservation law. The conservation laws can be 

'explained' by the existence of symmetries in the underlying equations. This is the content 

of a well-known theorem of Noether (see, e.g., Marsden (1992)). Example A clearly pos

sesses a three-dimensional translational symmetry, while Example B possesses a rotational 

symmetry. 

Suppose these symmetries are broken. For instance, suppose that in Example A we 

add a weak spatially periodic potential, and in Example B we introduce a small aspherical 

distortion. What is the fate of the above conservation laws? 

The complexity of perturbed motions 

In the absence of perturbations, Examples A and B are both integrable systems, i.e., 

systems whose solutions can be written down in an explicit or 'closed' form . Unfortu

nately, integrability is the exception rather than the rule, and generic perturbations to 

integrable systems create extraordinarily complicated behavior. Numerically such behavior 

is manifest in spectacular fractal-like phase portraits (see, e.g., Fig. 1) , broadband Fourier 

spectra (Noid, Koszykowski and Marens, 1977), exponential divergence of nearby trajecto

ries (Benettin and Galgani, 1979) and computations of KS entropy (Chirikov, 1979). On 

the analytical side, we have the existence of homo- and heteroclinic tangles, giving rise to 

horseshoe maps and chaotic dynamics on Cantor sets (Moser, 1973; Smale, 1967). 

According to Poincare's nonexistence theorem (see, e.g., Benettin, Ferrari, Galgani and 

Giorgilli (1982)) conserved quantities in an integrable system are irrevocably destroyed by 

generic perturbations. Despite this and our preceding remarks, there are two important the

orems of canonical perturbation theory that establish , under appropriate hypotheses, some 

kind of 'stability' for the conserved quantities. These are the Kolmogorov-Arnold-Moser (or 

KAM) theorem (Kolmogorov, 1954; Arnold, 1963; Moser, 1962) and Nekhoroshev's theorem 

(Nekhoroshev, 1977). For generic perturbations, the KAM theorem does not directly apply 

to Example B (or to other examples like it) , and we discuss it no further 1
. Nekhoroshev's 

1The interested reader is referred to, e.g., Arnold, Kozlov and Neishtadt (1988). 



X 

0.85 

0.75 

0.65 

0.55 

0.45 
-0.3 -0.2 

NEKHOROSHEV'S THEOREM 

-0.1 0 

dx/dt 

0.1 0.2 0.3 

FIGURE 1. A phase portrait made by iterating selected points under a return 

map for the restricted three-body problem with Jacobi constant C = 3.1 and 
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theorem can be applied to both Examples A and B, but not without significant differences 

that we now elucidate. 

Nekhoroshev's theorem 

Nekhoroshev's theorem applies to systems admitting action-angle coordinates. Nekhoro

shev also stated his result in terms of a generalization called partial action-angle coordinates, 

but his argument in the more general setting was incomplete. A complete argument us

ing partial action-angle coordinates was offered only recently (Fasso, 1995). This will be 

relevant to our discussion of Example B, but not in Example A, which we describe first . 



NEKHOROSHEV'S THEOREM xiii 

Action-angle coordinates in Example A are easily constructed. Suppose as before, that 

attention is restricted to spatially periodic perturbations, and let L be a 'lattice of period

icity.' For simplicity, assume that L has an orthogonal basis, and that the corresponding 

periods of L are the same in each direction. Non-dimensionalize all lengths by this period, 

and all masses by the mass of m. 

Modulo the lattice L, the position of m is determined by three angles q1 , q2 , q3 . The 

associated 'actions' are the components P1, pz, p3 of the momentum vector J1in· What makes 

these coordinates action-angle coordinates is that: (i) they put the equations of motion into 

Hamiltonian form, 

. 8H 
q·-

J - 8pj 

. 8H 
Pj = -~, 

uqj 

where the appropriate Hamiltonian His in this case the total energy of the system, and (ii) 

the unperturbed value Ho of the Hamiltonian (i.e., the kinetic energy) depends only on the 

action variables: 

In particular, the unperturbed motions of a system in action-angle coordinates are quasi

periodic: 

where 0,j = 8h/ 8pj (p(O)). In our example, we have 0,j = Pj (0), and the constancy of the 

action variables corresponds to the conservation of momentum J1in· 

We are now ready to apply Nekhoroshev's result: 



NEKHOROSHEV'S THEOREM xiv 

Nekhoroshev's Theorem. (Nekhoroshev (1977) 2
) Consider a Hamiltonian system in 

action-angle coordinates qi, ... , qn, Pi, ... , Pn and consider perturbed Hamiltonians of the 

form 

H(q,p) = h(p) + EF(q,p) . 

Restrict attention to values of the action vector p = (Pi, ... , Pn) lying in some finite closed 

ball B, and initial conditions p(O) lying in the interior of B. Assume h and F are real

analytic, and that the level sets in B of the unperturbed Hamiltonian h are strictly convex. 

Then there exist positive constants a, b, c, to and r0 such that for all sufficiently small E ~ 0 

all solutions of the perturbed system satisfy the exponential estimate 

lp(t) - p(O)I ~ roi . 

In Example A we have p = J1in, so that supposing that the perturbation varies propor

tionally with some parameter E, Nekhoroshev's theorem predicts that order i 'drifts' in the 

momentum J1in of the mass m take times on the order of exp(cca). If Eis small, such times 

can be very large indeed. To demonstrate just how large 'very large' can be in practice, we 

will relate a vivid example drawn from celestial mechanics. 

In Giorgilli and Skokos (1997) Nekhoroshev type estimates are derived for Trojan aster

oids in a restricted three-body model of the Jupiter-Sun system. In an appropriate rotating 

system of coordinates, the model has an equilibrium solution known as the Lagrange point 

1 4 . It is shown that an asteroid beginning at rest (in the rotating coordinates) and lying 

within 0.127 D of L4 , where Dis the distance from Jupiter to the Sun, will not increase that 

distance by a factor exceeding 1.05 before the universe has doubled its current estimated 

age! There are, moreover, at least four such Trojan asteroids presently known. 

2 For this formulation see, e.g., Lochak (1992). In Nekhoroshev's original statement, the convexity 

condition is replaced by a 'steepness' condition. This is a weaker (indeed C 00 -generic) condition we will not 

attempt to consider here or elsewhere. 



NON-COMMUTATIVE INTEGRABILITY xv 

Non-commutative integrability 

Before turning to Example B, let us summarize some key observations about Example 

A, which are typical of systems admitting action-angle coordinates: 

Al. Unperturbed motions in Example A (which has three degrees of freedom) are quasi

periodic with three independently controllable3 frequencies. 

A2. The conserved quantity J1in is a vector with three components. 

A3. The underlying translational symmetry is Abelian, meaning that the net effect of two 

successive translations is independent of the order in which they are applied. 

We add one final observation which is less obvious but nevertheless important: 

A4. The Poisson bracket (see below) {Ji, Jj} of any pair of components J1 , h, h of hn 

vanishes. 

By definition, the Poisson bracket {J, h} of two functions f and his computed by differenti

ating f along solution curves of the system obtained by taking as Hamiltonian the function 

h. 

If we are to apply Nekhoroshev's theorem as above to Example B, then we shall first need 

to construct action-angle coordinates. But at odds with this requirement is the disturbing 

fact that analogues of the observations Al-A4 follow an altogether different pattern in 

Example B: 

Bl. Unperturbed motions in Example B (which has two degrees of freedom) are periodic, 

i.e., have only one associated frequency. 

B2. The conserved quantity Jang has three components, i.e., one more component than 

the system has degrees of freedom. 

B3. The underlying rotational symmetry is non-Abelian, since the net effect of applying 

successive rotations in three-space depends in general on the order in which these 

rotations are applied. 

3 Controllable by varying the initial conditions Pi (0). 



NON-COMMUTATIVE INTEGRABILITY xvi 

B4. The Poisson brackets of components J1, Jz, Jz of Jang satisfy the cyclic conditions 

What is remarkable is that (local) action-angle coordinates can be constructed in Ex

ample B although, as one might imagine in view of the incongruence of the properties listed 

above, the construction is substantially more complicated than was the case in Example A. 

We do not attempt to describe this construction here. At any rate, the unperturbed Hamil

tonian H0 (q,p) = h(p) in action-angle coordinates fails to be convex, so that Nekhoroshev's 

theorem above fails to apply. 

Integrable systems whose conserved quantities satisfy nontrivial Poisson bracket rela

tions, as in B4, are known as non-commutatively integrable systems. In work proceeding 

the research on exponential estimates, Nekhoroshev (1972) determined that a large class of 

non-commutatively integrable systems admit a generalization of action-angle coordinates 

known as partial action-angle coordinates, which are in some sense more natural. Partial 

action-angle coordinates consist of two sets of variables: The first set consists of k angles 

q1, ... , qk and k conjugate actions p1, ... , Pk. The second set consists of ( n - k) variables 

x1, ... , Xn-k and (n - k) conjugate variables Y1, ... , Yn-k, which are all ordinary (i.e., non-

angular) coordinate functions. Here n denotes the total number of degrees of freedom. 

These coordinates, like conventional action-angle coordinates, are canonical in the sense 

that they put the equations of motion into Hamiltonian form: 

. fJH 
q· -

J - fJpj 

. fJH 
p· ---

J - fJqj 

. fJH 
x· -

J - fJyj 

. 8H 
y· ---

J - ox· 
J 

In partial action-angle coordinates, a non-commutatively integrable Hamiltonian depends 

only on the Pj variables . 



THE SYMMETRY POINT OF VIEW xvii 

In Nekhoroshev's work on exponential estimates, he realized that most of his arguments 

carry over to the non-commutatively integrable case if one uses partial action-angle co

ordinates, and assumes convexity of the unperturbed Hamiltonian with respect to the Pj 

variables only. Even in Example B, however (the simplest example of a non-commutatively 

integrable system imaginable!), constructing partial action-angle coordinates is not trivial. 

Furthermore, one cannot construct partial action-angle coordinates globally in Example B 

without coordinate singularities. This is true even if we remove points in phase space cor

responding to trivial motions (the mass mat rest), which constitute a 'natural' singularity 

of the problem. Difficulties posed by coordinate singularities are well-known in celestial 

mechanics; see, e.g., Coffey, Deprit and Miller (1986) and the references contained therein. 

Another problem with Nekhoroshev's generalized setting, as Fasso (1995) has pointed 

out, is that 'fast' (i.e., order E) motions in the Xj, Yj variables take solutions to the perturbed 

problem in a non-commutatively integrable system out of locally defined partial action-angle 

coordinate charts, before the exponential estimates on the Pj variables can be rigorously 

established. Fasso overcomes this problem by showing how to make intrinsic sense of 'normal 

forms' for the perturbed Hamiltonian, although to express and compute Nekhoroshev type 

estimates still requires one to fix an atlas of partial action-angle coordinate charts. The 

extent to which these estimates depend on the choice of atlas is an open problem (Fasso, 

1995, Appendix C). 

The symmetry point of view 

The reason for the difficulties presented by action-angle or partial action-angle coordi

nates in non-commutatively integrable systems is that the canonical nature of such coordi

nates is at odds with the intrinsic non-Abelian symmetry underlying many such systems. 

In this thesis we take the point of view that the geometry of an underlying symmetry, as well 

as its corresponding conservation law, should be built into whatever geometric framework is 

employed to carry out an analysis of perturbations. This viewpoint is to take precedence 

over previous requirements that one work exclusively with canonical coordinate systems. 



ACTION-GROUP COORDINATES xviii 

Rather, one should endeavor to understand how non-canonical contributions enter the equa

tions of motion, when these are viewed in a coordinate system intrinsic to the non-Abelian 

symmetry. 

With this kind of understanding in hand, we seek to geometrize and generalize the com

mutative version of Nekhoroshev's theorem given above, in such a way that its application 

to systems with a perturbed non-Abelian symmetry becomes transparent. In particular, 

this generalization should yield estimates that apply immediately to the conservation law 

intrinsically associated with such a symmetry. 

Action-group coordinates 

The simplest coordinate system of the kind we advocate here is one that we shall refer 

to as action-group coordinates. In Example A, and other systems whose integrability arises 

from the existence of an appropriate Abelian symmetry, action-group coordinates corre

spond to conventional action-angle coordinates. A discussion of action-group coordinates 

in general is postponed to Chap. 2. We preview these coordinates here in the special case 

of Example B, which we shall revisit throughout our exposition of the general theory. A 

more sophisticated demonstration of this theory (Chap. 11) will be an application to the 

Euler-Poinsot rigid body. 

Nondimensionalize all lengths in Example B by the radius of the sphere, and all masses 

by that of m. The state of the system is determined by the position q and instantaneous 

linear momentum vector v of m. We view q and v and vectors in three-space, subject to 

the conditions llqll = 1 and v • q = 0 consistent with the physical constraints. 

Assume the unit sphere is centered on the origin of an inertial orthonormal frame with 

basis e1 , e2 , e3 . It is convenient to express states (q, v) of m with respect to a reference state 

(q0 , v0 ), which we choose arbitrarily to be (e1 , e2) (see Fig. 2). For an arbitrary state (q, v) 

there exists a 3 x 3 orientation preserving rotation matrix g and a number p ~ 0 such that 

q = gqo 

v = pgv0 



ACTION-GROUP COORDINATES 

FIGURE 2. The reference state (q0 , v0 ) and general state (q, v) of the mass 

min Example B. (The basis vectors e1 , e2 , e3 have been translated for clar

ity.) 

XIX 

If we neglect trivial states ( v = 0), then g and p are determined uniquely, and p is strictly 

positive. Whence g, p constitute 'coordinates,' in the sense that there is a one-to-one corre

spondence between states ( q, v) and values for the pair (g, p). 

Notice that the rotational symmetry of the unperturbed system is completely trans

parent in the coordinates (g,p) as the unperturbed Hamiltonian H0 (g,p) (i.e., the kinetic 

energy determined by the standard metric on the sphere4 ) is independent of the 'symmetry' 

coordinate g; it depends only on the 'action' coordinate p, in the spirit of constructions of 

conventional action-angle coordinates: 

1 2 Ho(g, p) = h(p) = 2p 

4 We realize perturbations in the form of aspherical distortions by perturbing this metric, not by per

turbing the sphere with which configurations q are identified. 



ACTION-GROUP COORDINATES 

The equations of motion take the form 

where 

and 

!J=g 

loH 
p 092 

loH 
-p 091 

oH 
Bi 

. fJH 
p---

- 893 ' 

O -6 6 

6 o -6 

-6 6 o 

fJH ( ) - d H( te ) I Ogj g,p = dt ge J ,P t=D 

fJH d 
fJp (g,p) = dtH(g,p+ t)lt=O 

Roughly speaking, the non-canonical contributions to the equations are the terms 

l fJH l fJH 

In the unperturbed case, the equations reduce to 

p=O, 

which admit the general solution 

p(t) = p(O) 

g(t) = g(O) exp(tf!e3) , 

where Q = p(O). 

xx 
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Nekhoroshev estimates in the non-commutative case 

The angular momentum of min Example Bis given by 

Jang= q Xv= pg(qo X vo) = pge3 

If one keeps p > 0 constant and runs through all possible values of the symmetry variable 

g, then the corresponding locus of Jang in three-space is a sphere of radius p. In fact these 

spheres are intrinsic geometric objects associated with the rotational symmetry of the prob

lem known as co-adjoint orbits. These orbits (which are zero dimensional in the Abelian 

case) influence the perturbed motions, and in particular the fate of the conservation law 

jang = 0, in a fundamental way. Specifically, Nekhoroshev type estimates for a generic per

turbation can only be applied to 'drifts' in the momentum Jang in those directions transverse 

to the co-adjoint orbits (spheres). That is, Nekhoroshev estimates, under appropriate hy

potheses, apply to the action variable p = IIJangll- Relatively fast motions (order E) can and 

do appear in the tangential directions, being projections onto three-space of fast dynamics 

in the g variable. These motions correspond to those pointed out by Fasso and discussed 

above. Unlike partial action-angle coordinate charts however, an action-group coordinate 

chart completely contains such motions. 

Thesis outline 

This concludes our informal introduction to the main themes of this dissertation. After 

a formal exposition of our results detailed in the Introduction, the thesis splits roughly into 

two parts: In Part 1, we concentrate on dynamics and analytical aspects, and in particular 

on the derivation of Nekhoroshev estimates in the framework of 'non-canonical' coordinate 

systems. In Part 2, we describe geometric constructions underlying the theory in detail. 

The reader primarily interested in geometric aspects is advised to read the Introduction 

and the first three chapters of Part 1, although one might get away with less. More detailed 

outlines preface each Part. 

Action-group coordinates are in fact just a special case of a more general notion of 

'symmetry-intrinsic coordinates' known as Hamiltonian G-space normal forms. While the 
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efforts described here apply to some nontrivial systems, such as the Euler-Poinsot rigid 

body, they are really just the first step in a more extensive program based on such normal 

forms. We discuss this further in our Concluding Remarks (Chap. 13). 

Introduction 

Part 1. Dynamics 

Part 2. Geometry 

1 

8 

66 
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Introduction 

The usual starting point of Hamiltonian perturbation theory is the construction of a 

symplectic diffeomorphism between some open subset of the phase space P and an appropri

ate open subset of a 'model space' M, such that the unperturbed Hamiltonian is represented 

by a function on M whose integrability is readily apparent. When the integrability results 

from the existence of a sufficient number of Poisson-commuting integrals, and the joint 

level sets of these integrals are compact, the appropriate choice of model space is action

angle coordinates (M = 'llsn x Rn, n = ½ dim P), whose existence is then guaranteed by the 

Arnold-Liouville theorem (Arnold et al., 1988) . Another model space that has appeared in 

recent practice (Fass<\ 1995) is a generalization introduced by Nekhoroshev (1972) known 

as partial (or generalized:) action-angle coordinates (M = 1'k x Rk x R 2(n-k)). These coor

dinates are applicable when the integrability is 'non-commutative' (see below). In either 

case the model space is canonical in the sense that, up to a covering , it is Euclidean space 

equipped with its usual symplectic structure. 

Non-commutative integrability 

In geometric language, a Hamiltonian Ho, defined on some symplectic manifold (P,w), 

is integrable if Ho is constant on the leaves of a coisotropic and symplectically complete 

foliation F on P (Dazord and Delzant, 1987). A foliation F is coisotropic if its tangent 

distribution D contains its symplectic orthogonal Dw. It is symplectically complete if Dw is 

integrable as a distribution. In that case, the leaves of the corresponding foliation Fw are 

invariant under the flow of the Hamiltonian vector field XHo. 

If the leaves of Fw are compact, then they are in fact k dimensional tori (k = dim Fw = 

2n-dim F) and Fw is an 'angular fibering' in the sense of Nekhoroshev (1972). In particular, 
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in the case of commutative integrability (k = n) a neighborhood of each k-torus admits 

action-angle coordinates, while in the case of non-commutative integrability (k < n) a 

neighborhood of each such torus admits partial action-angle coordinates. In either case, the 

Hamiltonian Ho is represented by a function depending only on the k actions 'conjugate' to 

the angles representing the tori. This has the consequence that XH0 restricted to a given 

k-torus is conjugate to a linear vector field (i.e., is 'covered' by a linear vector field on IR k). 

Proofs of these statements and further details are given in Dazord and Delzant (1987) . 

Generally, in the non-commutative case, it is not possible to construct a partial action

angle coordinate chart such that it contains a full neighborhood of a leaf of F. Unfortunately, 

as Fasso (1995) has pointed out, perturbations to Ho create 'fast' motions (motions of 

the same order as the perturbation) along the leaves of :F. (A detailed analysis of these 

motions, in the special case of the Euler-Poinsot rigid body, is carried out in Benettin and 

Fasso (1996) .) These motions take trajectories out of a locally defined partial action-angle 

coordinate chart in a relatively short time. Fasso overcomes this problem by showing how 

to make intrinsic sense of normal forms for the perturbed Hamiltonian. Such normal forms 

are used to deduce Nekhoroshev estimates (Nekhoroshev, 1977) on the perturbed motions, 

although to compute and express such estimates a particular atlas of partial action-angle 

coordinate charts must be fixed . The extent to which these estimates depend on the choice 

is an open problem (see Fasso (1995, Appendix C)). 

One alternative approach to non-commutative integrability, due to Mishchenko and 

Fomenko (1978) (see also Arnold et al. (1988)), is to convert non-commutative integra

bility into commutative integrability. This is accomplished, at least locally, by 'gluing' 

together the k-tori to form n-tori; out of these n-tori one builds conventional action-angle 

coordinates. There is no escaping the difficulties mentioned above, however, because the 

unperturbed Hamiltonian will still depend on only k < n actions, leading to 'fast' motions 

in the perturbed system that take trajectories out of locally defined coordinate charts as 

before. Moreover, this degeneracy of the Hamiltonian appears mysteriously because its 
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source, namely the non-commutative geometry of the original problem, is concealed in the 

'commutative' coordinates employed. 

Integrability through symmetry 

Non-commutative integrability arises frequently in applications and is often manifest in 

the form of a non-Abelian symmetry group G. In that case the leaves of F correspond to 

orbits of G in the phase space5 . Generally the geometry of the symmetry is obscured in 

partial action-angle coordinate charts since, as we remarked above, such charts need not 

contain full neighborhoods of leaves of F 6 . An alternative that we explore here is to substi

tute for a canonical model space a Hamiltonian G-space normal form. One can view these 

normal forms as 'non-canonical coordinates' built directly out of the non-Abelian group ac

tion. The simplest of these normal forms is a generalization of action-angle coordinates that 

we shall refer to as action-group coordinates. The 'group' in action-group coordinates can 

be any compact connected Lie group G; when G = 1'n, one recovers conventional action

angle coordinates. In action-group coordinates the k-tori discussed above are represented 

by cosets in G of some maximal torus T C G. 

Action-group coordinates appear in Dazord and Delzant (1987, Section 5). Forerunners 

of these coordinates have been obtained by Marsden (1981), Gotay (1982), Marie (1983a) 

and Guillemin and Sternberg (1984, §41). We shall see that in the perturbation analysis of 

a non-Abelian symmetry, a single action-group coordinate chart suffices, and applies under 

conditions that are readily verified . 

Generalized N ekhoroshev estimates 

The main objective of this dissertation is to demonstrate that a Hamiltonian G-space 

normal form can indeed be used as a geometric framework for perturbation theory. We 

5 A proof of this fact will be recalled in Remark 3.12. 
6 ln fact (see Remark 4.4), if G acts freely and is compact connected and non-Abelian, then it is never 

possible for a partial action-angle coordinate chart to contain a neighborhood of a G-orbit (i .e., leaf of :F) . 
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FIGURE 3. Schematic representation of a solution curve t t----+ Xt of the per

turbed Hamiltonian H, projected onto 'momentum space' fl* using the mo

mentum map J : P -+ g*. The co-adjoint orbit through the initial point 

J ( xo) ( denoted 0) is depicted as a sphere. 
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do this in Part 1 by generalizing a well-known theorem of Nekhoroshev (1977) to a 'non

canonical' setting that includes action-group coordinates (Theorem 5.9). As a corollary we 

deduce a Nekhoroshev-type estimate on the evolution of momentum maps, in a class of 

integrable Hamiltonian systems with nearly G-invariant Hamiltonians (Corollary 7.1). This 

result may be informally described as follows . 

Suppose that a system with Hamiltonian Ho possesses a symmetry group G. Then, 

under appropriate hypotheses, the system will possess a corresponding conservation law. 

This law is embodied in the existence of a vector-valued function J : P -+ fl* (g denoting 

the Lie algebra of G) known as a momentum map that is constant on solution curves t t--+ Xt 

Next, consider a perturbation to Ho of the form 

H=Ho+EF, 
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where F is arbitrary. Furthermore, assume that the symmetry is sufficiently large so as 

to enforce integrability in the unperturbed system 7 . Let t f-----+ Xt be a solution of the 

perturbed Hamiltonian H , and let O C g* denote the co-adjoint orbit through the initial 

point J ( x
0

) E g*. Then we show that there exist positive constants a, b, c, t
0 

and r
0

, such 

that for all sufficiently small E ?: 0, one has (see Fig. 3) 

Here IJ ( Xt) - OI denotes the distance of J ( xt) from the orbit O, measured using some Ad* -

invariant inner product on g*. The estimate holds provided the Hamiltonian is real-analytic 

and satisfies an appropriate 'convexity' condition. One must also assume that action-group 

coordinates can be constructed in an appropriate neighborhood of x
0

. Sufficient conditions 

will be formulated precisely (see below). The constants appearing in the estimate depend 

on the unperturbed Hamiltonian Ho, on the magnitude and analyticity properties of F, and 

on characteristics of the symmetry group G. 

In other words, under appropriate conditions the perturbed dynamics, when projected 

onto 'momentum space' g* by J, evolves exponentially slowly in those directions transverse 

to the co-adjoint orbits. It turns out that in directions tangential to the orbits, relatively 

'fast' motions (order E) are possible. These fast motions correspond to those observed by 

Fasso described above. 

On the construction of action-group coordinates 

The local existence of action-group coordinates has been proven by Dazord and Delzant 

(1987, Section 5) for suitable non-commutatively integrable systems. We briefly survey this 

and related work at the end of Chap. 3. In Part 2 we will offer an alternative construc

tion that we have applied to several mechanical systems. In this approach the construc

tion of action-group coordinates is reduced to the construction of conventional action-angle 

coordinates in an associated lower dimensional phase space known as a symplectic cross 

7To be precise, we require that the Marsden-Weinstein reduced spaces be zero-dimensional; see Chap. 3. 

In some cases the two-dimensional case can be treated also; see Remark 3.9. 
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section. This approach may be useful to practitioners of perturbation theory, who are al

ready intimately familiar with conventional action-angle coordinates. The construction may 

be regarded as a particular application of the so-called 'sym plectic cross section theorem' 

(Guillemin, Lerman and Sternberg, 1996; Guillemin and Sternberg, 1984). 

Action-group coordinates can be constructed globally using the cross section method 

precisely when action-angle coordinates can be constructed globally in the symplectic cross 

section. Necessary and sufficient conditions for the existence of global action-angle coordi

nates in a Hamiltonian system are already known (Duistermaat, 1980). In Part 2 we will 

apply the symplectic cross section technique to the axisymmetric Euler-Poinsot rigid body. 

Perturbations to this problem have been studied already by Benettin and Fasso (1996) using 

partial action-angle coordinate charts. 

Unfortunately to construct action-group coordinates in the neighborhood of a point, 

one must assume that its image under the momentum map is a regular point of the co

adjoint action. In addition, the symmetry group must be acting freely. Nevertheless there 

do exist nontrivial examples for which action-group coordinates can be constructed, as the 

axisymmetric Euler-Poinsot rigid body demonstrates. Other examples include the problem 

of geodesics on 5 2 (and hence the 'regularized' 2D Kepler problem8 ), the 1 : 1 resonance, 

and the problem of hydrodynamics of three point vortices on 5 2 . Moreover, it seems likely 

that techniques such as those outlined here (both the analytic and geometric) will generalize 

to cases where more sophisticated Hamiltonian G-space normal forms are applicable. We 

discuss this possibility further in Chap. 13. 

8 See Moser (1970) . 



Part 1 

Dynamics 



Outline of Part 1 

In this first Part we focus on dynamics. Underlying geometric constructions will be 

considered in more detail in Part 2. After dispensing in Chap. 1 with some Lie theoretic 

preliminaries, we begin in Chap. 2 with a resume of the action-group coordinate framework. 

We state in Chap. 3 conditions ensuring the existence of action-group coordinates in a given 

system. We include a description of geodesic motions on S2 , where the existence of action

group coordinates is fairly transparent . 

Chap. 4 describes the geometry of the unperturbed dynamics of a system in action-group 

coordinates, as well as the dynamics obtained after naively applying 'multi-phase averaging' 

to the perturbation. This will explain, from the symmetry point of view, the origin of the 

'fast' motions tangent to the co-adjoint orbits, and motivate the Nekhoroshev estimates for 

the transverse motions, which we deduce in Sections 5- 7. By abstracting Lochak's proof of 

Nekhoroshev's theorem (Lochak, 1992; Lochak, 1993), we are able to relegate most of the 

notoriously tedious arguments to an appendix (Appendix A). This abstraction (Theorem 

5.9) is also of some independent interest, however (see Chap. 13). 

There are opportunities for further investigation along the lines initiated in this thesis. 

We discuss some of these in Chap. 13. 
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CHAPTER 1 

Preliminaries 

The purpose of this chapter is to recall some basic Lie theoretic results and to establish 

some associated terminology and notation. 

Weyl chambers 

When one replaces the torus 1rn in the action-angle model space 1rn x ]Rn with a compact 

connected Lie group G, the natural generalization of the action space ]Rn turns out to be a 

Weyl chamber of G. We now recall the standard 'geometric' definition of this object. 

1.1 Definition If a group G acts on a manifold X, then an orbit in X is regular if there 

exist no orbits in X of strictly greater dimension. A point x E X is called regular if it lies 

on a regular orbit. Let fl denote the Lie algebra of a compact connected Lie group G and 

let t C fl be any maximal Abelian subalgebra. Denote by flreg C fl the regular points of the 

adjoint action of G, g ·( = Ad9( (( E fl). A connected component to of the set tnflreg is 

called an (open) Weyl chamber of G in fl. 

Some related Lie theoretic facts needed in the sequel are summarized below. 

1.2 Theorem Let G be a compact connected Lie group. Then: 

1. flreg C fl is open and dense. 

2. All maximal tori of G are conjugate. 

3. Every g E G lies in some maximal torus. 

4. The Lie algebra t of any maximal torus TC G is a maximal Abelian subalgebra. 

5. Every point ( E fl belongs to at least one maximal Abelian subalgebra. 

6. The map sending a maximal torus to its Lie algebra is a bijection between the max

imal tori of G and the maximal Abelian subalgebras of fl. If t is a maximal Abelian 

9 
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subalgebra, then tnflreg Ct is open and dense, and the isotropy group Ge is identical 

for all points t E t n flreg• This group Ge is precisely the inverse oft under the above 

correspondence, i.e., Ge is the unique maximal torus whose Lie algebraist. 

7. Each regular adjoint orbit intersects each Wey} chamber in exactly one point. 

8. If tis a maximal Abelian subalgebra and we define t.L = [fl, t], then one has the direct 

sum decomposition 

.l fl=t EB t . 

Proofs of the above facts can be found in, e.g., Brocker and tom Dieck (1985). The reader 

may view these facts as generalizations to compact groups of familiar properties of the 

rotation group S0(3). For example, 1.2.4 corresponds to Euler 's theorem that every rotation 

is a rotation about some fixed axis. 

Henceforth G denotes a compact connected Lie group with Lie algebra fl. 

Let ( t, rJ) .-+ t · rJ be some Ad-invariant inner product on fl ( recall that such products 

always exist since G is compact1). Then 

1.3 Vt, rJ E fl, Vg E G . 

In particular, we have the infinitesimal version of 1.3, 

1.4 Vt,rJ,(Efl. 

The inner product on fl has a unique extension to a (non-degenerate) C-bilinear form on 

its complexification fie = fl ®JR C, which we also denote by (t, ry) .-+ t · ry. The identities 1.3 

and 1.4 generalize: 

(t, rJ E fie ; g E G) 
1.5 

(E, rJ, ( E fie) 

1To obtain one, simply average an arbitrary inner product over G using the Haar probability measure. 
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Weyl chambers in g* 

Fix a maximal torus T and corresponding maximal Abelian subalgebra t. Equation 1.4 

says that adc : g ➔ g is skew-symmetric with respect to the Ad-invariant product. Its 

image and kernel are therefore orthogonal for any ( E t. This fact, and the commutativity 

of t , easily show that the decomposition 1.2.8 is orthogonal ( explaining the notation t..L). 

If we define!:= Ann t..L (Ann denotes the annihilator) and !:..L = Ann t, then we obtain the 

dual decomposition 

1.6 g* =!: EB !:.1 . 

Let <p : g ➔ g* denote the isomorphism induced by the Ad-invariant inner product. 

Then the orthogonality of the decomposition 1.2.8 implies 

1.7 <p(t) = !: 

The isomorphism <p is G-equivariant if we let G act on g* via the co-adjoint action, 

g • µ = Ad;-1 µ. It thus establishes an equivalence between the adjoint and co-adjoint 

representations. In particular, by virtue of l. 7, <p maps a Weyl chamber to C t to a con

nected component of!: n g;eg, which we call a Weyl chamber in g*. Here g;eg denotes the 

regular points of the co-adjoint action. The equivalence of the two representations estab

lishes analogues of 1.2.5, 1.2.6 and 1.2. 7 for the co-adjoint action: 

1.8 Corollary 

l. For each µ E g* there exists a maximal Abelian subalgebra t C g such that µ E !: = 

Ann[g, t]. 

2. Let W be a Weyl chamber in g*, i.e., a connected component of!: n g;eg, for some 

maximal Abelian subalgebra t C g. Then Gµ, = T for all µ E W, where T is the 

maximal torus with Lie algebra t. 

3. Each regular co-adjoint orbit intersects each Wey} chambering* in exactly one point. 



CHAPTER 2 

Action-group coordinates 

In this section we describe the action-group model space. Chap. 3 will state conditions 

under which this model space is realizable in a particular system, and give a brief historical 

sketch of its origins. 

Let G denote a (real-analytic) compact connected Lie group and let ere denote its 

complexification (see, e.g., Brocker and tom Dieck (1985)). For computing estimates later 

on we need to assume that G is realized as a real-analytic subgroup of SO(nc, JR) for some 

integer nc. Since G is compact and connected this is always possible, by a corollary of 

the Peter-Weyl theorem (see, e.g., op. cit, Theorem 4.1 and Exercise 4.7.1). We may then 

identify the Lie algebra of G with a subalgebra fl C JRnoxno. The adjoint action can be 

written as Ad9 ~ = g~g- 1
, and the Lie bracket as [6,6] = ad~ 1 6 = 66 - 66- The 

complexification cc of G can be identified with a complex subgroup of SO(nc, C). The Lie 

algebra fire of ere is identifiable with the complex subalgebra fl EB if! C cn° xno. 

2.1 Remark Although a group like G = SU(2) is a real Lie group, it is ordinarily re

alized as a subgroup of e2 x2 . According to the preceding assumptions, we first need to 

realize this group as a subgroup of JR4 X4 ( using the standard identification C2 ~ JR4). The 

complexification cc will then be realized as a complex subgroup of e4x 4 . 

Henceforth T C G denotes a fixed maximal torus, t its Lie algebra, and W C i 

a Wey] chamber in fl*. 

The model space and its symplectic structure 

The natural projection fl * --+ t* (the dual map of inclusion) has kernel i..l and thus 

restricts, by virtue of 1.6, to an isomorphism i : i --+ t*. This map identifies W with an 

open set to= i(W) Ct*. One calls to a Wey! Chamber also. 

12 
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We define the action-group model space for a compact connected Lie group C as C x ~. A 

natural symplectic structure w0 on C x t;, generalizing the canonical structure I:j dqj I\ dpj 

on '][' n x !Rn, is given by the following proposition : 

2.2 Proposition Equip T*C with its natural symplectic structure. For each a E 9*, let 

aa denote the left-invariant one-form on C with aa(ida) = a (here viewing one-forms as 

sections of the cotangent bundle) . Then the embedding C x ~ c.....+ T*C that maps (g, p) to 

(i- 1 (p))a(g), maps C x ~ onto a symplectic submanifold of T*C. 

We define w0 to be the symplectic structure on C x ~ pulled back by this embedding. 

Note that w0 does not depend on the choice of Ad-invariant inner product on fl , or on 

the realization of C as a linear group. The proof of 2.2 will follow from a more general 

observation we shall make in Part 2. 

The injection <p- 1 oi-1 : t* c.....+ g maps t* isomorphically onto t (see 1.7), and so identifies 

~ with a Wey! chamber to C tin g. For computing estimates later on, it is convenient for us 

to make the corresponding identification of C x ~ with C x to. We now describe explicitly 

the symplectic structure on C x to induced by this identification. This symplectic structure 

of course does depend on the choice of Ad-invariant inner product. 

Since we need a complexification of the model space to make estimates later on, we 

develop notation which also makes sense on the complex manifold cc x tC containing 

C x to. (By tC we mean the complex subspace t EB it of fie= fl EB ig .) For fo E fie, To E tC 

and (g,p) E cc x tC, define the (complex) vector (fo,70\ ,P tangent to cc x tC at (g , p) by 

d 
(fo, To) 9,p = dt (g exp(tfo), p + tTo) . jt=O 2.3 

Note that every tangent vector in T(g, p) (Cc x tC) is of this form. 

On cc x tC define the one-form 0a by 

2.4 

and define the two-form wa on cc x tC by 

2.5 wa = -d0a 



HAMILTONIAN VECTOR FIELDS IN ACTION-GROUP COORDINATES 

We claim: 

Restricted to G x to C Ge x tC, wa agrees with the (real) symplectic structure 

w0 on G X to defined above, after making the identification G x to ~ G x to 
discussed above. 

14 

Our claim follows from formulas for w0 (analogous to 2.4 and 2.5) we shall derive in Part 

2. These formulas also appear in Dazord and Delzant (1987, Section 5) (who obtain it via a 

different route). For our applications to perturbation theory, we also need explicit equations 

of motion and an explicit formula for the Poisson bracket. We turn to these next. 

Hamiltonian vector fields in action-group coordinates 

If ~ : Ge x tC -+ ff and T : Ge x tC -+ tC are arbitrary holomorphic maps, we define 

vector fields ~ • f
9 

and T • JP on Ge x tC by 

(c :g) (g,p) = (~(g,p),0) 9,p 

(T · :p) (g,p) = (0,T(g,p))g,p 

An arbitrary vector field on Ge x tC is then of the form ~ · f
9 

+ T • JP for some vector-valued 

functions ~ : QC X tC -+ gC and T : QC X tC -+ tC. 

Write tl.C = tl. EB itl. and define ~ to be the connected component containing to of the 

set 

{p E tC I adp : tl.C -+ tl.C is invertible } . 

For p E ~, let Ap : tl.C -+ tl.C denote the inverse of adp : tl.C -+ tl.C. In particular, let us 

record that 

2.6 

and 

2.7 
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It is possible to show that the restriction of the (complex) form wa to cc x t~ is 

non-degenerate. If H : cc x ~ ➔ C is holomorphic, then the corresponding (complex) 

Hamiltonian vector field XH is defined by XH J wa = dH. Indeed 

2.8 

where 

2.9 

and 

2.10 

Here CY : fl ➔ t denotes the projection along t1-, and CY1- : fl ➔ t1- that along t. These 

formulas are the complexified version of formulas on C x to ~ C x ~ whose derivation will 

be given in Part 2. The vector valued functions ~~ : cc x ~ ➔ fie and ~~ : cc x ~ ➔ tC 

appearing in 2.9 and 2.10 are defined implicitly by 

and 

Here a dot denotes the non-degenerate C-bilinear form on fie. 

Equations of motion in action-group coordinates 

Recalling that we are identifying C with a linear group, we may think of elements of C 

as matrices and use formulas 2.8-2.10 to write the 'equations of motion' corresponding to 

a Hamiltonian H as 

2.11 
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Although one can (abstractly) make sense of these equations without the realization of Gas 

a linear group, our estimates later on will depend on the vector space structure of cnG xnG 

in which we have assumed cc to be embedded. 

2.12 Remark It is worth comparing the above equations to those corresponding to Hamil

tonian vector fields on T*G ~ G x fl* (left trivialization, say). Such equations were already 

known to Cushman (1977) (see Abraham and Marsden (1978, Proposition 4.4.1)). In the 

present notation, and identifying fl* with fl as above, these equations take the form 

( (g, µ) E G x fl ) . 

Can one use the 'coordinates' G x fl as a geometric framework for studying perturbations 

to integrable Hamiltonian systems whose phase space is T*G (such as the Euler-Poinsot 

rigid body)? Our (unpublished) investigations suggest that such an approach fails, as far 

as Nekhoroshev estimates are concerned, unless the Hamiltonian is both left and right 

invariant1 . This is not the case in many interesting examples. 

To help convince the reader that 2.11 indeed generalizes Hamilton's canonical equations, 

we point out a simple example. 

2.13 Example Take G = S1 . Then we realize Gas S0(2), i.e., the set of matrices of the 

form 

g = [cos0 

sin 0 

- sin 0] , 

cos0 

It is clear that t = fl C JR 2 x 2 consists of matrices of the form 

IE JR 

1i.e., invariant with respect to the cotangent lift of pre- as well as post-multiplication in the group. 
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and that the only choice for to is to = t. Also, t.L = 0. Choose for an inner product on f1 

the one given by 

[ 

0 
- Ii l · [ 0 

- ]zl = Ii Iz . 
Ii O lz 0 

Write 

( [
cos 0 - sin 0] [O - I] ) H'(0,I) = H(g,p) = H . , . 
Slll 0 cos 0 I 0 

Then, after making the change of coordinates from (g,p) to (0, I), one sees that 2.11 (in 

uncomplexified form) becomes 

8H' 
[)J 

· 8H' 
I= - 80 ' 

which are Hamilton's canonical equations on 8 1 x R. 

One generalizes the above argument to G = 1'n ~ SO(2) x • • · x SO(2) by realizing G as 

the set of block diagonal 2n x 2n matrices whose 2 x 2 blocks are of the form just described 

for n = l. One then recovers the familiar form of Hamilton's equations on 1'n X Rn. 

The next example is relevant to the problem of geodesic motions on 8 2 (see 3.4). 

2.14 Example Take G = SO(3). Then f1 = .so(3) can be identified with R 3 via the iso

morphism ( i----+ l : R 3 --t .so(3) defined by lu = ( x u ( u E R3). Note that this isomorphism 

extends uniquely to a C-linear isomorphism C3 --t .so(3, C). Let {e1, e2, e3 } denote the 

standard basis of R 3. Choose T C SO(3) to be the rotations about the e3 axis, so that 

t = span{e3} ~ JR. Then t.L = span{e1, e2} ~ R2. The adjoint action is given simply 

by g • ( = g( (g E SO(3), ( E R3), so that the regular adjoint orbits are the spheres cen

tered at the origin of positive radius. Whence f1reg = R 3\ { 0}. The standard inner product 

a· b = a1b1 + a2b2 + a3b3 is Ad-invariant. A connected component to oft n f1reg is given by 

to= {te3 It> O} ~ (O,oo) . So G X to~ SO(3) x (O,oo). 
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One has le ~ C3 with ad( : flic ➔ flic given by ad( rJ = ( x ry. Fixing p E tlC ~ <C, one 

finds that adp: t.LIC ➔ t.LIC (t.LIC ~ <C2 ) is given by adp(6,6) = (-p6,P6). Therefore, 

~ ~ <C\ {0} and >..P : t.LIC ➔ t.LIC is given by >..p((1 , 6) = (6/p, -6/p) (p E <C\ {0} ). The 

projections a : fl ic ➔ tlC and a.L : fllC ➔ t.LIC are given by a(6, 6, 6) = 6, a.L (6, 6, 6) = 

The equations of motion 2.11 can now be written as 

18H 0 8H 18H 
P 892 -Bi -p 891 

iJ=g 1 8H =g 8H 0 18H (g E SO(3,<C)) -p 891 Bi -p 892 

8H 18H 18H 0 Bi P 891 P 892 

8H 
(p E <C\{O}) p=--

8g3 

where 

The Poisson bracket in action-group coordinates 

Our convention for defining Poisson brackets is { u, v} = Xv J Xu J w. If t f--)- Xt is an 

integral curve of a Hamiltonian vector field XH, then according to this definition 

for any function u. 

2.15 Lemma The Passion bracket on cic x t~ is given by 
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PROOF. 

{ u, v }(g, p) =< du, Xv(g, p) > 

au {Ju 
= ~v(g, P) • {Jg (g, p) + Tv(g,p) • {)p (g, p) by 2.8 

8v 1. 8v au 8v au 
= ({)p(g,p)+ApCT 8g(g,p)) · 8g(g,p)-CT8g(g,p)· 8p(g,p) 

by 2.9 and 2.10, 

au 8v 8v au 
= 8g(g,p). 8p(g,p)- 8g(g,p). 8p(g,p) 

1.8v au 
+ApCT {)g(g,p)· {)g(g,p) 

The last term can be written 

□ 



CHAPTER 3 

On the existence of action-group coordinates 

In this section we formulate the main theorem on the existence of action-group coor

dinates for a Hamiltonian system with a non-Abelian symmetry. A proof of the theorem 

is postponed to Part 2, where the construction of the coordinates is reduced to the con

struction of conventional action-angle coordinates in an associated lower-dimensional phase 

space. 

A Hamiltonian system is said to possess a ( continuous) symmetry when there exists a Lie 

group G acting on the system's phase space (P,w), with respect to which the Hamiltonian 

function H0 is invariant: Ho(g • x) = H0 (x) for all g E G and x E P. The group G is 

said to be acting in a Hamiltonian fashion if it acts by symplectic diffeomorphisms, and if 

the infinitesimal generators ~P (~ E g) of the action are (global) Hamiltonian vector fields 

on P. In that case there exists a map J : P -+ g*, called a momentum map, with the 

property that it delivers Hamiltonian functions Je : P -+ Iii for the generators according to 

the formula Je( x) = (J ( x), 0- Here ( ·, ·) denotes the natural pairing between g* and g. 

Thus ~P = X1{, where X f denotes the Hamiltonian vector field corresponding to a function 

f, i.e., the vector field defined through X f J w = df. 

Noether's theorem states that the functions Je (which Poisson-commute only in the 

Abelian case) are integrals of motion for the G-invariant Hamiltonian H0 . In particular, 

J(xt) E g* is constant for all solution curves t M Xt. 

See Marsden and Ratiu (1994), Abraham and Marsden (1978, Chapter 4) or Guillemin 

and Sternberg (1984) for background on momentum maps and for an introduction to the 

geometric point of view of symmetry in mechanics. For a rapid introduction and recent 

survey, see Marsden (1992). Unless otherwise indicated notation follows Abraham and 

Marsden (1978). 

20 
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System symmetry breaking 

Let (F, w) be a symplectic manifold and let G be a compact connected Lie group acting 

on Pin a Hamiltonian fashion, with momentum map J : P-+ g*. We suppose that J is 

G-equivariant (with G acting on g* by the co-adjoint action). The quadruple (P,w, G, J) 

(or simply P) will then be called a Hamiltonian G-space. 

3.1 Example (Action-angle coordinates) Take P = 1rn x JR.n and w = z'.,dqj I\ dpj, Let 

G = 1rn = JR. n /21rzn act on P according to 0 • ( q, p) = ( 0 + q, p). This action is Hamiltonian 

with equivariant momentum map J: F-+ g* ~ JR_n given by J(q,p) = p. A Hamiltonian is 

G-invariant precisely when it depends only on the action coordinates p. 

A basic problem of perturbation theory is to understand the dynamics associated with 

Hamiltonians H : P-+ JR. of the form 

H= Ho+F, 

where Ho is G-invariant and F is small in an appropriate sense. Viewing G as a symmetry 

group for H0, one sometimes refers to this as a Hamiltonian system-symmetry breaking 

problem. 

Orbit type conditions 

If a group G acts on a space M, then we denote the point stabilizer (isotropy) subgroup 

at x E M by Gx, Recall that the orbit type of x is the conjagacy class of subgroups of G 

with representative Gx, It is denoted (Gx)-

Reconsider the case of a Hamiltonian G-space as above. In addition to the orbit type 

of a point x E P we shall also, in a slight abuse of terminology, refer to its co-adjoint orbit 

type. This is defined to be the orbit type of J ( x) E g*. 

It follows from a general fact about group actions (see, e.g., Bredon (1972)) that if P 

is connected then there exists an open dense subset of P whose points are of uniform orbit 

type (called the maximal orbit type). From the point of view of understanding the fate 

of generic initial conditions in the symmetry breaking problem above, it is reasonable to 
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restrict attention to this open G-invariant subspace. In all applications of which this author 

is aware, one can also find an open dense subset of P with constant co-adjoint orbit type. 

(Whether this holds in general is not immediately clear1 .) Such a subset is also G-invariant, 

by momentum map equivariance. 

The preceding arguments suggest that, from the point of view of perturbation theory, 

an interesting class of Hamiltonian G-spaces is those spaces with simultaneously a constant 

orbit and co-adjoint orbit type. The simplest case is a space in which G acts freely and 

J(P) C g;eg· In this case all points in P have orbit type (ida) and (by 1.8.1, 1.8.2 and 

1.2.2) co-adjoint orbit type (T), where Tis any maximal torus of G. These are the spaces 

we shall consider here and are precisely those spaces for which action-group coordinates can 

be constructed, under an appropriate integrability hypothesis. Note that if G is Abelian, 

then g;eg = g*, so that the condition J ( P) C g;eg is always satisfied in that case. 

3.2 Example (Action-group coordinates) Take P = G x to and w = we (notation as 

in Chap. 2). The group G acts freely on P according tog· (h,p) = (gh,p). We claim that 

this action admits an equivariant momentum map. 

Writing <"P9 (h,p) = g • (h,p), one can deduce from 2.4 that 0a is invariant under pull

back by <P9 , for all g E G. As a consequence the Lie derivative of 0a along any infinitesimal 

generator ~P (~ E g) vanishes. Therefore, by Cartan's 'magic formula' and 2.5, one has 

frJ w = d(frJ 8a) 

Thus the generator ~P is the Hamiltonian vector field corresponding to the function Jf = 
~P J 0a. The definition of infinitesimal generators leads, in the notation of 2.3, to the 

explicit formula 

1To settle the question seems to require a detailed understanding of the structure of the momentum 

map image. So far only the case of compact P seems sufficiently well-understood; see Kirwan (1984) for a 

treatment of the compact case and see Hilgert, Neeb and Plank (1994) for partial results in the non-compact 

case. 
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One now computes 

Whence a momentum map JG : P ➔ g* is given by 

3.3 

Recall that <p maps the Weyl chamber W in g* bijectively onto the chamber to, so that 

<p- 1 
(p) E WC in g;eg for all p E to. In particular, JG (P) C g;eg, so that (G x to, we, G, JG) 

is a Hamiltonian G-space satisfying our orbit type conditions. 

Of course Example 3.1 is just Example 3.2 in the special case G = 1rn. 

3.4 Example (Geodesic motions on 5 2 ) Consider a point mass M constrained to move 

on the surface of a smooth sphere of radius L. One identifies the position of M with a point 

on the unit sphere 5 2, so that the phase space is T* 5 2, equipped with its standard symplectic 

structure. We identify this space with 

T52 ~ {(q, v) E R 3 x R 3 I llqll = 1, q • v = 0} , 

using the standard metric on 5 2 , in which case the symplectic structure is w = -d0, where 

Here q0 = d/dtlt=Oqt is to be viewed as an element of R 3
. The Hamiltonian is H0 (q, v) = 

L2 llvll 2/(2M), which is G-invariant with respect to the action of G = SO(3) defined by 

g • (q, v) = (gq, gv). This action is free and has an equivariant momentum map J : P --+ 

g* ~ R 3 given by J(q, v) = q xv. We restrict attention to the open dense G-invariant subset 

of phase space obtained by removing the zero section: 

p = { ( q' V) E T 5 2 I y -/ 0} 

Then J(P) = R3\{0} = g;eg, so that (P,w,G , J) is a Hamiltonian G-space satisfying our 

orbit type conditions. 
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3.5 Remark Bearing in mind Poincare's model of S0(3), 

S0(3) ~ {(q, v) E T52 I llvll = 1} , 

one observes in Example 3.4, that P can be identified with S0(3) x (0, oo), the action-group 

model space for G = S0(3) (see 2.14). In fact this identification is symplectic2 . Whence 

it gives a (rather straightforward) realization of action-group coordinates for the prob

lem. Incidentally, in these coordinates the Hamiltonian is given by H0 (g, p) = L2p2 /(2M), 

(g,p) E S0(3) X (0, oo). Also note that neither conventional action-angle coordinates, nor 

partial action-angle coordinates, can be constructed globally on P in this problem. 

Another simple example satisfying our orbit type conditions is the 1 : 1 resonance, where 

P = R 4
\ {0} and G = SU (2). More complicated examples include the problem in hydrody

namics of three point vortices on 5 2 (G = S0(3) x 5 1 ), and the axisymmetric Euler-Poinsot 

rigid body to be discussed in Part 2 (G = S0(3) x 5 1). In both cases one needs to restrict 

to some open subset of the phase space to ensure the above orbit type conditions. 

In more complicated examples one or both of the above conditions on the orbit types 

often fail. For example, in the problem of geodesic motions on 5 3 (see Chap. 13) the 

symmetry group S0(4) fails to act freely (although most points do have co-adjoint orbit 

type (T), T C SO ( 4) denoting the maximal torus). In the 1: 1: 1 resonance ( P = R6 = c3, 

G = SU(3); see Part 2), all non-zero points have orbit type (SU(2)) and co-adjoint orbit 

(SU (2)), so that both orbit type conditions fail. 

These comments not withstanding, the above orbit type conditions are the natural ones 

to study first. 

Integrability 

In the case that G acts freely, a reduction in dimension of a Hamiltonian system with 

symmetry is achieved by Marsden- Weinstein reduction: 

2 For a proof, see Part 2. 
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3.6 Theorem (Marsden and Weinstein (1974), Meyer (1973)) 

Let (P, w, G, J) be a Hamiltonian G-space and assume G acts freely and properly. Then for 

anyµ E J(P), J- 1 (µ) is a Gµ-invariant submanifold of P and Pµ = J- 1 (µ)/Gµ admits the 

structure of a smooth manifold, with respect to which the natural projection 1µ: J- 1 (µ)-+ 

Pµ is a surjective submersion. There is a unique symplectic form wµ on Pµ with the property 

that ,;wµ = i:w, where iµ : J- 1 (µ) -+ P is the inclusion. 

The symplectic manifolds Pµ (µ E J(P)) are called the reduced spaces. Of course, as we 

assume G is compact, all actions of G are proper. 

If Ho is a G-invariant Hamiltonian, then for each µ in Theorem 3.6, J- 1 (µ) C P is 

an invariant submanifold (by Noether), and there exists a Hamiltonian Hµ: Pµ-+ JR such 

that the vector fields XH0 1J- 1 (µ) and XHµ (defined by XHµ J wµ = dHµ) are ,µ-related . 

It can be shown that if the integral curves in the reduced space Pµ of XHµ are known, 

then the integral curves of XHo lying in J-1 (µ) C P can be reconstructed by solving linear 

ordinary differential equations with time dependent coefficients (Marsden, Montgomery and 

Ratiu, 1990). If J(P) C g;eg then the reduced spaces all have dimension 

d = dimP- (dimG + rankG) . 

Here rank G denotes the dimension of the maximal tori of G. 

If d = 0 or d = 2 then Hamilton's equations on the reduced spaces can always be 'solved': 

In the d = 0 case integral curves of XHµ are trivial ( and the reconstruction equations are 

in fact autonomous); in the d = 2 case integral curves of XHµ coincide with level sets of the 

reduced Hamiltonian Hµ. It is natural to call the original system integrable in either case: 

3.7 Definition A Hamiltonian G-space (P,w, G, J) , with G acting freely and J(P) C fl;eg, 

will be called G-integrable (or geometrically integrable) if d = 0, and (G, H0 )-integrable 

( or dynamically integrable) if d = 2. In either case we say that the integrability is non

commutative if G is non-Abelian. 

There are, of course, more general notions of non-commutative integrability (see, e.g., 

Dazord and Delzant (1987)). In the present context the above definition is appropriate. 
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In this paper we will be restricting attention to geometric integrability. 

3.8 Examples The problem of geodesic motions on S 2 (Example 3.4) is geometrically in

tegrable. Action-group coordinates (Example 3.2) also constitute a geometrically integrable 

space. 

3.9 Remark Restricting attention to the geometrically integrable case does not entirely 

rule out treatment of dynamically integrable systems. Under certain conditions one can en

large the action of G, in a (G, H0)-integrable space, to an action of G x S1, in such a way that 

the space is G x S 1-integrable. The basic idea is to 'compactify' the action of JR generated by 

XHo. In that case the G-invariance of the Hamiltonian Ho extends to G x S 1-invariance, by 

energy conservation. For example, the Euler-Poinsot rigid body is dynamically integrable 

with respect to an S0(3) symmetry. If one avoids certain hyperbolic invariant manifolds, 

then the preceding compactifying procedure delivers SO (3) x S 1-integrability. In the special 

axisymmetric case the extra S 1-action corresponds to the symmetry of the body. See Part 

2 for details. 

The existence theorem 

The following result states conditions under which action-group coordinates can be 

constructed in a Hamiltonian G-space. Recall that <p : g -+ g* denotes the isomorphism 

corresponding to the fixed Ad-invariant inner product on g. 

3.10 Theorem Let G be a compact connected Lie group, and let (P, w, G, J) be a Hamil

tonian G-space on which G is acting freely, and far which J(P) C g;eg . Assume the 

space is G-integrable in the sense of 3. 7. Assume that P is connected, and that each fiber 

of J : P -+ J(P) is compact or has a finite number of connected components. Assume 

that U = <p- 1 (J (P)) n to (which is open in to) is smoothly contractible. Let G act on 

G x U C G x to as in Example 3.2. Then there exists an equivariant symplectic diffeomor

phism ¢ : G x U -+ P such that Jo ¢ = JG, where JG : G x U -+ g* is the momentum map 

defined by 3.3. 
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This theorem holds in either the C 00 or real-analytic categories. A proof will appear in Part 

2. 

3.11 Remark The contractability hypothesis can be weakened if the fibres of J are known 

to be connected (see Part 2). On the other hand, if U in 3.10 fails to be contractible, then 

one may always work ' locally' by replacing P by a connected component of J- 1 (G • V), for 

some appropriate contractible set V C U. This suffices for the applications to perturbation 

theory in the sequel. 

3.12 Remark Let (P, w, G, J) be a Hamiltonian G-space on which G is acting freely and for 

which J(P) C g;eg· In that case Gµ is Abelian (a maximal torus in fact) for allµ E J(P). 

In Part 2 we shall recall the following formula (following from the equivariance of the 

momentum map): 

w(fr(x), ryp(x)) = (J(x), [~, 77]) (xEP,~,77Eg). 

Since G µ is Abelian (µ E J (P)), the restriction of w to G µ-orbits vanishes. It follows that the 

distribution Don P defined by D(x) = (Tx(GJ(x) • x))w is coisotropic (see the Introduction 

for a definition). 

Assume Pis G-integrable. Then dimJ- 1 (µ)/Gµ = 0 for anyµ E J(P), so that D = 

(kerTJ)w. But from the definition of a momentum map, g* ?- P !.+ P/G has the 'dual 

pair' property (p denoting the natural projection), i.e. kerTJ and kerTp are w-orthogonal 

distributions. In particular, D = kerTp, i.e., Dis the distribution tangent to the foliation :F 

of P by G-orbits. This foliation, as we have just demonstrated, is coisotropic. Furthermore, 

as Dw = ker T J, :Fis also symplectically complete. AG-invariant Hamiltonian Ho : P ➔ ~ 

is therefore integrable in the sense of the Introduction. 

Historical remarks 

Recall (see the Introduction) that a rather general notion of integrability, geometrically 

formulated, is that of a symplectically complete coisotropic foliation :F. This foliation is to 

have the property that the Hamiltonian of interest is constant on its leaves. This formulation 
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of integrability has its origins in the work of Alan Weinstein and Paulette Libermann; see 

Dazord and Delzant (1987) for details. Under the hypotheses of Theorem 3.10, the orbits 

of G form the leaves of a symplectically complete coisotropic foliation (see Remark 3.12 

above). 

There are two complementary approaches to studying the geometric structure of a 

foliation F as above. One may focus either on neighborhoods of the (coisotropic) leaves 

of F, or on neighborhoods of leaves of the symplectic orthogonal foliation Fw (which is 

isotropic3 ). The latter problem, as we have described in the Introduction, was solved by 

Nekhoroshev (1972) (under the hypothesis of compact leaves), and clarified later in Dazord 

and Delzant (1987). Attempts to address the former problem, which are more recent, 

begin with independent studies of Gotay (1982) and Marie (1982; 19836), which classify 

the neighborhood of an arbitrary isolated coisotropic submanifold. The complementary 

problem of classifying the neighborhood of an isotropic submanifold, and the 'overlapping' 

problem of classifying the neighborhood of a Lagrangian4 submanifold, were already solved 

in Weinstein (1981) and Weinstein (1971) respectively. 

In the studies of Gotay and Marie, it is shown that the neighborhood of a coisotropic 

submanifold M C P looks like a neighborhood of the zero section of the dual E* of its char

acteristic bundle E, equipped with an appropriate symplectic structure. The characteristic 

bundle of M is defined by 

E = {v E TM I w(v, w) = 0 Vw E TM}. 

In the special case of symmetry considered m Theorem 3.10, E(x) = Tx(Gµ • x), where 

µ = J(x). 

The symplectic diffeomorphism realizing a neighborhood of M in P as a neighborhood 

of the zero section of E*, and the associated sym plectic structure bestowed on E*, both 

3 Meaning that the tangent distribution of Fw is contained by its symplectic orthogonal. 
4 A submanifold is Lagrangian if it is simultaneously isotropic and coisotropic, or equivalently if spaces 

tangent to the submanifold coincide with their symplectic orthogonals. 
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depend on a choice of splitting TM= E EB V. However, up to neighborhood equivalences, 

all choices lead to the same answer. 

In Marle (1983a) the case where M is the orbit of a free5 and geometrically integrable 

Hamiltonian action is studied. Here it is pointed out that the choice of splitting TM = EEB V 

can be reduced to the choice of a splitting fl = Q EB b, where Q denotes the Lie algebra of 

some subgroup H C G representing the co-adjoint orbit type (H) of points in M. Marle's 

description is more general than action-group coordinates (which correspond to the case 

H = T), but lacks the same concreteness in the sense that the bundle E* remains an 

abstractly defined object. 

Dazord and Delzant (1987, Sect. 5) show that in the special 'regular' case (H = T), 

the bundle E* trivializes: E* ~ G x U (UC JRk). Moreover, they show that U is naturally 

identifiable with an (open) Weyl chamber to, the appropriate symplectic structure on G x to 
being -d0a, where 0a corresponds, under the identifications discussed in Chap. 2, to the 

one-form 0a defined in 2.4. 

The equations of motion 2.11 and the formula of Lemma 2.15 for the Poisson bracket do 

not appear in Dazord and Delzant (1987), or elsewhere, as far as we are aware. We are also 

unaware of work, outside that to be presented in Part 2, in which action-group coordinates 

are constructed in concrete examples. 

One other approach to constructing 'coordinates' in the neighborhood of the orbits of 

a G action, is to apply the technology of symplectic cross sections (Guillemin et al., 1996; 

Guillemin and Sternberg, 1984) alluded to in the Introduction. In particular, this technique 

is well suited to addressing global existence questions. An application of this technology in 

the special case of action-group coordinates is to be expounded in Part 2. 

5 The case of non locally free actions appears to be unexplored. 
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Naive averaging 

Consider a Hamiltonian G-space P satisfying the hypotheses of Theorem 3.10 and let 

H : P---+ JR be a Hamiltonian of the form 

H=Ho+F, 

where Ho is G-invariant and F is some perturbation . Then according to the theorem there 

exists an open set U C to and an equivariant symplectic diffeomorphism q>: G x U---+ P . The 

equivariance implies that (Hoo cp)(g,p) = h(p) for some h: U---+ JR. Thus in action-group 

coordinates a Hamiltonian system-symmetry breaking problem of the above form translates 

into the problem of studying a Hamiltonian H : G x U ---+ JR of the form 

4.1 H(g,p) = h(p) + F(g,p) . 

The first task of this section is to describe the dynamics associated with the unperturbed 

part H0 (g ,p) = h(p) of such a Hamiltonian. We will then describe the dynamics associated 

with an averaged form of the perturbed Hamiltonian H. This will highlight the role played 

by the symmetry in determining the nature of the perturbed dynamics , as well as motivate 

the Nekhoroshev estimates developed in subsequent sections. 

The unperturbed dynamics 

According to 2.11 the equations of motion for a Hamiltonian Ho(g,p) = h(p) are 

g = g0,(p) p=O , 

where 0-(p) = '\lh(p) Et. We conclude that all integral curves t t-----+ (gt,Pt) of XH0 are of the 

form 

tno 
9t = goe 

30 

Pt= Po , 
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T-orbit G-orbit C;,! G 

u 

FIGURE 1. Cartoon of the unperturbed motions in G x U C G x to, depicting 

the foliation by invariant G-orbits, and the finer foliation by invariant T

orbits. 
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where S10 = D(po), In particular, each G-orbit G x {po} (Po E U) is an invariant manifold 

for the flow, and the restriction of the flow to G x {p0} ~ G is of the form g0 t-t g0 etno. 

This generalizes the situation in classically integrable systems where one has a foliation by 

invariant tori, each supporting a quasi-periodic motion whose frequency D(p) is delivered 

by a similar formula. 

Corresponding to the identification G x {p0} ~ G we have an identification of XHo IG x 

{p0 } with the left-invariant vector field on G corresponding to S10 E t C fl· It follows that 

this vector field on G corresponding to XHo I G x {po} is tangent to T and every left coset 

gT. If we let T act on G x U according to q·T (g, p) = (gq, p) ( q E T), then these cosets of 

T in G correspond to T-orbits in the phase space G x U. Thus we have a finer foliation of 

the phase space G x U by invariant tori (see Fig. 1), but these tori have strictly less than 

half the dimension of phase space in the non-Abelian case. 

Let k = dim t. The k-dimensional Z-module 

4.2 I = {p E t I exp (p) = id} 

is called the integral lattice of T in t. We have: 
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An integral curve of XH0 lying in G x {p0 } is periodic if and only if Q,0 E vl = 
{vn I n E J} for some v > 0, in which case a (not necessarily minimal) period 

is l/v. 
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4.3 Definition Identify t with JR.k, by choosing some Z-basis for I, and call an element v 

oft~ JR.k irrational if I:j Vjnj i- 0 for all non-zero n E zk. 

We leave it to the reader to check that the choice of basis in this definition is immaterial. 

We have: 

The integral curves lying on G x {p0} densely fill each of the T-orbits foliating 

G x {p0 } if and only if Q 0 E tis irrational. 

4.4 Remark The action of T on G x U discussed above is in fact Hamiltonian, with 

equivariant momentum map jG: G x U------+ t* given by jG(g,p) = (i o cp)(p). For a proof, 

see Part 2. The fibers of jG are the G-orbits, which constitute the leaves of a coisotropic 

foliation Fon G x U, by Remark 3.12. Since the space is geometrically integrable, Remark 

3.12 also implies that F is symplectically complete and that the leaves of the associated 

w-orthogonal foliation Fw are connected components of fibers of JG. The fibers of JG are 

in fact connected (indeed they are precisely the orbits of the T action discussed above; see 

Lemma 4.5.2 below), so that the maps 

constitute a concrete realization of the foliations F and Fw as fibers of a dual pair1 . 

Since Fis a symplectically complete coisotropic foliation with compact fibers, one may 

construct (see, e.g., Dazord and Delzant (1987)) an atlas of partial action-angle coordinate 

charts on G x U. In each chart 

i A pair of Poisson maps Qi ~ P ..!::!:+ Q2 (Qi, Q2 Poisson manifolds) is a dual pair if the tangent 

maps Tpi and Tp2 have w-orthogonal kernels. 
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the foliation by T-orbits will be represented by the trivial foliation 

But if G is a non-Abelian compact connected Lie group, the bundle G ➔ G /T is topolog

ically nontrivial. Since the T-orbits lying in a G-orbit G x {p} ~ G (p E U) correspond 

to left cosets of T in G, we conclude that no partial action-angle coordinate chart can be 

constructed in the non-Abelian case such that it contains an entire neighborhood of some 

G-orbit. 

The averaged dynamics 

Suppose that a Hamiltonian system with Hamiltonian Ho admits a foliation F by closed 

( compact and boundary less) invariant manifolds, and assume that the restricted flow on 

a generic leaf is ergodic2 . The familiar example is the foliation by invariant tori of an 

integrable system in action-angle coordinates, provided the Hamiltonian Ho ( q, p) = h(p) is 

nondegenerate. Furthermore, assume (as in this example) that each leaf of :F supports a 

probability measure invariant with respect to the restricted Hamiltonian flow, and varying 

from leaf to leaf in some smooth fashion. Given a perturbed Hamiltonian H, one can form 

a 'first order approximation' fl to H, constructed by averaging H over the leaves of F using 

the measures. One then expects the flow of fl to be a reasonable approximation to that 

of H ( at least better than that of Ho). Turning this heuristic expectation into rigorous 

theorems is, more or less, the principal preoccupation of the classical perturbation theory3 . 

The necessity of ergodicity is well-known. 

We now carry out the averaging procedure just outlined m the case of an integrable 

Hamiltonian system in action-group coordinates. Note that in the example of action-angle 

coordinates mentioned above the averaged Hamiltonian fl is itself integrable, and therefore 

not terribly interesting. 

2 By 'generic', we mean with respect to some appropriate Borel measure on the factor space, which we 

suppose is Hausdorff. 

3 See also the introduction to the book by Lochak and Meunier (1988). 
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Assume that the unperturbed Hamiltonian H0 (9, p) = h(p) in 4.1 is nondegenerate, 

i.e. that the map p f--t f2(p) : U-+ tis a local diffeomorphism . Then for almost any p E U 

(in the sense of Lebesgue measure), the frequency Q(p) is irrational (in the sense of 4.3). It 

follows that we may take the leaves of :F to be the orbits of the T-action qr(9,P) = (9q,p) 

discussed above. We therefore define 

fl(9,p) = 1r H(9q,p)dµ(q) , 

whereµ is the unique translation-invariant probability measure on the torus T. By construc

tion fl is T-invariant. Our objective is to Poisson-reduce (see, e.g ., Marsden (1992)) the 

dynamics of fl to dynamics on an appropriate realization of the quotient space (G x U)/T. 

Recall that the action of G on G x to admits an equivariant momentum map JG : 

G x to -+ £1* defined by 3.3. 

4.5 Lemma 

l. The fibers of JG are the T-orbits. 

2. If O C £1* is a co-adjoint orbit, then (JG)-1 ( 0) is some G-orbit G x {p} (p E to). 

PROOF. By 3.3, two points (91,p1), (92,P2) E G x to lie in the same fiber of JG if and 

only if 

4.6 

Since p1 and pz lie in the same Wey! chamber to, it follows from Theorem 1.2.7 that 4.6 is 

equivalent to 

Pl= P2 and 

The requirement 92191 E Gp 1 is equivalent to 91 and 92 belonging to the same left coset of 

Gp 1 in G. Since P1 E to Ctn f1reg, Theorem 1.2.6 implies that Gp1 = T. 

The preceding arguments show that the fibers of JG consist of those sets of the form 

9T x {p} (9 E G, p E to), which proves l. 

By 3.3, JG maps a G-orbit G x {p} onto the co-adjoint orbit through p E to. By the 

equivariance of JG , the preimage J- 1 ( 0) is a union of G-orbits in G x to. To show J- 1 ( 0) 
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is in fact a single orbit it therefore suffices to show that distinct G-orbits cannot be mapped 

to the same co-adjoint orbit. But JG maps an orbit G x {pi} and an orbit G x {p2} to 

the co-adjoint orbits through P1 and P2 respectively. By Theorem 1.2.7 these orbits are the 

same if and only if P1 = pz. □ 

Note that Lemma 4.5.1 says that we have a natural way of identifying the abstract quotient 

(G x U)/T with V = JG(G x U) C fl*, the momentum map JG : G x U -+ V being a 

realization of the natural projection G x U-+ (G x U)/T. 

Being an equivariant momentum map, JG is also a Poisson map, if we equip fl* with 

the positive Lie-Poisson structure{·, ·}+ (see, e.g., Marsden and Ratiu (1994, Chapter 10)). 

If u is a smooth function on fl*, then by definition its corresponding Hamiltonian vector 

field Xu on fl* is the vector field satisfying the equation Xu J df = {f, u}+ for all smooth 

f : fl* -+ JR. Hamiltonian vector fields on a Poisson manifold are always tangent to the 

symplectic leaves, which in this case are the co-adjoint orbits. If a function is constant on 

a leaf, its Hamiltonian vector field vanishes. 

The functions H, Ho and P on G x U are T-invariant. They therefore drop, via JG : 

G x U -+ V, to functions H', Hb and F' on V C fl*. Since Ho is G-invariant, 4.5.2 guarantees 

that Hb is constant on the co-adjoint orbits, and hence that XH~ = 0. Therefore, 

Xfl, = Xp, . 

Since JG is a Poisson map, the vector fields X fl and X fl' are JG-related. Therefore, JG 

maps integral curves of X fl onto integral curves of X p,. 

If F = 0, then X p , = 0. This is consistent with Noether's theorem, which states that 

JG(xt) E fl* is constant for all integral curves t M Xt of Xfl, if fl is G-invariant. 

If F =/=- 0, then X p, need not be trivial, or even integrable, but must nevertheless remain 

tangent to the co-adjoint orbits. It follows from 4.5.2 that the G-orbits G X {p} (p E U) 

persist as invariant manifolds of X fl· In other words, the action variables p E U are integrals 

of motion for the averaged Hamiltonian fl. 
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T-orbit 

integral curve of X fl 

G-orbit 

integral curve of X p, r 
co-adjoint orbit 

FIGURE 2. Schematic showing an integral curve of the averaged Hamiltonian 

vector field X fl (which lies in some G-orbit G x {p}) being mapped by JG 

to an integral curve of Xp, (which will lie in some co-adjoint orbit O C fl*). 
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Although one cannot show that the action variables persist as constants of the motion 

in the fully perturbed ( unaveraged) system, one can derive, under certain conditions, expo

nential bounds on their evolution of Nekhoroshev type. We turn to such estimates in the 

following chapters. 

On the other hand , the non-trivial dynamics on the co-adjoint orbits created by an F -::f 0 

means that a solution curve t i------+ Xt of X fl, which must lie on some G-orbit G x {p} ~ G, 

moves from one T-orbit to another, in a fashion determined by F', and at a speed of order 

1/E, if Eis the size of the perturbation F (see Fig. 2). These 'fast' motions correspond to 

those pointed out by Fasso (1995) in the context of symplectically complete isotropic folia

tions, which we described in the Introduction. In particular (see 4.4), one cannot guarantee 

that a trajectory of the averaged Hamiltonian will stay in a partial action-angle coordinate 

chart longer than a time of order 1/ E. This is far shorter than the exponential time scales 
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one hopes to establish for the action variables (in the fully perturbed system), explaining 

the shortcoming of partial action-angle coordinate charts described in the Introduction. 



CHAPTER 5 

An abstract formulation of Nekhoroshev's theorem 

When G = 1'n, the action-group model space G x to is just ordinary action-angle coordi

nates 1'n x JR n_ In this case Nekhoroshev's theorem (Nekhoroshev, 1977) asserts that for all 

sufficiently small perturbations F in the Hamiltonian 4.1, the action variables p evolve, in 

some sense, exponentially slowly. This is provided that the Hamiltonian is real-analytic and 

satisfies a certain 'convexity' assumption . See, e.g ., Lochak (1992) for a precise statement. 

Our ultimate objective is to generalize Nekhoroshev's result to the case in which G is 

a general compact connected Lie group. We refer to this as a problem in non-canonical 

perturbation theory, since the symplectic structure we on G x to is non-canonical when G 

is non-Abelian (in the sense given in the Introduction). 

Most of the techniques involved in generalizing Nekhoroshev's theorem to the non

canonical setting are not new. For example, one can still make the standard use of Lie 

transforms to effect symplectic coordinate changes. Since we have no desire at this point 

to repeat these standard arguments, it is convenient for us to abstract the setting of the 

theorem. 

The idea is that once one has certain 'basic estimates' (e.g., bounds on Poisson brackets), 

the proof of Nekhoroshev's theorem (although non-trivial and tedious in detail) requires 

only very basic properties of the underlying coordinate system and its symplectic structure. 

These basic estimates and other requirements are formalized as Assumptions A-C below. 

A generalization of Nekhoroshev's theorem, with these assumptions as hypotheses, is then 

stated (Theorem 5.9 below). The proof is essentially a rewriting of Lochak's proof of 

Nekhoroshev's theorem for conventional action-angle coordinates (Lochak, 1992; Lochak, 

1993) and is relegated to Appendix A. The more significant task will be to show that 
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Assumptions A- C indeed apply to action-group coordinates. This will be the subject of 

Chap. 6. 

Throughout this section, the reader may find it helpful to keep the example of con

ventional action-angle coordinates in mind. In what follows this corresponds to the choice 

C = "ll'n and t = !Rn. 

Notation 

Let M be a compact C0-manifold with (possibly void) boundary whose interior int M 

is a complex (resp. real-analytic) manifold, and let V be a complex (resp. real-analytic) 

vector space. Then we denote by Av (M) the space of continuous maps u: M ➔ V that are 

holomorphic ( resp. real-analytic) on int M. If I · I is a norm on V, then the space Av ( M) 

is equipped with the norm 

llull = sup lu(x)I . 
xEM 

Preliminary notions 

An essential ingredient in any proof of Nekhoroshev's theorem is the complexification of 

the coordinates, and the analytic continuation of the Hamiltonian (which must be assumed 

real-analytic). The following definition formalizes in a precise way the notion that we 

require. 

5.1 Definition Let C be a real-analytic manifold (without boundary), and suppose that 

there exists a nested family ( co-)o~o-~ir<oo of sets ( a- < a-' ⇒ co- C co-') with C 0 = C and 

satisfying the conditions: 

1. co- is a c 0-manifold with boundary for all a- i 0. 

2. int co- is a complex manifold for all a- i 0, the inclusion int co- c.....+ int Cir being 

holomorphic for all a- i 0. 

3. Any real-analytic tensor on C0 = C has, for some a- > 0, a holomorphic extension to 

int co- and a continuous extension to co-. 

Then we call the family (Co-)o~o-~i7 a local complexification of C. 
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5.2 Remark Local complexifications exist under rather general conditions, and are unique 

up to an appropriate equivalence (Whitney and Bruhat, 1959). 

See 5.6 below for an example of a local complexification in the above sense. (In Chap. 6 

we shall write down a local complexification explicitly in the case that G is an arbitrary 

compact connected Lie group.) 

5.3 Definition Let V be a real (resp. complex) normed vector space and let U C V be 

open. Let a real-analytic (resp. holomorphic) map h : U -+ JR (resp. C) be called ( m, M)

convex if there exists m, M > 0 such that 

D 2 h(p)(v, v) ~ 

ID 2h(p)(u, v)I ~ 

mlvl2 
} 

Mlullvl 
Vu, v E V , Vp E U . 

The abstract set-up 

Let G be a compact real-analytic manifold (not necessarily a Lie group) and (G 17 )o:,;o- :,;o' 

a local complexification, with G 17 compact for all a. Lett be a finite dimensional real vector 

space with inner product (a, b) Na· b, and corresponding norm I · I-

We assume that for some open set to C t the real-analytic manifold G x to is equipped 

with a symplectic two-form w. 

For p E to write 

Extend the inner product on t to a <C-bilinear form on f'C'. = t ®JR C. A norm on tlC is then 

given by la ® l+b ® il=Ja·a+b-b. Write 

B~(p) = {p' E t (C I Ip' - BR(P)I ~ p} 

Fix j5 E to and positive constants o- and p, and write B = Bp(f5) and BP = Bg (p), so that 

BP is a complex neighborhood of the real ball B. Assume that o- and pare small enough 

that 

5.4 
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and that w has a holomorphic extension to a (complex) bounded symplectic form on Get xBP. 

By bounded we mean that the induced Poisson bracket satisfies the following property: for 

all u and v in Ac(Gct x BP), the bracket {u,v} is assumed bounded on int(Gi't x BP), with 

a continuous extension to Get x BP, i.e. 

Consider a Hamiltonian of the form 

5.5 H(g, p) = h(p) + F(g, p) , 

where h E A IR (B) and FE A IR (G x B). Assume that his (m' , M')-convex on int B for some 

positive constants m' and M', and that a and j5 are small enough that: 

1. hand F have holomorphic extensions h E A<C\BP), FE AIC(Gct x BP). 

2. There exists m, M > 0 such that his (m, M)-convex on int B P. 

Fundamental assumptions 

Make the following crucial assumption about the nature of the Hamiltonian vector fields 

defined by w: 

Assumption A (Existence of a 'period lattice') Let Xu denote the (complex) Hamil

tonian vector field corresponding to a function u E Ac(Gct x BP), i.e., XuJw =du.Assume 

that there exists a lattice {l C t, whose dimension ( over Z) equals the dimension oft ( over 

~), with the fallowing property. Suppose WE Ac (Gi'f x BP) is of the form W(g, p) = w(p) . 

Then if v'w(p) E vtZ = {vn I n E tZ} for some p E BP and v > 0, we require that all 

integral curves of Xw beginning in Ga- x {p} (a E [O, a] arbitrary) remain in Ga- x {p} for 

all time and are periodic with (not necessarily minimal) period 1/v. (If v'w(p) = 0, this 

condition implies that Get x {p} is a manifold of equilibria for X w .) 

5.6 Example (action-angle coordinates) Take G = 1rn = ~n/2n-zn, t =to= ~n and 

w = Edqj I\ dpj, Identifying 1rn with {(z1, ... , zn) E en I lzil = 1 \fj}, we see that a local 
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G 
B 

complexification ( co-)o:,;o-::;o' of G is given by co- = { (z1, ... , Zn) E en I [zj I E [1 - O', 1 + 
O'] \ij}, jj = ½- We satisfy Assumption A if we take tZ = 21rzn. 

Let k = dim t and fix a basis {,61, ... ,,Bk} for {l (which we do not require to be orthog

onal with respect to the inner product on t). Let c1 > 0 be a constant ( depending only on 

tz, the inner product on t, and the choice of basis) such that 

5.7 (rj E JR) . 

It is clear that such a constant exists. (It will be estimated explicitly in the case of action

group coordinates in Chap. 6.) 

Let p* E int B and O ::;; r :,;; 1 be free parameters and define the following family of 

(complex) neighborhoods of G x {p*} (see Fig. 1) : 
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So that these domains are well-defined subsets of Gff x BP, the parameters p* and r 

must be subject to the condition 

5.8 

Note that Do(P*, r) = G X Brp(p*) C G X B is a real neighborhood of G x {p*} 

D0 (p*, 0), and that D 1(p, 1) = Gff x BP is the complex domain on which the Hamiltonian 

His defined by hypothesis. We denote the supremum norm on A<C(D.,,(p*, r)) by II· 11~•,r. 
The remaining hypotheses we require are: 

Assumption B (On 'times of validity') There exists c2 > 0, independent of m, M, "/, 

p* and r, such that for all u E Ac(D,,(p*, r)), 0 < 5 :s; "( and ltl :s; to = c28',052r/llull~*'r, 
every integral curve r f------t (9nPT) of Xu beginning at a point (go,Po) E D,,_s(P*,r) is well

defined and satisfies 

(gt,Pt) E D,,-s;2(P*,r) with IPt - Pol :s; (~~) ({) rp 

Assumption C (The existence of a 'Cauchy inequality' for Poisson brackets) 

There exist constants c3 > 0 and c4 > 0, independent of m, M, "/, p* and r, such that for 

all 0 < 5 :s; "/ and all u, v, WE Ac((D,,(p*, r)) with W of the form W(g,p) = w(p) one has 

the estimates 

(Recall that { u, v} = Xv J Xu J w.) 

Nekhoroshev's theorem 

Write Q(p) = '\lh(p) Et and define the ' time scales' 

1 
Tm=-_

pm 
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Tn = ( sup 1n(p)l)-
1 

pEBP 
Th'"= (,o2sup sup ID 3 h(p)(u,v,w)l)-I 

pEB u,v,wEl 

and the associated 'dimensionless constants' 

We allow Th"' = oo (in which case c5 = oo). A constant with the physical dimensions of 

the Hamiltonian Ho is 

Recall that k denotes the dimension of the real vector space t. 

5.9 Theorem (Nekhoroshev-Lochak (abstract form)) 

Consider the scenario desribed in this section with Hamiltonian H of the form 5.5, under 

the Assumptions A, Band C above. Let II • JI denote the supremum norm on AC(Gir x B 15 ) 

and define the 'perturbation parameter ' 

Then there exist positive constants a = a(k), b = b(k) , c, Eo = Eo(k, c1, ... , c1) , to = 

t0 ( c1, ... , c7) and r0 = ro ( c1, ... , C7), such that for all E ~ Eo every (real) solution curve 

tr-+ (gt, Pt) E G x B of XH with p0 = p obeys the exponential stability estimate 

ltl IPt - Pol b - < t exp(cE-a) ⇒ --- < r E Tn "" o P "" o • 

A proof of 5.9, based largely on Lochak (1992) and Lochak (1993), is outlined in Appendix A. 

Estimates for the constants a, b, c, Eo, to, r0 obtained in Appendix A are summarized below. 

For pedagogical reasons, we have not attempted to optimize the exponents a and b (these are 

optimized in Lochak and Neishtadt (1992) and Lochak (1993)). Preliminary investigations 

of ours suggest that a= 2
1
k and b = /k should be possible (c.f. a= 2~ and b = 2~ in op. cit, 

n the degrees of freedom). For more information see Appendix A. 
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5.10 Addendum In Theorem 5.9 above one may take 

1 
a=---

4(1+k) ' 

1 
b = 2(1 + k) ' 

C = 1 

where 

{ 
192a (l)k+l/

2
} 

l1 = max 1, 0 , l
4 

, 

y'S- 2 
t_ C 

C7 = 2 7 



CHAPTER 6 

Applying the general theorem to action-group coordinates 

In this section we show that the abstract formulation of Nekhoroshev's theorem given in 

the previous section applies to action-group coordinates (Proposition 6.1 below). The corre

sponding estimates will be combined with the local existence theorem for action-group coor

dinates (Theorem 3.10) to deduce Nekhoroshev estimates for momentum maps in Chap. 7. 

6.1 Proposition Nekhoroshev's theorem, as formulated in 5.9, applies in the case that G 

is a compact connected Lie group and where t, to and w = wa have the meanings given in 

Chap. 2. 

Recall (see, e.g., Brocker and tom Dieck (1985, V8.l)) that up to a finite covering 

any compact connected Lie group is the direct sum of a semisimple and Abelian (toral) 

factor. Although 6.1 holds for any compact connected Lie group G, we shall only prove it 

in the case that G is semisimple. The Abelian case is already covered by Nekhoroshev's 

original statement. Furthermore, it turns out that there is essentially no 'coupling' between 

the Abelian and semisimple factors in the general case. To simultaneously keep track of 

both an Abelian and semisimple factor just introduces uninstructive bookkeeping to the 

calculations. We leave these for the more energetic reader to work out. 

For the remainder of this section G denotes a compact connected semisimple 

Lie group. 

In this section we shall make use of basic properties of semisimple Lie algebras, as well 

as their root and inverse root systems. We refer the reader to Brocker and tom Dieck (1985) 

for a discussion of the relationship between these roots and the Wey! chambers, and for 

further background. Here a root will always mean a real root, in the sense of, e.g., Vl.3, 

op. cit. 

46 
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The local complexification of G 

It is now convenient to fix the choice of Ad-invariant inner product on fl introduced in 

Chap. 1, which until now has been completely arbitrary. Define 

(~,T/Efl) · 

Minus one times this product is known as the Killing form of fli it is symmetric, Ad

invariant, and known to be nondegenerate precisely when fl is semisimple. Remember that 

we have been denoting the unique C-bilinear extension of our product to fie by~ •'f/ also. We 

continue to denote the norm on fl induced by the inner product (and its obvious extension 

Recall that we assume that G is realized as a subgroup of SO(na, Ill), so that we may 

view fie as a subalgebra of enc xna . The latter Lie algebra is equipped with a natural 

symmetric C-bilinear form, namely the Schur-Hadamard product 

1 
S(A, B) = -Trace(ABT) 

na 

An associated norm on enc Xna is given by 

IAls = J S(A, A) = 1 -
- Trace(AAT) , 
na 

where a bar denotes complex conjugation. Note that as G C SO(na, Ill), 

6.2 (g E G) 

and 

6.3 lgAls = IAls = IAgls 
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By writing things out with respect to the standard basis of cn,a and applying the Schwartz 

inequality several times, one can derive the estimate 

6.4 IABls ~ vnalAlslBls . 

If if > 0 is chosen sufficiently small, then a well-defined local complexification ( G")o:::;a:::;ir 

of G is given by 

6.5 

It will be convenient to assume 

We need to establish the relation between I · I ( the norm on gC determined by the Killing 

form) and the restriction to gC of I · Is- Suppose that A, B E ((;1-G xna and g E G. Then 

since Ad9 A= gAg- 1 , 

1 
S(Ad9 A, Ad9 B) = -Trace(gAg- 1(g- 1f BT gT) 

no 
1 

= -Trace(gABT g- 1
) (since g E SO(no, JR)) 

no 
1 

= - Trace(ABT) (since Trace is invariant under conjugation) 
no 

= S(A, B) . 

This shows that S ( ·, ·) is invariant with respect to the adjoint action of G. In particular its 

restriction to g is Ad-invariant. But as G is semisimple, there is up to a constant only one 

Ad-invariant inner product on g, namely the Killing form (see op. cit.). By the uniqueness 

of extensions of JR-bilinear forms on g to C-bilinear forms on gC, it follows that 

6.6 

for some k1 > 0. 

The constant k1 depends on the realization of G C SO (no, JR) and is the only constant 

we leave implicitly defined. It is easily computed on a case-by-case basis. 
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From 6.6 it follows that 

6.7 l~ls = Jki°l~I 

In particular we deduce from 6.4 and 6.7 the estimate 

6.8 

where 

6.9 

Existence of a period lattice (Assumption A) 

Define 

k = (dimG - rankG)/2 ~ k = dim t = rankG 

Then with respect to the fixed chamber to, fl has k positive real roots 

We assume that these have been ordered so that { a 1, ... , ak} is the basis of t* consisting 

of the indecomposable elements of { a 1, ... , a;;;}. The corresponding inverse roots will be 

denoted ai, . .. , at E t. They are given by 

6.10 

where K,: t-+ t* is the isomorphism (K,(a) , b) = a·b, and B( ·, ·) is the induced inner product 

on t*. It is a fact that the inverse roots lie on the integral lattice I of T in t ( defined by 

4.2). 

Suppose W E AIC(G5 x BP) is of the form W(g,p) = w(p). Then by the equations 

of motion 2.11, an integral curve t t-+ (gt, Pt) of X w beginning in ca x {p0} (0 ~ a ~ er, 

p0 E BP) is given by (gt,Pt) = (goexp(tv'w(po)),Po), Suppose that there exists av > 0 
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such that Vw(p) E vl. In that case tVw(po) lies in t (i.e., is rea0 for any t E JR so that 

exp(tVw(po)) EC. Now Igo - g~ls ~ a for some g~ EC (as go E C0"). By 6.3, we have 

lgoexp(tVw(po)) - g~exp(tVw(po))ls = Igo - g~ls ~ a . 

Since g~exp(tVw(pO)) E C, this shows that g0 exp(tVw(po)) E ca for all t E JR, i.e., 

(gt, Pt) E ca x {po} for all t E JR. Furthermore, as Vw(po) E vl, this solution curve has 

1/v as a period. We therefore satisfy Assumption A of Chap. 5 if we take tZ to be any 

k-dimensional sublattice of I. 

While the 'optimal' choice for tZ is I itself, future computations are simplified by choos

ing tZ to the sublattice generated by the inverse roots: 

Note that tZ = I if C is simply connected. 

Estimating c1 

A basis {,81, ... , ,Bk} for tZ is given by ,Bj = a;. We will estimate the constant c1 of 5. 7 

in terms the Cartan integers nij of the root system. These are defined by 

(1 ~ i,j ~ k) . 

It is a fact that the restriction to t of -1 times the Killing form can be expressed in terms 

of the positive real roots according to 

k 

a· b = 81r2 L (am, a)(am, b) (a, b E t) 
m=l 

It follows from 6.10 that 

6.11 

Let Ai, ... , Ak > O denote the eigenvalues of the (symmetric and positive definite) ma

trix (mijh~i,j~k· Then for some orthogonal transformation A : JRk ➔ JRk and any r = 
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k 

h/31 + • • • + Tk/3kl
2 = L TimijTj 

i,j=l 

k 

= L(AT)jAj(AT)j 
j=l 

k k 

~ (sup>.j) 2)AT)J = (supAj) L hl2 

J j=l J j=l 

~ (sup Aj)k(sup 1Tjl) 2 
• 

J J 

We therefore satisfy 5.7 if we choose c1 to be the square root of the maximum eigenvalue 

of the matrix ( mij), which is defined in terms of the Cartan integers by 6.11. 

6.12 Example G = SU(3) (see Fig. 1). In this case{?_;= I, k = 2 and k = 3. The matrix 

of Cartan integers is 

2 -1 1 

1 1 2 

so that 

The largest eigenvalue of the right-hand side is 72n2, so that for G = SU(3) we may take 

C1 = 61rv'2. 

Bounds on Ap 

Recall (Chap. 2) that Ap (p E cy) is defined as the inverse of adp : t1-C ➔ t1-C_ Since 

Ap appears in the equations of motion 2.11 and in the formula for the Poisson bracket 2.15, 

we will need to estimate the operator norm of Ap before proceeding to verify Assumptions 

Band C. 
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FIGURE l. The system of inverse roots for G = SU(3) (k = 2, k = 3). Here 

0 indicates a positive inverse root, and @ a negative inverse root. Arrows 

indicate the location of the basis roots. The shaded region indicates the 

Wey! chamber to. 
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6.13 Remark Since the operator adp : t..LIC --+ t..LIC becomes singular as p approaches the 

walls 8to of to, the norm of Ap is unbounded as p --+ 8to. We will see later that this results 

in a deterioration in the estimates of Assumptions B and C as p--+ 8to. This phenomenon 

is particular to the non-Abelian case. 

Fix p E ~- Note that dim t..LIC = 2k. For 1 ~ j ~ k let ~j (resp. ~-j) denote an 

element of t..LIC spanning the weight space corresponding to the root ltj (resp. -aj). Then 

{Ck, ... ,~-1,6, ... ,~x;} is a basis for t..LIC (over C), and 

(Here the roots aj have been extended to C-linear functionals on tic .) So with respect to 

the above basis, adp diagonalizes with diagonal 
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Consequently Ap = ad; 1 diagonalizes with diagonal 

( 
-1 -1 1 1 ) 

21ri ( (X1c,, p) ' ••• ' 21ri ( 0!1, p) ' 21ri ( 0!1, p) ' ••• 21ri ( O!k, p) 

It follows that for any ~ E t1-C, 

Since (cxj, a) E ~ for all a E t, I (O!j, p) I ~ I (o:j, Rep) I- Also, every positive root O!j (1 ~ j ~ k) 

can be written as a linear combination of the basis roots o:1 , ... , O!k with positive coefficients. 

The above estimate can therefore be written 

6.14 

Manipulating 6.10, one shows that 

6.15 
2A:( cxJ) 

O!j = lo:; 12 

Recall that p E ~- The diagonal matrix representation of adp above, Equation 2.7, and the 

definition of ~ show that 

RepEto. 

If a E to, then an elementary geometric property of root systems is (see Fig. 1) that 

So for any j with 1 ~ j ~ k one has 

o:J (A:-1 
( o:J), a) 1 * 

I a - ato I ~ Io:; I • a = Io:; I = 2 Io: j I ( o: j , a) , 

using 6.15. This shows that 

(a E to, 1 ~ j ~ k) . 

In particular we can apply this to 6.14, with a= Rep, to conclude that 
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i.e., 

6.16 

where 

6.17 

Note that k3 can be expressed purely in terms of Cartan integers: k§ is the maximum 

diagonal entry in the matrix (mijh(i,j(k defined by 6.11. For example if G = SU(3), then 

by 6.12, k3 = 41ry13. 

Bounds on directional derivatives 

In the remainder of this section the reader may find it helpful to refer frequently to 

Fig. 1. In the notation of Chap. 5, we now prove: 

6.18 Lemma Let u E A<C (D.y(P*, r)), ( E 1:f and r E t<C be given. If O < o ~ 1 , then for 

all (g,p) E D"l_s(p*, r), 

1. 

2. 

I ( . ~;(g,p)I ~ 2k2(e -1) 1(111:!~•,r ' 

IT. ~;(g,p)I ~ lrll~~~~•,r 

PROOF. Fix (g,p) E D"l_s(P*, r). By definition 

where J(t) = u(gexp(t(),p). We seek v > 0 sufficiently small that !ti~ v ensures that 

6.19 

Then !ti ~ v ensures that J(t) E <C is well-defined , and by Cauchy's inequality for a 

holomorphic function of a complex variable, 

6.20 (t E <C) . 
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Since (g, p) E D'Y-o (p*, r) ( and because G is com pact) there exists gIR E G such that 

6.21 

We have 

lg exp(t~) - Gls ::;; lg exp(tO - g!R ls 

::;; lg exp(t~) - gls + jg - g!R js 

::;; Jnclgls I exp(t~) - idls + jg - g!R ls by 6.4 

::;; Jnc( jg!R js + jg - g!R js) I exp(t~) - idjs + jg - g!R js 

::;; Jnc( 1 + (1 - 6)a) I exp(tO - idjs + (1 - 6)a by 6.2 and 6.21 

6.22 ::;; 2Jncl exp(t~) - idls + (1 - 6)a Since a::;; 1 

Combining the Taylor series expansion of exp(t~) E cna xna with 6.4, 6.7 and 6.9: 

assuming that 

6.23 

So (assuming 6.23) 6.22 implies 

Therefore lg exp(t~) - Gls ::;; 1a (so that 6.19 holds) provided 

6.24 
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In summary, 6.19 holds if 6.23 and 6.24 do. Since 6.24 is stronger than 6.23 (o, o- ~ 1), 

we may take 

With this choice, 6.20 becomes 6.18.1, the first estimate of the lemma. 

The proof of 6.18.2 is simpler and left to the reader. □ 

We write 

ll
oullp.,r IOU I - = sup -~ ~ 
og 'Y - (g,p)ED ..,.(p.,r) og ' • 

One has 

An analogous statement holds for I ( ou/ op) (g , p) I- The following corollary of 6.18 is therefore 

clear. 

6.25 Corollary Let u E Ac(D,.y(p*, r)) be given and suppose O < o ~ 1 . Then 

1. 

2. 

Times of validity of Hamiltonian flows (Assumption B) 

6.26 Lemma (Bounds on the components of a Hamiltonian vector field) 

Let u E Ac(D-y(P*, r)) be given and suppose O < o ~ 1 . Then 

1. 

2. 

Recall that ~u and Tu are defined by 2.9 and 2.10. Note also that as B2p is closed , 5.4 

ensures IB2p - otol > 0. 
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PROOF . The definition 2.9 of ~u gives, with the help of 6.16, 

11 
{)u ll p.,r ( )-l 11 {)u ll p.,r 

ll~u ll~~~ ~ op -y - S + k3 pEB~}!!kr,(p.) IRep- oto l {)g -y- S 

Recalling that 5.8 ensures that B~rS)ri5 C BP (0 ~ 1 ~ 1, 0 < o ~ 1 ), we have 

( 
inf IRe p - ato1)-l ~ IB2p - ato1 - 1 

. 
pEB~ro)rr,(p.) 

Applying 6.25, and exploiting the fact that r ~ 1, one easily deduces 6.26.1. 

The inequality 6.26.2 follows similarly from 2.10 and 6.25.1. □ 

We are now ready to turn to the verification of Assumption B. Let u E A«\D-y(P*, r)) 

be given and suppose that O < 8 ~,.Lett f-7 (9t,Pt) be an integral curve of Xu, and 

suppose that the initial condition satisfies (go,Po) E D-y-S(P*, r), i.e., 

9o E ch-S)a 

According to the equations of motion 2.11, 

6.27 

6.28 

B ('Y-S)ri5( ) 
Po E rp P* • 

Because D-y-s;2(p*, r) is compact, the solution (gt, Pt) E D-y- s;2(p*, r) is well-defined until it 

reaches the boundary of D-y- s;2 (p*, r) . That is, there exists a time sto (s = ±1, 0 < t0 ~ oo) 

such that 

6.29 ⇒ 

and such that at least one of the following holds: 

6.30 

6.31 

According to 6.27, 

l9sto - G ls = b- o/2)a- , 

r sto 
9sto - 90 = Jo 9t~u(9t, Pt)dt • 
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From 6.29 and 6.8 we deduce 

by 6.2 

Applying 6.26.1: 

where 

6.32 

6.33 Remark Notice that ( --+ oo as the real ball B 2p = B 2p(j5) approaches the walls of fa. 

Since g0 E ab-S)a, there exists g~ E G such that [g0 - g~[s ~ (, - 5)a-. We compute 

So, supposing 6.30 holds , we have 

6.34 

According to 6.28 

{8to 
Pst0 =Po+ Jo Tu(gt,Pt)dt 

From 6.29 and 6.26.2 (with 5 replaced by 5/2) we deduce 
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compute 

IPsto - Brpl ~ IPsto - P~I ~ IPsto - Pol + !Po - P~I 

So, supposing 6.31 holds , we have 

6.35 ( 
1 ) ?fp52

r 
to ~ 8k2(e - 1) llull~•,r 

Since 6.30 and/or 6.31 holds, 6.34 and/or 6.35 holds. Therefore 

if we take 

6.36 
1 

c2=------
- 8k2 max{(, e - 1} 

Arguments like the above also show that 

!Pt - Pol~ (~~) (~) rp 

With the above choice of c2 , Assumption B of Chap. 5 is thus established. 

Inequalities for Poisson brackets (Assumption C) 

Let u, v E A<C(D,,(p., r)) be given and suppose O < 5 ~ 1 . Fixing some (g,p) E 

D,,_o(p.,r), we have 

{u, v}(g,p) = (du,Xv(g,p)) 

au au 
= (v(g,p) 0 Og (g,p) + Tv(g,p). Op (g,p) by 2.8 

= J'(O) ' 

where 

J(t) = u(gexp(t(v(g,p)),p+ trv(g,p)) . 
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We seek v > 0 sufficiently small that [t[ :::;; v guarantees 

6.37 

Then [ti :::;; v ensures that J(t) E C is well-defined and, by Cauchy's inequality, 

6.38 
1 JJ u JJ P•,r 

[{ u,v}(g,p)[:::;; - sup [J(t) J :::;; 'Y 
V ltl~v V 

To satisfy 6.37 we need 

6.39 

6.40 and 

Jg exp(t~v(g,p)) - G[s:::;; 1CJ 

[ (p + tr v (g, P)) - Br i5 (p*) [ :::;; 1r P • 

Arguing as in the proof of 6.18.1, we satisfy 6.39 if 

Since (g ,p) E D-y-s(p*, r), it suffices, by 6.26.1, to ensure 

6.41 
ap82 r 

Jt[ :::;; 2ki(e - 1)( J[v[J~•,r ' 

where ( is the constant defined by 6.32. 

Arguing similarly, one sees that 6.40 holds provided 

r8p 
Jtl :::;; I ( ) I Tv g,p 

By 6.26.2, it suffices to ensure 

6.42 
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To summarize, if 6.41 and 6.42 hold, then so do 6.39 and 6.40, and hence 6.37. It follows 

that we may take 

With this choice of v, 6.38 becomes 
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Since (g, p) E D-y-8(P*, r) was arbitrary, the first estimate of Assumption C (Chap. 6) holds 

if we take 

6.43 

If WE Ac(D,.(p*, r)) is of the form W(g,p) = w(p), then (by, e.g., 2.15), 

8u 
{ u, W}(g, p) = og (g, p) • v'w(p) 

= J'(O) , 

where J(t) = u(gexp(tv'k(p)),p). Cauchy's inequality and the by now familiar argument 

leads to the estimate 

r 2k2( e - 1) 
ll{u, W}II~·· :::; - sup lv'w(p)I . 

O(J B(-y-o)r,o( ) 
PE r,o P• 

Since o :=:; 1, the second estimate of Assumption C certainly holds if we take 

6.44 

This completes the proof of Proposition 6.1 in the case of a semisimple G. 



CHAPTER 7 

Nekhoroshev-type estimates for momentum maps 

In this section we combine Theorem 3.10, Theorem 5.9 and Proposition 6.1 to obtain 

the Nekhoroshev type estimates on momentum maps discussed in the Introduction. 

Let G be a compact connected Lie group and (P, w, G, J) a Hamiltonian G-space. Con

sider a Hamiltonian of the form 

H= Ho+F, 

where Ho is G-invariant, and F is arbitrary. 

Existence of action-group coordinates. Assume that the hypotheses of Theorem 3.10 

apply (working 'locally' a la Remark 3 .1 1 if necessary), so that there exists a diffeomorphism 

</>: G x U ➔ P (U = <p- 1 (J(P)) n to) such that (Hoo </>)(g,p) = h(p), for some smooth 

h : U ➔ JR. Recall that <p : fl ➔ fl * is the isomorphism corresponding to the fixed Ad

invariant inner product on fl. 

Complexification of the coordinates. Fix some x E P and define (g,p) = ¢- 1 (x) . Fix 

a positive constant p small enough that the real closed ball B2p(f5) is contained in U and 

the complex closed ball B;(p) (defined in Chap. 5) is contained int~ (defined in Chap. 2). 

Fix a positive constant a- ~ 1 small enough that (Go-)o,,;;o-,,;;a, as defined by 6.5, is a local 

complexification of G in the sense of 5.1. 

Analyticity of the Hamiltonian. Assume that h E AIR(Bp(p)) and Fo</> E AIR(G x Bp(p)) 

(notation as in Chap. 5) . Furthermore assume that a- and pare sufficiently small that h 

and F o </> have holomorphic extensions h E A<C(Bg(p)) and F o </> E A<C(Ga x Bg(p)). 

Convexity of the unperturbed Hamiltonian. Assume that his ( m, M)-convex on int B: (p) 

in the sense of 5.3, for some m, M > 0. 
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Constants. Write Q(p) = 'vh(p) Et and define the 'time scales' 

1 
Tm=-_

pm 

1 
TM=-- j5M 

Tn = ( sup ID(p)l)-l 
pEBP 

Th'"= (j52 sup sup ID 3h(p)(u, v, w)l)-l 
pEB u,v,wEl 

and the associated 'dimensionless constants' 

Recall that we allow Th"' = oo. 
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The perturbation parameter. Let II · II denote the supremum norm on .A<C(GB' x BP) and 

define the 'perturbation parameter' 

where E = ffj5/TM. We have the following corollary of Theorem 5.9 and Proposition 6.1. 

(Recall that k denotes the rank of G.) 

7.1 Corollary There exist positive constants c1 , c2 , c3 , c4 independent of h and the pertur

bation F, and positive constants a= a(k), b = b(k), c = c(c1, ... , c7), Eo = Eo(k, c1, ... , c7), 

to= to(c1, ... , c7) and ro = ro(c1, ... , c7), such that for all E ~ Eo and every integral curve 

t H Xt E P of XH with xo = x one has 

where O C _g* is the co-adjoint orbit through the point J(x0 ). 

Estimates for the constants a, b, c, Eo, to, ro (which are not optimal) appear in Addendum 

5.10. 

If G is semisimple (and one takes -1 times the Killing form as the fixed inner product on 

_g), then c1 depends only on the Cartan integers of G (according to the explicit computation 
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presented in Chap. 6) and one may take 

1 
c2=-------

- 8k2 max{(, e - 1} 

c3 = 2k2(e - 1) max{l, (} 

c4 = 2k2(e - 1) 

( = 1 + 2k2k3(e - l)p 
[B2p(p) - oto[o-
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The constant k3 (see 6.17) depends only on the Cartan integers. The constant k2 (see 6.9) 

depends on the realization of G as a linear group. 

The reader should keep Remark 6.33 in mind. 

PROOF. That one arrives at the following estimate for the action variables is clear: 

compute 

[J(xt) - O[:::; IJ(xt) - 9t9o1 
• J(xo)I = l9t • <p-

1 (Pt) - 9t • <p-
1

(Po)I 

= l<p-
1

(Pt) - <p-
1

(Po)I = [Pt - Po [ , 

since the isomorphism <p : t -+ i is isometric. This proves that the estimate claimed in the 

corollary indeed holds. □ 



Part 2 

Geometry 



Outline of Part 2 

Here we describe geometric constructions underlying the analyses given in 'Part 1: Dy

namics.' We assume that the reader has at least read the Introduction and the historical 

remarks at the end of Chap. 3. The exposition is otherwise relatively self-contained. 

In Chap. 8 we study a special class of Hamiltonian G-spaces, namely those possessing 

points of 'regular co-adjoint orbit type.' It is shown (Theorem 8.14) that essentially all 

geometric information describing such a space is encoded in a symplectic cross section, 

which is a lower dimensional Hamiltonian T-space, where T C G denotes some maximal 

torus (we assume that G is compact and connected). This result may be viewed as an 

application of the philosophy of Guillemin and Sternberg (1984, §41) (see also Guillemin et 

al. (1996)). 

In Chap. 9 we show how action-group coordinates, a generalization of action-angle co

ordinates that was applied to perturbation theory in Part 1, can be realized as a symplectic 

submanifold of T*G. We derive explicit expressions for the symplectic structure and Hamil

tonian vector fields in these coordinates. 

In Chap. 10 we use the results of Chap. 8 to reduce the problem of constructing action

group coordinates in an integrable system, to the construction of action-angle coordinates 

in an associated symplectic cross section (Theorem 10.2). We tackle the problem of global 

existence by relating work of Duistermaat (1980). We also prove 'semi-global' results, which 

are more convenient to apply in concrete examples. This includes a proof of Theorem 3.10 

of Part 1 (here stated as Corollary 10.12). 

In Chap. 11 we apply the preceding theory by constructing explicit action-group coor

dinates in the axisymmetric Euler-Poinsot rigid body. 

The constructions of Chap. 10 apply to systems that have zero dimensional Marsden

Weinstein reduced spaces, with respect to some known symmetry group G. In Chap. 12 we 

show how one can sometimes enlarge G in a system with two dimensional reduced spaces 

to G' = G x 5 1 , in such a way as to render the G'-reduced spaces zero dimensional. We 

demonstrate this in the case of the rigid body in Appendix D. 
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In Appendix E we include a detailed proof of Weinstein's Symplectic Correspondence 

Theorem, which we need in Chap. 12. 
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CHAPTER 8 

On Hamiltonian G-spaces with regular momenta 

Preliminaries 

Before turning to our main subject, we review and supplement terminology used in 

Chap. 3 of Part 1. We already assume some familiarity with the structure of compact Lie 

groups, say with what has been summarized in Chap. 1 of Part 1. We work throughout in 

the category of smooth manifolds and maps, where 'smooth' means C 00 or real-analytic. 

If a Lie group G acts on a symplectic manifold (P, w) by symplectic diffeomorphisms, 

and the infinitesimal generators EP (E E fl) are global Hamiltonian vector fields, then one 

says that G is acting in a Hamiltonian fashion, or that the action is Hamiltonian. In 

that case there exists a map J : P -+ 9*, called a momentum map, with the property 

that it delivers Hamiltonian functions Je : P -+ JR for the generators according to the 

formula Je( x) = (J ( x), E). So, if we denote the Hamiltonian vector field corresponding 

to a Hamiltonian H by XH, we have EP = XJc If furthermore the momentum map is G

equivariant (with G acting on fl* by the co-adjoint action), then we shall refer to (P, w, G, J) 

( or simply P) as a Hamiltonian G-space. 

For background on Hamiltonian actions and momentum maps see Marsden and Ratiu 

(1994), Abraham and Marsden (1978, Chapter 4) or Guillemin and Sternberg (1984). We 

limit ourselves throughout to the case of G compact and connected. 

By the co-adjoint orbit type of a point x E P we shall mean the orbit type of J(x) E 9*. 

The space P has uniform co-adjoint orbit type (T) (T C G denoting a maximal torus) 

if and only if J(P) C fl;eg· Here fl;eg denotes the regular points of the co-adjoint action 

( not to be confused with regular values of J). In that case we will call P a Hamiltonian 

G-space with regular momenta. Our interest in such spaces is motivated by the fact that, 

under an appropriate integrability hypothesis, they admit action-group coordinates which, 
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as we showed in Part 1, can be used as a geometric framework for perturbation theory. A 

simple example is geodesic motions on S 2 (provided we exclude the trivial motions); see, 

e.g., Chap. 3 of Part 1. 

For us the construction of 'coordinates' in a Hamiltonian system will mean the con

struction of an appropriate equivalence between Hamiltonian G-spaces: 

8.1 Definition Two Hamiltonian G-spaces (P
1

,w
1

,G,J 1

) and (P
2

,w
2

,G,J 2

) will be said 

to be equivalent if there exists a G-equivariant symplectic diffeomorphism </>: P1 -+ P2 such 

that J2 o </> = J 1. 

Henceforth T C G denotes a fixed maximal torus, t C g its Lie algebra, 

and W C i = Ann[g, t] a fixed (open) Wey] chamber in g* (terminology and 

notation as in Chap. 1 of Part 1); (J will denote a fixed regular co-adjoint 

orbit, and µ0 the unique point of intersection of (J with W. 

The natural projection g*-+ t* (dual map of inclusion) restricts to an isomorphism i: !-+ t*, 

which identifies W with an open set fo = i(W) . We refer to W as a Wey! chamber also. 

We now turn to a systematic study of Hamiltonian G-spaces with regular momenta. 

While we make no explicit assumptions on the orbit type (Gx) of points x E P, the following 

is worth noting. 

8.2 Proposition If P is a Hamiltonian G-space with regular momenta, then dim Gx ~ 

rankG for all x E P. 

This follows from the equivariance of J and the identity 

8.3 

which follows from the definition of a momentum map. 

For any Hamiltonian G-space P, the open G-invariant subset P' = J-1 (g;eg) is a Hamil

tonian G-space with regular momenta. If, however, dimGx > rankG for all x E P, then 
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Proposition 8.2 implies that P' is empty. The following example (relevant to the so-called 

1:1:1 resonance) is a case in point. 

8.4 Example Equip P = lR. 6 with the standard symplectic structure, and let G = SU(3) act 

(faithfully) on P by identifying JR6 with C3. Then G acts symplectically, as is well-known, 

and so admits a momentum map, on account of the Poincare lemma. This momentum map 

is equivariant since SU(3) is semisimple (Guillemin and Sternberg, 1984). One finds that 

for all x E P, dim Gx 2'. 3 >rank G = 2, and that accordingly J(P) nfl;eg = 0. (In the 1:1:1 

resonance one studies cubic and higher order perturbations of the G-invariant Hamiltonian 

H(z1, z2, z3) = ½lz11 2 + ½lz21 2 + ½lz31 2-) 

Henceforth (P, w, G, J) denotes a Hamiltonian G-space with J(P) C fl;eg· 

On the geometry of the co-adjoint action 

Our first observation is that there exists a natural G-equivariant trivialization fl;eg ~ 

0 x W (with G acting on Ox W according tog · (v, w) = (g • 11, w)). This trivialization 

is given by µ M (1ro(µ), 1rw(µ)), where 1ro : fl;eg ----+ 0 and 1rw : fl;eg ----+ W are defined 

implicitly by 

8.5 
1ro(g • w) = g • µo 

1rw(g • w) = w 

(g E G, w E W) , 

every element of fl;eg being of the form g • w for some g E G and w E W. Indeed W is 

a global slice at µ0 for the co-adjoint action of G on fl;eg, so that there exists a natural 

G-equivariant isomorphism fl;eg ~ G Xy W (see Appendix B). Since all points in W have 

isotropy group T, we have G Xy W ~ G/T X W ~ 0 x W. 

Note that the fibers of 1ro : fl;eg ----+ 0 are the Weyl chambers in fl*; the fibers of 

1rw : fl;eg ----+ W are the regular co-adjoint orbits. 

8.6 Example Take G = S0(3) and let T C G be the rotations about the e3 axis. The 

Lie algebra fl = .so(3) can be identified with JR3 via the isomorphism ~ Mt : JR3 ----+ .so(3) 

defined by tu = ~ x u ( u E JR3). We have a corresponding identification fl* ~ JR3. The 
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co-adjoint action is then represented by the standard action of SO(3) on R3. We have 

i = span{e3}. For a Weyl chambering* choose W = {te3 I t > 0}. For a regular co-adjoint 

orbit O choose the unit sphere S 2 C R3. The unique intersection point of W and O is 

µo = e3. The projection rro : R 3\{0} ----+ S 2 is given by rro(µ) = µ/ 11µ11 - The projection 

rrw: R3\{0}----+ W ~ (0, oo) is given by rrw(µ) = llµII-

Since J (P) C g;eg, it is natural to pull the projections rro and rrw back using the 

momentum map: Define 

7r = 7rO o J : p ----+ 0 , 
8.7 

j = i o rrw o J : P ----+ to C t* 

In the following paragraphs we shall see that each fiber of 7r encodes the geometric structure 

of the full space P. Later, we shall see that j : P----+ t* is the momentum map for a natural 

Hamiltonian action of Ton P. Unlike the action of T as a subgroup of G, this new T-action 

leaves the fibers of 7r invariant. Furthermore the orbits of this action do not depend on the 

choice of maximal torus T . 

The fibering of P by Hamiltonian T-spaces 

The map 7r is G-equivariant. Since G acts transitively on 0, it follows that 1r : P----+ 0 

is a surjective submersion. 

8.8 Theorem (Guillemin-Sternberg) Each fiber Fv = 1r-1 (v) of 1r is a symplectic sub

manifold of P invariant with respect to the action of the maximal torus Gv, Furthermore, 

Gv acts on Fv in a Hamiltonian fashion (with respect to the symplectic structure Wv = wlFv) 

with an equivariant momentum map JV : Fv ----+ g: given by JV ( x) = J ( x) lf1v ( x E Fv) . This 

makes Fv a Hamiltonian Gv-space (Fv, Wv , Gv, JV). 

Each element g E G maps each fiber of 1r symplectomorphically onto another fiber, and 

this induced action on the fibers is transitive. 
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Theorem 8.8 follows, for example, from the symplectic cross section theorem (Guillemin and 

Sternberg, 1984, §41). For a statement of this theorem the reader is referred to Guillemin 

et al. (1996), from whom we also borrow the following terminology: 

8.9 Definition Write F = Fµ 0 , wp = wµ
0 

and JF = Jµo. The Hamiltonian T-space 

(F, wp, T, JF) will be referred to as the symplectic cross section of (P, w, G, J). Note that 

JF = i oJIF. 

In fact, the symplectic cross section theorem gives more information than is contained 

m the statement of Theorem 8.8. It shows that 1r : P -+ 0 is naturally isomorphic to 

the bundle G x T F -+ G /T. In particular, 1r : P -+ 0 is a symplectic fibration, meaning 

that it is a locally trivial fiber bundle, with fibers modeled on F, whose structure group 

is contained in the symplectomorphism group of F. The symplectic cross section theorem 

also gives a characterization of the symplectic connection on 7r : P -+ 0 (see 8.11 below 

for a definition). This characterization allows one to recover the symplectic structure won 

P from: (i) its restriction to F, and (ii) the natural co-adjoint orbit symplectic structure 

of the base 0. The interested reader is referred to op. cit. for details. For our purposes, 

Theorem 8.8 and the rather straightforward observation in Lemma 8.12 below will suffice. 

Since all maximal tori of G are conjugate, we can replace the action of Gv on a fiber 

Fv (v E 0) by a Hamiltonian action of the fixed torus T = G µo . (In fact, a slightly 

stronger statement is true; see Corollary 8.18.) This makes each fiber a Hamiltonian T

space. By Theorem 8.8 there exists for any fibers Fv1 and Fv2 an element of G mapping Fv1 

symplectomorphically onto Fv2 • This map is in fact an equivalence of Hamiltonian T-spaces, 

in the sense of 8.1. In particular, each fiber of 1r is equivalent as a Hamiltonian T-space to 

the symplectic cross section. 

8.10 Remark (On G-invariant dynamics) If H : P-+ IR is a G-invariant Hamiltonian, 

then the fibers of 1r = 1ro o J will be XH-invariant , by Noether's theorem (which states 

that the preimage of any set under the momentum map is XH-invariant) . Furthermore, 
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the dynamics in any two fibers will be conjugate because any fiber can be mapped sym

plectomorphically onto any other by a group element. So any feature of the dynamics in a 

given fiber is repeated in all the fibers. For example, the existence of an equilibrium point 

for XH in fact implies the existence of an entire manifold of equilibria diffeomorphic to 

0. Borrowing language from perturbation theory (where one is interested in non-invariant 

perturbations to H), we say that such a Hamiltonian is more 'resonant1 .' This built-in 

resonance is particular to the non-Abelian case, for otherwise O is just a point and 1r has 

only one fiber, viz. P. 

The symplectic connection 

8.11 Definition The symplectic connection on 1r : P ➔ 0 is the assignment to each x E P 

of a space Horx = (kerTx1r)w called the horizontal space at x which, on account of F1r(x ) C P 

being a sym plectic su bmanifold, is complementary to ker T x 1r in T xP. 

The restriction of w to the horizontal spaces is easily characterized: 

8.12 Lemma 1. Horx C Tx(G • x) 

2. w(~p(x), 77p(x)) = (J(x), [~ , 77]) 

(x E p) . 

(xEP; (,77Eg) 

PROOF. Since 1r = 1ro o J , we have ker T x1r :J ker T xJ . Taking w-orthogonal comple

ments, we obtain Horx C (kerTxJ)w. By the definition of a momentum map, g*? P ➔ 

P/G has the 'dual pair' property, i.e. (kerTxJ)w = Tx(G • x) . So 1 holds. 

To prove 2, we observe that as J is equivariant, it is also infinitesimally equivariant, 

from which it follows that {Je,J11 } = J[e, 11], where {J,h} = XhJ X1Jw (see, e.g., Abraham 

and Marsden (1978, Theorem 4.2 .8) for a proof). We can now compute 

w(fr(x), 77p(x)) = w(X1e(x), X1
77
(x)) = {Je, J11 }(x) 

= J[e,111(x) = (J(x), [~, 77]) · 

□ 

1 A perturbation theorist might also coin the term 'degenerate.' From the symmetry point of view, this 

terminology is misleading, as the phenomenon we have just described applies to any G-invariant Hamiltonian. 
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A simple example: Geodesic motions on the sphere 

We now describe a simple example for which one can give an explicit realization of the 

sym plectic cross section. 

Recall (see, e.g., Chap. 3 of Part 1) that the phase space for geodesic motions on 3 2 can 

be identified with a Hamiltonian G-space (T32,w,S0(3),J) where J: T32 -+ .so(3)* ~ JR 3 

is given by J(q, v) = q xv. (Here we are viewing T32 as {(q, v) E 3 2 x JR3 I q • v = 0}.) 

If we restrict attention to the open dense invariant subset P C T 5 2 obtained by removing 

the zero section, we obtain a Hamiltonian G-space (P, w, S0(3), J) with regular momenta. 

Choose T, W and O as in Example 8.6. Then the symplectic fibration rr : P-+ 3 2 is 

given by rr(q, v) = rro(J(q, v)) = v/ llvll-

The symplectic cross section F = rr- 1 ( e3 ) is symplectomorphic to the cylinder 3 1 x 

(0, oo), equipped with the standard symplectic structure d0 I\ dl. Indeed a diffeomorphism 

<p: 5 1 x (0, oo) -+Fis given by 

where R~ = exp(0e3). To show that <pis symplectic, recall that w = -d0 where 

8.13 

From this one computes 10 J <p*0 = J and 11 J <p*0 = 0, so that <p*0 I d0, giving 

<p*w = d0 I\ dl as required. 

The action of T ~ 5 1 on 5 1 x (0, oo) that makes the symplectomorphism <p a T

equivariant map is given by 0' • (0, I) = (0 + 0', I). Identify the Lie algebra of 5 1 (and its 

dual) with JR using the generator f0 (0). Then the momentum map JF o <p of this action is 

given by the coordinate function I: 5 1 x (0, oo)-+ JR. 

To summarize, the symplectic cross section of the Hamiltonian G-space applying to 

geodesic motions on 5 2 is just the cylinder 3 1 x (0, oo) equipped with the standard 5 1 

Hamiltonian action. 

The Hamiltonian for geodesic motions on 52 is (up to a rescaling) H(q, v) = ½ llvll 2
, 

which is SO (3)-invariant. This Hamiltonian restricts to a function on F that is pulled 



REDUCTION TO THE ABELIAN CASE 75 

back by cp : 5 1 x (0, oo) ~ F to ½ 12

. This is the Hamiltonian for geodesic motions on 

the circle, and is 5 1-invariant. Thus geodesic motions on the sphere can be imagined as 

a family of subsystems F11 (v E 0), each identifiable with geodesic motions on the circle. 

This corresponds precisely to the following familiar fact: A point mass constrained to move 

on the surface of a smooth sphere moves as if it were constrained to move on a great circle. 

This circle is given by the intersection of the sphere with the plane whose normal is aligned 

with the initial (and subsequently conserved) angular momentum. These normals live in 

the space 5 2 = 0, the 'unit momentum sphere.' 

Reduction to the Abelian case 

Here is the central result of this chapter. 

8.14 Theorem 

Two Hamiltonian G-spaces (Pi,w
1

,G,J 1

) and (P
2

,w
2

,G,J 2

) with regular momenta are 

equivalent (in the sense of 8.1) if and only if their symplectic cross sections are equivalent. 

Explicitly, if cp : F
1 

-+ F
2 

is an equivalence between the symplectic cross sections, then a 

well-defined equivalence <p : Pi -+ P2 is given by 

</>(g. y) = g. cp(y) (g E G, y E Fi) 

PROOF. Recall that as G acts transitively on the fibers of 11'1 : P1 -+ 0 (the symplectic 

fibration associated with (Pi,w1,G,J1)), ever:y element of Pi is of the form g • y for some 

g E G and y E Fi = 11'11 (µo). Furthermore, g • y = g' • y' (g' E G, y' E Fi) if and only 

if g' = gq and y' = q- 1 • y, for some q E T (by the G-equivariance of 11'1). In that case 

g' • cp(y') = gq • cp(q- 1 • y) = g • cp(y), by the T-equivariance of cp. This shows that ¢ is 

well-defined. 

That ¢ is smooth is clear. It is a diffeomorphism since it has a well-defined and smooth 

inverse ¢-1 : P2 -+ P1 given by 

By construction ¢ is G-equivariant. 
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We show next that J 2 o </> = J 1 . Let g • y E P1 be arbitrary (g E G, y E Fi). Then 

J 1 (y) E WC i, so that J 1 (y) = i- 1 (J 1(y)lt) = i- 1 (JF1 (y)). Similarly, as <p(y) E F2, we 

have J 2(1.p(y)) = i-1 (JF2 (<p(y))). But JF2 01.p = JF1, since <p: F1 ➔ F2 is an equivalence, 

from which we deduce 

8.15 

Using this fact we now compute 

Since g • y E F1 was arbitrary, this shows that J 2 o </> = J 1 . 

To prove that</> is an equivalence it remains to show that</> is symplectic. Since <p : F1 ➔ 

F2 is symplectic, it follows from the definition of</>, and the last statement in Theorem 8.8, 

that</> maps fibers of 1r1 symplectomorphically onto fibers of 1r2. To check the symplecticity 

of </>, it therefore suffices to check that the tangent map T</> maps horizontal spaces of 

the symplectic connection on 1r1 : P1 ➔ 0 symplectically onto horizontal spaces of the 

symplectic connection on 1r2 : P2 ➔ 0. From the definition of</> and infinitesimal generators, 

it follows that 

8.16 ( ~ E fl, g E G, y E F) . 

Since J2 (</>(g · y)) = J 1 (g • y) (proven above), the symplecticity of T</> on horizontal spaces 

follows immediately from 8.16 and Lemma 8.12. □ 

The 1r-invariant T-action 

The remaining results of this chapter play a minor role in the sequel and may be skipped 

on a first reading. We call an action of a group H on P 1r-invariant if the fibers of 1r are 

H-invariant submanifolds. The action of T (as a subgroup of G) is not 1r-invariant, but it 

does leave the symplectic cross section F invariant. We now show how to extend this action 

on F to a 1r-invariant action. It is convenient to begin with a slightly more general result: 
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8.17 Lemma (Extension Lemma) Let (P, w, G, J) be a Hamiltonian G-space with reg

ular momenta, 1r: P---+ 0 the associated symplectic fibration, and (F, wF, T, JF) the sym

plectic cross section. Suppose that an Abelian group H acts on Fin a Hamiltonian fashion 

and let K : F ---+ Q* be an associated equivariant momentum map. Assume furthermore 

that: 

l. The actions of H and T commute, and 

2. K is T-invariant. 

3. JIF is H-invariant. 

Then, denoting the action of H on F by (h, y) f----t h·HY, there exists a well-defined extension 

to P given by 

( h E H, g E G, y E F) . 

The extended action of H leaves the fibers of 1r invariant and is Hamiltonian . An associated 

momentum map is the well-defined extension of K to a map K: P---+ Q* given by 

K(g • y) = K(y) (g E G, y E F) 

Moreover, the properties 1 and 2 above extend as follows: 

4. The extended action of H commutes with the action of G , and 

5. The extended momentum map K : P ---+ Q* is G-invariant. 

6. J is invariant with respect to the extended action of H. 

To prove the lemma (see Appendix C) one appeals to Theorem 8.8 and Lemma 8.12. 

Taking H = T, we obtain an extension of the action of Ton F to a 1r-invariant action 

on P, with momentum map K: P---+ t* given by 

K(g. y) = J F(y) = J(y)lt= i(J(y)) 

= i(1rw(g • J(y))) by 8.5 

= ( i o 1rw o J) (g • y) by the equivariance of J 

= j(g. y) (j is defined in 8.7) . 
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Notice also that we can write q·r(g • y) = gqg- 1 - (g • y) (q ET, g E G, y E F). Summarizing: 

8.18 Corollary If (P, w, G, J) is a Hamiltonian G-space with regular momenta, and 1r the 

associated symplectic fibration, then there exists a well-defined Jr-invariant action (q, x) f--7 

qrx of Ton P given by 

( q E T, g E G, y E F) . 

This action is Hamiltonian with momentum map j : P--+ ~ C t * defined by j = i o 1rw o J . 

The actions of T and Gv on a fiber Fv (v E 0) are conjugate in the following sense: Let 

g E G be such that v = g • µo and define the isomorphism 'I/;: T--+ Gv by '1/;(q) = gqg- 1. 

(Recall that T = Gµ 0 , so that gTg- 1 = G9 .µ0 = Gv.) Then qTx = '1/;(q) • x for any x E Fv. 



CHAPTER 9 

Action-group coordinates as a symplectic cross section 

One can use symplectic cross sections as a way of generating new symplectic manifolds. 

In this chapter we show that the action-group model space G x ~ described in Part 1 can 

be realized as the symplectic cross section of T*G (with its 'irregular' points removed). We 

study the space G x ~ in some detail, supplying proofs of some facts stated in Part 1. 

The symplectic cross section of T*G 

Let 8 denote the canonical one-form on T*G. This is defined by 

9.1 (( E T(T*G)) . 

The maps TT•G : T(T*G) -+ T*G and Ta : T*G-+ G denote the canonical projections. A 

natural symplectic structure on T*G is w = -d8. 

A (left) action of G on itself is given by 

(g, h E G) , 

where R9 (h) = hg. Recall that the (covariant) cotangent lift T*¢ T*G -+ T*G of a 

diffeomorphism ¢ : G -+ G is defined by 

We make G act on T*G by cotangent-lifting the above action of G on itself: 

(g E G, x E T*G) . 

It follows from general results concerning cotangent-lifted actions (see, e.g., Marsden 

and Ratiu (1994)) that the above action of G on T*G is Hamiltonian, with an equivariant 
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momentum map J : T*G-+ g* given by 

(xET*G,g=rc;(x)), 

where L9 (h) = gh (g , h E G). The open dense G-invariant subset P = J-1 (g;eg) C T *G is a 

Hamiltonian G-space with regular momenta. Each element of P is of the form T *Lg • µ for 

some g E G andµ E g;eg· (Indeed (g , µ) M T *L9 • µ: G x g;eg -+ Pis a diffeomorphism.) 

The symplectic fibration 1r : P-+ 0 is given by 

Therefore, the symplectic cross section of (P, w, G, J) is given by 

For each a E g*, let aa denote the left-invariant one-form on G with aa(ida) = a (here 

viewing one-forms on G as sections of G -+ T*G). Then the embedding ¢ : G x to y T*G 

defined by ¢(g,p) = (i- 1 (p))a(g) = T *L9 • i- 1 (p) is a diffeomorphism onto F. (Since 

Theorem 8.8 says that F C P is a symplectic submanifold, this proves Proposition 2.2 

stated in Part 1.) We define We = ¢*w' and call ( G X to' we) the action-group model space 

of G. 

In deriving an explicit formula for the symplectic structure We, it will be convenient to 

have a concrete way of expressing vectors tangent to G x t~. To this end, define for each 

(t, r) E g X t* the vector field (t, r)vf on G X to by 

9.2 (t, r)vr(g,p) = dd (gexp(tt),p+ tr)I 
t t = O 

Since((, r) M (t, r)vr(g,p): g x t* -+ T(g,p)(Gxto) is an isomorphism at every (g,p) E Gxto, 

every vector tangent to G X to is uniquely expressible in the for~ (t , r)vr(g,p). One verifies 

that1 

9.3 

1 We identify the Lie algebra of a Lie group with the left invariant vector fields, equipped with Jacobi-Lie 

bracket ; our sign convention for the latter is the same as Abraham, Marsden and Ratiu (1988, §4.2.20). 
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9.4 Lemma Define Ga= </>*8, so that we= -dGa, Then 

(Ga,(~, r)vc(g,p)) = (p, a(~)) , 

where a : g-+ tis the projection onto t along t.L = [g, t]. Furthermore, 

The above expression for Ga also appears in Dazord and Delzant (1987, Section 5) (who 

obtain it via a different route). 

9.5 

PROOF. One computes using 9.1 

(Ga,(~, r)vc(g,p)) = (8, T</> • (~, r)vc(g,p)) 

= \ T *L9 • i-
1 (p), :t Tc; ( </>(g exp(t~), p +tr)) lt=O) 

= (i- 1(p),TLg-l' :tTc;(T*Lgexp(te) -i - 1 (p+tr))lt=J 

= \i-l(p), :tg-1gexp(t~)1t=J 

= (i-l(p),O = (p,a(()) . 

From this we compute 

Applying the well-known identity 

VJ u J d/3 = u J d( VJ /3) - V J d( u J /3) - [ u, V] J /3 ' 

with /3 = Ga, we obtain from 9.3, 9.5 and 9.6 the formula for we stated in the lemma. □ 

9. 7 Remark If G is a torus 1'k, then G x fa ~ ']["k x IR k and We is identifiable with the 

canonical symplectic structure I:j dqj I\ dpj. In this sense G X -lo (Gan arbitrary compact 

connected Lie group) is a non-Abelian generalization of action-angle coordinates. 
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Action-group coordinates as a Hamiltonian G-space 

Since we have realized G X fa as a symplectic cross section, the maximal torus T acts 

on G x to- More significant for us, however, is the observation that G acts on G x to: 

9.8 Lemma The action ofG on G X to defined by g • (h,p) = (gh,p) is Hamiltonian, with 

equivariant momentum map JG: G x to-+ g* given by JG(g,p) = g-i- 1 (p) = Ad;_ 1 i-1(p). 

This action makes (G Xu, We, G, JG) a Hamiltonian G-space with regular momenta for any 

open set U C to-

PROOF. Imitate the construction in Example 3.2 of Part l. □ 

9.9 Remark The action of Ton the Hamiltonian G-space G x to given by Corollary 8.18 

is defined by q·r (g,p) = (gq,p). Corollary 8.18 states that this action is Hamiltonian , with 

a momentum map jG: G x to-+ to given by jG(g,p) = (i o 1rw o JG)(g,p) = p. 

The following proposition, whose easy proof is left to the reader, shows that the sym

plectic cross section of the action-group model space of G is the action-group model space 

of T, i.e., conventional action-angle coordinates (by Remark 9.7). 

9.10 Proposition 

The symplectic cross section of ( G X u, We, G, JG) is (T X u, Wy, T, JT). 

Hamiltonian vector fields in action-group coordinates 

In our applications to perturbation theory described in Part 1, it was essential to have 

a concrete way of writing down the equations of motion in action-group coordinates. These 

equations were derived from an expression for Hamiltonian vector fields that was stated 

without proof. We now derive that expression explicitly. 

In Part 1 it was convenient to identify G x to with G x to using some Ad-invariant inner 

product on g. Here we work throughout with G x fa and leave it to the interested reader 

to translate our results into the form used in Part 1. 
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9.11 Lemma Write t.L = [g, t] and i.L = Ann t (notation as in Chap. 1 of Part 1). Then 

for all p E t0 the map 

is an isomorphism. 

PROOF. Since dim t.L = dim i.L' it suffices to show that ade i- 1 (p) = 0 implies ( = 0. 

Write µ = i- 1 (p) E W C in g~eg, so that t = gµ (by, e.g., Corollary 1.8.2 of Part 1). 

Supposing that ( E t.L satisfies ade i- 1 (p) = 0, we have ade µ = 0, i.e., ( E gµ = t. But 

tn t.L = {0} (by, e.g., Theorem 1.2.8 of Part 1), so that ( = 0. □ 

For any p E ta, we define Ap : i.L -+ t.L to be the inverse of the map described in 9.11 above. 

For future reference, let us record that this means 

9.12 

For any smooth function f : G x t0 -+ IR. define the vector-valued functions i: : G x t0 -+ 

g* and i~ : G x ta -+ t by 

&J d I ( &g (g, p), O = (df, ((, 0)vr(g, p)) = d/(g exp(t(), p) t=O 

&J d I (r, &p (g, p)) = (df, (0, r)vr(g, p)) = d/(g, P + tr) t=O ( T E t*) . 

9.13 Proposition (Hamiltonian vector fields on G x t0) 
The Hamiltonian vector field X J corresponding to a function f is given by 

where 
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Here a* : fl* ---+!denotes the projection along !1_ = Ann t, i.e., (a*µJ,) = (µ, at) (µ E fl*, 

t E fl)· 

PROOF. Define t E fl and TE t* as in the statement of the lemma. It suffices to verify 

that the one-forms (t, r)vf J Wa and df agree on elements of T(g,p)(G X fa). Let X E fl and 

y E t* be given. Then, by Lemma 9.4, 

((t, r)vf J Wa, (x, Y)vr(g, p)) = \Y, at) - (r, ax)+ \P, a[t, x]) 

= (ia*!; (g,p), ax)+ (y, !; (g,p)) + (i- 1 (p), [Ap !; (g,p), x] + [!; (g,p), x]) 

9.14 8J ( 8J ·-1 8J 
= (

89
(g,p),ax)+ y, Bp(g,p))+ (i (p),Ap

89
(g,p),x]) 

We have used the fact (i- 1 (p),[~t(g,p),x]) = 0, which is true because i-1 (p) E Ann[t,fl] 

and ~t(g,p) Et. Noting that Ap~t(g,p) E t1- and using 9.12, 

so that 9.14 becomes 

(i-1 (p), [Ap ~; (g, p), x]) = (>.; 1 Ap ~; (g, p), x) 

= ((id - a*)!; (g,p), x) 

= ,!; (g,p), (id - a)x) , 

* 8J 8J 
((t, r)vf J wa, (x, Y)vr(g,p)) = ( Bg (g,p), x) + (y, Bp (g, P)) 

= (df, (x,y)vr(g,p)) 

Since x E fl and y E t* were arbitrary, this proves our assertion. 

The Poisson bracket in action-group coordinates 

The Poisson bracket on G x fa is defined by {J, h} = xh J X1 J Wa· 

9.15 Corollary (The Poisson bracket on G X fa) 

□ 

Dropping the '(g, p) 'argument from '~t (g, p),' etc., the Poisson bracket on G x fa is given 
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by 

where Ap : g* ➔ g is the map defined in Lemma 9.13 above. 

PROOF. Imitate the proof of Lemma 2.15 of Part l. □ 



CHAPTER 10 

Constructing action-group coordinates 

Noticing that equivalent Hamiltonian G-spaces (see 8.1) have identical momentum map 

images, we introduce the following terminology: 

10.1 Definition Let (P, w, G, J) be a Hamiltonian G-space and define V = J (P) and 

U = i(V n W) . (If G is Abelian, then U = V .) We say that P admits G-compatible 

action-group coordinates if (P,w ,G , J) is equivalent to (G x U,wc ,G,J0 ) . We sometimes 

distinguish the Abelian case (G, a torus) by saying that P admits G-compatible action-angle 

coordinates. 

The non-Abelian case 

Here is our main result. It follows immediately from Theorem 8.14 and Proposition 

9.10. 

10.2 Theorem 

A Hamiltonian G-space (P, w, G, J) with regular momenta admits G-compatible action

group coordinates<=> its symplectic cross section (F, wp, T, JF) admits T-compatible action

angle coordinates. Indeed if U denotes the image of JF , and <.p: T x U ~Fan equivalence, 

then a well-defined equivalence ¢ : G x U ~ P is given by 

(g E G, y E F) 

The existence of action-angle coordinates can be characterized as follows. 

10.3 Proposition Let T be a torus and (F, w , T , J) a Hamiltonian T-space. Then F admits 

T-compatible action-angle coordinates<=> the following conditions hold: 

1. T acts freely and the space is geometrically integrable (see below). 
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2. J : F-+ U = J(F) has connected fibers. 

3. J : F -+ U admits a (global) isotropic section s : U -+ F. 

Recall that a section s : U-+ F is isotropic if s*w = 0. As in Part 1, when a group G acts 

freely on a Hamiltonian G-space (P,w,G, J) , we call the space geometrically integrable if 

the Marsden-Weinstein reduced spaces are zero dimensional. If J(P) C fl;eg, then geometric 

integrability occurs precisely when dim P = dim G + rank G (see Chap. 3 of Part 1 for 

details). In particular, in Proposition 10.3 (where G = T) this means dim F = 2 dim U. In 

that case the image of a section s : U -+ F has half the dimension of the ambient space. 

A section whose image has this dimension and is isotropic is usually called a Lagrangian 

section. 

PROOF OF ⇒. That conditions 1 and 2 hold is obvious. Condition 3 follows since the 

map pi----+ (q,p): U-+ T x U is an isotropic section (for any q ET). □ 

PROOF OF ¢:. Since Tacts freely, J : F-+ U is a surjective submersion (apply identity 

8.3). By the pre-image theorem the fibres of J are submanifolds of F of dimension dim F -

dim T. Since the space is geometrically integrable this dimension is dim T. By momentum 

map equivariance - which amounts to invariance since T is Abelian - the connected 

components of a fibre are therefore T-orbits. It follows from condition 2 that each fibre 

is a single T-orbit. Consequently, as T acts freely, the map ¢ : T x U -+ F defined by 

q;(q, p) = q • s(p) is a diffeomorphism. 

Now¢ is clearly T-equivariant, and we have (Jo q;)(q,p) = p = JT(q,p), since J is 
T-invariant and s is a section. So to show that¢ is an equivalence, it remains to show that 

¢ is symplectic. This means showing that <p*w = wT where, according to Lemma 9.4, wT is 

given by 

10.4 

( (q ,p) ET XU; 6,6 Et; T1,T2 Et*) . 
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We will compare </>*wand wy on pairs of vectors of the form((, T)vr(q,p). We start with a 

simple computation: 

d 
T</> • ((, T)vr(q, p) = dt </>(qexp(t(), p + tT) lt=O 

d = dt exp(t() • (q • s(p + tT)) l t =O (Tis Abelian) 

d 
=(F(</>(q,p))+(T<I>qoTs)· dt(p+tT)lt=O, 

where the diffeomorphism <I> q : F ➔ F is defined by <I> q ( x) = q • x. Using this we compute 

10.5 </>*w( (6, T1)vr(q,p), (6, T2)vr(q,p)) = 

w( (6)F(</>(q,p)), (6)F(</>(q,p))) 

+ w ( (6)F(</>(q,p)),(T<I>qoTs) • :/p+tT2)lt=O) 

-w ( (6)F(</>(q,p)), (T<I>qoTs) • :/p+tTi)lt=O) 

+ w ( (T<I>q o Ts) • :t (p + tTi) lt=O' (T<I>q o Ts)· :/P + tT2) l t=O) 

The first term on the right-hand side vanishes by 8.12.1 , since Tis Abelian. The last term 

vanishes because <l>q is symplectic and s : U ➔ F is isotropic. The remaining terms are of 

the form 

w ( (F(</>(q,p)), (T<I>qoTs) • :t(p+tT)lt=O) 

= w ( (F(q,p), Ts· :t (p + ts) it=O) since <I>q is symplectic and <I>;(F = (F 

d 
= (dJt, Ts· dt (p + tT)) since (F = XJe 

d 
= (dt(J(s(p + tT)),() = (T,() since Jo s = id (sis a section). 

From this we see that 10.5 and 10.4 have the same right hand sides, so that </>*w = wy as 

claimed. □ 

Of course our main interest in Proposition 10.3 is the case in which Fis the symplectic 

cross section of some Hamiltonian G-space P (G non-Abelian). In that case, some of the 
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conditions listed in 10.3 can be cast as conditions on the space P. This will be useful later 

on. 

10.6 Lemma 

Let (P, w, G, J) be a Hamiltonian G-space with regular momenta and (F, WF, T, JF) its 

symplectic cross section. Then 

1. T acts freely and (F, WF, T, JF) is geometrically integrable 

{:} G acts freely and (P, w, G, J) is geometrically integrable. 

2. Every fiber of JF: F-+ U = JF(F) is homeomorphic to a fiber of J: P-+ V = J(P) 

and conversely. (In particular, JF has connected fibers {:} J has connected fibers.) 

PROOF. That TC G acts freely on F C P when G acts freely on Pis trivial. Conversely, 

suppose T acts freely on F, and let g E G be such that g • x = x for some x E P. 

Then by the equivariance of the symplectic fibration rr : P -+ 0, we have g E Gv, where 

v = rr(x). Since G acts transitively on 0, there is h E G such that v = h • µ0 . Then 

Gv = Gh•µ,o = hGµ, 0 h-1 = hTh- 1
, so that g = hqh-1 for some q ET. Then g ·x = x implies 

q • (h- 1 • x) = h- 1 • x. Since h-1 • x E Fµ, 0 = F (again by the equivariance of rr), and we 

are supposing that T acts freely on F, it follows that q = id, so that g = hh-1 = id. This 

shows that G acts freely. Since dim P = dim O + dim F = ( dim G - rank G) + dim F, and 

rank G = dim T, we have 

dim F = 2 dim T {:} dim P = dim G + rank G . 

This shows that F is geometrically integrable if and only if P is geometrically integrable. 

So 1 is true. 

Each fiber of J lies entirely in a fiber of the symplectic fihration rr : P -+ 0, and is 

therefore (by, e.g., Theorem 8.8) homeomorphic to a fiber of J lying entirely in the fiber 

F = Fµ, 0 • Now by definition JF = i(JIF), where i : i-+ t* is an isomorphism. So every 

fiber of J F is literally a fiber of J, and every fiber of J is homeomorphic to a fiber of J F. 

So 2 is true. □ 
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The following observation is useful in constructing explicit action-group coordinates in 

concrete examples: 

10. 7 Proposition Let (P, w, G, J) be a Hamiltonian G-space with regular momenta and 

(F, wp, T, JF) its symplectic cross section. Assume that F admits T-compatible action

angle coordinates (so that P admits G-compatible action-group coordinates, by Theorem 

10.2) and let s : U---+ F be a Lagrangian section (whose existence is guaranteed by Propo

sition 10.3). Then a realization of G-compatible action-group coordinates is given by the 

equivalence</>: G x U ~ P defined explicitly by </>(g,p) = g • s(p). 

PROOF. Let s : U ---+ F be a Lagrangian section. As in the proof of Proposition 10.3, 

we have an equivalence cp : T x U ~ F given by cp(q,p) = q • s(p). Applying Theorem 

10.2, a well-defined equivalence </> : G x U ---+ P is given by 

</>(g. (q,p)) = g. cp(q,p) (g E G, q E T C G, p E U) 

But this means </>(gq,p) = (gq) • s(p) for any g E G, q ET, p EU. In particular </>(g,p) = 

g • s(p), as claimed. □ 

10.8 Example (Geodesic motions on 5 2 ) In the example of geodesic motions on 5 2 

discussed in Chap. 8, the map cp : 5 1 x (0, oo) ---+ F defines an equivalence between the 

space 

(TX U, WT, T, JT) = (51 x (0, oo), d0 A dl, 51, I) 

and the cross section (F,wp,T,JF). In other words, F admits T-compatible action-angle 

coordinates. The map I 1----t ( 0 ,I) : ( 0, oo) ---+ S 1 x ( 0, oo) is a Lagrangian section for any 0, 

so that a Lagrangian section s : (0, oo) ---+ F is given by 

The action-group model space for G is (up to the obvious identifications) S0(3) x (0, oo) 

(see, e.g., Example 2.14, Part 1). Applying Proposition 10.7, a realization of G-compatible 
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action-group coordinates for P is given by the equivalence ¢ : SO(3) x (0, oo) ➔ P defined 

by 

The SO(3)-invariant Hamiltonian H(q, v) = ½ llvll2 is pulled back to Ho </>(g,p) = h(p) = 
½p2 . (That this problem admits action-group coordinates was observed more or less directly 

in Remark 3.5, Part 1.) 

The Abelian case 

Theorem 10.2 reduces the construction of action-group coordinates to that of action

angle coordinates. The remainder of this chapter revisits in some detail the classical problem 

of constructing action-angle coordinates, from the present Hamiltonian G-space point of 

view. (The necessary and sufficient conditions given in Proposition 10.3 are not always very 

practical.) 

Suppose then that (F, w, T, J) is a Hamiltonian T-space on which a torus T is acting 

freely, and assume that the space is geometrically integrable. These assumptions are easy 

to check. Then, as we observed in the proof of Proposition 10.3, J : F ➔ U = J(F) is a 

surjective submersion, and the connected components of the fibers of J are T-orbits. Now 

unless one assumes that the fibers are compact, serious technical difficulties impede further 

progress1 . Similar difficulties arise in attempts to generalize momentum map 'convexity 

theorems' to the non-compact case (see, e.g. , Hilgert et al. (1994) 2). 

If the fibers of J are compact, or equivalently, have a finite number of connected com

ponents3 , then by a corollary of the Reeb stability theorem (see, e.g., Camacho and Neto 

(1985)), J: F ➔ U is a locally trivial fiber bundle. We consider two scenarios: 

1Unless one works 'locally'. See, e.g., Remark 3.11, Part l. 
2 Note that these results do not apply immediately here since we cannot assume that J is proper as a 

map into t•. 

3 Remember that these fibers are regular submanifolds, by the preimage theorem. 
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Scenario 1. Suppose that J : F -+ U has connected components. (Checking this is 

not always trivial.) Then J : F -+ U is a Lagrangian fibration with connected fibers, to 

which the study of Duistermaat (1980) is applicable. Recall that a submanifold L C F 

is Lagrangian if the inclusion l : L Y F is isotropic (l*w = 0) and if dim F = 2 dim L. 

That the fibers of J are Lagrangian follows from 8.12.2 and our integrability assumption. 

Duistermaat characterizes the obstruction to the existence of a (not necessarily Lagrangian) 

section s : U -+ F in terms of an algebraic invariant v of the bundle known as a Chern 

class. A section exists if and only if v = 0. In that case the de Rham cohomology class 

[s*w] E H 2 (U) is the same for all sections s, and a Lagrangian section exists if and only if 

this class vanishes. A sufficient condition is that w is exact. See op. cit. for details. 

Scenario 2. In this case we weaken the connectedness hypothesis but enforce a topolog

ical assumption on the momentum map image. We formulate our conclusions in the form 

of a theorem, whose proof is constructive, up to the existence of a Riemannian metric. 

10.9 Theorem Let (F, w, T, J) be a Hamiltonian T-space on which a torus T is acting 

freely, and assume this space is geometrically integrable (i.e., dim F = 2 dim T ). Assume F 

is connected and that each fiber of J : F -+ U = J ( F) is compact, or has a finite number of 

connected components. Assume that U is smoothly contractible. Then each fiber is in fact 

connected, and there exists a Lagrangian section s : U-+ F of J : F-+ U. In particular, F 

admits T-compatible action-angle coordinates. 

Note that in examples it is often easy to check the compactness of the fibers of J. The 

Euler-Poinsot rigid body (see Chap. 11) is a case in point. 

PROOF. The last statement follows from the preceding ones and Proposition 10.3. We 

begin by showing that the fibers of J are connected. By the ·hypotheses and our earlier 

remarks, J : F -+ U is a locally trivial fiber bundle, each fiber being a finite number 

of T-orbits. Proceed by constructing a covering space j : U -+ U as follows: For each 

p E U let Qp denote the set of connected components of J- 1 (p), and for each x E F let 

[x] denote the element of QJ(x) that contains x. Define U = UpEUQp and j : U -+ U by 
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J([x]) = J(x) . Using the local triviality of J: F ➔ U and the connectedness of F, it is not 

difficult to show that U admits the structure of a smooth connected manifold with respect 

to which j : U ➔ U is a (smooth) covering map. The multiplicity (number of sheets) of 

this cover is the number of connected components in each fibre J-1 (p). But since Uc to is 

contractible, it is simply connected . From covering space theory it follows that j : f) ➔ U 

is a diffeomorphism . The multiplicity of the cover is therefore one, proving that the fibres 

of J are connected . 

The next step is to construct a section for J : F ➔ U. Equip the bundle J : F ➔ U with 

an Ehresmann connection (see, e.g., Kobayashi and Nomizu (1963)). This is always possible 

by giving F the structure of a (smooth) Riemannian manifold. That one can do so in the C 00 

category is a standard partition of unity argument. In the real-analytic category this follows 

from the Whitney-Morrey-Grauert Embedding Theorem (Grauert, 1952) . Now U contracts 

to some point Po E U. That is, we have a smooth map (p, t) f---t Kt(P) : U x [O, 1] ➔ U 

with Ko= Cp0 and K1 = idu, where Cp0 : U ➔ U is the constant map Cp0 (p) = Po - Fix any 

xo E J- 1 (p0) and define a smooth section s : U ➔ Fas follows: For any point p E U define 

a path 1 : [O, 1] ➔ U from Po top by ,(t) = Kt(P)- Use the connection to lift I to a path 

i: [O, 1] ➔ F with i(O) = xo, and define s(p) = -y(l). 

Since the fibers of J are precisely the T-orbits, and T acts freely, the smooth map 

</>: T x U ➔ F defined by </>(q,p) = q • s(p) is a diffeomorphism. 

Our final step will be to exhibit a Lagrangian section s : U ➔ F. This section will 

be constructed by modifying the existing section s using a 'Lie transform' argument ap

pearing in Guillemin and Sternberg (1984, §44). This argument is in the spirit of proofs 

and generalizations of Darboux's theorem given by Moser (1965) and Weinstein (1971). To 

this end, we first show that w is exact. Indeed, as J : F ➔ U is globally trivial and U is 

contractible, there exists a smooth deformation retract of F onto some fiber T'. The fibres 

are just T-orbits, which are Lagrangian since T is Abelian (apply the formula in 8.12.2). 

Because of the deformation retraction, the inclusion i : T' ➔ F induces an isomorphism in 
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de Rham cohomology. Since T' is Lagrangian l*w = 0, implying that the cohomology class 

of w vanishes, i.e., w = d0 for some one-form 0. 

We are now ready to construct the Lagrangian section. Suppose ct is a one-form on U. 

Then at each point p E U C t* one may associate to ct an element &(p) E t defined through 

(v, &(p)) = (ct, v) (v E T pU ~ t*) . 

One may next associate to ct a vector field X°' on F, defined by 

X°'(x) = (&(p))F(x) ( X E F, p = J ( x) ) , 

where '/]F denotes the infinitesimal generator of the T action associated with an element 

'I] E t. In particular, by the definition of a momentum map 

10.10 (X°' J w, v) = (dl&(p), v) 

The vector field X°' is tangent to the T-orbits which, as shown above, are precisely the 

fibers of J. These fibers are compact, so that we have a well-defined flow associated with 

X°', which we denote by (x,t) t-+ ctt(x): F x (-00,00)--+ F. The time-one map ct1 is a 

diffeomorphism of F preserving the fibers of J : F --+ U. In general ct1 is not sym plectic. 

The strategy is to defines= ct1 os and determine how ct might be chosen such that s*w = 0. 

We have 

10.11 

= s*w + s* fa\ :t ct;w )dt 

= s*w + s* fo 1 

(ct;(X°' J dw) + ct;d(X°' J w))dt 

= s*w + fo 1 

s*ct;d(X°' J w)dt 

= s*w + fo 1 

d(s*ct;(X°' J w))dt 
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For any u E TpU ~ t* we have 

= (dJ&(p), T(at o s) • u) by 10.10 

= .!!:....1 &(p) ( ( lYt O s) (p + TU)) I 
dT r=O 

= ddT ((Jo lYt o s)(p + Tu) , &(p))lr=O 

= (a, :T (p + Tu) lr=O) 

= (a, u) . 

Therefore s*a;(xa J w) = a. Using this in 10.11 gives s*w = s*w + da. Choosing a= s*8 

gives s*w = 0, so that sis a Lagrangian section. □ 

The following corollary was stated without proof as Theorem 3.10 in Part 1. The 

only difference here is that we have not made the identification G x t~ ~ G x to that 

was convenient in our applications to perturbation theory. Recall that i : i -=:'...+ t* is the 

restriction to i = Ann[_g, t] of the natural projection _g * --+ t*. 

10.12 Corollary Let (P, w, G, J) be a Hamiltonian G-space on which G is acting freely, 

and for which J(P) C fl;eg . Assume the space is geometrically integrable (i.e., dim P = 

dimG + rankG), that Pis connected, and that each fiber of J: P--+ J(P) is compact or 

has a finite number of connected components. Assume that U = i(J(P) n W) (which is 

open in~) is smoothly contractible. Then the spaces (P,w,G,J) and (G x U,w'c;,G,JG) 

are equivalent, i.e., P admits G-compatible action-group coordinates. 

10.13 Remark Since J(P) C fl;eg is G-invariant, i(J(P) n W) = j(P), where j: P--+ t* is 

the map defined by 8.7. This fact is useful in computations. 

PROOF. Let (F,wF,T,JF) denote the symplectic cross section. Since G acts freely 

on P and (P, w, G, J) is geometrically integrable , T acts freely on F and (F, WF, T, J F) 

is geometrically integrable, by Lemma 10.6.1. By the definition of JF , we have i(J(P) n 

W) = JF(F), so that U = JF(F) is contractible by hypothesis. By Lemma 10.6.2 and the 
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hypothesis on the fibers of J, each fiber of JF is compact or has a fin ite number of connected 

components. We have therefore established that the hypotheses of Theorem 10.9 apply to 

the symplectic cross section, which therefore admits T-compatible action-angle coordinates . 

Theorem 10.2 finishes off the proof. D 



CHAPTER 11 

The axisyrnrnetric Euler-Poinsot rigid body 

In this chapter we apply the general results of the preceding chapter to a nontrivial 

example, the Euler-Poinsot rigid body. 

Problem prescription 

The Euler-Poinsot rigid body is a rigid body fixed at but free to rotate about a point 0 

that is motionless in some inertial frame of reference. It is well-known that the dynamics 

of such a body is described by integral curves of an appropriate Hamiltonian vector field 

on T* S0(3). We refer the reader to, e.g., Marsden (1992, p. 87) for details . Note that one 

ordinarily identifies the phase space T* S0(3) with T S0(3), using an appropriate invariant 

metric ( see below). 

Let A, p: S0(3) x JR 3 ~ T S0(3) denote the usual left and right trivializations: 

- d tml A(A, m) = dtAe t=O , 

- d tn I p(A, n) = dte A t=O • 

Here~ t--+ f : JR 3 -+ .so(3) is the isomorphism defined by fu = ~ x u (u E JR3
). We think 

of tangent vectors as equivalence classes of curves and use ' ftAtlt=o' to denote the class 

represented by t t--+ At. In what follows, the vector m will correspond to the body angular 

momentum of the body about 0, while n will correspond to the spatial angular momentum 

about 0. Note that 

11.1 .X(A, m) = p(A, n) <=> n = Am 
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Define a one-form 0 on T SO(3) as follows. An arbitrary vector tangent to T SO(3) is 

of the form -9t p(At, nt) lt=O· Let n' be the element of JR 3 uniquely determined by 

d I I -dAt =p(Ao,n). 
t t =O 

Then by decree, 

11.2 

where the dot denotes the usual Euclidean dot product. 

An invariant Riemannian metric on SO(3) is given by 

The differential form 0 above is just the canonical one-form on T* SO(3) (see Chap. 9), 

viewed as a one-form on TSO(3) using the ((·,·))-induced identification T*SO(3) ~ 

TSO(3). In particular, w = -d0 is a symplectic two-form on TSO(3). 

Define H : T SO(3) --+ JR by 

Then: 

The dynamics of an Euler-Poinsot rigid body with moments of inertia Ii, h, h 

about the fixed point O is described by the Hamiltonian system (T SO(3), w, H) 

above. 

For a proof, see op. cit. 

Assume that the moment of inertia ellipsoid is axisymmetric, i.e., that two of the mo

ments of inertia are equal: Ji = h = I, say. In that case the Hamiltonian is invariant with 

respect to the following action of G = SO(3) x S1 on T SO(3): for (A, 0) E SO(3) x S1, 

define 

(A, 0) • ,\(A, m) = ,\(AAR~, R~m) , 
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where R~ = exp(0e3) is the rotation about the e3-axis through angle 0. Alternatively, we 

may write this action as 

(A, 0) • p(A, n) = p(AAR~, An) . 

The S0(3) part of the symmetry group corresponds to the familiar rotational 'spatial' 

symmetry of the system, while the S1 action corresponds to the axisymmetry of the inertia 

ellipsoid (i.e., a 'body' symmetry). The action is Hamiltonian with equivariant momentum 

map J : T S0(3) -t g* ~ R3 x R given by 

where m3 = m • e3. Alternatively, 

These formulas are consistent with Noether's theorem (stating that J is constant on solu

tion curves) and the familiar fact that in an axisymmetric rigid body the spatial angular 

momentum and the component of body angular momentum along the symmetry axis are 

conserved. 

Our objective is to construct G-compatible action-group coordinates in the space 

(T S0(3), w, G, J). 

Existence 

Before constructing action-group coordinates explicitly, we convince ourselves that such 

coordinates must exist. In the first place, we claim: 

J has compact fibers. 

Indeed, suppose that y =(µ,a) E J(P) C R3 x JR. Then certainly 

J-1 (y) C .,\ ( S0(3) X Bl[µll(O)) , 

where Br(O) C R3 denotes the closed ball of radius r. Since .,\ is a diffeomorphism, this 

shows that J- 1 (y) is contained in a compact set. Since J- 1 (y) is closed in TS0(3) (by the 

continuity of J), J- 1 (y) itself must be compact. 
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So that G acts freely and the image of the momentum map is contained in g;eg = 
R3\{0} x R, we restrict attention to the open dense G-invariant set PC TS0(3) defined 

by 

P = {.X(A, m) I A E S0(3) and m E R3 and (m1 -=JO or m2 -=JO)} . 

That is, we remove from phase space those points whose body angular momentum vector 

m lies on the e3-axis. 

For a maximal torus T C G we choose 

T = {(R~,0) E S0(3) X 5 1 
I </> E [0 ,2n),0 E 5 1

} ~ 1'2 . 

Then i = span{ e3} x JR.. For a Wey! chamber Win g* choose 

W = {(te3,r) E R3 x RI t E (O,oo),r ER}. 

For a regular co-adjoint orbit choose O = 5 2 x {0}. The unique intersection point of W 

and O is µ 0 = (e3,0). 

The projection rra : R3\{0} x R -+ 0 ~ 5 2 is given by rro(µ, a) = µ/ 11µ11- The 

projection rrw: R3\{0} x R-+ W ~ (0, oo) x R is given by rrw(µ, a)= (11µ11, a). 

Now dim P = 6 = 4 + 2 = dim G + rank G. So (P, w, G, J) is geometrically integrable. 

Since J has compact fibers, we can apply Corollary 10.12, provided we can show that 

U = i(J(P)nW) is smoothly contractible. By Remark 10.13, U =j(P), wherej = iorrwoJ. 

With our identifications, i is just the identity, so that we obtain j(.X(A, m)) = (llmll, m3). 

It follows that 

(see Fig. 1). In particular, U is indeed contractible. By Corollary 10.12, G-compatible 

action-group coordinates exist. 
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P2 

PI 

FIGURE l. The set U = i(J(P) n W) = j(P) = JF(F) in the axisymmetric 

Euler-Poinsot rigid body. 

The symplectic cross section 
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Since P admits G-compatible action-group coordinates, the symplectic cross section F 

admits T-compatible action-angle coordinates (Theorem 10.2). We shall construct action

group coordinates explicitly by applying Proposition 10.7. To this end, we now construct a 

concrete realization of F, its symplectic structure WF, and the momentum map JF: F-+ U. 

The symplectic fibration 1r : P-+ 0 ~ S2 (see Theorem 8.8) is given by rr(p(A, n)) = 

n/ llnll- So the symplectic cross section is 

F = rr- 1 (e3) = {p(A, n) I A E SO(3) and m E JR3 

where 

and (A- 1n · e 1 =JO or A- 1n · e2 =J 0) and n/ llnll = e3} 

= {p(A,p1e3) I A E SO(3)\Z, P1 > 0} , 

Notice that if one constructs Euler angles on SO (3), according to the appropriate sign 

convention, then Z C SO (3), which is just the disjoint union of two circles, corresponds to 

the coordinate singularities. In particular, if we write SO(3)' = SO(3)\Z, then SO(3)' ~ 

1"2 X (0, rr). 
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The map 1/i : S0(3)'x (0, oo) -+ F defined by 1/i(A, p1) = p(A- 1 , p1e3) is a diffeomorphism 

onto F. Let iF: F c.....+ P denote the inclusion. Then 1/i*wF = -d0', where 0' = 1/i*ij;,0. A 

vector tangent to S0(3)' x (O,oo) is of the form -ft(Aexp(tt),P1 + tT)lt=o· One computes 

using our earlier definition of 0 ( equation 11.2), 

d , 
11.3 (0', d/Aexp(tO,P1 + tT)lt=O) = 

(0, :tp(exp(-tt)A-1, (P1 + tT)e3) lt=O) = -p(e3 • ~) 

The map JF: F-+ JR2 is given by JF(p(A, n)) = (n3 , (A- 1n) · e3) for all p(A, n) E F. So 

(JF o 1/i)(A, p1) = (p1, (Ae3 • e3)p1). As in the proof of 10.12, JF(F) = U (computed above). 

Let T ~ 1'2 act on SO (3) x (0, oo) in the way that makes 1/i a 1'2-equivariant map. (We 

will not need to compute this action explicitly.) Then 1ji establishes an equivalence between 

the space 

(S0(3)' x (O,oo),-d0',1'2,J'), 

and the symplectic cross section (F, WF, 1'2 , JF), where 0' is the one-form computed in 11.3, 

and J' = JF o 1/i: S0(3)' x (0, oo)-+ U is given by J'(A,p1) = (P1, (Ae3 • e3)p1). 

Explicit action-group coordinates 

To construct action-group coordinates by applying 10.7, it remains to exhibit a La

grangian section for J F. 

Defines: U-+ S0(3)' x (0, oo) by 

where R~ = exp(ae1) is the rotation about the e1-axis through angle a. By convention, 

arccos is to take values in ( 0, rr). 
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One verifies immediately that J' os = idu, i.e., sis a section of J': SO(3)' x (0, oo)-+ U . 

We claim that s is in fact Lagrangian. Indeed, for any r 1 , r 2 E JR we have 

(s*8',ddt(P1+tr1,P2 +tr2)I ) = (8' ,ddt(R
1 

(P2+tr2),P1+tT1)I ) 
t=O arccos Pi +tr1 t=O 

= (8' , :t (R~rccos( p2 /pi) exp(tf(P1, P2 , T1, T2) i 1), Pl+ tri) lt=O) , 

for some real-valued function f. It is irrelevant what f actually is since, applying the 

formula 11.3 for 8', we obtain 

Since r 1 and r2 were arbitrary, s*8' = 0, implying s* (-d8') = 0. Sos is indeed Lagrangian. 

Since 'I/; : SO(3)' x (0, oo) -+Fis an equivalence, 'I/; o s: U-+ Fis a Lagrangian section for 

JF : F-+ U . One computes 

We may now apply Proposition 10.7 as follows: Define 1>: G x U = 50(3) x 5 1 x U-+ PC 

T5O(3) by 

= .\(AR~arccos(pifp1 )R~, mp1,P2,0) , 

where mp1,p2,0 = (-Jpf - p~ sin 0, - ✓ Pi - p~ cos 0, p1) 

Then ¢ is an equivalence realizing G-compatible action-group coordinates in the space P. 

The Hamiltonian cf>*H pulled back to G x U is given by 1>*H(g,p) = h(p), where 

_12 11 12 
h(p1,P2) = 21P1 + 2(h - 1)P2 . 

Notice that his convex (in the sense of Definition 5.3, Part 1) in the prolate (h < I) case. 
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Converting dynamic integrability to geometric integrability 

Let (P, w, G, J) be a Hamiltonian G-space with J (P) C g;eg, and H : P-+ JR a fixed G

in variant Hamiltonian. Assume that G acts freely. Then all the Marsden-Weinstein reduced 

spaces J- 1 (µ)/Gµ (µ E J(P)) have the same dimension, viz. d = dim P- rankG - dim G. 

Recall that we call the space geometrically integrable ( or G-integrable) if d = 0. We call the 

space dynamically integrable ( or ( G, H)-integrable) if d = 2. These definitions are motivated 

in, e.g., Chap. 3 of Part l. 

We have already shown (Lemma 10.6) that P is geometrically integrable if and only if 

its symplectic cross section Fis geometrically integrable. An analogous statement holds for 

dynamic integrability, which one proves in the same way. 

To construct action-group coordinates (see, e.g ., Corollary 10.12) one requires geometric 

integrability. In examples, however, it can happen that the symmetry group that presents 

itself is only large enough to enforce dynamic integrability. The objective in this chapter is 

to show how to extend the action of G in the dynamically integrable case to a geometrically 

integrable Hamiltonian action of G x S1 , with respect to which H is G x S 1-invariant. 

(Of course we can always extend the symmetry group by a factor JR by considering the 

flow of XH, assuming that XH is complete. The point is that we seek an extension that 

is compact.) The extra S 1 action is to be built in some way from the reduced dynamics 

of H, and consequently depends on the particular H of interest (a different G-invariant 

Hamiltonian will not necessarily be G x S 1-invariant) . We shall not attempt great generality 

but focus on the case where the reduced dynamics of H in each (two-dimensional) reduced 

space is composed of an equilibrium point surrounded by periodic trajectories. This is true 

for the asymmetric Euler-Poinsot rigid body, if we restrict attention to an appropriate open 

subset of the phase space. For simplicity, we illustrate our algorithm in the axisymmetric 
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rigid body, viewed as a (S0(3), H)-integrable space (see Appendix D). It turns out that the 

extra 5 1 action (which our algorithm constructs ab initio) corresponds to the familiar 5 1 

symmetry of the body, as exploited, for example, in the previous chapter. We shall make 

assumptions in the general theory that lead to the fewest technicalities, even if these are 

inconvenient to check in applications. 

Setup 

With Lemma 8.17 in hand one can easily reduce the above 5 1 extension problem to the 

Abelian case by passing to the symplectic cross section. We therefore begin by restricting 

attention to the case of a toral symmetry. 

In this chapter T denotes a torus, (F, w, T, J) a Hamiltonian T-space on which 

T is acting freely, and H : F -+ ~ a fixed T-invariant Hamiltonian. We assume 

that (F, w, T, J) is dynamically integrable (i.e., dim F = 2 dim T + 2). For 

simplicity, we assume that J : F -+ J ( F) has the property that preimages of 

connected sets are connected. This is true, for example, if J : F -+ J (F) is 

a locally trivial fiber bundle with connected fibers. (Note that J is already a 

surjective submersion, on account of 8.3). 

Denote by p : F -+ F /T the canonical projection. Since we assume that T acts freely 

and properly, F /T admits a differential structure with respect to which p is a surjective 

submersion. Since Tis compact, p: F-+ F/T is a principal T-bundle (by a corollary of the 

Reeb stability theorem; see, e.g., Camacho and Neto (1985)). We equip F/T with the unique 

Poisson structure with respect to which p is a Poisson map. Since J is T-equivariant (by 

the definition of a Hamiltonian T-space) and T is Abelian, it follows that J is T-invariant 

and therefore factors through p. That is, there exists a (unique) map j : F /T -+ t* with the 

property that the following diagram commutes: 
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F 

t* F/T 
=lj 

Since the Hamiltonian H is T-invariant , it drops to a function on F /T that we shall denote 

by h. 

To formulate and prove our claims, it will be convenient to realize all the Marsden

Weinstein reduced spaces as the symplectic leaves of F/T. This is possible (since T is 

Abelian) with the help of the following fact. 

12.1 Lemma Let tj denote the image of J. Then under the assumptions above, j : F /T--+ 

tj is a surjective submersion whose fibers are the symplectic leaves in F /T. 

That j : F /T --+ tj is a surjective submersion follows from the fact that J : F --+ tj is a 

surjective submersion. The other conclusion of the lemma follows from the Symplectic Leaf 

Correspondence Theorem for dual pairs. See Appendix E. 

Let Eµ = j-1(µ) be a symplectic leaf in F/T (µ E tj). Then as j-1(µ) = p(J-1(µ)) = 

J-1 (µ)/T = J-1 (µ)/Tµ, the leaf Eµ is literally a Marsden- Weinstein reduced space. Of 

course each leaf Eµ C F/T is Xh-invariant. 

The S1 extension 

Let e: c t denote the integral lattice of T in t (i.e., the kernel of exp : t--+ T) and write 

2~ tZ = { l1r II I II E tZ} . Here is the central result of the chapter: 

12.2 Theorem (S1 Extension Theorem) Assume in addition to the hypotheses out

lined above the following (replacing F with an appropriate T-invariant subset if necessary): 

l. Each symplectic leaf Eµ (µ E tj) is diffeomorphic to an open disk in JR. 2 . 
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FIGURE 1. The reduced dynamics in F/T, as described in the hypotheses 

of Theorem 12.2. 
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2. There exists a submanifold Z C F /T of codimension two that is transversal to each 

leaf, and having the following property (see Fig. 1): Z intersects Eµ at a single point 

Yµ that is an equilibrium point of Xh[Eµ, of elliptic type. 

3. Each 'punctured disk' E~ = Eµ, \ {yµ,} is foliated by nontrivial periodic orbits of Xh. 

Next, let fo E 2~ tZ and co E R be arbitrary, and Jet I : F /T --+ R be the unique function 

satisfying: 

4. I(yµ,) = co+ (µ,fo) (µ E tj). 

5. Each punctured disk E~ is foliated by (minimally) 21r-periodic orbits of X1, which, 

up to orientation preserving reparametrizations of time, coincide with the orbits of 

Xh. In other words, I[E~ is a classical 'action' for the Hamiltonian h[E~ (see Remark 

12.3 below). 

Then: 

6. X1op has a well-defined 21r-periodic fl.ow (t, x) i---+ <I>t(x): Rx F--+ F. 
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7. The action of 3 1 defined by 

(x E F) 

commutes with that of T. 

8. The Hamiltonian H is 3 1-invariant. 

9. The 3 1 action is Hamiltonian, with momentum map Io p: F ➔ Lie(31)* S:! JR. 

10. The momentum map Io pis both 3 1- and T-invariant. 

11. The momentum map J : F ➔ t* is 3 1-invariant. 

12. The 3 1 action is free on F' = F\p- 1(Z). 

In particular, one can extend the action of T to an action of T' = T x 3 1 by defining 

(q, s) • x = s •51 (q • x) = q • (s·5 1 x) ( ( q, s) E T', x E F ) . 

This action has T'-equivariant momentum map J' : F ➔ t'* S:! t* x IR given by J'(x) 

(J(x), (Io p)(x)). Furthermore, His T'-invariant, T' acts freely on F', and the space 

( F', w, T', J') 

is geometrically integrable. 
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12.3 Remark Once the value of I on Z is fixed a la condition 4, its (unique) extension to 

a function satisfying condition 5 can be described explicitly: One takes 

( y E (F/T)\Z, µ = j(y)) , 

where wµ denotes the symplectic structure on the leaf I:µ, and Ily C I:µ denotes the oriented 

two-manifold whose boundary is the Xh-orbit through y. 

The nontrivial part of the theorem is conclusion 6. Specifically, we show that the Xrop

invariant submanifold p- 1(Z) C Pis foliated by (possibly trivial) ·2rr-periodic orbits of Xrop, 

and that the other integrable curves of X lop are minimally 2rr-periodic. The latter fact is 

not obvious a priori. Indeed if we relax condition 4 and let ti---+ 7(t) be an integral curve of 

X1op , with 7(0) E F', then although p('Y(O)) = p('Y(2rr)) ('Y is mapped to an integral curve 

of X1 since pis Poisson) , it can happen that 7(2rr) = q-7(0) for some nontrivial q ET. This 
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q, which depends only on the curve,'= po 1, is known as the phase change (or holonomy) 

along the curve,'. It can be computed using the technology of Ehresmann connections on 

principal bundles (see below). 

Our task splits into three steps. In Step 1 below, we show by appealing to condition 4 

that p- 1 (Z) is foliated by 21r-periodic orbits of Xlop· In Step 2, we show that all integral 

curves of X1 lying in the same leaf I:µ have identical associated phase changes. In Step 

3, we use the results of Step 1, and a certain continuity argument, to show that these 

phase changes are in fact trivial. This will prove 6, and the remaining conclusions of the 

theorem will follow easily. Before beginning the proof, we need to make two preliminary 

observations. The first concerns phases, and the second relative equilibria (i.e., equilibria 

in F/T). 

Aside: On computing phases 

We assume the reader is familiar with the concept of an Ehresmann connection on a 

principal T-bundle. The reader in unfamiliar territory is directed to Kobayashi and Nomizu 

(1963). 

Let F and B be arbitrary smooth manifolds, and suppose that p: F ➔ B is a principal 

T-bundle, with T acting on F from the left. If X is a T-invariant vector field on F, then 

there exists a vector field XE on B such that X and XE are p-related. If t f-t '"YB(t) is 

an integral curve of XE, then every integral curve t f-t 1 (t) of X with initial condition 

1 (0) E p-1 (,s(0)) covers 'YB in the sense that p(1 (t)) = ,B(t). If 'YB is periodic with 

(minimal) period t0 > 0, then 1 (t0 ) = q- 1 (0) for some uniquely defined q ET. The element 

q is independent of the initial condition 1 (0) E p- 1 (,B (0)) and will be called the phase 

change of X along ,B. For a discussion of phases in Hamiltonian mechanics, and their 

origins, see Marsden et al. (1990). 

Let a beat-valued connection one-form on the bundle p: F ➔ B. A vector field X on 

F is horizontal if X J a = 0. If Y is a vector field on B , then we denote by yh the horizontal 

lift of Y, with respect to a. This is the unique horizontal vector field yh p-related to Y. 

This vector field is T-invariant. 
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The following fact is well-known. For a proof see, e.g. Marsden et al. (1990, pp. 39- 49). 

12.4 Theorem 

l. There exists at-valued two-form CT on B, called the curvature1 of a, well-defined by 

where V and W are any locally defined vector fields on B such that V(y) = v and 

W(y) = w. 

2. Let X be a horizontal T-invariant vector field on B, and XB the corresponding vector 

field on the base B (i .e., such that X~ = X ). Lett.--+ ,.YB (t) E B be a periodic integral 

curve of XB, whose image is the oriented boundary of some compact two-dimensional 

submanifold EC B. Then the phase change q of X along ,Bis given by 

q = exp l CT • 

Aside: Relative equilibria and 'limiting phases' 

Ifs : M-+ N is a submersion, we write s* : Ann ker Ts-+ T* N for the map that is JR

linear on each space Ann kerTxs (x EM), and that sends dx(f os) to ds(x)f, for any locally 

defined function f on N. Here Ann denotes annihilator. Let (F, w, T, J) be a Hamiltonian 

T-space as before, and let ~ : Ann ker Tj -+ t be the composition of j* : Ann ker Tj -+ T*tj 

with the map T*tj -+ t** ~ t that 'forgets the base point'. 

12.5 Proposition If y E F/T is an equilibrium point of Xh (so that dyh E Ann ker Tj), 

then 

XH(x) = 77F(x) 

where 77 = ~( dyh) 

1 Conventionally curvature refers to the two-form da - a I\ a on F . In the Abelian case considered here 

this form is the pull-back by p of O'. 
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Recall that T/F denotes the infinitesimal generator on F corresponding to T/ E t. 

12.6 Remark If F is a locally defined function on tj such that dyh = dy(F o j) (such a 

function will always exist since dyh E AnnkerTj), then ~(dyh) = 1~, whereµ =j(y). 

PROOF OF 12.5. Let F and µ be as in the remark. Then, recalling that J = j op, we 

have dxH = dx(F o J) for all x E p- 1 (y). In that case, 

by the collective Hamiltonian theorem (see, e.g., Marsden and Ratiu (1994, Theorem 

12.5.2)). □ 

12. 7 Corollary ( On limiting phases) Let E i---+ % be a smooth2 family of periodic orbits 

of Xh, limiting on some equilibrium pointy E F/T, in the sense that 

Jim %(t) = y , 
t -+0 

for all t. Let tt denote the (minimal) period of 'Yt and assume that the limit 

exists. Then 

where qt ET denotes the phase change of XH along%· 

PROOF. Apply the preceding proposition and the continuity of integral curves with 

respect to initial data. □ 

2 -y,(t) should be smooth with respect to€ (with t fixed) and t (with l fixed). 
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Proof of the S 1 Extension Theorem 

We are now equipped to prove conclusion 6 of Theorem 12.2 in the three steps outlined 

above. 

Step 1. Each Yµ, E F/T (µ E tj) is an elliptic equilibrium point of X1, so that dyµI E 

Ann kerTj. It follows from hypothesis 4 of the theorem that dyJ = dyµ(F op) where 

F(µ) =co+(µ, fo). By Remark 12.6, we have ~(dyµI) = fo, so that X1op(x) = (fo)F(x) for 

all x E p-1 (Yµ,), by Proposition 12.5 (with H and h in 12.5 replaced by Io p and I). Since 

µ E tj was arbitrary, and fo E }" {2\ we conclude that the integral curves of X1op lying 

in the X lop-invariant submanifold p- 1 (Z) C P are 2rr-periodic ( although these orbits may 

have a smaller - even trivial - period). 

Step 2. Fix someµ E tj. By Noether's theorem, X1op is tangent to J- 1 (µ) = p-1 (Eµ,)

Write J- 1 (µ)' = p-1(E~) and (F/T)' = (F/T)\Z. Since p : F --+ F/T is a principal 

T-bundle, and E µ, C F /T is a (regular) su bmanifold, the restriction 

is also a principal T-bundle (remember J- 1 (µ) is T-invariant since Tis Abelian). We shall 

compute phase changes of X1op along curves lying in E~ by constructing a connection on 

Pµ,: J- 1 (µ)'--+ E~. See Fig. 3. 

Observe that action-angle coordinates (in the purely classical sense) can be constructed 

in the two-dimensional system (E~, wµ,, hlE~)- Here wµ, denotes the symplectic structure on 

the symplectic leaf Eµ,, restricted to E~. By hypothesis 5 of the theorem, we may take the 

'action' to be Iµ,= IIE~: E~--+ K 

A conjugate 'angle' 0µ, : E~ --+ S1 can be obtained as the restriction to E~ of an 

S 1-valued map 0, defined on some open neighborhood j-1 (U) n (F /T)' of E~ as follows 

(UC tj denoting some open neighborhood ofµ). There exists (for sufficiently small U) a 

codimension one submanifold SC j-1 (U) n (F/T)' that is transversal to each orbit of X1 

in the (Xi-invariant) set j-1 (U) n (F/T)', and intersecting each such orbit at precisely one 

point (see Fig. 2). The flow of X1 is 21r-periodic, inducing an action of S 1 on F/T. We 
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z 
j-1 (U) - - - - -

~------

J 
◄ 

-----------

FIGURE 2. Constructing 0 : j-1 (U) n (F /T) '-+ 5 1 . 

define 0 :j- 1 (U) n (F/T)'-+ 5 1 by declaring 0(y) to be the uniquely defined element of 5 1 

such that y = 0(y)·s1 s, for some (uniquely determined) s E 5. 

For the sake of a lucid notation, we shall commit the usual sin by pretending that 0 is 

an JR-valued function. We leave it to the reader to verify at each step that this sin can be 

forgiven. Note that by construction Iµ, and 0µ, = 01:B~, constitute action-angle coordinates 

in every leaf (µ' E U). Therefore, they are conjugate in the sense that 

12.8 (µ'EU) . 

The preimage under p of the open set j-1 (U) n (F/T)', on which 0 is defined, is the 

open set J- 1 (U) n F'. This latter set is an open neighborhood of J- 1 (µ)' in F'. AT

invariant Ehresmann connection on the bundle Pµ : J- 1 (µ)' -+ :B~ is obtained by declaring 

the horizontal space Horx at x E J- 1 (µ)' to be the space 
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T-orbit, p- 1 (y) 

XIop(x) 

=we,,(x) 

FIGURE 3. Computing phases using the connection on Pµ,: J- 1 (µ)--+ I:~. 
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(see Fig. 3). This choice is valid since: (i) X0 0 p and X1op are T-invariant, (ii) X0ap(x) and 

X1op(x) are tangent to J- 1 (µ)' (by Noether), and (iii) The image of Horx under Tp is 

We let aµ, denote the connection one-form on Pµ, : J- 1 (µ)'--+ I:~ that is compatible with 

the above choice of horizontal spaces. Note that we cannot extend aµ, to a connection 

one-form on J- 1 (µ)--+ Eµ,, This is because the vector field X0JE~ cannot be extended to a 

vector field on Eµ, without a discontinuity at Yw (This is why we need the 'limiting phase' 

argument to be expounded in Step 3 below.) 

By construction, the vector field X1opJJ- 1 (µ)' is horizontal with respect to aµ,, We may 

therefore employ Theorem 12.4 to compute its phase changes. A simple observation is 

[X?ap, XJ0 p](x) = [X0op, X1op](x) = [X0, X1](p(x)) = X{0,I}(p(x)) 

(xEJ- 1(U)nF'). 
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Since 0 and I are conjugate (in the sense of 12.8), { 0, I} = 0 on j-1 (U) n (F /T)'. Therefore, 

by 12.4.1, the curvature of aµ is zero. It follows from 12.4.2 that the phase change of X1op 

has the same value along every orbit of Xr lying in the puncture disk E~. We denote this 

constant phase by qµ ET (as in Fig. 3). 

Step 3. Keep µ E tj fixed as in Step 2. The nontrivial periodic orbits of Xr lying in E~ 

can be parameterized by their energy relative to the energy at yµ: Let If denote the orbit 

with %(0) E S whose image is the (l(yµ) + 1:)-level set of Iµ- Then the family E f-t If limits 

on the equilibrium point Yµ as in the hypotheses of Corollary 12. 7. The orbit % has period 

tf = 21r, for all E. Since ~(dyµI) = fo (see Step 1) and fo E 2~(!--, we conclude from Corollary 

12.7, and the results of Step 2, that qµ = idy. This completes the proof of conclusion 6 of 

Theorem 12.2. 

If X is any T-invariant vector field on F, and t f-t <I>t the corresponding flow map, then 

<I>t(q • x) = q • <I>t(x) for all q ET, and for all t E IR for which <I>t(x) is defined (x E F). Since 

X1op is T-invariant, this proves 7. 

Since Xrop and Xr are p-related , it follows that p is S 1-equivariant, where S1 acts on 

Fas in 7, and on F/T as described in Step 2. Therefore 

where we have used the fact that h is constant on the orbits of Xr, which follows from 

condition 5. This proves conclusion 8. 

Conclusion 9 is obvious. That Io p is T-invariant is trivial. That it is S1-invariant 

follows from the same argument used to prove the S1-invariance of H = h op above. So 

conclusion 10 holds true. Conclusion 11 follows from the S1-equivariance of p, the Xr

invariance of the leaves Eµ (µ E tj), and the formula J = j op. Condition 12 follows from 

the S1-equivariance of p. 

The only nontrivial fact left to check is the T'-equivariance of J'. Since T' is Abelian, 

this amounts to checking that J' is T'-invariant. This follows from the fact that both J and 

Io p are both T- and S 1-invariant. 

This completes the proof of Theorem 12.2. 
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The non-Abelian case 

12.9 Corollary Let (P, w, G, J) be a Hamiltonian G-space and H : P-+ R a G-invariant 

Hamiltonian. Assume the symplectic cross section (F, wp, T, JF) satisfies the hypotheses of 

Theorem 12.2, with the role of H in 12.2 being played by HIF. (In particular, assume that 

G acts freely and that P is dynamically integrable). Let F' and Io p be as in the theorem 

and define K =Io p and P' = G(F') C P. Then there is a Hamiltonian action of S 1 on P, 

with respect to which H is invariant, and which has as an S 1-equivariant momentum map 

K : P -+ R the well-defined extension of K : F -+ R given by 

K(g · y) = K(y) (g E G, y E F) 

Moreover, this action of S 1 commutes with that of G (so that G x S 1 acts on P), is free on 

P', and P' is G x S 1-integrable (i.e., geometrically integrable with respect to the extended 

symmetry group G x S1 ). 

PROOF. Combine Lemma 8.17 (taking H = S 1) with Theorem 12.2. D 



CHAPTER 13 

Concluding remarks 

Generalizations 

We conjecture that the estimates on the evolution of J(xt) described in the Introduction 

( and in detail in Chap. 7) hold under weaker hypotheses than the existence of action-group 

coordinates requires. Of course one still needs some kind of integrability assumption, such 

as 'reduced spaces are zero dimensional,' and one may need to assume uniform orbit and 

co-adjoint orbit types. Also, a convexity (or quasi-convexity) assumption will be necessary. 

To generalize our results to other orbit and co-adjoint orbit types will require more general 

Hamiltonian G-space normal forms. Moreover, one will need very concrete realizations of 

these spaces, as well as a good handle on the symplectic structure, equations of motion, 

etc. One will also need explicit (local) complexifications of the space and its associated 

structures. 

The classification of Hamiltonian G-spaces satisfying various conditions is still the sub

ject of considerable research. See Guillemin et al. (1996) for a recent bibliography. While 

more general Hamiltonian G-space normal forms are known, realizations as concrete as 

action-group coordinates do not seem to have been worked out. In the best scenario, these 

realizations will be of the form considered in our abstract formulation of Nekhoroshev's 

theorem (Chap. 5), so that deriving Nekhoroshev estimates will again reduce to verify

ing our Assumptions A- C. This hope is not entirely fanciful, as a couple of examples will 

demonstrate. 

Recall that to apply the abstract Nekhoroshev-Lochak theorem one needs 'coordinates' 

of the form G x U, for some open subset U of a vector space t and some compact real

analytic manifold G. In particular, G does not need to be a Lie group. For example, G 

could be a quotient of groups Gi/G2. A complexification of Gin that case would be Gf /Gf 
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Consider for instance geodesic motions on S3 (relevant to the regularized Kepler problem). 

The phase space is T* S3 and a symmetry group is SO ( 4), acting by the cotangent lift of the 

standard action on S3 C JR. 4. If we remove the zero-section O from T* S3 , then all points in 

P = T* S3\0 have orbit type (SO(2)) and co-adjoint orbit type (T), where TC SO(4) is a 

maximal torus (so that we still have J(P) C fl;eg but G does not act freely on P). The orbit 

space P/SO(4) is identifiable with (0,oo) and the orbit space projection P---+ (0,oo) is in 

fact a trivial bundle: P ~ SO( 4)/ SO(2) X (0, oo). So we may take G1 = SO(4), G2 = SO(2), 

and U = (0, oo). 

In the 1:1:1 resonance the phase space is JR.6 ~ c3, and a symmetry group is SU(3). 

Removing the origin, one obtains a uniform orbit type (SU (2)) and co-adjoint orbit type 

(SU (2)), so that both our orbit type conditions fail. Nevertheless one has diffeomorphisms 

R6\ {0} ~ S5 x (0, oo) ~ SU(3) / SU(2) x (0, oo), which is again of the form proposed above. 

In both the above examples one can prove that Assumption A of Chap. 5 (the existence 

of a 'period lattice') holds. It may be worth trying to verify the remaining Assumptions B 

and C. It is worth observing that in both examples the space U can be identified with some 

open wall of the Wey! chamber of the symmetry group. 

Fourier series 

Lochak's approach to Nekhoroshev estimates, as exploited here, conveniently avoids the 

use of Fourier series. For other kinds of perturbation analysis (e.g., proving the existence of 

'whiskered tori' in the perturbed system) Fourier series may be unavoidable. In principle 

there should be no obstacle to implementing Fourier series in such cases. After all, the 

generalization of Fourier series on tori to series on compact connected groups is well-known 

(see, e.g., Brocker and tom Dieck (1985)). 



APPENDIX A 

Proof of the Nekhoroshev-Lochak Theorem (abstract form) 

This appendix is devoted to proving Theorem 5.9. To a large extent we follow Lochak's 

original arguments (Lochak (1992), Lochak (1993)). With the exception of some comments 

of our own on the role of convexity, we offer minimal motivation. For deeper insight, the 

reader is referred to Lochak's original papers, especially Lochak (1993). 

To keep our exposition as simple as possible, we have restrained from employing two 

'technical tricks' that would have improved our estimates. The first, discovered by Neish

tadt (1984) and implemented in Lochak and Neishtadt (1992), concerns the normal form 

calculation. The idea is that one should make the first coordinate change larger than the 

others. The second trick we could have used is to rescale the frequency (in the simultaneous 

approximation argument) so that its largest component is unity. This allows one to lower 

the dimension by one. See Lochak (1992) for details. 

Consider the setup described in Chap. 5 and restrict attention to a value of the parameter 

p* with the property that St(p*) = f_ n, for some T* > 0 and n E {Z (St = 'vh) . Then 

according to Assumption A, Gff x {p*} is foliated by T*-periodic solution trajectories of 

XHo (Ho(g, p) = h(p)). One of our first objectives is to derive a normal form for the 

perturbed Hamiltonian H = Ho + F in a neighborhood of G x {A} (Proposition A.16 

below). We begin with some preliminaries: 

Averaging over periodic orbits 

Define 

A.l 

so that 'v w (p) = ,J,. n for all p E BP. By Assumption A, X w has a well-defined flow map 

(t, x) t----+ <I>tv(x) : IR x (Gff x BP) ➔ Gff x BP satisfying <I>;,tT• = <I>tv, and such that <l>W 

119 



LIE TRANSFORMS AND THE ITERATIVE LEMMA 120 

maps a set of the form ca x {p} (0 ::;:; a ::;:; a, p E BP) onto itself. In particular <I>tv maps 

D'Y (p*, r) onto D'Y (p*, r) for any values of the parameters I and r, and is the identity map 

when t = T*. 

For u E A<C(D'Y(p*, r)), we define u, u,Iu E A<C(D'Y(p*, r)) by 

u==u-u, 

l 1T• Iu = - tu o <I>tvdt 
T* o 

A.2 Lemma 

l. 

2. 

u+{W,Iu}=u 

IIIul1~·,r ::;:; tr* 11u11~·,r 

PROOF. The estimate A.2.2 is obvious. Regarding A.2.1, one computes 

{W,Iu} = - ddTiuo<I>wlT=O 

l d 1T. 
=--- t(uo<I>tv)o<l>wdtl -o 

T* dr O 
7

-

1 1T. d = -- t(-u o <I>tv )dr 
T* 0 dt 

1 [ t ] T. 1 1T• t = - - tu o <l>w O + - u o <l>wdt 
T* T* 0 .• 

= -u+u 

Lie transforms and the Iterative Lemma 

In what follows we shall be interested in Hamiltonians of the form 

1l = Ho+Z+N 

□ 
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with Z = 0. The Hamiltonian 5.5 is of this form if we define 1-l = H, Z = P and N = P. 

In the method known as Lie transforms, one makes symplectic changes of coordinates 

using the time-one map associated with the Hamiltonian flow generated by some 'auxiliary' 

Hamiltonian. Indeed let x E Ac(D,,(p*, r)) be given, and suppose that Xx has a well

defined flow map (t, x) r-+ <I>~(x) : [-1 , 1] x D,,-s(p*, r) ➔ D,,(p*, r), for some o E (0, ,]. 

Then ¢ = <I>~ is symplectic. The following computations make use of Taylor's formula with 

integral remainder: 

where 

A.3 

1-l o </> =(Ho+ Z + N) +(Hoo</> - Ho)+ ( (Z + N) o </> - (Z + N)) 

=(Ho+ Z) + N + (Wo </>- W) 

+ ( (Ho - W) o </> - (Ho - W)) + ( (Z + N) o </> - (Z + N)) 

=(Ho+ Z) + (N + {W, x}) 

+ 11 
(1 - r){ {W, x}, x} 0 <I>~dT + ~1 (Ho - W) + ~1 (Z + N) ' 

Choosing x = IN and applying A.2.1 (with u = N), we obtain 

1-l O </> = (Ho+ Z') + 11 

(1 - r){ {W, x}, x} 0 <I>~dT 

+~1(Ho - W) + ~1(Z + N) , 

where Z' = Z + N (so that Z' = 0). By A.2.1, and our choice x = IN, 

{W, x} = N - N = - N , 

so that 

We may therefore write 1-l o </>=Ho + Z' + N', if we define 
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where 

A.4 

Summarizing: 

A.5 Lemma Let Z, NE A<C(D-y(P*, r)) and 0 < 5 ~ 1 be given, with Z = 0, and assume 

that the Hamiltonian vector field associated with x = IN has a well-defined flow map 

Then the Hamiltonian 

1i = Ho+ Z + N 

is pulled back by the symplectic coordinate transformation </> = <I>~ to 

1i o </> = H0 + Z' + N' , 

where 

l. 

2. 

Z' = Z + N (so that Z' = 0) , 

N' = !:::.1(Ho - W) + !:::.1(Z + N) - !:::.2N 

and where !:::.1, !:::.2 : A<C(D-y(P*, r))-+ A <C (D-y_o(p*, r)) are the operations defined by equa

tions A.3, A.4. 

A.6 Remark The term !:::.1 (Ho - W) corresponds to what Lochak (1992) refers to as the 

'frequency shift' contribution to the transformed Hamiltonian. 

Lemma A.5 is the basis for proving the following 'iterative lemma': 

A.7 Lemma (Iterative Lemma) Suppose Z, NE A <C (D-y(P*, r)), 0 ~ r ~ 1, 0 < 5 ~ 1 

and E ~ 0 are given, with Z = 0, and assume that 

l. 
JJZ + NJJ~•,r ~ 3EE 

J[NJJ~•,r ~ 2EE 
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Furthermore, assume that for some 11 ;_>,: 1 

2. 

3. and 

where 

4. 

Then there exists a symplectic diffeomorphism <p from D'Y_0(p*, r) into D'Y(p*, r) such that 

the Hamiltonian 

1-l =Ho+ Z + N 

is pulled back to 

1-l o ¢ = Ho+ Z' + N' , 

for some Z', N' E A c (D'Y_0(p*, r)) with Z' = 0 and 

5. IIZ' + N'II~~~ ~ IIZ + Nll~•,r + IIN'II~~~ , 

6. II N'llp.,r ~ ! IINllp.,r 
'Y-8 e 'Y 

Furthermore, for all (g',p') E D'Y_0(p*, r) 

7. ( (g' p) = ¢(g'' p') ) . 

The main point is that the fluctuating part N' of the transformed Hamiltonian 1-l o <p is less 

than the fluctuating part N of the untransformed Hamiltonian 1-l, by a factor of e. (We 

--------call N the fluctuating part of 1-l =Ho+ Z + N because Ho+ Z = 0.) 

Note also that A.7.2 and A.7.3 are the first conditions involving the parameter r, which 

has been free until now ( apart from the modest requirement 5.8). 
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PROOF. In preparation for applying Lemma A.5, define x = IN E AIC(D-r(P*, r)). 

Assume that 5 satisfies 

A.8 

Then Assumption B ensures that Xx has a well-defined flow map (t, x) I-)- <I>~(x) as in the 

hypotheses of Lemma A.5, and that this map satisfies 

A.9 (-1 :::; t :::;; 1) . 

Furthermore, if </> = <I>~, then Assumption B also tells us that for all (g', p') E D-y-8 (p*, r) 

the estimate A.7.7 holds. 

Applying A.2.2: 

A.10 
1 llxll~·,r :::; 2_T* IINll~·,r 

T 
:::; T*EE = a-pT: E 

The requirement A.8 is therefore met if 

But this is guaranteed by the hypotheses A.7.2 and A.7.3. 

For u E AIC(D-r(P*, r)) one computes using the definition A.3, A.9 and Assumption C, 

Similarly one computes from A.4, A.9 and Assumption C, 

A.12 

Also, by A.3, A.9 and Assumption C, 
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Since 

and his (m, M)-convex on int BP :) int B;;15(p*) (see 5.1), we have 

so that we arrive at the estimate 

A.13 

Lemma A.5 applies, and can now use A.5.2, A.13, A.11 and A.12 to compute 

using A.7.1 and A.IO 

using A.7.2 

since l1 ? 1 and r ( 1 

Combining this with A.7.3 gives the estimate A.7.6. 

Using A.5.1, one also computes 

IIZ' + N'II~~; = IIZ + R + N'II~~; ( IIZ + RII~~; + IIN'II~~; 
= 11z +Nil~~;+ IIN'II~~; ~ IIZ + N[[~··r + IIN'II~~; , 

which proves A.7.5. □ 

The Hamiltonian in normal form 

We now return our attention to the Hamiltonian 

H = Ho+F (Ho(g, p) = h(p)) 
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of Chap. 5, and in particular to its restriction to the domain D"l(p*, r) . We continue to 

leave, and r as free parameters. Lets~ 1 be given and denote by [s] E Zits integer part. 

We seek to compose [s] coordinate transformations ¢1, ... , ¢[s] using the Iterative Lemma 

A.7 (with f = IIFII /E) . At every step we will take o = ,/(2s) so that, assuming 

and 

the hypotheses A.7.2 and A.7.3 will always be satisfied . 

Write 1i0 = H, zo = P and N° = P. A successful jth application of the It

erative Lemma will deliver a symplectic diffeomorphism <f) from D"l-h/(2s) (p*, r) into 

D"(-(j-l)"l/(2s)(P*, r) and anew Hamiltonian 1ij = 1{J-1 o<f) = Ho+zj+Nj, for some zj and 

N j 'th z-j - 0 In that case wr1't1'ng ,-,, . - 11zj + NJ ll p.,r and (3· - IINjllp.,r 
Wl - • ' '--'-J = "l- h/(2s) J = "f-h/(2s)' 

the inequalities A.7.5 and A.7.6 will imply 

A.14 
1 

(3j ( -f3j-1 . 
e 

The composition cp = c/>1 o • • • o ¢[s] : D"l-[sh/(2s) (p*, r) ➔ D,y(p*, r) will restrict to a map 

¢ : D"l12 (p*, r) ➔ D"l(p*, r) (since [s]/(2s) ( 1/2). 

What needs to be checked is that the hypothesis A.7.1 of the Iterative Lemma holds at 

every step. That is, we must inductively prove that 

A.15 

for all 1 ( j ( [s]. By construction ao ( IIFII = EE and f3o ( IIFII ~ 2 IIFII = 2EE. This 

anchors the induction. Suppose that A.15 (and hence A.14) holds for all j ~ n (n < [s]) . 

Then A.14 implies f3n ( e- nf3o ~ 2e-nEE ( 2EE and 

So A.15 also holds in the case j = n + 1, which completes the induction. 
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We have G'[s] ::,;; G'o + (e-1 + · · · + e-[sl),Bo ::,;; 3EE and ,B[s] ::,;; e-[s],Bo ::,;; e- 8 (2eEE), and 

summarize the preceding arguments as follows: 

A.16 Proposition (The Hamiltonian in normal form) Assume that O ::,;; r ::,;; 1 and 

s ~ l satisfy 

for some O ::,;; 1 ::,;; 1 and li > 0 (l2 is defined by A. 7.4). Then there exists a symplectic 

change of coordinates¢: D"Y; 2 (p*, r)-+ D"Y(p*, r) such that 

Ho¢= Ho+ Z + N , 

IIZ + Nll~ii ~ 3EE , 

IINll~ii ::,;; e-s (2eEE) 

( (g' p) = ¢(g'' p') ) . 

The first of the three hypotheses is just 5.8, repeated here for completeness. 

Moving coordinate systems and reduction to the zero frequency case 

To expose the role played by convexity1 in establishing bounds on the perturbed dy

namics, we prefer over Lochak's argument one based on moving coordinate transformations 

that we describe next. 

Proposition A.16 says that there exists a change of coordinates ¢ such that Ho¢ = 

Ho + Z + N, for some Z and N with Z = 0 and such that N is exponentially small with 

1Here we are thinking of the first estimate in 5.3, which we have yet to employ. 
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respect to the parameters. Restrict attention to the real domain Do(P*, r) = G x Br15 (p*), 

and suppose that D(p*) = 0 (D = 'vh, H0 (g,p) = h(p)). Then the convexity of hand the 

Morse lemma imply that in a neighborhood of G x {p*} the level sets of Ho are diffeomorphic 

to G x Sk, where Sk denotes the unit sphere int, centered at p*. In particular these level sets 

are compact. Now IIZ + Nll(tr ~ 3EE (by A.16), so for E sufficiently small the level sets of 

Ho</> are also compact (in some neighborhood of G x {p*}) and energy conservation implies 

that integral curves of XHo</>, beginning sufficiently close to G x {p*}, remain y'E-close for 

all time. 

One attempts to convert the case D(p*) #- 0 to the zero frequency case just described by 

making an appropriate moving coordinate transformation. The following lemma shows how 

to compute solution curves in a Hamiltonian system, as they appear in a moving coordinate 

system, by computing solutions to an associated nonautonomous system. The proof of the 

lemma is elementary and left to the reader. 

A.17 Lemma (On moving coordinate transformations) Let 1i and W be differen

tiable functions on D0 (p*, r) and assume Xw has a well-defined flow map (t, x) i----+ <I>tv(x): 

JR x Do(P*, r)-+ Do(P*, r). Suppose ti----+ Xt E Do(P*, r) is an integral curve of Xl--l and de

fine Xi= (<I>tv )-1 (xt) (i.e., Xi is the point Xt as seen by the 'moving coordinates' (<I>tv )tEIR)

Then ti----+ Xi is an integral curve of the non autonomous system (X1-l, )tEIR, where 1-ii is the 
t 

time-dependent Hamiltonian defined by 

By ti----+ x~ being an integral curve of the nonautonomous system (XH;)tEIR, we mean that 

(t E JR) . 

Taking W(g, p) = w(p) = D(p*) • p and 1i =Ho</>= H0 + Z + N (with D(p*) possibly 

non-zero), we have 

1-i~ = (Ho - W) + Z +No <l>W 
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(because Ho and Z are <I>tv-invariant). Or, defining Hb = Ho - W and Nt = No <I>tv, we 

may write 

We can write Hb(g,p) = h'(p) if we define h' = h - w. Then if S1' = "vh', we have 

S1'(p*) = 0. We are therefore in the zero frequency situation already described, with the 

important exception that we are dealing with a time-dependent perturbation Z + Nt. 

Time-dependence destroys energy conservation, and therefore stability, as we argued 

above. However, the smaller the magnitude of the time-dependence (i.e., of 8Ntf 8t), the 

closer to stability one expects to get. Indeed this is the case: 

A.18 Proposition Let Z, Nt: D0 (p*, r)--+ JR. be differentiable functions (t E JR.) such that 

Z = 0 and such that t f-t Nt(x) is differentiable for all x in the interior of Do(P*,r). Let 

a ~ 0 be any number such that 

and assume that for some positive r 1 ~ r one has 

1. 

Consider the time-dependent Hamiltonian 

(t E JR.) 

where Hb = Ho - W , and an integral curve t f-t (gt, Pt) of the non autonomous system 

where 

and 
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Note that O < c~ < 1, since c7 = m/M ~ 1. Notice also of course that the 'stability time' 

to approaches oo as 118Ntf 8tllb*'r-+ 0. 

PROOF. Suppose then that IPo-P* I ~ c~pr1, with c~ as above. Then by the compactness 

of Do(P*, c~r1) = G x Bc~pr 1 (p*), the curve ti--+ (gt, Pt) E Do(P*, ri) is well-defined until it 

reaches the boundary of D0 (p., ri). That is, there exists a time st0 (s = ±1 , 0 < t0 ~ oo) 

such that 

Write Xt = (gt, Pt). Then the analogue of energy conservation for nonautonomous 

Hamiltonians is the identity 

A.19 

Recall that one proves this by applying the chain rule and computing 

Substituting Ht = Ho+ Z + Nt into A.19 and integrating leads to 

where h' = h-w. Since D2h' = D2h, we can apply Taylor's formula with integral remainder 

to conclude 

A.20 fo 1 

(1 - r)D2 h(po + rop)(op, op)dr = fo
st0 0

;T (xT)dr 

- ( (Z + Nst0)(Xst0 ) - (Z + No)(xo)) - Dh'(po)op , 

where op = Psto - Po- We will arrive at a lower bound on to proving our proposition by 

bounding the LHS of A.20 from below and the terms on the RHS from above . Indeed, by 

the ( m, M)-convexity of h, we have 

A.21 
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Furthermore, we have 

A.22 

and 

A.23 

A.24 

Applying the estimates A.21-A.24 to A.20, we obtain 

so that the preceding estimate yields 

The reader can check (recalling that c~ = (v15 - 2)c7/2 and O < c7 ~ 1) that the coefficient 

of rif a is bounded from below by c7/8. Together with our hypothesis on ri, this yields 

□ 
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Nekhoroshev estimates in the neighborhood of the periodic orbits 

We now combine our preceding arguments to deduce Nekhoroshev-type estimates on 

motions in a neighborhood of G x {p*}, which by assumption is foliated by periodic orbits 

of XH. 

Let r ~ 0 be given and define R = 4r/c~ ~ 4r (c~ E (0, 1) being the constant defined in 

A.18). Assume 

A.25 

for some l 1 > 0. Then Proposition A.16 applies, with r replaced with R, delivering some 

sym plectic coordinate change </> : D 'Y ; 2 (p*, R) ----+ D-y (p*, R). 

Let (110, 1go) E Do(P*, r) C Do(P*, R) be given. Then 

For t in some open interval of zero, there exists an integral curve t f-t (1gt, 1pt) E Do(P*, R) 

of XH with initial condition (1g0, 170) (remember r ~ R/4 < R). Our objective is to derive 

an estimate on the evolution of 11t· 

Define 

( 2 2 ) _ ,1..-l (1 1 ) 9t, Pt = 'I-' 9t, Pt • 

Then t f-t (2gt, 1Jt) is an integral curve of XHo</>· According to the last estimate in Proposition 

A.16, 

from which we deduce 



NEKHOROSHEV ESTIMATES IN THE NEIGHBORHOOD OF THE PERIODIC ORBITS 133 

Choose 1 = c~. Then 

Define 

(3 3 ) _ (;r.. t )-1 (2 2 ) 9t, Pt = '1.-'W 9t, Pt • 

By properties of <I>tv established at the beginning of this appendix, we known that 3p0 = 2p0, 

so that the above estimate implies 

By Lemma A.17 and the arguments that followed, t 1-t (3gt, 3Pt) is a solution curve for the 

nonautonomous Hamiltonian 

where H~ = Ho - W, Nt =No <I>tv and where Z, NE D-y;2 (p*, R) = Dc~;2 (p*, R) are the 

functions delivered by Proposition A.16 (with r replaced with Rand 1 = c~). In particular, 

we know from A.16 that 

IIZ + Nll~{i~ ~ 3EE , 

IINll~{j~ ~ e- 5 (2eEE) 

Since No = N and IINtll~{j~ = IIN o <I>tvll:;;~ = IINll~{j~ (by forementioned properties of 

<I>tv), we deduce 

IIZ + Nollb.,R ~ 3EE , 

II a;t 11:··R = ll{Nt, W}llb.,R 

~ 4~1 lrl(p*)I IINtll~,·i~ 
C7 7 

by Assumption C 

~ e-s ( ~:c
4 

EE) . 
c7 Tn 
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We now apply Proposition A.18 with a = 3E, r1 = 2r / c; = R/2 < R, and with r in 

A.18 replaced by R. To satisfy A.18.1 we requirer~ J12c;2aE/c7 . The condition A.25 

already guarantees this if the free parameter li ~ 1 is subject to the additional condition 

Since 1110 - P*I ~ 2pr = pc;r1, we can apply A.18 to the trajectory t t-----+ (3gt, 1Jt) to 

deduce 

where 

a 3c;
2
Tn s 

( ) 
~ e 

ll ~llp.,R /E 8ec4 suptEIR at o 

Now 3pt = 1Jt, and by the last estimate in Proposition A.16 (with r replaced with R 

and 1 = c;), 

In particular, 

so that 

c' 
12 1 I ,,.- 7R - -Pt - Pt ""' - p = pr 

4 

Note that (1 + 2/c;)r ~ R/4 + R/2 < R. 

Summarizing: 

A.26 Theorem (c.f. Theorem 1, Lochak (1993)) 

Consider the Hamiltonian H =Ho+ F considered in Chap. 5 (H0 (g,p) = h(p)). Assume 
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that Q(p*) = n/T*, for some p* E int B, n E {Zand T* > 0 (Q = 'vh). Furthermore assume 

that for some r 3 0, s 3 1 and l1 3 max{l, 192a/c7 } we have 

where c~ = ( v'5 - 2)c7/2 and l2 is given by A. 7.4. Then (real) integral curves t f--7 (gt, Pt) E 

G x B of XH satisfy the estimate 

cP□ ?•I ( r and ;~ ( :::>•) = IP,~ P,I ( (i + ;) r 

Taking s = cb/
2 and r = ( c~ 3 /16)l 1l2 (TM /T*)i for some b > 0: 

A.27 Corollary (c.f. Corollary 3, Lochak (1993)) Supposeli 3 max{l, 192a/c7} and 

b > 0 are given such that 

where 

and l2 is given by A. 7.4. Then 

and 

Estimates for an arbitrary initial condition 

We now seek an estimate on solutions t f--7 (gt, Pt) with p0 = j5. Recall that j5 is a point in 

to, subject to the condition that the Hamiltonian is defined in some complex neighborhood 

ca X B 15 of G X {p}. 
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Lochak's marvelous observation is that a stability time for any initial condition can be 

deduced from those of the periodic orbits studied above. To do so requires understanding 

how the periodic orbits are distributed, and the relevant tool is purely arithmetic. 

View {,81, ... , ,Bk} (the Z-basis for{?!.) as an JR-basis fort, and let,: JRk ➔ t denote the 

associated isomorphism. The 100-norm on JRk induces a norm I · loo on t: 

( Tj E JR) . 

We have 1(1 ~ c1v1kl(l 00 ((Et), courtesy of 5.7. 

Since ,(zk) = tz\ Dirichlet's simultaneous approximation theorem (see, e.g., Schmidt 

(1980)) tells us that 

z 1 
(Vw E t)(VQ > 1)(:3q E [1, Q) n Z): lqw - t loo ~ Ql/k 

Taking w = O(p) and writing T* = TMq, one deduces: 

A.28 Theorem (On the proximity of periodic orbits) 

For all Q > 1 there exists T* > 0 and n* E ,J.. tZ such that 

Because of the convexity of h, the frequency map is locally invertible: 

A.29 Lemma Define c~ = min{c5/2, l}. The map n: B ➔ t has a locally defined inverse 

n-1 mapping BqcU(2TM) (O(p)) diffeomorphically onto an open subset of B = B 15 (p). 

PROOF . Apply the inverse function theorem, as formulated in, e.g., Proposition 2.5.6 

of Abraham et al. (1988) 2. □ 

2 Their statement contains a typographical error. Correct values for the constants given are P = 
min{(2K M)- 1

, R}, Q = min{(2N L)- 1
, P/(2M)}, S = min{(2K M)- 1

, Q/(2L)}. 
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lfi- P*I = 1n-1(n(p)) - n-1 (n*)I 

= 111 

Dn- 1 (n* + t8D)8Ddtl ( 8n = D(fi) - n*) 

= 111 

[D2h(n- 1 
(Q* + t8!l))]- 18!ldtl 

1 
:::; -18!11 = ,oTmlD(p) - n*1 . 

m 

With the aid of this estimate, the reader may readily verify that A.28 and A.29 combine to 

yield: 

A .30 Corollary Assume 

Then there exists T* > 0 and p* E B with !l(p*) E J.. tZ such that 

Let b > 0 and l1 ~ max{l, 192a/c7} be given. If we choose 

then the hypothesis of A.30 is satisfied if 

where [3 = min{c7c~, 2c1v'k}. In that case, for some T* > 0, with 

A.31 

there exists p* E B such that !l(p*) E ,A tZ and 

A.32 
IP - P*I c~ 

3
l1l2 Eb 

---~-----
,0 "' 16 T*/TM 
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If we can satisfy the hypothesis on T*/TM in Corollary A.27, then for any solution t 1--r 

(gt, Pt) with Po= p we will be able to conclude from A.32 (using IPt - Pl ~ IPt - P*I + IP- P*I 

and T*/TM > 1) that 

A.33 11 ~ 3c;
2 

exp(E-b/2) ===} IPt - Pl $'. (2 + 3--) c;
3
l1l2 b 

Tn, ' 8ec4 j5 "" c; 16 E 

By A.31 the hypothesis on T*/TM in A.27 is met provided 

A.34 E ~ (~) 1/b 
c; l1l2 

A.35 and El/2-(l+k)b ~ l4l~+1/2 
1 

where 

We observe from A.31, A.32 and the definition of A*, that 

A ~ l - c;
3
l1l2i 

* 1/ 16 

So we ensure A* ? 1/2 if we assume 

u; C1'~1l,r • 

The inequality A.34 is guaranteed in that case provided 

E ~ ( ; ) 1/b . 
2c~ li 12 

What remains is to ensure A.35. Remember that 11 is still a free parameter, apart from the 

requirement 11 ? max{l, 192a/c7}. Choose 

_ { 192a ( 1 )k+l/
2

} 11 = max 1, --, -
1 C7 4 

Then to satisfy the condition A.35 it suffices to ensure E1/2-(k+l)b ~ 1, which we achieve 

with the choice 

b = l 
2(1 + k) 
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To summarize, the exponential estimate A.33 holds, with /1 and b as above, provided 

This completes the proof of Theorem 5.9 and its Addendum 5.10. 



APPENDIX B 

Proof that W is a slice 

Suppose G acts smoothly on a smooth manifold M. Recall that S is a slice at x E M 

if Sis a Gx-invariant submanifold of M (Gx CG the isotropy subgroup at x) containing x 

and such that 

G XGx S-t M 1 [g , x] i--+ g • s 

is a diffeomorphism onto some open neighborhood of G · x . Here G Xax Sis the quotient 

( G x S) / G x, where G x acts on G x S according to h • (g, s) = (g h-1 , h · x), and [g, s] = (g, s) 

mod Gx. We call S a global slice if the image of the map above is M. Sufficient conditions 

for a Gx-invariant submanifold S 3 x to be a slice at x are: (i) S intersects G-orbits in a 

'complementary fashion,' i.e., T 5 M = T 5 S E9 Ts(G • s) (s ES), and (ii) s ES, g E G and 

g • s E S together imply g E Gx. 

Let us now verify that the ( open) Weyl chamber W in fl* is a global slice for the co

adjoint action of G on fl;eg· Since each regular co-adjoint orbit intersects W in a unique 

point (see, e.g ., Corollary 1.8.3, Part 1), it follows that G(W) = fl;eg (so that if Wis indeed 

a slice, then it is a global slice) and 

( w E W , g E G , and g • w E W) ⇒ g = id . 

By the above, it remains only to show that W intersects co-adjoint orbits in a complementary 

fashion, i.e. , 

B.l (w E W) . 

140 



B. PROOF THAT W IS A SLICE 

We claim, identifying the various spaces with subspaces of fl*, that 

B.2 

B.3 

Tw(G • w) = !:.L = Ann t 

for all w E W. Then B.l follows immediately from the direct sum decomposition 

see , e.g., Sect. 1, Part l. 

Since W C !: is open, B.3 is obvious. 
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PROOF OF B.2. Since regular co-adjoint orbits are of type (T) (by, e.g., 1.8.1, 1.8.2 and 

1.2.2 of Part 1), we know that dim Tw(G • w) = dim!: (w E WC .tn fl;eg)- To prove B.2 it 

therefore suffices to show that T w ( G · w) C !:.L = Ann t. Elements f3 of T w ( G • w) are of the 

form f3 = ade w for some~ E fl. But then for all T E t we compute 

since flw t (by, e.g., Corollary 1.8, Part 1). This shows that f3 E Ann t = .t.L. Since 

/3 E Tw(G • w) was arbitrary, this proves Tw(G · w) C !:.L, as required. □ 
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Proof of the Extension Lemma 

This appendix is devoted to pay proof of Lemma 8.8. Recall the fact (following from 

the last statement in Theorem 8.8) that every point of P is of the form g • y for some g E G 

and y E F. We shall use this fact repeatedly in the sequel without further comment. 

Let us check that the extended action of H is well-defined. As in the proof of Theorem 

8.14, we have g'·y' = g·y (g,g' E G; y, y' E F) if and only if g' = gq and y' = q- 1 -y for some 

q ET. In that case, for any h EH, we obtain g' • (h-Hy') = (gq) • (h •H (q- 1 
• y)) = g • (h·Hy), 

since the actions of T and H on F commute by hypothesis. This shows that the extended 

action is well-defined. 

That the extension of K is well-defined follows similarly, appealing to hypothesis 2. 

Next, we argue that the extended action of H is symplectic. Fix some h E H and 

define ¢ : P -+ P by ¢( x) = h·H x . We need to show that ¢ is sym plectic. Since G 

acts symplectically on P, and H acts symplectically on F, it follows from the definition of 

the extended action that ¢ maps fibers of 1r : P -+ 0 symplectically onto themselves. It 

therefore remains only to show that Tc/> maps horizontal spaces of the symplectic connection 

on 7r : P-+ 0 symplectically onto horizontal spaces. From the definition of¢, the extended 

action of H, and infinitesimal generators, it follows that 

C.l Tc/>. ~p(g. y) = ~p(cp(g. y)) ( ~ E g, g E G, y E F) 

Since J is G-equivariant and JIF is H-invariant (hypothesis 3), we compute 

= g. J(h-Hy) = g. J(y) = J(g. y) 

That Tc/> is symplectic on horizontal spaces now follows from C.1 and Lemma 8.12. 
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Conclusion 4 follows by construction. So does conclusion 5. Conclusion 6 was proven 

in C.2 above. It remains to prove that K : P -+ Q* is a momentum map for the extended 

action of H. 

Write ryft (resp. ry{f) for the infinitesimal generator of the H action on P (resp. F) 

corresponding to 7J E Q. Let 7J E Q be arbitrary. Then one computes using the definition of 

the extended action, 

C.3 (g E G, y E F) , 

where <I>9 (x) = g · x (x E P). Consider the one-form a= ryft J w - dK.,,. Then as 7J E Q is 

arbitrary, proving that K : P -+ Q* is a momentum map for the extended action amounts 

to proving that a vanishes. It suffices to check 

C.4 

C.5 and aiflp(g • y) = 0 , 

where g E Gandy E Fare arbitrary, and flp(x) = Tx(G • x) (x E P). 

Suppose v E T 9 .yFg•µo· Then v = T<I>9 • w for some w E TyF. In that case we compute 

(a, v) = w ( ryft (g · y), T<I>9 • w) - (dK.,,, T<I>9 • w) 

= w ( T<I>9 • ry{f (y), T<I>9 • w) - (dK.,,, w) using C.3 and the G-invariance of K 

= w(ry{f (y), w) - (dK.,,, w) since G acts symplectically 

= 0' 

since K : F -+ Q* is a momentum map for the action of H on F, by hypothesis. This proves 

C.4. 

Let ~ E fl be arbitrary. Then, using C.3, the G-invariance of K, and the symplecticity 

of <I>9 , one computes 

(a,~p(g · y)) = (a, T<I>9 • (g- 1
• ~)p(y)) 

C.6 = W ( ryff (y), (g- 1 
• ~)p(y)) - (dI<.,,, (g-l. OP(Y)) 
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By Lemma 8.12.1, we can write g- 1 
• ~ = e + e for some e, e E g such that ~},(y) E Hory 

and ~i(y) E TyF, Then the right-hand side of C.6 becomes 

The first term vanishes, by the definition of Horx, The second term vanishes because K is 

G-invariant. The term in parentheses vanishes because K : F-+ !)* is the momentum map 

of the action of Hon F, and because ~i(y) E TF. Therefore, (o:,~p(g·y)) = 0. Since~ E g 

was arbitrary, equation C.5 must hold. 



APPENDIX D 

An application of the S 1 Extension Theorem: The 

axisymmetric Euler-Poinsot rigid body revisited 

The purpose of this appendix is to give an application of the results of Chap. 12. We 

show how the body symmetry of the axisymmetric Euler-Poinsot rigid body (viewed as 

a (S0(3), H)-integrable space) can be constructed ab initio by applying the 3 1 extension 

theorem (Theorem 12.2) . In principle, the same technique could be applied to obtain 

S0(3) x 3 1 symmetry in the asymmetric rigid body, provided one restricts to appropriate 

open subsets of the phase space. We do not attempt this here. 

In Chap. 11 we recalled that the Euler-Poinsot rigid body is described by the system 

(T S0(3), - de, H), where 

D.l 

and 0 is the one-form on T S0(3) defined by 11.2. Irrespective of the values of the moments 

of inertia 11 , f 2, h, the Hamiltonian H is invariant with respect to the action of G = SO (3) 

defined by 

D.2 A · .\(A, m) = .\(AA, m) , 

or equivalently by A · p(A, n) = p(AA, An) . (.\ and p are defined in Chap. 11.) This is 

just the action of S0(3) x 3 1 of Chap. 11 with the 3 1 part left out . A momentum map 

J : T S0(3) ---t IR 3 is given by 

D.3 J(.\(A, m)) = Am , 

or equivalently by J(p(A, n)) = n. 
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Let T SO(3) \0 denote T SO(3) with its zero section removed . Then G acts freely on 

T SO(3)\0 and J(T SO(3)\0) C fl;eg ~ JR.3\{0}. The Hamiltonian G-space 

(T SO(3)\o, -de, SO(3), J) 

is (SO(3), H)- (i.e., dynamically) integrable. 

Before turning to the axisymmetric case, let us study the symplectic cross section of 

T SO(3)\0 in some detail. 

The symplectic cross section 

Choose T, W and O as in Example 8.6. Then W and O intersect at the point µ0 = 
e3. The symplectic fibration 1r : T SO(3)\0 --+ 0 ~ 3 2 (see Theorem 8.8) is given by 

1r(p(A,n)) = n/ llnll- The map 'I/;: SO(3) X (O,oo)--+ TSO(3)\0 defined by 

D.4 

is a diffeomorphism onto the symplectic cross section F = 1r-1 ( e3 ) of the space 

(T SO(3)\0, -de , SO(3), J) 

(see Definition 8.9). The map 'I/; is symplectic if we equip SO (3) x (0, oo) with the symplectic 

structure -de' , where e' is the one-form on SO(3) x (0, oo) defined by the formula 11.3. The 

action of T ~ 3 1 on SO(3) x (0, oo) that makes 'I/;: SO(3) x (0, oo) ~Fa T-equivariant 

map is given by 

D.5 

The action of Ton F has momentum map JF: F--+ t* ~JR.given by JF(p(A, n)) = n · e3. 

So (JF o 1/;)(A,p) = p. 

To summarize, 'I/; : SO (3) x (0, oo) ~ F is an equivalence between the space 

(SO(3) x (O,oo),-de',31,JF o'I/;) 

and the symplectic cross section F, where e' and JF o 'I/; are as described above. 
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Our next task is to obtain a concrete realization of the Poisson reduced space S0(3) x 

(0, oo)/3 1

. First, observe that the symplectic structure -d0' on S0(3) X (0, oo) is -w80(
3

), 

where w80(
3

) is the symplectic structure that S0(3) x (0, oo) carries by virtue of being (up 

to the obvious identifications) the action-group model space G x to for G = S0(3) (see 

Lemma 9.4). This is no surprise since the symplectic structure on G x to (G arbitrary) was 

defined precisely by realizing G X to as a symplectic cross section of T*G (Chap. 9) . The 

reason for the difference in sign observed here is the following: In the rigid body phase space 

T* S0(3) (which we have been identifying with T S0(3)) the symmetry group S0(3) of H 

acts by cotangent lifting the left action on S0(3) defined by g • h = gh, while in Chap. 9 we 

cotangent lifted the left action on G defined by g • h = hg-1. 

In Example 10.8 we constructed action-group coordinates for geodesic motions on 3 2, 

i.e., we constructed an equivalence of Hamiltonian S0(3)-spaces ¢ : S0(3) x (0, oo) ~ 

T32\0. This map, which was defined by 

is symplectic, when S0(3) x (0, oo) is equipped with the symplectic structure w80(3). But as 

we are using S0(3) x (0, oo) as a realization of the symplectic cross section of T S0(3) \ 0, we 

are equipping S0(3) x (0, oo) with the symplectic structure -w80(3 ). To make¢ symplectic 

we therefore redefine the symplectic structure on T 3 2\0 to be +de, where 0 is the one-form 

on T32\0 defined in 8.13. 

We leave it to the reader to verify that the action of 3 1 on T 3 2\0 with respect to which 

\J! is 3 1-equivariant is given by 

D.6 where µ = q xv/ llvll • 

The key observation at this point is that the orbits of this 3 1 action are the fibers of 

the map J : T32 \0 --t IR3\{0} defined by J(q , v) = q x v (not to be confused with the 

momentum map above of the same name). But we have already seen in Chap. 8 that J 

is the momentum map for a Hamiltonian action of S0(3) on T 3 2\O. Actually, since we 

have redefined the sign of the symplectic structure on T 3 2\O , the momentum map of this 
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action is, in the current context, -J. In particular, since -J is equivariant, it is Poisson 

if we equip JR. 3 ~ .so(3)* with the positive Lie-Poisson bracket { ·, • }+ (see, e.g ., Marsden 

and Ratiu (1994, Chap. 10)). It follows that J is Poisson if we equip JR. 3 with the negative 

Lie-Poisson bracket { · , · }- = -{ ·, • }+- This structure is given by 

D.7 {J, h}_(y) = -y · V f(y) x Vh(y) . 

Since</>: SO(3) x (0, oo)-+ TS2\0 is symplectic, the composite 

p =Jo</>: SO(3) X (0, oo)-+ JR. 3\{0} 

is also a Poisson map. This map is also a surjection, whose fibers are the S 1-orbits in 

SO(3) x (0, oo) (by the S 1-equivariance of</>). Thus (JR. 3\{0}, { · , ·}-)is a realization of the 

Poisson manifold SO(3) x (0, oo)/S1, and p: SO(3) x (0, oo)-+ JR. 3\{0} ~ SO(3) x (0, oo)/S1 

is a realization of the natural projection. 

Since HIF is T-invariant (T ~ S 1), the Hamiltonian 'lj;*H (which represents the restric

tion of H to the symplectic cross section) is S 1-invariant, dropping via p to a function on 

R 3\{0}. Indeed, denoting the standard coordinate functions on JR. 3 by y1 , y2 , y3 , we have 

'lj;* H = hop, where h : JR.3\ {0} -+ R is given by 

The reader will readily verify this fact after observing that 

Hamiltonian vector fields on (JR.3\{0} , {·,·}-)take the form 

X1(Y) = -y x V f(y) , 
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so that the equations of motion on IR3\{0} corresponding to Hamiltonian hare 

D.8 • ( 1 1 ) Y2 = - - - Y3Yl 
h Ii 

• ( 1 1 ) Y3 = - - - Y1Y2 
Ii h 

These are precisely the familiar Lie-Poisson reduced rigid body equations (see, e.g., op. cit.), 

albeit obtained via a rather convoluted route. Rather than Poisson reduce the full system 

directly, we have obtained these equations by doing Poisson reduction in ( a realization of) 

the symplectic cross section. 

The axisymmetric case 

Before summarizing the above results, we need to restrict attention to an appropriate 

open subset of T SO(3)\0, in anticipation of applying Theorem 12.2. 

Assume the body is axisymmetric, Ii= h = I say. Then, writing z(t) = Y1(t)+iy2(t) E 

C, the general solution to the equations D.8 is 

D.9 

D.10 

D.11 where 

Points on the y3-axis or on the Y1-Y2 coordinate plane are equilibria. The remaining solutions 

are periodic with period (ay3(0))-1. The symplectic leaves of (IR3\{0}, { •, • }-) are the 

spheres centered on the origin. The solution trajectories on a typical sphere are shown in 

Fig. 1. 

To apply Theorem 12.2 we need to restrict attention to the half-space lying above 

or below the Y1-Y2 coordinate plane. For concreteness, we choose the upper half-space 

IRt = {y E IR3 I y3 > O}. Let us now summarize our previous results, with the various 

constructions restricted to the appropriate open subsets: 
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equator 

FIG URE 1. The reduced dynamics of an axisymmetric rigid body on a typical 

symplectic leaf (sphere) . Points on the equator are equilibria. 

D.12 Proposition (Poisson reduction in the symplectic cross section) 

Define the open set PC TSO(3)\0 by 

150 

and equip P with the symplectic structure w = -d0, where 0 is the one-form on T S0(3) 

defined by 11.2. Then P is invariant with respect to the action of S0(3) defined by D.2, 

which has momentum map J : P --+ JR. 3 defined by D.3. 

Define the open set S0(3)° C S0(3) by 

S0(3) 0 = {A E S0(3) I A33 > O} , 

where A33 = Ae3 • e3. Equip F' = S0(3) 0 x (0, oo) with the symplectic structure w' = 
-w80(3 ), where w80(3 ) is the symplectic structure carried by S0(3) x (0, oo) :) S0(3) 0 x 

(0, oo) by virtue of being (up to the obvious identifications) the action-group model space 

of S0(3) (see Lemma 9.4). Explicitly, w' = d0', where 0' is the one-form on S0(3) x 

(0, oo) given in Equation 11.3. Let T ~ S1 act on F' according to D.5. This action has 

momentum map J' : F'--+ JR. defined by J' (A, p) = p. Then the map 7/J : F' --+ P defined by 
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D.4 is an equivalence from (F', w', T, J') onto the symplectic cross section (F, WF, T, JF) of 

(P, w, G, J). The map p : F'-+ JR.t defined by 

p(A, p) = pAe3 

is a Poisson map onto (JR.t, { ·, • }-), wliere {·,·}-is defined by D. 7. Moreover, the fibers 

of p are the T-orbits in F', so that (l~t, { · , · }-) is a realization of the Poisson manifold 

F' /T and p is a realization of the natural projection F' -+ F' /T. Assuming 11 = fz = I, 

we have H' = 'lj;* H = hop, where h : JR.t -+ JR. is defined by 

Constructing the 5 1 extension in the symplectic cross section 

Let (F', w', T, J') be the realization of the symplectic cross section F of P C T SO(3) 

given in the proposition above. The momentum map J' has image tj = (0, oo), and J' : 

F' -+ (0, oo) factors through p : F' -+ JR.t, delivering a map j' : JR.t -+ (0, oo) such that 

J' =j' op. Indeed j'(y) = IIYII- Each symplectic leaf Z:µ = (j')- 1 (µ) (µ E (0,oo)) is an open 

hemisphere of radius µ. 

If we take 

Z:::: {(0,0,t) It> O}, 

then the Hamiltonian T-space ( F', w', 1', J') satisfies hypotheses 1-3 of Theorem 12.2. The 

function I : F' /T ~ JR.t -+ JR. defined by 

I(y) = Y3 - n IIYII 

satisfies conditions 4 and 5 of 12.2 for any choice of integer n. We choose n = 0 (because this 

choice will lead to the 5 1 extension corresponding to the body symmetry; a different choice 

leads to an equally valid, but different, 5 1 action 1). With this choice, we have Iop(A,p) = 
1For example, if we choose n = l, then l(y) = A/(2rr IIYII), where A denotes the area enclosed by the 

Xh-orbit parking through y (see Remark 12.3) . In that case, the function Io po 'lj;- 1 (extended by the S0(3) 

action to a function on P) corresponds to an 'action integral' for the rigid body appearing in Tantalo (1994). 
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pA33 . The corresponding function on the sym plectic cross section F is K = Io po 1- 1. One 

computes 

(A E S0(3) 0
, p E (0, oo)) , 

where pis the map defined at the beginning of Chap. 8 (not to be confused with the map 

p giving us a realization of the quotient map F' -+ F' /T). 

By Corollary 12.9, we obtain a momentum map for the sought after 5 1 extension by 

extending K to a function on Pin the prescribed manner. Let A E S0(3) and m E IRt be 

arbitrary, and let us determine what the value of K(.X(A, m)) should be, according to the 

prescription of 12.9. Define A = exp((m x e3/ [[m[[)~) and p = [[ m[ [, so that Am = pe3. 

Then if g = AA- 1 , we compute using D.2 and 11.1, 

.X(A, m) = g • .X(A, m) = g • p(A , Am)= g • p(A, pe3) 

Therefore, we set 

K(.X(A, m)) = K(p(A,pe3)) = pA33 = [[m[[ ([;II) = m3 

But this is precisely the momentum map for the familiar 5 1 action corresponding to the 

body symmetry (which in our case is symmetry about the e3-axis) . Since a Hamiltonian 5 1 

action is determined by its momentum map, this proves our initial claim. 



APPENDIX E 

The Symplectic Leaf Correspondence Theorem 

Throughout this appendix 'smooth' means C 00
• 

Foliations with singularities 

The following discussion of generalized distributions, and their associated foliations, 

closely follows Libermann and Marie (1987, Appendix 3). These notions were introduced 

and studied by Sussmann (1973), Stefan (1973) , and others1 . 

A generalized distribution on a smooth manifold Mis a subset D of the tangent bundle 

TM with the property that D(x) = D n T xM is a subspace of T xM at every x EM. The 

adjective 'generalized' (which we will omit in the sequel) refers to the fact that we allow 

the dimension of D ( x) to be x dependent . We write iJ for the set of locally defined smooth 

vector fields X on M satisfying X(x) E D(x) wherever X(x) is defined. A distribution D 

is deemed smooth if for all x E M there exist smooth vector fields X 1 , ... , X k E iJ defined 

in a neighborhood of x such that {X1 (x), ... , Xk(x)} is a basis for D(x). 

We are ultimately interested in the following special case: 

E.1 Example Let Q be a Poisson manifold and B the associated Poisson tensor, viewed as 

a vector bundle morphism B : T*Q--+ TQ. Next, define the characteristic distribution Don 

Q by D = B(T*Q ). If x1, ... , Xn are local coordinate functions defined in a neighborhood of 

a point q E Q, then D(q) is generated by {Xx1 (q), ... , Xxj(q)}, where X1(x) = B(dxf). By 

removing appropriate vector fields if necessary, we may suppose that {Xx1 (q), ... , X xj (q)} 

is in fact a basis for D(q) . Since the Xxj are smooth and belong to iJ, the characteristic 

distribution D is smooth. 

1 A vast bibliography on the subject of foliations has been supplied by Tondeur (1997) . 
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An integral manifold of a distribution D on a manifold M is an immersed connected 

submanifold I: C M such that T xI: = D(x) at all x E I:. A distribution D is integrable if 

through every point x E M there exists an integral manifold of D. 

E.2 Theorem and Definition Let D be a smooth integrable distribution on a smooth 

manifold M. Given x, y E M, write x ~ y if one can find an integral manifold of D 

containing both x and y. Then ~ is an equivalence relation on M, defining a partition 

of M called the (generalized) foliation associated with D. Equivalence classes of~ are 

immersed submanifolds of Mand are called leaves of the foliation associated with D. Each 

leaf is maximal in the sense that: (i) The leaf through a point contains all integral manifolds 

passing through that point; and (ii) No integral manifold properly contains any leaf. 

For a proof of E.2, see Libermann and Marle (1987, p. 385). 

If p: P ➔ Q is a smooth map, and Dis a distribution on Q, then we define a distribution 

p*D on P by declaring v E p*D(x) if Tp • v E D(p(x)). We call p*D the pull-back of D. 

Smooth integrable distributions, and their associated foliations, are well-behaved under 

appropriate pull-backs: 

E.3 Theorem Let p : P ➔ Q be a submersion and assume that the preimage of connected 

sets under p are always connected. Let D be a smooth integrable distribution on Q. Then 

the pull-back distribution p* D is smooth and integrable, and the leaves of the foliation on 

P associated with p* D are precisely those nonempty sets of the form p- 1 (I:), where Eis a 

leaf of the foliation associated with D. 

The proof of E.3 is postponed to the end of this appendix. Theorem E.3 will be crucial in 

the sequel. 

Symplectic leaves and dual pairs 

E.4 Theorem (Symplectic Stratification Theorem) 

The characteristic distribution on a Poisson manifold Q (see Example E.l above) is inte

grable. Furthermore, each leaf of the associated foliation inherits a symplectic structure 
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from the Poisson structure on Q in the following way: Given a realization i : S y Q of E 

(meaning that i is an injective immersion with i(S) = E), there exists a unique symplectic 

structure on S with respect to which i is a Poisson map. 

Recall that a smooth map of Poisson manifolds p: P-+ Q is Poisson if {J, h}op = {fop, ho 

p} for all locally defined functions J, h on Q. The leaves of the foliation in Theorem E.4 are 

called the symplectic leaves of Q. The above formulation of the Symplectic Stratification 

Theorem appears in Libermann and Marie (1987, p. 130). Its earliest incarnation is due to 

Kirillov (1976). 

E.5 Definition Let P be a symplectic manifold and Q 1 , Q2 Poisson manifolds. A pair of 

Poisson maps Q1 /:..!.__ P !!-3.+ Q2 is called a dual pair if ker T P1 and ker T P2 are symplectically 

orthogonal distributions. This pair is a full dual pair if P1 and P2 are surjective submersions. 

E.6 Example Suppose a Lie group G acts on Pin a Hamiltonian fashion, and let J : P-+ 

g* be a (not necessarily equivariant) momentum map. Then g* ? P -+ P/G is a dual 

pair. If G acts freely and properly, then the image gj of J, is an open subset of g*, and 

gj ? P-+ P/G is a full dual pair, with respect to an appropriate differentiable structure 

on P/G. 

The Symplectic Leaf Correspondence Theorem 

The main result we wish to recall in this appendix is a natural one-to-one correspondence 

between the symplectic leaves in each leg of a dual pair Q 1 /:..!.__ P !!-3.+ Q2 . This result 

has been stated by Alan Weinstein, who sketched a proof under a slight variation of our 

hypotheses (Weinstein, 1983). We have been unable to fill in the details of Weinstein's 

original proof, however, and moreover we are unaware of a complete and correct proof in 

the literature. Although detailed proofs are probably known, we supply here for the record a 

detailed proof, which we hope is also correct. With Theorem E.3 in hand, the result follows 

quite naturally. We begin by understanding how p1 and p2 pull back the characteristic 

distributions on Q 1 and Q2 . 
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E.7 Lemma Let p: P ➔ Q be a Poisson submersion and let D denote the characteristic 

distribution on Q. If P is symplectic, and w denotes its symplectic structure, then 

p* D = ker T p + ( ker T p t . 

PROOF. Let Bp : T* P ➔ T P and BQ : T*Q ➔ TQ denote the Poisson tensors. 

Let p* : Ann ker T p ➔ T*Q denote the map sending dx (Jo p) to dp(x)f, for any locally 

defined function f on Q (Ann denotes annihilator). Then p: P ➔ Q being Poisson means 

BQ op*= Tpo Bp. Fix x E P. Then 

Here we have used the fact that p* maps Ann ker T p onto (in fact isomorphically onto) 

T;(x)Q. This follows immediately from its definition. 

The above calculation demonstrates that (Txp)- 1(D(p(x))) = (kerTxp) + (kerTxp)w 

( x E P), from which the claim of the lemma follows. □ 

If Q1 ~ P !!3-+ Q2 is a full dual pair, and D1, D2 denote the characteristic distributions 

on Q1,Q2, then p';_D1 = p2D2, by Lemma E.7. Let us suppose that P1 and P2 satisfy the 

connectedness hypothesis of Theorem E.2. Then by that theorem, each leaf of the general

ized foliation associated with Pi D 1 = p2D2 is simultaneously the preimage of a symplectic 

leaf in Q1 and a symplectic leaf in Q2 . This establishes a one-to-one correspondence be

tween the symplectic leaves in p1(P) C Q1 and the symplectic leaves in p2 (P) C Q2. Since 

we assume the dual pair is full, p1 (P) = Q 1 and p2 (P) = Q2 . This furnishes a proof of the 

result we are after: 

E.8 Theorem (Symplectic Leaf Correspondence Theorem) Let P be a symplectic 

manifold and Q 1 ~ P !!3-+ Q2 a full dual pair. Assume that each leg Pj : P ➔ Qj (i = 1, 2) 

satisfies the property that preimages of connected sets are connected. Let Fj denote the 
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set of symplectic leaves in Qj . Then there exists a bijection :F1 ➔ :F2 given by 

having inverse 

Keeping Example E.6 in mind, an immediate corollary is Lemma 12.J stated in our discus

sion on converting dynamic integrability into geometric integrability. 

Details 

We now turn to the proof of Theorem E.3. We make use of the following observation: 

E.9 Lemma Let p: P ➔ Q be a surjective submersion of smooth manifolds, and let S C P 

be a compact pathwise connected set. Then S has a connected open neighborhood U with 

the property that the restriction p : U ➔ p(U) is a locally trivial fiber bundle. 

PROOF. Since S is compact and smooth finite dimensional manifolds are locally com

pact, we can cover S by a finite number of open subsets U1, ... , UN, each having compact 

closure in P. Since Sis pathwise connected, there exists an (open) connected component U 

of the union UjUj that contains S. The component U will have compact closure, so that the 

restriction p : U ➔ p(U) will be proper. This finishes the proof, since any proper surjective 

submersion is a locally trivial fiber bundle; see, e.g., Bates and Sniatycki (1992). □ 

A PROOF OF THEOREM E.3. We first verify that p* Dis smooth. Let x0 E P be given 

and let U be a connected neighborhood of x0 such that the restriction p : U ➔ p(U) is a 

locally trivial fiber bundle. The existence of such a U is guaranteed by Lemma E.9 above. 

In fact, restricting U if necessary, we may suppose that U is a globally trivial fiber bundle. 

It follows that there exist vector fields X 1 , ... X k defined on U ( restricting U if necessary) 

that are tangent to the fibers of plU (and therefore belonging to p*D) and are such that 

{X1 (x), ... , Xk(x)} is a basis for the tangent space of the fiber through x, for all x in 

some open neighborhood of x0 . Since D is smooth, there exist (restricting U if necessary) 
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vector fields Yi, ... , Ym (k + m = dim P) on p(U) such that {Y1(p(xo)), ... , Ym(p(x0))} is 

a basis for D(p(x0)). Equip the locally trivial bundle p: U ➔ p(U) with the structure of 

an Ehresmann connection, and use this connection to lift the vector fields Y1 , ... , Ym to 

horizontal vector fields Y1, ... , Ym defined on U. Since Tp • Yj(x) = Yj(p(x)) (x EU), it 

follows that Yj E p*D. By construction {X1 (xo), ... , Xk(xo), Y1(xo), ... , Ym(x 0 )} is a basis 

of p* D(x0). Since xo E P was arbitrary, this proves that p* Dis smooth. 

We next demonstrate that p* D is integrable. Let x0 E P be given, and let E C Q 

be an integral manifold of D passing through p( x0). We may suppose that E is a regular 

submanifold. (If not, replace Eby i(U) where U C Sis an appropriate open set and i : Sc.....+ 

Q denotes some realization of the immersed submanifold E.) By the preimage theorem, the 

set p- 1 (E) is a (regular) submanifold of P. This submanifold (which is connected since E 

is, by our hypotheses on p) is an integral manifold of p* D. Since it contains x0 E P, which 

was arbitrary, this establishes the integrability of p* D. 

It remains to show that the leaves of the foliation on P associated with p* D are preim

ages of leaves of the foliation on Q associated with D. Let Z C P be a leaf, and let x0 E Z 

be arbitrary. Denote by E the leaf of the foliation on Q containing y0 = p(x0 ). We need to 

show that Z = p- 1 (:B). We begin by showing p- 1 (:B) CZ. 

Let x E p- 1 (E) be given and define y = p(x) E E. Let i : S c.....+ Q be a realization 

of the immersed submanifold E, and let s0 , s E S be the points such that i(s0) = y0 and 

i(s) = y. Since S is connected (E is an integral manifold) there exists a continuous curve 

in S, defined on some closed interval, joining s0 and s. Since the image of this curve 

is compact, there exists a connected open neighborhood U of this image having compact 

closure in S (the relevant argument already appearing in our proof of Lemma E.9). In 

particular, E' = i(U) C E is an embedded integral manifold of D containing y0 and y. By 

the preimage theorem, p- 1 (E') is a regular submanifold of P. This submanifold (which is 

connected since E' is, by our hypotheses on p) is an integral manifold of p* D, and contains 

both x0 and x. Therefore x0 and x belong to the same leaf, namely Z. In particular, x E Z. 

Since x E p- 1 (E) was arbitrary, this establishes the inclusion p- 1 (E) C Z . 
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Finally, let us prove the reverse inclusion Z C p-1 (E). Let x E Z be arbitrary. Let 

i : S Y P be a realization of the immersed submanifold Z, and let 1 : [O, 1] -+ S be a 

continuous curve joining s0 and s, where i(so) = xo and i(s) = x. By Lemma E.9, there 

exists a connected neighborhood U of ib([0, 1])) in P such that the restriction p : U -+ 

p(U) C Q is a locally trivial fiber bundle. Let V C S be an open connected neighborhood 

of the compact set 1 ([0, 1]) that is small enough to guarantee that the integral manifold 

Z' = s(V) of p* D is a regular submanifold of P. For example, take V to be a neighborhood 

with compact closure, so that the restriction i : V -+ P is proper. The set Z' contains 

the image of the curve / = i o 1 , which joins x0 and x. There exist numbers t0 , ... , tm 

with 0 = to < t1 < · · · < tm = 1 such that each curve segment ,'([tj-l, tj]) (1 ~ j ~ n) 

is contained in the domain Uj C P of a fiber bundle chart <pj : Uj -+ Wj x F (Wj C Q, 

p- 1 (Wj) = Uj, F = p- 1 (xo)). 

We claim that x = /(tm) is contained in p- 1 (:E). We prove this by induction on the 

integer indexing the curve segments. Since /(to)= x0 belongs to p- 1 (:E), the induction is 

anchored. Let 1 ~ j ~ m be given and suppose that ,'(tj_i) E p-1(:E). We need to show 

that ,'(tj) E p-1 (:E). The distribution p*D is represented on the connected chart image 

Wj x F by the distribution D'(w, J) = D(w) EB T1F. One easily argues that the leaves 

of this distribution are of the form E' x F, where E' is a leaf of the foliation on Wj C Q 

associated with DIWj, It follows that the leaves of the foliation on Uj C P associated with 

p* DIUj are of the form p-1 (E'), where E' is again some leaf of the foliation associated with 

DIWj , Some connected component of the set Z' n Uj contains ,'([tj-l, tj]). Let us call this 

component Zj. Then Zj is clearly an integral manifold of the foliation on Uj associated 

with p* D. Therefore Zj is contained in some leaf of this foliation (by the maximality of 

the leaves), i.e., in some set of the form p- 1 (E'), where E' is a leaf of the foliation on Wj 

associated with DIWj, In particular, pb'(tj-i)) and pb'(tj)) must lie on the same leaf E' 

of the foliation on Wj associated with DIWj, But this leaf is certainly an integral manifold 

of the foliation on Q associated with D. Therefore, Pb'(tj)) and Pb'(tj-1)) lie on the same 

symplectic leaf in Q. This leaf is E since p(/(tj_i)) EE, by the inductive hypothesis. So 
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,'(tj) E p- 1 (:E), which completes the induction . It follows that x = ,'(tm) lies in p- 1 (:E). 

Since x E Z was arbitrary, this shows that Z C p- 1 (:E). □ 
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