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Abstract 

Spin-polarized neutral cesium atoms are confined in a magnetostatic trap in a cryo­

genic apparatus. The atoms are prepared in the F = 4, mp = 4 state and cooled, 

with rf-assisted evaporative cooling, to less than 10 microKelvin. 

The elastic scattering cross section is measured by disequilibrating magnetostati­

cally trapped atoms and observing the rate of equilibration. A computer simulation is 

presented, the results of which are used to extract the elastic scattering cross section 

from the measured rates of equilibration. For cesium atoms in the F = 4, mF = 4 

state, the elastic cross section is confirmed to have a resonant magnitude which varies 

inversely with the mean kinetic energy, implying a scattering resonance. 

A design for a new beam source of cold neutral atoms, based on an optical funnel 

with a pyramid mirror configuration, is also presented. 
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Chapter 1 Introduction 

1.1 General Introduction and Summary 

In the last decade, the trapping and cooling of atoms with lasers and magnets has 

become an increasingly important and common tool in atomic physics. Samples of 

neutral atoms with temperatures of a few tens of a millionth of a Kelvin and densities 

in excess of 109atoms/ cm3 can now be readily produced in laboratories around the 

world. This has provided a high-density source of cold atoms for many experiments 

in atomic physics. For example, the use of a magneto-optical trap (MOT) allows 

improved accuracy in precision atomic measurements , such as atomic cesium clocks. 

that were previously limited by the high velocity and relatively low density of effusive 

thermal atomic beams. 

Another line of research enabled by laser trapping and cooling has been the pro­

duction of even colder and denser neutral atomic samples by evaporative cooling. 

This line of research achieved a milestone in 1995 with the observation of Bose­

Einstein Condensation (BEC) in atomic gases of rubidium [1] and sodium [2] . The 

cryogenic atom trap at Caltech, which had already demonstrated very long trap life­

times due to ultralow background pressures, and very strong magnetic confinement 

produced by superconducting coils in close proximity to the trap center , was well 

suited to perform evaporative cooling experiments. Chapter 2 describes the appara­

tus including the magnetic coils and the laser sources. 

We began by evaporatively cooling samples of cesium in the [F = 4, mF = 4) state 

[3], and found we were unable to efficiently evaporatively cool the atoms below about 

7 µK despite an apparently large elastic cross section. To try to understand this, we 

measured the cross section at a range of temperatures. Prior to our experiments, 

Tiesinga et al. [4], working from phase shifts measuerd in atomic fountain experi­

ments, had produced a hypothesis that in the low temperature limit , cesium in the 
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/F = 4, mF = 4) state had a very large elastic cross section . . Such a large cross sec­

tion would fall off as 1/T for a wide range of temperatures, including temperatures 

typical for magnetostaticly-trapped cesium (from a few µK to a few hundred µK). 

Some of the theory behind this behavior, and how it can be observed, is covered in 

Chapter 3. Chapter 4 contains the experimental procedure and the data analysis 

as well as a set of simulations which were necessary to interpret the data. Soding 

et al. [5] have recently published a set of careful observations demonstrating that at 

low temperatures there is a giant spin relaxation for cesium in the /F = 4, mp = 4) 

state which prevents further efficient evaporative cooling in this state. Our results 

are consistent with this. 

In Chapter 5 a new intense beam of slow and cold atoms design is presented. This 

beam had been constructed and is awaiting final testing at Jet Propulsion Laboratory 

(JPL). This beam would be an asset to cryotrapping, where it could in principle 

increase the lifetime of magnetostatic traps by several times. However, the beam is 

first destined for other experiments at JPL which require an intense, slow, and cold 

beam. 

1.2 Introduction 

Laser cooling and trapping is the source of cold atoms for all of the experiments 

described in this thesis. The basic aspects of laser cooling and trapping will be 

reviewed in this section. A more comprehensive introduction can be found in review 

articles by Lett et al. [6] and by Dalibard et al. [7]. 

1.2.1 Doppler Cooling 

The basic idea behind laser cooling is straightforward . If a single near-resonant laser 
--t 

beam (i.e., traveling wave) of wavevector k interacts with a two-level atom with 

natural linewidth r moving at velocity 11, the atom will absorb and reemit photons 
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at a rate of 

(1.1) 

where I is the intensity of the laser beam, Isat is the saturation intensity of the 

atomic transition, and 8 is the detuning of the laser from the resonant frequency of 
---,-t 

the transition, wo ( i.e., 8 = WJaser - wo)- The k · v term represents the additional 

detuning the laser atoms sees due to the Doppler shift of the laser 's frequency in 

the atom's rest frame. For notational simplicity, let us call v the component of the 

velocity of if in the -k direction. 

Every absorption of a photon by the atom causes an impulse on the atom of lik 

along k. The reemission of a photon by the atom is isotropic and random and causes 

no average force ( although the variance of these impulses will cause heating). Thus 

the time averaged force on the atom is lik, +. If 8 is chosen to be negative and two 

counter-propagating lasers are used, then the scattering rate from the two beams is 

, + and , _ respectively, and the force is 

F lik(,+ - ,_) = 

r 1 ( 1 1 ) 
2 fsat J / fsat + l + (4/ r2)(8 - kv) 2 - J/ fsat + l + (4 / r2)(8 + kv) 2 1.

2
) 

1s a damping force in that the sign of the force is opposite the sign of kv . This 

force arises because of the first order Doppler effect , and is often called Doppler 

cooling. The force becomes linear with-respect-to velocity when the laser intensity 

is low, i.e., I/ Isat « l, and v is small enough that kv « 8. Then F = -av where 

An atom in this light field will also experience heating due to momentum diffu­

sion from the isotropically distributed random reemissions. The minimum theoretical 

temperatue occurs when 8 = - r /2 and this temperature is called the Doppler tem­

perature, Tv = nr /2kBoltz· 

For cesium, the cycling transition 6S1; 2,F=4 --+ 6P3; 2,F=s is used for cooling and 
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151.3 MHz : 

6S 112, F=4 

6S 112 , F=3 

Figure 1. 1: Hyperfine levels of cesium used for laser cooling. 
transition. R is the repumping transition. 

6P312 , F=5 

6P3n, F=4 

6P3n, F=3 

6P312 , F=2 

T is the trapping 

trapping. The level diagram for the 651; 2 and 6A;2 levels is shown in figure 1.1. 

The transition labeled T is the trapping transition and corresponds to approximately 

852.36nm (vacuum). For this transition Isat is 1.1 mW and r = 21r x 5.1 MHz. Off 

resonant excitation of the 651; 2,F=4 --+ 6P3; 2,F=4 transition, which is about 250 MHz 

away from the trapping transition, allows atoms to optically pump into the 651; 2,F=3 

groundstate, which is 9.2 GHz lower than the 651; 2,F=4 state. In order to put these 

atoms back into the cooling cycle, a so-called repumping laser is added, which is tuned 

to the 651;2,F=3 --+ 6A;2,F=4 state, labeled R in the figure. 

1.2.2 Magneto-Optical Trapping 

If the above system of Doppler cooling is extended to three dimensions using six laser 

beams, a cloud of atoms will form at the intersection of the beams. Because the force 

on the atoms is viscous, this cloud is called an optical molasses. However , this cloud 

of atoms is just cooled, not trapped. The cloud forms because the time required 

for atoms from the background gas to cross the molasses region has been increased. 

To actually confine atoms for more than the fraction of a second they take to move 
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through the molasses region, a restoring force is required. A simple and powerful 

way to produce this restoring force is the Magneto-Optical Trap (MOT) , sometimes 

called a Zeeman-Shift Optical Trap (ZOT). 

In a MOT, a spatially varying magnetic field causes a spatially varying Zeeman 

shift in the atomic states involved in the laser cooling. The magnetic field usually 

used is a simple quadrupole field as created between two circular current loops running 

with opposite currents (figure 1.2). In one dimension, this field is B = bz near the 

center. Consider the simplest theoretical case of cooling with a J = 0 - l transition 

in one dimension, using two counter-propagating lasers as for an optical molasses. 

The ground state J = 0 has no Zeeman shift, but the excited state will divide into 

m 1 = { -1, 0, 1} Zeeman levels. A er+ beam will be able to excite atoms into the 

m = 1 excited state and a er- beam will be able to excite atoms into the m = -1 

state. The effect of the magnetic field B = bz is to shift the J = l , m = 1 state 

to higher energy for positive z and to lower energy for negative z, and the opposite 

for the J = l, m = -1 state (figure 1.3). If the lasers are tuned below the resonant 

frequency of the transition (8 < 0), as for an optical molasses, then the effect of this 

Zeeman shift will be to make the atoms absorb more photons from the er - beam 

in the region with positive magnetic field and from the er+ beam in the region with 

negative magnetic field. If the er- beam is chosen to come from the direction of 

increasing magnetic field, a restoring force towards the B = 0 point in the middle 

will be established, in addition to the damping force from the Doppler cooling. The 

actual MOT is three-dimensional , and the F = 4 - F = 5 transition of cesium has 

additional complications arising from additional energy levels compared to the model 

of the simple J = 0 - l transition. 

1.2.3 Real MOTs 

The MOT would be expected to have about the same minimum temperature as the 

optical molasses, TD ~ 120 µK. The actual temperatures measured in cesium MOTs 

can be much lower, as low as about 1 µK or even less. This is sometimes called 



6 

z 
CJ B 

___:i. 

F . net 

I -r 0 

C 

-KX- av 

Figure 1.2: The configuration of lasers, currents, and magnetic fields for a standard 
6 beam MOT. 
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sub-Doppler cooling, and arises from the multi-level structure of the atoms. The 

mechanisms for sub-Doppler cooling depend on the polarization gradient present in 

the laser field. That is, the polarization of the combined laser field changes in space. 

A discussion of how this spatial dependence of the polarization causes sub-Doppler 

cooling is beyond the scope of this introduction. A discussion can be found in the 

previously mentioned review articles [6] [7]. 

The appropriate limit for the lowest achievable temperatures in a three-dimensional 

MOT is about the energy of a single photon recoil, ksTrecoil = n}k2 /2m, which is about 

0.1 µK for cesium. In our system, we are attempting to maximize the density in the 

MOT in order to increase the collision rate after the atoms are loaded into the mag­

netostatic trap. This increased density, and the need to keep the lasers and magnetic 

fields optimized to capture many atoms, keep our MOT temperatures around 10 to 

30µK. 
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Chapter 2 Apparatus 

2.1 Introduction 

The collisional studies described in this thesis were all carried out in a cryogenic 

ultrahigh vacuum system designed and built by our group for producing magneto­

optical and magnetostatic traps. The cryogenic system does not change the essential 

physics of the interactions of atoms with near resonant light and magnetic fields, but 

there are significant experimental differences when compared to room temperature 

atom trapping and cooling. These differences are almost all in the vacuum system 

and the magnetic field coils, which are the topic of the first of the two sections of this 

chapter. The second section deals with the lasers , optics, and imaging required to 

produce the magneto-optical trap and to probe the magnetostatically trapped atoms. 

2.2 Vacuum and Magnetic Coils 

2 .2.1 Vacuum System Including the Cesium B eam 

The device used in these experiments, and its precursor [44] also constructed hv the 

Libbrecht group at Caltech, are the only cryogenic atom traps construct.eel with I\IOT 

capability. Previous applications of atom trapping in a cryogenic environment were 

completely magnetostatic trapping of hydrogen [9] in dilution refrigerator and an 

early apparatus constructed by Pritchard which had only one dimension of optical 

access [ 10] . 

Both of the cryogenic atom traps at Caltech were primarily designed by Professor 

Libbrecht and two graduate students, Richard Boyd and Phil Willems. A thorough 

description of version 2, the apparatus used for the collision experiments in this thesis , 

can be found in Chapter 3 of Richard Boyd's thesis [3]. The schematic drawing in 
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figure 2.1 shows the vacuum chamber without the beam apparatus. 

The source of cesium atoms was a thermal beam designed and built by Phil 

Willems which is discussed more fully in his thesis [8]. The beam begins with a 

cesium oven where a sample of cesium atoms is held at a temperature adjustable 

between 25 °C for no beam and 140 °C for maximum beam. The cesium atoms are 

partially collimated by passing through a multichannel glass capillary array of 2 mm 

thickness, 1 cm diameter open aperture, and 10 µm pore diameter (Galileo Electro­

Optics Corp., part number C13S20M10) [11]. The beam enters the inner vacuum 

chamber through an interlock chamber, at the end of which a shutter allows the 

isolation of the inner chamber from the cesium beam during the longest trap lifetime 

experiments. The shutter consists of a polished copper plate that rests in a holder 

below the opening to the cesium beam when in the open position. The shutter is tied 

to a stainless steel weight in the interlock chamber by a Kevlar thread. The weight 

pulls the shutter closed by means of a pulley. A linear actuator lifts the weight to 

allow the shutter to fall into the open position. 

When the shutter is open, the cesium beam is also the primary source of back­

ground atoms in the inner cryogenic vacuum chamber. The lifetime of the magne­

tostatic traps increased by typically more than a factor of 10 to as long as an hour 

when the beam shutter is closed, and the inner chamber has had a few minutes to 

achieve its final pressure of approximately a few 10- 13 torr. Unfortunately. almost 

90% of the atoms are typically lost in the first 8 minutes [8] after the shutter is closed. 

When the shutter mechanism failed during the early collision experiments , it was de­

cided to be not worth breaking vacuum to repair it. The equilibration timescales , 

the important time scale for our collision experiments, were still much less thau the 

trap lifetime, even with the beam shutter open for the entire experiment. Instead 

of fixing the shutter, the trap lifetime was maximized by operating the beam at a 

lower temperature, about 70 °C, and the atom number was brought back up by better 

optimizing the slower laser, as discussed in the second section of this chapter. 
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Figure 2.1: The cryotrapping system. The horizontal trapping laser beams and 
radiation shield tubes are shown rotated up 90 ° from the horizontal plane. The 
downward trapping laser beam enters horizontally and is reflected downward through 
the trap by a mirror inside the inner chamber. 
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2.2.2 Magnet Coils 

The primary advantages of a cryogenic atom trapping are twofold. The first is that 

the inherently very good vacuum provided by a cryogenic vacuum system allows a 

very low trap loss rate from collisions with background gas atoms. This loss rate is 

a limiting factor to the efficiency of evaporative cooling and also impedes the mea­

surement of slow processes such as dimensional equilibration, which is discussed in 

chapter 4. The second advantage is that cryogenics allow the use of superconducting 

magnets, which can produce large magnetic fields , gradients, and curvatures without 

additional cooling besides that already required to maintain the inner chamber near 

3 K. The magnets can also be placed inside the inner vacuum chamber, just outside 

the area required for laser cooling beams. This allowed us to produce very large mag­

netic fields , field gradients, and field curvatures, with an adjustability not available 

with permanent magnets , and with field biases not available with conventional coils, 

except with kilowatts of dissipated power. The superconducting coil set was of the 

Ioffe/ Yin-Yang family, with an additional pair of coils for magneto-optical trapping 

(figure 2.2), and is discussed by llichard Boyd [3]. 

Near the center, the coils produce a magnetic field given by 

2 1 ( a
2 

) 2 B = Bo + (3z + Gzz + 2 Bo - f3 p , (2. 1) 

where p is the cylindrical radial coordinate p = J x2 + y2 . In terms of the currents 

(in Amperes) in the four coils in the coil set [3], the coefficients are given by 

O'. 200Jyy G /cm2 (2.2) 

f3 (20Jyy + 30012 - 55IBias) G /cm2 (2.3) 

Bo (55Jyy + 279h - 705.6JBias) G (2.4) 

Gz 
1 2 

870(11 - 2h) G / cm . (2.5) 

Each coil can handle up to about 10 amps of current, but we almost always limited 

the current to 5 amps or less. 
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Figure 2.2: The coil form for the yin-yang coils at the MOT coils. 
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The atoms in this magnetic field see a total potential Utotal = µB + mgz where 

µ = µBohrgFmF. That is, 

(2.6) 

Concerning the last term, which is linear in z, a linear potential added to a 

quadratic potential merely displaces the equilibrium position without changing the 

spring constant. Choosing the equilibrium position as the new origin is defining 

z = z - (mg+ µGz)/(2µ(3). Discarding constant terms in the potential , Uhas only 

quadratic terms. This assumes that the trap stays harmonic as far as this from the 

geometric center of the trap, which needs to be calculated or measured independently. 

In practice, we usually choose Gz so as to cancel gravity. That is , so that G z = -mg/ µ 

and z = z . In either case, the effective potential is 

(2 .7) 

The spin-polarized, and weak-field seeking, states IF= 4, m = 4), for which gpmp ~ 

1, and IF= 3, m = -3), for which gFmF ~ 3/ 4, are the states of interest here. This 

is primarily because these are the states which can be held in a magnetostati c trap 

without large losses from inelastic collisions. For those the states , the trap frequencies 

are, in Hz , 

Vz ~ {µff= { 1.46y'p for (F = 4, m = 4) 

7r V ~ 1.26y'p for (F = 3, m = -3) 
(2.8) 

= { 1. 03 ✓ ( 5fa - f3 ) for ( F = 4, m = 4) 

"P 0.89✓(~:- e) for(F=3, m= -3) 
(2.9) 

2.3 Optics, Imaging, and Lasers 

Laser cooling, trapping, and imaging requires a number of stabilized and tunable 

lasers , some of which must be modulated and shuttered on microsecond time scales. 
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Imaging also requires a camera and optical system with sufficient intensity and spatial 

resolution to analyze the spatial distribution of the atoms. 

For laser sources, diode lasers were chosen for their well known advantages. They 

are easily available at 852 nm, relatively inexpensive ( < $500 for a 100 mW laser 

diode), compact and electrically efficient. Their linewidth can easily be narrowed to 

a few hundred kilohertz with optical feedback. Additionally they can be tuned and 

modulated with optical feedback, temperature changes, and laser drive current. 

For the evaporative cooling and collision experiments, it was crucial to maximize 

the number of atoms in the trap without increasing the background pressure of cesium 

from the cesium beam. This was achieved with a chirped slowing laser, accompa­

nied by a chirped repumper laser. These are in addition to the trapping laser, the 

repumping laser, and the master laser, whose electronics and optics in our system are 

described previously [3][8]. The atoms were imaged with an Apogee AP7 slow scan 

cooled CCD camera, which is based on an efficient SiTE model back illuminated CCD 

array. An overview of the laser and optical system follows , with special attention 

given to the slowing and slowing-repumper lasers as well as the modifications to the 

imaging system and procedure. 

2.3.1 Laser Sources 

The lasers used in this experiments were a mix of SDL-5413 and older STC LT50A03u 

lasers. We found the lifetime of the STC lasers was greatly shortened if they were 

operated at much more than half their rated powers, while several of the newer SDL 

lasers were operated at 80-90% of their rated power continuously for over a year 

without any failures. 

By their nature, laser diodes are very stigmatic and divergent at their exit aper­

ture. For a typical high power single-mode, index-guided diode laser , the emitting 

edge is about 1 µm by 3 µmin size, and the divergence is about 500 mrad and 170 mrad 

(half-cone) respectively. In principle, the extremely small emitting area implies that 

geometric optics allows the beam to be very well collimated when it is expanded to a 
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centimeter or two. For a typical final beam size of 1 cm diameter, the theoretical best 

collimation from geometric optics is a divergence of 50 µrad (half-cone). This level 

of collimation is neither easily attained, nor necessary for our experiment. We use 

a fast collimating compound lens (Melles Griot type 06 GLC 001 with 6.5 mm focal 

length) which collimates the output beam into an elliptical beam with a 4 : 1 aspect 

ratio, whose size is about a centimeter along the longer axis, with a divergence of a 

few milliradians. The beam is then circularized with an anamorphic prism pair. This 

was the most cost-effective collection and collimation of the diode laser light we could 

get with the then available commercial lens and the STC package. Currently one 

can do better, due in part to the newer standard SOT-148 type lower profile package 

used in the SDL lasers, and the ready availability of better collimation lenses. But 

the experiment did not require upgrading this part of the laser optics. 

The collimating lens and the block containing the laser diode are situated in 

the mechanical laser housing, facing a 1800 lines/mm holographic grating (Edmund 

Scientific D43,221), mounted in the Littrow configuration, as described by MacAdams 

et al. [12]. (This grating was accidently reported to be 2400 lines/ mm in Dr. Boyd 's 

thesis). The source of external cavity feedback is the first order diffraction from this 

grating. The mechanical housing we developed for this whole assembly is discussed 

previously [8] [3]. For the purposes of the research in this thesis , there are a few salient 

features of the mechanical housing. The diode laser's temperature is adjustable and 

stabilized to within 1 m K . The angle of the grating can be adjusted with both a 

manual screw for a gross tuning of the laser frequency over a range of about 2 THz 

while adjusting the temperature over the available range of a few Kelvins , and a 

piezoelectric crystal for finer laser frequency tuning over a range of a few GHz at a 

tuning rate of a few GHz/ ms. 

The drive current source used for these lasers is that of Libbrecht and Hall [13]. 

The source supplies up to 200 mA of current at a voltage compliance of about 10 V, 

with a temperature stability of approximately 1 µA/ K and a current noise of less 

than 50 nA in a 1 MHz bandwidth. The current source also allows external ( de 

coupled) modulation of the current, as well as the direct addition of radio-frequency 
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modulation. 

The method we used for locking and tuning the master laser, the trapping laser, 

and the repumping laser relative to atomic transitions in cesium were initially mostly 

unchanged from the scheme discussed in a previous thesis from our group [8]. Certain 

changes to the locking schemes were necessary for the later experiments working 

with the (F=3, m=-3) groundstate, and are mentioned in Chapter 4 describing these 

experiments . 

For all the evaporative cooling experiments, the necessity of maximizing the num­

ber of atoms trapped without increasing the background pressure from the cesium 

beam required the addition of a so-called slowing-laser to enhance the fraction of the 

atoms from the cesium beam that could be captured in the MOT. 

2.3.2 The Chirped Slower 

The idea of slowing an atomic beam using an oppositely directed resonant laser beam 

is straightforward. In each optical absorption and emission cycle, the atom receives 

one photon worth of momentum in the laser beam's propagation direction and emits 

a photon in a random direction. The result of many such cycles is to slow the 

atom's motion along the beam. The emitted photons are expected to be uniform in 

direction as the atomic spins are randomly oriented ( and the slowing beam is linearly 

polarized). 

Although the total isotropic photon emissions by the atom will not increase the 

mean velocity in any direction, it will increase the root-mean-square (rms) velocity 

of the atom in the directions transverse to the laser beam. This is a random walk 

in velocity space, and the transverse rms velocity can be expected to increase as the 

square root of the number of optical cycles. This has been called transverse heating. 

In addition to this heating, the cesium beam will also increase in cross section as the 

transverse velocity spread of the beam is not decreased while the longitudinal velocity 

is. That is, the transit time to the trap center is doubled by the slowing, giving the 

transverse velocities twice as long to carry atoms away from the center of the beam. 
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These shortcomings can be overcome, somewhat, with techniques such as transverse 

laser cooling. However, for our experiments, the additional optical access required 

and the general increased complexity were not worth the increase in trap lifetime that 

would have resulted from being able to decrease the beam temperature even more. 

The principal unignorable difficulty faced when slowing an atomic beam with a 

resonant laser beam is that the Doppler shift of the resonant frequency changes as 

the atoms are slowed. For instance, for a cesium atom starting at vi = 2 x 104 cm/ s, 

the velocity corresponding to the most probable velocity at 300 K, the initial Doppler 

shift is vd A = 235 MHz. If the longitudinal velocity of the atom is to be reduced to 

a few meters per second or less, then the total change in the Doppler shift during the 

slowing is more than 40 times the natural linewidth of the optical transition. This 

is about the situation we faced. The distribution of the velocities of the atoms from 

our cesium beam is unknown, but the cesium oven was usually about 350 K, and the 

effect of the collimating array is, probably, to somewhat preferentially pass atoms 

with higher initial velocity along the channels which are therefore less likely to collide 

with the surface of the channel. 

The challenge of keeping the atoms in resonance with the laser as they are slowed 

has been met in a number of ways by different groups. For instance, the optical transi­

tion can be broadened by interaction with an intense laser [14][15], the resonance itself 

can be shifted by different amounts at different points in space by an inhomogeneous 

magnetic [16] [17] or electric [18] field , or a powerful laser can be frequency-broadened 

so that the atoms always see some light near resonance as they are slowed [19]. The 

earliest technique to compensate for decreasing Doppler shifts during slowing was 

that of frequency-chirping the slowing laser [20] [21] . This technique is not optimal in 

the sense that not all of the atoms benefit from the slowing action. The beginning of 

the chirp of the slowing laser may or may not coincide with when a particular atom 

first emerges from the microchannel array. But frequency-chirped slowing can be 

straightforward and inexpensive to apply with cesium atoms, as was demonstrated 

by Watts et al. in 1986 [22]. 

For our thermal beam of cesium, the mean initial velocity along the beam 1s 
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expected to be in the neighborhood of 2.3 x 104 cm/ s. In chirped-slowing, the peak 

value of the velocity distribution is not the whole story in determining the optimal 

chirp range and slowing distance, but it is a good start. Knowing the exact value 

is not critical for the initial design, and the above value for a typical initial velocity 

serves sufficiently to design the slower. 

The natural lifetime of the 6P3; 2 state sets a practical maximum scattering rate 

of about 1.6 x 107 photons/ s, which corresponds to a negative acceleration of 5. 7 x 

106 cm/ s2 . This implies a stopping distance of about 45 cm, which is about the 

distance of optical access along the cesium beam we had available to slow the atoms 

before the center of the MOT coils. The initial typical Doppler shift of an atom 

which can be stopped in 45 cm is 270 MHz, and the slowing sweep would take 4 ms 

to sweep down to O Doppler shift. Experience and the work of Watts et al. has 

taught us that the best slowing occurs when the sweep rate is about 10% less than 

the theoretical maximum sweep rate. This reduced our estimate of the necessary 

sweep range to about 235 MHz. 

Several methods of producing the well controlled chirp which ends within a few 

megahertz of a resonance transition have been used by several groups [23][24]. In our 

research , the 6SF=4 --+ 6P3; 2,F=5 resonance is the cycling transition used. Fortunately, 

the frequency of the master laser , which was already locked to the 6S F=tl --+ 6A;2,F = 4 

transition, is 250 MHz lower than the cycling transition. This meant that mixing 

the slowing laser and the master laser on a beamsplitter and detecting the combined 

signal on a silicon photodiode would provide a beat-frequency which could be used to 

heterodyne lock the slowing laser to the master laser. This is the same technique that 

was used to lock the trapping laser to a fixed offset of the master laser, except that 

the frequency of the local oscillator for the heterodyne lock is now swept to produce 

the frequency chirping of the slowing laser. 

This method of sweeping the local oscillator has the advantages of being inexpen­

sive and reasonably easy. The photodetector with the necessary 250 MHz bandwidth 

was constructed with an EG&G FND-100 photodiode and the signal from the pho­

todiode was immediately capacitively coupled to an NE5205 preamplifier for 20dB of 
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gain. The beat-frequency is turned into an error signal by comparing to a reference 

frequency signal (i.e., local oscillator) using a circuit based on a Motorola MC4044 

phase/frequency detector (figure 2.3). The long period of the linear slowing sweep is 

well within the range of a simple electronic servosystem that feeds back to the drive 

current of the laserdiode and to the piezoelectric crystal which moves the orientation 

of the laser grating. 

The heterodyne circuit for the slowing laser is similar to that used for locking our 

trapping laser relative to the master laser. The primary difference is that while the 

trapping laser's local oscillator came from an EH1560 programmable pulse generator , 

the slowing laser lock required a sweeping frequency. This was achieved by feeding 

an asymmetric triangle wave from a Stanford DS340 arbitrary waveform generator 

to a voltage-controlled oscillator (VCO), a Texas Instruments 74LS628 IC . Because 

the laser heterodyne frequency is prescaled down with a divide-by-64 , the required 

range of the VCO is from about 400 kHz up to 3.9 MHz. 

Because no acousto-optic or electro-optic elements were placed in the slowing laser 

beam, all of the laser power was available for slowing. The ending frequency of the 

sweep was very stable and tunable, which is important for robust and effective cooling, 

as the ending frequency has the greatest effect on the velocity of the slowed bunches 

of atoms when they reach the MOT area. 

The slowing laser frequency was monitored by deflecting some of the slowing 

beam with a wedge splitter and producing a saturated absorption spectrum. A good 

discussion of saturated absorption spectroscopy can be found in Schmidt et al. (1994) 

[25]. When the slowing laser is locked and sweeping correctly, the relevant part of 

the Doppler free spectrum, including the 4/5 cross-over peak situated 126 MHz below 

the 6S F=4 ---+ 6P3; 2,F=5 resonance transition, remains stationary on an oscilloscope 

synchronized to the voltage sweep going to the VCO. It should be noted that stable 

locking required the sharp corners on the asymmetric triangle wave to be rounded 

(low pass filtered) in order to avoid rapid changes the servo could not follow. This 

is especially important at the corner at the end of the slowing sweep. The chaotic 

behavior of the servo temporarily losing lock, at this critical time for the slowed atoms, 
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would otherwise reduce the number of atoms in the MOT loaded from the beam. The 

rounding was easily accomplished by modifying the programmed waveform of the 

arbitrary waveform generator with a low-pass filter. 

When optimized for the maximum number of atoms in the MOT, the slowing 

sweep took 4.1 ms and the chirp rate was about 55 MHz/ ms as expected. The 

return sweep took 2.1 ms. Decreasing the return sweep time to less than this caused 

the lock to come unlocked sooner and did not otherwise noticeably affect the number 

of atoms in the MOT. 

2.3.3 Optical Setup 

The optical set up for working with atoms magnetostatically trapped in the 

IF= 4, m = 4) state is shown in figures 2.4 and 2.5. One change in the optics from 

our previous experiments with cesium in this state is the use of additional ferroelectric 

liquid crystals (FLCs). The particular FLCs used were effectively electronically ro­

tatable half-wave plates. They were placed between polarizers and used as reasonably 

fast shutters. The maximum extinction ratio was about 500 : 1, using cube polariz­

ers and operating at room temperature. This can be improved by another factor of 

two by using superior polarizers and modifying the temperature of the FLC to take 

advantage of the small dependence on temperature of the retardation to make the 

FLC more exactly a half-wave plate. We chose instead to use a second FLC. This re­

quires only one additional polarizer, and allows an intermediate state of transmitted 

intensity if one of the shutters is open and the other is closed. The FLC shutters take 

about 30 µs to change state between 10% and 90% transmission. This is significantly 

slower than using an acousto-optic modulator (AOM) or an electro-optic modulator 

(EOM) shutter. But the FLC shutter has the desirable properties of having a large 

clear aperture with little spatial distortion on the transmitted beam, almost 100% 

transmitted power in the open state, and no alignment sensitivity. In the experi­

ments using atoms magnetostatically trapped in the IF= 3, m = -3) state, a single 

pass AOM was used. This provided faster switching and a continuously variable 
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Figure 2.3: The circuit which converts the frequency difference between the externally 
controllable VCO and the rf signal from the laser heterodyning of the slowing and 
the master lasers. 
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transmitted laser power, but FLCs were still used in the repumping beam to begin 

the exposure for imaging. Two of the FLCs were purchased from Displaytech. The 

third was purchased from Fabia, an Israeli company, although it is my understanding 

they no longer offer this product in this form. 

The main reason for the increased need for fast shutters in this experiment, com­

pared to previous experiments using the cryotrap, was the change of cameras. The 

intensified camera used in our previous experiments could be effectively electroni­

cally shuttered in nanoseconds by gating the high-voltage to the intensifier tube. The 

Apogee AP7 slow scan camera could not be electronically gated. Thus the laser 

beams needed to be turned on after the camera's internal mechanical shutter was 

known to be fully open, and turned off at the end of the intended exposure time, even 

though the camera's internal shutter would not close for another 10 ms or so. In 

order to minimize light leakage, either two consecutive FLCs or a single pass AOM 

were used in the trapping beam. The repumper did not need an FLC shutter for 

the experiments with atoms in the IF= 4, m = 4) state, because the atoms could 

tolerate a few hundred microseconds of this non-resonant light , which allowed the 

use of a Vincent-Uniblitz fast mechanical shutter. For working with atoms in the 

IF= 3, m = -3) state, two FLCs were placed in the repumping beam, followed by a 

slower mechanical shutter. 

2.3.4 Imaging Procedure and Atom Number Calibration 

A plano-convex lens with a focal length of 34 mm is placed 34 mm from the trap center . 

A beryllium-copper plate with a one centimeter hole over the lens defines the aperture. 

The light from the trap is then reimaged on the CCD of the Apogee AP7 slow-scan 

camera using a commercial compound 50 mm camera lens ( figure 2.6). The geometric 

collection efficiency for this arrangement is thus about 0.067 / 4n = 0.0053 = 0.53%. 

The transmission losses are about 10%, so the total collection efficiency is about 

0.48%. The exposure time for the magnetostatic traps was typically about 60 µs , 

which means every atom has time to scatter roughly one thousand photons , of which 
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Figure 2.4: The optical system for working with atoms in the F=4, m=4 state in the 
magnetostatic trap. 
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about 5 photons per atom will reach the CCD array. The net magnification of the 

trap image is 2.1 : 1 at the CCD array. 

On the opposite side of trap from the lens, light from trap fluorescence is gath­

ered by a 2.54 cm lens of focal length 12.5 cm and collected on a silicon photodiode. 

Previously, the light collected by the lens internal to the vacuum system had been 

collected on the photodiode and an external lens had been used for imaging with 

the Xybion intensified camera, except when performing single atom " images" with 

the intensified camera. Although the experiments described in this thesis had many 

atoms, the camera was moved to the position with greater light collection effici ency 

because the unintensified camera requires more collected light for a given ratio of 

photon induced signal to the net noise from readout noise and dark current noise. 

However , the silicon photodiode, which unlike the camera does not have to divide 

the collected light among thousands of pixels, is more than capable of providing an 

output with a signal-to-noise ratio of greater than 20 to 1 even though only about 

1/20th as much light is collected. The light collection efficiency of the photodiode 

with the external lens is calculated from the geometric factor to be about 0.029%, and 

is confirmed by simultaneously measuring the trap fluorescence at the two different 
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ports, that is, with the internal lens and with the external lens. 

□ 
CCD Array 

The total number of atoms in the MOT and the MST is determined by the fluo­

rescence as measured on the photodiode. This requires a calibration. For a two-level 

atom with transition rater in a plane wave of Rabi frequency n and detuning b, the 

power radiated per atom is [26] 

However, a cesium atom in a MOT is far from a simple two level atom. As 

explained by Townsend et al. [27], this expression must be averaged over all the 

transitions between the Zeeman sublevels in both the ground and excited states. Also , 

the orientation of the atoms and the local polarization of the laser light is different 

across the MOT. A method for dealing with these complications, as discussed in a 

nice review by P. D. Lett et al. [6], is to assume that the radiated power can be 
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expressed as follows: 

(2. 11) 

Nominal values of C1 and C2 can be found by averaging the Clebsch-Gordan 

coefficients over all possible transitions. Experimental values can be arrived at by 

rapidly changing different parameters in different MOTs and observing the change in 

fluorescence. Townsend et al. carried out a careful series of measurements for cesium 

MOTs and found Cf = C] = 0. 7 ± 0.2. 

The effective total Rabi frequency Or is six times the Rabi frequency for any one 

of the six beams which intersect in at MOT. That is, 

(2. 12) 

where 10 is the saturation intensity of the given transition, which for the F = 4 to 

F' = 5 cycling transition in cesium is 10 = 1.1 mW / cm2
, and Iavg is the average 

intensity of each of the six beams. 

Determining O.} requires a convention for averaging the nonuniform intensity of 

the laser beams to determine Iavg· For Gaussian beams, a common practice is to 

use, as an effective area, the region contained within the e- 2 point of the intensity 

profile. That is, the effective radius of the beam is taken to be the radius at which 

the intensity of the beam is e-2 times the peak intensity, which for a circular Gaussian 

beam 

(2.13) 

is simply r = 2a-. The average beam intensity is then defined to be the total power 

contained within the e-2 radius (about 95% of the total power in the beam for a 

Gaussian beam), divided by the area, 1r(2a-)2
. 

Experimentally, the intensity profile for our trapping beam was determined by 

measuring the power transmitted through apertures of various diameters. The mode 
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Aperture radius ( cm) Fraction of Power Transmitted 
0.025 0.005 
0.05 0.026 
0.1 0.101 
0.15 0.220 
0.20 0.372 
0.25 0.533 

Table 2.1: The fraction of the total trapping laser beam power transmitted through 
circular apertures of various areas 

cleaning cavity we used in some previous experiments was not used in this experiment , 

and without it the beam profile was not well characterized as Gaussian. In particular, 

if the beam were Gaussian, the fraction of the total power transmitted through an 

aperture of radius R would be given by the error function , (ratio transmitted) = 

erf ( R/ a). Instead, the transmitted power was seen to increase quadratically with 

the radius, that is , linearly with the increasing area, as seen in table 2.1 and figure 

2. 7. This implies that the beam profile, after integrating up the </> dependence, is 

uniform over the range that the transmitted power increases linearly with the area of 

the aperture. This region includes a disk of radius 0.25 cm, which is about an order 

of magnitude larger therms radius of the MOT. And 0.25 cm is also almost twice as 

large as the e-2 radius of the longest magnetostatic traps. 

For the purpose of determining the photon scattering rate per atom during imaging 

of the magnetostatically-trapped atoms, this uniform intensity can be calculated, in 

terms of the total power, Ptotal , measured for the trapping laser beam to give 

1 mW 
favg rv -(2.74)Ptotal--2, 

3 cm 
(2.14) 

where the factor of one-third arises because Ptotal is measured before the trapping 

laser beam is divided into three beams. There is an estimated 10% optical loss 

getting the laser to the trap center from where Ptotal is measured, and so a better 

value for Iavg is 
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1 mW 
favg ~ - (2.5)Ptotai--2 , 

3 cm 
(2.15) 

and 

n2 ; r2 ~ 2.5 Ptotal(mW) . 
T 10 (mW cm-2 ) 

(2.16) 

This can be used with equation 2.11 to determine the fluorescence per atom. A 

typical value Ptotal during imaging is 11.5 mW (higher values were sometimes used), 

for which D}/ f 2 = 52. During MST imaging, the detuning 8 is chosen to be as small 

as possible. Even with the external bias field of about 10 G in the MST, 82 « 52. 

In other words, the atomic transition is well saturated, and so the dependence of 

the fluorescence on detuning and intensity is less than linear. This is confirmed by 

rapidly changing the MOT parameters and watching the fluorescence. For instance, 

at a trapping laser detuning of 8 = -1.5f, changing Ptotal from 16 mW to 6.5 mW 

(D}/r2 changing from 36 to 15) causes a decrease in MOT fluorescence of only 25%, 

as predicted by equation 2.11. Together with the calibration of the silicon photo­

diode and the collection efficiency of the lens , this formula for the fluorescence per 

atom allows us to determine the number of atoms in the trap to an estimated ±20% 

accuracy. 

2.3.5 Determining the Density and Temperature of Magne­

tostatically Trapped Atoms 

Atoms in a potential U(r) will have an equilibrium spatial distribution 

n(r) = n0 exp(-U(r)/k8 T), (2.17) 
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where n 0 is the peak density. For the case of a harmonic trap with trap frequencies 

where 

ksT 
CJx = --2, 

mwx 

ksT 
CJy = --2, 

rnwy 

(2.18) 

ksT 
CJz=--

2
. 

rnwz 
(2.19) 

The radial symmetry of the trapping potential means Wx = w 2 , which implie!:i CJx = 

call 
CJy = CJp· 

The spatial distribution is the product of three one-dimensional Gaussians. When 

an image is taken, a column along the camera viewing axis is integrated to produce 

the two-dimensional image. Fortunately, for this case of a harmonic potential, the 

distribution is clearly dimensionally separable, and the integration along the, say y , 

dimension produces a distribution 

(2.20) 

Thus CJ x and CJ z can easily be extracted from the two-dimensional image. When the 

trap is in equilibrium, the ratio CJ2 /CJx is just (w2 /wx)
2 and the temperature can be 

extracted from either CJ 2 or CJx, using equation 2.19. In particular, for any dimension 

'l, 

(2.21) 

where CJi is measured in centimeters. 

Once either the total number of atoms or the peak density is known, the image of 

the spatial profile can be used to determine the mean density n which is important 
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in determining the binary collision rate. The definition of n, 

(2.22) 

can be immediately evaluated for the case of harmonic potential 

n = no/VB. (2.23) 

Or, using 

(2. 24) 

we get 

N N 
(2.25) 

Thus, we use the total number N as determined from the calibrated photodiode, and 

a p, a z from the image of the trap, to determine the mean density n. 
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Chapter 3 

- Theory 

Cross Section Measurements 

3.1 Introduction 

If the mean time between elastic collisions for atoms in a magnetostatically trapped 

sample is much shorter than the lifetime of the trap, elastic collisions between trapped 

atoms have time to drive the trapped atoms towards thermal equilibrium. This is 

the case for spin-polarized cesium for the densities , temperatures , and lifetimes in om 

experiments. If the trap is disequilibrated in a fashion such that the equilibration 

process can be experimentally observed and understood in terms of the elastic col­

lisions that are driving it, the elastic cross section can be determined. In the next 

section of this chapter, the theory of elastic-scattering for ultracold spin-polarized 

cesium is discussed. Following this, the techniques to measure the elastic collision 

rate by observing equilibration are discussed. In the next chapter the results of our 

experiments applying some of these methods are presented. 

3.2 Ultracold Collisions 

For the ultracold cesium atoms of our experiments, the de Broglie wavelength, A = 

h/p, is a few 10s of nanometers, while a typical range for an interatomic potential 

is about a nanometer [28]. The atoms wave functions will thus overlap during the 

collision. A quantum mechanical treatment of the collisions is necessary. The way 

to do this is to expand in partial waves [29]. If k is the relative k for the collision, 

that is k = Prez/ fi, then the differential cross section is 
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dCJ = 2 lf(0) 12 

dO 

1 00 . 

J(0) = k I)2z + l)ei81 sin(b1)P1(cos(0)). 
l=O 

(3.1) 

(3.2) 

Note that b1 depends implicitly on k, although it is not always written. The addi­

tional factor of 2 is because spin-polarized cesium are identical bosons. 

It is conceptually convenient to define 

1 < 

f = - eiu1 sin(b ) 
l k l ' 

(3.3) 

so that 

00 

J(0) = L fi(2l + l)Pi(cos(0)). (3.4) 
l=O 

Then the {!1} contain the k dependence and the information about the interatomic 

potential. Sometimes the k dependence is made more explicit by writing f 1(k), and 

other times it is not. Spin-polarized groundstate cesium atoms are identical bosons, 

and thus only even (l = 0, 2, ... ) partial wave terms (!1) are non-zero. Furthermore, 

for temperatures of a few hundred microkelvin and less , only the first few partial 

waves are expected to contribute, the higher terms being excluded by the centrifugal 

barrier. Semiclassically, this can be seen as the situation that for two atoms of such 

low (relative) speed to have more than a few h of angular momentum, the impact 

parameter must be outside the effective range of the interatomic force. Much of 

our experimental results are from samples whose temperatures are 50 µK and less. 
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At these temperatures, even l = 2 channels are expected to be strongly suppressed. 

The l = 0 channel collisions are called s-wave collisions, and the limit of low energy 

collisions is thus called the s-wave regime. Po(0) is a constant, so the scattering 

is uniform in direction. In the s-wave regime, f 0 (k) contains all the knowable in­

formation about the collision. In particular, if one is only interested in the s-wave 

scattering cross section, then one only needs to know lfo(k)j. If one takes the limit 

of I Jo ( k) I as k - 0, then one can define the scattering length a as 

a 

lima 
k-+O 

lim lfo(k)I 
k-+O 

(3.5) 

(3.6) 

From equation 3.2, one can see that for s-wave collisions, there exists the so-called 

unitary limit, 

(3 .7) 

where a0 stands for the s-wave scattering cross section. The remaining important 

theoretical result is that the first order expansion for small ak gives 

(3.8) 

which is immediately seen to be consistent with both the k - 0 limit and the unitary 

limit. 

The average relative momentum between colliding atoms for atoms in a Maxwell­

Boltzman distribution is (Prei) = v'2 (p), where by equipartition, (p2
) /2m = ½kaT, 

so (k;e1) = 2mk8T/h2. Note that the typical k2 scales as T. Also, note that for a 

given non-zero temperature, heavier elements will have a larger k2 and thus a lower 

unitary limit on their maximum elastic cross section. 
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If Tis low enough such that a2 k2 « 1, then a- is nearly 81ra2 for all collisions. In 

this case, the collision rate is immediately known from kinetic theory to be 

r collision = na-oVrelative (3.9) 

where n is the mean density, a-0 is an energy independent cross section, and Vrelative 

is the mean relative velocity. 

The task of calculating the scattering length a for atomic collisions from first prin­

ciples is increasingly difficult for atoms with higher atomic numbers and nuclear spin. 

Currently, these calculations have not been accomplished for cesium, the heaviest and 

most complex stable alkali. 

3.3 Techniques for Measuring Ultracold Collision 

Cross Sections 

Prior to the beginning of the work of our group, the only direct measurement of an 

elastic scattering cross section in spin polarized cesium [30] was for collisions between 

cesium atoms in the 13, -3) state, the measured value being (1.5 ± 0.4) x 10- 12 cm2 . 

Indirect experimental knowledge of the cesium 14, 4) on 14, 4) cross section came from 

the measurements of frequency shifts in a cesium fountain [3 1] [32], where it was 

deduced that the T = 0 s-wave cross section for this case lay somewhere between 

2.5 x 10-11 cm2 to 75 x 10-11 cm2 , which is much larger than the measured value for 

13, -3) . These fountain experiments also strongly suggested the scattering length 

a was negative. That is , that the force was attractive, which would allow a bound 

state at sufficiently low energies and eventually limit the production of higher density, 

colder, samples. Direct experimental measurements of 14, 4) on 14, 4) scattering over 

a range of temperatures were recently published from Laboratoire Kastler Brossel in 

Paris , France [33]. The first direct measurement of the elastic cross section at a single 

temperature, 260 µK , was previously reported by our group [3], and the temperature 
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dependence subsequently measured by other groups is confirmed in this thesis. 

As previously mentioned, the elastic cross section is measured by preparing the 

atomic sample in a non-equilibrium (non-thermal) distribution and observing the 

route to equilibrium, which is driven by elastic collisions. This technique was first 

employed with ultracold atoms in 1993 [30]. Scattering lengths and cross sections 

have also been inferred from Bose-Einstein Condensation (BEC) experiments, and 

the measurements have agreed with the dimensional equilibration method. 

A harmonic trap will not couple energy between dimensions , but elastic collisions 

will. Furthermore, all reported research in magnetostatic traps, including ours , 

has found that the ergodic timescale for atoms in magnetostatic traps to sample 

the potential sufficiently such that (1/2)m (v2

) = (1/2)mw 2 (r 2

) is only a few trap 

periods, that is, a fraction of a second. Thus, if in the initial distribution of energies 

in the sample the mean energy in the three dimensions are not equal, observing the 

rms size of the trap in different directions is an easy way to measure the collision 

driven approach to equilibrium. The difference between the experiments is primarily 

the method used to produce this dimensionally non-thermal distribution. 

Loading magnetostatic traps produces somewhat non-equilibrium distributions. 

Purposely mismatching the magnetostatic potential to the initial spatial and velocity 

distribution can increase this non-equilibrium distribution, and this was the method 

we used previously to determine the cross section at 260 µK. But this is not a suitable 

method for the lower temperature measurements, where the energy is close to or 

below the initial energy of the MOT from which the atoms were loaded. And it is 

at the lower temperatures where one learns about the important atomic parameter, 

the scattering length a. At mean energies such that ( ak) 2 » 1, the cross section is 

dominated by the unitary limit rather than the value of a. Furthermore, because a 

for cesium was expected to be larger than for any of the other atoms for which it has 

been calculated or measured, E ex k2 had to be minimized as much as possible to 

keep (ak) 2 not much greater than 1 in the range a lay. 

The method originally used to enhance the dimensional disequilibrium by Monroe 

et al. [30] was parametric heating of one dimension of the trap. The idea here is that 
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by modulating one or more of the trap spring constants at twice the corresponding 

frequency, one parametrically drives [34] the atoms and increases their energy in that 

dimension. Any residual modulation of the spring constants in the other directions 

does not parametrically drive that dimension as long as the trap frequencies in those 

directions remain further from the drive frequency than the width of the parametric 

resonance. This method is efficient at introducing dimensional disequilibrium, but 

does so at the expense of increasing the total energy of the sample. Another method 

of producing disequilibrium, which also increased total energy, is a simple technique 

used by Ketterle et al. [36], wherein the center of a linear (gradient) trap was moved 

non-adiabatically in one dimension, thus adding energy mostly to that dimension. 

Much preferred is a method which preferentially cools one or two dimensions of 

the sample. This has been achieved in several ways. One of the earlier methods , 

used by Newbury et al. [37], employed gravitational Sisyphus cooling [38]. They 

used it to measure the elastic cross section of 87Rb in the IF = 1, m F = -1) ground 

state with a final temperature of 25 µK at a range of bias magnetic fields. A more 

common method of cooling samples of magnetostatically-trapped atoms is through 

evaporative cooling. In particular, the method of rf-induced evaporative cooling, 

which is discussed in many places, and is summarized with respect to our apparatus 

elsewhere [3]. The idea of the rf evaporative cooling is to use an oscillating magnetic 

field to induce spin flips, preferentially in the hotter atoms, which causes those atoms 

to no longer be weak field seeking and thus not bound by the trap. This reduces 

the average energy of the remaining atoms. For an Ioffe-type coil set such as ours, 

rf evaporative cooling is expected to be uniform in all three · dimensions, and thus 

not introduce any dimensional disequilibration. This is in contrast to the TOP trap 

[39] used by some other groups, in which rf cooling only cools two dimensions. This 

introduces an inefficiency to overall cooling, but also produces a large dimensional dis­

equilibration, while at the same time reducing the average energy of the atoms. This 

was very effectively used by Arndt et al. in their previously mentioned measurement 
' of the elastic cross section of 133Cs in the IF = 4, mF = 4) ground state. 

For our experiments, we found that even with the Ioffe-type coil set, certain mag-
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netic biases and sets of trap frequencies produced very uneven rf evaporative cooling, 

producing large dimensional disequilibration. As the IF = 4, mp = 4) ground state 

is not expected to have any magnetic bias field dependence to the cross section, we 

used whatever traps produced disequilibration from rf induced evaporative cooling. 

In order to associate a measured equilibrium rate with an elastic cross section , 

one must analyze how collisions drive dimensional equilibration. This has been 

done with Monte Carlo simulations [30] and by solving the Boltzman equation for 

somewhat more idealized conditions [43]. Most computer simulations of dimensional 

equilibration in a harmonic potential assumed a constant cross section. That is , they 

used the k ---+ 0 limit for all scattering pairs, which is a reasonable approximation for 

atomic masses , mean energies, and scattering lengths such that (ak) 2 « 1. This is 

a reasonably valid approximation for hydrogen , lithium and sodium because of their 

relatively small masses, and for cesium in the IF = 3, mp = -3) state because it has 

a relatively small scattering length. However , as we shall see in chapter 4, it is a very 

poor approximation for cesium in the IF = 4, mp = 4) at all experimentally achieved 

temperatures. Arndt et al. have presented the results of a simulation for the case of 

a cross section equal to the unitary limit (equation 3.7) at all k, which fit the results 

of their measurement of the IF= 4, mp = 4) cross section. In the next chapter, the 

simulation written to model our experiment will be discussed, and the results will be 

applied to our experimental data. 
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Chapter 4 Collision Cross Section 

Measurements 

4.1 Introduction 

The atoms in a magnetostatic trap can be given different mean energies in the axial 

direction (z-direction) than in the radial directions, and the subsequent dimensional 

equilibration can be observed. The rate of dimensional equilibration was measured 

and used to determine the elastic scattering cross section of the atoms, as discussed 

in the previous chapter. In this chapter, the data obtained using this method is 

presented, a numerical simulation is presented in order to interpret the data, and the 

interpretation of the data is presented. 

4.2 Experimental Procedure 

4.2.1 Loading Atoms into the Magnetostatic Trap 

The first step in obtaining magnetostatically trapped and spin polarized atoms 1s 

forming a MOT from the slowed cesium beam. The magnetic field gradient for this 

step was 10 G / cm, the laser detuning was -13 MHz, and the trapping beams were 

0.65 cm in diameter. Without the chirped-slower, and with the cesium beam at 

70 °C, the MOT contained about 106 atoms. With the schirped-slower , the MOT 

contained about 15 to 20 times more atoms, for a total of about 2 x 107 atoms. A 

MOT containing as many as 107 atoms could be formed without the slower, but at the 

expense of increasing the cesium beam temperature to 100 °C or higher. However , 

this greatly increased the background pressure while the beam shutter was open and 

thus decreased the magnetostatic trap lifetimes. With the cesium beam at 70 °C, 
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the magnetostatic trap lifetime was 100 s - 200 s with the cesium beam shutter open. 

For the first set of measurements, the procedure was as follows. A MOT with 

about 2 x 107 atoms was loaded in a few seconds from the slowed cesium beam. 

Then a somewhat compressed MOT was formed by increasing the magnetic gradient 

to 16 G / cm for 25 ms while the trapping laser was further detuned to -18 MHz. 

The atoms were then cooled somewhat by decreasing the field gradient to 3 G / cm 

for 3 ms with the trapping laser detuned by -26 MHz and the trapping laser intensity 

decreased by a factor of 6, such that the intensity was about 2Isat in each of the 6 MOT 

beams. For the !6S1; 2 , F = 4)-+ !6P3;2, F' = 5) transition, Isat = 1.1 mW / cm2. 

The trapping beams were then shuttered off, while leaving the repumping beams 

on, and a a+ polarized optical pumping beam aligned along the z-axis and tuned 

to the !6S1; 2, F = 4) -+ !6P3;2, F' = 4) transition was added to drive atoms into 

the !6S1; 2 , F = 4, M = 4) state. This optical pumping beam was retroreflected in 

order to avoid blowing the trap away with unbalanced radiation pressure. The bias 

field of about 5 G in the z-direction was created with the Bias coil while the atoms 

were optically pumped for 1.5 ms. All of the lasers were then shuttered off, and the 

magnetostatic field coils were then turned on. They took about 0.5 s to fully form the 

magnetostatic trapping potential. For the first set of experiments described below, 

the atoms were loaded into a trap with frequencies T;/ = 2n[20, 20, 12. 7] and bias field 

B0 = 12 G. The currents through the coils necessary to create this magnetostatic 

potential were 11 = 85.5 mA, 12 = 224.7 mA, !Bias = 95.2 mA, Jyy = 327.2 mA. 

The frequencies of the trap produced by a given set of currents through the coils 

can be calculated from first principles. But this is not guaranteed to be accurate 

enough. It is particularly important to have experimental confirmation of the trap 

frequencies in an experiment such as ours, where the mean energy of the atoms is 

determined by using the trap frequency and the measured spatial distribution of the 

atoms in the trap. Any error in the trap frequencies immediately becomes an error 

in the measured mean energy. 

The axial and radial trap frequencies are measured in different ways. The axial 

trap frequency was measured by two methods. One method was to modulate the 
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Direct Drive of Magnetic Field Gradient in Z-Direction 
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Figure 4.1: Results of direct drive on magnetostatically trapped atoms. The fluo­
resence is proportional to the number of atoms remaining in the magnetostatic trap 
after 2 s of drive. 

magnetic gradient in the z-direction by about 1 or 2 G / cm at frequencies near the 

trap axial frequency [35]. This is achieved by applying a sinusoidal modulation of 

peak-to-peak amplitude 2 mA to the same coils which are used to make the gradient 

for the MOT. This oscillating gradient causes an oscillating force on the atoms. 

If the gradient is modulated at a frequency within about ±0.7 Hz of the axial trap 

frequency, the atoms quickly leave the trap, as shown in figure 4.1. The frequency 

at the center of this resonance, 12. 7 Hz, is within 6% of 12 Hz , the value calculated 

from first principles. 

The second way to measure the axial spring constant is by changing the magnetic 

gradient in the z-direction by a known amount and measuring the displacement of 
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the trap center. This method also allows one to gauge, somewhat, how far from the 

geometric center the trapping potential remains harmonic on axis. Pushing magnetic 

gradients, Gz, of -8.5, -4.25, 4.25,and 8.5 G / cm were used, and the displacement 

was seen to agree with .6.z = Gz/(2{3) (see equation 2.6), where vz = (1/rr)Jµf3/2m. 

The agreement with calculation was within a few percent, and is consistent with the 

systematic measurement error. 

The radial trap-frequency was measured by modulating the radial trap frequency. 

When the modulation frequency is twice the radial trap-frequency, the average kinetic 

energy of the atoms in the radial dimensions increases. This technique is called 

parametric drive, and is explained in the previous chapter. 

The efficiency rate for optical pumping into the IF= 4, M = 4) groundstate and 

loading into the magnetostatic trap was 40 - 50%. In the magnetostatic trap, the 

initial mean energy could be as low as 20 µK / k8 in all three dimensions, or much more 

if the MST had large trap frequencies and thus added energy to the atoms during 

the nonadiabatic formation of the MST. For the trap with w = 2rr[20, 20, 12. 7] , the 

initial mean energy was about 40µK/k 8 with slightly(~ 10%) higher mean energy 

in the radial directions than in the axial direction. 

4.2.2 Cross Section Measurement and Evaporative Cooling 

Experiments 

The MST was held for three seconds, and then a radio-frequency oscillating mag­

netic field was applied to the atoms by applying an oscillating current to a small coil 

mounted inside the cryosphere. The coil has a direct line of sight to the trap center. 

The coil was not terminated and as such was an unbalanced load. However, below 

26 MHz the magnitude of the oscillating field was nearly proportional to a constant 

times the driving voltage from a 50 n source. The oscillating magnetic field induces 

transitions between the Zeeman sublevels of the hyperfine state of the trapped atoms, 

driving them to untrapped states which causes the atoms to leave the trap. Atoms 

with enough energy to reach magnetic field magnitudes such that the Zeeman split-
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ting frequency is close to the frequency of the oscillating field are thus preferentially 

removed from the trap. This technique is called radio-frequency induced evaporative 

cooling, and was first carried out with magnetostatically trapped atoms by David 

Pritchard, as described in a review article [40]. Evaporative cooling of neutral atoms 

in magnetostatic traps by other means was first proposed [41] and carried out [42] 

with hydrogen. 

For the case of TJ = 21r[20, 20, 12.7], the radio-frequency cut was at 5.5 MHz and 

was applied for a second or two. This cut was intended to disequilibrate the trap, and 

as such removed more atoms than would be necessary for an optimized rf sweep with 

the same decrease in the mean energy per remaining atom. In particular, for this 

particular set of coil currents, the rf cooling caused much more cooling in the axial 

direction than the radial directions, which was followed by re-equilibration, where 

atoms gained energy in the z-direction and lost energy in the radial directions. vVe 

do not know why this particular magnetostatic trap has this dimensionally unequal 

rf-cut, while most other magnetostatic traps more than incrementally different from 

this trap have nearly symmetric cooling. Other traps of similar trap frequencies 

but different magnetic bias (Bo) do not seem to have this unsymmetrical rf-cut , and 

neither do traps with the same bias field but different trap frequencies. From the 

perspective of efficient evaporative cooling, this trap is probably merely unfortunate. 

For collisional equilibration studies, however , the behavior was very fortuitous. 

About 50% of the atoms were removed by the rf cut. The mean energies in the 

three dimensions were measured by imaging the fluorescence from a 50 µs pulse of the 

trapping laser, which was preceded by a few microseconds by the shuttering on of the 

repumper laser. In this particular case, the images were very well fit by gaussians, 

and extracting the root-mean-square position in each dimension was simple. A few 

seconds after the rf cut, the mean energy was 33 µK / ks in the radial directions 

and only 19 µK /ks in the axial direction. The measurement technique is quite 

destructive, and so to determine the time development of the trap the procedure 

was repeated, waiting between 1 s and 70 s between the rf cut and the destructive 

measurement. These data are plotted in figure 4.2. 



0 
:.;::::; 
ro 
n:: 
t5 
Q) 
a. 
(J) 

<-! 

45 

Trap Equilibration 
Experimental Data for <E>=27µK/k 

B 
1.7 1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

6 
I 

I 
I 

I 
I 

~ -

/ 
I 
I 

Model: Aspect Ratio~ y-Ae-t't 
f 

y=·] 60 f • 

A~0.40 

~ =11.5 

e After RF Cut 

□ Without RF 

·1.5 

1.4 

1.3 

1.1 -+---~---~--~------.-----,.----' 1.1 

0 10 20 30 40 50 

Time (seconds) 

Figure 4.2: The approach to dimensional equilibrium. Each point represents the 
average of about three points. 



46 

Several repeated measurements were taken for each wait time, and the longer and 

shorter time waits were done in mixed order to help detect any drift in the initial 

loading conditions of the trap, both in atom number and initial mean energies. By 

30 s, the traps had almost completely equilibrated within our experimental ability to 

distinguish the state from the fully equilibrated state, which was a mean energy of 

27 µK / kB in axial and radial directions. At the longest times, 70 s, the wait time 

was up to 40% of the trap lifetime, and so there was a significant change in the atom 

number. Thus on those time scales the collision rate, and the expected equilibration 

rate, was not independent of time. 

The trap loss mechanism is dominated by collisions with much hotter background 

atoms, and this loss is independent of the energy of the atoms in the trap. That is , 

the trap loss does not change the mean energy of the atoms in the trap. However, 

the collision rate has thus changed with time, which would have to be taken into 

account when extracting the collision rate from the equilibration rate to obtain the 

cross section. Fortunately, even this was not a major effect, as the longest wait 

times were only used to determine the asymptotic value of the ratio of the axial and 

radial rms positions, which was found to agree with the previously measured ratio 

wz/wp and thus was only a confirmation of the trap frequencies rather than data 

about the collision cross section of the atoms. Given the known asymptotic value, 

the relaxation rate could be determined, in simulation and in experiment, with data 

from times less than or equal to 1/5 of the lifetime of the trap, and the change in 

atom number during the measured equilibration time was thus less than 20%. This 

level of trap loss can easily be included in the analysis of the data, and is discussed 

below in the section on the simulation. 

In order to be sure the observed dimensional equilibration was an effect of col­

lisions and not due to cross-dimensional terms in the magnetic potential or other 

non-collisional effect, the experiment was repeated as closely as possibly with less 

than one-third the number of atoms, the so called low density case. The initial 

conditions were not exactly the same, due mostly to the fact that reducing the ini­

tial number of atoms in the MOT lowered the initial mean energy per atom. The 
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frequency of the rf cut then needed to be lowered to have a significant effect on the 

atoms. Under these conditions the initial dimensional disequilibrium was only about 

half as large. Nonetheless, the equilibration rate is seen to be about one-third that in 

the high density case, although the error bars on the rate are larger in this case. The 

low density case is easier to carry out for the case of parametric heating, where the 

cause of the disequilibrium is well understood and easier to manipulate to produce a 

low density case more similar to the high density case. As will be shown below, the 

equilibration rate decreases proportional to the density in that case, which further 

confirms that the cross-dimensional equilibration is driven by collisions. 

Having succeeded in reducing the average energy per particle and making mea­

surements of the equilibration rate, the next step was to further decrease the average 

energy of the trap and attempt to make more measurements. One possible method is 

making deeper (lower frequency) rf cuts with the same trap as for the 27 µK / k8 case 

above. However, removing more than 50% of the atoms in a single cut becomes de­

creasingly effective at lowering the mean energy with respect to the number of atoms 

removed. However, if the atoms were instead loaded into a weaker magnetostatic 

trap before rf-cooling, the initial mean energy would be lower than the previous case 

of c;J = 21r[20 , 20, 12.7]. In particular, we used 0 = 21r[13, 13, 8]. The magnetic 

bias was B 0 = 14 G, which is close enough to the previous case to not affect the 

fluorescence per atom during the measurement. 

The initial mean energy of the atoms was, in this case, about 20 µK / k8 in each 

dimension and the initial number of atoms loaded was about the same as in the pre­

vious case. This was about the weakest magnetostatic trap which could consistently 

be loaded from the MOT. The initial size in both measured directions was the same 

as for the more tightly confining case, suggesting that the latter was adding potential 

energy to the atoms when the magnetostatic trapping potential was applied. The is­

sue of matching the velocity and spatial distribution of the atoms from the MOT with 

the trap frequencies of the MST so as to optimize some parameter, such as adding the 

least energy to the atoms, is a frequent one in magnetostatic trapping experiments. 

Even if one wishes to decrease the volume the atoms occupy at the expense of increas-
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ing their temperature, or decrease their temperature at the expense of increasing the 

volume, one is better off in both cases loading into the same MST ( optimized with 

respect to the MOT) and adiabatically expanding or compressing the MST. In our 

case, the c3 = 2n[13, 13, 8] trap would be considered close to optimized for our initial 

MOT and optical pumping conditions. After the rf-cut and equilibration, the mean 

potential energy of the atoms in the trap was about 14µK /ks . 

The fluctuations in the both the initial number of atoms and their initial mean 

energy were larger than in the previous case of the more tightly confining potential , 

and thus the data is not as clean. A possible reason for the difference is that in 

the previous case the potential energy gained by the atoms when the MST potential 

is applied was the dominant effect on the initial mean energy, while in the second 

case the temperature of the atoms in the MOT and the energy added by optical 

pumping are the dominant effects. The initial MOT temperature can be effected by 

the small wandering of the optical trapping beams and small stray magnetic fields in 

the cryosphere, including those from eddy currents and flux trapping. In contrast , 

the MST trap harmonic frequencies and the physical center of the potential are very 

reproducible. 

Without a method of cooling one dimension differently than the others below a 

dimensionally averaged mean potential energy of about 15 µK /ks, we were unable to 

continue investigating lower energy collisions. Instead, we examined higher energy 

collisions by increasing the average energy of the atoms. Purposefully adding energy 

to one or more dimensions by increasing the spring constant in that direction or 

directions can be used for this, as our group did to measure the equilibration rate 

of atoms with dimensionally averaged mean potential energy 260 µK / ks [3]. This 

method is inefficient in that it tends to increase the energy in all dimensions, in 

addition to the desired effect of adding more energy in the radial dimensions than the 

axial dimension. 

A more efficient method of differential heating is parametric drive, which is dis­

cussed in the previous chapter. From an experimental point of view, this method 

has the additional advantage of providing another independent way to measure the 
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trap frequency. 

4.3 Data Analysis and Simulation 

We have measured the equilibration rate of trapped cesium atoms in the Sp= 4 , i\J = 4 

hyperfine state at mean kinetic energies ranging from 14µK / k8 to 260 µK / k8 . If the 

elastic cross section is constant over this energy range , then we can easily determine 

that cross section. The average collision rate, per particle, is [45] 

r collision = naoVrelative 

where n is the mean density, a0 is an energy independent cross section , and un·tu,,,"' 

is the mean relative velocity, which for a gas in thermal equilibrium is 

_ f;f!;~aT ,---cm . 
Vrelative = 4 -- :::::; l.78JT(µK)- (cesmm). 

nm s 
(4.2) 

It has been shown through simulations [30][47] that for an energy independent cross 

section and a small enough disequilibration that the collision rate remains nearly 

constant during the equilibration, 

2.7 
fcollision:::::; 2.7feq = -

T eq 
( 4.3) 

This allows one to immediately extract the cross section from the measured equili­

bration rate. In that case 

2.7 
ao:::::;==---­

nvrelativeT eq 
(4.4) 

Where f eq is the dimensional equilibration rate of the atoms and f collision is the 

collision rate per particle. That is, if N is the total number of atoms in the trap, 

then ½ Nf collision = ( total number of binary collisions per second), as each collision 
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involves two atoms. 

Fitting our data for 27 µK /ks gives Teq = (11.3 ± 1.5) s, which would imply 

1/r collision '.:::'. 4.2 s. For this case, Vrelative = 9.3 cm/ s. We find n using the calibration 

discussed in chapter 2 ( equation 2. 25). In this case, N ~ 5 x 106 and n ~ 3 x 109 / cm3 . 

This would imply a measured value of CTo ~ 8.4 x 10-12 cm2 and lal = 5.8 x 10-7 cm. 

However, at 27 µK / ks, k = 9.7x 105 cm- 1

. This would make a 2 k2 ~ 0.32 in equation 

3.8. This is beginning to violate the condition a 2 k2 « 1 required to use the T ---+ 0 

limit that CT(k) ~ CTo = 81ra2 . That is, the magnitude of the scattering length is large 

enough that the cross section is not independent of k for typical collisions when the 

mean kinetic energy is 27 µK /ks, and so equation 4.3 can not be used to extract the 

cross section from the measured equilibration rate. However, there is much stronger 

evidence that the cross section is not energy independent in this range. 

That the scattering cross section has an energy dependence is even more readily 

seen by contrasting 1 / (nvrelativeT eq) for the 27 µK / ks case above (3.2±0.8x 10-12 cm2
) 

with the value we measured earlier for the case when the mean kinetic energy was 

260µK / ka . In that case [3] 1 / (nvr elativeT eq) ~ (3 ± 1.5) x 10- 13 cm2 . This factor 

of about 10 difference is another unmistakable indication that the cross section has 

a significant energy dependence in this range. A new simulation was necessary in 

order to correctly interpret our data. 

As previously mentioned, Arndt et al. have recently also measured the ultracold 

collision cross section of cesium in the IF= 4, M = 4) state [33]. They report the 

result of their computer simulation for the case of a resonant cross section, that is , 

one whose value is the unitary limit ( equation 3. 7). They follow the lead of Wu and 

Foot [47] and apply Bird's [49] method of Direct Simulation Monte Carlo (DSMC) . 

I too based my simulation on the DSMC method described by Bird, and on the 

implementation of the method in his published code. A listing of the main module 

of the code for my simulation follows in Appendix A. 

For a system such as our experiment with > 106 atoms with collisions, the direct 

simulation of all the trajectories becomes computationally intensive. Even though 

the mean time between collisions is more than 10 orbits, the overhead for determin-
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ing where and when the collisions occur in the simulation is computationally time 

consuming. A Monte Carlo treatment of the collisions reduces the computation 

considerably. Bird's method is to separate the trajectory of the atom from the inter­

atomic collisions during small time steps. During each time step 6.ts, every atom 

is first incremented along its orbit in the external potential. Configuration space 

is divided into cells whose dimensions are much smaller than the scale of changes 

in the atomic distribution and much larger than the distance any atom moves dur­

ing 6.t5 . Possible collision pairs are chosen randomly from atoms within the same 

cell. Whether or not the randomly selected pairs actually collide is determined by 

an acceptance-rejection method. The probability of acceptance is proportional to 

the product of the relative velocity and the cross section appropriate for that rela­

tive velocity. The post-collision velocities are calculated randomly using an isotropic 

distribution, as the scattering is almost entirely s-wave for the experimental energy 

scales. 

The number of simulated particles was 104 to 105 , and each simulated particle 

represented between 20 and 2000 atoms in the range of simulations I carried out. 

The cell size was between 50 µm and 100 µm to a side and the time step was 6.ts = 

0.2 ms. To test the code, the case of velocity independent cross section was simulated 

first. The collision rate was found to be nearly independent of time and the relation 

r collision~ 2.7feq was reproduced. The collision rate was also found to be nCYoVrelative, 

in agreement with theory. 

Next the case of a resonant s-wave cross section, obeying the unitary limit ( equa­

tion 3.7) was simulated. Because the 6.t5 is much less than the timescale on which 

the average occupation number in a given cell changes, periodic sampling can be 

used to minimize some of the effects of fluctuations in the cell occupation number, 

as recommended by Bird. This was tried, but the brute force method of increasing 

the number of machine particles in the simulation also worked, while also reducing 

all other observable fluctuations in the output. Without any situation specific meth­

ods to reduce fluctuations, 104 particles were sufficient to produce the same answers 

arrived at with simulations using 10 times more machine particles, but with some 
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Figure 4.3: The results of a computer simulation using the unitary limit cross-section 
(J" = 81r I k2

. For this simulation, T eq = 8. 7 /r collision . 

fluctuations of output variables such as the aspect ratio , in simulated time. Simula­

tions with 5 x 104 or 105 particles produced smoother output while still taking only 

a single overnight computer run on one node of a Sun Enterprise Server. The case 

most like the experimental parameters of our 27 µK /k8 case are shown in figure 4.3. 

The initial position and velocity distribution was created by first beginning with 

Gaussian distributions and then letting the simulation run for about 100 collisions 

per particle, to be sure the initial pseudorandom distribution represented a machine 

equilibrium for the algorithm. Whether this initial simulation was performed or not 

had no discernible effect on the results, and was often abbreviated in later simulations. 

Next the effect of the rf cut were simulated by scaling the velocities and positions of 

the atoms as the square root of the ratio of the final and initial mean energy in each 



53 

dimension. The rms size in each dimension is later used to determine the ellipticity 

of the trap as a function of time. 

When the atom number is kept constant, the collision rate is constant during the 

equilibration process. For instance, for the case of figure 4.3, the mean collision rate 

per particle of 0. 77 Hz is constant during the equilibration process, and agrees well 

with the rate expected for the resonant cross section, r collision = 128nn2 / v;elativeM 2 

[33]. The result from this simulation, r collision = 8.7r eq, did not vary more than 

5% when the number of atoms in the trap simulated was varied in the range 105 to 

4 X 107 . 

The measured equilibration rate is thus seen to be in agreement with that expected 

for a resonant cross section, that is, one limited by the unitary limit 81r / k 2 in the range 

of interest. As discussed above, the measured value of l / (nvrelativeTeq) for traps with 

mean kinetic energy 260 µK / kB is less by about a factor of 10 than that observed for 

traps with mean kinetic energy 27 µK / kB (figure 4.4). This is the expected signature 

of a resonant cross section, as k 2 is proportional to kinetic energy. The simulations 

support the further hypothesis that the proportionality between O' ( k 2) and 1 / k 2 is 81r 

as expected. This is in agreement with the published results of Arndt et al. , and also 

provides a correct interpretation for the previously unexplained results at 260 µK / k 8 

reported by our group [3]. 

4.4 Discussion 

The elastic cross section for cesium in the S F=4,mp=4 state for mean kinetic energies 

in the range 14 µK /kB to 260 µK /kB is seen to be as large as allowed by ( non­

relativistic) quantum mechanics. At 14 µK, the elastic cross section is about 5 x 

10-11 cm2 , which is about 8 times the T = 0 elastic cross section for sodium [36], 

9 times the T = 0 elastic cross section for rubidium [37] , and 30 times the cross 

section for cesium in the S F=3,m=-3 state [30]. However , we have also seen that 

the r-1 dependence of the cross section on temperature causes the equilibration rate 

to be about 8. 7 /2. 7 ;::::: 3 times less than it would be if the cross section were energy 
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Figure 4.4: The equilibration rate vs. the mean kenetic energy. 
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independent. The 1/T dependence of the resonant cross section also means that 

adiabatic compression of the magnetostatic trap, which increases the temperature of 

the atom while increasing their density, is not nearly as beneficial as it is for a light 

atom, such as sodium, lithium, or hydrogen. 

This non-withstanding, the elastic cross section for cesium in the S F=4,mp=4 is 

large at low temperatures, and continues to increase with further cooling, which 

increases the net efficiency of evaporative cooling. This made it a good candidate 

for evaporative cooling. Evaporative cooling in the cryotrap was efficient in all 

three dimensions, except for the special case we used for measuring the cross section 

14µK / k 8 and 27 µK / k 8 , and was overall as efficient as expected, up to a point. 

The peak density immediately after loading the magnetostatic trap was about 

9 x 109atoms/ cm3 , and the initial temperature could be made as low as about 20 µK. 

However, we were never able to evaporatively cool a sample below about 7 or 8 µK. 

We were limited somewhat, however, by our inability to accurately measure the tem­

perature of traps with less than a few 105 atoms. Soding et al. [5] have made a 

very nice series of measurements of trap loss and heating for evaporatively cooled 

cesium atoms in the S F=4,m=4 state, which show that the inelastic collision rate for 

cesium is three orders of magnitude ~arger than for any other previously measured 

atoms. This giant spin relaxation, as they called it, is a huge hinderance to effi­

cient evaporative cooling. This two body inelastic collision process causes atoms to 

make hyperfine changing transitions in which one or both of the atoms emerges in the 

F = 3 state, and the difference in the internal energy ~E '.::::'. h x 9.2 GHz per atom 

that changes hyperfine state is carried away by the atoms as kinetic energy. This en­

ergy ( ~ 0.44 K / kB) is a few hundred times more than the trap depth for the relevant 

traps, which is a few m K /kB, and so the atoms are lost from the trap. They report 

an inelastic rate coefficient for this process of 4 x 10-12 cm3 / s. This effectively 

prevents further efficient evaporative cooling. In particular, BEC of cesium in the 

SF=4,m=4 state is probably impossible. 
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Chapter 5 

Beam 

A New Cold Slow Atomic 

5 .1 Introduction 

We have designed and constructed a new intense and bright atomic beam source of 

slow and cold cesium atoms. The design is presented below. Beam intensity is the 

total flux of atoms divided by the transverse area of the beam. In analogy to optical 

beams , the intensity divided by the solid angle of the beam divergence is called the 

brightness. To say the atom beam contains slow atoms means that v L, the mean 

velocity of the atoms along the beam propagation direction, is much smaller than for 

a so-called thermal atomic beam generated from an oven. Cold refers to the relative 

smallness of the velocity dispersion of the atoms. In the directions transverse to the 

atomic beam, cold means that the rms velocity, in those directions, of the atoms is 

small. In the longitudinal direction, cold means that the root-mean-square, averaged 

over the atoms in the beam, of the difference between the longitudinal velocity and 

v L is small. 

An intense source of cold slow atoms, which can be turned on and off, is a critical 

part of many current and planned atomic physics experiments. For instance, for 

the experiments in the cryotrap, discussed in the previous chapters, the background 

pressure in the experimental chamber was dominated by the thermal beam and the 

need, even with the chirped-slower, to allow many atoms into the inner chamber in 

excess to the slow cesium atoms that were loaded into the trap. A beam slow enough 

that most of the atoms are collected by the second trap avoids the introduction of 

untrapped atoms into the lower-pressure chamber. An intense beam can be passed 

through a narrow opening, which allows much lower pressures to be achieved in the 

experimental chamber than in the beam source. 
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Cold atom beams take primarily two forms. The first is slowed thermal beams , 

where the atoms emerge somewhat collimated from a hot oven and are slowed, and 

possibly cooled, on their way to their destination. Our chirp-slowed thermal beam 

is an example of this type. 

The second type of intense cold atom beam takes advantage of the powerful con­

centrating and cooling power of magneto-optical trapping forces to create an atomic 

source by ejecting atoms form a MOT. Gibble et al. [52] showed that atoms can be 

moved from a MOT to a second trap using a moving optical molasses. Myatt et al. 

[50] developed a so called double-MOT system, where atoms are loaded in a vapor 

cell MOT which are then transferred, using hexapole magnetic guiding fields and an 

optical pushing beam, to another MOT in a second cell which had significantly lower 

background pressure. Both of these techniques are pulsed systems. A technique 

to make a continuous slow cold atomic beam is an "atomic funnel. " The principle 

behind an atomic funnel is to create a MOT with a leak, so that atoms are fed into a 

beam as quickly as they can be cooled by a vapor cell MOT. Several atomic funnel 

type devices have been demonstrated since the first by Riis et al. [55]. The most 

intense of these, and the best suited to differential vacuum techniques which allow 

a much better vacuum at the terminus of the beam than in initial vapor source of 

the beam, is the Low-Velocity Intense Source (LVIS) developed by Lu et al. [53]. 

The LVIS is very similar to a normal 6 beam MOT consisting of 3 orthogonal and 

retroreflected beams, except that one of the retroreflector mirrors has a small (about 

1 mm) hole drilled through the center. This creates a column of unbalanced laser 

light in that dimension through the center of the MOT region. Atoms which enter 

this region feel a net force towards the hole, and eventually pass through the hole to 

form the cold and collimated beam. Lu et al. have demonstrated that with approx­

imately 4 cm beams, the LVIS is capable of producing an intense beam of rubidium 

atoms, 5 x 109atoms/ s with a longitudinal speed centered at 14 m / s and a FWHM 

of 2. 7 m / s. Their initial beam diameter is about 0.6 mm and the initial divergence 

is a few degrees, full-angle. 

We have designed and constructed a device for producing an atomic funnel, but 
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which uses a pyramidal mirror system. Forming a magneto-optical trap with one 

laser beam and a pyramidal configuration of fixed mirrors has been demonstrated by 

Kim et al. [56]. Our system is an attempt to achieve or exceed the performance 

of the LVIS system with the robustness and simplicity of the pyramid trap . This 

is motivated partially by the desire to do cold atoms experiments in microgravity 

environments . 

5.2 Design 

The concept of the pyramid trap is that instead of the conventional system of mirrors, 

quarter-wave plates, and beam-splitters required for a 6-beam MOT, one uses a set of 

four wedge shaped mirrors (i .e., the sides of a pyramid with no bottom) which each 

make a 90 ° angle with the mirror opposite. The 90 ° reflection the laser beams make 

upon striking a mirror surface provides the change of circular polarization with respect 

to the magnetic field necessary to create counter-propagating (J' + and (J' _ beams as 

required for a MOT. 

A pyramid tapers to a point , and this is the natural place to extract atoms from 

the MOT for a beam. We achieve this by truncating the wedge-shaped mirrors , 

topping the resulting truncated pyramid with a gold-coated quarter-wave plate as 

was used in the LVIS beam. A back-coated quarter-wave plate, instead of simply a 

mirror , is necessary to make the reflected beam have the correct circular polarization 

for magneto-optical trapping. A 1 mm diameter hole was laser drilled in this wave 

plate, and it is through this hole the beam is to be extracted. In order to extract 

the atoms out of the trapping region, the mirrors must be placed inside the vacuum 

system. The vacuum chamber is cylindrical (figure 5.5), and so the mirrors are 

rounded on top to almost meet the wall of the vacuum chamber. A drawing of the 

mirror used for each side of the pyramid is shown in figure 5.1. 

Gold coated glass mirrors were chosen for the sides of the pyramid, primarily for 

their high optical quality. These mirrors are supported by an aluminium support 

which holds all four mirrors and also holds the drilled and coated quarter-wave plate. 
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This monolithic structure, which I will call the central piece, insures the relative 

orientation and position of the separate optical components in the vacuum chamber, 

and effectively defines the center line of the optical system. The center piece does 

not extend the full length of the mirror. Additional support is provided for each 

mirror by an aluminum bracket (figure 5.2) upon which the backs of the mirrors rest. 

The center piece is shown in cross section, with the brackets, in figure 5.3 , and from 

the top and bottom (without the brackets) in figure 5.4. To permanently fix the 

alignment of the mirrors, and to allow the system to be tilted on its side, the mirrors 

are stuck to the central piece and to the brackets with a two-part , high-vacuum­

compatible epoxy. The epoxy is sold under many brand names, the most common of 

which is probably Torr-Seal , which is sold by Varian Vacuum Products. The drilled 

and coated quarter-wave plate rests in a small depression as seen in the drawing, and 

is held in place by short pieces of beryllium-copper which are screwed into the central 

piece. 

The entire assembly of the central piece, the supporting brackets, and the mirrors 

which are attached to them, is attached by screws to a 10 in to 2. 75 in zero-length 

adapter. This adapter attaches to one of the 10 in flanges of the vacuum system 

and has a 2 in diameter hole through which the atoms are extracted. On the other 

side of the adapter, a 14in long square-profile glass tube is attached. Eventually, 

when this atomic beam is used as a beam source for other experiments, the 1 mm hole 

in the quarter-wave plate will provide an excellent low conduction interface between 

the beams vacuum chamber and the future experiment's vacuum chamber. In the 

molecular-flow region, the conductance of an aperture for a gas of molecular weight 

Mis [57] 

(5 .1) 

where Mis the molecular weight (133 for stable cesium), A is the area of the aperture 

in area in cm2 , and Tis the temperature in Kelvin. The conductance of the 1 mm 
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diameter hole for cesium would then be only about 0.051 s-1 . The conductance for 

hydrogen would be about 0.51 s- 1 and for helium about 0.251 s- 1 , but the background 

partial pressure of hydrogen and helium are both an order of magnitude less than the 

cesium pressure. Thus their rate of flow through the aperture is at worst equal to 

the flow of cesium. The heavier elements, other than the cesium which is purposely 

loaded into the chamber, are expected to be less abundant in the background gas than 

hydrogen and helium, and will have a lower conductance than hydrogen and helium 

as well. This low molecular flow of background atoms out of the beam source should 

allow a pump on the far side of the aperture to achieve very low background pressures. 

For instance, an ideal 501 s-1 pump on the far side of the aperture would be able to 

achieve 100 to 1000 times less background pressure than the pressure in the beam 

source, while still having access to an intense source of cold and slow atoms. For 

the purposes of this experiment, however, the glass cell did not have an independent 

pump, but rather was evacuated by means of additional holes to the main beam 

source. 

On the opposite side of the vacuum chamber from the pyramid mirrors, the other 

10 in flange is sealed with a vacuum window which has a 7.75 in clear diameter (the 

inner diameter of the vacuum chamber), and which has been anti-reflection coated for 

780 nm and 852 nm, the D2 lines of rubidium and cesium respectively. The laser beam 

needs to be expanded almost up to the full 7.75 in of the vacuum chamber to fully take 

advantage of the available mirror area, although smaller beams are acceptable and 

could even prove desirable for certain applications. In order to create a laser beam up 

to 7.75 in in diameter, a beam expander was implemented using both a conventional 

glass lens for the first element and a commercially available 10 in diameter , focal 

length of 60 in, gold coated parabolic mirror for the second element. The initial 

beam size is one or two tenths of an inch, and so the first lens needs a focal length 

of about one inch. In order to not block the expanded beam, the incoming beam to 

the 10 in mirror has to be off-axis. However, the outside of the input window's flange 

is only 5 in from the center of the input beam, so the incoming beam need only be 

about 5 in / 60 in~ 80 mrad ~ 5 ° off-axis. This is not seen to significantly affect the 
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outgoing collimated and enlarged beam. 

The magnetic field gradient required to form a magneto-optical trap is produced 

by a set of coils that fit over the long dimension of the vacuum chamber. Their inner 

radius, R, is about 18 cm and each coil has 320 turns of 12 gauge magnet wire. The 

diameter of this wire is about 2.05 mm which means a resistance per length at room 

temperature of about 0.0051 n / m. The final wire resistance is about 2.1 D per coil. 

With the coils separated by R = 18 cm for the maximum gradient at given current , 

the coils together produce about 1.2 G /(cmA). With 5 A through each coil, the 

coils get a little warm, while at 10 A they get rather hot. The optimal field gradient 

is expected to be less than or equal to about 6 G / cm, so the heating should not be 

a problem. 

5.3 Operation 

The chamber was transported to Jet Propulsion Laboratory (JPL), Time and Fre­

quency Standards Division, where the 500 mW to 1 W of tunable stable laser power 

was to be provided. The vacuum was roughed out with a turbo-pump, and then a 

121 s-1 ion pump was engaged. After a day or two, the pressure in the chamber was 

about 1.5 x 10-8 torr. At this point a glass ampule, containing 1 g of cesium, inside 

a thin-walled steel tube attached to the main chamber by a manifold, was crushed, 

releasing the cesium. In order to drive the cesium through the manifold connecting 

the steel tube to the main chamber, the steel tube and the entire manifold was heated 

to about 100 °C for several days, with occasionally heating to 150 °C. The pressure 

in the chamber was monitored by retroreflecting a near resonant laser probe beam 

around the pyramid and back out of the chamber, and measuring the absorption of 

this probe compared to the absorption through a cell which is only about 1/ 10 as 

long but which contains a partial pressure cesium of a few 10-6 torr. After a few 

days of heating the cesium and the manifold, the partial pressure of cesium in the 

main chamber could be adjusted between about 10-8 torr and a few 10-7 torr within 

about 10 minutes by adjusting the temperature of the cesium source. 
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Unfortunately, recent and continuing laser stability troubles at JPL have pre­

vented actually testing the atomic beam. A more stable, Ti:Sapphire, laser on the 

optical table with the atomic beam has recently become available and the staff mem­

bers at JPL hope to test the atomic source in the next 2 to 5 weeks. 

If the beam source is functional when tested, future plans for its application 

include sympathetic cooling and polarization of ions in one of the ion traps at JPL or 

changing the beam to working with rubidium and loading traps for a Bose-Einstein 

Condensation experiment. 
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Appendix A 

Simulation 

The Monte Carlo 

#include<math.h> 
#include<stdio.h> 
#include"sim1.h" /*Defines some numerical constants*/ 
I******* Information about Cell and Subcell Structure ***I 
I* NCX is number of cells in x dimension (etc). 
#define NCX 39 
#define NCY 39 
#define NCZ 39 
#define NC (NCX*NCY*NCZ) 
I***** nscx is# of sub-cells per cell, in x dim*/ 
#define NSCX 1 
#define NSCY 1 
#define NSCZ 2 
I* Characterize Initial Atom Distribution *I 
#define MASS (2.206e-22) /*Mass of CESIUM(133) in grams*/ 
!************** Global Variables*************************/ 
/**Variables to Keep track of certain events*********/ 
int totSelected=O, totOort=O,vreltoosmall=O,totgone=O; 
long unsigned int SELT=O; /*Total Number of Pair Selections *I 
long unsigned int totalSteps=O;/*Total # of timesteps taken*/ 
long unsigned int NCOL=O; I* Total# of Collisions *I 
I****** Cell structure variables***/ 
int NSC = NC*NSCX*NSCY*NSCZ; /*Total Num of all SubCells *I 
double cwx=O,cwy=O,cwz=O,cvol=O; 
I* cwx is cell width, cwy is cell height, cwz is depth*/ 
I* in units of cm. cvol is the volume(cm-3) of each cell*/ 
I* Geometry Factors *I 
double cgxmin[NC]; /*low x border of cell*/ 
double cgxmax[NC]; /*high x border of cells *I · 
double cgymin[NC]; I* etc ... *I 
double cgymax[NC]; 
double cgzmin[NC]; 
double cgzmax[NC]; 
int *IP; l*IP[i] is subcell atom i is in*/ 
!******** Some Parameters and default values. Runtime Values 
determined by values read from file param.in ***I 
I*# real atoms rep . by each computer particle *I 
int NUMSIM = 100; 
double DT= 0.0002; l*timestep in seconds *I 
/****Variables used to calculate cross-sections*******/ 
double gTref =1.0; /*in microkelvin (effects kBoltz) *I 
double SREF= 7.2e-10; /*Ref X-section at gTref, in cm-2*/ 
unsigned int NUMINIT=10000; l*Num. of machine particles *I 
I* Information about MST trap parameters *I 
float W[3]; I* trap frequencies in 3-dim (radian/sec)*/ 
int *Oort; I* Keeps track of status of each atom *I 
l*DutOfRangeTrajectory:1=0ut□fBins, O=In Bins, -1=Left Trap*/ 
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/****Passing RANSEED around makes the psuedorandom 
number generation reproducable. ********! 
I* Any function using ran1 should have RANSEED*/ 
long int RANSEED=-21155; /*Default value *I 
void main(void) { 

l*indexCell[i] is the position in indexR for atoms in cell**/ 
unsigned int indexCell[NC]; 
unsigned int numinCell[NC]; /*Number of Atoms in Cell*/ 
unsigned int isc[NSC]; /*Cell that subcell is in*/ 
unsigned int indexSubCell[NSC]; /*Index info for subcells*/ 
unsigned int numinSubCell[NSC]; /*Number of atoms in subcell *I 

I*** indexR is an ordered list of the atoms, in increasing order of 
which cell they are in. So (if cell zero has at least one atom) 
indexR[O] is the particle number of an atom in cell zero, and 
indexR[1] is another particle in cell zero, or an a particle in 
cell one if cell O has only 1 atom ***I 

unsigned int *indexR; 
int *gone; I* atoms that were at some time out of all cells *I 
float ccg[NC]; /*Est. Max. value (X-section)*(v_rel) in Cell*/ 
float ccgRem[NC]; /*Remainder when selection number is rounded*/ 
FILE *datafile, *fin, *fout,*frestart=NULL,*fplot; 
char s[SO] ,s2[80] ;/*Temp . string variables*/ 
int initxsc[NSC] ,initxc[NC]; 
/*Matrices of particle positions and velocities *I 
float **PP, **pv; 
I** Variables for loops for sampling and file writing **I 
int fileWrites=O,totalFileWrites=O, 

samplesPerFileWrite=O,samples=O; 
int timestep=O,stepsPerSample=O,resetNCOL=O; 
double stepsPerFileWrite; /*Just used for output*/ 
int i,j,k,m,i2,m2,tempint,totpart,centercell; 

/***Variables used only for initial distribution*/ 
I* T[i] is 'temperature' for ith-dim*/ 
double T[3] ;/*Used Only for creating initial dist*/ 

I* pmp is PositionMostProbable[x y z] 
(i . e. mean absolute value of position)*/ 

double pmp[3]; 
double vmp[3]; /*Speed Most Probable[x y z] *I 

/*Temp variables, used within a few lines of assignment*/ 
double tempdouble,tempdouble2,tempdb,tempdb2; 
float tempfloat,tempfloat1,tempfloat2,rem,A; 

/*Variables used for keeping track of total and 
average values over all atoms*/ 

double KE,PE,v2[3] ,d2[3] ,v[3] ,d[3]; 
float pixelspercm=880; 

I****** End of variable declerations*********I 
I****** Set trap frequencies ***I 

W[O]= (2*PI*20.5); 
W[1]= (2*PI*20.5); 
W[2]= (2*PI*12.7); 

/******Initialize some arrays *I 
for(i=O;i<NC;i++) { 

indexCell[i]=O; 
numinCell [i] =O; 



initxc[i]=O; 
} 
for(i=O;i<NSC;i++) { 

isc [i] =O; 
indexSubCell[i]=O; 
numinSubCell[i]=O; 
initxsc[i]=O; 

} 
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I**** Load some parameters from input file *I 
if ( (f in=f open ( 11 param. in 11 

, 
11 rt 11

)) ==NULL) { 

} 

printf( 11 Couldn't Open data.in for reading. Aborting\n"); 
exit(-2); 

fgets(s,80,fin); 
sscanf(s,"%ld",&RANSEED); 
printf("From param.in RANSEED=%ld\n",RANSEED); 
if(RANSEED>O) 

RANSEED=-RANSEED; 
if (RANSEED==O){ 

printf("O Initial RANSEED. QUITTING\n 11
); 

exit(-3); 
} 
fgets(s,80,fin); 
sscanf(s,"%d %s",&stepsPerSample,s2); 
printf("%d : : %s\n",stepsPerSample,s); 
fgets(s,80,fin); 
sscanf(s,"%d:: %s",&samplesPerFileWrite,s2); 
printf( 11 %d : : %s\n 11 ,samplesPerFileWrite,s); 
fgets(s,80,fin); 
sscanf(s, 11 %d %s 11 ,&totalFileWrites,s2); 
printf ( 11 totalFileWri tes=%d : : %s\n 11

, totalFileWri tes', s); 
fgets(s,80,fin); 
sscanf(s, 11 %d %s 11 ,&NUMINIT,s2); 
printf("NUMINIT=%d : : %s\n" ,NUMINIT,s); 
fgets(s,80,fin); 
sscanf(s,"%d %s",&NUMSIM,s2); 
printf( 11 NUMSIM=%d : : %s\n",NUMSIM,s); 
fgets(s,80,fin); 
sscanf(s,"%d %s",&resetNCOL,s2); 
printf("Reset NCOL=%d : : %s\n",resetNCOL,s); 
fclose(fin); 

I**** Setup output files********! 
if( (fout=fopen("data . out", "wt"))==NULL) { 

} 

printf("Couldn't Open data.out for writing. Aborting\n"); 
exit(-2); 

if ( (fplot=f open ("plot. dat" , "wt")) ==NULL) { 

} 

printf( 11 Couldn't Open plot.dat for writing. Aborting\n"); 
exit(-2); 

I***** Initialize random number generator *I 
• ranl (&RANSEED); 
printf("after initialization, ranseed=%ld\n",RANSEED); 
/*Initialize Variables *I 
T[0]=40.0; I* Temp is in microKelvin *I 
T[1]=40.0; 
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T[2]=40.0; 
/*Cell Dimensions (each cell, in cm) *I 
cwx=cwy=0.009; 
cwz= .016; 
cvol=cwx*cwy*cwz; 
/*Define origin at center of trap *I 
cgxmin[O]=-cwx*((float)NCX)/2.0; 
cgymin[O]=-cwy*((float)NCY)/2.0; 
cgzmin[O]=-cwz*((float)NCZ)/2.0; 
centercell=NCX*NCY*(NCZ-1)/2+NCX*(NCY-1)/2+(NCX-1)/2; 
I* Assign Cell Edge coordinates *I 
for(i=O;i<NCZ;i++) { 

for(j=O;j<NCY;j++) { 
for(k=O;k<NCX;k++) { 
/*Set X-coords of Cell *I 

if(!k) 
cgxmin[m]=cgxmin[O]; /*Left edge of a Leftmost cell*/ 

else 
cgxmin[m]=cgxmax[m-1] ;/*Use Right edge of previous cell*/ 

cgxmax[m]=cgxmin[m]+cwx; 
/*Set Y-coords of Cell *I 

if(!j) /*First y-line (at this z)->Least y-value*/ 
cgymin[m]=cgymin[O]; 

else if(!k) I* Not 1st, but still new y-line *I 
cgymin[m]=cgymax[m-1]; 

else I* Just another x increment, leave ymin alone *I 
cgymin[m]=cgymin[m-1]; 

cgymax[m]=cgymin[m]+cwy; 
/*Set Z-coords of Cell *I 

if(!i) /*First z-line*/ 
cgzmin[m]=cgzmin[O]; 

else if (!j && !k) /*New z-line (not first), 
incr. zmin to old zrnax*/ 

cgzmin[m]=cgzmax[m-1]; 
else /*Just another cell, no change in zmin *I 

cgzmin[m]=cgzmin[rn-1]; 
cgzmax[m]=cgzmin[m]+cwz; 

I* Set initial (estimated) max[(sigma)(v_rel ) ] in each cell *I 
I* sigma in cm~2 and v_rel is in cm/sec *I 

ccgRem[m]=ran1(&RANSEED); 
ccg[m]=(30.0*SREF)/(T[O]+T[1]+T[2]); 

} 
} 

} 
/*Set sub-cells *I 
for(i2=0;i2<NC;i2++){ 

} 

for(i=O;i<NSCZ;i++){ 
for(j=O;j<NSCY;j++) { 

for(k=O;k<NSCX;k++) { 
m=i2*NSCX*NSCY*NSCZ + i*NSCX*NSCY + j*NSCX + k; 
isc[m]=i2; /*subcell mis in cell i2 *I 

} 
} 

} 

do { 
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printf("Start new or continue (nor c)? :"); 
scanf("%s" ,s); 
printf ("\n"); 

}while(s[O] !='c' && s[O] !='C' && s[O] !='n' && s[O] !='N'); 
/*If new simulation, generate initial dist*/ 
if (s[OJ=='n' 11 s[OJ=='N') { 

/*Find most probable speeds and displacements *I 
for(i=O;i<3;i++) { 

vmp[i]=sqrt(2.0*KBOLTZ*T[i]/MASS); 
pmp[i]=vmp[i]/W[i]; 

} 
printf ( "vmp= [%g %g %g] \n", vmp [OJ , vmp [1] , vmp [2]); 
printf("pmp[O]=%g pmp[2]=%g\n",pmp[O] ,pmp[2]); 
I* Allocate some matrices and arrays*/ 
pp=newfloatmatrix(NUMINIT+1,3); 
pv=newfloatmatrix(NUMINIT+1,3); 
IP=newintarray(NUMINIT); /*Subcell atom is in *I 
oort=newintarray(NUMINIT); 
indexR=newunsignedintarray(NUMINIT); 
gone=newintarray(NUMINIT); 
for(i=O;i<NUMINIT;i++) { 

I* Assign initial coords. and subcells *I 
do { 

for(j=O;j<3;j++) 
pp[i] [j]=ranvel(&tempdouble,&tempdouble2,pmp[j]); 

tempint=assignSubCell(pp[i]); 
if (tempint<O) 

I* negative sign means out of range for assignSubCell *I 

} 

printf("Atom %d was trying to be oort, disregarded.\n",i) ; 
}while(tempint<O); 
oort [i] =O; 
gone[i]=O; 
indexR[i]=O; 
IP[i]=tempint; 
initxsc[tempint]++; 
initxc[isc[tempint]]++; 

fileWrites=O; 
tempint=O; 
for(i=O;i<NC;i++) { 

tempint+=initxc[i]; 
} 
fflush(fout); 
/***Assign atom velocities, independent of positions***/ 
tempdb=tempdb2=0; 
for(i=O;i<NUMINIT;i++) { 

} 

for(j=O;j<3;j++) { 

} 

pv[i] [j]=ranvel(&tempdouble,&tempdouble2,vmp[j]); 
tempdb2+=SQR(pv[i] [j]); 
tempdb+=SQR (pp [i] [j] *W [j]) ; 

printf ( "%d atoms: PE=%g total 'ke '=%g\n", NUMINIT, tempdb, tempdb2) ; 
}/* End of "if new" *I 
else{ /*Read from restart file *I 
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printf("Reading from restart file\n"); 
if ( (frestart=fopen ("restart. dat", "rb")) ==NULL) { 

printf("Couldn't Open restart.dat for reading . Aborting\n"); 
exit(-2); 

} 
fread(&RANSEED,sizeof(long int),1,frestart); 
printf("RANSEED=%ld\n",RANSEED); 
fread(&fileWrites,sizeof(int),1,frestart); 
printf("fileWrites=%d\n",fileWrites); 
fread(&NUMINIT,sizeof(unsigned int),1,frestart); 
printf("NUMINIT=%u\n",NUMINIT); 
printf("Param.in: real per simulated particle is :%d\n",NUMSIM); 
I* Allocate some matrices and arrays*/ 
pp=newfloatmatrix(NUMINIT+1,3); 
pv=newfloatmatrix(NUMINIT+1,3); 
IP=newintarray(NUMINIT); /*Subcell atom is in *I 
oort=newintarray(NUMINIT); 
indexR=newunsignedintarray(NUMINIT); 
gone=newintarray(NUMINIT); 
for (i=O;i<NUMINIT;i++) 

I* read stored velocities from file*/ 
fread(pv[i] ,sizeof(float),3,frestart); 

for (i=O;i<NUMINIT;i++) 
I* read stored positions from file*/ 

fread(pp[i] ,sizeof(float),3,frestart); 
fgets(s,80,frestart); 
sscanf(s,"%lu",&NCOL); 
printf("NCOL=%lu\n",NCOL); 

NCOL=O; 
} 
for(i=O;i<NUMINIT;i++) { 

indexR[i]=O; 

} 

gone[i]=O; 
oort[i]=O; 
tempint=assignSubCell(pp[i]); 
IP[i]=tempint; 
initxsc[tempint]++; 
initxc[isc[tempint]]++; 

}/*End of use restart file*/ 
stepsPerFileWrite= 

(double)samplesPerFileWrite*(double)stepsPerSample; 
index3(pp,pv,numinCell,indexCell,numinSubCell,indexSubCell, 

indexR,isc,gone); 
I*** The principal loops of the simulation **I 

for(;fileWrites<totalFileWrites;fileWrites++){ 
I** Initialize some variables used for running sums*/ 

totpart=O; 
for(i=O;i<3;i++){ 

v2[i]=O;; 
d2[i]=O; 

} 
PE=O; 
KE=O; 
for(samples=O;samples<samplesPerFileWrite;samples++) { 
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for(timestep=O;timestep<stepsPerSample;timestep++) { 
move3(pp,pv,isc,gone); 

totalSteps++; 
index3(pp,pv,numinCell,indexCell,numinSubCell,indexSubCell, 

indexR,isc,gone); 
coll3(pp,pv,ccg,ccgRem,numinCell,indexCell,numinSubCell, 
indexSubCell,indexR,isc); 

}/*(end of loop: timestep) *I 
for(i=O;i<NUMINIT;i++) { 

} 
} 

if (oort [i] ==O) { 
for(j=O;j<3;j++) { 

tempdouble=SQR(pv[i] [j]); 
v2[j]+=tempdouble; 

KE+=tempdouble; 
tempdouble=SQR(pp[i] [j]); 

d2[j]+=tempdouble; 
PE+=tempdouble*SQR(W[j]); 

} 
totpart++; 

printf("Samples=%d fileWrites=%d\n'' ,samples,fileWrites); 
I** Open Next data file **I 
sprintf(s, "data%d" ,fileWrites); 
strcat(s,".out"); 
printf("s=%s\n",s); 
if( (fout=fopen(s,"wt"))==NULL) { 

} 

printf("Couldn't Open %s (data) to write. Abort.\n",s); 
exit(-4); 

printf("Avg Total PE=%g, KE=%g\n", 
PE/stepsPerFileWrite,KE/stepsPerFileWrite) 

printf("Center Cell (#%d) has %d atoms\n", 
centercell,numinCell[centercell]); 

I** Write next data file **I 
printf("fileWrites=%d Steps=%lu total Time=%g\n", 

fileWrites,totalSteps, (float)totalSteps*DT); 
fprintf(fout,"fileWrites=%d Steps=%lu total Time=%g\n", 
fileWrites,totalSteps,(float)totalSteps*DT); 
printf("Total: PE=%g KE=%g totpart%u\n", 
PE/stepsPerFileWrite,KE/stepsPerFileWrite,totpart); 
fprintf(fout,"Total: PE=%g KE=%g totpart=%u\n", 
PE/stepsPerFileWrite,KE/stepsPerFileWrite,totpart); 
printf("currently totOort=%d\n",totOort); 
fprintf(fout,"rms v :%g 1/,g %g\n",sqrt(v2[O]/totpart), 

sqrt(v2[1]/totpart),sqrt(v2[2]/totpart)); 
fprintf(fout,"rms poss :1/,g %g %g\n",sqrt(d2[O]/totpart), 

sqrt(d2[1]/totpart),sqrt(d2[2]/totpart)); 
fprintf(fout,"rms poss :%g %g %g\n", 

pixelspercm*sqrt(d2[O]/totpart), 
pixelspercm*sqrt(d2[1]/totpart), 
pixelspercm*sqrt(d2[2]/totpart)); 

printf("rms v :%g %g %g\n",sqrt(v2[O]/totpart), 
sqrt(v2[1]/totpart),sqrt(v2[2]/totpart)); 
printf("rms pas (cm) :%g %g %g\n",sqrt(d2[O]/totpart), 
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sqrt(d2[1]/totpart),sqrt(d2[2]/totpart)); 
printf ("rms poss (pixels) :%g %g %g\n", 

pixelspercm*sqrt(d2[0]/totpart), 
pixelspercm*sqrt(d2[1]/totpart), 

pixelspercm*sqrt(d2[2]/totpart)); 
fprintf(fout,"%lu #Computer Collisions\n",NCOL); 
fprintf(fout,"%lu #Real Collisions\n",NCDL*NUMSIM); 
fprintf(fout,"%lu #totalSteps\n",totalSteps); 
fclose(fout); 

I**** Write Restart File ****I 
if(frestart!=NULL) 

} 

fclose(frestart); 
if( (frestart=fopen("restart.dat", "wb"))==NULL) { 
printf("Couldn't Open restart.dat for writing. Aborting\n"); 
exit(-2); 

fwrite(&RANSEED,sizeof(long int),1,frestart); 
printf("2: Ranseed=%ld\n",RANSEED); 
fwrite(&fileWrites,sizeof(int),1,frestart); 
fwrite(&NUMINIT,sizeof(unsigned int),1,frestart); 
I* The array is broken up into NUMINT seperate fwrites because 

some compilers (eg . linux gee up through at least 2.7 . 1) screw up 
when using fwrite with large blocks. For example, linux 
gee 2.6 . 3 fwrite will mess up if passed more than about 77Kb 
at once *I 

} 

I* Store current velocities*/ 
for(i=O;i<NUMINIT;i++) 
fwrite(pv[i] ,sizeof(float),3,frestart); 
I* Store current positions *I 
for(i=O;i<NUMINIT;i++) 

fwrite(pp[i] ,sizeof(float),3,frestart); 
printf ( "Total Sim Collisions: %lu => %lu collisions \n", 

NCOL,NCDL*NUMSIM); 
printf("Steps=%lu tot0ort=%d\n",tota1Steps,tot0ort); 
fprintf (frestart, "%lu #Computer Collisions\n", NCOL ); 
fclose(frestart); 
tempfloat1=(sqrt(d2[0]/totpart)+sqrt(d2[1]/totpart))/2 . 0; 
tempfloat2=sqrt(d2[2]/totpart); 
I*** Write plot file ***I 
fprintf(fplot, "%g %g %g %g\n", 2. O* (float) NCOL/ (float ) NUMINIT , 
tempfloat1,tempfloat2,tempfloat2/tempfloat1) ; 
fflush(fplot); 

}/* (end of loop : fileWrites) *I 
fclose(fplot); 

!*********** Function coll3 ******************************! 
I**** Calculate collisions of atoms**********************! 
int coll3(float **PP, float **pv , float *ccg, float *ccgRem , 

unsigned int *numinCell, unsigned int *indexCell, 
unsigned int *numinSubCell, unsigned int *indexSubCell, 
unsigned int *indexR,unsigned int *isc) { 
int cn,intsel,isel,i,avn; 
unsigned int atom1,atom2; 
float numsel; /*numsel is the num. of pairs to be selected*/ 
float speedrel,vrel2,cvr,cvm,tempfloat; 
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for(cn=O;cn<NC;cn++) { 
I* Can use current numinCell times a time averaged one 
like Byrd does, but it made no visible difference for 
my simulation*/ 
numsel=0.5*SQR((float)numinCell[cn])*(float)NUMSIM* 

ccg[cn]*DT/cvol; 
I* numsel is expected number of collisions to take 
place in this cell *I 
numsel += ccgRem[cn] ;/*Add the remained from previous*/ 
intsel=(int)floor(numsel);/*Can only carry out integer 

number of collisions*/ 
ccgRem[cn]=( numsel-floor(numsel));/*Store fraction part*/ 
if(numinCell[cn]>1 && intsel>O)/*If cell has 2 atoms to collide*/ 
totSelected+=intsel; /*Total number of collision pairs *I 
cvm=ccg[cn]; /*ccg[cn] is "max sigma_v*v_rel" in cell*/ 
for(isel=O;isel<intsel;isel++) { l*Do Collisions *I 

I* Given first atom, psuedorandomly chose a near one for collision*/ 
selectp(cn,&atom1,&atom2, numinCell,indexCell,numinSubCell, 

indexSubCell,indexR,isc); 
/*Calculate relative v and v~2 of these two atoms *I 

tempfloat=O; 

} 

for(i=O;i<3;i++) { 
tempfloat+= (SQR(pv [atom1] [i]) +SQR(pv [atom2] [i])); 

} 
vrel2=0; 
for(i=O;i<3;i++) { 

vrel2+=SQR(pv [atom1] [i]-pv [atom2] [i]); 
} 
speedrel=sqrt(vrel2); 
if (vrel2<0.00001) { 

} 

printf(''Collision pair rejected, vrel2 too small\n"); 
vreltoosmall++; 

printf("vreltoosmall=%d\n",vreltoosmall); 

else { 
I* X-section goes as 1/k-2, Unitary Limit*/ 

cvr=speedrel*32.0*(PI*HBAR2ISQR(MASS))lvrel2; 
I* constant value resonant logic *I 

l*cvr=speedrel*(Insert constant X-section here) ;*I 
if (cvr>cvm) 

cvm=cvr; 
I* Apply acceptance-rejection *I 

tempfloat=ran1(&RANSEED); 
if(tempfloat < cvr/ccg[cn]) { 

} 

} 
} 

I* Then accept collision *II 

} 

NCOL++; I* Keep track of total number of collisions *I 
elastic(atom1,atom2,pp,pv,speedrel); 
tempfloat=O; 
for(i=O;i<3;i++) 
tempfloat+= (SQR (pv [atom1] [i]) +SQR (pv [atom2] [i] ) ) ; 
ccg[cn]=cvm; 
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} 
!************ Function elastic() ****************************! 
int elastic(unsigned int atom1, unsigned int atom2, float **PP, 

float **pv, float speedrel) { 
float a,b,c; 

} 

/*vrelpc is 1/2 the post-collision relative vel. *I 
static float vrelpc[3]; 
static float velcm[3]; /*The velocity of the center-of-mass *I 
int i; 
for(i=O;i<3;i++) 

velcm [i] =O. 5* (pv [atom1] [i] +pv [atom2] [i] ) ; 
b=2*ran1(&RANSEED)-1.0; 
I* bis the cosine of a random elevation angle *I 
a=sqrt(1.0-b*b); 
vrelpc[0]=0.5*b*speedrel; 
c=2.0*PI*ran1(&RANSEED); 
l*c is the random azimuth angle *I 
vrelpc[1]=0.5*a*cos(c)*speedrel; 
vrelpc[2]=0.5*a*sin(c)*speedrel; 
for(i=O;i<3;i++) { 

} 

pv [atom1] [i] =velcm [i] +vrelpc [i] ; 
pv [atom2] [i] =velcm [i] -vrelpc [i] ; 

!************* Function selectp() ***********************! 
int selectp(int cn,unsigned int *a1,unsigned int *a2, 
unsigned int *numinCell, unsigned int *indexCell, 
unsigned int *numinSubCell, unsigned int *indexSubCell, 

unsigned int *indexR, unsigned int *isc) { 
int msc,i; 
int inm=1,ins=1,inc; 
unsigned int atom1,atom2,k; 
/*Choose an atom randomly in cell en w/ indexed x-ref list indexR*/ 
k=(unsigned int)(ran1(&RANSEED)*nurninCell[cn]); 
/*add the starting point in indexR for cell en*/ 
k+=indexCell[cn]; 
atom1=indexR[k]; 
if (atom1 <O I I atom1>=NUMINIT ) { 

printf("atom1 is forbidden #(%u). Return to continue\n",atom1); 
} 
*a1=atom1; 
msc=IP[atom1]; /*msc is initially the subcell atom atom1 is in *I 
if(numinSubCell[msc]<2) { 

/*If there is not another atom to collide with in subcell *I 
do { /*Find another subcell in cell that has an atom*/ 

/*coll3() already checked numinCell>1 before calling select() *I 
inc=inm*ins; 
ins=(-ins); 
inm++; 
msc+=inc· 

}while ( (ms~<O 11 msc>=NSC) I I (isc [msc] ! =en) I I ( ! numinSubCell [msc])); 
} 
I* Now choose 2nd atom from subcell msc which are not atom1*/ 
if(numinSubCell[cn]==1) { 

} 

k=O; 
atom2=indexR[k]; 



} 

78 

else 
do { 

k=(int)(ranl(&RANSEED)*numinSubCell[msc]); 
k+=indexSubCell[msc]; 
atom2=indexR[k]; 

}while(atom2==atom1); 
if(atom2<0 I I atom2>=NUMINIT) { 

printf("atom2 is forbidden number); 
getcharO; 

} 
*a2=atom2; 

!************ Function index3 ********************************! 
/*******The atoms are arranged in order of cells, and 
within cells in order of subcells***********I 

int index3(float **PP, float **pv, unsigned int *numinCell, 
unsigned int *indexCell, unsigned int *numinSubCell, 

unsigned int *indexSubCell, unsigned int *indexR, 
unsigned int *isc, int *gone){ 
int i,j,msc,m,NUMPART=0,nc; 
I* First set "number of atoms in cell" to 0 for all cells *I 
for(i=0;i<NC;i++) 

numinCell[i]=0; 
I* Same for Subcells *I 
for(i=0;i<NSC;i++) 

numinSubCell[i]=0; 
tot0ort=0; /*Reset global tot□ ort *I 
I** Count atoms in Cells and Subcells **I 
for(i=0;i<NUMINIT;i++) { 

} 

if(oort[i]==0) { I* If atom is still in trap and in bins*/ 
msc=IP[i]; 
nc=isc[msc]; 
numinSubCell[msc]++; 
numinCell[nc]++; 
NUMPART++; 

} 
else if (oort[i]==l) { 

tot0ort++; 
} 

/*Setup array of start address in indexR for cells and subcells*/ 
m=0· 
for(i=O;i<NC;i++) { 

indexCell[i]=m; 
m+=numinCell[i]; 

} 
m=0· 
for(i=O;i<NSC;i++) { 

} 

indexSubCell[i]=m; 
m+=numinSubCell[i]; 
numinSubCell[i]=0; 

I* Set up the cross-reference array **I 
for(i=0;i<NUMPART;i++) { 

msc=IP [i] ; 
j=indexSubCell[msc]+numinSubCell[msc]; 
numinSubCell[msc]++; 
indexR[j]=i; 
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} 
} 
void move3(float **PP, float **pv,unsigned int *isc,int *gone) { 

static int orbit0ut0fRange=O,firsttime=1,totgone=O; 
static double C[3] ,Sw[3] ,Sow[3]; 
int i,j,tempint; 
float k1p,k1v,k2p,k2v,x,y,z,pold,temp; 
if(firsttime) { 

} 

firsttime=O; 
for(i=O;i<3;i++) { 

C[i]=cos(W[i]*DT); 
Sow[i]=sin(W[i]*DT)/W[i]; 
Sw [i] =sin (W [i] *DT) *W [i] ; 

} 

I** Move atom through their orbit one DT *I 
for(j=O;j<NUMINIT;j++) { 

if(oort[j] !=-1) { I* If atom is still in trap *I 
for(i=O;i<3;i++) { 

I** This is particular to case of harmonic trap. For general 
potential use Runge-Kutta or other reasonably energy 

conserving integrator **I 
pold=pp [j] [i] ; 

pp [j J [i] =pp [j] [i] *C [i] + pv [j] [i] *Sow [i] ; 
pv[j] [i]=pv[j] [i]*C[i] - Sw[i]*pold; 
} 
I* (Re-)Assign subcell number to atom now that it's moved*/ 
if ( (tempint=assignSubCell(pp[j])) < 0) { 
tempint=(-tempint); 
if(oort[j]==O) { 

if ( ! gone [j] ) { 

} 
} 

printf("Atom #%d out of range in orbit for 1st time\n",j); 
totgone++; 
printf("%d atoms have at some point left bins\n",totgone); 
gone [j] =1; 

oort [j] =1; 
} 
else 
oort [j] =O; 
IP[j]=tempint; /*IP[atom#] is subcell atom is in *I 

} I* End of (if oort[j] !=-1) *I 
} I* end of (for(j=O;j<NUMPART;j++) *I 

} 
double ranvel(double *u, double *V, double vmp) { 

double A,B; 
/*--generates two random velocity components u and v 

} 

in an equilibrium gas with most probable speed vmp*/ 
A=sqrt(-log(ran1(&RANSEED))); 
B=6.283185308*ran1(&RANSEED); 
*u=A*sin(B)*vmp; 
*v=A*cos(B)*vmp; 
return *u; 

I*** The memory allocation routines, adapted 



80 

from Numerical Recipes, Press et. al *I 
int *newintarray(long length) { 

} 

int *V; 
v=(int *)malloc((size_t)(length*sizeof(int))); 
if(v==NULL) { 

} 

printf("Could not allocate integer array of length %ld\n", 
length); 

exit(-2); 

return v; 

unsigned int *newunsignedintarray(long length) { 
unsigned int *v; 

} 

v=(int *)malloc((size_t)(length*sizeof(unsigned int))); 
if(v==NULL) { 

} 

printf("Could not allocate unsigned int array of length %ld\n", 
length); 

exit(-2); 

return v; 

float *newfloatarray(long length) { 
float *v; 

} 

v=(float *)malloc((size_t)(length*sizeof(int))); 
if(v==NULL) { 

} 

printf ( "Could not allocate float array of length %ld\n", 
length) 

exit(-2); 

return v; 

float **newfloatmatrix(long rows, long columns) { 
I* Allocated array range pp[O .. rows-1] [O .. columns-1] *I 

float **pp; 
int i,j; 

I* Allocate some memory for array of pointers to rows*/ 
pp=(float **)malloc((size_t)(rows*sizeof(float*))); 

} 

if (!pp){ 

} 

printf("Couldn't allocate pp at pointer to rows level\n"); 
exit(-1); 

pp[O]=(float *)malloc((size_t)(columns*rows*sizeof(float))); 
if(!pp[O]) { 

} 

printf("Couldn't allocate pp at actual rows level\n"); 
exit(-1); 

for(i=1;i<rows;i++) 
pp[i]=pp[i-1]+3; 

for(i=O;i<columns;i++) 
for(j=O;j<rows;j++) 

pp [i] [j] =O; 
return pp; 

int assignSubCell(float *p) { 
int i,j,k,i2,m,msc; 
static int temp=O; 
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static int firsttime=l; 
int flag=!; 
l*j is x-cell 
j=(int)floor( 
if(j>NCX-1) { 

} 

flag=-1; 
j=NCX-1; 

if(j<0) { 
flag=-1; 
j=0; 

} 

column*/p/*j is x-cell column*/ 
(p[0]-cgxmin[0])/cwx); 
I* Just to make sure *I 

I* Assign y-coord and find 'y-cell row' *I 
k=(int)floor( (p[l]-cgymin[0])/cwy); f*k is y-cell row*/ 
if(k>NCY-1) { I* Just to make sure *I 

} 

k=NCY-1· 
flag=-1; 

if(k<0) { 
k=0· 
flag=-1; 

} 
I* Assign z=coord and find z-cell slice *I 
i2=(int)floor( (p[2]-cgzmin[0])/cwz ); /*i2 is z-cell slice *I 
if(i2>NCZ-1){ I* Just to make sure *I 

} 

i2=NCZ-1; 
flag=-1; 

if(i2<0) { 
i2=0· 
flag,:,-1; 

} 
m=i2*NCX*NCY + k*NCX + j; /*Cell Number*/ 
if(m<0) { I* This shouldn't be able to happen *I 

printf("Unexpected m<0 in assignSubCell\n"); 
m=0; 

} 
if (m>NC) { 

printf("Unexpected m>NC in assignSubCell\n"); 
printf("i2= m=NC; 

} 
i2=(int)(((p[0]-cgxmin[m])/cwx)*((float)NSCX-0.001)); 

j = (int) ( ( (p [1] -cgymin [m]) / cwy) * ( (float) NSCY-0. 001)) ; 
k=(int)(((p[2]-cgzmin[m])/cwz)*((float)NSCZ-0.001)); 
msc=k*NSCX*NSCY+j*NSCX+i2+NSCX*NSCY*NSCZ*m; l*subcell number*/ 
if(msc<0) { 

msc=0; 
} 
if (msc>NSC) 

msc=NSC· 
return (fiag)*msc; 
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