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ADSTRLET

After & bLrlol philoscorhical conslderation of the status
and function of tho theoretician in zmodern lechnolopy, the
central objoctives of the paper are stated; to investigate
some of the restrictions on the design and synthesls of linear
phyaical gystems which ure Inherent in the mathematlical con- .
strugts and m@ahads by which such aystens are-shudicds The
prinocipal tools are the Laplace transforumatlon and the theor
of Tunctions of a coumplex variablo.

it 1s shown that many of the commonly encounitored cenep-
aiizatians to linear distributed-paramster systems of familiar
lumpedeparancter-system 1dsas are valid, These general lzatlics
are perhaps intultively obvious, but the detalls are cone
throuch here once and for all, |

The fmplicastions in vagarﬁ to these matbters of the nrine
ciplo of analytlo contlnuntion ar@‘can@iﬁared. Tests are
derived to enable one to declds whether or not th@ré i8 any
chance of reallzing e prescrlbed tranafer characteriat
Wy < w< wy (anelybically expressed data), and whab would be
‘the consequences in berms of T(a) outside this ranre. The
paradox of the iéaalia@d lowepass filter_is examined in thils
lighte The questlons are shcwh to be unansworable in the case
of graphically oxpresssd data.

It 18 shown that the results of the study are in agree~
ment with the allied wurk of cthers, and a oroblem of filbter
realization rogsed by Walluan is solved, Tho reaulis of the
iﬁveatigatians are summawizad end reviewed in tera of whal

theorstlcians can accomplish In zeneral,.
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1  INTRODUCTION AND INFORNMAL STATEEENT OF THE
PROBLEMS T0 BE CONSIDERED

In the time of Hedviside, 1t was really wroper to think
of engineers as beiny essentially "practleflans” (B-1,2)%. The
nopular conception of an encinser {aside from an erronecus
associatlion with locorotive and holat operabors, which presont-
day professional engineers are s8till trying te 1live down)
generally been thgt of a visorous Young,ﬁan in boots and rourche
counkry elothing, busily engased in sunervising the construce
tion of highways, btrldpes, Zlaas, and rower plants. FPractical
he had to be, and waz, and 18,

The emargancé of the slide rule aar an acceptod symbol
of englnearing in mass~medle advertising is very siznifi ant.
It indicates the growing public awareness of the importance
of a class of englineers who own no boots, don't elways look
busy, and do thelr work on paper or at the blackbosrd. If
one inquires as to thelr function, one learns that they are
sconcerned with the theorctical aspects of enpglnsering nroblensy
it seems only falr to dub them “theoreticians

Thege classes ef enginsers are nobt intsnded to be
mutuaily exclusivey 1t is abundently evldent that the individe
aalvgains in rrofessional compstence and effectivensss as he
nOSBeL8sss :he roed features of bLoth, The practician who
ignores theory aeoﬁ descends to the level of routine ne

ocrity; the theoreticlan who nevar concerns himself with

# (E=1) refers to Reference i1 1n the References following
the bext of this paper,.
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nractice beconss intoxicated by hls roveries and loges contact
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The title of this »aroer belng "Iroblems in Yebwork
1 el ol T e b M AT oy b ® o B0 » By £ o2
Theory" and the contentis belng strictly non=experimantal, it

is a#mvép?iate to say = litalﬁ bit sboat what Lihooreticlians
do, or sry to do. Irielly, thevy sesk Lo disprove the Erabh
ef the old adaze "You never can tell 511l vou Seve”

It is most certalinly not thélr chiecilve %o roevive dise

credlsed abtempis to describe the world of obsepvabion aolslw

by reasoning about it. Hather do they seck Yo exnedlite the

golution of rractical ?Péblems by rational dsductlion frewm iihe
applicable body of theory, bearing alwave in aind the lmeliciyd
reagtrictions on the theorv which ware lLumrosed when 11 wag
1tsel? induaced frowm exverimental observasions. 7The “tryving®
has alreasdy taken placé; the theoretician just wmakes use of
thié svatematically stockpiled exrerience,

Some people might say he lan't really an ensinecr at
all;.if he Is inclined ¢o put on airs, ho may call hingell an
apbliad vhysizist! ‘hatever he may Le, he occuples an
incresazingly important place In presentedary technolosys the

.8cope and ccmplaxity of modern tachnical ontarmrises are suth
- that step~by=-step exporimental development g criminally uane-
econonical of time, menpower, and materials, not Lo montlon
nonNeye | |

The succesafgl theoratician firis that he is reQQrda&
by his. precticlan colleazues with an atiitude which {(theush

certainly not reverence) par:iakes a lit.ls of awe., If he is



wise, hs wlll not pretend omnisclence; this will umale
infiniaely more bearsble the seemingly inescamable devy when
he i8 caught with his integrals down. Elstory records that
the Delphilc Oracle enjoved a long rericed ¢f pepularity and
‘rrestige desplte the lact that its rradictions were couched
in sach evasive terms =23 to admlt almost any in%ervretation
whatsoever (i=3). Not so today's theoraticlan; his ssrvices
will be estesemod or despised according as he ia or is not
willing and able to plve definlte, understandable answers
which are bath‘uséful and right,. |

The questions which s theoreticlan may be asksad are
atrange snd diversse. Thia vaper willl consider how he nirht
go about answering certaly inguiries of Lne tyrne "Can I'do
thus=-and-so?"

It has begn 2 long time slince nracticlans have exrandad
any serious eflfort on attempts to conatruact perpetual-motlion
machines., It is rsalized that such & device would function
in complete contradiction of the laws of phyaics as we inow
them; 1t i35 graduaally baeeming acknowledped that nany other
aprerently rosy prcsﬁa&ts_are inhersntly unettalinable, dJust
what will be the effect of this disillusioning information
on the pepular mind, sonditiened by Sundaye-supnlement sclence
and hucksbera' engineering to expect a never-ending stresam of
surpassing marvels, would be both Aifficult and Interesting to
surpmige, but this will not be attempled here,

Ideally, the theoretician employs in his analysis the

very best théory at his disposal; that which ~ives the most
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realistic plcture of the world <f observatlion. iUnfortunaiely,
this ultimate elepance musd f“@ guently be foresone. It oftan
hanpans »tat tie detailed, hlgh-quality analysis that
represents the theoreticlan'e bsst work must be Juired
diffieult or impcasible «f accomnlishment with relation to the
péactical nroblem 8t hand,

Then the thecretliclan nmust make Hudiclous aprroximations
to get hias anglysis gsiﬁg azaine The addlsional task of
interpreting the rosults of the aprroximate solution mavy be
difficult, but it is not really a novelir; even hle very e
finest theory has uncertainties in 1%, of which he will take
account if he is xatxculens.

In studying the behavior of slectrical systemsz of [inite
spatial QXtQ‘u, for axanvne, ong cften supposes that th
physlical constitution of the clrculit can be characterized by
certain diserete (or "lumped”) paramcters (finite In number
which do not vary with tlre, Uhe denendent varldiles are
taken to be e finite sel of moureeor=less well-benaved funcilons
of time; & finite number of specified "Iforcing functions®
(Of time) mey be present, represeniing the Influence on the
netwerk of the external unlverse., Yhen the bshavior of the
circult has been specified mathemavically by apyllicatlon of
the vhyslecs inveolved throuzh Kirchhoff’s Laws, one has a
finite set of linear ordinary integrodilfaorential ecaations
with constant coefficiants. The boundary conditions are

generally initlel conditions, in which t Hevvaluos of certain

of the dependent variables and their derlvatlves of various
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A +
orders are snocified at time t = O (R-i).
o realistically minded slectrical ensineer, practiclan

hat these equabtlions ero . an

[y

or theoreticlan, will claim
adequate descrirtion of all that cen harpen In the nebwork.

The equatlonz are certalrly wrong for currents too large or

too small in magnitude, for sxaupls. &b one extreme, the

dissipation of Joule heat In ths network's connsctlons could
be large encuch to malt them. On the obhar hand, there is
always rrezent a background of minute "nolse” currents Iin the
eircult slements (due to the thermal aribabion of the
conﬂtitueﬁt molecules, f{or sxample) which would mask very
5mail currents.

Yet 1t often haprens that the egualions are meaningful
over an eizansive intermediate range of current marnitudesy
2 vasi amound 53 enalysis has been carrlied ocut wibkh *ist this
suppositlon of "linearity,” and ita anplication has been most
froltfules This raper will be based exclusively on this
sssumpiion and its ¢ neraiizationa; v

Once the theoretlclan has Jecided bo work with the system
of equations digcusaed above, he has many methods of mabthouate
ical analysls at his dlsposal. DBy the neture of the problem's
mathemabtical foremalation, 1% is very well suited to study by
means of the Laplece transformation (R=95, f~G). The |
mtegréﬂiffeéential equationg trensform into linear alzebraic
ones; the boundary conditions ara.zyatmmaﬁiaaily and:almost

effortlessly_introduaed; and if the parémet@r-s in the
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is rogarded as o complex varlable s 5 T 4 v {32 8 -1, 0T and
w real), he can bring bo bear on the problem the extracrdinar-
ilv elegzant and powerfiil thoory functicons of a cormplex
variatle (8=7, E=l, E=0),

one éf the princlpal results to be oltained by this
sort of stady (i-10) may be stated as followse Suprese that
a voliare source vit) suprlies a current 1(t) when aprliéd o
8 linear nstwork without initial storsse of enerzy in the
magnetle flelds of the inductors or the elsctyric flelds of
the uapacitera {that 1s, no such fields exist at % = 0+)-
xartaerhor@, 1at v{t) and 1(t) be sufficlently well=-bshaved

funstions of btime 30 that they wossess translorms Vis) and

I{s) respectively, Then the function 4{s) delfined by

Vi(s)

Z208) 7y

is a'qucﬁient of polynomials in s with real coefficients which

are determined only by the constant parameters of the nete
% :

work and Lhe way 1t 8 elements are conneciad.

% An equivalent development of this result In o stpictly
mathematical formulastion 1s glven in (R-1l1).
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In precise terminelogy, ~{(s) 1s a rational fanction of the
complex variable #; it is (with the possible excortion of a
finite number of poles) regular throughoit the entirs g
plane, For the presen’ problem, the netwerk is complesely
characterized by the functlion Z(s); this circumstance hae
given rise to a very extensive literature vrelating to the
design and synthesis of finite linear lumcedeparancter
 electrical networks to fulfill prescribed conditions (L=12),
Simllar so-~called "impedance" functions Z(s) can be
found which relate the (tnanéform@d) current in one branch
of the network to the (bransformed) voltage drop across some
other branch or chain of branchess The method is ernlicable
$o the study of nany mochanisms and combined electro=
‘mechanical sgstema; alter a whiia, one acqgiires the haklt

of mentally replacing the time~domaln block diagran

caase (t) effect(t)
e <S¢3stem S

by the s=domain (or complex=frequency-domain} block dlasram

C_cu;e (s) ' T(S) E{‘;-:ct(f-)
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whors

Effecf(fl )

Cause (s)

T(s) =

This vi@wpoint i very helpful, but 1ts 1limitatlions and
qualificetiona :must be borne in mind. ~An example of a very
simple linear lumped~paramoter mechanlsm not subject to 1%
is given in (A=1).%

The firat major investigation of this'paper is carrled
out in Part II, It Is an attempt te gensralize the lmpodence
nction‘(ané nost especially the funetlion=theoretical ésp@ats
of the maiter) to linseaer distributedeparameter systems. Such
systows are by definition deseribod by systems of 1llnoar
partial integrodifferentlial eqguations with timeeconatant (bub
not nacesaérily spaco~constant) coefliclients. he sneclificas-
tion of admissible boundary conditions will be nade in nore
detall in Part II; for the present, let 1t be noted that the
vhysical syatem must be of finlte spatial eztent. The
principai enéaavor in Part iI is to esbablish that such
systems are described by imgedancaé and other “network"® %

functions which are meromorphic functions of 83 that is, that

#(a~1) refers to Aprendix #1, which 48 to be found
following the text of this paper.

S®Topologlically, a macroscopically continuous physical
system (suoh as an electrical transmission line) is scarcely
g network, FNevertheless, this terminology will be aprlied to

t here. :
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they are regular in the {inite gseplane, with the pes:ible
excoption of laclated poles, .

The second 'major in#estiga%ion of thle raper ls carried
out in Part III, It L2 an evaluatlon of the significance
and conséqnanees of tho sprlication of the rnrinciple of
analytic continuastion to the generalized network funciions
developoed and hypothesized Iin Fart 11, |

The principle will be stuted with care in Part 1113 for
the present, let it be noted that gpecification of a meromor-
phic function inethewamall leads inevitaebly to a unigque
determination of the funcilion's values inethae-large.

The resulss of Part Il are immediately appllcable to
questions of the type "Can I do thus-and~so%"” which the
theoretician odcaﬁiunally ancounters, For examrle, suppose
that 1t is desived to build a device shich will heve soue
‘transfer characteristic T{jw) = aAlw)< iBlw) Cfor ¥y <w vy
as shown below [&(w)-and B{w) sre real functions of %], Can

T{}%) be chosen with absolute arbiirariness?

w \
i:y\ane :
“ — AW | TN
. : | |
—-—3B(w)| | |
' "\
W, E\‘/' i
! |
| K o] w, wa, W

Tho answor 1s "Hol" The theoreticlian can point out that

analytic continuation of the (meromorphic) transfer charactere-
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iatic T{( %2} {-ased on, say, the nroposed funciional values
along the loweor halfl of the line segmont @iﬁgﬁ leads %o

unicue funotionel waluee along the upper halfl of the sogment,
If these values do nt agree with the proposed ones, somebthing
ig fishy. What reallvy is wrong 1a that bthe T(jw) sonsht is

1n the nature of things Impoasible, at least insofar as things
are described by the squations studied in Part IT. In Part
I1I, tests tec oxploit this criterion are ¢ onsidered

Suppose, now, that the proposed T{jw) has passed 1tsg
golf=-consiatency tests with flying colors, What conseguoences
wiil the practician lot hineel! in for at freguencles w cute
side the range wy { W Wy in the event that he ls succesalul
in contriving & system to give him the desired T{iw) in this
range?

The funmﬁianél value of the (meromorphic) transfop
characteristlio T(jw) 1s uniquely deternined at any point in
the seplang by the specifieation of functional values along
she line segment EE%E. Part III considers rmsans Lo exploit
this relationship,

Finally, in Part IV, the results of the investicatlons
are considered from the standpoint of practical applicabllity
and Ln.scmpariéam with related tests and onrcocedurss proviocusly

developed,
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FHORALIZED ‘%":2"2’“:1‘% % PURCTIONS LIXE
As Premonitoryr Introduction

Deﬂni o the asserted “thoorebtlicallty™ of this paper,
the att entﬁve roader Will soon encounter cccasional dofectlons
Prom the atrictost of mathensbical siarndards. Ricer will fall
by the wayside; proofs will degenerate inbto plausibllity
arguments; indesd, the mrineipal investigation of Part II
proving intractable Iin the general cass, the resait will
renain only az hypothesis,

Another feature of this work probably quite ralling to
a mathematiclan s that what does zet done iz achleved under
far stricter assumptlions than are absolalely required. IU ls
very likely chét mich or all of tfhe ensuing develonment can
be carrled through with recard to a wider class of functions

han those @hich are cons tdered, To do so wonld rrobebly be

more 2iffleult, thourh, end the extended validity of the

resulis would not be of any intereszd In yractlecel nroblems,
By The Mathematical Functions to be Consldered

A prominent contemporary mathemstician {R~13) once
defined a well=~behaved function as one in which a physicist
mipht be interested. FEngineers have less curiloslty, however;
in considering a given prodlem, we shall restrict out atten=
tion to ite E«functions.

Buppose that the @quati&nm'or motion of the physical

system under study involve at the highest the nth time deriva-
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tive of some dependent varlable, n ® 0, 1, 2, +«s (1T n ® 0,
no time derivative avpeers), Then the Hefunctlons of this
nroblem possess the following properties:

(1) They are real-valued functions of the real varieble
t (time), defined "almost overywhere"™ in 0 = t<w,

(2) Ther possess conbimious time derivatives of the
first {(n = 1) orders thrwoughoud O é.t <O (simnifiscant only for
n>0)e

{(3) They possess nthecopder time derivatives which are
rigﬁtosmicmtimmm at t'® 0, are sectionally contimous in
every finite interval in 0 t<°§m, and posssss only a finite
cdber ot maxine whil St every finite interval in
G§§'3<@o,

(L) They and thelr time derivatives of the firet n

orders are of exvonentlal order as s—»ao""'“’"’")".

g

Almost everywhere” here means everywhere excert for a
denumerable set of peints having no finite point of accumulas
tion, ,

< et ig, in any finite interval [T1,T2) such that |
0EM=tS ’I'i';g(w, an Eefunction's ntheorder time derlvative
is continuous except for possibly a linlite number of simple
Jumr dlscontinuities {and is therefore bounded in this interval,
by the WaT) .

Rdrhnat is, for any Befunction (and sach of its first n time
derivatives) £{t), there oxiat finlte, roal, non-negative conw=
stente My, ar, and Ty such that (L4l = By exzp (apt) for all
t = Tedwritten “f(tg = 0 [exp {apt]k ¥ith regard to the con«
sequences of (3) sbove, Tp can be talten egual to zero for all
the £(t) of present intereost, That the same Mp wlll not suflice
for any Eefunction and all ol 1is der’iv?tgves is apparent upon
consideration of £(t) ® exp(l0t), for £\RI{((}) = 108, One might
supmlse that the sauo minimel ap would suffice for any Ew=
function and all of 1ts derivatives, Lut it has not beon poss=-
ivle to prove this. : :
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It 18 to be notsd that & given functlion mar be an Ew
funetion}ralative to one problem but not relative to others,
For instance, k(t) ® t% possesses a derivative which is une
bounded as t-4’0+. k(t) 18 not an E«~function 1f the nroblem
under censideration involves k'($) or hirher time derivatives,
but k(b)_gg sn E=functlon i the problem is free of such
derivatives, Of course, functions possessing sultably welle
5ahaved derivatives of gll omders are I-functlons relative to
ggzlgroblem.
| This clasas of relazively'desile functione is intended to
inelude sdequate descriptlons of the merbers of what micht be
called the cless of pointer readings In the glven nroblom,
These vaariablasrare the measures of Lhe €macyoasopio)
physical observables In the enginesr's {(and sclentist's)
worldy
The claass of Befunctions falls well within Dostschls
class of Lefunctions and, indeed, within hls class of L,
functions (R=-1li), Much use will be made of his results,

It 1o worthwhile to look ab some Le-funcitlions which can=
not poasibly be Z«functions of any problem. gi{t) = t"é is
an Lefunctlion having the transform Gls) =r(%)/s't (F=lG) s
a{t) is unbounded as't-%P0+, end it 18 perfectly certain that
no such Pevariable has meaﬂiﬁ@. Considered from the stande
point of its e@aratienal 3erinitions, no physical theory can
tolerate 1n£ini£iea, aven thmugh they are improperly absolutely
inteérabla. | |

There ére spparent exceptions to this principle in both
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mechanics and clectrical engineering, however. lany ~roblems
involving 1érga foreces mcbing for short times are nost
expedlitiously handled by considering momentum chanpes under
the spplication of instantaneocus impulses, not mentioning
forces st all., CGardner and Barnos (R«10) eurhasize the
definitive character of g network's CGreen’s functlon, or its
resconse to an impulsive (or ﬁibehhqff-ﬂirac) Input, While
this can only be approximated in péactic@, the concenrt lg
undeniably of great ubtlility,

The faco=-saving way oub of the theoretical Airficulty
here is only now becoming generally Imown (Re17, Re18, R=19),
The physical impossibllity of perforning true immlslve
testing stlll remaine, though, All things consldered, thore
is no loss of useful reneralltr in excluding from attention
L~ {and "quasi-L=") functions vhich are unbounded Iin the
naighborhoe& of any finite &,

Another Lefunction uwhich L8 exoluded frow the femily of
poésible Ew=functions is that old reliable horror ~(&) = sin
(1/t), t> 0 (R=20), Mo matter how g{0) is defined, this
imundeé function fails to have righte=semiecontinaity at ¢ & O
its derivatives are unbounded near t = G*; and 1t rossesses
an infinite mmber of naxime and minima in this vicinitye A
good phyeical reason Tor feelling that no Pevariable can
correspond to glt) is thét the oszcillatlions of the function
in the vicinity of ¢ & ot occur aﬁ rrequencies® so ot
landlashly hicgh aé not only to ocutstrip the classical theory

but to transcend presenteday quantum theory as well, Agalin,



ne ﬁep”ivation is felt in cxcluding such Lefunctions from
sbtention here.

The two exceptlonal functions abtove appear to rovpresent
the principal olasses of L«funeﬁiéns which cannot possibly be
Ewfunchblonsg. There is one important aspect of the correge
pondence between the E~funcitions and the TP=variables of =
‘given problem which reguires attention, thourh., 4An Zefinction
need be enly sectionally conbimuous in any finite Interval
(if n % 0)« Can one reascnably expect to observe nointer
readings which are discontinuous In tive?

This question carnot be answered hevely by mentioning
tha mechanical Inertla characteristic of existing indicating
elemgnts such as galvanometer wirrors and cathede~ray-tube
electyon stroans,s Tho query rceally relates to the undorlying
physlceal observables themselvos.

4 meaningful answer o tue qué&ﬁian‘saamsvto call for a
more éxﬁanaiva and profound philosophlcal investi-ation than
can be atﬁempted here, There 18 every inclination to reply
in the negative. From this standpoint, dlscontinuous Fe
functions must be regarded ss only ldealized ap:roximate
descriptions of thelr assoclated Pwvariablez; introduced
becauss they greatly facilitate analynis, and lepltimized
only by the uaaful.fruit of their employments The problem of
degradation=by~approximation arising here is not & new one to
the theopreticlan, though, as was brought out in Part I,

‘Some doubt can be valsed regarding the descriptive

adequacy of the famlly of possible E-functiona, One has no
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difficulty in lmagining a ?-variable tc be expreséed sy hit) =
exp(ta}. Yot h{t) is nob of exponentlal order as t5%, and

it 12 not possible to carry ocut the process of Laplace Lransge
formation on it (R«21). dhet 18 to be done?

The only way out ssems to be through "mitilation® of the
function (R«22). One introduces an E-funcilon which is squsl
to h(t) for 0=t =7 and hag some convenlent value (nerhaps
zoro) for T < £t<® which iz of exponentlal order as L™,

If the rroblem under considoration ig one to which classical
cause~and~oflect relationships (with Lthelr sequence in ¢lme)
epply, this H?functioﬁ will be a perfectly suilsable
reyresgntation of the btroublesome Fevariable above for
0=t=17, One need only choose T szufficien’alyl large at the

start to cover the period of interest.
Ce The Hathematical Specification of Physicel Svyatoms

All linear rhysical aystems are deéoribed by evabens of
linsar integrodifferentlal equations (ordinery or partlal)
with time-constant coefficlents, as atated in Part I, If the
eystem is composed entirely of lumpede-parameter elements,
both the foreing fun:zition (or "cause”) and the resronse
function (or "effeet™) occur directly in the ordinary integro=
differential equﬁ%ions of rotlon. %The boundary condltions
are gehefally inigl . sonditions (at ¢ 3 0+), often taken 8o
a8 to correspond to no initiasl storage of energy.

For distributed-parameter systeus, however,'tﬁa aitaae-

tion 18 usually differents In the most invelved case [@hioh
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we shall now conslder ;n doteil, leaving the particulars of
some aimpler instances to (ﬂ~?ﬂ s neither the forecing function
nor the response function cccurs in the homogenesous linear pare
tial integrodifferential eguations of motlon. They sprear
instead as (spgtial) boundery values of the dependent variables,
or as othermestrictions on shese (spatial) boundary conditions.
A3 an example of the former, one can cite the one-dimensional
electrical transmisalon 1ina(c¢ be studled in detall in Secticn
(F) followling), where the "cause" may e tho voltage at the

sending end and the"effect" may be the voltage at the receliving

ond,
G v %
Send;us - - T j-t) Receivin
Aﬂsaratus V(O,t) v(x’t) vi£, Apparatas
o X J
| | | _
I —1 T >

The second situation cen come about 1f the transmission iine is

replaced with & weverulde excited e1d loaded by coupling loops,

2

2+ 4R '
v (1) Vo (£ .

(AAA Poi.l tive oalt ofFf pape r)
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If one supposes that the loops and the adjacent portlons of

the gulde walls are perfectly conducting, then

v(t) = 52 B(xarYas2ast)-dA .—PQ("A,%A,ZMQ A,
ot =

| A; AL
where A,_ 18 the area enclosed by the coupling loop, the mulde
@all, and the voltage source, and Blx,, v,, z,, t) Is the
nagnetic«{lux density inslide the gulde at the olenent u}:} of
Ays A slimilar oxprossion holds for volt)e
More generally, tho foreing function £(t) enters the

mathematical formulstion of the ;:Ezyéical problen g9

£(t)= f‘g(xk’ ‘JR,*Rst)dR ’
R ,

where R 1s the finite domain (line, surface, or volums) cone
~ cerned and %(xé, Tre Zps t) 1s the value of sume fleld vari-
able at the element of intcgration 4k [f:.h@ Integrand may
have to be written %(xﬁ, TR TR ’t)w:}‘f} in some instances, as
abave]. it ia in agcardanaa with the work of Sectieon (B)
above to suppose that £{t) and%(x,‘ Ts 2, 6) [foi* all (x,
vy, 2) of lnterest; not Just in E] are E-functions of the

problem concerned”, so that their transforme Fls) and ’F’{x, Ts

_ “This will not be the case if the specification of the
problem is self=gontradictory, as, for exauple, 1f one assumes
that & nonezery voltage drop ia apnlied bebween iwe points of a
perfactly conducting bodye :
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Z, 8) exist. Upon transforning and reversing the order of

integration with respect to space aﬁé time, one gets

| F(s) = | ‘F(xr»49r>2%2r>5)dR.
/ R

The mathematical justification for this step is given iIn
Aa=2)e

One is bempted to identifly the functlionetheorstical
charecteristics ofaFka, ¥rs 2gs 8) with those of Fle), but
thia would be most'improper. A vhysically significant counter=
example 13 glven in (A=3)¢ It is not even correct to surpose
that'F%xﬂ, TRs ZRs 8) has as extensive a halfsplane of
holomorphy” (Re2l) as P(s), as is shown by & lurmedeparamster
counterexample in (A~i}. It can be shown, however {.=U} that
the halfe-plane of holomor-hy of F(s) 1z at least as extensive

a8 that of any GF(J:;{, Ype Zpe Ble
Dy 'The Existence of the Transfer Charachtoristic T(s)

It 1e how posslble to introduce tie vrinciral feature of
Part Il. Suppose that for t 2 0 a forcing function (an Ee
function not 8 0 of the problem) f(t) is applied to a linear
distributedw-paremeter system of,fiﬁite spatial extent by means

of a boundary condition over a domsin E,s, and a resvonse

©*p function V(s) of a complax va@i&ble 8 iatgaid go ?a :
ho hic in a ¢ rba s analytic and s o
va&gggrghrouf out an in?te 8 rsg on o% that domain, ol
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fuﬁcﬁion gl{t) 1s observed over a domain Rye

The initial conditlons (t # ¢Y) 1in the syastem are such
that 1 the fercing function £{t) had not besn aprliocs, the
system would never have changed its stale from that abt ¢t = O,
?he/aepenﬁant variables in the vroblem are so chosen that they
all vanish in thig particular ztate of the ayatem; they
reprogsent the departures of the leld variables from quiescent
{or "DC") values which may be different from zeros

This impliea, for example, that 1 the llinear homogeneous
partial integrodifférenbial gquationa of moti@ﬁ of the systenm
contain %ﬁw [%{x, ¥Ys 24 %) baing' gome Lisld varie
abla], then 8(3, ¥s Zp gt ) ® 0, so that {?x, Y, 2, b} = |
hnlés for all ¢t > 0, Physically, this ssems to reprusent
the requiremant that there be no Inltiasl storage of energy
in the aystem, just as in the study of linsar lumwed-narameter
natworks,

Carrying eut the ,gecaaa of Laplace transformation on the

equations of motion,' one geta a system of homogeneous linear

*0One feels some confidence that thisg can be iora for a
ayatam of bounded spatlal sxtent, since |[by the arguments of
(A=2) and (4~5)] the rield variables throughout the systom are
unifornly majorized by an E-function whose tranaform nossesses
8 hali=plane of holomorphy. One has no reason %o foel that this
is 90 for a spatially unbounded system,
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ordinary or partial integrodifferentiel eguations in the
fisldevariable transforss and Lhe arace variables., Fartisl
derivetives and Integrsals of the fleld varlables with respect
to spaco varla 1es go over inso the corresponding deplivatives
and integrals of the {ield=varistle transforss. The partial
derivative of o fleld variable wlth resvect to timo roes over
into she product of the complex variaeble 8 and the Tleldw
varisble traisform by virtue of the initial conditlons
mentloned abcve.% The partial integrasl of a field variable
with respect to time (from 0 to t) goes over into the fleldw
variabls transform divided by 8.

Ags regards the remalning spatisl boundary conditions on
tho system's bshavior, it will ba assumed that they transform
into linear homogenecus combinations of the fiesld-variable
nransfdrma and thelr 3pati§1 derivasives. The a&a?fici@hta
in these expressions may involve the space variables In any
rsasonable way, but they are apaaific&lly aasuned to be at
most Aeromornhic funesions of 8°% 4 dlscussion of the implica=
tions of an azsumption =0 this sort 18 given Ly Dostsch

®It 18 here assumed Lhat any fleld variable whose time
i@rivativa is under transiormasion is 1itsell continuous for
0= t<w, Zxactly this gualiflcation was Iincluded in the defini-
tion of the E=functions of the pro.lem {(so bxat the time deriva-
tive concerned would indeed exiat throughout 0 = t<o, and the
equations of motion would not blow up)l.

#%s function V{s) of & cormlex variable s is said to be
meromorphlie 1f it ls analytic and single-valued excent possibly
for isolated pales tﬁvaxghout uny finite subregion of tho s=
plam.
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Let us auppose that a unlgus solutlon exists te the
52 w “
nroblem 83 stated”e That is, she eguasions of mobtion and all
the boundary conditicns are satlslied by values of the fleld

variables, HRemembering what £{t) and z(t) are, we goc that

f’(t) = "”1$("R’.5R’ Zlaa't)cilg
. R:

and
3(t) = ?‘xns‘jnazkst)dk
3 )
Lmply
F(s) = | Flxg> Yr» Zr, s)d R
R¢
and

G’(S) f}b(xns‘jﬂsfﬁs s) d R,

Ro

¥It 18 beyond the scope of this paper Lo conslder existence
theorens in details The erux of the matter seems to lie in ime
posing neither too many nor too few boundary conditloss, and
this is generally taken care of in a satlisfactory manner in
practical aprlications,



- 23 =

The quantlity of »resent Iinterest 1s the transfler charactor-

latic of the syatem, defined by

That this quantity is dsterwmined only by the constitution of
the aystem itself ls falrly obvious, but a proof is slven in
(28}
| That the transfer characteristic T(s) can be 1lzcussed
for linear distributede-parameter sysbtems In wiiich the “cause"
and "effect” functlons are lntroduced in ways sovewhnt diflere
ent from thab above is shown in (&-7).

It must be siressed thabt the actual exlastence of T{s)
has not besn proveds If the srvatem can be studled by Laplacoe
transforn mothods, though, T(s) will indsed exlst in accordance
with the above deflinition; ws shall now exsnmine lis provorties

under this assumption,
Be General Ssatements About the Transfer Characteristic T{s)

The first thing to note Lg that T{(a) possesses a halls
plane 'af_mammcrmy.* G{s) 1is zmlmﬁomhic for 0")0"@{5;(5)},

and F(s) for w)d‘ii{f(t)}, by (R=2li)e ¥(8) (not & ¢} does not

¥The use of this term 18 not in strict ecreement with the
definition of a mercmorphic lunction given above; the meaning
here is that T(s) possesses the property of being analytic and
- aingle=valued throughout the interlior of a half-plane except
for possible isolated polen, *
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have a finite limld point of reréﬁ in its halfeplane of
holomoryhy (R«27), so that 1f T, {T(sfg-. H{ (t)} 7, {1(5)}
Og{éft)},'than T{a) posaibly has poles at the (isolated)
zeros of F(s), but no other singulerities for 0’70'55{‘1"(3)}.
Elsevwhere in the finlte part of this reclon it is an
analytic functlon, sc that 1%’(?(3)] 18 mercmorvhic in the

hallf=plane O 7%{‘}?(3 )}.“

5
7\

ol f(t)} ru{?":)} o-M{T(S)}

[T T
9

Cne can even say someth:ing aboudt the halfeplane of holouncrohy

of T(a); this develonmont 1s pursued in (A-3),

i‘(ﬁ) (by assummtion an E-~function of the vroblem under
ccnsidar’étien) i3 by definition a realevalisd function of the
real varlable t, From lts &efinwion, F(s) 1s a real function™
of the complex varlable 83 1f & ® O + 0 iz real, (o) 1s real
too. The ssme considerati-ns hold for f’(t) and G{(s); we can

conclude that T(s) 2 G(s)/F(s) 18 a real function of s as well,

*The half-plana of meromorphy of T{s) can, of course, bve
much more extensive than the halfw=pliane datamr;ined b" this
axiatence apgumenbo

- ¥¥To be distinguished from “peal~valued function,®



By the principle of reflection (R-30), T(8) = T(s)
throughout the halfeplane of meromorphy of T{s). That i3,

iz

T(s)= T(e+jw) = Aleyw) +Ble,w),

where A{(T, w) and B{O,w} are real, then

A (o, ~w)
- B(o,~-wW),

]

A (o, w)
B (o, w)

_ If the halfl~plane of meromorphy or‘a more extensive
gyrametrisal regsilon of meromorvhy obtained by enalybtic continua-
tion of T(s)] contalns the so-called "preal=Troquency” axis
'8 = G4 Jw, one sees that the rosistive and reactive compenaﬁts
of an 40 trausfer impedance are even and odd functions of |
fraquency respectively, for exemple, Ihis i3 the lincare
disﬁributad~paramezsr-ay@tem penerallization of a welleknown
result in the study of linesr lumped~-parameter networka.'

Of especial intebest, though, is snother sipnificance of
the halfeplane of meromorphy of T(s). Throughout this region
(and 1ts extenslon by analytic contimustlon) the functional
value of T{s) is Qniqualy determined by its values in the

nelghborhood of some interior roint; Iin particular, along &
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segment of the axls 8 T O+ jO, Ihis means thab the transe
fer cheracteristic In all its universallty 1s fully ﬁ@ta§~
mined by the values of a siﬁqLeAreal function [A(G; C)]or a
real variable (T) aleong a segment of this axis, This iz a
conaiderable simplifiocation of the traditlonal viewpolnt,
according to which T(s) ie determined by the valﬁas of twe
real functions |4(0, w) and B(O, w) aﬁ thelir aquivalenh] of
a roal varieble {w) alons a ségmenz {zenerally the entireiy)
of the real«freguency asxis. This single~function speciflica~
tion of T{s) would not be well adapted to study of ths system
by the use of the Fourler integral, but it misht be of
interest in network éaaign, synthesis, and test, This same
property obtains for llnear lumpedeparameter nstworks, of
cOuUrse.

The facﬁ that the linear hoﬁogenaoua alpgebralc sguation
G{s) = T(a)*F(3) holds truie enables us at once Lo generalize
to lingar disbrlbuﬁad-@aramet@r systens the wali-knpan BUPOT™
position theorems of linerr lumpedeparameter networks., It ia
no longer surprising that en slectrical transmission line
can be charac@erimea by its ABCD paramateéé (E=31)s this is
just e consseguence of the applicetion of the superposltion
principle. | |

T{s) is a quotlient of traensforms, but it 1& not generally
g transform 1tself., If wo take glt) § £(t) {(which is perfectly
pormissible), then G(s) B F(s) holds true, sand we rind that

T(s) 8 1, which 18 not a transform in the usual sense (R~10) 4
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Hevertheless, transform considerations impose 1i mwamona
on Lthe rate of growth of the magnitude of T{s) as s> along
the Owaxis, for example, Suppose that the equaitions of motion
ef the rhysical system Involve at most nth-erdar t ine derivae
tives (n 2 0, 1, 2, ses)s An admissidble forcing function is,

shen,

f(t)
f(t)

]}
o
-
A
o

)
=
|

By (R-15), the transform of £{t) ias F(a) 2\:_3/'3“"'1. Yow,

G(s) = T(s)- Fs) = ‘l‘l‘f)

G(s) is holemorvhic for o->Tfz(t)}, end by (R-32),
G(s} —»0 é& a0 with complete twoe=dimensional freedom in

any infinlte wedge-raglon described by

larj(s ~°-W)' .é‘( < ﬁ/a >

whare Ty > O"ﬁ{g(t)};



|
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Ty {s‘t)} Tw

This imroses a restriction on the crder of ma?nitude of
T(s) as 8~» 00 in the wedge-region. If T{s)ov asB¥1 4 4 g,
as 3 - 00 there, then G(s)—>Aln ¥ U, In contradiction to the
theorem cited above. A similar contradiction avises if T{s)
incereases in magnitude faster than an'+ 1, Thus we conclude
that T(s) must not increase in magnitude faster than s¥X, where
k< n+4 1,

This estimate could probebly be sharpened, buib 1t ia
surfioiant to meke us realize that T(s), which is invarlant
with respect to inputs £{t), must not inecrease in marnitude
faster than some power of 8 sas 8-P» o in such s wedge~region
for which o5 ? O‘H{T(e)}o Thls helds true for any physical
' 3?31;0:;: subject to our study, since a defihita indicial Iinteger
‘ n = 0 exists for any such syztoms .

It would suffice f;m the development to come in Part III
‘to know only that T(s) possesses no natural.boundarias {uncor=
. querable obstacles to analytio continuation), Branch poihts,
essential singularities, eingular lines, and such liké can be

overcome, as will be seen, Nevei’theless, ons 1s tempted ";.o
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hypothesize vaatly mores to wit; that T{a) 1s meromorrhic (in
the sense of the originel definition),

It has not been vosalible to »rove either of thease con-
tentions for general rhyslical systems of the trpe studied
above, vonsidering only the first {which the second rust
necessarily include), its domonstration can scarcelw be
expected Ho come from functlonetheoretical principles alone,
for functional elemonts rossessing natural boundaries are
quite common, perhaps the rule rather then the exception
(Re33)s DNeither is the transform theory alone of much help,
for Doetsch calls to our attention an E«function (for a

problem in which n 8 O) whose transform has a natural boundary,
the axis é 2 04 jw (Re3li)s Any proof of either of these
notions must rest on the Introduction of rhyslcal conalderations
- which have been gulte slusive up to the present Lime,.

The hypotheses will be introduced for what they are worth.
Considerazion of a large number of sclved exanples in both
study and practice (see Carslaw and Jaegor, k=35, for example)
.has falled to disclose a single contrary instence,

One aspect of this matter must be stressad. There are
maﬁy oxercisos in {R=35) in which T(s) does indeed have branch
points. Without exceptlion, ihmse arise in connection with
"semi-infinite® electrical oables, heatetransfer structures,
or other such devices, One feels no qualms whatsoever in
ruling out of considerab;on any and all physical systems which
are unbounded in space, for they are certainly unattainable

in practice. Not even the Foderal Government can afford to



build a semi-infinite transmission iline.

Having done this, one 1s faced with an interssting
rhilosophical préblem. If we refuse to think aboub vhysical
gystems unbounded in space, how can we nroperly discuss
vhysical aystems unbounded in ﬁiﬁe, a3 reqgulred by the (0,00)
integration in performning the Laplace transformatlion?

A pragmetlic angwer is possible, of couraa. AfSer we
have undone the tranafdrmation, th@ résu?%*na time functiona
satisfly the regulirements placed on them by the eqguations of

motion and the boundary conditions. Who could aslk for more?
Fo T{8) for the Hon=uniform Transmission Line

Leat it seem that Fart II has degenerated completely into
nere Intuitive speculation, a problem of great wractlzal
impértanca will be worked through In supnort of the hrotheszes
of Section (B).

Consider an electrical transwmission line of lencth .ﬁ,
possessing distributed parameters K, L, 0, and C rer unid
length which are conbinucus functions of x in O é 4 él b
The line is terminated a% x 3‘2 by ® spatially finite llnesr

1&m*au~paramﬁtar natwork whoss two=terninal input imredance

“This implies thes tne parameters are bounded in 0 = x=4.
That 13 reasonsble, since "infinite" B an&/br L {mply an onen
circuit in the lina~ "infinite" G and/or G & short clrcuit,
Either of these f&ults can best be charged up to & terminating
iwmpedance, K, L, &, and C are tho series rawlsba“ce and
inductance_a d th@ shun% conductance and cspecibtance rer unit
length respectively of the transmlssion line, of course,
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{a) 18 at most a ratlonal function of 8 [ﬁs stabted 1n Tart

»«‘3\

and rroved in (H-IG)]. If the line Is shortecirculted, Zp(s)

% 03 if open~circulted, 1/in(s) ®= O,

T(x,5)

To —r o
V(s) V(x,s) 1 Z+(s)
-0 — O
% ! i - X
(o] X )

It will be supposed that a voltage source v(t) is arriled to

X}

ES

the 1ine at X = 0 for ¢t = 0, and that the infitiel dissributions

of voltage and current alons the line and in the terminabing
network vanish identicallv. Then the well-kncwn time~domalin

equations of moblon

AV(xt) ‘ _ dilx, )
—— R(x)«.(xt) L(x) ——_-At —

, o<t
i‘x""*’~ — GV (x,2) ~ Clx 33""‘ £

transform into the s~domain equations



AVix,s) s)

Tt - (RO + s L] T(x, s)-—z(x T (x,5)

(a<x<£)

dT055) | [+ scof]V(xs)s =Y (xdVix,s)
d x (o¢x<£\

where

Z(x,s)= R(x) + s L (x)

and |

Y(x,8)= G(x) + s C(x)

are the line's series Iimpedance and shunt adnittance rer unit
longth at the point x,

The boundary condition at = = 0 is

V(O,S) e V(s),

whils thabt at x ‘.Q is



VL) - Zo(NT(L Y= 0.

?his'm thenaticsl spoclificatlon of the problem satisfles all
the requirements of Sectlons (O} and (D) above; the function-
thasrétisal nature of some of the trensfer charsctaristics s
invesntigeted In {a=0),

it 18 there demonstrated, for example, that the inpud
imredance Zy(s) = V{0, s)/I(O, s} 1s indeed a meromorrvhic
function.

Generalizing the rvhysical problem, we may now inmagine
two 4ifferent 1lines connacting in’tanﬁam 28 shown bolow,
Line #1 (which we have Just studled) is terminated in %, (s)

as beflore.

o~ o— ' -0
Line # 2 | Line # | Zy(s)

¥e may replece the combination of Line #1 and zT(s} by the
generallized impsdance <y(s) found above; now only one line is

In view,
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Line # 2 22 (s)

Zx(s) has boen shown to be a meroucrphic functicon; it
is not d4iffioult te sees that the manipulailon at the start of
(A~2) can be cerrled through azain for Line £2. Yo thus
caﬁelude thiat zzl(a), the input impedance at the terminals of
Line #2, s azaln a mercmorphlic function. One can generalize
this conclusion to the tandem conneatlion of any numbesr of
segments of lines, and thus Lo lines having varamsters B, L,
G, and ¥ which are oniy sectionally continuous. |

The parallel combination of a finlte muber of individually
terminated, nchnecoupled lines must yield a meromorphic re=
sultant input impedance, and we can sextend this conclusion
to "trees" of such lines,

The present theory is not appliceble Lo systems of lines
connected ab both sending and recelving ends except as such &
coﬁbinatioﬂ can be interpreted as s single line with new
veraneters B, L, G, and C,

Some similar remarks could be made about other transfer
characteristics of ncnnéniform lines: the conclusion of
functicnal meromorphicity continuelly preaentsvitselfa

Yo can now understand why many of thé examples in (R-35)
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 led to mevomorphic transfer charactorlstics, for the transe
Lormed eoquetions of motion in some ingbaacaé can bo intere
preted as applying to transmission lines whose parsmoters
vary in prescribed geometricsl fsshlons, The snalysis of
(A=9) applies, then, to thode exercless,

With this enlightening success behind us, we shall pass
from the reoalm of mebawanalyéis, endeavoring in Part 11X to
put our conclusions to work in the service of the thaoretieian,

who serves the éraetioian, who 1n turn serves the world,
III THE CONTINUATION PROBLEM
A, Underlying Mathematical Considerations

The extraordinary elegante and fertility of the prin-
ciples of the identity, uniquenesa, snd continuability of
‘analytia functions are reflectad in the existence of several
alternative fundamental stetements 1in rezard to these natters,

: Parhaps best amitad_for puar present purposes 1s this one
(Churchill, Re39): |

BIf @& function 18 singlewvalued and analytic

throughout a region, it is unlquely determined by

its valug& over an arc, or thouﬁhaut<a sube

region, within the given reglon.

From a strictly logical standpoint, this circumssance is
simply the consequence of ﬁh0 ﬁpF1ic§t10ﬁ to certain postulates
- and definitions of qther-aﬁbitraﬁilyAaatablished rules of
menipulasion. 1% iarwerthwhils, though, to consider the matter

in another light; we cen ascarcely do batb#r than haar-whaﬁ
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fnopp has to say on the subject (Bagemihl!s transiation, E=L0):

"How 1t 1s excesdingly remarikable that by means of
the gingle requirement of differsntiabllity, thatl
is, the requlirement of resularity, a class of Tunce
tions having (theae) propertlea is selected from

the totality of the most general functions of a
complex varlable. On the oneg hand, this class is
still very zeneral and includes almost all functions
arlising in aprlications., On the other hand, a '
function belonging bto - his c¢lass possesses such a
strong inner bond, that from 1lts behavior in a
region, however small, of the (sj-plans one can
doduce 1ts behavior in the eontlre romaining rard

of the plane « «

"Bince natural rhenomena themselves possess an

Intrinsic regularity, it is clear Lhat, above all,

those functions which possess such an Inmer siruce

ture will aprear in appllcationa in ilie nsbural

sclences,”

It was shown in Section (X}, Part II, that the transfer
characteristic T(s8) of a linear physieal system «f the tvpe
discusséd there possesses a helf-plane of meromorphy. I we
exolude.rrom bhe‘finita portion of this helfe-nlane small
neighborhoods of all the singularities {which are pcles}, the
resulting domain 1s one in which T(s) 1s anelytic and sincle-
valued, and the princinie ol analytic conbinuation 1s
imma&iat&lg applicable threugheut it.

It 1s deslradble, though, to exbend this domain to Include
‘a8 much of the snbire s-plane 8s possible. This can easlily
be done if T{s) is meromorphlc :ﬁ the arigiaél sense {(thet
1s, throughout the s=blane). Indeed, essential singularities
end other isolated pathological points wh;ch do not introducs
maltivaluedness can be guarantined in en exsctly similer way,

leaving virtually the entire seplane as a region whére 7{8)



- 37 -

is single-valued and analytic,

If we allow the situstlion to become mors complicated, so
that T(s) possesses isolated branch points in addition to iis
other troubles, 1t 1s 8till possible %o £Ix things up satise
factorily. Let all the branch cuts be made in the nemative
G=direction, sway from T(s)'s halfwplane of m@ybm@rvhy. Then
in the slmply connected rggiamﬁ remaining,T(s) is analytic and
single=valusd except for voasible isclated irresulariilos such
a8 poles and esssﬁtial &imgulapities. One cen caslly proceed
from aﬁg,peint {A) in the cut plane to any other (&) by

detouring into T(s)'s half-plane of meromorphy.

w
4 lane

- - 2o pIanc

3 &_:@-———«\ﬂ?\

— : - A—/ -

A 0_——;—'*’; ® Branch Point
- -—f9 _ ___ _DBranch
t
Tm{TY .

By the principle of analytic continuation, then, T(s) 1s
uniquely determined inetheelarge by its vslues inebhee-small,

even in this trying situations

¥ twowdimensional region R 1s sald to be simply connected
if any cleosed curve within it enscloses only points of He This
implies that ang two curves U1 and Cp connecting two polnts A
and B in R and 1ying entirely within R can be cantinaeualy doe
formed into one anatnar without 19&ving Re
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The coocurrence of a natural boundary to the continustion
of T{g} quite effectively halbts ocur progress. Freseonce of
eisher of the natural boundsries shown below renders s sube
stantial portion of the s~plane inaccessible fron T{sl's

halfe=plane of moromorphYe

w
T 2 s~-plane

/

4

/

Y

4

1 e
] T
/]

/]

A

4

/]

1/

| 3 |

i v {T(8)}

The oocurrence of singular lines (noneclosed curves across
which continuation 18 lmpossible®™) need not Interfere wiih the
annexaslon of "almost all" of the seplane o T{z)!'s half~plane

of meromorphy. A sinpulapr line of this sort

W A i _§_~_ r\ ane
E}\\ \\ \‘ \;\\\\\ \\\\\\\\\ \\\ \\ \\\\ \\\ »
it
|
oM {T(s)}

¥ It must be remembored that continuation ig possible a-
oross e branch cub, leadlng onto the next sheet of the RElemarmb
surface for the function concerned, ‘



18 no worse to nandle than a branch cub {(asz :treabted above).
Other singuler lincs can be tamed 17 we systematlcally cub

the s~plane In this waye

>

‘ E Branch Pont
——-— Branech C«t

- '_"E] meugulav Line

- - s |

T {T(s)'g

A branch out goes off to the left (in the negasive T=dlrection
from some symmetrical point% of sach singular 1line, and any

branch cut whioh fmpinges on a singular line from the right is

he pciht;a are chosen symmetrically with respect to the
Tw=axis 80 that the resulting out plane will be symustrical and.
the principle of reflection (R«3C) can be applied to T(s).
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diverted sc as Lo colinclde with the singuler line's cwn cub
in going off to the left. The additlon of more singular lines
and branch points may complicate the ﬁictuve, bub the cul sge
plens will remein simply connected and essentlally intacte

The most important hypothesis made about T{s) in Part II
gpart from the gquoeation of 1ts actual existencel) is that it
rosgesses no natural boundaries. Suppogsing this to be true,
the principle of analytic centinuation pgusrantees that T(s) ig
uniquely determined throughout a suliably cut seplaens by its
values in thoe vicinity of any interior point of that cat nlans,
In the following two Sectlons we shall conasider ﬁﬁans to

explolit this fact,
B, The Continuation of Analvtically Cxpressed Data

We are at last In a position to deal with the rroblen
discussed In Part I, Suprose that, as stated there, a
theoretician is arproached by a practiclan whe deslres to

realize a certalin tranafer charscteristic

T(3W)=A(w)+3'.8(w) = Alo,w) + B(e, w)

throughout a Irequency range wy < w < Wye The real functiona
A{0, w) and B(0Q, w) (or thelr oguivalent) are for the »rescnt
aupposed given in analyticsl rctm; graphical presentation'will
be considered in Section {C) following, |

It 18 nbt necessary that the specification be made throughe
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oul the werange by just one expression: T{jw) may bs ~iven in
sach of a finlte number of sectlons of thie sepgment wlvig. The
case of just two sections is sufflclently general for this

expositiony the practician desires Lo have

I

UTI(W)) w"< W< W

T(j3w)

T(:,w)= Talw), W< w< Wy,

whore orl'ﬁw} and "Tz(w) are comnlexevalued functions of the
resl variable we |

It is not 3irficult to see what rust be done, Ono rew
vlaces w by 8/] in the analytical sxpression for o-rl("”")'
Tnis ‘Tl{s/ )} must at least have the properties deduced for
the general transfer charscteristic T{s) in Sectlon (), Fart
..II. Briefly,

(1) %(s2) possesses a half-plano of holomorphy, 727, E{’f{a}}.

{(2) T(s) 1s real for s real in this Ezalfn‘plane;

(3) T(s) does not increamse in maghitude faster than a¥

- as 8-»<0 in any wedge=rsglon deseribed by
larq (s~ £ x < Ty,

where 0',%)0}'3{?(&)}‘. £ : . .
(L) T(s) has no natural boundaries (an hypothesis; not
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nroved).

If‘q—lia/ji satisfies thess requirements, then {(taking
note of rossible branch cats, which were not definltely ruled
o1t in Part II} one can exemlne the values of ’rk}w) in the
pange W< w < Wpe If thore ie agreement, finel If not, 1t

would seem that the desired tranafer characteristic T(Jw},
wl< w< wa,' cannot boe attained with any physical svstem 61’
the sort to which we have restricted out attention.

I this solfeconsistency test 18 passed, though, one
can procesd to determine the behavior of T{s) throughout a
suitably cut simply connected seplane by examining the
 behavior of ’ﬂ(s/ji.[mr ‘Tzca/g) now], inclading as a
special case T{jw) for w outside the segment Wiwg. Thia 'bver=
811" view of the transfer characteristic T{s) enables one to
discover what w»roblems of stablility, active-/rassive~-network
realizabilidy, otc., are implied by the speciflicstion of
T(jw) in the segment EE%;. Thus the oblectives of Fart I are
attainable in this case.

It must be remembered, though, that {hese criteria are
necessarys It is not known whethor or not they are sufflcient.
Ho general aynﬁhaais rrocedure 1s offerecd here,

The procedure will be %attér appreciated alter working
through an exesmle. TFarticularly infermative ls that of the

tdealized lowepass filter with time delay tg > 0 (R=l1),”

*1t was this example which first sroused the writerts
interest In ths toples which have developed into this paper,



This hypothetical device has a transfer characteristie

T(:,W) = K exf[‘s.ta] , Iwli< w,

.T-(j w) = O, lwl > “/;

which supposedly gives distortionless trassmission wlth a
time deley L, in the pass band, but comnlete rejecitlion ocutside
is,

The continued transfer chaeracteristic T{(s) |based upon
the values of T(jw) for |wl< erl] is plainly T(s) = K
&xp§~std), Thia.function has the proporties of a trangfer
characteristic listed above, Indeod; it can be seoen to
correspond to the veltage transfer ratio of a dlstortionless
uniform transmission line (R/L 2 G/C) terminated in ite
characteristic impedance (R? zwf£75), for instance.

This T{s) is an entire function, and 1% decidedly does
not agree with the desired values of T{(Jw} for |wl > wy,
One fesls quite certain that the origlinally svecified 7T(jlw)
is unattainable, and this bellef is strengthoned when one re=
calls thet the ideslized low-pass'filﬁer can be shown by
analysis (K1) to have the whimeical heblt of prssenting an
output signal ¥ O before the input signal (a uniiuatap
function h@re) 1s'ayplieél o

It i3 both ameling and discouraging to see to whst lengths

some suthors have gone in attempding to palliate this abomina=
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tion, As long as physical systems are studied within the
framework of classical physics, causee~andw=offect rslationships
(with thelr seguence in tims) must appiy without ekeeytion;
any departure from them i{g a shame and a disgrace and renders
suspect of grossast.error'the entirety of the assocclated
analysis} Or so & "highechurch" theorsticlan would says A
gen#ler view of the matter might be to the effect that here is
just arnovher instance whers the theorecticlan may find 1t con-
venient to approximate and compromise, évaluabing the gignifi=-
cance of his resulis in the light of his assumptions and in
comparison with expepriment, This 18 not a new nroblem for
hime |

‘Some additional examples of the continuation of analvte
ically expreséed data are given in Sections (&) and (8), |

Part IV,
Cs The Contimiution of Graphically Expressed Data

Suppose, now, that our theoreticien is araln aprroached
by a practiclan who desires to realize a certaln transfer

characteristie
T(w)= A(w)t+y B(w) = A(o,w)+ B (e, W)

throughout a frequency range Wy < w < wps This time, the real
functions A0, w) and B{O, w) (or their equivalent) are given



in grarhical form.” How can the theoreticien anawor the
guestions posed in Part I?
If the graphs of A(0, w) and B{0, w) were mathenasically

precigse, one could {in vrinciple, at leasi) deteraine the

" "
oW (o,w
valuss of all the derlvativaes [—-—A—sﬁ—z] and [‘L B “J )]
A Wws Weo Aw W = Weo
(n 20, 1, 2, «oe) from them at some convenlent point w_,

W, < ¥, < Wae Supposing 8 = ij to be a polnt of anslybicity
of T(s), tiio Tavlor'seseries expanslon of the transfer clare

acteristic aboult that point would be

. [~ -] n
- . n - J_"T(S) (s“j Wo)
T(s) = "ZOQ.‘(S—uJWo) -’Z-; [ds" ST
J (-]

+

) T
SR W=Weo 4w wawe) 9 Bas

5 J[LAw)) [ Blewd) i
- - "

since cach of the derlivatives of T(s) can bs deterilned at a

polnt of analybiclty by (repestsd) differentiation In any

direction, This functional slement could then serve as a

basis for the analytic continustion of T{(s) by at least two
sthods .

The classical circlew=chaln method (R=L2) is adeguate in

*Wo can reasonably assume thal these graphe will be
sectionally continuous (and therefore boun ded) with only a
Iinite number of maxima and minima in w, 2 w = wp, since 1t
is impoaslble in practice o draw graphg of any other kind,
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principle, since one does not expect 7(s) to have any natural
" boundaries. The sheor computetional bulk of this method, with
its sequences of successlvely deteruined power seprles, is
dlscouraging, though,.

| dnother wmethod of continmuatlon inethe=larze (based on
knowledge of the eoerf;cianté “n) utilizes a process of summ#»
tion developed by Borel. Since thls, too, turns out to be
impractical, the details are relegated to (4«1l),

It was assumed above that a # Jwa was a point of analytice

1ty of T{s)s There may be aoms difficulty in deciding this g
priori. One might be fooled by a greph of %the continuous,
overywherawarbitrarilywaftan-éifferantiabls function

C(W) =T ex P("/w2> sy W + O

Cw) = © S, w= O.

o

It can be shown (R=43) that C(QRO) vanishes for all
positive integers n, Thus a Taylor's-series expansion of C(w)
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about w 2 O makes no sonse.”

These diffleulties are of only limited interest, hoaevar,
since it is certain that the vractician will not proesent
granhical data which are msthwmatically precise, Any curve

" or extended bLtwoe

Diw), W< W< Wy will appear as a "smeer,
dimensional reglon, rather than a5 a mathemebical curve, since
it will heve bsen drawn by a pen, pencil, or other Iinstrument

which leys down a strip-mark,

Dw) A

|
|
| o
o W, wa w

Thus the functiahs 4(0, w) and B(0, w) |and hence T(jw}]
can be ap?réximatad aniformly within the widths of tre "smears”
throughout the finite range Wy < w< P by any of an indefin-
itely large number of functions [’fi(a)] P Uniqus snalytic
continuation in-the-large is manifestly impossitle.

The question of aprroximate continuation inetho=smell will
not be sonsidered here. Some work on this matter has been gningl
on elsewhere, however (R-ll:),

An alternative explanation for the negatiﬁe conclusion of

this Sectlon can be given by means Qf the modern thecry of

*The underlying function-theoretical reasonfbr this state
of affairs is, of course, that C(s/j) = exp(l/s?), s:# 0,
poasesses an essential aingularity at s w O,



information and commmnicetlon (H«lLL, R-li6, BR«L47}, In thia

new and exesadinrly Interesting diselpline, “information' is
detarmined by the relative restrictliveness of cholces nade
between mewbers of sets of altermatives, The simnlest and most
appealing scheuwe of Information measurement opeorates on a
binary basis and deals with Yea-lo decisions, or bitas™

If we expand any (finite) vositive roal number & in

nowars of 2, we find thab

’P
A = Z by am‘)
m= -~00

T ]

' > . / bl
where p 18 scme inteper = Oy b” 2 1, and all the other b, are
eithier O or 1 (B~i3). There is a vpossibillisy of ambis aiu4

in the bm'dua to alvernative expansleng such as

-~ b (@] (&) ’ -
A- E ~—‘-+——t+ ——-‘-Ql" b -o}m<?~—,

= .'—a . ‘ . — — —
A 2 - — 4+ — 4 5 b”‘_L’m-F-— 2.,

but this does not relieve us from having Lo specify a denumer-
able Infinity [or Rdﬁleph-ﬁ'ull), Cantor's first transfinite
cardinal (ﬁn-l,:.{y’)] of the by, Thus the number A requires RO

hits of information for 1lts sxect specificatlions

“From "binary diglits
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' Adding anocthepr blt gives a cholece bebtwsen "+ and "=
so that any nan»zéra roal nﬁmber rogulres )eobits. Ldding
one more bit gi#aa a cholce bstween zerc and note-zero, o
thst any ﬁaél number reqg:lres ){obit$¢ Doubling )@oreaults
in just )ﬂéﬂ-hﬁ), so that any complex number (which-is
sssentially just an ordered palr of resl numbers) reqiires
)‘cbita of‘infmrmatiana A donumerable collection of denumerw
ables is denumerable {F=50), so that the collectlon of co=
/6fficients &, of & Tavlor's or Laurentts series requirea
“"only" )Q°Eita of informatlon for its complete specification.”
Thus a functional element of T{s) {(from which analvtic continuas~
tion could take wlace) would rerresent ){obits of inf@rmaticn.
it is pretty obvious thet the amount of information
repreasnted by the gravhical rresentaticn of T{jw) = 4(0, w)+t
JB(0, w) in the finlte range wy < w < w, is finite, since the
curves a{0, w) and B(CO, w) could be quantized in thelr
ordinates and absclssas aithcut depertling from the stripe
rezions which avre the vhysical curves, For exampls, the curve

Diw), wy< w < wy, drawn above contains less informatlon than

*This 1s.provebly the underlying reason why an analytic
function can be at most denumerebly infinlitely mulsiply valued
at any point, as 18 the case for W(s)® log 8 (B=51), Similaerly
suggestive 18 the fact that the classical sxamples of func-
tional elements possessing natural boundaries [such as iH{s) =
=, , (B-52)] rely on misbehavior of the functions at a de=
numerably infinite set of points [in this example the points
g = exp(J27p/q), p and g positive integers, p/q rational].
This i8 not true of nonwanalytic functions such as I(s) =
I{o+jw) » 1/, which mishehaves at every point of the we
axis (whose eguation is o= 0 : : :
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the set of sheaded rectangles in the askotch beslow,.

_]D(“OA
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;, : 1
|
| | -
o Wy W, w
—DJ awr-<e—

The absclsuas of these rsctansles inorease by sulbe-
ably small equal steps Aw, ani thelr ordinates are similarly
quantized. Each of Shese areas verrssents only s finite asmount
of informasion,™ and the same thing can be sald for the whole

inlte collection

Thus there is just not available encugh informatlon to
anable one to carry oubt unique continuation inethe=large,

If one endeavors to get out of this predicement of impot-
ency by introdueing enalytic expressions for A(0, w) and
B(0, w) over sections of the range Wy < W< Ws, One miat pre-

pare to deal with the considerations of Section (B) sbove,

®*In the sketch alove, a cholce of one rectangle out of the
2l in each column, » g L
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IV A COKPARISON OF TO E BLOULTS WITH THE WOEXK OF CTHERB, AND
A% EVALUATIOR OF 'I"“f SIGRIFICAKCE OF THY CONCLUSIONS

As The Work of Bode

It ia possible bo interprset much of the work of Dode as
consﬁitutiﬁg appliaationé.of the prineciple of analytic continuae-
tioho A péablsm uithvwhich in different gulses he deals ree
peatedly (R=56) is that of determining an impedance function
Z(Jw) given elther R(w) % Re Z(jw) or X(w) ¥ Im Z(jw) for
all w., The correspondence between his netation and ours 1is

as follows:

Z(jw) <> T(w)
R (W) <= Alo,w)
X (W) <> Ble,w).

Suppose that we are given R{w) for all w by analyiical
expreeaiona'(graphioal rresentation will be ﬁ#acgssad prasanuly}.
If we rerlace w by s/J, the rcsulting analytiaallv eanbinued
function R{s/3), def‘nod thrchhout the seplane except at its
g szngularities, aaptainly radunea te B(w) for s = jw, bhus ’
‘satisfying the data. ;" :
| The problem ia by no means solvea, though.- The impedsnce
' runction Ris/}), while nerraehlv aaeeptaﬁle from the sbanda

point ot.phe raquiromanb&,of,&ecticn (8),; Pagt II, may possess



nponertias which render 1i rhysicallv unrealizabile {(5=37).
The only way ocut of thls %?&Cﬁiﬁ&i A4 lealy is to deviae
a8 function X{w) such that

(1) 3X(s/3) matisfies the rogulrements of Section (K],
Part 1I,

(2) X(w) is real, and

(3) z{s) = R(s/3) 4 1x(s/}) is shysicall;

That is, J4(s/]) must also fall to be physically realizable,

Faad
e
3
"3
2
8]
b
N
&
w 5
H
@
E-4

Ed

Irn such & way that 1tz troables just cancel thoso of %{s/3le

‘The solutlion of this problenmy if 1t oxlsts, is nob

-

unique, It is obvious th the addision of any vursly reoe

actbive two=tormiinal netwoprk Ja in serlies wlth a two-terninal

nsbwork Ny having Re Zligw)] = I{w) will vield a two-terminal

network Ny the reel part of whose innut impedance will ablll
ecoual E(w)s, Albternatively, the fact that we are noi ~iven
both FE{w) snd X{w) over any range w3 < W < wo imrlies that we
do not have available encuzh information to commubte any of
the derivatives [3(“)(si}s s 1w (n®0, 1, 2, +..)3 we have
not srecified e functional element of 2{a), and 1tas (1nique)
analyvytic continmiablon 18 not possible,

Trhis 13 one formulatlion of the mathsmatlcal reazon fop
Eode's restriction of his attention to minimumereactance (or
miniminesuscepbance, or minimume-phage~shift) networks, since
for such the function X(w) (If it exlsts) is unique.

Tho method 1s well 1llustrated by this simple exammle.

Suppose that we are glven



The extended funciion R{s/J) i3 not vhysically realls zabla,

sincs

| ‘ !
R(s/”: I- 52 sfl B sfa|

has a elmple pole at s ® 1 (in the right helfl of the a=plans).

To get rid of this outrage, we put
S

X(s/)) = =2 + ¢,

in whioh t#(s) is physicelly reallizebls end satisfiss the

" eonditions of Section (E), Fart II. Since

L dlw)
x"“,) _ ( w-1) ._k 3J

and we want XK(w) to be ﬁeﬁl, we must have



SGw) (L) - %

J ~W =3 ~w
ér

P = e

Hence

() = s‘{f.
and

3X(’/j)=,”sz-§7‘ = ok
Thus

Z(N = RO+ X4)= 5570

which satisfies all cthe raquirémanﬁa of the problem and

corresponds, in fact, to this minimume-reactance network,
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@aﬁy of Bode's other results (R-53) are simply changes
m,g on zhis sane thomos _

. Bode's treatm nt'mf gravhically presented date (R=5%) is
very interesting. IHis results are admittedly only apvrroximate,

n cenformalty with the peasimiatic conclusiona of Sectlon

{(C), Part III, Unrowﬁunnﬁely, his methods are not aprplice-
eble to the central problems of Part III [in which, fop
exaxnple, both R{w) and X{w) are glven in some pmga Wy < W <w2],
aince the siraight-~line approximations he makes would amount
to the introﬁuczién of enalyticel expressions for Eiﬁw). with
the attendant diffiecultlies &isauaaea in Bection (B}, Part
111,

We mist taeke issue with Bode for tre Lenor of hls remarks |
at an earlier point (R=50), Even allowing for the difference |
between his and our uses of the term "network characteristic,”
bis position seems unreasonable, Bg.vlrtue-af the principle' |
of analytle continuation, the coﬁnecbion between the valuea ¢:
. & network's impedance characteristic in the'exﬁréﬁe”lgfb of
the plor s)-plane and aloﬁg-t&e-vaﬁznfreqaenny axis ia'noﬁr b
tenuous, but of the very strongestl if no natural bo@ndariaﬂ

intarvene, the values in either rogion can be used to deters
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mine thosgse in the other akactly. Bince the offensive subject
matter ls only a digresslon, however, the remalinder of Dods's

work stands uninpeached,
By The Vork of Faleywilensr«iallman

The only oﬁﬁer known investipgetion of the questions
stated in Part I and investigated in Part III ia due to Paley,
Wiener, and %Wailman (ﬁ~61, E=02, Rwb3)s The criterion intro-
duced by them can be steted in these words:®

"Suppose that K({w) = lT(jw)\ is an arbitrary ampli-
tude characteristic, i.e., an even non-negative
fanction of freguency, having a Fourler transform.
Let us call M(w) 'realizable' if 1t is posalble to
associate with the amplitude function ¥(w) a phase~-
lag function é(w) (not neocessarily linear) such that
the combined frequency function T(jw) % i{w) exp
(=3 ¢ (w)] vlelds zerc transient response for t < 0
[to any input epplied for t = 0). This is clearly
& very poeneral and nonereostricted concertion of
"roalizability.’ Then a nscessary and sufficlent
condition for the amplitude function ¥{w) to be
realizable iz that

Qo
|Leq M(W)‘ 4
P+ w?

~ <@

be fiﬁiteo"
This criterion 18 not equivalent to the restriciions on
T(a) developed in Section (E), Part II. The assumption that

¥(w) S lT(jv)l poassesses a Fourier transform rules out transfer

¥Paken from (E«63), with slight changes im notatlon and
the addition of the bracket, : :
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charscteristics such as T(é} =1, zince k(w) = T(jw) =1
is not Fourieretransformable. |

~ One must admit that this T(Jw) can scarcely be attained
i{n practice for arbitrarily large w. If the physicel aystem

concerned is this one,

-+ O S

T (s) |
V(s) = | n
— O—

in which T(s) ® V(s)/I(z) S 1, the resistor will fail to obey
Chm's Law at very high frequencies owing to failure of the
conduction process in the substance, Faregitlic shunt capacsity
across ite terminals will become pradominant, and the lumped=
raraseter description af‘the system will be found inadequate.
It is ﬁrebabiy_true (as ﬁaliman says) that any vhysical
amplitude characteristic M{w) 1s "inevitably" Fourler-transforme
able, 4 ‘ |

in int@rasting'ﬁarallel between the Palev-Wiener«iWallman
criterion and our restrictlons on T{s) 1s displayed in (A~12),

It is véry 11luminating to interpret %aliman'a examples
(R=53) in the light of the work done in this papers |

(1) The 1dealized 1ow~§§a$ filter. For this device,



o B8 w
M (w) = [, lwl < |
M(w) = O, (wl> 1.

#(w) is unspecified. ¥allman concludes that no &(w) exists

for which B{w) is realisabls In hls sense, In Sectlon (5),
Part II1, we ¢ onslidered a similar device with ¥ 8 1, ¢(w) =
why, and wy ® 1 from the standnoint of the n»rinciple of
analytic caﬁ%innation.and canme bo a similer pesainmistic
_conclusion, ‘

(2) The Gaussianwerrorecurve filter. For this device,
l{w) 8 exp(=wd); <b(w} 18 unarecified, #allman concludes
that no ¢(w) exists for which k(w) {s realizable in his
. sense,

Let us analyze by anelytic continuation attemnts fo
realize this filter, Since H(w) 2 | T(jw)l 2 exn(~w?),
?(s) = exp(s2) will certainly aatlisfy the given data., This
T(s) satisfles all the requirements of séation {(r), Part II,
with one siznificant excentlon., T(vr) = eﬁp(va) incresses
faster than any ‘a'x as 0"-} ®, It has not been rossible to
.“doctor up® this P(s) by epplying corraection factors exp ‘
(6(s)] which do not alter |T(jw)|. This is in egreement with
¥allmants cenclusion, t‘us&gh we are unable .to give s proof
that no such ©(s) e_xi’sts;xag he doess
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{(3) The senie=idoalized lowepass filler. For this deovlice,
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¥allman findeg thes this eamnlitude characterliasclie sstislies th
eriterion, and he displars & ~hase-lag charasteristic Q{‘”
which ocorpesponds to 1ts Theze conclunlons can be checked by
the vrinciple of analviic continuatlon; the somewhat nesay

details are glven In (4=13).

(L) A filter whose amplitude characteristic is Hiw) =
lsin(w)/wl. Waliman concludes that this amplitude characteris-

ic is realizable, end he offers s nebwork (scorroned of an

ooty

infinite mumber of lumredeparamster slenents, howevoer; due LO

o »

Guillemin which ey possess thls amrlitude characteristics

it i3 ypossible by means of analybic coniinuntlon and

Aa

eliied consideraslions developad in this paper Lo gynthesize an

o

aprealing disitributederaramotor system whlch has |g ;“)‘~ ulwis
thia is perhans the wmoeat gspecta cular result obtamined. The
procedure is &3 followse

3ince |T(jw)' 2 lsin (w}/@lg we may start by rerlacing w

by 5/3js ‘Then

sin(s/5) _ e —e” _ sinh(s)

T () = =y 2 s :
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However, this Tl(s) grows "too fast" in magnitude as 8
along the O waxis, for example [cempare (A—lz}]. Yle mast apply
a factor exp(~Rs), R = 1, to tame the term exr(s)/2:,” Taking

R =1,

T(s) = T ,(s) e S

Recalling the significance of the transform operabors 1/s
(integration from O to t) and exp{=-s) {unit time delay), we soe
that the desired tramnsfer characteristic can be realized with

this system;

InPu‘t

Out ruit

Tdeal . 1
Iutcgmtor

Time Delqs
(2 uuits)

The delay unit can be realized with an electrical or

acoustical transmission line, for example. The Integrator may

“The fact that R 1s not definitely determined is just a
reflection of the fact that we do not speecify a functional
element of T(s) by the given data for M(w), 8o that no unigque
7(s) exists, This 1s similar to the lack of uniqueness of ;
results obtained by Bodets methods, discussed in Section (A)
above. v , ‘ i :
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’

be a l1ittle harder Lo obbtain in rractlice.

(5) & filver whose amrlitude characteristic is (v} =

[ﬁin(w)/wlgo This 48 »lainly realizable with two unita of (L)

Ce Coneral Elsctromasnaetic Syatems

a

The distribated=-parameter avatems which have bsen mesd
studied up to the nresent time and which have beon most
extensively emploved in arrlications are transmission lines

and wave guldes. It 18 of Intercst to sec what are the

frin

mplicstions in this connectlion of the investigations of
Part 11 and Part IIl,
f
Haxwell's equations (rationalized ¥K3 units) are well
Znowng any electromagnetic system conslidered mast orerate

subject to

v «

tm
)
n
-
(-4
'

l

Q»
re

|

<

o

[ 3o
»
tm
+
-
i<
¥
m

)| ¥
™ Rkm

at all its Interior points, It is here assumed that m, € ,
and Y are ccnatant in time, though not necessarily uniform

in spaCes
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In order Lo rendor these parilal differential eqiations
homogensous In the somponents of “,‘g, and thely snacs and
time derivatives, we shall have to put = G, Uhis mecans
that we cannot allow any loose charges to wandor arocund in
the interlor of our electromagnetic sysbtemn, Th;s 1imitation
removes {from ocur nurview such interssting devices as the
traveling-wave tube, lor example, In which the essential
rhenomenon is the interaction bestweon charged rarticlaes and
the electromagnetic [leld.

It need not be amssumed that the media of which the systen
is constructed are isgoironic. One simply revlaces . by
A411H + /LlfLm‘4'/L13 I for szanple: the equations remain
homogeneous, All the Aks 53 eij’ and \’13 are sunrored conbe
tant in time, thoush: nob ~scegsarily unliform 1n anace,

8 w
ince Kaxwell's equations involve iz and é,_,i“é s WO
d

3%

study the electromasnstic zystern in terms of derendent var

: &
EIEY

g

¥
o

B
bles E and H whlch vanlsh for t & ot, They can, of crurse, b
deparbures from some cuiescent sbabte.

It remains only to snecify the spatial bounders conditions,
Tt %ill be supposed that the svatem is of [inibte srabial

t; radlating struciures are not considered. X7 one
supp ozes that the elecironagnetic sysiem under study 18
surrounded by a perfectly conductling surlace excepﬁ nossibly
at the places where the forcing function 1s applied and the
rogronse funciion is observed, things come out very well.
Buppose thab pa@% of this boundary is a portion of the yze

rlane, the interior of the slectromagnetic system lying in
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the posltive x-directlion. The positive z-direction is ocut of

////f (i, &,Y)

the nagoe

Perfectl:,
>Coudu¢tv.u3 /
—Recsiov\ X

//
The tangentlial commonents of‘ﬁ must vanish on the hound-

ary, by the definition of a perfect conductor, So we heve

Ey

1]
o

x=o+
Ezz o

as the firat two boundary conditions,
' Wrliting out the scalsr equation that comes from the X«

component of the first Haxwelllan equation above, we have

tem—

d Hx

=~
palic:
R e *

4 2 *

At z = 0+, Ey and E, must venish for all y and z concerned, by
; - A lx
the boundary conditions above, Thus Sfi waat vanish, and Hy

- + e ] o~
must be a constant. Since H, 3 0 8% t = 07, this conatand
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mist be zero. Se,

Writing out the scalar eguations that coms from the y- and z=-

components of the second Kaxwelllan squation above, we have

3He _ dH2 _ v B 4 < VE.
32 S x = Y ,3+€_?'3
d x LY >t

At x = Q+, Hy, Ey, and E, must vanish for &ll y, 2z, and &

conecerned, by the boundary conditiona above.

So,
H
dHy o
X <= of.
dHe _
9 X

Writing out the thlrd Hazwelllan equetion above,

' V-(eE) = E-(ve)+ e (v 5): o

o



it ode b EN - 2 Az g o B »onnm Moo 3 = P T -
at n =07, Loy and E_omasi vanlah for all v and z concernede

i the slxth and {inegl boundary condition on the scalar
sonn 5 P
components of = anﬁ‘§°“

In some analyses of electromagnetic aysteus, one is

- o, s s » o A % i & 4 g J )
gontent to saprose that tre avsten 1s indeed surrounk

S

e
mapfectly cafﬁu&tizg surface {(the walls of a weverulle or
cavity, for insbence). For such a stud

gparlal boundary condislons found above are of the Lrre

& n % o v g g Y %o Ly B o b pr— ' e ;e M
& more realisiic asnalvwsis talkes into sccount bhe finide

" . . s 4 S 7.
ﬁ;wiQ;twvizr of Ll

2 By -

“In the work above, iu was imrlicitly assumed that the
modium lnmedlately adjmcent to the perfectly conductling bounde
ary was Lso"?uﬁic. The Loundery ¢ condisi ong on the components
of & and J] at x & 0 for the contrary case are much more complie-
caiod and will not be given here. Ther ave, howsver, ade
wigcible in cshe sense of Ssc tgon {3}, Part II,
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discussion Just ceacluded Lo cover ceses ¢f shis sort in the

following waye
it the frequencles of nresent practical interosnt, the
field varlables § and I are sharrly attenuated a8 ocne nasses

»

an lmrerfectly conducting ouide wall, Thoelr

oubt Lhrouphn

values outsids the gulde, while In »nrincirle mathematically

definlite, are s¢ small by comparison with ihe lesst meoasurable
valuaes of the fileld variables that they fall cutside chwe scop
of Haxwelllan theory 'and can 2o neglectsd with zocd prrroximae
tlone. From this point of view, then, we can imarine that the

3

imrerfectly conducsting gulde walls are themselvea surroundsd

s &3 . i g B gt & w 3 £F " s B Ve B, A ex s . 7 FN
by & pepfectbliy conducting surface. e aituablion inslde the

3

puide 18 not appreciasbly

C

Couducti'v:'tj
Y v
Pertect

//// Conductor
>

changad, and the previous analvals can now be apnlied,

e

From another atandpolnt, we should find 1t very dirficuld
to restrict the electromarnetlic system under situdy to & Tinlte
rarion In space unless we introduced a perflectly condiucting

envolone. A8 Heavislde said (R-69), "4 perfect conductor is a

a porloct obstructor « « »

i the ngus and calculation of the maramsisrs
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o 2 F e enpd - ! s 3~ o E1 | S 4 2
i, L, &, and C of an oven=-wlre Lranomiasion lins, it is

gupposed thabt the space lateral to the line is unbounded.

Such an assumption is in considorsble disagresment witl

ta

doctrine of "finlte spaiial extent” sinounded in this papors
However, the approximebo equatlions usually adonted for

&

sncincerlng solutlong of transuission~line nroblems sre

[

homopeneous lincar partlial differentliel eqguations [swe
Section (¥}, Tart EE], If we require that the length of the
1ine be finlte, She analysis of Fart II and Fart III is
applicable.

The foregoinz dsvelonment supplies a basliz for the ilntroe
duatimn of transfer charscteristics Into the situdy of linoar
distributed-raranster eleocstromagnebic systems, This
”lim@arity“ is verhaps intultively obvious; the princinal

accounts of the networketheoretical asroects of wavepuldes

(=00, G=07) assume 1t withoub question and nroceed from thero.
De ¥What Hes Daen Accomplished?

The investications of this napsr have now besn completeds
it remains only Ho decide what has been accomplished and to
evaluabte bthe significance of the results,

This is a step which all englneers, practiclans and
theoreticlians allke, would do well to include in thelir research
programs, Such a procedure is certainly nescsssary to render
the work done comprehenslible to persons lacking the time,
inclination, or ability to wreetle with the inner comrlexities

of the investigation, Indesd, the investiigator himsslf often
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profits from the preparation of suech a summing=up of hisg
achievements,

Very brieflly, the investigations have ylelded answers to
moat of the questions end ﬁrobl&ms vosed in Part I (to a
surprisingly large rrorertion of them, in fact),

The {ield to be considered was limited at the start %o
that of lineer systems of finlte spatlal extent, This must
be acknowledgod to be an onerous restriction, Non-linear
devices and offects are all about us; furthermors, it ls
extremely difficalt, for sxample, to anslyze an slectroe
magnesic radlabing system withoul making aprroximations auch
a5 shose corregponding to placing the system in an infinite
8NECH . ﬁevarthaleéa, within the range of applicabllity of the
matheomatioal constructs studied, a number of Interesting and |
importaent mabtiers were dealt with.

Much of Part II is the detailed investigation of general
linear diatri&utad~param®ter pystems; the results cen be
briefly summarized by éaying that many of the commonly en=
countersd generalizations to linear distributederarameter
systems of fémiliap lumpe&—parameter~sys§@m {deas are valid,
This is something which ié perhazs intultively obvious to many
veonle, bul a theoretliclan aslwavs views intuitive results with
some siepbicism until) they are chocked by anal?sia or axpevi~_
mont., If he is a crmle, he mey oven see in”them a liberal
provortion of wishful thinking.

It was not posalible %o answer all the quaat&ons’originhxly



posed in recard to these matiers, bub In Fart III conaldeorable

- R ; 2, TIT ea. o “ b B Hrsgan, . B A .
success was achieved In studring the imrlicabtliong of the

2 &8 3 o 3t Loy e T g 4. 2 Lt W pe 2 e
princivle ¢f analvyitlic contlinuabtion, The clascical rnaradox of

the ldealized lowepses Jllter was shown In a new 1lirht, and a

genoral meilod was slven For answerlingy questions of the bype

v.'{

1,

“Gan I do thus-and-so?" when the dabta are pregsnted in analylbi-
i 7 . T
cal form.” Guestions vosed in the case of grarhically nre~

'3

sented data turned cubt to be unancwerable 1{ absolute exacte
ness 1s regulred in the answers, and reasons why Lhis ls so
N ) 8% '
were adduced,
#inally, iIn Part 1V, 1t was shown thab the ros:lts of the

rresent Investisabtions are in essentlisl agreement wiih the

n this rield, In Section (B}, Part

f

related work of cther@
v, it was found pogsible by uzing the results of Farh II and
fart III %0 sclve s nroblem nosed by VWallman,. Gn@ slrnie
reallzation of a filter »ossessing & prescribsd ammiistude
cheracteristic MH{w) = ? jw), = ‘ *ﬁgw)/wl wrs Jdlsmlavedthere.
Survering thls survey, one sees that the achievessnta are
rorhaps typleal of what theoretiolans can aceomplish “in

practice.” The guestions of interest bo the practiclan are

¥An affirmative answer here does not guaraﬁtee Lhat the
desired objective can be accomplished, of course, t Just
asgerts tzat theps 18 no bar to achleving the desir@é transfepy
characteristic, for exammrle, so {ar a8 the present studies are
concerned, ‘

oL course, one is gensrally content with semeth;ns lass
shan such an ideal answer, but the difficult and important
nroblensg of approximatlion arising here are outside the scope
of thls paper.



-y ‘? C‘ e

&, §
gquite sasy to stase, bub thelir systemabtlc investigation brings

in a host of complicationss

The theorsticlan dees not as a rule come right out end
say "Yea" or "Ho" witheout any qualifications; his answers are
couched in pseudo=legal lengusge and do not arply to a host of
exceptional instancesn.

#hat purpose, then, does the theoretlician serve? One
can reply only that smmetim@s his answers are helpful; If
both correct end nropsrly understood, they do shed some light
on the yroblem at hande. Fupthermore, the quallty of his
rroduct hes imprc#ad substantlally over what 1t used to be
‘and bids fair bo man%inua:to do 809

Onlr & thaerﬁtieian‘motivat@d by & grest and abiding
falth would meintaln that the Lheory will ultimetely cive
all the answersy but, with all 1ts Imperfectlions and shorte
comings, it seems to be cur beat hope 1f we are not content

just Lo dabbles

¥'can I do thu&nanafée?“ffdr*example,'
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AFPEEDIX 1

An Example of a Simrle Linear Lumpede-raramebtor Hechanism Ille

Suited to Analwysis by the Larlace-iransforsation msthod

Conasider this device:

LLLLL

K

~

L LYWL LLL LN L LN LS

M

TS S S NS ST
— X ——

It has only one degree of fresdom, It is composed of s rigid
mass i oand a 1inear {Fooke!s«Law) suring of stiffness raramoter
X, whose unstretched leﬂﬂt“ i he Viscous Triction (rebarding
force prevortional to relative veloeity) affects the nmass, with
coefficient Be Its eguation of mobion 1s (by Newton's Second

Law)s

Mx —B§~K[l~—-——“——*‘~ X .

VxZx hz

This 1s not a linear differentlial equation; attempts to solve
it by the Laplace~transformation method lead bto failure. Yeb

the components of the mechaenism are lineer lurpedepnaramebter



- 72 -

mechanicel elements.

It hardly seems falr to blamo the spring (whose stiffness
parameter L is azscciabed with the troublemaking term) for
this misfortune; it 1s doing its linear best, One has some
difficulty in putting into words the ﬁiatimction'betwean
mechanical and electrical networks by virtue of which em=
varrassing mechanisms such as this exist,

Eubarrassing it is, for any statements madse ahout the
general rroperties of mechanisms as e result of Lanlace~
transform analysis mist be qualified wlth the acknowledgment
that these statements do not naceésarily apply to the nembers

of a vast class of relatively simple devices,
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APPERDIX #2
Reversling the Order of Time and Space Integration

It will be here supposed that R 1a a one-dimensional
reglon; the exftension to arsas and volumes seems plausible,

It is desired to show that

2 o0

o f :
f{ﬁ,(x,t)e-’tc\xdtzj ‘g(x,'b)e-szitclx.

The complex variable 8 can be replaced by its real part o
in what follows 1f desired,

Expressing some classical sufficient conditions (Re23)

in the termlinology of the present problem, the reversal of
integration cder will be permissible nrovided

(1) ,G(z,t) exp(-st) # (x,t) ¥ (t), where & (x,t) 1is
continuous in 0 Sx5 £, 0 St =T (T arditrary positive), and
Y(s5) is bounded and integrable in O S =w,

(2) J.,G. (x,t)é‘ﬁt converges uniformly in 0 = x=4,

As re;;arda (1), since .‘.(x,t) is by assumption an Ee
function of the problem, any ziiscontinuiéias t=wise it pose
gesses can be charged up Lo an otherwise well-behaved function
‘Y(t), sc that - Plx,5) 1s oontlnuous in 0 St = 7, It is
quite unroasonable o suppose continuity of 4>('it,t) in =,
however; in eslectromagnetic theory, for exauple, discontinuie
ties in the field vectors at t.ransztiona bstween media are

quite common,
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Hovertholess s 4t L2 physically plazsible to assume that
@&zg t) is sectlonally contimious in 0=xz=A. It is
certainly bounded there, snd "extracrdinary” dlscontinuities
[auch 82 at x = 0 for g(x) % sin {1/:2)] quite rlainly imply
gpatial variation of ths field variable concerned in =a
fashlon not encompessed by the macroscopic theory, From this
standpoint, then, let us regard g,(x, t) [amd thus P(x, t)]
as continuous in 0 = x -ff.l, one of the finite number of
sections of continulity of “.(x,_ t) in this cne-dimenaional R,
The following argument need only bhe repested for each of the
othar éeatziana.‘

As regards (2), he requirement will be met in 0 = ‘ﬂl
provided there exists a function *‘n(t} ¢ such that l{(*,t}e‘t“
m(t) for 0= x= 21, 0= b, and fm(t)dt exists (R«23),

By virtue of the ﬂa%.)ﬂﬁﬁiﬂ"‘% aboutb .G(x, t) made above, 1%
18 certain that a function m{t) 0 exists such uh&tw,(x, %:)‘-
M{t) for 0 S x = 1° 0=t. 3({t) cor res;mmla to & Pevariable
that is in a sense a physical observable, so that 1t 18 not |
unreasonable to sup?ose that #({c), teo, ls an E~function of

the provlem. Thuas

H(“'t)‘t’t) = e-ﬂ]{(x,t)\ = e“q;tM (t) = é_”mmef"tzm(t)

for O z =Q 1’ t = (3. One has only to take 0‘74-% to assure '
the existence of Im(t)at. Thus the demonstration is completad.

This 48 an appropriate plmoe to ocall attention to one
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assampbion ¢f fin

leg sxpreszly made regarding all sysbtems studled in thls puapor.
Une quibte vessonably supvoses thet Kx, v, %, U} is scctionnlly
continuous in space throughout the sysbtem, so that en e
function M(t) = O oxlisbs such that ‘g_ézzz, ¥y %y ":)l = mit)
throughout the systom, This is not necessarily trus for an

unbounded aysten; a3 a counborsxample, one mirht clte a cer-

Lain sanl-infinits tranonission line,

One cen periaps imagine a transient situation in which
vi{c) 1s finilte but the voltaze batween conductors ilincroases
without bound with x. The diameters of the conducters and
thelr spaecing grow with x in sach & way thet the marnitude of
the electric fleld strength & never exceeds any assirned valli@e
Clearly, then, no majorant %(t) can exlst for the volbage

betweon conductors.
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at 1
Surpose

I L Ao g e, g B Loy 2
Gounbtaerexauple to Jepcse a Certain ilvnothesls

0o phmas. $e%qd P
Considser this syshem,

[u p-sarface A

et

)

sical elsciromapnetle thecry, 1f tieo swi

0, then

' = éB(xA»‘SA:'EA.\*—)
3t

A.A £fonr

h Y

that Blx, v, B, v} = O for t < 04 Trs

el 5 iz glosaed

t >o.

Wi e
neforming,

8ince L{Xp, ¥as 255 oty =0, 12 s?(xé«i, Yas 239 2) i3 to have

the samo funchtlonetheorstlcel characteristics as /3, then

Tas 2ps 8) must be of che form ‘b(xﬁ, Vi

s ZAs t) = g(xﬁz, Tas “?h}.t for £t> 0.‘

3&3/ﬁ2’ and
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By taking a rather svecial cap-surface & havins a
probuberance as shown, cne concludes that £ at polnt T 1is
difforent from zero arbiirarily soon after t & 0, DBut this
is in direct dlsagresment with tho well=known eleciromagnetlic
theorem Lo the effect that b at P will not change {rom zero
unbll after at least a time inbterval T % f—/c, where ¢ is the
frae~space veloclty of elecironmugnetic-wave propagation, One
maab, tﬁaéefore, discard the hypothesls on the functlon=
theoretlical properties c,f:g(xﬁ, Tao Zps 8)e

It 18 parenthetically noted that this result resks on
a firm mathematical foundation, although the discussion above
does not recapitulate 1t. The deposed hypothesis may be btrue
for a different class of squations (those which imply "“actionw
at-a=distance" ), bub it seems doubtful that such equations

describe systems of physical interest,
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APYENDIX #l

Another Instructive Counterexawnle

Consider thls electrlcal clrcult, Initlially without
storage of energy.
s UL

¢ R
Vlt) ' C

I

e
—

©

Its transform eqguablon of motion is
- \
V(s) = I(s) [R+ <5

or

sV(s)
T(s) = R(s+ g= ’

Suppose shat vit) 3.V, exp(~at), a >1/kC, Then V(s) 2

V,/s 4+ a), and

T(s) = (;’) =

(s+a)(s+ 2

v{s) is holemorphic for T>»«~a, I(s) is holdmoz‘gxhic forpr

o > ~1/RC > -8, @& loss axtensive half=plane,
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e

The Hell-Planes of Holomorphy of Fis) and F(x, ¥y 2y 8)

Claim: The half-plane of holomornhy of F(s) is at least

oztensive as that of OF(n?, s

£

ms 8) for any {xp, ¥yn, 2l In

The demonadtrabion wlll be nmade for tho cage of B a onee

dimensional reglon, as in {5-2). By definltlon,
~st
:F(X,S):: ,g_()‘ t) e d*

< <
in 0= xzﬁ, and to sach x there corresponds a ninimal (op

most efficient) T{x}, so thabt the half-plane of holomorphy of

'F(x., ) is o>z}, YNow, since {{x, £} is by agssumntion

A

k- . < - "
sgcetbionally conbinuous In 0 =x= £, thereo exists & function

oy > 4 . o\
¥{t) = 0 such that I%{Xs ))é (s, o=x=14, 0 =t.
Just as in {(4-2), 1% is not unroeasonable to suprose that

H{s) 46 an E=function of the v»roblem under study. Thus

'»G(X,t)é"t,‘*é.rtl«g.(&*), Z e Mlt) ~°'th2”1.~

for 0 =x=4, 0 =t. It is plain that none of the (minimal)

~g ¥
,‘(x,t}e dt exists for T 24
©

throughoud 0=x=4 . Thus the o(x) are bounded 'e!:;ove, and a

o x) oxceeds an, since y

lsast upper mound o existe such thab
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{1) ](z{, ¢} is holuacrphic for e>o, 0= xS £, and
kY " o 2 e g 2 . sl i N a % e

{2) Glven any @€ > U, thers 13 at least one e U

- 4

=
h thab ’F{xlg 8} 1s not holouornhic for T«O>U-€,

{(which 18 gsecticnally continuous in 0
whore )@(x, £} is conbtinaous x-wise., By claaslcsl criteria

»

(R=23), '::(x, 5} 13 conbinuous xewize In O

A

2, |
F (s) = J'fr(x,s)n,

it is ssen (F=25) thab Fl(s} is holomornhic at least lfor ¢

e

The same nrocsess is caryried oub for each of the finite number

continuity of gj::, t} in

£ Iy yE Ll e b long L,
{say, nel} of cther sechlonsg of

. < < y o y
U= = KL; the conclusion is that

R .
F(s)= | TF(x,9)dx = F (s)+ Fals)+: + R, (5)

=4

nolomernhic ab least for ¢>o, which was to be proved,

&

&

[
¥
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PIEEDIX 6
Invariance of the Transfer Characteristic T(s)

Buppose that any other admlissible foreing function fl(t)
{not 2 O) is applied to the syatem In the same fashion as In
Section (D), Part II, giving rise to a slullar response fance

tion ge(t). Just as before, the transfer charscteristic is

Now, put W(s) = F,{s)/F(s). " Then

F(s) = W(s).F(s) = IW(s) F(R,s)dR =f’F, (R,s) 4 R.

Maltiplying the original linesr homogeneous transformed equa-
tions of mobtlion and z*émaining boundary conditions (which are
all appropriately linear and homogensous) by W(s), 1t is
apparent by inspection that Y,(R, s) 2 W(s)Y(R, s) satisfies
ell of thems So, | ‘

G (s) fﬂ(n,s)AR L@C’)&(a,s\m

T,(s) = .
! Fu(® j “F, (R,s)4 R w(s) TF(Rs)R
R _
QI(R s)AR : g
f = 6(5‘ — T(S)

L.q: (r,s)dr  F ()



w (32 -

This eateblishes the fact that the tranafer charescteriastic
T{s) is Lndependent of the forcing function £(t), and 1s
thus determined solely by the composition of the nhrsicael

system itself,



APTENDIX $7
Other Ways of Introducing "Cause®” and "Effect” Functions

In Bections (C) and (D) of Part II, extensive considerae
tion was glven to linear distributedeparaseter systems of
riniteISpatiaE sxtent in which the linear partiasl integro=-
diffefontial_equations of motlon were homogeneous, In
addition, it was suprosed thaet the inltial velues of certain
field variablea and some of thelr derivatlives wers 2ero; that
the foicing and rosponse functicas entered the nathematical
specification of the problem via integrals of field variables
over domains in space; and that all other spatial boundary
condltions transformsd Into linear homogeneous algebraic
eguations of e certain srecified byye.' The transfer character=-
fatic T(s) was defined Tor s system of thislsovt, and we must
now show that such a function can be dlscussed in the case of
vhysical systems differing in sowe particulars from those such
as were described above, |

Fisst of ail, 1t mstters bub 1Ltble how Hhe Tsaponss
function enters the problem, It may be simply the value of
a fleld variable at some point in syaoé,lfcrvéxample, All that
counte ls for 1t to be a sort of sum of {leld-variable values,
30 that the linearity of the egquation G(s) = T(s)*F(s) will be
pr@éerved‘ _ 7

Mach the same thing ls tru? of how the foreing function
enters the problem, It may daterminalﬁhe value of & riold

varisble at some point in space, or it may even enter the
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rartial integrodifferential sguations of mo@ian.bhemselvasg
rendering thom inhomogeneous though still linesar. As long as
the dependent variables of bthe problem are chosen to glve
zoro initial conditions, and the remaining transformed spatisl
boundary conditlons are linear and homogeneous with cooffle
cients as specified, the development of the ayétem invariant
T{as) will follow without d41rficulty. The exbanasion of (4=5)
to the present case offers no great rroblen,

With this background, then, completely general anvlica=-
bility will be claimed for the notion of the transrar character-

istic T(s}.
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APPEIDIX #8
The Half=Plane of Haiomovghy of T(s)

As stated in Section (D) and (E) of Part II, a "cause”
£{t) applied to a member of a certain class of physicel systeus
gives rise to an "effect” g(t), and the tranafer gharacteristic
of the aystem ls defined to be T(s) % G(s)/F{s)s Suppose that
the system 1s one whose squations of motion involve at wmost A
ntheordor time derivatives, so that it can tolerate an nthe

order inrut. That is,

f(tY= o, t<o

f(t)= ‘t') t > o, n=0, Ly Bgs 5oy

nel
Then F(s) = s';"';, (R~15), and T(s) = -‘-Z-_?—L‘i') « G(s) is holo~

morphic fopr o~>7ﬁ{g(b)} by (E-24)s It %8 plain that T(s) is
also holomorphic for o>u{z(t)}, some real number,
This, then, displays a halfeplane of holomerphy of T(s),
since T{s) is invariant with respeect to inputs £(t) by (a=5)a %
A related striatly~trénafoam—theoreﬁicnl result may be of
interest, Suppose that d(t) [not a null function_(ﬁuzﬁl] is
transformabls, and a(o®) ¥ Co D(s) (not 2 0) 1is &oiamorphia

“The half=-plane of holomorphy of T{s) can, of courss, be
rmich nore extensive than the halfeplans determined by this
existonce argument.
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in some half-plane O')VH{d(t)'s by (R-2li)s Then D{8) has no
more than s finite number of zeros in any infinite wedge~

region described by
, arq (s~ oy ) = 2 5

whaere U3, > 7 H{d(t)kﬁ

Proof's Suppose the contrary., The zercs cannot have a finite
point of ‘ecoumulation in the wedge-reglon, since that would
contradiot the holomorphy of D(s) for oy {a(t)§ (R=27).

The zeros mast, then,be "strung out” to the right in the wedge=

© reglon,
Ll ' s~-plane
A ‘—-.-P z //ff
0 £ an
assamed
zero of
D(s)

o fa(t)} “w \u

Consider Lim sD{s) a8 8 9% wlth complete two-dimensional
freodom in the wedge-reglion. By {R=-29), this limit exists and
18 equal to 4{0%), How, let us perform the limiting cperabtion
by travsling cut along a path which goes through indefinitely
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many of the (hypothetical) zeros of D{(s), This causes the
product 8D(s) to vanish occasionally; no matter how far the
journey has proceeded, sD(s) will vanish indefinitely many
times during the remainder of the trip.

But this impllea L%@;ﬁgya) ® 0, since this limit is known
to exist. However, Lim _gncgs) 2 34(0%) # 0 by initisl assumptions
So, the original hypothesis must be false, and the thoorem is

proved,
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APPENDIX £9
T(s) for the Hon-Uniform Transmission Line

Let us investigate the asclubtions of the eguations

d Vix,s) =~ Z(x,5)I(x,s)
d x

d T(x,s)_ _ Y (x,5) V(x,s)
d x

oc<x<X

subjoct to the boundary conditions

V(O,s) = V(S)
V(L,s)- Z+() I(L,s)=oO.

4(x, 8) and ¥(x, 8) are entlre functions of sg,” and Eg(s) iz a
rational function of s,%¥

If we suppose thet the line 18 neither shorte nor cpens
circuited [V(l, 8) 0, I(L, s)*E 0), then the problem can be
restated in this way: ' | -

Ty function qals) of a complex varisble 5 is sald to be an
entire function i it is analytic and single~velusd throughout
the finite s-plans.

#mnls exasple illustrates the mannmer in which linear lumped-
paramctor sub-systems are assoclated with linear distributed~
parameter systens, and indicates a reason for the epecification
of mdmisgible boundary conditions made in Sechtion (D), Part II,
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_J—'—(-\L(_x-lds_)_] S Z(x)s),r(x S)- Z (x,s) I(X s)
dx\ V(L,s) . Vg, ) P I(E,s)

(o< x< )
d [T(x9 _ Y(x,s)
[IU. ,)] T (l,s) X,s)= - Y (» s)zT(g)[v(x s)'j
(exx<l)

[V(xzs)] -
V(4,3 -
. x=f

[I( x,S)] ’
" ll, 5) x=4
Here 1z s (translated) thsorem on differentlal equaiions

by Born (R=306):

“In the system of differential equations with paraw
nebers Mq, Mo, vse

43; ,3.,,., q",/“"“z,...) (é",z’sa-“)
d x

let the functions fi as well 88 the derivatives g—:;‘"’
Aaf.  of:. ¥+ '

» e»s be continuous with respect

Tt dgn’ du’ Ju.
to all the arguments X, ¥1, sse Yny L 1,42, cee in
a cerbtain domaine Then tée differentl ai~eq natione
satisfying functions y¢ (1 # 1, 2, +es n) which ars
d@tamiz*e& by the initial conditions x ® a, y1 B 03,
see Yn ¥ by (1n&apen&mt of My, A3, ese) a8 well

R ,
as the derlvatives —%‘ ;,%:_, see 8r9 contlinuous
funetiona of the vari able x and the paramets?a My,
#2' Q‘Q'“

This ‘s lust a vreflectlon of the fact that the integrals
of linear ordinary dlfferentlial equationa can have no other

singular points than those of the coeflicients, ‘ The ap;%licabil-
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i1ty of the theorem to our r@sthﬁed problem 13 eovident; we
neod only identify a with s, x & a with x =8, [v(x, s)/
#1ith unity. Since the only singularities of the f; in the
finlte se-plane are poles arising Irom the poles and zerocs of
Zpls), we see that the functlons [Q(x, 83 /v (g, s}] and
[I(x, s)/1(p, s)] cannot have singularities et other than
these same polints in the {inite seplanel

The functionstheoretical aspects of the matter are
smphasized by Goursat's statement of an eguivalent theorem
(Re37) s

. "§g often have occasion to study systems of

linear equations whose coeflficients are analytlc

functliong of certain parameters, Lot ua suppose,

for definiteness, that the coelficlents .40 of the

equations ... 8re contlmious functlons of = in the

interval (&, b}, and that they derend also upon a

parameter A of which they are snalybtic functions
in a region D,

: “The integrals of this system which take on
glven initiel values for & value X, of x included
between a and b are represented in the whole
intervel (a, b) by uniformly convergent series,
and from the very manner in which we obtain them
it is clear that all the terms of this series ave

- anelybic functions of the parameter A in D, Thsae
integrals are therefore thenselves snalytic funce

tions of A in the region D" _
Some doubt as to the applicabllity of this theorem may

~ be occasioned by 5§aras£'s plainly stated requirement thatb

the point X, (where the values of the dependent variables are
épaeiriéd) is included between the end rpoints Qf the interval
(ay b)e In the problem at hand we 1dentify x, with f, end

{at first sight) (s, b) with (0, £), since that is the location



of o transmiszlion line. This‘i?ocaﬁura obwicusly deoes not
meet Goursat's conditions, and probably violates some of
Horn's ifapllicit assummtions as well, |

To get oub of this predicament, we mav ilmagine that the
restated squations above apply In an extended ranse 0 < x < 24,
The valuea of Z(x, a8) and Y(x, s} in £< x £ 20 can be taken
to be equal to their values st x = 2 s bhus maimtaiﬁiﬁgvbhé
continuity of coefficients which I8 so i portant In the thaeraas.
It might be possible to clve a physical interpre ation of this
mathomatical artifice, but there is no necessity to do so,

If (referring to Goursat's stetement) we take as the
rerlon D the finite s=plane exslusive of small neighborhoods
of the poles and zeros of Z,(s), then [ﬁ(x, 2) NV (L, )] and
[;{x, s} /10, s)] mast be analytlc throughout D. HNone of
thelr singularities can beé branch points (the requirsd branch
cuts would trespass on D). |

It 12 not so easy, hHowover, to decide that no sssentlal
_ singularitiss cf finlte affix can occcur in these functions,
This aspoct of the rroblem is investigated In (A=~10), where 1t
19 shown that the singularities of [ﬁ(x, a)N(d, s)] are poles
agreeing in position end order with hhé éerc& of z?(s}; the
sinrulerities of [i(x, a)/l(ﬂL s)] are poles agreelng in
position and order with the poles of %, {é). :

Since the zerosz and poles of zT(a) are finite in number,'x'
[’H:{, s)/vif, s)] and[i(x, 8)/1(4, s)] are both., then. .
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mercnorshie functions of s.¥

Suppose that the transafer charasteristic of interest is
the Iinput impedance 31(5) at the input terminels (x = 0) of

the line. By definition,

{V‘ays)—

. V(o)s) ) V(l,S)J

Zr(s)= Tles) 2 (s) 1(o,a)]
- I(L,s)]

since V(f, 8) = Z?(3)°I(2, 8)e 2r(s) 1s a ratlonal function,
while [V(O, s)/V(L, sf] and 1/[?(0, 8)/1{L, a)] Are neros
morphic functlons. The last part of this consclusion follows
since the zeros of [I(0, s)/i(ﬂ, a{], élthough tsolated, are
not necaszarily fi?iﬁe in mumbere We are led Lo conclude,
therefore, that Ex(a), the product of Lhese functions, is &
meromorphlec function 1sself, G. E, D. Note that this transe
fer charscteristic, being an invariant of the system, is
found without explicit knowledge of the forocing~function transe
form V(s),

For the special case in which R, L, G, and C are uniform

Ino=x= f., it can be shown (Re38, com;;éve A«1Q) that

*jo cannot assert that they are prational functlons of s,
since the theorens of Horn and Goursat do not glve directly
any information about the sxact behavior of the functions in
the vieinity of "s # oo ," where Z(x, 8) end Y(x, s) have
slmple poles. Indeed, the example considered in (A«10) shows
that the solutions can have essentiasl singularities at "s =@®."



- 03 =

z(s] sinh (VECS)IY(3) L) 7
cosh(WEGSIYO ) + lz-o | T2 vy

21 (5)2 2'1- (S)
2. ()Y (s) [“" S AT g)] ces hWZE) V(T Q)]
A

~ (sSY(s)'

agrecing with the general expression for Ew(s)u

It fg intsresiing bo note thabt the singulerities of
Z2y{s) are not necessarlly ihese of Z%-(s), as ls »roved by
considering the case % (8) ® Ry +0, a constant (resistive
toarmination of the line)a.

This 23(3) 1a an entire function which never vanighea.
Any singularities of Z_{(s) come about, therefors, by the
vanishing of 1ts bracketed denominator sbove. If we
spoeclalize to R S 0, G < 0, L # 0, ¢ # 0 {3dissinationless

ine) so that Z{s) = 8L, ¥(s) = sC, then

o oot (i) + TAE sink G 25)

Zr(s)=
T ,-R-‘.,J:-E. sinh (\,Lc- 95) ~+ coﬁ‘\(\ﬁ:—exf)

If Bp 8 4 LG, then Z (s) = Ry for all s; the 1line is
terninated in 1ts “charaoter¢stic impedance. If R.>~ L/C,
then Zl(s) hes a {simpls) pole at s BT = -[artanhuz,/ﬁﬂ.fe )]/

<‘LCKQ » and perhaps cther singularities elsewhere as well.



For complebensss we shall consider the openecirculbed

line, spwcifically excluded Ifrom the forenoing development,.

Hobing that V(L, s) ﬂ? U, we can restate the vroblem in this

d (Y2 = =200 [ﬂw]w

AK V(x)s) V(’QJS)
‘ v osx< Xl
4 [T ( V(x,s)
LV | = - Y9 {"\7(7%'5
Vix,s) _
VI£,sY |, .4 |

I(x,s)
[V(ﬂ, s>} g -~ ©

Since %(x, 8) and Y(x, 8) are entire functions, [%(x, s}/
(g, sﬂ and [?(x, s)/vid, sﬂ are entire functions too, by

the theorems of Horn and Goursat stabed sarller. The inoud

irmedance of the line is

; ) (o s)
_ Vle,s Y(fis)
Zx(s) = I (0,s)  (Lloys)

V(4,s)

and 1t 18 certainly a meromorphic function, possibly having
poles at the (1solated) zeros of [?{0, s) /L, sf].

The consideration of the shoptw~circulted line 18 guite
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similar, and the detalls will not be glven here,
So much for the input inmpedance of the lina. Other
transfer characterliatics may be studled; if we are interested

in voltage trensformation, then

{vcx,s)" "VIX,S)]
V(x,5)  |V(4,3)] | T (£,5)

Vio,s) [ﬂ:_)_'l fvio,s)
V(R,s) | T (4,5

A(s) =

is a meromorphic function {(the last vrart of the expregsion is

to be employed in the caese of a short-circuited linsj,
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A Supniement to Aprnendixz 9

[ 3 s

Since this 18 an 4ppendix to an Appendlix, it should be
nernlasitle to restate the restated vproblem, We are investip-

ablne the proporbies of the solutions of

ZT(S) é.d_.t]___x(xi.)- = ~ [R(X)‘fs L(X)] N(X)S)
o<f<£
d N(x,s)
d x

= -~ fé (x)+sC(x)] Z+(5) M (x,5)

2

gubisct to the boundary conditiona

n

M(L,5)
N (£,s) = I.

It has been shown in (A=D) thad #{x, ) and H{x, 8) canm
not posalbly have aingalarlitios in the finite s-plane at other
than the poles and zeros of the rational function Z.(s). Ve
rragt now determine the examct nature of these singulariti@s,
mowing as vet only that they cannot be branch points,

Suppose that Z.{(s) has & ptheorder pole (p >0) at s =
S,s & finite ?Oiﬂﬁ In the s=planse, We shall now show that
E{x, 8) 18 enalytic at s 8 8, and that K{x, s) has a pthe

order pole there,
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The Laurent'!s~series expansion of Zp(s) about s 2 8, can

be assumed knownj

ZT (s) = ch (5’5"3“

n=-~p

thrcughout'aama annul ar nelghborhood of 8 & 8 e Let us try

to determine the functions an(x) and bn(x) in the expanalons

o

M (x,5) = 2 an(x) (552"

nNso

oo w
N(x,5)= > bu(x)(s~s) .
n‘-l~P

In order that the boundary conditions of the rostated
rostated problem be satisfled, thoss coefficlent functions

must satisfy

q,(ﬁ) = |

ay, ()= 6 n=2),2, ...

and



Subsbituting the expanslons into the eguations of the

problen, we geb

P o
Zc,‘(s-s.)“ Za,’(x) (5"5o)“
" =0

== P

[R )+ 5oL (x) + (s-so)L(x)] Z by (X (5~50)
n=-p

and

Z b, (x)(5-5.) } = ~[@ 00 + 50C(x) +(5-5.)CCN)

n=°?
[Zc"(s So ][Zan(x)(s-soB—} _

Equating the coefficients of (s-a,}"F in the two equations,

we zet the subsgidiery diffareﬁtialquatioma problem
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P

copde () = = (RO +50L )] b_,(x)

, c»<.K<;JZ
bop (x)= ~[6()+ 5 COI] c_pas(x)

ao,(Q) = |

b_P(K) = O.

The solutlion of this problem vlelds functions ag(x) and
b_p{x) which ave nob identlcally zorc..
mquabing the coelfliclonta of (s—ao)"?+1, we gelb the sube

sidlary differentlisl-squations oroblem
°~P“,‘r(") +c-',+.4o'(x) \
=~ (ROITSa L0 b_py (8)~L (¥) b.p (0

vo<x<h
b.,,i. (x) = = (6 () +5,Cx)] (c-pa,(x)t C-ptt Ao0)]

— C- (X) C_.P QO(")

x,(2)=o0
bopr ()= [ Ffer p=1

b_P-y., (,Q) =0 for p= 2,3’ cos

) ¥rad wo assumed highereorder singularities of k(x, s) and
H{x, 8) at 8 B 3,5, we should have come up with differential
egiations and boundary conditions satisfied by solutions which
vanlsh identicelly, showing that the higher-order sinsularities
were not really phésent,
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The solution of this rroblem yields tho functlonz ag(x)
and b”ﬁ*l{x)' It 18 olear thabt the rrocess can be continued
step=wise, slliowing each of the functions a,{x) g
and b, (x) to be determined, Thus the hypothesls as to the
behavior of %(z; 8) and N(x, 5).15 the viﬁiﬁity of 8 %8, 18
verlfieds _

The analysis of the behavior of M{x, s) and N(x, s) near
& zoro of Zy(s) 1s, by the syrmetry of the rroblem, quite
simllar to the foregoing, so that if Zr(s) has a gth-order
gero (@ > 0) at 8 & 8., a finite point in the s-plane, then
i{x, s) has a gtheorder role at s = 8,0 and T(x, 8) is analytic
there. |

1t 18 of Interest to check this analysis by comparison
with the known results for thé ordinary tranamission line,
in which R, L, G, and C are uniform in O‘f—-—‘ x=4, It cen be
shown Cafter a 1ittle manipulation of some results in ’

(R=38 }] that

Vi) y z (s)] [sm h [Nz YT (R-x
[v(l,s)] sh Jz(s)mi'(f )] + [ ol oo |°

where Z(s) = R +Ls and ¥(s) ® G + Ca, Thus the poles of
[?(x, a)/V(ﬂ, sz] agroe in position and order with the zeros
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T(xs)] : x ) sinl (JEGIY(3) (1”‘)]}
[m] = eosh[\lE(S)YCS)(ﬂ ﬂ"' ZT(S)Y(S' m

has poles which agree with those of Zr(s)s This agrees

exactly with the general analysls above,
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APPERDIX #11

Explicit Continuation by Borel Summebion

-

Borel's method of sumsetlon is dlscussed in (B-53, RB-0i,
R=55)e The procedure is as follews: Suppose that we are given

8 power soerles

e "
f(s)= ans
n=: o

whose radius of convergence ls unity. With this funchional

alamsnt we assoclate an entire Munctlon

Al

P()= > s

U=
fThen the functlon defined by the integral

£, (s) = yé‘t $(st)dt

is exactly equal to f(s) within the circle (sl £ 1, What is
nore, the intszral converges and represonts an analytic funce
tion in the interlor of a ocartaln convex polygon which is
of'ten a more sxbtensive rezion than the interior of the unit
circles Thus fl(a)'rapresehts the analytic continmuation of :

£{s) outside the unit cirocle within the polygon. The integral



“'103““

diverges outside thils polyson, by the way.

- As an example of $ne methed, suppose thal

£l s i s".

N o

The cirele of convergence of this sories 1s certalnly [s |2 1,

and a, = 1 for all ne The asscciated entire function is
)= 5 oS
¢($ = _.S_-. -

by comparison with a welleinown serles expansion for exp(s).

Borelts integral 1s, then,

e i
f [Tt e [ Toy,

L -4

This integral converges for o % Re(s) < 1, so that

|
I-s 2

< |.

£,(s)=
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s~ Plane

e ——

P’
pis

A f(s)detined

e N, (ddefined

In this exawple the (degenerate; polygon of summability
is the entire halfeplans v< l. If we expand fl(s) ina
Taylor'a series about 8 = 0, we dlscover that £i(e) £ r(s)
for s\ < 1, since the corresponding coefficlents of nowers
'.of 8 are egual. So, fi(s) is the unique anglytlc continuae
tion of f{s) outside the unit circle in the recion o<1,

Of course, we could have summed the seriaslfor £{s) by
inspection to begln with; one suspects that sontinustion by
Borel's method is not of great utility in nost practical
cases.‘ However, the existencs of the integral oxpression for
£1(8) outalde the unit circle is a confort and a reassirance.
¥ost euthors merely prove the classical uniqueness theoreus
of analytic contlnuation, never oven tﬁying to carry oub the
Process, | |

Nobody seems %o have taken the trouble to continus a

’,Lauranﬁ's~acéiea functional element® by Borsl surmation., Since

#3u0h a .serles is just as good a functional element as a
power series. ‘



the Taylor!segscries portion of a Laurentts series offers no
difficulties, let us omit all but the negabive-exronsnt terms,

Suppose that

6(5) = Z. b"n

s

converges outside the unit clrecle, divorging for sl < 1,

With this functional elemsnt we aszoslate an entire function

EE b A
6(s)= "_. S

Then

ﬂ|<s)=fe‘*e(§)4t

is the Integral of interest,

A8 an example of the method, suppose that we aere glven

3(53'= > -L-‘

“
nx, S

This series converges for (sl > 1 and diverges for (s | <1

b, * 1 for all n, The essoclated entire function is



s" s
=l

o
8(s) = e —|
PRy

by inspection. The integral of interest is

3 (s) = [é_t[e%—l]dt = ;e:-('ﬁ Jg)tdt - l.

[ —J

This integral converges for all points s for which hke(l~1/s)>
0. This is the region (T~"%)2+we > ( "2 )2, the exterior of

a certain cirecles, In this reglon, then,

I
_ : —) = _S |
3‘(5)“ = =% s~ s ~|

The Leurent's-serles expansion of gl(a) about 5 % 0 for |8l > 1
agrees with the origlinal expression for gls), so that gy(s) is
the analytic continuatlion of g{s) inte the portion of the

unit circle outside the circle (o ~Y2)24w? & ( ¥%)2,



s—plane

3(s>d efined

3‘(5) defined

ﬁ1{33 and flis) differ only in sign, and thelr boundaries of
exiztonce are an Inverso nalr with reswect bto the unit

circlo,
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APPEVDIX #12
The éigmficance of a Certain Hestrlction on T{s)

It was shown in Seotion (E), Part II, that T(s) cannot
incresase in magnitude fastsr than a¥ a8 8 P in ny wedgew

reglon deseribed by

|arq(s-a,)| £ « <.”_/a ,

where 0. > G'g{‘?(sﬂ;. '

Conslder T(s) # exp(st ), where t, i positive., This
proposed transfer c}mraeteriatig is an enbire function (thus
possessing no natural boundaries) snd is real for s real. It
does not satisfy the requirement stated in the first varagraph
above, since l‘l’(s)l-»aé "too fast™ as 8 >»00 in any wadge-

reglon described aboves Hore explicitly (taking o3; = C), since

S = ,S,{coé’[a\hs(s)-} + Ss}q (:qu('s)]]’

..l‘arc) () £ X < T

4-05'(:4"3(5)3 = cos X 2 ©,

Laen



|T(5)\ =exv(i‘a°’) =ex P{ ta ISlcos [ang (2]}

RG] = enx F{t“\ cos o ,5.}.,

and since t& coso > O, |‘1§s)|-—>w faster Lthan any l:-z“ \ =
1 oo Ban % L L PP §= 8 e
‘nl* by a welle=lmown rrovarty -of the reel szponentlal functlion.
This negative conelusion isg quibts understandabile vhen we

consider o Just what sort o

w
3
G
s
o
et
s
=5
; '3
$

=

lawed T(s) corresponds.

R fa E
that. a tranafey

totle equal bo expistas) (La>0) vvuduces a deley of by unibs
B [y LS + R AL 3
b B LR o — & i wu e X 9 WU ) b ey ep D oF s
off sime of the ovabpab sipnel glt) behind the inrub alirrnal £{t),

[ad

wo feo oheb Tls) = @Jﬂ(‘aﬂ} { ” > ) wmould rroduce an oxbrut

2 2 Y 2 0 i B s ¥ e LY g . TR g
siznal o(&) ieh enticlipates the inpub sional O(L) by by il

of time. Such a predictlicon device for arbitrary intat fanebtiom
£{t) i3 certainly nonsonsical.

Thiz ceause=and=aflect concluslon 1s exachly the esszentlial
feabure of the Paloy=Yienerewallmaen critoerion discuszed Iin
Segesion (&), Fart IV, Though that criterion and the tesis
developed in thlg raper arge by no neang equivalent; there
soons o be a close connection between thenm, 3ince both cone

o Fourler=/Laplace-transforuasion snalysis, this le rnob

supnrising,



The Senleldesllzed Low-Pass Pllber

For this device, with N(w) 3' T(jw)|,

M(w) = I, Iwli<|

n

M (w) e, Iwl>|.

The filter is low-pass for €<l thara 18, however, nothing
to vprevent ene‘s takking € > 1 and having ossentially a highe
pass filier, ‘

in e:;tiu&:,ring; this problem by the methods develonad in
Part II and Part III, it 1s easlest %o start with the ozpres-
sion for T{(s) suggested by the work in (R-(3) and then to show
that it has the proper r:iagnitude for 8 ® jw and fulfills other

requirenents on trensfer characterlistlcs in reneral. Consider

(R=0l;)

- "

-
T(s) = exp g_l.;;_e_ arctan (S)]

n

l“Js

exp |2LeacS. (o 4222)
P w222

)

exp [3 e ',:."z)]

where the principal branch of the logarithmic function 18 to
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be baken. T{s) i3 real for s real, and if we Introduce branch
cuis running in the negative T =dlrection Irom the nolints o 2
t1, T(s) is holonorphic Loy O'W‘,.{T(s)k T{s) has no
natural boundsrics. Lotsing s->oe along a rar s 2 ezpl] Q;,

lel< ™, , & constant,

I—ys | ~yre® -+~ 2rces &

-—

]

t+,s I+, res® T —2rsmb + r>

aprroaches =1-J0 as » a0, since cos & 7 0,
as r->o00, and

T(s):T[r‘Qse] ——9¢ar£3 "497,53 (—ji?)-]:: €

as r-»o00, Thus T(s) pass:aésas all the prorerties of a trans-
for characterlstlie derived in Section (fi}, Fart Il

Let us now deternine 'E.’(jw). The vath of obmrva*iom in
- the seplane detours to the right around the branch nm.,ts at

8 2 1 j, in the manner shown below,



¢
ot
fd
]
$

w '
s-plane
e =F
W=I§ p
) - - )
wieu) ¢B -
o
Branch
E Point
x -
- = wr ¥ - Branch
h Cut
Path
A — Studied
t
1

The craclial =matter here 1v the proper dobterminstion of

Los (t;j:) = Los l”) ,-{— [ar«s(l ,S)—-ars(li—JS)]’

23 the representabtlive polnt 8 noves along the path shown

”

o
Aka

he figure above through the ranges A, B, and C

saka QR

=S
For 8 % }w, Laa,l'_'_‘;s' Lo 3‘ | is & real-valued

function of w with odde-function gvmmetry vrroverties. Indsed

« 32 A Y]

-Lege ‘Hw - ~“'°ffel Log\'+w
n " l—w

(< €< 1) is ef%cuivel'y the phase~lag function which ¥Wallman
prosents (BE=G3), So this part checks out very well.

The investigation of the lmaglnary part of the logarithm



K 1 —_ o e e o o n B oy 2 ¥ T ST W S SR £ . % .
vhie renrsgentative polint 8 is that shown in the fisure abloves.

- . il Bhuey % cawn - S TP . T
1_'5}. the (1“'35}*?1&?&8 and the (1 + fﬁ}“;;l&:f’.uﬂ oh nabth booomeg

Iw\‘ Im)

The values of arg{li-js) and app{l 4 is

5]
s
O
7]
b
]
O
w3
‘5
o

)
L
O
e
=1
=
£

fVominen b= Ty g g 3 W 3 Y
for the ranges A, B, and ¢ of the nath.

Range Ar3(1~35\ Ar3(|+3$) I Los(lw’sﬂ

43

—

A - o ~N

B (o) | (o) o

C o T -1

Thug in range B {[wl < 1), we find that L83 (0) = O

and ]’?(jw)] = 1, 88 it should, In %he ranges A and C {lwl > 1),
we {ind that 35'%?3(~_§W)=Lose and l"{?.n,)l = €&, a5 1t
shoulde '

The given M(w) & ’ 'i’(jw)l has been checked sxzactly by the
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T{s) considered, so that we agres completely
this example. This T{(s) 1s not unlgue, since
factor exp(-sty) (53 > 0), for oxample, ulrghy
materially affectling the situatlon,

%o exmct ohysical reallzatlon of ihi
chwaracteriastic has as vet besen founds I the
meromorrhicity advanced in Sectlon (T}, lart

none over will be,

. s -, a4y ¥
118 nrovosad Cranzler

7 $a Y 4
hrnothesls of

v

u

Il, i8 correct,
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