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ABSTRACT

in invesiipation into the eblliiy of the Benedlet eguation to
deseribe volumetric and phase behavier in one-eomponent systems of the
1ight paraffin hydrocarbons has led to the following econciusions. In
describing only the volumetrie behavior of these compounds for both th

gas and liguild phases, the Benediclt eguation performs remarkably well

wugh the error in the predictions of this eguation iz considersbly

c.

greater than that aseribabls to random experimental errors, particulerly
in the reglon adjacent to the critieal. state. To make this sgued
predict aceurate phase behavior simulianscusly with acecuratic volumsitric
behavior for the ligquid and gas has been found generally imcractieal in
the absence of a modification of the equatiog itself, Such a modificaw
tion is proposed. Accurate predictions of the critiecal state and of

volumetric behavier for ligquids and compressed gases have been found

be incompatible requirements for this eguation.

Coefficionts for the Benedietl equation for the caleuwlation of
volumetric behavior to pressures of 10,000 p.s.i.2. for methane, ethang,
propane, nebutane, and nepentane are presented, Practiecal, zeneral
application of the Benedict equation necessitates the use of sutomatie
digital computing squipment, This limitation implies that an eguation
with a sufficient number of parameters to permit the prediciion of vole
umstric bshavior within experimental uneertainty would be a more useful

~starting point for devsleping techniques for perforning rapid therno-

dynamic calculations using highespeed automatic digltal compubing equipe

ment.



A DETAILED 5TUDY IN TdE APPLICATION OF THE BEHEDICT

ZQUATION TO CHE=COMPONLTY SYSTH!S
I, INTRODUCTICH

in equation for interpolating volumetrie properiiles of gases

X

cnids has severcl Imporiant advanitoges. It faeilitates intograe

s

and 1
tion and diffeventiation of these rwoperiies when such operations ars
roquired in thermodynamie caleulations as well as summa:izing concise
large ocmounts of experimental information., In the analysis of ithermo-
dynanic problems inveolving multicomponent sysiems, it serves as a point
of introduction for the offecis of conmposition, Since high-spoeed d4ip
eomputeré require that the computation routine be stated 1In precise awd
non-intuitive terms, such an equation bscomes almest indispensable Jox
the application of these computers in the sclution of thermodynamic

In rscognition of these advantages, Bensdict, Webb, and Rubin(l)
have proposed an em@irical eguation, 3, whieh meets many of the most

pragmatic requirements for an analytieal description of volumetrie be-

>4

3

havior., JAmong these requirements are simpliciity sufficlent to make its
application foasible in many types of calculations without saecrificing
acceuracy in predicting the thermodynamic properties at states of greatest
industrial interest, cenvergence to the perfect gas law, Equation 1, at

infinite atie ouatlion, and continuity in

P = RV | (1)
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representing both the 1iyuid and gas siates ab tenporaturas below the
.oritieal temperaturs., Because of the eﬂcnu:"“;ag regults obtained in
geveral preliminary investigations(2,3,4,5,6,7) .alo the effica@ﬁcy af
the Benedict-lebbeRubin eguation in describing both voluvmelrie and phase

behavior in light hydroecarbon systens, a detailed investigabion into the

utility and limitations of this equation as

agering ool has been
undertaken in the Chemical Englneering Laboratory al the Califernis
Institute of Technology. The first part of this investigalion was cone
cerned with develering maciiine method6,7) for handling routine calcue
P2 e * » ) ,{ o 2 S £
latioas of the coefficients in thils empiriecsl squalion of state and ef

the thermodynamic propertles of materials ?or which sugh coelfliciants

-

have been ealeulated, The sscond part, the subject of tnils thesis, hag

1.

bean concerned largaly with the study of the efficagy of this cguation
n deseribing the volumetric and phase behavior in ons-component systens,

A third part of the investigetion is concerned with the application ef

1

. g HH : ; 4
the Benediet eguation in the atiempt te make caleulations of thormodyie

.

asic behavior in multicomponent systesms more traciablo,
4in eguation of state expresses approximately the relationship
which has heen found to exist amwong the intensive siate properiies of

¥XE 4

temperature, pressure, and specific volume for systems composed of

specified molecular species., This relationship is called the volumetric

* .
The term coefficient denotes those parss of an expression which

are independent of pressure, temperoture, and specifiec volume. é
coefficient may depend upon composition, molecular welght, or grmmetry
of the molecule,

e Throughout this thesis "Benedict" will rofer to RBenelici,Webb,
;}iﬁd Rubin.

Specific volume is the volume of a unit weight of material.



behavior. Censiderable effort has bzen devoled to the a priori deduction
of the squation of state from nicroscoric consilerstions of statistical
mechanies and the kinetic theory of gases and of liguids, From the
engineering point of view, thess efforts hovs been rowarded with buid
moderate success to date and are primarily of qualltative interest. An
eapirical squation of state, such o3 the Denediet squation, represonts

an effort to deseribe the volumetrie beshavior and therefore the thermo=
dynamic behavior Jnr each subsltance In terms of uwniversal elementary
functions of the state properiies and of coefficients which characierlze

each molecular species. Values for these coclfficlents must be deriv

from - xp»r imental measursments of ths volumstrie behuvior ¢ fron & come

g..-.
*\Jn
r %-
f2e
=

bination of heat capacity and Joule~Thomscn coalfic
The empirical equation, then, represents an interpolation device and
sheds little light orn the behavior of thermodymnamic sysiems froz ithe nlcro-
scopic point of view, This 1imitetion is of practically no significance
in engineering thermodynamic caleulations howcver.

Thernodynanie célculations revressent 2 significant portion of

%

the effort whieh engineers apply to problens in notroleum resorvelr

P

mechanies, distillation, chemiecal processing, intern&l—ccnbusﬁisa ax
jet—prbpulaion engine design, and in the study and epplication of the
transport phen omenw; Bquations developed prior(6) to that of Bemattie
and Bridgeman(8) are restricted to rather low pressures for prscise
application in these ealculations and even the Beattie-Bridgeman eqﬁa-

tion, <, is of rather modest accuracy for states near the tuo—phase ragion.

B The two-phase region or the region of heterogensous equilibrium
refers to those states at which a liquid and a vapor phase coexist.
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ee to which it deseribes volumetric
ds is remarkcble, ince the Rensdict
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\vteq has bhe aie

Probably a polynomial or a rational function of golynomi alg will eventie
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cations, but the present need is an extensive testing of the magy hye

potheses about the atiributes which are
deseription of wvolumetric behavior,

not exhaust the topie, it does deseribe several

desirable in an analytical

Vhi ths following discussion does

tests which have been

8

# - ' 5
Liguid and vapor refer to the denss and to the attenuated phase

respectively when they coexist,

The distinction is unneecessary for

temperatures greater than the critical temperatwre or for pressures

greater than the critical pressure for one-component sysitems

.
% eI E,
oeeaues

the state of a fluid can be changed continuously without passing

through two=phase states,
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applied to ihe Denedict equalion o determine ite olfficacy in describe
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the volumeltzie and

Q

n

e
¢
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T*e discussion sterts with & consideration of the mathematieal

nature of the Benedict eguaticn and the conseguences of using this
empirical equation in developing thermodynanie relationships, Wext
the evaluation of the empirical coefficlents 1s considered from o

thecretical point of wisw. In many cases the criiteria of the quality of
these evaluations are intuilive so thad thelr applicalion in practice is

argely lhrovgh trisl and ervor. Finally the resulis of the ctiemnts

O

fod

to make the Benedicl squatlon meet o eversl of thess criterda are O

sented and an interprstation is adtempled,
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II. DISCUSSIO

The development of empirieal oguaitions of stale has hed a long

and active history. Most of the ivoposed squations have proviisd bub

»fect

a4

1ittle iuprovement over the simple relationshly expressed in tho o
gas law or the wan der Yaals syualtion, Most of tho more uselul squaiions
of state have been wriitlten in closed form witi pressuro reprascnioed
explicitly as a function of temperature and molal volume., In general
the‘solution of these aquations for molal volume has been rossibls only
in pover series represendtations. At this point a discussion of this

5. 2. n o

unfortunate aspect of the Benediel eguation will bo useful fa 1liusirale

ing the mathematlcal nature of this equation of sitate. & dlgeusslon of
the mathematical similaritlies and difforences bhotwsen the Bonedlel

equation on the one hand and several sinpler ennirical oxpressions on

the other will be useful as a basis for measuring the exbeni o

4 rerress

vhich the Benedict ecuation rovresenis. The greatest rotential anplies-

D Ty e e ey
L haelrnodiaiglic

(5

tion of the Benedict ejuation is in the commaball

properties of fluid systems. The rzlatlionship botween the volumstric
“behavior represented by the Benediet equation and the other trormcdinamic

behavior is complicated a8 will be shown in the fellowing analysis of

the mathematicel nature of the Benediet equaticr.

The term Bgnediel equation usually implles the pressure-ezplicit

form as given in Equation 3 but the tera might equally well amly %o uny

e
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of Eguaticns 4, G, and X w8 arce sehisfied

by the sans seis of valusz for oressure,
cal nolal volume, ¢ .

An explicit form for the temperature might he oblained by solving
the cubie esguation, 13, analytiecally(9). owevor, the resulting formulae

would be

[0}

xceadingly complicated and their forms weuld depend upon the

b

value of ithe diseriainant of the eguation in each case thersby resiricte

erred aprroach would involve

Q
il
=
@
o
5
o
»
3
@
sy

ing the utility of such £

the numerical solution of Equation 13 by iteration or by formula(9).

-

ba8 & zZraphical method for solving cubie equat of the

o

o1

E‘l

Klein(i0)deseri
type‘of Zyratioan 13 whieh has proven %o be perhaps the most useful methed
of ali. This procedure involves the use of a plot of a cuble parzbola
which applies universall; to 211 cudbic equaticns when they are reduced

zhsent, This nsthod

RN
o]

to the form in which the term of secon?d degrae

-~

is illustrated later when it is (lplieé in the calenlation of predicted
critical gtate propertiss,

The situation with fespect to Bquation € whieh cxzpresses the
relationship of the reciprocal molal volume to the temperature and
pressure is somewhat less tractable. The infiniic ssries ronresentation

of g is nol summable Into a closed analytic expression and for purpeses

of computing values for ¢ when P and T are given, an iterative solution

# In these equations and in mosi of the remainder of this discussion the
reciprocal molal volume, ¢ , replaces the smeeific volume as the
volumetric state property. This substitution largely evoids negative
exponents in the equations and vlaces ®infinite attenuation® at &
eonvenient point on the graphs describing volumetrie relationships.
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of Equation 3 is much the simplest approach, The convérgence of the
infinite series representing ¢ 'is limited to an interval along an
1sotherm of no greater length than twice the inﬁerval betwéan Py
the branch-point whers (‘aP/aé)T = 0. Pigure 1 shows the mannef
in vhich the partial sume of Eguation 9 approach the isothierm (solid
curve) deseribed by Equation 3 for propane at 190 degrees Fahrenheit,
Sinee a1l isotherms for temperattres below the critical temperature
have two branch-points, one infinite series in P cannot represent both

the liquid and gas phases. The interval of convergence, about p

Pys OF

Bguation ¢ 1s indleated in Figure i. A% the right end of this interval
the sum of the series oscillates infinitely and at the left end it
becomsé infinite monotonously}_ 4t least two such series would be re=
quired and in general the volumetric behavior can he deséribed analytie
cally only by the application of the principle of aaa;vtic contimiation(11,12)
if the equation of state is to bo explicit in reciprocal molal volume.
or in spscifie volume. The crux of the difficulty in writing equations
explicit in the volume functions lies not with the Benediét enuation but
with the multivaluedness of these functions with raspact to two-phase
mresgures. Polynomials and integral functions are aingla-valueé e&ary-
whare for finite values of the argument and thereby cannot rerresent
the'dependence of the volume functions upon préssure though'they serve
admirably in describing the dependence of pressure upon specific volume.
Equation 4 reduces to Equation 3 when ¢, 1s chosen to be zero.
The point éf=; op is the center of the intervél of convergence of the
vpowarbseries. Since Equation 3 ia'thé cloged form corresponding to the

power series representation of thes pressure as & function of recinroeal.



molal volume and temperature whon the expansion 1s about the poini al

infinite attenuation, it describes a regular fuaction for negative values

2

of o . Such a function is of uno interest thermodynamieally sinee
aegative values for ¢ are physically impossible. Thus, Equation 3
defines a function P, whieh corresponds to the thermodynomic quanbtity
pressure for a restricted interval of values of g only. The further
observation might be made that Bquation 1 implies infinite compressibility.
In actual gases and Tiqulés a change in phase to a relatively incompressible
type of state probably occurs for some large value of reeciprocal mclal
o B Bridgnan(ld), for exanple, has found water to exist as a solid at
.temperatures well above the triple=point temperature when the pressure
becones sufficiently highe If the aquat‘on of state is efficient for
pressures in the interval 0 < P_ £ 10,000 peSeicae, it may be conside
ered generslly satisfactory for most mresent=day applications in hydro=
carbon processing caleculations.

To obtain the temperature dependent functilons s for the roecipro-
cal-molalevolume=explicit form of the Benedict squation, the raeiprecals
of the power series representatlons of the témp reture dependent functions
pi are obtained by the methods outlined in Appendix &. Also the apiro=
priate powers of these functions are obbained and the sories of Equation 4
is reverted in the mamner discussed in this same appsndix. BEquation 3
"is a sufficiehﬁ description of.ﬁhé volunetric behavipr since it can be

solved iteratively for temperature or reciprocal molal volume when the

nead eyrises,
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The Power Series FEouation.

The Benediet equation is, in essence, an axtension of the
Beattie-Bridgeman squation to permil more acecurasy for prediections of
volumetrie propertiés at the higher values of reeciproezl molal volume,
The relationship of the Benedict equation to several of the simpler
equations is illustrated by comparing the power series eymﬂnsioaa of
these expreossions about the point at infinite alttenustion.

Perfect gas laws

P = Rlg . (124)

van der {aals equation:

P = BRI (1-Bg)taad | (25)
"7 .
| = Rlg 4 (BRT = 4)F +B 72 .. (16)
Beattie=Bridgenman squations _
. .')
P = Rfo . (BRT = RT™C) 6
= Rfq 4 (BRT = 4 ) (17)

+ (~B_bET 4 A - cB z«‘“‘g)s-’ o Be’zacﬁ'i‘“gc:z"

Benediet equations

P . FRig “BRT-A-GT“Q)&‘E (

4.(}"@"3 .\;_ T )03_), aa % ap g see

The zeneral powor scries representation of the eguation of state
is called the "virial equation of sitate™ ., This equation may be written

symbolically as in Equation 19,
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@

Po= 2 B1<:73‘ a (19)
=

The quantities B; are called the virial coefficients (15) and depend
upon temperature and composition but not upon prQSSUfé or the volume
funbtions.. The virial coefiicients have proved to be extremely useful
.in making theoresiiecal studies of the bhehavior of fluils since numerieal
values for the first three virial coefficients can usually be detormined
from very careful experimentul measurements, If Zquation 19 is diffope
entiated and evaluated at infinite attentuation then

AP

But since all real gases approach perfect gas behavior as the pressure

19 reduced without limit, it follows that

By = R (21)

Further, at infinite asttentuation

3(p/Bigl. = 22, = 27, ,0P. = By dZ. = Bof ée
ELEEA) = &), " G, T M1, T D

-

Cénsequently,
™ [
‘2 ¥ byTed (23)
(55 )p



o w2 T .
(ﬁ,(‘(u) (?35- s .i’)i (D"";q} = L-‘;/t}l {24)
dg='Togy ap<’ Ty

i

(25)
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‘The fact that B£/2 is of the order 10 when g is in pownd-moles

ol

per cubic foot, P 3is in pounds per square inch absolute, and T is

in degroes Rankine makes the accurate caleulation of the third wvirial

1

coefficient a particularly delicate operation at best and practiecally

N

precludes the experimental determination of the virial coeffieients

of higher order from extensions of this method, The second virlal co
efficient may also be obtained from measurements of the Joule-Thomson
coefficients when they can be extrapolated to infinite atienuaiion

along isothermal paths. From the familiar relationship

ép(?T/aP)ﬁ,m = T(g?/éﬁ}?;m - ¥ 186
it follows that
éép(BT/EP)ggm =, T(&P/@T)é;m - é{%?/@éﬁggm {27
FET/oFT
Substitution of Equation 1¢ into Equation 27 leads to
g§(5§/39)ﬁ’m = (TE/R)(aiBgT'Q}/aT)m (28)
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when evaluated at infinite attentuation, Equation 28 will give more
accuraté information with tGSpect to the dependence of B, upon temperae
ture than will Equation 23 primerily becausge the experimental measure-
ment of the Joﬁle-Thomson coefficient at low pressures is penerally more
precise than is the measurement of specifie volume,

The arguments of statistical mechanies(’) have led to wirial

coolficients of the forn

- - b .\mﬁ.“- % a2 E

where the quantities {Ei are the "irreducible cluster integrals®,

o e |
“ [ 4mprell « exp(~T/ k)] dr {(30)
o

=
ped
i

where

(28]

i = 4:6{(Pm/f)lw - (Pm/f)ez (31)

Equation 31 represents the lennard-Jones(16) hynpothesis conceraing the
nature of intermoleeular foree {ields for non-polar molecules. Stockmayer
(16) has proposed a modification of the Lemnard-Jones function for describ-

ing the intermolecular force fiecld for polar molecules, Rice and
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fiirschfelder(17) have recently caleulated values for the reduced second
virial coeffiecient,

At low densities Bguation 19 implies that only the first and
second virial coefficignts are of importance, Sinee all reasonzble
equations of state will satisfy Equation 21, a eomparison of several
propossd forms to describe the dependence of the second virial eoels
cient on temperature will be of interest. Inasmuch as the power serics
representetion of an analytic function is unique(18), the coefficients
of qg in Eguations 14, 16, 17, and 18 are apiroximetions of the same

gquantity if P is to be identified with the thermodynamie pressure,

Proposed Representations of the Second Virial Coefficlient

Egquation B2
Porfect gas ZET0°
van der Yaals BoRT = 4,
Beattie-Bridgeman - B,RT - 4, = cRY™
Benedict | BRT = 4, - CQT“g
MartineHow  (15) (B + BIRIT + Ay + Cp exp(=5.4757/T,)
Hirsehfelder © . (2~ Rr1/3) (3‘3!‘;;)5‘ (e /xT)
wheres F(€ /KT) = = M) ay ar
A kT rg or

Primes have been added to the notation of Martin and Hou in order to
distinguish these coefficients from the wirial coeffiecients where the
gymbol B is used with a different meaning.

**1nirschfelder, Bird, and Spotz(20) have evaluated F(€ /KT) numerically
for the lennard-Jones potentisl funection.



-] G

The virial equation assumes that P 1s a rogular function of ¢ when
g = 0. The validity of this assumpiion i3 not subject to either ex-

°

porimental or ithermodynamic proof, The virial cguaition cannot apply teo

the 1liguid phase as it is written in Fguation 19, since the series mmust

diverge for ¢ > g, for any temperature.

-

-~

Figure 2 shows the second virial coeflicient for propane as
caleulated from Equatioh,23. The valu=s predicted by several of
the proposed approximation funetions are also inecluded., The signifieant
fact presented by this figure is the approximaté linsarity of the gecond
virial coefficient with temperature for relativély lov values of reduced
temperature; This is.alao'indicated by the calculetions of Hirschfelder
(6). Hirsehfelder, Bird, and Spotz(20) show that the deviaiion from
linearity is significant only at temperatures abeve the Boyle point
temperature, BEven for methane at /60 degrees Falwenhell the deviation
is not very great., The nredictions of the approximation functions ars
not as good as might be desired, |

Mayer and Mayer(2l) show that the virial equation is the power

gseries expansion about the origin of o of

P = {(2[k7 1n Q] aﬂg)T

T
e
139)

S

‘where Q is the partition funciion. Consequently, the appropriate power
series expansion for representing the pressure of condensed states would
be the expahsion of Equation 32 about some ¢ > G, .

The virial equation can be considered to be the Laurent series

expansion of 'P about the singularity at V=10 , The
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difficulty of assigning a2 preciss experimenitally-confirmed valus to the
limiting specific volume of a substance as the pressure upon it becones
large without limit introduces some unceritainiy inte ths va%iﬁi%y of

the virial expansion. The effect.of the assipnment of the location af

the minimum molel volume upon the predictions in the gas phase is small,
but at temperatures where the virial expansion converges for compressed
gases it may be of grester importance.

The extension of the methods of statistical mechaniecs to the
deduction of the equation of state for compressed gmses and liguids has
not been developed to ag satisfactory a point as for dilute gases,
Hirschfelder (16,22) has caleulated values for the liguid compressibility
factor from the reduce&.equation of ét&%e as deduced from the "frege
- wolume theory" and the theory of Born, Green, and Yvon.

" One objective of the statistical mechanical development of the
aquation of state is an understanding of condensaiion and critieal state
pﬁenomena from the microscopic point of view, The need for such an under-
standing is not agparent for most thermodynanic applications of the
gquation of state, Thus considerable fréedom is gained in the choice of
approximating function if the convention(23) is adented that the volumetric
behavior in the'iwo~phase region nesd not be predicted acecurately or even -
approximately by the emplrical equation. The reteniion of two restralnisg—w
continulty and

Ya |
fP O = P(Ya - Yo)
V .

b

-~is desirable. Under this convention, pressure is a continuous, differ-

en%iable, single-valued funection of either specific volume or specific weight.



=18

Empirical equations can, then, approximate the vqlumetric behavior
precisely if only enough coefficiénts are allowed,

The statistical mechanical application of the virial equation
to gaseous mixtures involves certain assumptions(24) conecerning the
nature of the intermolecular force £1e1d(20). The empirical approach
should similarly allow for the deduction of the volumetric behavior of
' mixtures from the behavior of the components, Tho statistiecal argu~
ment (24) confirms the possibility of making such a deduction for dilute
gages but for compressed gases and liguids the statistical argument is
not appropriate because of the convention discussed above, Benedict,
Webb, and Rubin(2,3,4) and Connolly(6é) have shown that in meny cases
‘quite good predictions of phase beshavior in mixtures are possible with
the Benedict equation. This applieation of the empirical equations

needs a much mors extensive analysis than has yel been supplied.

Expressiong for Thermodynamie Properties.

Many of the most useful thermodynamie properties of a multi-
component system can be expressed algebraically in terms of six
eanonical functiong which depend upon the equation of stete alone,
Appropriate expressions for molal ehemical potential, partial molal
volums, partial molal enthalpy, partial molal entfopy, partial molal
» internal energy, and the Joule=Thomson coefficient méy be written in
terms of these six functions. These functions may be expressed in
terms of the Benedict equation. Apprbpriate expressions for mixtures
are obtained from the partial molal properties by substitution into the
familiar equation '
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ihe wvarliables Ay, Bc')k’ soes vL satisfy Ecquetion U5,

but they are not »nartial melsl »roveriics,
In terms of the ienedich ccuation the functions
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For one=somponent systems all of the above equations apply
if the primes are omitted. Under these clroumstances Equation 41
reduces to an ildentity and the partiel molal properties become the

 molal properties of the system.
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TI 70 IXPERDMENTAL VOLU:GTRIC AND

&

Hothods of fitting an empirieal equation o
menital infermation are many. FProbably the most familiar iz the evalue-
ation of the coefficients Ay and B, for van der Wazals' eguation, 15,

vom lknowledpe of the critieal temperature and pressure itiwough the
simultancous solution of Equations 79 and &0, By no meang does such

an evaluabtion represent the only possivle one or even the only useful

one. For caleulations involving gzoses at low pressure, A, a

s

| B f o X . X IR T} £
seeand virial ecocfficimt. A

o
ity
w

better bo evaluated from knowledge o
similor stailo of affuirs preovails with r’@swcﬁ %o the Benediet scuation
with the result thalt the aprropriate methods to use in the evalustions
of tue coeffielents depend %o a3 large extent uren the intended apnli-
cation of the equation of state. For present purposes,
is maede that the Benedict equation is to be used to describe the wole=
unetrie behavior for the dense as well as the atisntuated sitates of hy-
drocarbons, and similar fluids, for pressures up to 10,000 pounds per
square ineh and temperatures in the intervalﬁfom 70 to 500 degrees
Fahrenhelt. That the Benedict equation 1s o be applied in phase behave

ior calculations involving multicomponent systems is also assumed,
Yolumetric Fit.

The Benediot equation does not describs the volumetric behavior
of fluids within the precision of the experimental knowledge. For this

reagon, statistical arguments in discussions of the fit of this equation



are not appropriate inasmuch as the deviations of the experimental
values from the values calculated from the Benedict equation are pre-
dictable. If the Benedict ecquation, with eight coefficients, is assumed
to describe the volumetric behavior of a £iunid, then more than eight
obaervations of the volumeiric propesriies over-snselfy the values for
these coefficiente. The egquations which represent these observations
in terms of the Benedict eguation are inconsistent with resnect to the
assumption that each coefficient has one value uniformly for this seb
of eguations. In 4ppendix C several eriterie for the estimation of
satisfactory valuss of the coefflicients are discussed. The sclection
of the least squares criterion for the present analysis was on the basils
£ the usuval pragmatic consideration of numeriecal convenience.

The metqod of least squares involves the minimization of the
sum of the squares of the deviations of the e erﬂmﬂataQ values from the
predicted values for soms function, or combination of fumetions, whoseo
analytic sxpression contains all éf the coefficients. The sclection of
a particular function 1s usually on the basis of obitaining nbrmai%
egquations in whieh the parameters enﬁer,in ag neerly a linsar manner ag
is feasible. Such considerations indicete very strongly that the appre-
- priste variable te £it the Benediect equation is the compressibility
factor, The coefficients in the equation for fugacity of a OnNB=COnNON=
ent system, Equation 61, are as linesr as they ave for the compressi-

bility factor but values for fugacily are not so conveniently obtained

* ¢f. Appendix C.



from experimental measurements. The compressibllity factor 1s fres of
dimensions which wrovides considerabls numesrical convenience. Fron

values for the reciprocal molal volume, obtained by iterative solution
of Equation 3, and temperature, the comprsssibility factor may be ob-

tained from the following form of the Penedict eguation,

Zom L4 TR - Ay - CoTTS)6/MT ¢ (BRT - a)gm
Yo ® L

4+ pagd/ur 4+ céﬁﬁ“lﬁ“s(l + yéa)ezp(~ygﬁ) ‘(Gé}

Equation 3, however, presumes that the values of the eosfficlents are
knoun. The‘use of pressure, themn, as an independent varieble in the
least squares calculations is too tedious to be feasible., The desire
ability of using expressions more complicated than that exwpressing the
dependence of the compressibility factor u;on the reeciprocal molal
volume and the temperature is debatable., If the results of the apnlie
cation of this expression in the least squaras evaluation of the co=
efficients of the Benediet squation are not as good as might be desired
in a certain region, then a convenient method of improving ths sifnation
would be through the imposition of a rigid liﬁitation on the deviation
ﬁermitted in this region by application of the method of the Lagréngé
undetermined multipliers. The applicatiqn of this method is discussed
in Appendix C.

Thé quality of fit of Bguation &4 with a yarticular set of values
for its ccefficients is reflected in the magnitude of the standard error
of estimate(25) of the compressibility factor on temperatﬁre and recipro-

cal molal volume. The square of this term is called the varianoe* of

. : . - . |
* 2
Variance of estimate = Z( - 2) vhere N 1s the number
of experimental observationa.‘——t‘“zgﬁ""‘J
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estimate of the comnress;bzl ty factor on temperaturs and reciprocal
molal volume. These terms will be shoriened to simply "standard error
of estimate" and "variance of estimate" in the ensuing discussion vhen
temperature and reciproc&l molal volume are considered %o be the
independent variables which define the stale of the thermodynamic
gystem. These measures of f£i% are the analogs of the statistiecal
terms "standard deviation" and ¥variance®, |

The detailed character of the £it cannot be described by a
single number since it must necessarily represent the result of an
averaging process. If the £it is generally vefy good, 1t may still be
gquite poor in a small region without making the standard error of
estimate very large. The standard error of estimate giveé no indico=
tion as to which values of the independent variables lead to the poorest
or to the finest predictions. I the experimental data which are used
in the least squares svaluation of the cosfficients are concentralted in
a small region, the standard error of estimate mey be very small and
yet the £it of the equation may bhe inadequate for generaz application,
The method of least squares is effeclively an enalyticel device for
minimizing the varlance of estimato over z2ll rossible sgets of wvalue
for the coefficients and it is from this characteristic that 3t derives
its name, The details of the linear part of the lesst squares anslysis
of the Benedlet ecuation are presented in Appendix D, The comnlete
linearizatlon of the Benedict equation has not been feasible for present
purposes though the substitut101 of a re tloﬁaT—fhﬁctlon( 26) approximation -
for the exponential function in this equation woulm have much merit fron

the ecomputational standpoint. The fact that the ecoefficient ganma enters
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the normal equations in & non=linear manner re’”'res that the normal
equations be solved iteratively. The iteration is straightforward and
involves the computation of the standard error of est f te for several
values of gamma and the selseticn of that value whit: corresponds to
the minimum., A4 plot of the standard error of estimate for propane asg
a function of gamma is given in Figure 2 of Appendixn F. Biough(27) heg
shown that the standard error of estimate must approach a limit as pamma
becomes large without limit and that the standard error of estimote has
a relative stationary point at gamma equal to zero.
For an equation to describe the volumstrie behavior of low

. pressure gases, the coefficients should be evaluated in part at least
fron experimental measurements of the Joule-=Thomson coefficients., From
Eguation 27

?gé V_/}P) m(aP/EéﬂT,m = ?(BP/Z?)d;m - é{é?/?gﬂg’m {65)

The quantity (;;D (afg/az:)E

and knowledge of the heat capacity, gp, as a function of temperature
at some pressure, Substitution of the expressions for the eanonieal
functions from Equations 58 through 63 will yield an expression which
is linear in all the coefficients except gamma and which may be used
to obtain the coefficients by the method of least squares. To make a

least squares fit of the Benediet equation which reflects the
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Joule=Thomson coeffiicient measurements as well as the volumetrie measurew- -
ments requires a high degree of intuition. In general tﬁe elements of
the normal matrieces for the volumetric and for the Joule-Thomson data
are of differeant orders of magnitude which means that linéar coabinations
of these matrices, such as in the method of averages, would tend to
emphasize the effect of the matrix with the lérge elements, The two
matrices jointly correspond to a system of fourteen simultaneous, linear,
inconsistent, equations. The method of least squares can be epplied

to this systenm of equatlions te reduce the number to seven and thereby
permit values for the coefficients to be obtained., Such values have,
howéver, no particular merits over values oblained from a system of
seven equations sslected at random from the fourteen except that the
least squares evaluatioﬁ uses an unambiguous procedure which leads to a
unique solution to the problem. Such calculations have not been applied
to the Benediet equation and will not be discussed furtner. The methode
of-averages approach to an analogous situation which sought to make the
Benedict equation predict phase behavior ia the leasﬁ'aquafes senso,

was singularly unproductive.

Fit Along the Two-Fhase Boundary.

The equation of state must prediet the phenomena associated ~ith
heterogeneous eﬁuilibrium with a reasonable degree of accuracy., In
general, this requirement presents econsiderabls difficuliy from the
mathematical point of view. A one-conponent system.at heterogensous

equilibrium has one degree of freedom in the sense of the phase rule,
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The faniliar analysis leading to an equatlon for the vevor pressure

curve from the Clauwsius-Clarsyron equation, Equation 66,

LSRN A B (66)

LT
=

implies that at least two paramcters are reguired for the eapirical

- 8
If the

2]

description of phase bechavior In one~component systens.

Benedict eguation with the criteria of heterogeneous eguilibrium bew

tween pheses g and £ , which wre

Tg = Ty {67)
Pg = Px (68)

n 0
fk;g = fkol (69)

is to describe phase behavior, the volumetriec it cun be no better
than the best six parameter equation,

The accurate description of the volumetriec behavier of itgelf
is not sufficient for an equation such as the Benedict equation to
pernlt the accurate prediction of phase behavior or of the thermodvnamie
properties of the liquid phase, Assume that the Benediclt equation
can accurately describe pressure as the same function of temperzture
and molal volume as that observed experimentally in the regions of
homogeneous equilibriuvm for one-component systens, Then, the temper-

ature and molal volume derivatives and all combinations of pressure,

temperature, and molal volume with these derivalives may be predicted
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accurately by the Berediet equadion ia this regian. Thus the relation=
ehlp expressed In Equation 77 determines the slope of the fugacitye
molal volume isotherms accurately in this reglon of single-phase states,

3wmf, - o Y SR Nr-)-) | - P . (70)
(W")T’u ] fp py)m’m - B T(W)m -

. Bquation 70 may Do integrated toc obtaln an accurats expression for the
ratio of the fugdcitiea bt two states lying at the extrenmes of an
interval along a pressure-molal volume isotherm whieh 1iea'e§tirexy
within the single-phase region. Thus, in the ligquid region, the

. fugaoity at any state, for which the lemperasture is below the crilieal
temperature, is knoun accurately as a multiple of the bubblevgoint
fugaeity at the temperatufa of the state. |

Eguation 70 may be rewritien in the following manner.
B _ . _
g In T 0P 4+ 1.8» 1 (3P 71
CBDyn = e * P B Y

- This equation mey he ro ?uce’ o

3 In [£/p . =« 1 (BT - V) 3P 72
C"rgl"l%;,mf i B B (5P)7,m e

Sinee the quantity (RT/P - ?), called the residual molal volums, is
" defined and is known accurately all the way from dew~point to infinite
; 'éitehnation for temperatures less than the critieal temperature or for

'all_molél»volumas for temperatures greater than the criticai temperature,
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Bguation T< may be intsegrated o glve an accurate SEprassion Lo IS

fugaeity Iin these regicns,

The prasumption is mads that the Benediel ecuztion dees nob
correctly portray the pressurs as o funetion of btemperature and of
molal volume in the region of heteorogeneous cquilibrium, In such
region Bguations 70, 71, and 72 are not applicable AT P Iz the
pressvre predieted by the Ban@iicé aqu;t;cn; I? an analyﬁic&l DO Gee
sion for (V/RT)AP from Zguabior 3 is inte
aleng an isotherm through the region of heteropensous equilibrium to a
liguid state, that part of tha integral contributed by the two-phase
states must be subiracted from the total iutegral. In actusl gases the
contribution of these states is precisely zero since the dew=nein
fugasity equals the bubble-point fugacity, This contributicon to the
integrabion of the expression derived from'ﬁﬁe Benedict eguction is a

function of temperature clone, 0all this function F{T). F(?) w11 be

precisely zere In the goseous reglon and

Py ‘ Vb ' 9o . '
P(r) = | yar = | (p" ep)dy = _1 |(p-P")ag (73)
AT RT RT] ¢°

1 Va Td

for V 4 ¥V, » Thwe In £, and conseguently f, willl be predictol
L [ ]

acewrately in ths reglon of liguid siates oaly If the funetion F{T) is

anown accurately,
The preceding analysis can he reversed and the Benediel equation

w8y be presumed to predict the fugacitles of the states at homopeneous
equilibrium accurately. Then Equations 70 and 72 mey be integroted as

before. In integrating across the rogion of hetercgencous equilibrium -
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the Benedich squation will prediet an inecrease in the ~ressure by an

amount FV(T) where

L % .
(7} = |RT 4 In ¢ = RT?|1in {£/T") a¢ {74)
‘k?‘
{d %a
Unless the Benediet equation is of such a nature that it predicts

s

prassurs Yo be independent of specific volume along isothermal paths
in the region of heteropensous equilibrium, it will not in general proe-
diet correct liquid phase fugacities If f£iltted to P-V-T data or, con-
vorsely, predict correct liquid phase pressures if £itted to {&¥=-T
data without speelal adjusiments. It is, of céurse, concelvable that
the Benedict oquation would predict F(T) and F1{T) to be prscisely
gero for all temperaturss bub ﬁﬁia caé be coinecidence only,

The direet experimental measurement of Mugacity as a lfuaction

of molal volume and tenperaturs has not been possible to date. Tor

2

his rcason the Rencdiet equation will usually be £itted $o PeVeT

measuronente end the correction F(T) will be applisd to the predietod

ENES

Bt

fugceities. After such oporalions, on the Boaedlet equation 1t wil

3 a

necessarily pernit the accurate prediction of values for the canonlcal
functions and therefors also the thermodynamic preopsriies of onc-compon=
eat systems,

The Clazeyron eguation states that

"o Ha v Wb | (75)
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Thus the latend heat of vaporisation is predicted acourately if the
phase behavier is prédicted accurately. The Clapeyren eguation
emphasizes the necessity for accurate volumetric predictions as well
as accuwrats fugaecity predletions 1T the enthalpy predictions are to
be accurate in the llquid phase,.

Equations 67, €3, and 69 represent three restraints which
might be imposed upon the solution of the normal equations in order
to make the prediction of the rhase behavior agree with the experi-
mental obzervations exactly. Eewever, the poasibility of imposing such
restraints to obtain perfeet predictions of phuse hehavior is only
illusory, The difficulties involvaé‘ari3$ first from the fact that
‘Equation § which expresscs the dependenes of reeiprocal melal volume
upon temperature and pressure cannct be written in closed form in terms
of elementary functionsof preasure and temperature, Substitution of
Bquations 67 and 68 into the power series representation of reeiprocal
molal volume, one series each for the dew-point and bWbbleepoint, ylelds
a pair of functions each of which may be substituted into Equation €1 teo
obtein an expression for the logerithm of the fugacity az a function
of temperature and pressure., Such a representation for the logarithm
of the fugaeity cannoci be sum@ed into a closed form comprising elee
mentary functions of pressure and temperalure., When such representas~
tions for the 1ogari%hﬁ of the fugaecity are combined with Equation 69

there results an infinite series in pressure, P, and témyerature, Te Bﬁt, -
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ature. IT scmo simple, bul ceowrate, expressio:
vapor rressure curve 1s used to replace P in this infinits soriss,

the final result will be an infinite series in T alone. Douation 69
expresses the fact that this series is lnvariant with respect to tenpere
ature, The fact that the coeflicients of T in this series must he
iZentienlly zero in order thal the seriss b Inveriunt forms & set of
Benedict ccefficlents of which they are coznpriscd.‘
Such coofficients of T are independent of the thermodynanic variables;
hovevor, they are at ane time the sums of infinite numbers of terms
vhich cannot be expressed in si*m«le clesed form. While such & method
of mnline the Benedlet oquation prodicet phase behavior may anrsor

optimum it is at the same time imposcible,

Pitting ths Benediet Fauation at the Critiesl State.,

&n

Exporimantal measurenenits have abundantly confirmed thal the

&

*s

following propesriies ehoractorise the critical state for a one-comnonent

grstaen,

"\p/am)c- m 5 dP“/dT (r?(ﬁ))

In Appendix G BEquations 76 and 77 are showm to be equivalent to Iguations

7% and 80 for a one=component system,



(0p/o@)g u = O (79)

(3%p/2¢%)p,m = O (80)

Since a ons-component system has only two degrees of fyeedom, this

set of equations is necessarily inconsistent or redundant., It is
vedundant for locating th@ critical state of a reél gas and incon-
sistent for locating the critical state predicted by the Benedict
equation. For convenience, Equaiions 79 and 80 will be assumed Yo
define the critical state as predicted by the Benediet equation for e
one=component system. This choice is also indicated by the isothermal
integrations involved in the computetion of fugacity using an empirical

equation of state. For the Benedict equation then,

& @ " 1+ 8Kj0 4+ KTl 4 2IgrTC
fs el < b 82 ¥ : e
+ Bagf + BKggtrml 4+ eRggtrel (81)
+ KVQET"S(5(1‘+ ?98) - 9(?92)2) exp(wvgg)
= 0 '
and
2% = K, + K,7"% KaT™5 + 3Ky it gre 1
“-%((,f < ? —_— &1 hz 05 -+ S‘ns ; 49— + i%sg’i‘

RT ag“ T,m , :

+ 15Kgg?r™l 4 Kyer™d (3(1 + v¢Y)
- 9(yg?)2 + 2(vg?)3)exp(erg? (82)

!
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The method of the Lagrange undetermined multiplisrs may be
applied %o make the Benedict equation predict the effects deseribed in
Equations 81 and 82 at the critical temperature and at the valus of the
reciprocal molsl volume corresponding to the observed critical state,
These restraints could be made to apply at the observed values of the
critical temperature and pressure by an iterative proeess which would
require succesalve estimates of the reciprocal molal volume predicted
by the equation for the observed values of the critiecal temperature and
pressure, Restraints in addition to those described in Eéuations 81
and 82 might be applied in the same manner; Such a procedure would give
greater sceuracy to the region adjacent to the criﬁical state at a
relatively great cost to the £it in regions removed from it. Martin and
Hou(19), however, imposea seven restﬁaints at the eritical state in the
evaluation of the coefficients of their equation and obtained an excellent
£it for the low mressure gag phase, Clearly the use of go many critical
state restrainis on the Benedict aquatibn coefficients would preelude
the poasibility of describing the volumetrie behavior of liquids with
this equation., 2imm(22,29) has supplied an argument in support of a
postulate that all isothermal derivatives with respect to pressure are
zero at the critical state for a one-component system. Thus thers exist
presumably an infiﬁite number of possible restrainis which one might
impose at the critical state., Conseguently the particular choice of

restrainte on the evaluation of the coefficients must be intuitive,



RESULTS OF THE INVESTIGATION OF THE UTILITY OF THE
BENEDICT EBQUATION FOR ONE-COMPONENT SYSTEMS

2 entel Pro .

The present investigation of the applicatien of the Bgnedict
equation in precise theimodynamic calculatidns has considered three
separate abtiributes which the eguation should possess to a esufficient
degres, First, the equation should describe the volumetric behavior of
the fluid states in both the'gas and 1liquid phases as well as at states
well within the region of homogensous equilibr;ﬁm. This phase of the
investigation invélved the evaluation of coefficients for the first five
1light paraffin hydrocarbons from volumetrig inforﬁation aloge. The
effect of adjusting the data background of the calculations was investi-
gated in detail for propane and the results of this investigation are
discussed in the revrint included as Appendix F., The opbimum valuss for
these cosfficients are presented in Table I. Table 11 presents the valuss
of the coeffieclent which were proposed by Benedict and Table III su@ple-
ments Tables II, IV, and V of Appendix F to present all of the sots of
coefficients which have been evaluated in this investigation for PUrposes
of predicting volumstric behavior. Those sets in Table III which have
been inecluded in Table I are indicated by an asterisk.

Second, the Benediet equation should be made to predlict the
phenomena associated with heterogeneous equilibrium wlth small error.
Some of the difficulties assoeiated with this phase of the investigation
have been discussed in the preceding ssction, An unsuccessful attempd

was made to formulate an analytic description of the phase behavior in



terms of a set of coefficients differing from those deseribing the
volumetric behavior. This course of action was suggested by the
difficulty of malking the Benedlet equation prediet correet liguid
phase fugacity when high pressure volumeiric data were ineluded in the
evaluvation of the coeffiecients, The addition of another term to the
Benediet equation to~improve the vapor preésure predictions has been
investigated for propane,

Third, the Benediet equation should be made to exhibit the
cheracteristics of the eritical state, Equations 79 and 80, for a
%émperature and a preseﬁre reasénably close to tho observed valuse,
The effect on the volumetrie predictions of making the equalion satisfy

Equations 78, 79, and 80 at the observed ecritical molal volume and

temperature has been studied,

The volumetric and pﬁase benavior of the light paraffin hydro=
carbons has been carefully measured. These measuremenis were made ab
states which represent most of ithe regionsg of temperature end pressure
which are of industrial interest, i.e., at states whese pressures are
below 10,000 pounds per square inch absolute and whose temge?atures’are
in the interval between 70 and 500 degrees Fehrenheit, With the aid of

he concept called "the law of corresponding states" these measurements
have permitted the general nature of the volumetrie and phase behavior
of these substances and their nixtures to be inferred for most of their

fluid states. This experimental information is not of uniform density
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over the region of fluvid states and in many regions it is agbsent alto-
gether while in others the several investigators have duplicated each
other, In these regions where the ssveral investigations overlap, the
égreemenﬁ of the experimental measurements is excollani.

In Figures 3, 4, 5, and 6 and in Figures 1, 4, and 5 of
Appendix F the states wiich were actually used in the evaluvation of
the coefficients of the Benedici equation are shown on pressuro=tenper=
ature projections, In sach case the source of the experimental informa-
tion is noted., The reglon of the data used by Benedlet(3) is enclosed
within a hachured line in Figuves 3, 4, 5, and 6. In Appéndix F, the
data points used by Benedict are éhown. These flgures show two interest-
ing fectures, TFirst, in general, ths reglon of the dataAused by Benediet
differed significantly from that used in the present investigation.
Second, the data used by Benedlel represent more nearly a uniform seb
of reduced states for ths five light hydrocarbong consldered here than
do the data used in the evaluatlions repor%eé in Tebles I and III. The
effectis of these differences uvpon the values for the evefficients ia
shown in Tables I ond I and FPigures 7 and 8. The coefficlents proposed
by Benedict produce the smoother curves when plotted against moleeular
welight on a linear scale, The effect of intuitlve, non=-lsast~gqueres
adjustments performed by Benedict(l) on his coefficients must also be
considered when comparing Figures 7 and &, The fact that the data used
by Behedict do not include a significant number of statesg representing
the liquid phase would be expected to produce a pronounced effect. The

fact that the magnitudes of the corresponding entires in Tables I and II
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do nbt‘differ greatly fmplies that the accommodation of the coefficients
to the liquié ochase data occurs through a readjustment of their intere
relationships,

Calculations for states representing the liquid A&ase involve
fhé subtraction of reletively large numbers to obtgin'small differences
with the resvlt that very smzll percentege changes in the values of
the coefficients result in large changes in the §redictions of the
volumetrie properties for states at whieh the molal volume is small,
Table IV presents several sanple ealculations of the pressure £oT three
values of reeiprocal molal volume to demonstrate the relutive contribue
tion of the several terms in the Benediet equation and to point out the
great difficulty of obtaining precision in predictions for compressed
states,

| The data of the Chemical IEngineering laboratory at the California
Institute of Technology were used unsmoothed while other data were taken
from the literature and penerclly reflected smoothing operations, A
logieal difficﬁlty arises with respect Lo the relative Veighﬁing o be
éssigned to the smooth and to ithe uvnsmootheddate in view of the Tact
that frequently the smoothed information was based upon a censiderably
greater or lesser number of observations than were reported therchby ine
creasing, perhaps, its credibility per point., Ian the zhsenes of a de=
fensible reason for a different course of action, the decision was made
to weight the information from each so%rce equelly. This decisicn was
perhaps unfortunate for n=-pentane because the available data froa Dealtle,

iy

Lovine, and Douslin(20) represeanted a very small reglon adjacent to ihe



computing the deviation Tor =sach state, squaring agd supming these
deviations; dividing this zum by the number of states and extracting
the square root. Such a mroecdure will alwars lead to resl positive
values though the short method may not if the uncertainties in the
ceefficients are sufficiently great,

Pigures 15 and 16 ghow a comparison of the £it of the coeffi-
cients of Table I and of Table II for n-ventane for two temperatures.
The information in these figures indicestes qualitatively the manner in
which the predictions of compressibility factor deviate from the experi-
mental values, Benediet(l) shows resulte for propane gimilar to those
givén for nepentans in Figure 15 except that he shows density against
pressure rather then eompressibility factor zgainst vressure. Por both
of these ecompounds predietioﬁs of nressure for compressed pases become
very poor rapidly as the range of extrapolation ig increased outside
of the reglon in which Benedict fitted his equation of state, 4 compaye
ison of average stan&érd'errors of estimate for the coefflicients pro=
rosed by Benediect with those fitted to a broader range of pressures for
the same value of gamma is Instruvetive. Cocefficient sets 1-B for both
gthane and nebutane represent least squares fits to that portion of
the volumetr;c informatlon for which the compreseibility factor is
greater than that at the critical state and for whiech the value of gamma
is nearly the same as that proposed byiﬁenadict. The same gituation
applies to coefficient set 1wA for propane. Using this same portion of
the volumetric information the least squares coefficlents gave 0.0102,

0,0108, and 0.0068 for the average standard errors of estimate for
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ethane, propane, and n-butane respectively vhile the eorresnonding
values for Benediet's coefficients were 0.0292, 0.2158, and 0,3203,
This eomparison represents a somewhot extremc ease Lut it does 1lluse
trate the nature of extrapolations of the Benedict equation. .

The coeffieients recorded in Table III shew quite clearly
that the seven linear coéfficients are related to the coefficient
gamma in a very complicated way. The existence éf a smooth functional
dependence for these'coefficienta upon gamme may be inferred from the
values for the larger pammas, The relatiohship appears tb be oseillatory
in the vicinity of gamma. equal to mero, This oseillatory behavior
could be of greal importance in selécting a set of coefficients for
use in making caleulations on multicomponent systems, It seems to im-
ply very strongly that the individual coefficients themselves are rather

elusive when the optimum value for gamma is small,



The vapor pressure data for pure substances can be interpolated

quite adsguately from such a simple expression as the Antoine@®) equation

P = exp{ A% + B*/(T ¢ C")) (83)

8o the application of the Benedict equation in this £ield will be slight
indeed, However, in order for the Benediet equation to be useful in
predicting the phase behavior of multicomponent systems it must predict

: rea;onably accurats phase behavior for one-componsnt systems. From the
description of heterogeneous eguilibrium supplied by Equations €7, 63,

and 69 the values for the vapor pressure and for the fugaeity and molal
volumes of the coexisting phases may be computed., Figure 17 depicts the
form of the relationship betweon fugaeity and pressure., This curve is
parametric in reciprocal molal volume., The valus of this poarameter ine
creases continuoualy along the curve from the peint where both pressurs

and fugacity are zero., For a different temperature or\a different com=
pound, of course, the curve would change, The point of intersection of

the curve with itself defines the predlcted vapor pressure and the fugacity
of the states in heterogensous equilibrium because aﬁ this point two differ
ent values of reciprécal molal volume correspond to the same values of
pressure, temperature, and fugaecity. Clearly, the location of this point
of intersection depends upon temperaturs. There aiists a temperature at
whieh the loop haé beeomé so small as to disappear altogether., This tem=

perature corresponds to the predicted critieal temperature,
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The ecaleulation of ithe wvoapor pressure from the Benediet ecguation
is a straightforward itsration in which the values of the reciprocal
molal volumes for the two phases are estimated and the subseguent pre=-
dictions of the pressures and fugacities fronm Lguations 3 and 46 are
compared for equality. Figure 18 shows the deviation of the predictions
of vapor pressure from the experimental valuss for propane and n»pentahe
using the coefficiecnts of Table I and Figure 19 shows the same informe=
tion for the coefficients proposed by Benedict and presented in Table II.
Figure 20 shows the manner in which the vapor pressure predictions for
nepentane vary with the valué of gamma,

An attempt was made to obtain coefficients which would deseribe
the vapor pressure ocurve ia the least squares sense and at the same time
describe the volumetrie behavior of the liculd and gas states. The
method of the attempt involved'the construction of the normal matrices
for the minimization of the sum of the squares of the differences betuecn
the predicted dew=point and bubble-point pressures divided by the cbserved
vapor pressure on the basis of the observed values for the orthobariec
molal valmmés; for the minimization of the logarithm of the ratio of the
predictol dovepoint and bubble-point fugacities again when thess fugaci=
ties were ealculated from the observed orthobaric molal volumesy and for
the minimization of the deviations of the predicted compressibility
factor from the observed value when the moial volume is considered to be
the independent state property, respsctively. The differences in magni-
tude of the corresponding elements in these normal matrices were tremendous
with the result that a linear combination of these matrices on the basis

of equal weighting produced a set of eoefficients which could mrediet the
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two=phase fugacities reasonably well, while the predictions of the
volumetric behavior were wholly without merit., While these matrices
might have bsen combined in aecordance with thie method of least squares
as outlined in Appendix C such an eprroach will still not pernit adequate
volumetrie predictions if the elements of the volumetrie matrix are
appreciably smaller than those of the fugaclty matrix,

A second approach to the improvement of the phase behavior pre=-
dictions problem considered the formulation of the problem in terms of
two sets of coefficients-~one to describe the volumetrie behavior and
the other to deseribe the EUgaéity as a fmnction of state, Using the
gset of coefficients from Table III designated 54 for propane and the
exporimental values of vapor pressure, values of fugacity and reciprocal
molal volume for the dew point and the bubble-point states were computed
from Equations 46 and 3 and may be found in Table VII. These data.ara
presented for ten degree temperature intervals and represent the predicted
properties aiong the boundary of the heterogenecus region.

Normal matrices wers prepared; one for the minimization of the
sum of the squares of the deviations in the compressibility factor at
the values of reciprocal molal volume given in Table VII and one for the
minimization of the sum of the squares of the deviations in the logarithm
of the two-phase fugac;ty at the same values of reciprocal molal volume
when the Table VII value of dew-point fugacity 1s assigned to the bubble-
- point. The normal matrix for the compressibility factor was reduced to
three rows by adding the elements of adjacent rows and the normal matrix
- for fugaecity was reduced to four rows by & similar process in the manner

‘of the method of averages. The two resulting matrices jointly comprise



a seven row matrix, Ia addition the‘restraints expressed in Hquations
~78, 79, and 80 were lmposed by the method of Lagrange undeternined -
multipliers and the solution was then obtained., This sel of coefficients
is presented in Table VIII and is designated as set 5-C for purposes of
future reference, A comparison of sets 5S5=A and.5~0'indicates an appre-
ciable differsnce in the values of the coefficients deseribing the
volumetric and the phase behavior of propans.

Pigure 21 shows the molal volume of propane at 160 degrees
Fahrenhelt as a function of pressure, There exists a small differsnce
in the celeulasted volumetric behavior which is ghown more clearly in
Figure 22, This figure shows tﬁe compressibility factor as a function
of pressure. The coefficients besed upon the volumetric measurements
in the reglon of homogeneous equilibrium yield ealculated values in good
agreement with experiment except in the low pressure gas region. The
disagreement in thls case results from the absence of direet exmerimental
volumetric measurements in the gas phase at temperatures below 190 degrecs
Fahrenheit., The experimental points which are shown were based upon
Joule~-Thonson measurements@?) which were not used in establishing the
c§efficients of set 5-~4A. In the liguid region the good agreemznt shown
"in Figure 21 for set 5~4 at pressures up to 2,000 pounds per square inch
continues up to a pressure of 10,000 pounds per square ineh., If the
Joule-Thomson coefficient deta had been included in the evaluation of the
coefficients of set 5~A significantly better agreement in the low pressure
gas reglon sghould have resulted,

In the case of set 5-C whieh was based upon only the molel volume

gt dew=point and bubble~point and the dew=point fugacity predictions



together with the critical state restraints of Equations 78, 79, and

80, good agresment was obtained for the volumetric behavior in the gas

region. Such a result is similor o thal of Martin and Hou uho fitied
their equation to the critical state restraints and avoided the volue
metric information in this reglon for the most part; The wvaluss for
the compressibility factor of the liguid phase are in distinet disegrec—
ment with experiment at pressures ebeve 1,000 pounds per square inch,
Good agreement with experiment was obtained in predicting the molal
volume along the deﬁ—point and bubble-point curves up to a temperature
of 180 degrees Fahrenheit, Above this temperature, in the vieinity of
the critieal state, the eguatlon does not describe the bubble-point
volumea satisfactorily.

Figure 23 shows the fugacity of propane as established experi-
mentally and ae calculated from the coefficients of sets 5-4 and 5-C from
Table VIII and Equation 46, The fugacity of prepane at dew-point as
calculated from the cocfflcients of set 5-A agrses rea aonhoﬁj well with
the experimental values, Yowever, the fugacity at hubbls-peoint caleunlated
from the coefficients of set 5«0 differs widely from experiment, Near
the eritical stete the fugacities established from the constants of seb
5«4 of Table VII do not co“responﬂ with the experimental values whereas
the fugacities based upon the coefficients of sel 5« are in good agrecs=
went with experiment.

Figufe 24 shows the behavior of the critical isotherm for propane
as calculated from thé coefficients of sets 5-i, 5-B, and 5-C. The
predictions with set 5-A are not satisfactory but the predictions froam

get 5-0 are in good agreement up to the critical rnressure.
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that the coefficients of sel 5-A

describe the behavior in the homogeneous regions with satisfacory aceur-
acye. On the other hand, the coefficlents of set 5-C describe the recip-
rocal molal wvolume of the cocisting phases and along the eritieal
isctherm with reasonable accuraey but do not provide 2 useful descripe
tion of the properiles of propane in the homogencous reglons ot ;ﬁessures
above 1,000 rounds por sguare inch., Moroover, set 5-C does nod predict
the vapor nressure with accuracy comparable to that of set 5-A obtalned
fron volumetric data clone,

Thus no real improvenment rgéults from attempting toc impose the
restraints of the eritlezl state upon the evaluation of the eocfficlents
for the Benediet equation. BEven when only the fugaecity at dew-point and at
bLubble=point were enployed as a basis for éetermining the coéfficients
as was done for set 5-0, the description of the vapor pressurs and
fupacity of the liquid phase was unsatisfactory as is shown in Figure 22,
The accuracy with which an ecuation based upon volumetric data describes

he vepor pressure lecaves mueh to be dosired but appears to be near the
opbimum that ean be obtained with the Penediet equation if 2% is to be
vged at prossures in excess of those considered by Benediet (3),.

The third approach to making the Benedict esquation predict
reasonable phase behavior considered the addition of o corrsction torm
which would apply primerily within the region of heterogencous eguilie
brium., Befors discussing the correction term 1tsself several reculrements
which sﬁcﬁ a term should meet will be considered., If the Benedict oguQ=

tion predicts reasonable volumetric behavior then the correction term

should not affect these predictions except that it night improve them,



The eorrection term must anrrowimate the funetion =F(T) defined in
Fouation 73, The function <F(T) is not defined for temperatures greater
than the eritical temperature. In gerneral the valus for -T{7T) Iz not
zero at the eritiesl state If the dew=roint and bubblo~poini molel
volumes are considered to be the roois of the critical isotherm ot the
eritical pressure, Conasequently, unless the Benedict ccuation mrodicts
the critical state exactly, the Himetion =F{T) must be different from
zero at states ouvitslde the reglon of heéa geneous equilibriuvm for the
oprosits hyrothesis would imply the existence of a discontinuity in
fugacity, entropy, and enthalyy for paths crossing the critical isotherm
into the liquid region. To the cxtent that the correction lerm apniroxe
imates =F(T) the predictlons in ths region adjizeent to the critical state
will be improved. The effeet of the correction in the region of homo-
geneous equilibrium can be econfined to the critieal reoglicn by sulteble
choice of approximating functions.

As shown in Figwre 18 the vopor pressure pradictions for 1=
pentane are adequate in the absence of a correction cven though the
prediction of the critieal state leaves something to bs desired, 3Suech
is not the case unfortunately for rropane. Table IX presents the magnie
tude of the error in the limuid-phase fugacity mredictions. The faet
that the error becomes large at the low temperature is very important
for the commutation of liguid-phase fugacities, entroples, enthalrpies,
and chemical notentials, but of secondary importance with respect teo
vapor pressure predictions sines the slope of the fugacity~pressure
curve becomes so stesn for the gas phase at low temperatures, that rather

large errors in the bubble-point fugacity result in rather small errors
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noying charactoristic of the error in the bhubble-polnt fug

I 2
diction, namely, that 1t posses throvgh 2 minimun and appzars to be ine
crsasing as the critical state is approached. 4 preciss approximetion
to «F'(T) will have to be a rather complicated function of temzerature,

he form of whieh is not altogether apparent from the resvlt of the
pregent study. The utility of introdueing 2 very complicated correction
term off this character into th@ Benediet equotion is open to con iderable
gusation and the coneclusion thiat the Benodict equation is éf limited use
in describing the fugacity of the liquid phase has mueh merlt, The faet

that the vapor pressurs mredictions for n-pentane are saticfactory is

explained Iin part in terms of the nature of the experimental baciground
uged in evaluating the eoefflicients which was discussed sarlier end there-
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ghown in Table I. The nature of the error in the fugacily rredictions

in the close nelghhorhocd of the observed values for critlcsl ismperature
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and pressure is not known bhecause two of the pressurs roots of the isow

thernms come into conflusnce and leave the real amis before the critical
temperature is reczched. Table IX shows thatl such confluence occurs below

k|

200 degrees Fahrenheit for propane when gamma equals 4.24021,
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and the function ¢('E} mast aned the followling zoguircnente:
continuity
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If ¢ (T) is assumed to be 0,0150RT and C, is assumed to be

6418 (cu.ft.) per (1b.mole) then the correction term for pressure has
the form shown in Figure 25, rFigure 26 shows the effect of the correce
tion term on the vapor pressure predictlons for propane. Figure 27
showa the effect of the correction term on the predictions of wolumetrie
behavior in the vieinity of the critical state. Other expressions for

¥ (T) which damp out with increasing temperature might be preferable
to the one used:for the ealculations leading to Figures 25, 26, and 27;
howsver, such expressions would be appreéiably more complicated and very
1likely would prohibit accurate predictions of the fugaeity for the liquid
phase altogether unless special effort was made to meke them fit the
‘error in bubble-point fugacity profile illustrated in_Tablg IX, The

present approach is thus more expedient than anything else,



Equationa 81 and 82 are simultansous cubic equations in reecipro-

cal temperature and may be conveniently rewritten as

2+ ot vy, = o {100)
2 0% ugt + vy 0= 0 {201)
vhere
& . -l {102)
uy {103)
vy = 1 26,0 « a&ﬁgﬂ {104}
Znaa + n768(5k1 + ygB) « 24 @%)8 jeupl=y0B)
Ug ® Eﬁ Kk 4+ 15§ (105)
Ks #+ Bqg (501 + Wg) = 9ygTI" + Llyge)C)exployg )
Vg ° % ¢+ OEeo ) {106)
L5 ¢ Heg (811 + yo=) = dlyge)z + 2{yor)3)oxpleyca)
Por any varticular set of coefficients a plot of wyy Uny Vi, and vy
against ¢ may be readily prenared. An exannle of such a plot is
shown in Fipure 238, Thig fipure is based upon the coefficisnbs fop
nropane waich are vresented in Table I. Substitubion of
I {107)
v & b {108}
naxes
L us v = 0 , (aes)

eguivalent to

x + uy % v = o : {110}
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This eguation rcuresents 2 straight line'with slope =-u and intercent
-7, Further, tho set of naramctrie Equatlions 1207 and 102 defines a
cubic porabola, The intersection of the straight lines whieh résults
fron Bguations 100 and 101 with the eublc parabola will locate those
values of the parameter ¢ which satisfy both Eguations 100 and 101
and therefors also 81 and 82. These valuss of + are the roots of
81 and 82, The fact that the cubiec parabola involves temperature alons,
and therefors need be plotted only oncs, makes this geome ric solution
particularly useful. PFigure 29 shows an example of this geometric
solution for the predicted critical temperature and is based upon the
information presented in Plgure 28 for the values of w and of v,

The values of the parameter T are shown along the cuble parabola

and are expressed in degrees Rankine. The predicted critical temper-
ature corresponds to the point on the cubie parabola where this curve
and the two linsa are concurrent for the same value of recirrocal molal
volume, "he point of intersection of the two straight lines is a funetion
of reeiprocal molal volume alone.

Benedict(l) deseribes the techniques which he applied to the ade
justment of the coefficients which he obtained to £it the volumetrie
data in erder to permit the equation to predict the nhase behavior with
asomewhat greater accuracy. These techniques were intuitive and were
beyond those associated with the method of least squares as applied to
the wvolumetric information alone, The adjustment of the coefficients
as performed by Benediet was at the sacrifice of fit in the liquid region.
Table X shows that the predictions of the critiecal propertiée are not

accurate unless special adjustments of the coefficients are made, Table XI
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illustrates the offect of the coafficient gammz upon the predieted
criticel properties,

The effect of imposing certuin rigid restraints upon the evalue
ation of the coeflicients to improve the predictions in the vieinity of
the critical state has been partially investlgated. The effect of wmaking
the criticul isotherm satisfy both Equations 78 ard 79 at the critical
molal volume is illustrated In Figure 23, That the resiraints are satise
fied is apparent but the aecuracy of the descripbtion of the pressure in
the critical region has not been improved., To make the Bensdict eguation
predict the experimental value of the critical pressure at the critical
temperature and molal volume the resiraints of the Equations 72, 79,
and €0 and Pg,q = Pg must be imposed at the critical tempsrature and
eriticel molal volume, Since the Benedict equation cannot be reverted
into a convenient expression for molal volume, these restraihts are
necessarily indirect. A calculation has ghown that the restraint repree
sented by Eguation 78 is implied for the Benedict equation by Equations
79 and 80.

A practical limit %o the number of restréints which one might
desire to impose upon the evaluation of the coefficients is set by the
number of coefficients in the equation, The more restralnts are imposed
at the critical state, the poorer the equation beeomes as an extrapola-
tion device.

The Benedict equation has too few coefficlents to permit a very

precise description of the critleal state and at the same time give a

reasonable representation of the volumetrie behavior of the liquid phase.



CONCLUSICES

The extension of tihe Bené&ict equabtion to the prediction of
the volumetric properties of the liquid phase and the reglon of high
pressure will be of considerable engineeriné utility. The fact that
the preﬁietioﬁs of this equation in the region of the.critical atate
1eaye much %o be desired does not preclude its wide application for
thermodynanic ealculations for regions removed from the critical state,
I? latent heats ofxvaporization are évailahle then the difficulities
assoclated with the correet prediction of fugaeity, enthalpy, and
entropy in the liquid phase may be of minoi importance for calculations
involving th&rmo&ynamic pathsllying entirely within tha‘liquid region
since the eorrection needed for the predicited change of tbese properties
with temperature can be obtalned from the latent heat of vaporization
information and the properties of the gas phase at dewepoint. If such
latent‘heat information is not available, the empirieal correction term
discussed in the preceding section may be useful.

The Benedict equation does not replace graphieal procedures for
very accurate thermodynamic calculation because the errors in its pre=
dictions are much greater than experimental uncertainty. Extensive
application éf the Benediet equation will necessitate the use of auto-
matic digital computiég equipment and for fhis reason the development of
a nore gehsral,expresaion which can be usgd more efficiently with the
high-speed computers for interpolation within the accuracy of the experie
mental information appears to‘be worthwhile.

The methods discussed in the preceding sections for the evalue
ation of coefficients for the Benedict equation have produced coefficients

which have a somewhat vague correlation with parameters which characterize
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gous seriss to another, 4 revision of the ma"ci;od of evaluvation to ime
orove this correlation by evaluating coefficients for the Benedich
equatioa to ‘apgx*oxirma'te the reduced equation of state appears toc be
desiruble. The present hypotlesesf) concerning the relationship of the

-

cozfficients for alxture to these of the pure components imply regularity

in the relatioaship of the coefficients to other physiecal properties of

the gysten.
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HOMENCLATURE

a matrix or an arbitrory fvnetion
coefficlent of the fntoline eguation

soefficient of the equation of state, (p.s.i.a.)(cu.ft.)z/
{(1bemole)?

coefficiont of the equation of state, (p.s.i.a.)(cu.ft.)s/

(1b.mole)?

element of the matrix 4

a matrix or an arbitrary Tunction

ith virial coefficient

coefficient of the Antoine equation

coefPisient of the equation of state, (cu.ft.)/(1b.mole)
coefficient of the squation éf gtate, (cu.fﬁ.)z/(lb.mole)2
element of the matrix B

coeffieient of the heterogenecus eorrcction term,
(eueft,)/(1b.mols)

molal isobaric heat capacity, (B.t.u.)/(ib.mole)(deg.R.)

molal isochoric heat capacity, (B.t.u.)/(1b.mole)(deg.R.)

eoefiicient of the equation of state, (DeBeioto) (dopaRe)* (ouah,)"

per (lb,mole)

coefficient of the Antoine equation

ecoefficdent °§ the equation of state, (p.s.i.a.)(deg.ﬁ.)z(eu.f’b.)3
per (lb.mole) : :

symbol of differentiation

specific iaternal energy, {Boteu.)/(1b.)
molal internal energy, (B.t.u.)/{lb.mole)
exponential function

error function
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¥
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a function of tenperature

fugacity, (D.3.d.8.)

general intensive thermodynemic state rwoperty
specific enthalpy, (D.teue)/(1b.)

molal enthalpy, (B.teu.)/{1b.mole)

a matrix

-1 ) b

By Ky ~a/R
-Bo/R ‘ Kg aa/R
«C /R Koy e/R

Boltaman constant, 7.268 (B.t.u.)/{deg.R.) (nolecule)

molesular weight, {1b.)/(1b.mols)

total number of items in a set

Avogadro's number

position number in an ordered set

weight fraction

mole fraction

absolute pressure, (p.s.i.s.)

coefficient in power series expansion for pressure
partition function

universal gas constant, 10.73147 (pes.i.a.){cn.f5.)/
(Ib.mole) {degRe)

radial distance, (£t.)

distance perametor of intermolecular potential function

specific entropy, (B.b.v.)/(1b.)(deg.R.)

molal entropy, (Bet.u.)/{lb.zole)(deg.Re)
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able

coefficient in power series expansion for reciprocal molal

© volume

thermodynamic temperature, (deg.R.)
a parameter

intermolecular potential Sﬁnction
a parameter

specific volums, (cu.ft.)/(1b.)

‘molal volume, (cu.ft,)/{1b.mole)

& parameter

a parameter
a parameter

compressibility factor

coefficient of the equation of stale, (cu.ft.)B/(lb.mole)3
a function of temperature alone

coefficient of the squation of stabe, (cu.fb.)?/{Ib.mole)”
synbol of a partial derivati

energy reramster of Intermolecular potential functlon

a paremeter

a function of recimrocal molal volume alone

chemical potential, (B.t.u.)/(1b.)

molal chemical potential, (B.t.u.)/{Ib.nole)

& parsacter

the transcendental aumber

symbol of summation

specific weight, (1b.)/{cu.fi.)



o reciprocal molal volume, (Ib.mole}/(cu.ft.)
2
4 hd 8, ¢
£1 g s g/t
% o b
2 o 2
oz o/r° & T (14 vg Yoxp(= v ¢*)
A a function of temperature alone
‘Superscripts

—— partial or partial molal property
o] in the pure state

* in a state at infinite attenuation

e property has been computed using corrected form for Bonedict
equation

o tuo=phase propexrty

Subscripts

e properiy is extensive

b _property pért&ins to the bubble-point state

é | ~ property pertains to the critiesl state

d property pertains to the dew=point state

e mroperty has been computed using the Benedict equation

g property pertains to the vapor phase

i ith elgment of a set or component i in o mixiure

H undef isenthalpic coaditions

b Jth element of o set or component j in a mixture

k property pertaina to compeneni k



rroperiy pertains to the condensed phase
under conditions of constent composition
under isobaric conditions

reduced property

vnder isothermal conditions

under isochoriec conditions

property is defined in terms of pound-molecular weights
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TABLE X

Liquids snd Geses™

Optimum Coeffiocients for Volumetris Predictions for

Coefficient™ iethene  Ethane Propane neButane  n-Pentane
R 10,73147 10,73147 10.73147 10.73147 10073147
AO 4910, 58 7001.40 15313.1 22784.0 602155
Bo 0.455158 0.237607 06 550703 1.00817 36 689003
Co x 1075 448,758  3334.26  ©6815.85  15491.4  19628.9
& 4551,18 2654%.9 67141.1 283507.0 203941.0
b 1,03508 3443107 7441650 19,7116 16,0875
e 10-6 819,147 647688 19262.1 83708, 5 116061.0
o 0.332260 - 0.742830  1.,60300  2.39047  6.67703

T 1.20000 2¢ 50600 4024021 Ge 40000 16, 500C

M 16,042 30,068 44.0S 4 58120 720146

Avernge -

Standard

Error of 0.0158 0.0138 0,0084 0.016¢6 £.0258

-Estimate

P

velumetric behavior in the homogensous regions.

Aok

These ocefficients are reoommended only for prediction of

The values recgorded are dimensionally consistent when used

in the Benediot equation with pressure expressed in pounds per square

inch, temperature in degrees Rankine, and molal volume in cubioc

feet per pound-mole.



Coefficients Proposed by Benediot for Describing Phase

TABLE Il

Bshavior and Volumetriec Behavior for Gases#

Coefficient¥*

Methane

10. 75147
7000.06
0. 682998
275,952
2988.21
0.868679
498,790
0. 512225
1.54172

16.042

Ethane

10,73147
15668167
1,00643
2195.80
20879.8
2.85846
6422.11
1.00254
3.03218

30,068

Propane

10.73147
25934.2
1.56027
6214.44
57331.2
5.78308
25284.5
2.50121

5.65344

44,094

n=Butane

10, 75147
38057,1
1.99393
12139.3

113870.0

10,2804

62015,2
4.53676
8.73709

58.120

a=Pentane

10.73147
45961.9
2,651324
25935.9
246503.,0
17;1721
161539.0
7.45603
12,2062

72,146

*

These coeffioients were suggested by Benediot(1,3) and

have been modified to be oconsistent with the values of the universal
gas oconstant, R, and the molecul r weights, M, indicated in the

table.

g

The wvalueg recorded are dimensionally consistent when used

in the Benedict equation with pressure expressed in pounds per
square inch, temperature in degrees Rankine, and molal volume in
oubic fest per pound-mole. '



TABLE IiI
Coefficients Computed in the Present Study for the Deseription

of Volumetrle Béhavior in the Light Pereffin Hydrocarbons

?éethanr;*

Coofficient 1A% w8 2 25" %
Ay 7234458 6383.54 299,20 491057
g 0.,605761  0,618257  0.933705  0.455158
Go x 2070 127,201 254.447  -52.23 442793
& ~195.741  1069,13  =1554.08  4551.18
b 0.579094  0.691290  0.4%0350  1.03508
e SMLOLT 5101135 «207.030°  GI0J47
e =5,35026  1,12510 <0.554048  0.232200
Y 0,00000 1.54160  ©.00000  1,20000

verage
Standard
mrror of 0,017 00147 00166 0.,0156

R is 10,7347 (p.s.i.a.)(cm.ft )/(1b.mole) (degeR.)
and molecular welght is 16,042,

" Statos ot teaperatures below 40 deg. Fahranheit were
not used in evaluating these coefficients.

nEY Cf. ’E‘?bie 1.
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TABLE III {cont.)

EBatinmate

Methane

Coefficient 20 2D 2-E 2F
A, 89,3 736,35 W00 647256
B, 0.652066  0.657546  0.629442  0.569838
c, %1076 218,045  155.073  139.897 1244385
a 878,007 - 216,149 518,750  1358.77
b 0715350  0.687169 0725277 0.804517
¢ x 1070 240,565 115791 57.2446  -202.677
@ 117173 3.81332  1.57440  0.650130
T 2.00000  4.00000  6.00000  10,00000
Standard
Error of 0,0162 0.0169 0.0172 0.0170
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TABLE IIX {cont.)

¥

Ethane”

Coeffieient 1-4** 18" 2-4 2-B
A 22792,1  12768.7  28233.6  =596.435
B, 141875 0.634985  1.87136  0.360457
Cp x 1070 201,267  2006.29  -1165.62  4512.84
a ~8762,23 11032 173349 409640
b 04936384  2,62063  0.208122  4.52568

C x 1070 -2285.57  3804.50 -3732.33  8541.92

a l.11402 1.08104  «0,562675  0.539735
0,00000 3,03239 0,00000 200000

Average

Standard

Error of 0.0154 0.0102 0.0209 0.0153

Estimate

# R 18 10.73147 (p.s.i.a.)(cu.ft.)/(1b.mole) (deg.R.)

and molecular weight is 30.003,

i States for which the compressibility factor is less
than that at the critieal state were not used in evaluating
these coefficients,



Coefficient

Average

Standard
Error of
Botimate

TABLE III (cont.,)

2.0*

7001.40
0.237507
3334426
26547.9
343107
6476.86
0.742830
2.50000

0.0138

. <75=

Ethane
2=D

15068,8
0. 787454,
1832,58
£906.,28
2,30275
3344 457
1.54844,
4400000

0.01515

el

17195.8
0894960
1386.25
3690.66
2,05581
R532.84
2,94518
6.00000

0.,0171

2-F

17175.7
0.854064
118459
2063453

- 2,03067

2113.91
4432996
1000300

0.0206

% Cf. Table I.



TABLE III (cont.)

%
opane
Coefficient 5=A 5-D G S=F
A, 12559.9 25451.1 26981.9 27052 44
B, G.275279 1.04828 1.02879 0.994020

Co x 100 7204.50  3M1.64  3181.87  3172.48
a 77326,0 33056€.4 20966,2 16122.9
b 795782 5.56424  5,06201 4,.82884,
¢ x 1070 221209  110%4.8  8430.50  8003.33

4 ,00000 € 00000 &.30000 10,000C0
Xverage
Standard
Erroyr of 00,0094 0.0119 0.0128 0.0161
Egtimate
# R is 10,73147 (p.s.i.2.){cu.rt.)/(1b.mole) (dog.R.)

and molecular weight is 44.094. These coefficlents are
supplementary to those in Appendix TF. and represent evaluations
based upon the experimental data presented in Figures 4 and §
-of Appendix ¥,
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n__:Butane%
Coefficient a1 2-4 2B
A ~8630,07  39213.1  -40206.8  =109327.0
B, “0.760315  1.31328 =4.24075  =8.59007
Co x 1070 3324.36 2,73 22523.0  41082.1
a 23586.5  116194.0  160587.0  33401L.0
b 2,25425 13,4004  17.0293  27.3220

C x 1070 4266,38  3943.93  2671.6 7406442

a 1.07422 3426750 148772 1.,06984

” 0.00000  8.73741  0.00000  2,00000
Average
8tandard , :
Error of 0.0273 0.0068 0.0294 0.034%
Egtimate
* R is 10 o?BM? ('p.s ol oan) (cu Itie )/(1b o@l@) (deg .R.)

and moleculer weight is 58,120.

B States for which the compressibility factor is less
than that at the critical state were not used in evaluating
these coefficients nor were the data from references 33,



TABLE III (cont.)

neButane

Coefficient 2eC 2D 2-E" 2-F
Ay ~3506.64  1543.38  22784.0°  43021.6
B, <0.960795  0.120053  1.,00517  1.46812
Co x 1070 16077.5  25517.7 15914 5730.1
8 172263.0  42%606,0  253508,0  87982,2
b 15,6351 28.8433 19,7116 11,7515
¢ x 1070 37570,0  1600%.0 93708.5  35954.5
a 2.22473  2.03867  2.39047  3.88952
. 400000  6,00000  6,40000 10,0000
Average '
Standard
Ervor of 0,034 0.0377 0.0166 0.0144
Estimate

" Cf, Table I.
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TABLE III (conb.)

g:Pentane*
Coefficient It 1.3 10 1D
Bo =3.,32146 wts o 26527 646500 . 4,90966

C, x 107 409877  59512.1  31260.1  23914.3
187930.0  323053.0 1155550  220331.C
b 16,5332 234244 4012847 144763
¢ x 1070 48024.6 9541 72542 127847.0

o

a 3.99708 2.73668 Q94347 ¢,59891
0.00000 2.,5000C 600000 940000
}verage
Standard
~ Error of 0.03% 0,0402 0.0392 0,079
Estimate
d R is 10,7347 (p.S.L.&..) (cuoft )/("b.'ﬂol@) (deg.R )

and molecular weight is 72,146,



TABLE III {cont,)

Estimate

a=Pentene
Coefficient 1-B 1F e i
4, 61331.8  60215.5 5727 574417
B, 409623 3.69003  2.67363  2.11853
G, % 1070 2U48.5  196a8.9  15750.9 132175
a 2URLS,.0  203941.0  162683.0  107423.0
b 15,617, 16,0875 15,8368  14.2458
¢cx 1070 122609.0  116061.0  91659.1  71132.0
“ 6.523641  6.67703  7.33645  9.36790
y . 10,00000  10.50000 12,0000 15,0000
Standord
Ervor of  0.0266 0,025 0.0261 0.0273
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TABILE V
Coofficlents for n=Butane Evalusted without Buperimental

. %
Information for the Gas FPhase

Coefficient 3w=A 3-B 3l

A, =2638.5 ~53649.1 19592.7
B, «3442863 =5,12304, ~1.23806
€, x 1070 1523.5 23696.9 9517.60
a 1564047 234205.0 151301.0
b 17.3059 21,6334 15,9336
¢ x107°  16912.3 39590.3 18315.5
a 1.66727 1.39585 2421450
Y' 0.00000 2,00000 4400000
® - The data of reference 33 were not used in the

evaluation of these coefficients,



Coefficient
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TABLE V (cont,)

3-D

631458
0.990863
29566 o4
44749640
28,7840
18369540
2,10527

6.,00000

3=E

2263542
0.990967
1546641
253382.0
1947130
9347743
2438920
6440000

3-F

3707649
0.887654
5143454
102509.0
13,1431
33097.2
3e34430
10,0000



TABLE V1

Standard Error of Ratimate for neButans Coefficients

with Respeet to Each of the Sets of Dxperimental Data

Ganma

000000
2,00000
4400000
6400000
6440000

10,00000

66 égilas
0.0173
0.0154
0.,0199
0.0141
0.0031

0.0086

Source of Data

IDB(gggtes
0.0287
0.0359
0.0326
040259
0.0116

0,0157

113(§%ites
C.0382
0.0462
0.0455
00583
0.,0261
C.0177

# Cf, Table III.
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TABLE VII1
CoeffTicients for Propune Obteined Using Critical

State Restraints and Phage Behavior Data

Coefficient 5-A SwD3 5=l

Ay 12559.9 10552.9 =144500,0
By 0.375279 0.148506  =14.3549
o, x 0 7o 634,424 308546
a v 7738640 108172.0 514832.0
b 7.95782 1042395 4543994
e 221209 30260.8 997471
a 1.48371 1.25633 0.917335
¥ 4400000 4400000 £,400000

# Cf, Table III.

e Set 5B differs from 5=A only in the respeet that

the method of Lagrange undetermined multipliers was applied
to make the coefficlents with the Benedict cequation satisly
Equations 78, 79, and 80,
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TABRLE IX
Ratio of Predictad DeveFoint and Subble=Point

Fugacitles for Propane Using Ceoefficienis of Teble 1

Teggzgz:ag_):re R 74 In(fy/fy)
100 - 1,01095 C.0108905
110 1.00793 G.0078987
120 1.0050  0.0053855
130 1.00420 00041912
140 | 1.00353 0,0035238
150 1.00371 0.0037031
160 1.00451 0.0044998
170 1.00571 0.0056938
180 1.00743 040074025

190 11,0075 0.,0075216



Compound
BEthane Ermerinental

Table I

Penedict

Propane Experimental
Table 1
Benedict

ne-Butane Experimental
Table I

Benedict

n~Pentane Experinental
Table I

‘Renedict

Pressure

»
(peSeiezs)

Temperature
(Gog. F.)

90,1

100

Molal Volume
(22.2%.)/(Qbouole)
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TABLE XI
Variation of Critical Properties Predictions

with the Magnitude of Gamma

Compound Gamma Pressure 'Temperature ‘ Holal Volume
' ' (peseioens) (degoF.) (ouefte.)/(1bemole)
Propane 4.00006 705 225 - 3. 50
4.24021 703 224 3.48
10.00000 728 | 222 | 3.04
n=Pantane 9, 40000 572 ' 402 5035
10, 50000 5356 397 8. 57

12,00000 525 395 5058



1.

2.
Se
4
5.
Se

Te

8e

9.

10.

11.

12.

13.

14,

16,

17,

" 18.

~9l]=

LIST OF FIGURES

Partial Sums of the Power Series Representation of Resiprocal:
Moial Volume as a Function of Temperature and Pressure.

Segond Virial Coefficient for Propane.

Experimsntal Date Usoed in Evaluating Coefficients for idethans.
Experimental Date Used in Evaluating Coeffiocients for Ethane.
Exﬁerimenfal Data Used in Bvaluating Coefficients for n=Butane,
Experimental Deta Used in Evaluating Coefflicients for n-Pentane.
Effeot of ifolecular Weight upcon Magnitude of Coefficlents

of Table I.

Effect of Moleocular felght upon Values of Coefficients
Proposed by Benedioct,

Dependance of Standard Error of Estimate upon Gamma.

Deviations of Compressibility Factor for Ye thanes

Deviations of, Compressibility Factor for Ethane.

Deviations of Compressibility Pactor for Propane.

Deviations of Compressibility Factor for n=Hubane.

Devietions of Compressibility Factor for n-Pentane,

Predicted and Experimental Cownpressibility Faotor for n-Pentene
with Pressure as the Dependent Variable.

Predioted and Experimental Compressibility Factor for n-Pentans
with Molal Volune as the Dependent Variéble.

Caloulated and Experimental Values of Fugacity of Propane

at 160° F.

Deviations of Vapor Pressure for Propane snd n-Pgntane with

Table I Coefficienta.



-Q2=

13, Deviations of Vapor Pressure for Propane and n=Pentane with
Benedict's Coefficients.
20 Deviations in the Vapor Pressure Preﬁicﬁions for n=Pentane
a8 Functions of Gamma.
21, Comparison of Predicted and Experimental Molal Volumes at 160° F.
22.. : Comparison of Predioted and Experimental Compressibility

Factors at 160° F.

23, Comparison of Observed and Calculeted Fugaoities at 160° F.
24. Predicted and Experimental Isotherms at Critical Temperature.
25, Pressure Correction Term for Several Temperatures.

26. Deviation of Vapor Pressure for Propane with Heterogeneous

Correction Term.

27, Effect of Heterogeneous Correotion Term on Prediotion of
Critical Isotherm for Propeane.

28, Coefficients of the Critiocal State Restraint Equations as
Funoctions of Reciprocal Molal Volume,.

29. Geometrie Solution of the Critioal State Restraint Equations.



OB

 PROPANE.

190°F

axwmfx W mXWWA\
2 ﬁ <Y
T &
A 24
my mm/l:llllll xmw
S\ 4
.ﬁy_ &W m‘ _ ;
A/ | o
e UO/ / : AR —
\ sl
- [
\ |/ )
/ | /
\
Je 0\
o3
ag TN
2 u
i
20
. /////
\ N\

200

9
S

g
o

e

o

‘1409 /210w q) “IWANON 44._0.2 4<uoun:.uma

1000

Po 600

PRESSURE, p.s.i.a.

400

erresentation

R

~

Fower Seriss

the

AL

s

and Frassure

‘Temveraturs

ume s a Funciion of

3
4

Molal Vo



n ~ @
I oo »

8

~B,x10"%, (p.s.i.a.Xcu.dt)¥/(lb.mole)?

Benedict, Tc\blel Coefficients
Benedict, Benedict Coefficients
Beattie - Bridgeman

van der Waals .
Hirschfelder(16)

200

300 400

TEMPERATURE, deg. F.

Second Virial

Coefficient for Fropsne.



20,000

10,000

5000

LE. PER SQ.IN.

2000

J

PRESSURE

1000

500

200

Figed »

| l T l
O MICHELS AND NEDERBRAGTB4) ,
O-OLDS, REAMER, SAGE, AND LACEY (35) Trverrererrees
O KVALNES AND GADDY (36)
—o———~o——o—£—<y —o0-
e ¢ @ 9 g o
R @ ? 24909 o [P 0-& o- o
e & el T e BT g @
. o-—0-0- — o |
e Q ? LQ © Qo_oo_ o T 5
R PP ? 9|8 9 . ?
®
el 9 g 2 TE P O op o o
PL? 9 g Q o |? o
? 9 919
—9—9--8—=
e ? ? 8 (9 o
P2 98 8|9 o
g P9 9 §<9
Q ,
SEERIry
? 9| ¢ gM"
b 9 )92;»94?){ g fo)
O
??\)& Lig o)
SRR
(o] © 0o °©
P 9 5 9
o 100 200 300 400

Experimental Data Used in Evaluating Coefficients for Methane

TEMPERATURE °F




LB. PER SQ.IN.

7

PRESSURE

10,000 T o
o (o O O o
o |o- o o o
o | o o o
o |0 O O S
5000 O O—O~ O
& & 2,90
o) o
> o 8 0%o| o
o- 0go| o
o 09 % 09| o
0 Y5
o& oy 8?0
o -0 95
O_
2000 (P—ee L 9
O © -
90y 5 o &°
_o
& J ‘g ® —oQ
o..
O & 1o © 154 o' °
1000 | o {QTO 5 o
o 10
Q Q -© -0 -O(P
gel O -
b Q@ g ©°
= ®)
500 -
-0 o -0 0
-0 &
_O
& 0
Q o ©
CRITICAL STATE _, —O
VAPOR PRESSURE -0
| o ©
200 =
]
_O
O BEATTIE, SIMARD, AND sU @7
O- REAMER, OLDS, SAGE, AND LACEY $8)
REAMER, OLDS, SAGE, AND LACEY (38
-O BEATTIE, HADLOCK, AND POFFENBERGER(®)
100 ! . ) | |

Fig - 4.

100 200 300 400 500
TEMPERATURE °F

Exverimental Data Used in Evaluating Coefficients for Ethane



10,000
% :g g \\\
© |
© |0 -0 &
5000 0—=0—0+ o5
-0 |0 o
g 9
-0 |0 o o
O o
2000 o 1= —§—8-
|®)
o 3
5 O
. 1000 o—+=© o —0—0- |
z 5 D
- -0 o
3 CRITICAL STATE 5
0 500 - o) _;;_\\\\ﬁ%' o
G
- -0
& © |06 o o O
[af] »M
Q A
250 E & 20 [RRCVUNSCS
~ VAPOR Ot O- O- O
& PRESSURE ot O0- O- O-
> 100 ot O- O~ O-
o O- O O- O- O-
14 O O- OF O- O- O-
a 50 O- O- 0O O- O- O
O- 0- 01 O- O- O~
O- O- Of O- O- O-
20 O- O- Ot O- O- O
Z:o-o—o-o-o-o-
10
| O BEATTIE, SIMARD, AND SU (40)
O- SAGE AND LACEY(33)
s -0 OLDS, REAMER, SAGE, AND LACEY (41)

100 200 300 400 500
TEMPERATURE °F

Fig. 5. Experimental Data Used in Evaluating Coefficients for n-Butane



LB.PER SQ.IN.

J

PRESSURE

10,000

5000

2000

1000

500

200

100

)
o

20

9 O % % -0 % %
0 |0 0| -0 -0
3%
2 3 3 3
0 -©o!| -0
© |0 B O
o2 % &
s = S 35 <
5 &
A %
-0
B :8”§
S 0scH
..O
88T BT IRy
-
o o- CRITICAL STATE
o..
©
o_
O_
o- o-
o- o~ o~
T4 o- o= & |o- o o
ot O- O- G- |0~ O- O-
O1 O- O- ¢ |0~ O~ O- Mg»—
O o+ O~ O W
/o-o—o--o—o-o-o-o-o—
/?—o—o—o—o—o—o—o—o—o—
O BEATTIE, LEVINE, AND DOUSLING
O- SAGE AND LACEY (42)
7° SAGE AND LACEY(‘43)|
| !
100 200 300 400 500
TEMPERATURE °F
Fig. 6. Experimental Daga Used in Evaluating Coefficients for

n-Pentane




MAGNITUDE OF COEFFICIENT

10,000 . //O'—’ _--—0
Pl
N
47
O,
g O
B A I ©
/j/ O O~
AT
1000 —< <A
// :// \O
o8 ///g co
/ //P’
/ P
/ . 0
;S .
/ //U //
/
// 77 D‘—‘_Z:
7.7 - Vs ===
r// 4 ‘F\/O// L7
100 A7 B
O’//4 s
// // ///\O 4
(f /// - eo\l\ ///8
\‘ -// /// /5/
i o - Z7
\\7/ /// '////
~ 0 s
w oo ’a’x:\ Y ,3,—94
A .///'9;;\ R
-
10 lod —— /7(1
F =
o7 A
o[ 7 7””
- _ =0
o e
o~
b7
_t
o
20 40 60

MOLECULAR WEIGHT

Pige T Effect of Molecular Weight upon Magnitude of Coefficients
of Table I.



MAGNITUDE OF COEFFICIENT

=100~

L0
//
10,000 = =
ALK
0.~
¢t”
”~
el e
s i
P Py
’ B | ;/
P \o_-&F
1000 % Co:ﬁ:,/z/
~270
- s/\\
4 AFE
/ ,/’/
/ z,
/ /;/
’ 2 -2 __--0
;& Bo k1Y o
/ Va /0-—- ’/"’
100 > ——O~= s X
/"’/ b// O
5 ¥ o =
v A Il I o
/ R R PEe
o4 o 257072
e /'7"0‘ P‘O)L\
7 ,,//4’
2 [ o
// // // ’,’O
10 O’“ = —O~ P
o~ L~ Y =
o~ e
- o
o//
20 40 60

MOLECULAR WEIGHT

Fig. 8 . Effect of Molecular Weight upon Values of Coefficients
Proposed by Benedict



(ze-2)*

AVERAGE STANDARD ERROR OF ESTIMATE

0.04

0.03

0.02

0.01

-101=-

0=
/*\o/
ig

PN

AN

\O\{) ﬂw

—METHANE
——'———_O—
\)8s
,‘.\aﬁ
—
2.5 5.0 7.5 10.0 2 12.5
Y (CU. FT. PER LB.MOLE)
Fig.9 . Dependence of Standard Error of Estimate upon 7/



0.015

0.010

|
© 0.005
N 0

DEVIATION

-0.005

-0.0I0

=102«

! |
® Z.-Z=P(Ve-V)/RT
O Ze-Z=(R-P)V/RT
DEPENDENT TEMPERATURE
VARIABLE °F
PV
o- & 100°
o e 400°
oO-
...
-]
(@)
[ ]
(@)
) Or
2500 5000 7500 10,000
PRESSURE, LB. PER SQ.IN.

Fig.1Qe

Deviations of Compressibility Factor for Methane




1
,~0.02

ON

DEVIAT

0.01

-0.0l

-0.03

‘0v04

-0.05

=103

Fig. 114

o
=3 0
p4 -
& -
—O—
o-O-
|
® Zo~z=P(Ve-V)/RT
0 2~ 2z=(P-P)V/RT
DEPENDENT TEMPERATURE |
VARIABLE °F
o- Py .
o- o 1007
o e 400
‘}.
o
2500 5000 7500 10,000
PRESSURE, LB. PER SQ.IN.

Deviations of Compressibility Factor for Ethane



-104~-

0.010

0.005

T3 4

] {

Ze-Z
E
¢ 9

Z -O-
o i DEPENDENT TEMPERATURE
< -0.005 VARIABLE °F T
> PV ;
o e 100
° o -* 400°
-0.010 |
o 5
-0.015

2000 4000 6000 8000
PRESSURE, LB.PER SQ. IN.

Fig.12. Deviations of Compressibility Factor for Propane with Author's
Coefficients



DEVIATION

-104~-

0.010

0.005

T3 ]

] ﬁ

E
¢ 9

e, .
Al DEPENDENT TEMPERATURE
-0.005 VARIABLE °F .
PV
o e 100°
o -» 400°
-0.010 1
o 5
-0.015

2000 4000 6000 8000
PRESSURE, LB.PER SQ. IN.

Fig.12, Deviations of Compressibility Factor for Propane with Author's
Coefficients



=105~

O
0.02
- 0.0l
o
~ O- ®
e P
| O_
Y
>0
N4 0% 3‘;
O..
! - 5 “ | o
N
J
R 8_ ® o]
-0.01 @
pd
S O
’—
<
& ~0.08
o o) DEPENDENT  TEMPERATURE
VARIABLE oF
P
o ¥- 100°
o e 400°
0.03
O
2500 5000 7500 10,000
PRESSURE, LB. PER SQ.IN.
Fig.13e Deviations of Compressibility Factor for n~Butane

0.050

0.025

-0.025

-0.050

~0.075

-
o

v/

DEVIATION Zg-2=(R-P)



(Ve-Y)/RT

Ze-z = p

DEVIATION

0.02

0.01

~0.0!

-0.02

-0.03

-106=-

| l
. o Ze-2=P(ye-y)/AT
0 Ze-z=(R-P)V/RT
4 0.2
DEPENDENT TEMPERATURE
VARIABLE oF
Py
FAAD
o- o 100o
' [+ 4
® N
>0
® ® —~~
a
0O § 1
P O- =(} 0 E‘;
U
N
o- ‘v
N
Q- f-0.1.
g Z
©
*—
<
>
= o -0.2 &
-0.3
O- T
2500 5000 7500 10000
PRESSURE) LB PER Q. IN.
Fig. 144 Deviationg of Compressihility Factor for n.lPenlane



FACTOR

COMPRESSIBILITY

a3

3.0

L
(&)

20

0.5

=107=

PRESSURE DEPENDENT VARIABLE / /
<

o<

AN

A\

/K/ /y

25

2.0

1\
\

ev\eo\c/ /
®
yoo? /

/ X EXPERIMENTAL
,////// - AUTHOR'S

0.5

2000

Fig.15.,

4000 6000 8000
PRESSURE, LB.PER SQ.IN.

Predicted and Experimental Compressibility Factor for
n-Pentane with Pressure as the Dependent Variable

FACTOR

COMPRESSIBILITY



COMPRESSIBILITY FACTOR

2.5

20

05

-108=

7~

VOLUME

DEPENDENT VARIABLE

EXPERIMENTAL

’ AUTHORS —
/ =
1
o¢
02
//
//
/ EXPERIMENTAL
v A THOR'S
|- M  _ AUTHOR
~ /
EXPERIMENTAL
fAUTHOR'S
]

"

20

00

Fig. 16.

4000 6000 8000
PRESSURE, LB. PER SQ. IN.

Predicted and Experimental Compressibility Factor for
n-Pentane with Molal Volume as the Dependent Variable

25

20

0.5

COMPRESSIBILITY FACTOR



LB. PER SQ. IN.

FUGACITY

~109=

600

O EXPERIMENTAL
— PREDICTED SET A

400

200

EXPERIMENTAL VAPOR PRESSURE

\\7 PREDICTED VAPOR PRESSURE

Fig. 17.

200

400 600 800
PRESSURE LB. PER SQ. IN.

Calculated and Experimental Values of Fugacity of Propane

at 160° F.




=110

i
o

LB. PER SQ.IN.

- PII)J

|
n
o

4y

¢

Mn-PENTANE
—
A
PROPANE
\\/— CRITICAL —
100 200 300 400

TEMPERATURE °F

Fig.18. Deviations of Vapor Pressure for Propane and n-Pentane
with Authors Coefficients




LB, PER SQ.IN.

- PI/) ,

(v
&

: /PROPANE
~
0

MN-PENTANE

8

100

Fig.19, Deviations of Vapor ‘Pressure'for Propane and n-Pentane with Benedict's

Coefficients

200 300 - 400
TEMPERATURE °F




~112=

S$.0 //
2 —
a
= » o.o
o
.
g

-8.0

46.0

10.0 10.8 .0 WS
GAMMA ., (CU.FT)2 PER (LB.MOLE)2
Fige 20 Deviations in thevVapor Pressure Predictions for n=Pentane

as Functions of Gamma,



=113~

| [ l
| 0 EXPERIMENTAL
. \ — PREDICTED SET A
w
216 ——PREDICTED SET ¢ |
>
P
|
ax 12
E __———DEW POINT
= |
w |
: \
o 8 i - EXPERIMENTAL ' — |
,A/ VAPOR PRESSURE
W g
s l
D | ,
.| a4 Y
o 7 ~—BUBBLE POINT
>
</
-O—-—=G_—q—q
400 800 1200 1600

PRESSURE LB. PER SQ.IN.

Fig. 2] Comparison of Predicted and Experimental Molal Volumes
at 160° F,



-114~-

! l
0 EXPERIMENTAL
— PREDICTED SET A
S o8 ~ —PREDICTED SET €
‘.—
O
< DEW POINT
0.6 | - I
!
> |
- I — EXPERIMENTAL A
O : / VAPOR , PRESSURE n/yc
0 0.4 f -7
0 ] e
0 | =
W i =
& /! /
/
2 0.0 A
© /1
/
i
Z BUBBLE POINT
l |
400 800 1200 1600

PRESSURE LB. PER SQ.IN.

Fige 22. Comparison of Predicted and Experimental Corrpressibility
Factors at 160° F.



«115-

PREDICTED VAPOR
PRESSURE SET A

200 /

FUGACITY

100

3 300

E ———— PREDICTED VAPOR
I PRESSURE SET €
E

o

-

EXPERIMENTAL VAPOR PRESSURE

O EXPERIMENTAL
—— PREDICTED SET A
— — PREDICTED SET €

200

400
PRESSURE

600 800
LB. PER SQ. IN.

Fig. 23 Comparison of Observedand Calculated Fugacities at 160° F.



=116=~

T
1
/
1000 //
//
2
e /
©n 800 7,r
: Y
o /
o I R
3 =T = fOo——0O—
600 56
// \/
w
o
5 /
9 400
w
o
o
0 EXPERIMENTAL
200 PREDICTED SET A
———SET B
— =BT @
0.1 0.2 0.3 0.4 0.5

SPECIFIC WEIGHT LB, MOLE PER CU.FT.

Fig. 24. Predicted and Experimental Isotherms at Critical Temperature.



=117~

z
= 60 N
a
(2]
5
o 50 o’L
o 8[
ol v
. 40
z
: /\\ \
'—
< \

O )
o 30 o/
[ 4 (o)
m -~
S

BUBBLE _|
= 20 POINT AT
=) 100°F
:ﬁ DEW POINT /
W |LAT 100°F—
a / \\

0.1 0.2 0.3 0.4 0.5 0.6
RECIPROCAL MOLAL VOLUME, LB. MOLE PER CU.FT.

Fig.25. Pressure Correction Term for Several Temperatures



LB. PER SQ.IN.

) //)
’ )

"
Pe -

(

«118=

\

o)

!
N
o

——WITH HETEROGENEOUS CORRECTION TERM
— —WITHOUT HETEROGENEOUS CORRECTION TERM
-——BENEDICT

120 150 180
TEMPERATURE °F

Fig. 26¢ Deviations of Vapor Pressure for Propane with Heterogeneous
Correction Term



«119=~

T | ’
{ | |
640 ' N o ; |
630 I
620
e | 4/ N N i ]
g
&
3
ul 600
X y ®
S
)
n
& 59 — o
L. without correction term 1 ‘
580 | .Explﬂhfﬂfd/yzosop.
s% |
\/

o1 o2 03  0& 05
RECIPROCAL MOLAL VOLUME, lb.moleper cu.ft.

Fige 27, Effect of Heterogeneous Correction Term on Prediction

of Critiocal Isotherm for Propane.



=120

%

Yixigs

3 e
2 1

C _uge®
| i

i

1

0.30 0.3l

. Flg. 28,

Fguations as

Coefficients

(cuft.)/(lb.mole)

of the

Critical

Functions of Reciprozel ol

RecProcaL MoiaL VoLume




-121-

4.4

4.2

4.0

38

Xx10?

S

3.2

3.0

/]

5

Seomatrical Soluiicn of

15.0

Fquaticns.

5.5

yxio*

160

16.5



-LQ

s

-122=-

APFEIDIX
Alrebra of Power Series . . . o .
Derivation of Thermodynamic Expressions , °

Solution of Systems of Inconsistent, Linear
Algebraice Gauations . . . . .

Isast Squares Analysis of the Linsar Pardt of
the Benediet Eguation . - o . .

Description of the Diglital Commuting Equiprent

Application of Benedict Equation of State to
Propanoc . . . . . . . .

Characteristics of the Critieal State . -

123

126

131

1356

140

143

148



123~

TR RN TS
APPUIRIX A

(T FINTYEY & v v o et
ALGEBRA OF POUER SEHIES

Reciprocal of Convergent Power Sories.

Let
,(Eo * ELX % ggﬁig +* .on)"l = CG L 4 (:.X % (,,;x‘"a * ee {111)
then . !
L) 0
(g‘;snxnx‘zwcmxm)' = 1 (112)
Bub

(&Enxn)(g’fmxm) = 5. le b Elax ¢ Elex® + ...
- Elzax & E}_tlxa L g&CQXa ¥ een , .
{113)
glox? ¢ Blax® + Slaxé ¢ ..
L S

The following fornulae are obtained by equating coefficients of

like powers of x; i. e., suming along the diagonal and then

writing 1
Eols = "1 (o = g;l
Eoly + 58, = O | A - (11¢)
Efe + EBly + Bl = 0 [ = gig:«% - 53552

*e s seé

Pogitive Intorral Towers of fonvercent Power Seriess

0 : m
Since é% Eixi' = lim Lsixi {115)

E}““m =0
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‘then

(é%ixi)n = 1im {quixi)n

{116)

"l\ - G E s £ % d i,
= 1im g, 2, (Pgrypy) BUEpE M aT)

Qe i
(REx?) = & o+ &fx + €@ + Exs ¢
izp .

x -

(:{:Eixl)z = !ﬁ + ESax ¢ E 3% ¢ E e +
¢ 5% o+ 8P e HEx® 4+ HExt »
+EaEmm ¢ $,63x3 ¢ SExE ¢ §.5.xF 4+

* see

) ' y
(ZExh)3 = 13 o+ 558%ex + 5(2hs, + e )xS

=0

+ (39 + 3€88, ¢ 6FS5;%3)%% + ...

m
In every coase f?; G = n

Reversion of “ower Series(if,45).

/

Let

y = ox) = Yo ¢ Z:gn( % - Xg)

LEY)

he convergent for Ix = x,l4 v and if = = xm, then

¢ = § )
o, "7

~

Clearly, the power series defines x as a function of y as

LA N )

LA N J

{113)

(119)

(120)

(121)

(122)

{123)

well as y a8 a function of x + Consider a small neighborhood

of the point y, throughout which =x is defined and singlew

valued and differentiable. In such & neighborhood x may be
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oy

expendod uniguely in Toylor's series aboul ¥y,

SN P A S (124)

Taylor!s theorem assures that the radius of convergence of this

nower series is greabter than zero. Substitublion of Tguation 124

into Hquabion 122 gives

] o
' n
y = ¥ = @gn(%;{m( ¥y o« yo)) {125)
The radius of convergence is equal to the distance from y, <o

S

the nearest singularity in the complex plane of y « At a
singularity, one of the following situations occursy 1) x
becomes multivalued, 2) x becomes infinite, 3) the derivative

Pl

of =x with resrect bo y does not exist.

Since power series may be mulbdiplied within their circles

of convergence to give convergeni power sories, IEquation 125

may be expanded and terms ocollected to pive

wl
512:1 =3 1 Cl = gl
-3 {126)
£a C‘i + 8,05 = 0 (g = ..’EEE,‘

§3§:§ + 2550 + 50 = o0 ta = (28% - %‘5:5)"325
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APPENDIX B

DERIVATIOR OF TEERIODYNAMIC EXPRESSIONS

Beattie(47) has described the "gemeral limit method™ for
deriving expressions for thermodynamic'propertiea in terams of hest
capacities and volumetric properties. This meﬁhéd nay be applied
to the Benedict equation directly as Beattie has done with the
Beattie-Bridgemen equation, but a more convenient approach uses the
gix canoniocal functions defined in Section II. The distinective
feature of the "general limit method™ is the application of a limite
ing process which permits all changes of temperature on the system
of interest %o be counsidered to act on & perfect gas at infinite
attenuation. The fact that real gases at infinite attenuation are
not perfect geses with respect %o fesidual volume and Joule=Thomson
coefficient must be observed in applications of this methode This
difference is of significance in relatively few applioations of this
methode Infinite attenuation, literally speaking, does not exist,
but certain thermodynamic properties do approach finite limits aé
the pressure on the system is decreased without linit or the volume
oonteining unit welght of maﬁtér is inoreased without limit. A
| system is said to be at "infinite attenuation" when the specific
volume is so large that the properties of the system differ imper=
ceptibly from ﬁh;se liniting values.

Equations 58 through 63 may ﬁe derived in terms of the
Benediot equation simply by partial differentiation. The derivation
of Bquations 40 through 43 is not 8o obvious however., In & multi=-

component system, the fugacity, fy, may be defined in terms of the



chemical poteatial, M.

RT ( a«,;!, — a Mﬁ N
o {edC) = («5—4' 3] 57
and the boundary conditionss ) — P as V — 00 along an
3 3% & s o - a
isothermal path and £ = m P . This differential equation may be

rewritten as an integral squation where the path of Integration is

an isothormal ons,

P
P
My = My = /0M dP = RT 1 of ap {128)
.k .k k=3 ”}c
JSP)T,&: lfk (aP)T,m

or
o¥ % 3%
My = Mjp = RPInf;, - RO InP (129)
since
% # 3%
B = B =~ T + Eg (130

This definition of the relationship between £}, and My avolded the
introduction of a temperature dependent constant of integration
sines all integrations have been isothermal., Equation 129 may bs

written in the form

B - B Ing = PR = My - RT In P* - BT In g (131)

‘:}3
e
i
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¥* 3 . ]
since by Equation 128 QR{=Q 1‘»:) denende upon temmerature zlone

Bl - Brimg = PY= BI + st s (132)
therefore
B, = B - mms (133)
and
afy = -5 -« Rm¥ (134)
T
or
-
Bm- Pp@ = -Fr i - [sffe (225)
T=0

An expression for the partial molol volume can be deduced from the

equation defining the chemical potential,

Hk " Ek + P?!;: = T%, {136)

ol

Differentiation with respect to pressure at constant tempsrature

and composition glves
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Substitution of Tquation 129 into Egualion 137 mroduces

T, = = ka) = ® ol fk} (,a ?) (133)
£, OF 'T,m 3¢ 'T,o/ 0g'T,m
From BEguation 129
o -0My, = Rlafi = RInf, +RT 0lnf, {139)
_(%)p,m (5‘1’ )p,m ( 07 )P,m
But
(af‘lk) = = on (140)

0T Pm

Hence,

% - % = -Rnf 4+ 1 [(R‘Elnfk+ﬁ’l‘2 (ainf (141)
S T v)P,m

o
T
ES

Since
L3
g‘; = ‘:Z - Rlng (122
and
in f;, = in P* + 1n n, (143}

k (i)

B - s'=rm?P - 1{&?1111{“ + R ,3In g } (144)
- 7 o7 Pom

The partial molal enthalny is readily obtained from Equotions 129 and

Te - B = Wp-#) + o6 - 68D = -8 pma, (U
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At ceastant composition and in the absencs of externul force {ields,

a single phase multicomponent system has two degrees of freedems henes,

dlnf = ,9Ing & 4 ,dInf, dg (U6)
(gt (),
but at constant pressure
d e = 40 47 = e {(Op/0OT)e&.n {127

so that

d1ln £ — .blnf = Pln £ (02/0F)g,m 148
CorBpn = CorBgn ~ Coplnn gmmaes O

Equationg 58 through 63 follow from these relationships,
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AFPERIDIX C

SOLUTICH OF SYSTEMS OF INCONSISTENT, LINFAR AIGEBRAIC BQUATIONS

A system of m linear oquations in n wvariables is sgid to

an

be consistent(43) if these m ecuations have at least one common

: aoluzién. A set for which no common solution exists is ealled ineone
gistent, Iet K reprrcsent the mx n matrix of the coefficients of
the m equations, =x represent the wector (erderéd set of numbers)

of the variables, and %k represent the vector which the produet K=

is presumed to approximate, for example, experimental observations,

kz = &k (149)

This system of equations will have at lsast one nonezero solution
for x if the rank of both X and its augmenited matrix are the same
and less than or equel to n,

In the problem of fitting empirical expressions to experinental
information, sysiens of linear equations when obtained are generally
such that the rank of the auvgmented matrix is greater than a. Since
o nonezere exact solubion is then nossiblo, a criterion must be
chosen to measure the degree to which various seis of values for the
variables approach a solution im the respect of satiSﬁying the eqﬁa-
tions precisely. The least squares eriterion is moat gensrally used
for this purpose. It selects that set of values for the varisbles
(represented by the vector =x) which yiélda the minimm value for the
sum 55 (Kix - ki)z. 4 1ittle algebra will aﬁsw readily that aepplica=

=1

tion of the least squares criterion is equivalent Yo substituting the
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folloving motrix eguatlon Tor Zquation 149.

. Ex =8 & (250)
Equation 150 has a unique solut ion, by Cramerfs ruls, if the rank of
KT K and its augmehted matrix are preeisely n, which ia generally the
case, Eaquatlon 1750 represeuts, in matrix notation, the pormal equations
of the least squares method,

Other criteria can be used equally well for cstablishing the
begt fit for an empirical equation to experi&ental obsewrations., Qa@
might be the mininization of i \xi X = k| . This criterion has
the advantege of applying lees weight to the effect of the least fypical
equation “han does the methed of least squares, IHowever, this criterion
does not imply as direct a method for obtaining values for thelcampén-
ente of x as does the m@tzod of least squares, The general method,
using this eriterion, would selsct from the total number of ways in
which m equations can form n combinations that way whiceh supplies,
by such eombinat ions, n equations yielding a solution giving the
minimum value of g; |k = = Iyl o This is substantially the method
of averages(49,50).

Either of these methbds vields a unique solution for the incon=
sistent eguations pfoblem. The method of lescl scuares has the ade
vantage of directness in obitaining that so lution most appropriate to
its criterion., The method of averages has the advantage of ease of
ealoulation i€ one 1s satisfied with & £1t which 1s only near the £1t

most aprropriate to its criterions The latter method bocomes exeeedingly
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£ Y.
f 2 N0

5 R O e, L @ Kecnn e Rt a0 23 % cermed .1 = —
tedious for chtaining the beat £it 1P tlhe munmber of varicblss iavalved

The preeeding discusslion indiecates the nature of the aid which
gtatistical methods wrovide for solving systens of inconsistend linear
oquations, once a particuler sysiem has been choson,.  Essentiolly the
same econsiderations apwﬁy for systems of non=linear eguations oxzcavt
that values of those variables which occur as the none-linear elements
are establisﬁeé by iter&tive methods., In general, the normal equations
will be satisfied by mors than one set of values for the voriables if
any of the variables ococcur in a non-linear menner sinee the variance
of estimate may have several relative stationary peints. The selection
of the system of equatiohs ta'bs golved in empirical cuvrve £itting

mast be intuitive for it denends upon non-mathematical considerations
of the reliability of the Xk terms and the elements Kij of the matrix

K.

Lagrange Undetermined fultipliers.

2

‘The method of lagrange undelernined multinliers is & device for
deternining constrained minima. The prineiple can be conveniently
described by an example., ILet the sum of the aquares of the deviations
of the experimental compressibility factors from those predicted by an
empirical equation of state be denoted by the symbol A, The conventional
least squares method seeks to deteémine-that et of values for the o=
efficlents in the enpirical equation which aminlmize &, A necessary
condition that A take its minimam value is that all partial derivetlves

of A with respect to these coefficients be zoro,
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dition be thot a function 2 48 1dentlieally zero, The lefb-hand side

of Eguation 80 airht be such a function B, If m is a constant

=

dependent of the values of the coefficients, then (A - mB) is

equal to A for aay particular set of values for the perameters. The
equations which equate the partial derivatives {o sero have solutions
whileh depend upon the undetermined multiplier m. But n can be
determined from the fact thet B is identieally zoro and the paramcters
whieh correspond o the congtrained minimum can be dsterained, The
method can be oxtended to several restraints provided only that the
number of restraints doos not exceed the number of paramecters,

Moot textbooks of mathematical phyysics or of staiistical mechan-

ics discuss this method in detall,
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1et K be a column vector with components Ks;, (£=0,1,..,7) and
let 153 be a row vector with comrnonents éji(.o-,‘r), (3=1,250epll})s The
difference betwesn the experimentally observed valuo of the quantity 2
and the value, Zgy prodicted by the equation which hés been proposed to
describe Z in terms of the acherm_eﬁml guantitiecs o and T 48 given

by the following expression,
. 7 ’
(2g ~2)3= (fpr) = ,Zgﬂ;;ii‘ii 3 (3m102,000,0) {151)
i=
~If @ reprosents the matriwyy) vhose rows are the vectors ;53 then
Bquation 151 may be writtens

(2, - 2) = 2K - (1s2)

and the sum of the squares of the (2 = 2);%s i

v T

jé‘(gze-- 2§ = (#x)2x = K 4 K (153)

| | .
vhere: 4 = 272, i, 6., 035 = (fuafy) = Lbuwhg  (15¢)

Thus K'4 K 48 a positive~dofinite quadratie form and A is a symmetric
positive-definite square matrix of order eight. The varlance of estimate

13 K*A X/N.
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To satisfy the least sguares criterion KT4 K must be at its

minimum velue, therefores ,
(/oK) K'AK w (KaKy) AK o K (a8/oKs) Ko KA GKAK,) (155)
e 2 Bi R o 0O H (i 31,2,000,7) (155)

The matrix B 1s the matrix A less the row corresponding %0 1 . C.

A vector which satisfies the pormal equation
BEK = O (156)

will also satisfy

7

i=

- 2 aggks - (157)

[}

KTA K = - (&O,K)

o

Equation 155 18 not a sufficient condition By defining a relative
minimum,
To solve Equation 156 for the vecter X, the slements of B o %(0)

are erranged in the scheme:

b;g* bis e 513 b;g ,hxi'“ 1 blg 5 - byg e
a2 bes s bap bgo|| || bea =0  bag* = baB =bafbad +
an e B an " . BY = o [,
beS  BrS e bps BQf [[ar =0 ..
bt bos  ee bes b || [[ve=0 —..——._ _‘—_ e




mlg Lod 1/b 20;1& 0 ° (¢] 0 1 Zﬂllg 2 wp ]‘%‘/balw Y
Ml ® «boy 1 .« O O 0 md = 1 /og3* ..
byy*

oo se Ml ee o ) .o -“AE )
mqi o =D 0 . a2 0 o mvg = ‘b';g/bgg“ cve
» ____._.&1f_ ______ I SN
m;} = ~b 0 . i 0 Meyn = -boé/bgg* oeo

5?1* :

Hote thal hgj = @3 but is not an element of the matrixz 3. The
pivot element of reduction » ds Indicated by * . The result of

the foregoing process is the matrix B? = M/ B® which mey be written

1 0 ) ¢ 0 Kl

The general formulae for the reduction may be written
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L) _ o m) o (m) () .

biy = i3’ = Db bry’ 5 (1) (158)

bég*l) - bég)/'bég) 3 (=) (159)
Fwtherzaor-e

A = by PbaabsSe . Dyl ' {160)

The largest minor in each B(r) in which no rows or éolumne contain
reduced pivot elements, is symmetrie. Thus, the elements of the
matrices B(T) will be exactly the same if the reduction ia done by
the following operations on the IBM €04 computer which is deseribed in
Appendix E.

1) caleulate 1/%;;;)gs

2)  caloulate béi)/ bE)* and punch 1t into every

 ocard of oolumn Jo  (§ = Oylyeeey?)

3) multiply 'bzg)/ bjg)& by bg) (excenting i =k)
subtract the product from bg) to obtain ‘bg 1)
Disecard 21l cards of column k., The multiplier
bg) i3 carried in the compuier storage unit during

this operation, For 1 ak, ‘bﬁ,j “b:g)/ blf-;)* .

Each of these three opsrations requires a different set of wired panels

for the computer.
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During the reduction arbitrary rows of a{r) may be multirlied
by ten if such rows do not contaln redueed pivot elements and if the
determinant is divided by ten for sach such operation after the caleulew

tion is complete.

The average variance of estimate times the number of data
gources may be computed by a short method., Using the panels of 3) let
(r)
ik

the computer carry Ky as it carried b and lel the card earry

ayq 88 it carried bﬁg}béi)* . The card £icld which bore b§§) 18

“left blank. The computer punches =a;oKs where it punched b§§+1) in

step 3) above, Thess quantities are sumued on the tabulating machine.
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APFENDIX E

DESCRIPTION OF THE DIGITAL COMPUTIHG EQUIPMINT

The semi-auvtomatic digital eomputing equipment used in performe
ing calculations described in this thesis consists of the following
pieces of machinery; an International Business Machines Corporation
(IBM) Type 604 Electronic Caleculating Punch (eomputer), an IBM Type 40
Accounting Machine (tabulator), and an IBM Type 521 Reproducing Punch
(reproducer). The computer consisis of two electrically connected come
ponents the first of which is called the punching unit and the second
the calculating section, The punching unit reads information from
Hollerith-type punched cards at the rate of about one‘hundred cards per
miﬁute and transmits this informetion by way of the electrical connce- |
tion to'thé calculating unit., The punching unit also punches informa-
tion whlch it receives from the calculating unit into the 3.25" by 7.375%
- manila cards. Other functions of this unit include checking for blank
'fields“ which should contain punching, indicating when the calculation
is too long for the calculating section to complets éuring the allotted
"calculate time" (unfinished program), and indicating when ingufficient
| space has been allotted on the card to receive the information {rom the
calcu;ating section (product overflow). The caleulating section performs
~ the arithmetic operations of addition and subtraction. Multiplication

is performed by the high-speéd addition of the muitiplicand or some ?ower

* The term field is used here to denote & set of card columns which,
when punched, represents a particular number,
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of ten times the multiplicand to itself = total nwmber of tines ouual
to the sum of the digits im the mﬁltipiie?. Divigion i8 performed by
subtractions from the dividend in the mannsr of long divisien., The
“computer ean obtain four separate'five digit quotients during caleulate
time. The operations which the eoﬁputer performs during one card cycle
are controlled by two panels, one for each section, which are specially
wired to complete the nécessary circuits in the meehine. For nany
standard types of problems these panels are wired permanently and are
stored betwsen uses, but for small problems it is frequently desirable.
to have the‘panels wired only when needed in order tec reduce storage
space requiremanta.

The reproducer will reproduce numbers from one card into another
card in the same or in a different field and will at the same time orige
inate punches which are to be’uniform throughout a given deek of cards
(gang punching), When coupled electrically with the tabulator this
machine will punch information received from the tabuletor. Usually
such information represents sums which the tabulator has computed and
the operation of punching such sums with the reproducer is called suvamary
punching, Multiplication by ten is performed on this machine by the
obvious method of shifting the number one column to the left in its field,

The tabulator prints information which it receives from cards,
adds cunulatively either positively or negatively, and ?rints totals
with or without transmitting this information to the reproducer for
summaery punching. The arithmetical and prianting operations are eontrolled

by wiring a panel similar to those used in the computer. The panel for



T

the tabulator may be wired to it sevoral different nreblems and the
appropriate eireuit for a given problen sslescied by means of a € saet
switeh®,

fux3ilisry equipment includes a sorter, a beymmeh, 21 a ecllator.
The sorter is able to séparata the eards in 2 deck into thirtcen differ-
ent classes which correspond to holes in the twelve card rows and %o no
hole at &1l in a given ecard eoiumn; The keypunch is the primery deviee
by whieh experimental date is translated into punched holes in caéds.
The coilator merges two decks of cards in the sequences required for
those caloulations which require information from two differcnt cards
or for gituaiions in whieh the computer result is to be punched in a
card different from the one supplying input information. 4 typical oxe
emplg is the computation of the exponential function of the werisble y.
bards bearing the values of y are merged with part of the exponential
funetion master deck in such a manner that the argument x in the ex-
ponential function master card is less than 0,001 greater than y. The
exponential funotion eards carry, in addition to the arsument, exp (x),
exp (-x), and ﬁﬁe first four central differences of these funciions for
Intervals of 0.001 iﬁ X. From such a merged deck the exponential func-
tions of x can be computed by Bosgel's formula(4l) transiated into

wiring in the éomputer control panels,
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LPPENTIX G

CEARACTERIZTICS OF THE CRITICLL 81T

For & ons=component system, two of the orincipal sharacterisitlcs

of the critical staste are the following

(er/eg)y y = O (76)
) -
(2%c/0q®)pm = O ()
Consequently ‘ V
{2 In f/ag)T’m = 0 (161)
2 q, ..~ .
(2% In £Rg%)p y = 0 (162)
But
@ 1n £/oglp,y = (Y/20) (@2 /oq)n,y  (163)
and 80 ' _
(82121 f) ) = / (DS}‘) o VE(BE})(164)
> Tym R T'oce ' Tym B 7 ?ﬁ? T m
Hence *
er/eglem = 0 (79)

(0% /0¢%)p m = O (80)

‘at the critiocal state.



w14
Propositions submitted by John Burton Opfell

Fh,De Oral Examinstion, December 4, 1953 at 9100 A.4.; Crellin
Conference Roon, ,

Comuittess Professors Sage (Chairman), Coreoran, Wiemann, Schomaker
and Hard,

1. Hewton's method for the extraction of square root is tub &
m?l case of the move general iterative method which la described by
the formula

Wa
9 =
s R

% = %( (nel)mg o+ B/xg Ay

This iteration is second ordert and consequently eonverges rapidly

even for crude starting valves. In many applieations of automatle

digital computers, the use of such efficlent iterative processes as

g;kisgmmmmmthuu“ofmlwfwtmammm
ations,

2e - The hydrodymamie and heat transfer equations sssoclated with s
rotating infinite flat plate have boen solved ewsctly?., This solution
ghould be extended, through numerical methods, Al necessary, to the case
in which a rigid wall is loecated at a finite dlstance from the axis of
rotation. BSuch a solution would be helpful in the design of mixing
va:gala :a;ﬁlkm the design of ayelons dryers for heat sensitdve materials
such as "

3. Hertree® proposes that 1lleconditiening of simultensous linear
squations ecan be given quantitative significance in terss of the ratic
of the largest to the saallest latent root of the matrix of the coaffie
slents, Since this matrix may be changed by midtiplication of any row
by a constant, without changing tre solution of the systen of sguations,
the value of this ratic may change also,.

h dynsnies fmplies & coupling
offecth batum the rate of momentum trwwpart and the progress of
chemioal change in fluld systems. The effsct has not yed been observed
experimentally, Sinve such an effoot would be useful in controlling
roactions rates, an investigation into the magnitude of this effact
would be most worthwhile,

54 Xuhn and Silberberg® have reported thuat in a £ield of shear,
they observed a shift in the mutual solubllity of two liquid phases,
This phenomenon should be interpreted on the basis of steady-state




=150=

thermodynamics rather than on the basis of equilibrium thermodynamies,
The fact that steady and non zero temperature gradiente exist in a field
of shear in viscoug fluilds mekes the direet observation of temperature
very difficult, It seems likely that in part the reported phenomenon
ean be explained by the existence of a steady non-uniform temperature
distribubtion in the system investigated,

Chemical Engineeringe.

Tv Cosfficienis for the Benediet eguation for the reduced volumetric
properties would be most useful for extrapolating ihes velumetrice propere
ties of compounds and mixtures for which little volumetric information
is available, The success of the pseudo-critieal concept suggests the
possibility of deseribing the volumetrie properties of a broad clasa of
compounds in terms of the reduced cveffielents for the Benedict equation
and of three numbers which correspend o the effective critical proper
ties.

7, Gemantf’ has proposed a correlation between the viscosity coeffi-
cient and the compressibility for liquids and plasties. Since, the
vigcosity and diffusivity are correlated in fluid systems, a similar
ecorrelation between diffusivity and the compressibility should be possible
for fluid systems, Such s correlation would be most useful in practice
since the elastie properties can be obtained easily from welceclty of
gound measursments,

8. Pohlhausen' has integrated the hydrodynamic equations describw
ing the temperature distribution in the boundary layer arising from the
flowing of a viscous in compressible fluid along a flat plate, A study
of the resulis showed that the recovery factor was very nearly equal %o
the square root of the FPrandtl number Pr for Prandil numbers near unity.
The same equations may be integrated for the case of a fluid flowing
between parallel plates to give a recovery factor of 54/35 Pr. The
indiscrimant use of the relation:

recovery factor = (Prandtl m:mber)“-%
is to be discouraged.

9 Bernoulli'a theorem is a special case of the more general
theorem

- i
dh.g%gf...V%dxa»j'«C = 0

which applies at every point in a moving fluid, The function
represents the infinitesimal amount of work which an infinitesimal
element of the fluid, considered as a closed system, does upon its
surroundings as a result of its velocity relative to its surroundings
and the forces acting at the boundary, )/d© is the Reynolds
dissipation function and x 4is distance along the streamline. This
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more general theorem is & consequencs only of the conservation of momenw
tum and the definition of work,

h  elevation (feet)

u  speed, fi/sec

P pregsure, p.S.l.s.

g gravitational eonstant

10, VWhen stripping & volatile component A , from a relatively
nonvolatile sbsorbent low pressure operation is usually desirable.
Since the equilibrium distribution of the component being stripped 1s
deseribed by the equation

I = _
i -Zx-:le

it ie apparent that the stripping gas carries away the highest concenw
tration of A when 1 «» (K~-1)X ie szero. For a given feed stock, i.e,,
fixed value of X, K should be as nearly unity as possible. In hydrocare
bon smemas, at a given temperature K is unity at the eritical state
a8 well as at a pressure which 1s approximately the vepor pressure of
pure A at that temperature., Consequently, there should exilst situae-
tions in whieh stripping operations might be performed at pressures
nearer to the critiesl pressure of the system than at nearly vapor
pressure. The advanteges to arise from use of such pressures would
result from the amall specific volume of the gas phase.

11, ¥hen at rest many types of powders and finely divided solids
are unable to support a shear stress in the bulk, This property is a
characteristiec feature of fluids, The analysis of the flow of powders
throvgh orifices and short tubes might profitably be mede on the basis
of the equations of motlion for fluid and the use of an effective vis~
cosity coefficient for the powder,
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Homenelature
equilibriunm vaporization ratio
Prandtl number
1b. moles of A per lb, mole of solute-frees absorbent
lb. moles of A per lb, mole of golute-free sitripping zas
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