
 

A New Strategy for Synthesizing Zeolites and 

Zeolite-like Materials 

 

 

Thesis by 

Hyunjoo Lee 

 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

California Institute of Technology 

Pasadena, California 

2005 

(Defended May 27, 2005) 



 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2005 

Hyunjoo Lee 

All Rights Reserved 



 iii

ACKNOWLEDGEMENTS 
 

     When I decided to pursue my Ph.D. in America five years ago, I felt very afraid of 

the new life I would have in a totally different environment. It was not easy to adapt 

in a new environment while learning to communicate in English and surviving in a 

different social system. But the time I spent at Caltech was the happiest in my life. I 

met many talented people with good hearts and I was inspired by their brilliant insight 

in both research and life.  

     I wish to express my most sincere appreciation to my advisor, Prof. Mark E. Davis. 

He showed an ideal image of a professor to me. I always admired his creativity and 

hard work. In addition to academic research, his advice for my various difficulties 

was incredibly helpful. I would like to thank Dr. Stacey I. Zones for his support and 

guidance. The discussions with him were always cheerful and enjoyable. I also thank 

the other members of my committee, Prof. Jay Labinger and Prof. Richard Flagan for 

their time, interest and encouragement. In addition, I thank Prof. Yushan Yan of 

University of California, Riverside for valuable collaborations.  

     All the members of Davis group made the work in the lab interesting and 

enjoyable. I know how fortunate I was to have such good people as coworkers. Jon 

Galownia, who joined and will leave the group with me, has been a really good friend. 

His support and encouragement was indispensable. I will miss the intellectual and 

profitable conversations, especially about religion, that we had. I thank Patrick 

Piccione and Andrea Wight for the things they taught me about zeolite synthesis and 

characterization. I should acknowledge Dr. Sonjong Hwang for his help with solid 

state NMR measurements. I won’t forget the support of all the other members who 

also enabled me to finish my Ph.D. 



 iv

     I met two of the best friends of my life, Byung-Jun Yoon and Wonjin Jang, at 

Caltech. I couldn’t appreciate their support and care more. I was able to overcome 

physically and emotionally difficult times due to their help. They showed me an 

example of Christian life and helped me have true faith in Jesus Christ. I sincerely 

hope to keep this precious friendship through our lives. I would like to thank Dr. Jione 

Kang for her kind guidance during our Bible study. It has been a base of my faith. 

People I met at Caltech and ANC will be in my heart with deep appreciation for their 

kindness and support. I thank my family for their continuous support of my work. My 

parents have been role models for their sincerity. Finally, I thank God, my Lord, for 

this work wouldn’t be accomplished without God’s blessing. I know that God has led 

me here and I’m looking forward to where God will lead me! 



 v

ABSTRACT 

 

     Zeolite and molecular sieve materials are broadly used as ion-exchangers, 

adsorbents and catalysts in the chemical industry. Zeolites are typically synthesized 

by using organic molecules as structure-directing agents (SDA). The SDA should be 

removed from the pore cavity of the zeolite framework to create microporous void 

space before the zeolite can be used for further purposes. Porous zeolites have been 

prepared by calcination, or extraction in very limited cases. However, calcination has 

several undesired aspects mainly resulted from a high temperature. A combustion-free 

methodology is developed in this work by using a new concept for the SDAs. An 

organic molecule that can be easily cleaved into smaller fragments and subsequently 

recombined into the original molecule by simple treatments can be used as a 

‘recyclable SDA’. That is, after synthesizing a zeolite using this type of organic 

molecule as the SDA, the molecule can be fragmented in the pore cavity, and its 

fragments removed due to their smaller size. The recovered fragments are then 

recombined into the original SDAs, which can be used for further zeolite syntheses. 

The cyclic ketal molecule, 8,8-dimethyl-1,4-dioxa-8-azaspiro[4,5]decane, is used here 

to prove this new methodology. The ketal is fragmented into its corresponding ketone 

and diol molecules after structure-directing the synthesis of the zeolite, ZSM-5. The 

fragments are successfully removed by ion-exchange, and the prepared porous ZSM-5 

shows equivalent porosity, catalytic activity and shape selectivity as conventional 

ZSM-5. In some cases, the SDA can be so tightly packed inside the pore cavity that 

the small reagent molecules required for fragmentation by acid hydrolysis have no 

access to the pore cavity. Therefore, the original methodology was expanded to 

provide a solution for this problem by utilizing two different kinds of organic 
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molecules, a SDA and a pore-filling agent (PFA), during the zeolite syntheses. The 

removal of the PFA by simple extraction generates the necessary space inside the pore 

cavity for agents necessary for the hydrolysis to transport into the zeolite. Using this 

methodology, ZSM-5, ZSM-12, VPI-8 and MOR are successfully synthesized with 

various ketal SDAs whose hydrolysis depends on the hydrophilicity and pore 

connectivity of the synthesized zeolites. 
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1.1. Zeolites and Molecular Sieve Materials 

      

     Zeolites are defined as crystalline microporous aluminosilicates with three 

dimensionally connected pore structures. The porous structure consists of cavities and 

channels, and water or cations that counter-balance the negative ions of aluminum 

sites usually occupy the pore space. For example, zeolite A has a basic unit of 

Nax[SiAlO4]•yH2O where Na ions or water molecules reside in large cavities 

connected by small channels. The crystalline structure comprised of various 

combinations of tetrahedral SiO4 or AlO4
- enables the zeolite to have monodisperse 

pore size distribution and better mechanical strength compared with amorphous 

materials. In addition to aluminosilicates, silicates with various heteroatoms, such as 

Ge, Ga, B, Zn, etc., aluminophosphates(AlPO), and silicaluminophosphates(SAPO) 

have been synthesized. When these materials have crystalline porous structures like 

zeolites, they are called as molecular sieve materials. Molecules can be taken up to the 

pores based on their size. While molecules smaller than the pore size can pass through, 

bigger molecules are rejected. Due to the crystallinity, the discrimination can occur so 

sharply that the molecules with even sub-Å size difference can be separated. This 

‘molecular sieving’ effect is a unique and inherent character of zeolites and molecular 

sieve materials.  

      

1.1.1. Applications 

     Traditionally, zeolitic materials have been used as ion-exchangers, adsorbents, 

separation agents, etc. Zeolites are the most widely used water softening agents in the 

detergent industry due to their high ion-exchange capability. Zeolites adsorb water or 
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small molecules very easily, and this property contributes to desiccation or gas 

purification. Molecular sieving effect enables zeolites to separate n-paraffin from i-

paraffin, so it can separate the molecules with very small size difference. However, 

the most interesting application of zeolites is their use as catalysts in chemical 

industries. When a proton counterbalances the negative charge of aluminum, the 

proton can be acted as a Brønsted acid site. Zeolites have been utilized as 

heterogeneous acid catalysts in many commercial processes such as catalytic cracking, 

hydrocracking, selectoforming, hydroisomerization, dewaxing, alkylation, methanol 

to gasoline conversion, NOx reduction, etc. Zeolites are also used for shape selective 

catalysis resulting from the molecular sieving effect. For example, in the 

transalkylation reaction of 1,3-dimethylbenzene, the methyl group cannot access 5-

position carbon of benzene (the part with no methyl groups) due to spatial 

confinement inside the crystalline pore. Hence, only 1,3,4-trimethylbenzene is formed 

instead of 1,3,5-trimethylbenzene.  

     The application of zeolitic materials has been actively expanded into new fields 

during the last decade. Kuznichi et al. reported that titanosilicate can control gas flow 

of nitrogen and methane. The material named as ETS-4 has small pore of 8MR (8 

membered-ring; the number of oxygen around the pore is 8), and its pore shape is 

changed from circular to elliptical upon heat treatment. While both nitrogen and 

methane can pass through the circular pore, only nitrogen can pass through the 

elliptical pore. This material can provide new and more economical ways for the 

purification of natural gas containing large amounts of nitrogen. Various 

morphologies of zeolites, such as self-standing films, fibers, and micropatterns, have 

been synthesized. Especially, zeolite-based films are expected to have high potential 

as separation devices, membrane reactors, chemical sensors, and host for guest 
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species in optical applications. Porous zeolite films are considered to be a good 

alternative to dense silicate films as low-k materials in semiconductor device 

applications. Zeolites have higher mechanical strength than amorphous silicates, and 

the pores enables the k value of the zeolite film to be much lower than dense silicate 

films because the k value of air is 1 while the k value of SiO2 is 4. Zeolitic materials 

have also been developed as contrast agents for magnetic resonance imaging (MRI). 

Gd+ is an excellent contrast agent for MRI, but its toxicity forbids its use. When Gd+ 

is impregnated in zeolites, the composite shows benign toxicity. In addition, zeolite 

can be used as a reactor for single-walled carbon nanotubes. The synthesized tube 

with 0.4nm diameter shows superconductivity.  

 

1.1.2. Synthesis Procedures 

      Zeolitic materials are synthesized from a gel containing silica precursor, precursor 

compounds with heteroatoms such as Al, B, Zn, Ga, Ge, etc., organic or inorganic 

cations, mineralizing agents, and water.  The crystalline phase of the obtained zeolite 

depends most strongly on the gel composition. By changing the organic or inorganic 

cations, heteroatoms, mineralizing agents, and the ratio of these compounds, different 

crystalline structures with various pore sizes and pore structures can be synthesized. 

So far, 161 crystalline structures have been discovered according to the International 

Zeolite Association (IZA). IZA recommends the use of a three letter code such as 

ABW, ACO, etc for zeolites with various structures. Detailed information about these 

crystalline structures can be found at the IZA website (http://www.iza-structure.org). 

Often new zeolite structures have been found by using novel shapes of organic cations. 

Although the shape of the produced pore is not exactly the same as the shape of the 

organic compound, the use of a particular organic compound directs the formation of 

http://www.iza-structure.org/
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a specific crystalline porous structure. These organic compounds are called ‘structure-

directing agents’, abbreviated as SDA. Because the host-guest relationship between 

the inorganic pore and the organic compound is not exactly matched, the term 

‘template’ would be inappropriate in this case. Alkali-metal cations such as sodium or 

potassium are also the main components of the reactant mixture. They are known to 

accelerate the nucleation and crystal growth of zeolites [2], probably affecting the 

polymerization and depolymerization of the silicate species in the gel. When 

excessive amounts of alkali ions are used, layered silicates can be obtained. It seems 

that alkali-metal cations begin to compete with the organic molecules in a structure-

directing role at high concentrations. When various heteroatoms are incorporated into 

the silicate framework, the bond length or bond angle of Si-O-X (X=heteroatom) is 

changed from the case for Si-O-Si, and different building blocks construct the 

crystalline structure. This new building block has also been applied to find new 

zeolite structures. Mineralizing agents are essential for zeolite synthesis as continual 

cleaving of Si-O bonds enables exploration of stable crystalline structures, since 

amorphous silicates would be obtained without mineralizing agents. OH- and F- are 

the only compounds employed as mineralizing agents. In addition, reacting time, 

temperature, seeds, aging, and status of reaction vessel (static or rotating) can 

influence the final zeolite structure. It can take from a few days to months to 

synthesize zeolites, also depending on the status of reactor, temperature, and seeds. 

When the reaction vessel is kept static in a convection oven, it takes longer than when 

the reaction vessel is rotated or stirred in the oven. Higher temperature syntheses 

usually require lower reacting time, and the use of seeds can also reduce the required 

reacting time. Different crystalline structures can be obtained by varying the time. For 

example, CIT-6 (3 days) and VPI-8 (7 days) evolve from the same gel in zincosilicate 
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synthesis[3, 4]. Thermodynamically, the most stable silicate, quartz, is often found 

after much longer reaction time. Typical temperatures for zeolite synthesis are 

100~180oC. Open zeolite structures are synthesized more easily at lower temperature.  

 

1.1.3. Synthesis Mechanism 

     The mechanism for zeolite synthesis is not fully understood. Recently, much effort 

has been concentrated to elucidate nucleation and crystal growth of zeolites, since 

zeolite nanoparticles have received much attention due to their various potential 

applications. About a decade ago, Davis et al. suggested the zeolite mechanism as 

shown in Fig.1-1. The simplest model for zeolite synthesis can be found in the 

synthesis of Si-ZSM-5 using tetrapropylammonium hydroxide (TPAOH). Only silica 

precursor (tetraethoxysilicate, TEOS), TPAOH, and water were used for the synthesis 

of Si-ZSM-5. TPA with intermediate hydrophobicity and hydrolyzed silica precursor 

have hydrophobic hydration sphere of ~1nm size. These two spheres overlap, driven 

by release of ordered water molecules around the spheres. The entropy increase is 

considered to be the main driving force to form aggregates consisting of TPA and 

silicate. The aggregates undergo further nucleation and crystal growth, and finally 

form zeolite. TPA is speculated to play a role in shaping the pore during the 

nucleation process. Recent work about the synthesis of silicate nanoparticles in the 

same condition found that particles with core-shell structure (silica at core and 

tetraalkylammonium at shell) are spontaneously formed [5]. These particles can be 

considered as primary units in Fig.1-1, but interestingly, the organic compounds 

occupy the shell. The exact mechanism of zeolite crystal nucleation should be 

investigated further. Also, it should be noted that zeolite synthesis is a kinetically 

controlled process, not thermodynamically controlled. The enthalpy change of pure 



 7

silica molecular sieves is in a range of 6.8~14.4kJ/mol less stable than that of quartz 

[6, 7]. This range (7.6kJ/mol) is comparable to twice the available thermal energy 

(6.2kJ/mol) at typical synthesis conditions. All known tetrahedrally coordinated SiO2 

polymorphs are only slightly metastable with respect to quartz. Therefore, the reaction 

pathway is critical for which crystalline phase can be obtained. 

 

1.2. Strategies for Rational Design of Zeolite 

 

     All of the zeolites have effective pore sizes of less than 1nm. Presently, the 

maximum pore size for materials stable enough to be of commercial use is 

approximately 8Å [8]. This small pore size has restricted the applications of zeolites, 

hence the effort to synthesize zeolites with larger pores (especially 1~2nm) has been 

attempted for a long time. Zeolites with larger pores have huge potential in the areas 

of fine chemicals, pharmaceuticals, and nanotechnology. Phosphate-based materials 

such as VFI [9] or CLO [10], and mesoporous silicates such as M41S [11] or SBA 

[12] with amorphous character have been discovered in the middle of this effort. 

However, these materials are unstable in hydrothermal conditions unlike crystalline 

silicate materials, and they have insufficient acidity for application as catalysts. Silica-

based crystalline materials with extra-large pores are still highly desired. Two general 

methodologies for the rational design of pore architecture and framework atom 

positioning have been applied to find these materials. First, the control of size, rigidity 

and hydrophobicity of the SDAs enables discovery of new zeolite structures. Second, 

the heteroatoms have been inserted to the gel in order to construct novel building 

blocks that can form new crystalline structures with larger pore volume. Additionally, 
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computational techniques have been adapted to assist the effort to synthesize zeolites 

with desired properties.  

 

1.2.1. Organic Structure-Directing Agents 

     Liebau summarizes the conditions at which an organic guest will best form a 

clathrasil [13]. These conditions can be considered as requirements of SDAs for 

zeolite synthesis.  

 

1. The molecule should have sufficient room within a particular cage or pore. 

2. The molecule must be stable under the synthesis conditions. 

3. The molecule should fit the inner surface of the cage with as many van der 

Waals contacts as possible, but with the least deformation. 

4. The molecule should have only a weak tendency to form complexes with the 

solvent. 

5. More rigid molecule will tend to form clathrasil easier than flexible molecules. 

6. The tendency to form a clathrasil will increase with the basicity or polarizability 

of the guest molecule.  

      

     The first condition means that when the organic molecule is bigger than the 

polyhedral cage, steric forces inhibit the formation of the clathrasil. In the case of 

zeolite synthesis, the use of bigger SDAs often directs the formation of the zeolite 

with larger pores to a certain extent. For example, the SDAs of A, B, C, and D shown 

in Fig.1-2 directed the clathrasil nonasil, MTW, SSZ-31, and SSZ-31, respectively. 

When the reactant gel contained no organic molecules, quartz was synthesized [14]. 

As the size of the SDA increases, the synthesized product changes from a clathrasil to 
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a microporous large-pore molecular sieve. Secondly, the SDA should endure harsh 

conditions, often with high basicity and high temperature during zeolite synthesis. 

Decomposed SDA can easily affect the structure of the product. Thirdly, if the SDA 

should be deformed to accommodate inside a certain pore shape of a zeolite, the 

distortion tension will easily disrupt the formation of the crystalline structure. The 

organic molecules should be stabilized inside the inorganic crystalline phase via as 

many van der Waals interactions as possible. Fourthly, when the zeolite is synthesized 

in hydrothermal conditions with aqueous solution, the SDA should have intermediate 

hydrophobicity. To evaluate the hydrophobicity of the organic SDA, Zones has 

studied the transfer of different charged SDAs from an aqueous solution to a 

chloroform phase as a function of the C/N+ ratio [15]. He found that the percentage of 

transfer is low (less than 10%) for tetraethylammoium with C/N+=8 and that it is very 

large (more than 70%) for tetrabutylammonium with C/N+=16. The various organic 

molecules with intermediate hydrophobicity of C/N+=9~15 including 

tetrapropylammonium with C/N+=12 work well as SDAs yielding a variety of zeolitic 

materials. Fifthly, When the SDA is flexible, there will be many metastable states of 

inorganic-organic composites (such as aggregates shown in Fig.1-1) that the SDA 

conforms to. This will lead to competition among those metastable states, and 

additional factors such as addition of alkali ions and different temperatures might 

determine the final phase. In this case, the structure-directing effect of the organic 

molecules is considered to be weak. On the contrary, rigid organic molecules will 

have very limited conformational configurations and will produce the same crystalline 

phase across various synthesis conditions. Finally, higher pH has influence on the 

kinetics of silicate hydrolysis. The basicity of the organic molecules assists the silicate 
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hydrolysis, and their polarizability stabilizes the whole system with the electric field 

caused by the partial ionic character of the Si-O bonds.  

     The produced zeolite phase is known to depend more on the size and shape of the 

organic molecules rather than the chemical properties of the SDA[16]. When the SDA 

is small, the effect of the shape is not critical. The thermal motion of the SDA at high 

temperature easily covers the difference in the shape. The various organic molecules 

shown in Fig. 1-3 directed the same structure of DOH. When there is a good 

geometrical fit in the organic-inorganic composites by van der Waals contacts, the 

change in the shape of the organic molecules results in synthesizing different zeolite 

phases. For example, diethylamine and dipropylamine form ZSM-48 with linear 

10MR pore structure, but triethylamine and tripropylamine form ZSM-5 with 

multidimensional 10MR pore structure. The transition from unidimensional to 

multidimensional zeolite has been achieved by changing the geometry of the organic 

SDA from linear to branched.  

     Table 1 shows zeolites discovered by using new SDAs: CIT-1 (CON) with 12MR 

and 3-dimensional pore structure (3-D), UTD-1 (DON) with 14MR and 1-D, CIT-5 

(CFI) with 14MR and 1-D, STA-6 (SAS) with 8MR and 1-D, STA-7 (SAV) with 

8MR and 3-D, SSZ-35 (STF) with 10MR and 1-D, SSZ-36 and SSZ-39 (Intergrowth 

of ITE and RTH) with 8MR and 2-D, SSZ-53 (SFH) with 14MR and 1-D, SSZ-55 

(ATS) with 12MR and 1-D. It should be noted that organic (or organometallic) 

molecules were successfully used to find extra-large pore (with 14MR) pure silicate 

structures such as CIT-5 and UTD-1. Organic molecules with various sizes, shapes, 

and chemical properties have been studied to synthesize zeolites with larger pores in 

various research groups.  
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     In addition to synthesizing new zeolite structures, organic SDAs have been used 

for controlling the crystal growth of zeolites. In the study to fabricate high-permeance, 

high-separation factor zeolite membrane, the crystal orientation of silicalite was 

controlled by modifying SDAs as shown in Fig. 1-4. The use of dimer-TPA or trimer-

TPA as SDA enhances the growth of silicalite crystal in the b-direction significantly, 

and the membrance showed superior performance for the separation of organic 

mixtures with small differences in size and shape, such as xylene isomers[17]. 

Heteroepitaxial growth of a zeolite film with a patterned surface-texture has been 

achieved by controlled usage of SDA[18]. Large sodalite crystals were synthesized 

without using any organic component first, and then chabazite grew heteroepitaxially 

on the sodalite substrate by using a different reactant mixture containing TMA. 

      

1.2.2. Novel building blocks 

     In addition to efforts to make zeolites with larger pore sizes, effort has also been 

concentrated on synthesizing zeolites with lower framework density (FD), defined as 

the number of tetrahedral atoms (T) per nm3. It is known that the range of FD values 

in zeolites depends on the type and relative number of the smallest rings in the 

tetradedral networks[19]. The frameworks of the lowest density are those with a 

maximum number of 4-rings. Piccione et al. also showed that molecular sieves 

consisting mostly of zero or one 4MR such as AFI, MTW, MFI, MEL, FER, and CFI 

are the most stable structures with higher FD, whereas those that contain mainly triple 

4MR such as CHA, ISV, FAU, and AST are the least stable structures with lower 

FD[6]. Therefore, if zeolitic materials with low FD are to be synthesized, frameworks 

with T atoms mostly bonded to multiple 3, 4MR will have to be prepared. Double 

4MR structure (D4MR) with cubic shape has been investigated as a novel building 
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block to synthesize zeolites with lower FD. The number of molecular sieve structures 

that contain D4MR units is very small (Zeolite A, octadecasil, and ISV). D4MRs can 

be stabilized by F- media since F- is located inside the D4MR and stabilizes this type 

of atomic arrangement. F- can also replace OH- in the zeolite synthesis as a 

mineralizing agent. The fluoride-based synthesis route combined with remarkably low 

concentration of water has led to many discoveries including the synthesis of all-silica 

molecular sieve materials for the first time and the synthesis of entirely novel 

framework structures[20]. D4MR can be additionally stabilized by incorporation of 

heteroatoms such as Ge4+. When the D4MR is constructed by Si4+ alone, the Si-O-Si 

angle must be close to 145o for the tetrahedron to be regular. When Ge4+ is introduced, 

so that Ge-O-Si bond is formed, D4MRs become more relaxed, thus more stabilized. 

Pure polymorph C of zeolite beta which remained elusive for a long time has been 

synthesized using this strategy, named ITQ-24[21]. The stabilizing effect of Ge4+ for 

D4MR has led to the additional synthesis of three new structures, ITQ-15, ITQ-21, 

ITQ-22, all of which contain D4MRs. ITQ-15 is the first extra-large pore zeolite with 

intersecting 14- and 12- ring channels[22]. ITQ-21 has the largest void volume ever 

reported (0.24cm3/g) with a three-dimensional pore network containing 1.18nm 

diameter cavities, each of which is accessible through six circular, 0.74nm diameter 

windows. ITQ-22 is the first reported zeolite containing fully interconnected 8-, 10-, 

and 12-membered ring pores. On the other hand, synthesizing zeolites with 3MR has 

also been tried to create more open structures. The introduction of Be2+, Mg2+, Zn2+, 

and even Li+ in framework positions can provide the necessary flexibility in one of 

the 3MR TO4 tetrahedral to stabilize its accommodation in a four-connected 

framework. Beryllosilicates with low FD were synthesized, such as OSB-1 with 3MR 

only (13.3T/nm3) or OSB-2 with dominantly 3MR (12.7 T/nm3), but the high toxicity 
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of Be has induced active research for synthesizing zeolites with dominantly 3MR 

using other ions such as Zn2+.  

 

1.2.3. Computational Calculations 

     Computer modeling has been shown to be a valuable tool for investigating the 

structure and reactivity of zeolites. As with experimental studies, work has 

concentrated on the location and diffusion of molecules within the pores. Recently, 

computational techniques have been actively used to evaluate the effectiveness of 

SDAs for rational design of particular zeolite structures. Also, the stability of the 

zeolite framework itself has been studied by using various simulation techniques.  

     The crystallization rate of zeolites in the presence of different SDAs has been 

correlated with calculated interaction energies of the SDA with the framework. Lewis 

et al. demonstrated that for successful structure-direction, the favorable nonbonding 

interaction between the SDA and the framework must be maximized, and the SDA 

molecules must be able to pack efficiently within the framework[23]. They calculated 

nonbonded interaction energy and stabilization energy of SDAs in various zeolite 

frameworks (e.g. tetraalkylammonium cations (TMA, TEA, TPA, TBA) in ZSM-5, 

ZSM-11, and β or bis-quaternary amines (tri, tetra, penta, hexa, hepta, octa-

methonium) in EU-1 and ZSM-23). Sastre et al. also studied the stability of β, EU-1, 

ZSM-11 and ZSM-12 when cyclohexylalkyl pyrrolidinium salts are used as the 

SDA[24]. They found that the stabilization of intermediate species during nucleation 

appears to orient the final synthesis result. Fig.1-5 shows how a balance between 

kinetic and thermodynamic factors can contribute to the synthesis outcome throughout 

the nucleation and crystallization processes. Path 1 requires less activation energy for 

the nucleation (kinetically favorable), and path 2 gives the most stable final structure 
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(thermodynamically favorable). Since energy difference in different nuclei (E(Z1-

SDA)-E(Z2-SDA)) is sometimes slight, small changes in the properties of an SDA can 

result in different final products. The same authors later successfully controlled the 

produced zeolite structure by estimating zeolite-SDA interaction when related 

structures compete and small difference in this interaction may shift the synthesis 

toward one or the other structure[25]. Two closely related zeolitic structures, ISV and 

BEC, that strongly compete during the crystallization process were synthesized 

separately by using modified SDAs that had been predicted by a priori computational 

results. Additionally, molecular dynamics studies have been done on the role of 

tetramethylammonium cations in the stability of the silica octamers Si8O20
8- in 

solution to elucidate the nucleation step[26].  

     The stability of porous zeolite frameworks themselves have also been studied to 

give practical advice for actual synthesis. Zwijnenburg et al. showed how the 

topology and energetics of the constituent cages can lead to estimating the stability of 

large pore/channel materials[8]. Zeolites were decomposed into space-filling sets of 

face-sharing polyhedral units to evaluate their stability. They found that large pores 

require compensation by small faces and extra-large pore zeolites should consist of 

large polyhedra to be more energetically stable. Hence, steering the synthesis mixture 

toward small rings and large cages most likely offers a route to extra-large pore 

zeolites. Curtis and Deem also pointed that the flatness of rings can represent the 

stability of zeolites[27]. Comparison of the flatness distribution of known zeolites to 

those of the hypothetical zeolites shows that it should be possible to synthesize 

zeolites containing at least somewhat flat rings with greater than 12 members. They 

suggested that the main stumbling factor in the formation of large pores is not 

thermodynamics but rather identification of suitable SDAs.  
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1.3. Removal of Organic SDAs From the Zeolite Pores 

 

     After the synthesis of zeolite and molecular sieve materials, the resulting solid is 

non-porous because the organic SDAs are trapped in the cavities of the solid. To 

obtain a completely porous solid, it is necessary to remove the SDA from the as-made 

materials. Factors such as pore size, size of SDA, and interaction of the SDA and 

zeolite framework can affect the removal of the SDA. The methods that have been 

used to remove the organic SDA are shown and their limitations are discussed below. 

 

1.3.1. Calcination 

     The most common method to remove the organic components from the pores is 

calcination. The organic species are removed by combustion at high temperature in a 

flow of oxygen or air. Fig. 1-6 shows typical conditions used for calcination of 

crystalline inorganic materials. The final temperature can easily go up to 700oC in 

some cases. During this calcination, high local temperature and water formation may 

occur, and therefore extra-framework species may be formed. This is the case for 

some aluminosilicates where extra-framework aluminum species can be detected after 

removal of the template by calcination. For example, when zeolite β is calcined and 

steamed severely, a substantial portion of the framework aluminum is completely 

hydrolyzed, and non-framework aluminum species are generated[28]. This leads to 

significant reduction in its catalytic activity. There can also be a high exotherm when 

the organic compound burns inside the pore. The exotherm may destroy the inorganic 

framework, and this often occurs for weaker inorganic crystalline materials with open 
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frameworks. Besides, the organic components are completely destroyed into CO2, 

NOx, and H2O by calcination. This is a waste of expensive organic species. The cost 

of organic molecules contributes up to 25% of overall zeolite synthesis cost in 

industry. As the effort to find extra-large pore zeolites is being done by using larger 

and more complicated organic molecules, the cost of organic molecules in zeolite 

synthesis would be a bigger problem for industrial applications. Even if new zeolites 

with desired properties are synthesized by a new, but expensive SDA, the new 

discovery may remain an academic concern only due to low economical efficiency. 

Additionally, there are NOx-containing gas effluents during calcination since nitrogen 

containing compounds such as amines or ammonium ions are usually used as SDAs. 

This NOx must be treated further to meet environmental regulation in industry, and 

this can be an additional cost for zeolite synthesis. As novel applications of zeolitic 

materials emerge, high temperature procedures become undesirable due to 

incompatibility with other procedures.  

 

1.3.2. Extraction 

     The other way to remove organic SDAs from zeolitic materials is extraction. Many 

novel methods such as microwave-assisted template removal, extraction with 

supercritical CO2, and ozone treatment have been successfully used to remove organic 

templates from mesoporous silica such as MCM-41 and SBA-15[29]. Those methods 

can remove the organic components more easily due to larger pore sizes and weak 

framework-surfactant interaction of mesoporous materials. The organic template and 

MCM-41 is bound by electrostatic interaction while van der Waals or hydrogen 

bonding interaction is a main force connecting organic species and SBA-15. Hence, 

the organic molecules inside SBA-15 are more easily removed than inside MCM-41. 
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In the case of zeolitic materials, however, the pore size is much smaller, pore channel 

often has a smaller diameter than pore cage, and the electrostatic interaction between 

SDA and framework is stronger. Therefore, there are limited cases where the SDA 

can be removed by extraction. Jones et al. reported SDA removal by extraction from 

MFI or BEA structure[30]. The amount of SDA that could be removed by extraction 

was found to be dependent on the size of the SDA and the strength of its interaction 

with the molecular sieve framework. The effect of strength of interaction was 

estimated by using BEA with different heteroatoms such as Zn, B, and Al. However, 

the SDA was only partly extracted except TEA from pure silica zeolite β, and 

heteroatoms were removed from the framework during extraction. For instance, 60% 

of boron was removed from the framework during solvent extraction with aqueous 

acetic acid.  

 

1.3.3. Need for a New Strategy to Remove SDA 

     As explained in the previous sections, calcination and extraction are the only two 

methods able to remove SDAs, and they have many undesired aspects. A new method 

to remove SDAs completely without using high temperature procedures is highly 

desired. A combustion-free methodology to synthesize zeolite and zeolite-like 

materials was proposed, and it was shown that the methodology can be used to 

prepare porous zeolites in the following chapter. The limitation of the proposed 

methodology was described and an additional strategy to overcome the problem was 

provided in Chapter 3. The methodology has been applied to synthesize various 

structures of zeolites and the important factors for success of the proposed 

methodology were investigated in Chapter 4. Potential applications of the 

methodology were suggested in Chapter 5.  
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Figure 1-1. Proposed mechanism for zeolite synthesis: Synthesis of ZSM-5 using 

tetrapropylammonium cations [1].
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Figure 1-2. The size effect of organic molecules in the synthesis zeolites [16]. 
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Figure 1-3. The effect of various shapes for zeolite synthesis in the case of small 

SDAs [16]. 
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Figure 1-4. Top: A schematic representation of ZSM-5 crystal structure. Bottom: The 

effect of the different SDAs on the crystal shape is quantified in a comparison of the 

aspect ratio of the crystals [height/depth and width/depth] synthesized in the presence 

of TPA, dimer-TPA, and trimer-TPA [17].
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Figure 1-5. Top: Energy scheme for the synthesis of two zeolite structure (Z) in the 

presence of a SDA starting from the same gel (G) and going through different nuclei 

(N). Middle: Proposed mechanism with a reversible nucleation followed by the 

crystallization. Bottom: Nuclei form when silicoalumina oligomers surround the SDA, 

giving an aggregate resembling a significant part of a structure [24].  
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Figure 1-6. Typical temperature profile and gas flow for calcination.
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Table 1-1. Zeolites that were newly discovered by using unique organic molecules. 

Zeolite Structure-Directing Agents Year Ref.

CIT-1 

(CON) 

N+(CH3)3

 

1995 [31]

UTD-1 

(DON) 

 

1996 [32]

CIT-5 

(CFI) 

N

N+

CH3  

1997 [33]

STA-6 

(SAS), 
STA-7 

(SAV) 

N

N

N

N
Me

MeMe

Me

,   

N

N

N

NN

N

Me

Me

Me

Me

Me

Me

 

2000 [34, 
35] 

Co



 30

Table 1. Cont’d 

Zeolite Structure-Directing Agents Year Ref.

SSZ-35 

(STF), 
SSZ-36 

(ITE-
RTH), 
SSZ-39 

(AEI) 

 

N+

Me

Me

,  

N+

Me

Me

Me

Me

Me

Me

, 

N+ Me

Me
Me Me  

2000 [36]

SSZ-47 N+

CH3

H3C

 

2002 [37]

SSZ-53 

(SFH) 

 

2003 [38]

SSZ-55 

(ATS) 

F

N
CH3

CH3

+

CH3

 

2002 [39]

F

N+
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Chapter Two 

 

Proposal of a New Methodology and Its Proof of Concept 

 

(Modified from ‘H. Lee., S. I. Zones, and M. E. Davis, A Combustion-

Free Methodology for Synthesizing Zeolite and Zeolite-like Materials, 

Nature 425, 395-398 (2003)’) 

 



 32

2.1. Proposal of a Combustion-Free Methodology 

 

     Zeolites are mainly used for the adsorption and separation of ions and small 

molecules, and as heterogeneous catalysts. More recently, these materials are 

receiving attention in other applications such as medical diagnosis and as components 

in electronic devices1. Modern synthetic methodologies for preparing zeolites and 

zeolite-like materials typically involve the use of organic molecules that direct the 

assembly pathway and ultimately fill the pore space2-6. Removal of these enclathrated 

species normally requires high temperature combustion that destroys this high cost 

component, and the associated energy release in combination with the formed water 

can be extremely detrimental to the inorganic structure7. Here, we report a new 

synthetic methodology that avoids the aforementioned difficulties by creating organic 

structure-directing agents (SDAs) that can be disassembled within the zeolite pore 

space to allow removal of their fragments for use again by reassembly. The 

methodology is shown for the synthesis of zeolite ZSM-5 using a SDA that contains a 

cyclic ketal group that is removed from the SDA while it is inside the zeolite without 

destruction of the inorganic framework. This new methodology will have broad 

applications for the synthesis of a wide variety of inorganic and organometallic 

structures. 

     The elimination of high temperature treatments for SDA removal from crystalline 

structures is very desirable for many reasons in addition to the loss of the expensive 

SDA. For example, zeolite films that are used as molecular sieving membranes are 

susceptible to cracking at high temperature treatments for SDA removal because of 

mechanical stresses placed on the membrane by thermal expansion mismatches with 

supporting substrates. Newer, molecular sieve low dielectric components8 may also 
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benefit from the ability to remove the “guest” organic molecule using only moderate 

heating, rather than combustion. This is because they require air to fill the 

microporous space in order to achieve their desired properties and will be components 

of devices that may not be compatible with high temperature processing steps1.  

Ordered, mesoporous materials can be prepared using organic components such as 

surfactants that can form organized aggregates that contain large numbers of 

molecules that ultimately fill the pore space of the as-synthesized solids9,10. Unlike 

crystalline microporous materials, the mesoporous solids allow for the extraction of 

the organic structure-directing components11-13. This is due to the fact that the 

individual molecules that form the assembled structure-directing components are held 

together by weak forces that are easily disrupted and are each sufficiently small to be 

removed through the relatively large mesopores. Additionally, the interaction energies 

between the organic and inorganic fractions in the ordered, mesoporous materials are 

not as large as with microporous materials where SDA molecules-framework 

interactions can be quite strong, e.g. interaction enthalpies between the silica 

framework and the organic SDA have been measured as large as  -181±21 kJ/mol 

SDA14. The ability to remove and recycle the organic components allows for low-cost 

preparation of ordered, mesoporous materials. 

     Our new synthetic strategy for microporous crystalline molecular sieves (Fig. 2-1) 

eliminates any high temperature processing steps and the destruction of the SDA. 

Conceptually, the strategy is to assemble a SDA from at least two components using 

covalent bonds and/or non-covalent interactions that are able to survive the conditions 

for assembly of the zeolite, and yet be reversed inside the microporous void space. 

The fragments formed from the SDA in the zeolite can then be removed from the 

inorganic framework and be re-combined for use again. This procedure differs from 
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that employed with mesoporous materials in that the number of components used to 

create the SDA is small, e.g. less than five, and the SDA is a homogeneous, well-

defined entity.  

 

2.2. Proof of Concept 

 

     We demonstrate our synthetic methodology with a new SDA that contains a cyclic 

ketal and use it to assemble the zeolite ZSM-5 (Fig.2-2). Commercially available 1,4-

dioxa-8-azaspiro[4,5]decane was quaternized using methyl iodide to give 1 (Scheme 

1). Using 1 in its hydroxide form, the following reaction composition gave ZSM-5 

(sub-micron crystals observed in SEM – see Figure 2-3) ; 0.033 1 : 0.238 KOH : 

0.056 Al(OH)3 : 42.23 H2O : 1.0 SiO2 (Fig. 2-4a). In the absence of the SDA, this 

reaction mixture does not yield ZSM-5. As-synthesized ZSM-5 has an elemental 

composition of 40.27 wt% Si, 2.31 wt% Al, 2.25 wt% K, 3.45 wt% C, 0.97 wt% H, 

0.45 wt% N. The SiO2/Al2O3 ratio was estimated from these analyses to be 33.5.  

     The choice of using a cyclic ketal was to provide for a SDA that would remain 

intact at zeolite synthesis conditions (high pH) and be cleavable at conditions that 

would not destroy the assembled zeolite (low pH). 1 was expected to be cleaved into 2 

and ethylene glycol under acidic condition. Figure 2-5 shows the 13C cross 

polarization magic angle spinning (CP MAS) NMR spectra from the ZSM-5 after 

various treatments. The spectrum in Fig. 2-5a shows that the as-synthesized material 

contains intact 1. When the ZSM-5 was contacted with 1M HCl solution at 80oC for 

20 hrs, the 13C CP MAS NMR spectrum obtained (Fig. 2-5b) is consistent with the 

presence of the ketone fragment as illustrated in Scheme 1. The carbonyl of 2 was 

also detected by IR (1741cm-1), and the weight of the organic components as assessed 
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by thermogravimetric weight losses at temperatures between 200 and 700oC 

decreased from 6.2 wt% to 4.6 wt% (consistent with the loss of ethylene glycol). The 

HCl solution after the cleavage reaction was collected, concentrated, and then 

analyzed by 13C NMR. Only ethylene glycol was detected at 62.8ppm. The powder X-

ray diffraction pattern of the treated sample reveals that the ZSM-5 remains intact 

after HCl treatment (Fig. 2-4b). Alternatively, a gas-phase cleavage reaction was 

performed using H2O-saturated HCl(g) at 120oC for 3hrs. The 13C CP MAS NMR 

spectrum of the treated ZSM-5 was the same as that shown in Fig. 2-5b except that 

ethylene glycol was also detected. These results showed that 1 can be cleaved into the 

desired pieces inside the zeolite pore space. 

     While ethylene glycol can be extracted easily, 2 remains inside the pores because 

of strong ionic interaction with the anionic framework. Ion-exchange was used to 

remove these positively charged organic fragments. Exposure to a mixture of 0.01M 

NaOH and 1M NaCl at 100oC for 72 hrs removed 2 (Fig. 2-5c and no carbonyl peak 

observed in IR). Additionally, the ion-exchanged ZSM-5 now has porosity (N2 

adsorption capacity of 0.14 cc liquid N2 /g dry ZSM-5) that was not present prior to 

this treatment (as-synthesized ZSM-5 showed no microporosity while the calcined 

ZSM-5 gave 0.15 cc/g). When the as-synthesized solid was not treated with HCl 

solution, the ion-exchange step did not cause the removal of 1. Thus, the 

fragmentation of 1 is essential for its removal from the zeolite pores. 2 was detected in 

the solution after the ion-exchange by electrospray mass spectrometry. After 

NaOH/NaCl treatment, the powder X-ray diffraction data show no loss in structural 

integrity of the ZSM-5 (Fig. 2-4c). Additionally, the 27Al NMR spectrum from the 

NaOH/NaCl  treated material (Fig. 2-6) contains only the resonance for framework 

aluminum at 55.1ppm. No extra-framework aluminum is detected. For numerous 
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synthetic preparations that have been treated by either the liquid phase HCl method or 

the vapor phase HCl method, the measured SiO2/Al2O3 ratios are 30±4. Thus, within 

the error reported for the SiO2/Al2O3 ratio, the composition of the samples did not 

vary over the treatment regimes. The catalytic activity of this ZSM-5 was evaluated 

using the conversion of methanol to higher hydrocarbons (MTG) as the test reaction. 

The product slate of individual hydrocarbons was the same (within experimental 

errors) in distribution to that obtained from a vendor sample of ZSM-5 (see Table 2-1). 

Additionally, the constraint index (CI) that measures the relative cracking rates of n-

hexane and 3-methylpentane15 was determined for the ammonium forms of our 

synthesized ZSM-5 that was calcined or processed through the new organic removal 

procedure outlined above. This test reaction should be more discerning than the MTG 

reaction in terms of differences in acid strength and number of sites when comparing 

zeolite samples. The samples show similar rates and CIs (see Table 2-2). Additionally, 

these data compare well to those obtained from a vendor sample of ZSM-515,16.    

Here, we have provided the essential results necessary for the demonstration of our 

proposed new synthetic methodology. The recombination of the fragments of 1 is not 

illustrated, however, this reaction is well-known. We have successfully synthesized 

other zeolites (ZSM-11, ZSM-12) using this generalized methodology. In addition to 

ketals like those illustrated here, acetals and ortho ester functionalities have the 

appropriate properties (hydrolytically acid labile and base stable)17 for use in the 

outlined synthesis methodology. Currently, we are applying this methodology to the 

preparation of larger SDAs and testing these organics in a broad selection of zeolite 

synthesis conditions.  
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2.3. Methods 

 

2.3.1. Preparation of SDA (1)  

     4.00g of 1,4-dioxa-8-azaspiro[4,5]decane (98%, Aldrich), 8.01g of tributylamine 

(99%, Aldrich), and 30ml of MeOH (Burdick & Jackson) were mixed in a flask. 

12.20g of iodomethane (99.5%, Aldrich) was added dropwise over a period of 10min. 

The mixture was refluxed for 5 days at room temperature. Yellow solids were 

produced. After adding ethyl ether to the mixture, the produced solids were filtered 

and washed with ethyl ether. The solids were recrystallized from hot acetone/MeOH. 

Iodine salts were converted to the corresponding hydroxide form in 90.2% yield using 

Bio-Rad AG1-X8 anion exchange resin. 

 

2.3.2. Preparation of as-synthesized zeolite.  

     0.2g of potassium hydroxide (85+%, Aldrich) and 0.083g of aluminum hydroxide 

(Reheis F-2000) were added to the mixture of 0.094g of 1 and 11.4g of water, and 

stirred to obtain a clear solution. 0.9g of silica (CabOSil M5) were added to the 

solution and the mixture was stirred for 2 hrs to prepare a homogeneous gel. The 

resulting mixture was charged into a rotating teflon lined autoclave (100rpm) and 

heated at 175oC for 6 days. After crystallization, the autoclave was cooled to room 

temperature. The solid product was collected by filtration, repeatedly washed with 

deionized water and finally dried overnight. 
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2.3.3. Characterizations.  

     13C CP MAS NMR measurement was performed with a Bruker Avance 200 MHz 

spectrometer. Solution 13C NMR spectrum was obtained with a Varian Mercury 300 

MHz spectrometer. Powder X-ray diffraction pattern was collected on a Scintag XDS 

2000 diffractometer using CuKα radiation at the rate of 2.5o/min. Elemental analysis 

was obtained by Quantitative Technologies INC., Whitehouse, NJ. IR spectroscopy 

was performed on a Nicolet Nexus 470 FT-IR. Thermogravimetric analysis was 

performed on a NETZSH STA 449C analyzer. Nitrogen adsorption capacity was 

measured using an Omnisorp 100 sorption apparatus. Mass spectrum was measured 

with a Perkin Elmer/Sciex API 365 electrospray mass spectrometer.  
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Figure 2-1. Schematic representations of new synthetic methodology. a, generalized 

scheme. step 1 : assemble the SDA with silica precursor, H2O, alkali metal ions, etc. 

for zeolite synthesis. step 2 : cleave the organic molecules inside the zeolite pores. 

step 3 : remove the fragments. step 4 : recombine the fragments into the original SDA 

molecule. 
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Figure 2-2. Specific example of a proposed new synthetic methodology. 
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Figure 2-3. SEM image of as-synthesized ZSM-5. This was performed with LEO 

1550 VP field emission scanning electron microscope. 
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Figure 2-4. Powder X-ray diffraction patterns. a, as-synthesized ZSM-5. b, after 

treatment with 1M HCl solution. c, after ion-exchange with 0.01M NaOH + 1M NaCl 

solution. The ZSM-5 shows no structural degradation after the various treatments. 
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Figure 2-5. 13C CP MAS NMR spectra. a, intact 1 inside as-synthesized ZSM-5.  b, 

after cleavage of 1 inside ZSM-5 pores using 1M HCl solution. c, after ion-exchange 

with 0.01M NaOH + 1M NaCl solution. The spinning rate was 4 kHz and contact 

time for cross polarization was 1ms for all cases. The notation of 1-1 denotes the peak 

corresponding to the carbon 1 of the organic molecule 1 in Scheme 1. The 13C CP 

MAS NMR data show that 1 was cleaved into its desired fragments by acid treatment 

and successfully removed after ion-exchange. 
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Figure 2-6. 27Al MAS NMR for the ZSM-5 after the cleavage reaction and ion-

exchange. This was performed with a Bruker DSX 500 MHz spectrometer at 14 kHz 

spinning rate with 1ms of (/8 pulse after dehydration for 3hrs at 120oC. 
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Table 2-1. Comparisons of hydrocarbon product distributions for the conversion of 

methanol to higher hydrocarbonsa. 

 
 Vendor ZSM-5 HCl-treated ZSM-5 

Temp 370oC 400oC 

Feed (% methanol in water) 100 22 

Conversion 99 97 

Hydrocarbonb Hydrocarbon distribution (wt %) 

C1 0.5 0.6 

C2 7 7.5 

C3 17 23 

C4 26 24 

C5+ 22 20 

Ar6 1.5 0.4 

Ar7 3 1 

Ar8 8 6 

Ar9 3 10.5 

Ar10 3 3 
a The ZSM-5 we produced was ion-exchanged with NH4+ cations and then tested for 
catalytic activity using the conversion of methanol to higher hydrocarbons. 45mg of 
the catalyst sample was packed in a fixed bed reactor bracketed by alundum and glass 
wool. The experimental design is the same as in : Yuen, L. T., Zones, S. I., Harris, T. 
V., Gallegos, E. J. & Auroux, A. Product selectivity in methanol to hydrocarbon 
conversion for isostructural compositions of AFI and CHA molecular sieves. 
Microporous Materials 2, 105-117 (1994). The catalyst was tested at 400oC with a 
feed of 22% methanol in water and a feed rate of 1.6 cc/hr (along with a carrier of 20 
cc/min N2) at atmospheric pressure.   
b Ci denotes all non-aromatic hydrocarbons of i carbon number. Ari denotes all 
aromatic hydrocarbons of i carbon number. 



 49

 
Table 2-2. Comparisons between calcined and HCl-treated ZSM-5a

 

 Calcined ZSM-5 HCl-treated ZSM-5 

n-hexane Conv, % 93.5 89.4 

3-methylpentane Conv. % 41 33.9 

Feed Conv. % 67.3 61.7 

CIb 5.18 5.43 
a Conversion at 10 min, 700oF. The experimental design is the same as in ref. [16] 
except that 0.1g of samples were used, respectively.  
b 2-methylpentane from isomerization was excluded for CI calculation. 
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Chapter Three 

 

Modification of the Methodology Using Pore-Filling Agents 

 

(Modified from ‘H. Lee, S. I. Zones, and M. E. Davis, Zeolite Synthesis 

Using Degradable Structure-Directing Agents and Pore-Filling Agents, J. 

Phys. Chem. B 109, 2187-2191 (2005)’) 
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3.1. Need for Pore-Filling Agents 

 

     Zeolites and molecular sieves are used on large scale as adsorption materials, ion 

exchangers and catalysts.[1]  Newer applications of these materials include their use 

as MRI contrast agents and blood clotting substances.[2] Several zeolites and 

molecular sieves are commercially available, and there are numerous others that 

remain laboratory scale materials. One impediment to the commercialization of 

zeolites and molecular sieves is cost. Modern synthetic methodologies for preparing 

zeolites and molecular sieves involve the use of organic molecules that direct the 

assembly pathways.[3] These so called structure-directing agents (SDAs) must be 

removed after the synthesis of zeolites and molecular sieve materials in order to create 

the microporous void spaces that are needed for their application. The removal of 

these enclathrated molecules normally requires high temperature processes such as 

calcinations that destroy the high costing organic and lead to environmental 

processing steps for the removal of combustion products like nitrogen oxides. 

Additionally, the high temperature processing steps can lead to detrimental effects on 

the inorganic materials themselves such as the change of structure[4] and/or loss of 

framework elements[5], e.g., de-alumination. Recently, zeolites and molecular sieves 

are being studied as components in systems such as membrane reactors[6], separation 

devices[7] and sensors[8], and in electronic devices as low k barriers.[9] When used 

as a component of a system, the processing of the zeolite is often not compatible with 

the other materials contained within the system. High temperature oxidations like 

those used in calcinations steps for SDA removal are not always compatible with 

device manufacture. Also, inorganic-organic framework materials are now receiving 

greater attention and a way to treat these materials at a mild condition becomes highly 
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desirable.  Organic functionalized molecular sieves[10] and metal-organic 

frameworks[11-13] are synthesized using SDAs that are organic molecules, and 

attempts to remove the templates by calcinations are not likely to yield success 

because they also destroy components of the framework.  

     The removal of organic SDAs via extraction has been reported[10,14,15]. 

However, successful extraction is limited into just a few cases, i.e., 

tetraethylammonium ions from zeolite beta. In order to have a reasonable change of 

SDA content after extraction, the SDA should have a smaller size than the pore 

opening of the zeolite and weak interaction with the zeolite framework[15].  

     We recently reported a new methodology to remove organic SDAs from zeolites 

and molecular sieves without the use of a high temperature process.[16] We created 

SDA that can be disassembled and reassembled easily. The SDA was cleaved into 

fragments within the zeolite pore space by a change of reaction condition such as pH 

after synthesizing zeolite. Their fragments were removed from zeolite pore for 

possible use again by reassembly. The methodology is very general and should open 

avenues to the commercialization of zeolite products that were heretofore too costly to 

produce because of the loss of the organic and to the use of zeolite components in 

devices that can not be exposed to high temperature processing.  The key to the 

application of this new methodology is the proper design of the SDA. First, the SDA 

should be able to synthesize zeolites. In other words, the organic molecules should be 

intermediate in hydrophobicity and of size appropriate to structure-direct a 

microporous material. If the organic is too hydrophobic, it tends to aggregate in 

aqueous media and not interact with the inorganic species. On the contrary, if the 

organic is too hydrophilic, it will not interact with hydrated silica species. 

Historically, organic species that contain quaternary ammonium ions work well as 
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SDAs and have yielded a variety of new high-silica molecular sieves.[3] Second, the 

SDA should be stable during the zeolite synthesis, and then be easily cleaved by 

relatively simple changes in environmental conditions such as pH.  One class of 

organic molecules that satisfy these conditions is ketal-containing species that are 

very stable at high pH, and can be cleaved into ketones and diols by lowering the pH. 

These ketal molecules will be intact during zeolite synthesis that typically occurs at 

high pH, and fragmented into pieces by lowering the pH. We used a ketal-containing 

SDA to provide the first demonstration of our new synthetic methodology. 

     The objective of our work is to explore whether the ketal-containing SDA used in 

our initial report is able to crystallize other microporous solids and to extend our 

methodology to its use in combination with pore filling agents (PFA). A pore filling 

agent is an organic molecule that by itself can not cause the zeolite to crystallize but 

yet can be occluded in the pore space during the synthesis when using SDAs. Zones 

and co-workers have shown that the use of SDAs and PFAs can lead to lower cost 

materials since the PFAs can be low cost components relative to the SDAs.[17,18] 

Here, we use the concept of a PFA to create pore space to provide avenues for 

reagents to contact and react with the SDA. Specifically, we use amine PFAs that can 

be extracted from the as-synthesized zeolite to create intrazeolitic pore space prior to 

cleavage reactions on the SDA. This enhanced procedure creates further generality in 

our methodology.  

 

3.2. Experimental Section 
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3.2.1. Synthesis of SDA-1   

     SDA-1, 8,8-dimethyl-1,4-dioxa-8-azoniaspiro[4,5]decane, was synthesized as 

follows (Fig. 3-1). 1,4-dioxa-8-azaspiro[4,5]decane (Aldrich, 98%) 19.43g, 37.72g of 

tributylamine (Aldrich, 99%) and 140mL of MeOH were mixed in a flask and 57.81g 

of iodomethane (Aldrich, 99.5%) added dropwise for 30min. The solution was stirred 

with a magnetic bar for one week at room temperature while in the dark. After adding 

ethyl acetate to the mixture, the solids produced were filtered and washed with more 

ethyl acetate. The solids were recrystallized from hot acetone/MeOH (1H NMR 

(Methanol-d4) 4.1(singlet), 3.7(J=6Hz, triplet), 3.3(singlet), 2.2(broad singlet) ppm. 

13C NMR (D2O) 106.2, 67.3, 63.7, 54.1, 31.9 ppm). The iodide salt was dissolved in 

DI water for ion-exchange into the corresponding hydroxide ion. 30g of Bio-Rad 

AG1-X8 anion exchange resin were mixed with the solution overnight, and the degree 

of the ion-exchange was measured by a titration with a 0.01N HCl standard solution. 

The ion-exchange was repeated once. The yield of the ion-exchanges to place the 

organic into the hydroxide form was 93.0%. 

 

3.2.2. Synthesis of ZSM-5 with SDA-1.   

     0.189g of SDA-1 and 0.908g of KOH (Aldrich, 45%) were dissolved in 22.313g of 

water. Then, 0.168g of aluminum hydroxide (Reheis F-2000, 79.3%) were mixed and 

stirred to obtain a clear solution. 1.813g of silica (Cab-O-Sil M5) were added to the 

solution and the mixture was aged for 2hrs to get a homogeneous gel. The gel was 

charged into rotating Teflon-lined stainless steel autoclave (100rpm) and heated at 

170oC for 6days. The autoclave was cooled to room temperature after crystallization. 
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The solid product was collected by filtration, repeatedly washed with DI water and 

finally dried overnight at 110oC. 

 

3.2.3. Synthesis of VPI-8 with SDA-1.   

     0.019g of LiOH (Fisher) were dissolved in a mixture of SDA-1 0.849g and water 

6.002g, then 0.100g of zinc acetate dehydrate (Aldrich, 98+%) were dissolved in the 

solution completely. 2.996g of silica (Ludox HS-30) were added to the mixture, and 

then it was stirred for 2 hrs to obtain a clear solution. The mixture was charged into 

Teflon-lined autoclaves and heated statically at 150oC for 5 days in a convection 

oven. The product was filtered, washed, and dried in the same way as the ZSM-5 

above.  

      

3.2.4. Synthesis of ZSM-12 with SDA-1.   

     The synthesis mixture was prepared by dissolving 0.018g of LiOH (Fisher) and 

0.851g of SDA-1 in 6.006g of water, adding 3.017g of silica (Ludox HS-30), and then 

stirring the mixture for 2 hrs to obtain a clear solution. The mixture was charged into 

Teflon-lined stainless steel autoclaves and heated statically at 150oC for 5 days in a 

convection oven. The product was filtered, washed, and dried. 

      

3.2.5. Synthesis of ZSM-5 with SDA-1 and pore-filling agents, 

isobutylamine or cyclopentylamine.   

     0.20g of isobutylamine (Aldrich, 99%) (or 0.23g of cyclopentylamine (Aldrich, 

99%)) were added to 0.746g of SDA-1 solution (0.662mmol SDA-1/g solution). 

0.196g of potassium hydroxide (Aldrich, 85%) and 0.084g of aluminum hydroxide 
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(Reheis F-2000, 79.3%) were added to the mixture and the mixture stirred to obtain a 

clear solution. 0.9g of silica (CabOSil M5) were added to the solution and it was aged 

for 2 hrs to obtain a homogeneous gel. The gel was charged into a rotating Teflon 

lined autoclave (100rpm) and heated at 170oC for 6 days. The solid product was 

collected by filtration, repeatedly washed with DI water and dried overnight at 110oC.  

      

3.2.6. Analysis.  

     Powder X-ray diffraction patterns were collected on a Scintag XDS 2000 

diffractometer using CuKα radiation. Scanning electron microscopy images were 

recorded using a  LEO 1550 VP field emission scanning electron microscope. 13C 

cross polarization magic angle spinning (CP MAS) NMR measurements were 

performed with a Bruker Advance 200 MHz spectrometer. The contact time was 

1millisecond, and the recycle delay was 1second. The zirconia rotor with 7mm 

diameter was used at the spinning rate of 4kHz. 27Al MAS NMR was performed with 

a Bruker DSX 500 MHz spectrometer at 14 kHz spinning rate with 1millisecond of 

π/8 pulse. Elemental analyses were performed by Quantitative Technologies Inc., NJ. 

Inductively coupled plasma (ICP) spectroscopy was used for the inorganic analysis. 

Thermogravimetric analyses (TGA) were done with a NETZSH STA 449C 

instrument. The temperature was increased at the rate of 1oC/min, and helium was 

used as carrier gas. Mass spectra were measured with a Perkin Elmer/Sciex API 365 

electrospray mass spectrometer.  

 

3.3. Results and Discussions 
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3.3.1. Syntheses with SDA-1.   

     Figure 3-2 shows the powder X-ray diffraction patterns of various crystalline 

solids synthesized using SDA-1. We reported before that SDA-1 can be used with an 

aluminosilicate reaction mixture to crystallize ZSM-5.[16] The same ZSM-5 was 

synthesized when the silica source was changed from fumed silica to colloidal silica 

(Ludox). In the case that tetraethyoxysilane was used as silica precursor, a mixture of 

amorphous silica and ZSM-5 was obtained. When the organic component was 

excluded from the reactant gel, ZSM-5 was not formed at all. Also, when 1,1-

dimethylpiperidinium (absence of ketal group compared to SDA-1) was used as a 

structure-directing agent instead of SDA-1, ZSM-5 was not synthesized either.  

     SDA-1 is also useful in synthesizing different crystalline materials by varying the 

reaction conditions and inorganic compositions. When zinc acetate dihydrate was 

used as a framework element together with silica, VPI-8 (one dimensional pore 

structure) is formed.[19, 20] Table 3-1 lists the compositions from which VPI-8 is 

obtained. Only narrow range of 0.3~0.35 SDA-1/SiO2 ratios directly produce VPI-8 

with 0.05 LiOH/SiO2. For the ratio of 0.25 SDA-1/SiO2, a mixture of ZSM-12 and 

VPI-8 is obtained, and as the reaction time is extended, more VPI-8 is observed. 

When the ratio of SDA-1/SiO2 is larger than 0.4, only amorphous solids are obtained. 

Figure 3-3 shows SEM images of VPI-8 prepared using different compositions. 

Interestingly, the VPI-8 produced with low Li/SiO2 and high SDA-1/SiO2 (fourth line 

of Table 3-1) in the reactant gel consists of very fine particles, and indicates a high 

rate of nucleation at this synthesis condition. These particles could only be collected 

by centrifugation. The reactant gel with a higher Li/SiO2 (first line of Table 3-1) 

produced VPI-8 crystals that are larger and have needle-like morphology (Fig. 3-3b). 

The content of the SDA-1 inside VPI-8 was measured to be 10.8 wt% for fine particle 
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shape and 9.3 wt% for needle shape by TGA. In addition to preparing VPI-8 (contains 

Zn) and ZSM-5 (contains Al), SDA-1 can structure-direct the formation of pure-silica 

ZSM-12 in the absence of the heteroatoms zinc or aluminum. A gel with the 

composition of 0.05 LiOH : 0.3 SDA-1 : SiO2 : 30 H2O successfully synthesized 

ZSM-12 in 5 days at 150oC. The SDA-1 content was measured as 10.8 wt% by TGA.  

      

3.3.2. Syntheses with SDA-1 and pore-filling agents.   

     Pore-filling agents (PFAs) have no influence on the structure of zeolite formed but 

simply occupy pore space. Zones et al. previously reported the use of PFAs together 

with SDAs in zeolite synthesis to reduce the required amount of valuable SDAs.[17, 

18] Figure 3-4 shows a schematic of how we envision the use of PFAs, and how they 

contribute to the successful removal of all organic species from the microporous void 

space. Because PFAs are usually small and have weak interactions with the inorganic 

framework, they are easily extracted. Consequently, the void space created from the 

extraction process can be used to access the SDA for the cleavage reaction to occur. 

As an example of this methodology and to show its feasibility, we synthesized ZSM-5 

using both SDA-1 and PFAs. Figure 3-5 illustrates the powder X-ray diffraction 

patterns of the solids obtained from pure SDA-1 or SDA-1 used in combination with 

the PFAs such as isobutylamine or cyclopentylamine (at these synthesis conditions 

the use of either isobutylamine or cyclopentylamine in the absence of SDA-1 

produces no crystalline solids). The use of a PFA does not change the zeolite phase 

obtained from the one crystallized with SDA-1 alone.   
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3.3.3. Cleavage attempts with SDA in unidimensional materials.  

     Previously, we have shown that SDA-1 can be cleaved inside ZSM-5 by contact 

with aqueous HCl or HCl(g).[16] ZSM-5 has a multidimensional pore system. 

Attempts to cleave SDA-1 at the same conditions as those used for ZSM-5 with one 

dimensional pore structure materials (VPI-8 and ZSM-12) were not successful. 

Treatments involved either 1N hydrochloric acid or HCl(g). 13C CP MAS NMR and 

TGA results confirm that SDA-1 remains intact inside the pore space of either VPI-8 

or ZSM-12. It is not surprising that the unidimensional pore systems will present a 

greater challenge[21] for the cleavage reaction. More rigorous conditions will be 

attempted in the future.  

      

3.3.4. Removal of PFAs and SDAs.   

     For the synthesis of ZSM-5 with PFAs and SDA-1, the PFAs are removed by 

reflux in dimethlyformamide (DMF) for 20hrs. The 13C CP MAS NMR spectra of 

ZSM-5 prepared with SDA-1 and isobutylamine is shown in Fig. 3-6a.  Both SDA-1 

and isobutylamine are encapsulated during ZSM-5 synthesis. Figure 3-6b shows the 

13C peaks of isobutylamine (19.2, 27.6, 48.6ppm) are significantly reduced after the 

extraction in DMF. Even though most of the isobutylamine was extracted by reflux in 

DMF, the SDA-1 remained inside ZSM-5 pores . The extracted isobutylamine was 

detected in the DMF solution by positive ion electrospray mass spectrometry.  

     The acid treatment was performed for the cleavage reaction of SDA-1 inside ZSM-

5 pores. Using the ZSM-5 formed with SDA-1 and isobutylamine, and isobutylamine 

extracted prior to the acid treatment, the tertiary carbon peak (103.1ppm) in the 13C 

CP MAS NMR spectrum of SDA-1 disappears and new peaks for the cleaved piece, 
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1,1-dimethyl-4-oxopiperidinium, appear at 63.9, 53.5, and 35.8 ppm after the 

treatment with 1N hydrochloric acid at 90oC for 20hrs (Fig 3-6c ; the other peaks are 

from small amounts of the remaining isobutylamine(27.5, 19.3ppm) and DMF(46.2, 

36.3ppm)). The carbonyl peak of the SDA-1 fragment was also observed by IR at 

1734.5cm-1. The ZSM-5 before the acid treatment showed no IR peak at that position. 

These data show that most of the SDA-1 molecules inside the zeolite pores are 

fragmented by the cleavage reaction. The cleavage reaction has also been performed 

on the ZSM-5 when it contained both the SDA-1 and the PFA(isobutylamine). 

Hydrogen chloride gas was bubbled through water, and the H2O-saturated HCl(g) 

passed through a reactor where the zeolite sample was residing at 120oC for 3hr. The 

outlet HCl(g) was neutralized in a NaOH scrubber. The SDA-1 remained intact after 

the HCl(g) treatment without the extraction of isobutylamine. These results show that 

the extraction of isobutylamine is essential for the successful cleavage of SDA-1. 

After cleavage of SDA-1, the organic fragments can be removed by ion-exchange 

with the mixture of NaOH and NaCl following the procedures described 

previously.[16] The ZSM-5 synthesized using SDA-1 and isobutylamine contains 

41.91% Si, 2.23% Al, 0.91% K, 5.19% C, 0.88% H, and 1.15% N according to 

elemental analyses. Weight losses of 2.2% in the low temperature region of 

100~280oC are assigned to removal of isobutylamine while losses of 5.1% from the 

high temperature region of 280~520oC are assigned to the SDA-1 by TGA.  Based on 

elemental analyses and TGA results, the numbers of SDA-1 and isobutylamine 

molecules per unit cell are estimated to be 2.9 and 2.8, respectively. Therefore, the 

extraction of isobutylamine can open significant pore space relative to the space 

occupied by SDA-1.  
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     Figure 3-7 shows the 27Al magic angle spinning NMR spectra for as-made ZSM-5, 

the ZSM-5 after the cleavage reaction and ion-exchange, and calcined ZSM-5. The 

spectra were normalized by the sample masses and scan repetition numbers. The area 

beneath the peak was 0.93 for the ZSM-5 after the cleavage reaction and ion-

exchange, and 0.83 for the calcined ZSM-5 when normalizing the value from as-made 

ZSM-5 to 1.00. Thus the acid treatment caused less leaching of aluminum from the 

framework than calcination. The removal of SDA via extraction was reported to be 

successful for pure-silica analogues of zeolite beta[10, 15] or Zn-beta (CIT-6)[19] and 

attempts with aluminosilicate were unsuccessful.[15] When Fajula and coworker used 

the extraction method to remove tetraethylammonium hydroxide from aluminosilicate 

zeolite beta, they extracted the SDA and caused complete dealumination rather than 

preserving the framework aluminum that gives catalytic sites. Here, we show that our 

methodology allows for the maintenance of framework aluminum and complete 

adsorption capacity.[16] Previously, we also showed that the ZSM-5 exposed to the 

treatments of cleavage reaction with acid and ion-exchange preserve the catalytic 

activity to the level of a vendor ZSM-5.[16] Therefore, the method showed in this 

study can provide an unprecedented opportunity to remove SDAs while preserving 

framework aluminum for use as catalytic sites.  

 

3.4. Conclusions 

 

     The use of degradable SDAs can allow for zeolite and molecular sieve synthesis to 

occur and with subsequent processing create microporous materials that have avoided 

high temperature treatments. The degradable SDAs can be fragmented into smaller 

pieces by a chemical reaction inside zeolite pores, and the pieces readily removed to 
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create microporosity. Ketal-containing molecule, SDA-1, can be used for the 

synthesis of ZSM-5, VPI-8 and ZSM-12. Thus, SDA-1 can be employed to prepare 

different zeolite and molecular sieve structures by changing the composition of gel, 

synthesis temperature and time. PFAs can be used with SDA-1 to crystallize ZSM-5. 

Because the PFA is small and has a weak interaction with the inorganic framework, it 

can be easily extracted. The extraction of the PFA provides a pathway for HCl and 

H2O to travel through to reach the ketal-containing SDA-1. Cleavage of SDA-1 and 

extraction of its fragments gives a microporous ZSM-5 that has never be exposed to 

high temperature treatments. The success of the combined PFA and SDA-1 synthesis 

of ZSM-5 provides motivation for seeking other PFA/SDA combinations for 

preparing numerous other zeolites and molecular sieves. Commercial zeolites that are 

highly suitable for use of this methodology are zeolite beta and MCM-22. 
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Figure 3-1. Structure of SDA-1. 
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Figure 3-2. Powder X-ray diffraction patterns of various materials synthesized using 

SDA-1.  (a) VPI-8, (b) ZSM-12, (c) ZSM-5. 
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Figure 3-3. SEM images of VPI-8. (a) LiOH/SiO2=0.05, SDA-1/SiO2=0.30. The VPI-

8 is a very fine powder. (b) LiOH/SiO2=0.25, SDA-1/SiO2=0.1. The VPI-8 has 

needle-like morphology. 
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Figure 3-4. . Schematic diagram of ZSM-5 containing both SDA and PFA and how 

they are removed. 
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Figure 3-5. Powder X-ray diffraction patterns for the ZSM-5 synthesized using SDA-

1 and PFA. (a) SDA-1 only, (b) SDA-1 + isobutylamine as PFA, (c) SDA-1 + 

cyclopentylamine as PFA. 
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Figure 3-6. 13C cross polarization magic angle spinning (CP MAS) NMR spectra. (a) 

as-made ZSM-5 synthesized using SDA-1 and isobutylamine, (b) after the extraction 

of isobutylamine with dimethylformamide. The dotted line shows calcined ZSM-5 

with impregnated dimethylformamide. The newly appearing peaks after contact with 

dimethylformamide are from its absorption during the extraction of isobutylamine, (c) 

After the cleavage reaction using 1N hydrochloric acid. 
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Figure 3-7. 27Al MAS NMR spectra. (a) as-made ZSM-5, (b) after cleavage reaction 

and subsequent ion-exchange with the mixture of NaOH and NaCl, (c) calcined ZSM-

5. 
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Table 3-1. Synthesis of VPI-8 using SDA-1a

a b C Starting mixture T(oC) Time Results 
0.25 0.1 0.03 White gel 150 5 days VPI-8 
0.15 0.1 0.03 White gel 150 5 days VPI-8 
0.05 0.3 0.03 Clear 150 5 days VPI-8 
0.05 0.35 0.03 Clear 150 5 days VPI-8 

a Gel composition; aLiOH : bSDA-1 : cZn(CH3COO)2 2H2O : SiO2 : 30 H2O 
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Chapter Four 

 

Use of the Proposed Methodology for Synthesis of Various Zeolites 

 

(Modified from ‘H. Lee, S. I. Zones, and M. E. Davis, Synthesis of 

Zeolites Using Ketal Structure-Directing Agents and Their Degradation 

Inside the Zeolite Pore Space, Submitted to Microporous and 

Mesoporous Materials (2005)’) 
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4.1. Using Various Ketal SDAs for Zeolite Synthesis 

 

     Zeolite and molecular sieve materials have been traditionally used in the chemical 

industry as catalysts, catalyst supports, ion-exchangers, etc.[1, 2]. Many zeolites 

require the use of organic molecules called structure-directing agents (SDA) for their 

synthesis. These SDAs direct the formation of zeolite with a specific structure 

although the shape of organic molecules is not exactly the same as the shape of the 

produced pore space [3, 4]. The organic molecules must be removed for further use, 

and calcination is the standard method for this purpose. Calcination, which burns out 

the organic molecules at very high temperature of 500~600oC, often destroys the 

catalytic activity or even the framework structure of the produced inorganic materials 

[5, 6]. Recently, applications of zeolite and molecular sieve materials have also 

expanded into film patterning, low-k materials, fuel cell composite materials, etc. [7-

10]. These new applications often require properties not considered to be important 

for traditional uses of zeolitic materials. For example, when the zeolitic materials are 

used as low-k materials, the procedure for preparing a porous zeolite film on a silicon 

wafer must be compatible with the other semiconductor manufacturing processes. 

Conventional hydrothermal procedures used for zeolite synthesis might not be the 

desirable route to film preparation. While one of the key properties for the low-k 

application is the porosity of the zeolite, calcination at high temperatures of 

500~600oC in highly oxidizing environments is likely not useful for the integration 

with other components of the semiconductor fabrication. When organic functionalized 

zeolites (organic functional groups are anchored on the silicate framework) are used 

as proton conductivity media in fuel-cell composite materials, it is crucial to make the 

zeolites porous while preserving the organic functional groups[11]. Since organically 
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functionalized zeolites are synthesized with organic SDAs, calcination for removal of 

the SDA would destroy both the SDA and the incorporated functional groups. 

Therefore, methodologies for preparing porous zeolitic materials without using 

calcination are highly desirable, especially for use in some of their newer applications.  

     We previously reported a new synthesis method to avoid the undesired high 

temperature calcinations procedure by using degradable structure-directing agents[12, 

13]. When the SDA consists of two (or many) parts that can be easily cleaved and 

recombined, the SDA can be fragmented into smaller pieces after structure-directing a 

specific zeolite. Then, the pieces can be removed more easily, and the recovered 

pieces can be recombined into the original SDA for further zeolite synthesis. Because 

this methodology excludes the high temperature procedure, it may provide benefits to 

many applications of zeolitic materials.  

     In this work, various zeolites are synthesized using degradable SDAs. Quaternary 

ammonium cations that contain various ketal groups are used here as SDAs (See 

Scheme 1). It should be noted that there are many other possibilities for preparing 

degradable SDAs. Among the steps of this methodology: 1) synthesis of the zeolite, 

2) degradation of the SDAs inside the zeolite pore space, and 3) removal of the 

fragments from the pores, the degradation of SDAs is often the most difficult step [12, 

13].  The factors affecting a successful cleavage of the SDA are investigated here. 

When using ketal groups as the cleavable moiety, access of H2O and H+ to the ketal 

group of the SDA is essential for the hydrolysis reaction to occur. If this access is 

prohibited, the SDAs will remain intact despite the chemical treatment. The properties 

of the synthesized zeolite such as organic content, hydrophilicity, and pore 

connectivity can have significant influence on the mass transfer of H2O and H+ 
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through the porous structure. Here, these parameters are evaluated for the degradation 

of ketal-containg SDAs inside zeolites with various properties.  

 

4.2. Experimental Section 

 

4.2.1. Synthesis of Ketal Structure-Directing Agents.  

     Fig. 4-1 shows the ketal-containing  SDAs synthesized in this work.  

     Synthesis of 2,3,8,8-tetramethyl-1,4-dioxa-8-azoniaspiro[4,5]decane 

hydroxide(I).      7.68g (0.05mol) of 4-piperidone monohydrate hydrochloride were 

dissolved in 100mL of cyclohexane. 9.01g (0.1mol) of meso-2,3-butanediol and 0.10g 

of p-toluenesulfonic acid monohydrate were added to the solution and refluxed in 

Dean-Stark apparatus at 130oC until no more water was distilled. After cooling, the 

cyclohexane solution was decanted. The residue was dissolved in 50mL of chloroform, 

and then treated with 6.00g of potassium carbonate and 6mL of water with stirring. 

The chloroform layer was separated. The aqueous solution was extracted with 

chloroform several times. The extracts were combined and the chloroform was 

evaporated in a rotavapor to give a 2,3-dimethyl-1,4-dioxa-8-azaspiro[4,5]decane 

(P1); 13C NMR (CDCl3) δ = 15.5, 33.2, 36.1, 42.9, 43.1, 74.1, 104.0 ppm. 6.81g 

(0.04mol) of P1, 11.12g (0.06mol) of tributylamine were dissolved in 50mL of 

methanol. 17.03g (0.12mol) of iodomethane were added to the solution dropwise for 

30min. The solution was refluxed for one week at room temperature. The methanol 

was evaporated in a rotavapor. The residue was redissolved in chloroform and the 

desired product was precipitated by addition of ethyl acetate; 13C NMR of I iodide salt 

(D2O) δ = 17.0, 32.0, 34.6, 54.2, 63.7, 77.5, 105.0 ppm. C11H22O2NI Anal. Calcd: C, 
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40.38; N, 4.28; H, 6.78; O, 9.78. Found: C, 40.27; N, 4.19; H, 6.70; O, 10.02. The 

exchange of the iodide salt into a corresponding hydroxide was accomplished as 

follows: 6.9g of the iodide salt of I (21.1mmol) were dissolved in 150mL of distilled 

water and refluxed with 30.1g of Bio-Rad AG1-X8 anion exchange resin for a day. 

The solution was filtered and concentrated to 4.26g of OH- form I/16.84g solution. 

The conversion of iodide to hydroxide was 96.3% based on titration of the resultant 

solution. 

     Synthesis of 2-ethyl-8,8-dimethyl-1,4-dioxa-8-azoniaspiro[4,5]decane 

hydroxide(II). The synthesis of II was carried out by reacting 1,2-butanediol with 4-

piperidone followed by reaction with iodomethane as described above for I. 13C NMR 

of 2-ethyl-1,4-dioxa-8-azoniaspiro[4,5]decane (CDCl3) δ = 9.8, 26.4, 33.6, 34.8, 43.1, 

43.2, 69.1, 77.5, 105.5 ppm. 13C NMR of II iodide salt (D2O) δ = 11.5, 28.0, 31.9, 

32.9, 53.7, 54.4, 63.6, 71.3, 80.6, 106.2 ppm. C11H22O2NI Anal. Calcd: C, 40.38; N, 

4.28; H, 6.78; O, 9.78. Found: C, 40.43; N, 4.12; H, 6.73; O, 9.51.  

     Synthesis of 8,8-dimethyl-2-phenyl-1,4-dioxa-8-azoniaspiro[4,5]decane 

hydroxide(III). The synthesis of III was carried out by reacting 1-phenyl-1,2-

ethanediol with 4-piperidone followed by reaction with iodomethane as described 

above for I. 13C NMR of 2-phenyl-1,4-dioxa-8-azoniaspiro[4,5]decane (CDCl3) δ = 

34.0, 34.6, 43.2, 43.3, 71.4, 77.9, 106.6, 126.1, 127.7, 128.3, 138.2 ppm. 13C NMR of 

III iodide salt (CD3OD) δ = 31.4, 32.0, 52.5, 62.7, 72.8, 79.7, 105.8, 127.6, 129.5, 

129.8, 139.6 ppm. C15H22O2NI Anal. Calcd: C, 48.01; N, 3.73; H, 5.91; O, 8.52. 

Found: C, 47.15; N, 3.50; H, 5.85; O, 8.20.  

     Synthesis of 9,9-dimethyl-1,5-dioxa-9-azoniaspiro[5,5]undecane 

hydroxide(IV). The synthesis of IV was carried out by reacting 1,3-propanediol with 

4-piperidone followed by reaction with iodomethane as described above for I. IV was 
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finally purified by recrystallization with methanol/acetone. 13C NMR of 1,5-dioxa-9-

azoniaspiro[5,5]undecane (D2O) δ = 27.3, 32.3, 43.7, 62.5, 97.6 ppm. 13C NMR of IV 

iodide salt (D2O) δ = 27.2, 30.2, 54.2, 62.2, 62.7, 96.6 ppm. C10H20O2NI Anal. Calcd: 

C, 38.35; N, 4.47; H, 6.44; O, 10.22. Found: C, 38.48; N, 4.37; H, 6.39; O, 9.86. 

     Synthesis of 2,9,9-trimethyl-1,5-dioxa-9-azoniaspiro[5,5]undecane 

hydroxide(V). The synthesis of V was carried out by reacting 1,3-butanediol with 4-

piperidone followed by reaction with iodomethane as described above for I. V was 

finally purified by recrystallization with methanol/acetone. 13C NMR of 2-methyl-1,5-

dioxa-9-azoniaspiro[5,5]undecane (CDCl3) δ = 22.2, 28.7, 33.0, 38.6, 42.5, 42.6, 59.3, 

64.3, 96.2 ppm. 13C NMR of V iodide salt (DMSO) δ = 21.8, 22.9, 32.3, 32.3, 50.0, 

51.3, 58.7, 59.0, 59.3, 64.5, 93.5 ppm. C11H22O2NI Anal. Calcd: C, 40.38; N, 4.28; H, 

6.78; O, 9.78. Found: C, 40.62; N, 4.15; H, 6.77; O, 9.51. 

     Synthesis of 3,3-dimethyl-7,12-dioxa-3-azoniaspiro[5,6]dodecane 

hydroxide(VI). The synthesis of VI was carried out by reacting 1,4-butanediol with 

4-piperidone followed by reaction with iodomethane as described above for I. 13C 

NMR of 7,12-dioxa-3-azoniaspiro[5,6]dodecane (CDCl3) δ = 29.7, 34.7, 43.3, 61.5, 

99.2 ppm. 13C NMR of VI iodide salt (D2O) δ = 31.1, 31.4, 54.1, 63.0, 65.8, 99.8 ppm. 

C11H22O2NI Anal. Calcd: C, 40.38; N, 4.28; H, 6.78; O, 9.78. Found: C, 40.56; N, 

4.11; H, 6.65; O, 9.32. 

     Synthesis of 2,8,8-trimethyl-1,4-dioxa-8-azoniaspiro[4,5]decane 

hydroxide(VII). The synthesis of VII was carried out by reacting 1,2-propanediol 

with 4-piperidone followed by reaction with iodomethane as described above for I. 

VII was finally purified by recrystallization with methanol/acetone. 13C NMR of 2-

methyl-1,4-dioxa-8-azoniaspiro[4,5]decane(P7) (CDCl3) δ = 18.6, 36.0, 37.2, 44.0, 

44.1, 70.4, 71.7, 107.2 ppm. 13C NMR of VII iodide salt (D2O) δ = 17.6, 32.1, 33.2, 
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53.8, 54.5, 63.7, 73.1, 75.8, 106.4 ppm. C10H20O2NI Anal. Calcd: C, 38.35; N, 4.47; H, 

6.44; O, 10.22. Found: C, 39.87; N, 4.17; H, 6.61; O, 11.79. 

     Synthesis of 8,8-dimethyl-1,4-dioxa-8-azoniaspiro[4,5]decane (VIII). VIII was 

synthesized by following the procedure explained elsewhere [13]. 

      

4.2.2. Zeolite Synthesis.  

     Table 4-1 shows the zeolite synthesis conditions utilized for testing the ketal-

containing SDAs. All of the SDA molecules were ion-exchanged into their hydroxide 

forms for zeolite synthesis. The SDAs are denoted as ROH below. The ZSM-5 was 

synthesized from reaction mixtures of composition, 0.04ROH : 0.24KOH : 

0.06Al(OH)3 : 40H2O : SiO2. Aluminum hydroxide (Al(OH)3•1.13H2O, Reheis F-

2000) was used as aluminum source, and fumed silica (Cab-O-Sil grade M-5) was 

used as silica source. The prepared gel was aged for 2 hours and then placed into 

Teflon-lined autoclaves that were rotated at 60rpm for 7 days at 170oC. After the 

crystallization, the solid product was recovered by filtration, washed, and dried at 

100oC. The ZSM-12 was synthesized with the gel with the composition of 0.15ROH : 

0.15NaOH : 0.055Al : 27H2O : SiO2. NaY (sodium zeolite Y) with silica to alumina 

ratio of 6 (SAR=6) was used to provide aluminum to reactant gel. Fumed silica (Cab-

O-Sil) was also used as silica source. The remaining procedure was the same as the 

case of ZSM-5. The temperature, time and rotation speed (rpm) used for the syntheses 

are given in Table 4-1. The B-ZSM-12 was prepared from a gel with the composition 

of 0.2ROH : 0.1NaOH : 0.01Na2BB4O7 : 44H2O : SiO2. Sodium tetraborate decahydrate 

(Fisher Scientific) was used as  boron source and fumed silica (Cab-O-Sil) was used 

as silica source. Mordenite was synthesized by using the gel composition with an 

excessive amount of alkali ions. Two different gel compositions of 0.3ROH : 
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1.33KF : 0.067Al(OH)3 : 45H2O : SiO2 and 0.14ROH : 0.06Al : 0.53Na : 32H2O : 

SiO2 were used. In first case, KF•2H2O (Mallinckrodt) was used to provide alkali ions, 

and Al(OH)3•1.13H2O (Reheis F-2000) and fumed silica (Cab-O-Sil) were used as 

aluminum and silica source, respectively. In second case, NaY with SAR 6 was used 

as aluminum source and sodium silicate solution (Aldrich, 27% SiO2 14% NaOH) 

was used as sodium and silica source. Colloidal silica (Ludox HS-40) was also used 

as an additional silica source. The zincosilicate VPI-8 was synthesized from a gel 

composition of 0.3ROH : 0.05LiOH : 0.03Zn(CH3COO)2: 30H2O : SiO2. Zinc acetate 

(Zn(CH3COO)2•2H2O, Aldrich) was used to provide zinc to the reactant gel. Colloidal 

silica (Ludox HS-30) was used as silica source.  

 

4.2.3. Cleavage of SDAs in the Zeolite Pore Space.  

     Different conditions were used for the cleavage reactions of the SDAs in zeolite 

pore spaces. First, 0.2g of synthesized zeolite were refluxed with 50mL of 1N HCl 

solution at 80oC for 12hrs. Then, the zeolite was washed with ~200mL of water and 

dried at room temperature. Second, 0.2g of synthesized zeolite were placed in Teflon-

lined autoclave with 35ml of 1N HCl solution at 135oC for 20hrs. After cooling the 

reactors, the zeolite was collected by filtration, washed with ~200mL of water, and 

then dried at 100oC. Also, an acetic acid solution (5mL acetic acid/30mL water) was 

used for the acidic treatment. 0.2g of synthesized zeolite were placed in Teflon-lined 

autoclave with the acetic acid solution at 135oC for 2 days. After cooling the reactors, 

the zeolite was collected by filtration or centrifugation, washed with ~200mL of water, 

and then dried at 100oC. The cleaved fragments were removed from the pore space by 

ion-exchange with 0.01NaOH/1N NaCl solution at 100oC for 1 day. The resulting 
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zeolite was collected by filtration, washed with ~200ml of water, and then dried at 

100oC. 

      

4.2.4. Analytical.  

     Powder X-ray diffraction (XRD) patterns were collected on a Scintag XDS 2000 

diffractometer using CuKα radiation and a solid-state Ge detector. The diffraction 

profiles were scanned over the range of 3o<2θ<55o in the rate of 2.5o/min. 

Fluorophologopite mica (Standard Reference Material 675, National Bureau of 

Standards) was used as an external standard. Fourier-Transform infrared (FT-IR) 

spectroscopy was carried out on a Nicolet Nexus 470. The samples were prepared by 

using the KBr pellet technique. Liquid NMR spectra were collected on a Varian 

Mercury 300MHz spectrometer. 13C solid-state NMR measurements were performed 

with a Bruker Advance 200 MHz spectrometer. The cross polarization, magic angle 

spinning (CP MAS) technique was used. The spectra were recorded with a pulse 

length of 4μs and a spinning rate of 4kHz and were referenced to an adamantane 

standard (downfield resonance at -38.47ppm). The contact time was 1ms, and the 

recycle delay was 1s. The zirconia rotor was used as a sample holder. Elemental 

analyses were performed by Quantitative Technologies Inc., NJ and Galbraith 

Laboratories, Inc., TN. ICP was used for the inorganic analysis. Thermogravimetric 

analyses were done with a NETZSH STA 449C instrument at the rate of 10oC/min, 

and air was used as carrier gas. Mass spectra were measured with a Perkin 

Elmer/Sciex API 365 liquid chromatography electrospray mass spectrometer. 
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4.3. Results and Discussion 

 

4.3.1. Zeolite Synthesis 

     Various zeolite synthesis conditions were used to investigate the abilities of the 

ketal-containging SDAs to direct the formation of various zeolites and molecular 

sieves. Table 4-1 shows the conditions at which the SDAs were used for zeolite 

synthesis, and the structures of zeolitic materials that were obtained at these 

conditions. Experiments where amorphous or dense phases were obtained, or where 

the SDA was degraded during the synthesis are not included in the table. The gel with 

the composition of 0.04ROH : 0.24KOH : 0.06Al(OH)3 : 40H2O : SiO2 produced 

ZSM-5 after 7days at 170oC. The SDAs, II, VII, and VIII structure-direct the 

formation of ZSM-5. Fig. 4-2 shows the powder XRD patterns of those ZSM-5s. The 

side groups on the ketal ring such as methyl and ethyl groups had little influence on 

the structure of the synthesized zeolite. These SDAs remain intact during the zeolite 

syntheses (verified by 13C CP MAS NMR). The organic molecules inside the zeolite 

pore space have the 13C NMR resonances at the same position as solution 13C NMR 

spectra. When the SDAs with larger ketal rings such as IV and VI were used for 

zeolite synthesis, those organic molecules were degraded at the synthesis condition. 

The ZSM-5s with various properties were also synthesized as shown in Table 4-2. 

VIII was used as SDA for the cases listed. When the ratio of ROH/SiO2 in the gel was 

increased from 0.04 to 0.10, the content of organic molecules in the ZSM-5 also 

increased from 6.4% to 7.8%. The ZSM-5 synthesized with the ratio of ROH/SiO2 

larger than 0.1 showed little differences in the organic content of the final solid. The 

two ZSM-5s with different organic content have the same Si/Al ratio (13.8 and 14.0 
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as shown in Table 4-2). The ZSM-5s with different hydrophilicity were also 

synthesized by controlling Si/Al ratio. When the ratio of Al(OH)3/SiO2 in the reactant 

gel was varied in the range of 0~0.1, ZSM-5 was synthesized for only x = 0.06. The 

Si/Al ratio of the product ZSM-5 was ~14. ZSM-5 with higher Si/Al ratio was 

obtained by using a different gel composition of 0.15ROH : 0.1NaOH : 0.02Al(OH)3 : 

44H2O : SiO2. The ZSM-5 produced with this gel composition at 170oC, 7days, and 

60rpm had the Si/Al ratio of 40.8. As shown in cases 2 and 3 of Table 4-2, the ZSM-

5s with the same organic contents (7.8% and 7.7%) have the different Si/Al ratios of 

14.0 and 40.8, respectively. The ZSM-5s with various properties were used later to 

test the effect of organic content and hydrophilicity on the degradation of SDA inside 

the pores.  

     ZSM-12 was synthesized when NaY with SAR of 6 was used as an aluminum 

source. The aluminum in zeolite Y was released slowly from the framework to the 

reactant gel as an aluminum source during the zeolite synthesis. Only IV and VIII 

structure-directed the formation of Al-ZSM-12. B-ZSM-12 was also synthesized from 

the gel containing a boron source. II, IV and VIII structure-directed the formation of 

B-ZSM-12. Fig. 4-3 shows the powder XRD patterns of the synthesized ZSM-12s 

with various SDAs.  

     Mordenite was synthesized with III, IV, and VIII as SDA. III was used as SDA 

with the gel composition of 0.3ROH : 1.33KF : 0.067 Al(OH)3 : 45H2O : SiO2, and 

IV and VIII were used as SDA when the sodium silicate was used as a silica source. 

Fig. 4-4 shows powder XRD patterns of the synthesized mordenites. Because a lot of 

alkali ions were used in the synthesis, there is the possibility that the mordenite is 

synthesized without utilizing the organic SDA. When the syntheses of mordenite were 

tried with the same gels in the absence of the SDA, mordenite was not obtained but 
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rather dense crystalline phase was obtained. Also, the intact SDA was observed inside 

the mordenite pores by 13C CP MAS NMR. These results suggest that the organic 

SDAs are essential for the synthesis of mordenite at the given conditions.  

     Zincosilicate, VPI-8, was synthesized from a gel composition of 0.3ROH : 

0.05LiOH : 0.03Zn(CH3COO)2 : 30H2O : SiO2  when the SDA, II, V, VII, and VIII 

were used. Figure 4-5 shows the powder XRD patterns of the synthesized VPI-8s. II, 

V, VII, VIII were intact inside the VPI-8 pores (verified by 13C CP MAS NMR).  

     The ketal-containing SDAs studied here appear to have weak structure-directing 

effects based on the observation that the produced zeolite phases were mainly 

determined by gel compositions. However, the zeolites were not synthesized without 

organic SDAs and only particular SDAs could produce the corresponding zeolites as 

shown in Table 4-1. The various synthesized zeolites were used to study the 

degradation of the organic SDAs inside the pores as described next. 

 

4.3.2. Cleavage reaction of ketal SDAs inside the pore space.  

     Scheme 1 shows the cleavage reaction of the ketal-containing SDA into smaller 

fragments. There are many factors that affect the cleavage reaction of the organic 

molecules that are enclathrated inside the pore space during zeolite synthesis. In this 

study, the effects of organic content, hydrophilicity and pore connectivity of the 

synthesized zeolites on the successful degradation of the SDAs are investigated. 

Different acidic treatment conditions were used for the cleavage reaction. First, 1N 

HCl solution was used to degrade the SDA at 80oC. Second, the same HCl solution 

was used at higher temperature of 135oC. Acetic acid solution (5mL acetic acid/30mL 

water) was also used at 135oC. Because 135oC is higher than the boiling point of the 

solutions, a pressurized autoclave reactor was utilized. The pressure was higher than 
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atmospheric pressure in this case. The acidic treatment using a pressurized autoclave 

at 135oC is considered as a harsher condition than the treatment at 80oC and 

atmospheric pressure.  

      

4.3.3. Effect of organic contents.  

     The content of the organic SDA in the zeolite can have influence on the cleavage 

reaction of the SDAs. The ZSM-5s with two different organic contents (case 1 and 

case 2 of Table 4-2) were used to study this effect. When 1N HCl solution was used to 

degrade VIII inside the ZSM-5 pore space at 80oC, the SDAs in both cases were 

fragmented into the desired pieces. Figure 4-6 shows data that demonstrate that the 

SDA was degraded to its corresponding fragments after the acidic treatment for case 2. 

The cleavage reaction for case 1 and identification of 13C peaks were described 

elsewhere [11] as well: 30.3ppm for -CH2-, 52.9ppm for =N-CH3, 56.1ppm for =N-

CH2- and -O-CH2-, 103.1ppm for =C= in Fig. 4-6(a); 35.3ppm for -CH2-, 52.9ppm for 

=N-CH3, 63.1ppm for =N-CH2-, and 91.1ppm for =C= (=C=O was changed to =C-

(OH)2 by the addition of a water molecule) in Fig. 4-6(b). Note that the quaternary 

carbon peak at 103ppm of the intact SDA inside as-made ZSM-5 disappeared after the 

acidic treatment. The organic molecules were successfully cleaved inside the ZSM-5s 

with different amounts of SDA. The content of SDAs had little influence on the 

cleavage reaction at the given conditions, although the SDA inside the zeolite packed 

with more organic molecules can have difficulty for the cleavage reaction. The ZSM-

5 with 7.8% of SDA seems already to have the sufficient space inside the pore. 
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4.3.4. Effect of hydrophilicity.  

     When the synthesized zeolite is hydrophobic, the access of water molecules 

necessary for hydrolysis of the ketal-containing SDAs might be hindered. Hence, the 

hydrophilicity of the zeolite can have impact on the degradation of ketal-containing 

SDAs. ZSM-5s with different hydrophilicity were synthesized as shown in case 2 and 

case 3 of Table 4-2 using VIII as a SDA. The ZSM-5 in case 2 has lower Si/Al ratio 

of 14.0 while the ZSM-5 in case 3 has higher Si/Al ratio of 40.8. Figure 4-7 provides 

data that show that the ZSM-5 with lower Si/Al ratio contains more water than the 

ZSM-5 with higher Si/Al ratio, based on the weight loss in the range of 100~250oC. 

This TGA pattern reveals that the ZSM-5 with lower Si/Al ratio has more hydrophilic 

character while the ZSM-5 with higher Si/Al ratio has more hydrophobic character. 

When the cleavage reaction was attempted with the more hydrophilic ZSM-5 using 

1N HCl solution at 80oC, the SDA was easily cleaved into smaller fragments. On the 

other hand, when the cleavage reaction was carried out for the more hydrophobic 

ZSM-5 at the same conditions, the SDA remained unchanged as shown by the data in 

Fig. 4-8(b). The ketal-containing SDA appears to be preserved inside the pore space 

despite the acidic treatment (compare to 13C NMR spectrum of as-made ZSM-5 in Fig. 

4-8(a)). However, when the harsher condition was applied by using higher 

temperature of 135oC in the autoclave, the NMR spectrum showed a chemical change 

of organic molecules inside the pore as observed in Fig. 4-8(c). The SDAs were 

cleaved to smaller fragments by the access of H2O and H+, and the remaining 

fragments in the pore were further removed by ion-exchange with NaCl/NaOH 

solution. As depicted in Fig. 4-8(d), 13C CP MAS NMR data show that no organic 

compound was observed after the ion-exchange in the hydrophobic ZSM-5. The 

crystalline framework of the ZSM-5 was preserved after the HCl treatment at 135oC 
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according to powder XRD. While the SDA in the hydrophilic ZSM-5 was easily 

degraded, the same SDA in the more hydrophobic ZSM-5 required harsher condition 

of higher temperature and pressure. Therefore, the hydrophilicity of the synthesized 

zeolite plays a significant role in determining the conditions necessary for the 

successful degradation of the SDA.  

      

4.3.5. Effect of pore connectivity.  

     Zeolites with different pore connectivity were investigated for the cleavage 

reaction. ZSM-5, mordenite, and ZSM-12 were used to evaluate this effect. The ZSM-

5 has three-dimensionally connected 10 membered-ring (10MR; the number of 

oxygen atoms that make up the pore is 10) pore structure. Mordenite has one-

dimensional structure with 12MR large pore, viewed on the 001 plane, and also 

another limited access from 8MR pore, viewed on the 010 plane [14]. ZSM-12 has 

one dimensional structure with 12MR large pore. As shown previously, the SDA 

inside the ZSM-5 was easily cleaved by 1N HCl at 80oC. The same cleavage reaction 

was also tried for mordenite. The Si/Al ratio of the mordenite was 14.7, which is very 

similar to the ratio in the hydrophilic ZSM-5. The SDA (VIII) inside the mordenite 

showed no chemical change after the acidic treatment with 1N HCl solution at 80oC. 

On the other hand, when the same solution was used at 135oC, the SDA was degraded 

as shown by the data given in Fig. 4-9(b). It is considered that the higher temperature 

and pressure enhance the mass transfer of H2O and H+ to the SDA, which is essential 

for the cleavage reaction. According to FT-IR spectra before and after the cleavage 

reaction, the IR peak for the ketone fragment appeared at 1735.0cm-1 after the 

treatment at higher temperature. The remaining fragments in the pores were removed 

by ion-exchange with NaCl/NaOH solution at 100oC by using autoclave. No organic 
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compound was observed after the ion-exchange as depicted in the data listed in Fig. 4-

9(c). The cleavage reaction was also attempted for the SDA inside ZSM-12. The 

ZSM-12s with different heteroatoms such as aluminum or boron were tested with both 

1N HCl solution at 80oC and 135oC. The Si/Al ratio for Al-ZSM-12 was 23.8, and the 

Si/B ratio for B-ZSM-12 was 52.3. Even when the higher temperature conditions were 

applied, the SDA still remained intact in all cases. The higher ratio of Si/B might 

hinder the cleavage reaction further due to the more hydrophobic character. But as 

shown for Al-ZSM-12 with Si/Al of 23.8, the low pore connectivity certainly 

contributes to making the cleavage reaction of the SDA inside the pores more difficult 

compared with ZSM-5 with Si/Al of 14.0 and mordenite with Si/Al of 14.7. After the 

acidic treatment, boron content (Si/B) showed no difference from as-made B-ZSM-12 

based on elemental analysis results. Another zeolite with one-dimensional pore 

structure, VPI-8, showed the same results as ZSM-12. When the VPI-8 with Si/Zn 

ratio of 31.5 was tested with the acid treatments, the SDA inside the VPI-8 pores 

remained intact even after the treatment at higher temperature. However, it might be 

possible to cleave the SDAs inside one-dimensional pore structure by using much 

harsher conditions than those used here. On the other hand, acetic acid solution was 

used to fragmentize the SDA(VIII) in the hydrophobic ZSM-5 at 135oC. Most of the 

fragments were removed from the zeolite framework after prolonged time of 2 days of 

the acetic acid treatment. This is due to concurrent ion-exchange of the SDA 

fragments with acetic acid protons. The cleaved fragments with MW 128.1 (ketone 

fragment) and 146.1(water was added to the ketone fragment) were observed in the 

acetic acid solution collected after the treatment by LC electrospray mass 

spectrometer. Organic molecules were hardly observed inside the zeolite according to 

13C CP MAS NMR. The SDA(VIII) inside the mordenite was also cleaved by the 
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acetic acid solution at 135oC. In this case, the fragments remained in the pore after 2 

days of the acidic treatment. The cleaved fragments in the mordenite stay inside the 

pores while most of the fragments in the ZSM-5 were removed. While the fragments 

could be removed more easily from three-dimensionally connected ZSM-5 framework, 

the same fragments remained inside two-dimensional pore structure of mordenite 

probably due to less effective mass transfer. From the observations mentioned thus far, 

the SDAs inside the zeolite with higher pore connectivity were more easily cleaved 

and this is likely due to better mass transfer of small molecules necessary for the 

cleavage reaction. Also, the SDA fragments were more easily removed from the 

zeolite with higher pore connectivity. 

 

4.4. Conclusions 

 

     Quaternary ammonium cations containing a variety of ketal groups were 

synthesized and used as degradable structure-directing agents for zeolite and 

molecular sieve syntheses. The ketal-containing SDAs directed the formation of 

ZSM-5, mordenite, ZSM-12 and VPI-8.  ZSM-5s with different organic contents and 

Si/Al ratios were synthesized. Changes in the structure of the ketal group  had a small 

impact on the type of zeolite prepared. The ketal-containing SDAs inside the zeolite 

pore space were degraded into smaller fragments by acidic treatments using 1N HCl 

solution at 80oC and 135oC or acetic acid solution at 135oC. The hydrophilicity and 

pore connectivity of the synthesized zeolites had large influence on the successful 

degradation of the organic SDAs. The hydrophilic character of the zeolites likely 

enabled the access of water molecules necessary for hydrolysis of the ketal molecules. 

The zeolites with higher pore connectivity showed easier degradation of the organic 
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SDAs and is probably due to better mass transfer into and out of the zeolite pore space 

when compared to zeolites with one-dimensional pore structure. 
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Scheme 1. Cleavage reaction of ketal-containing SDA into smaller fragments.
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Figure 4-1. Ketal structure-directing agents used in this work. 
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Figure 4-2. Powder X-ray diffraction patterns of ZSM-5 synthesized by using ketal-

containing SDAs: (a) SDA : II, (b) SDA : VII, and (c) SDA : VIII. 
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Figure 4-3. Powder X-ray diffraction patterns of ZSM-12 synthesized by using ketal-

containing SDAs: (a) SDA : IV (Al-ZSM-12), (b) SDA : VIII (Al-ZSM-12), (c) 

SDA : II (B-ZSM-12), (d) SDA : IV (B-ZSM-12), and (e) SDA : VIII (B-ZSM-12). 
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Figure 4-4. Powder X-ray diffraction patterns of mordenite synthesized by using 

ketal-containing SDAs: (a) SDA : III, (b) SDA : IV, and (c) SDA : VIII. 
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Figure 4-5. Powder X-ray diffraction patterns of VPI-8 synthesized by using ketal-

containing SDAs: (a) SDA : II, (b) SDA : V, (c) SDA : VII, and (d) SDA : VIII. 
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Figure 4-6. 13C CP MAS NMR spectra for the ZSM-5 (SDA : VIII) with organic 

content of 7.8%: (a) as-made ZSM-5 (b) after acidic treatment with 1N HCl at 80oC. 
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Figure 4-7. Thermogravimetric analysis results for: (a) as-made ZSM-5 with 

Si/Al=14.0, and (b) as-made ZSM-5 with Si/Al=40.8. 
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Figure 4-8. 13C CP MAS NMR spectra for: (a) as-made ZSM-5 (SDA : VIII), (b) 

after an acidic treatment by using 1H HCl at 80oC, (c) after an acidic treatment by 

using 1N HCl at 135oC, and (d) after further ion-exchange with NaCl/NaOH solution 

at 100oC. 
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Figure 4-9. 13C CP MAS NMR spectra for: (a) as-made mordenite (SDA : VIII), and 

(b) after an acidic treatment with 1N HCl at 135oC (c) after further ion-exchange with 

NaCl/NaOH at 100oC. 
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Table 4-1. Zeolite syntheses using ketal-containing SDAs 

SDAa Composition per mol of SiO2 Temp (oC) Time 
(days) Rpmd Phase 

II 0.04II : 0.24KOH : 0.06Al(OH)3 : 40H2O 170 7 60 ZSM-5 

VII 0.04VII : 0.24KOH : 0.06Al(OH)3 : 40H2O 170 7 60 ZSM-5 

VIII 0.04VIII : 0.24KOH : 0.06Al(OH)3 : 40H2O 170 7 60 ZSM-5 

IV 0.15IV : 0.15NaOH : 0.055Alb : 27H2O 160 14 60 ZSM-12 

VIII 0.15VIII : 0.15NaOH : 0.055Alb : 27H2O 160 14 60 ZSM-12 

II 0.2II : 0.1NaOH : 0.01Na2BB4O7 : 44H2O 160 14 60 ZSM-12 

IV 0.2IV : 0.1NaOH : 0.01Na2BB4O7 : 44H2O 160 14 60 ZSM-12 

VIII 0.2VIII : 0.1NaOH : 0.01Na2BB4O7 : 44H2O 160 14 60 ZSM-12 

III 0.3III : 1.33KF : 0.067Al(OH)3 : 45H2O 150 14 0 MOR 

IV 0.14IV : 0.06Alb : 0.53Nac : 32H2O 150 14 0 MOR 

VIII 0.14VIII : 0.06Alb : 0.53Nac : 32H2O 150 14 0 MOR 

II 0.3II : 0.05LiOH : 0.03Zn(CH3COO)2 : 30H2O 150 6 0 VPI-8 

V 0.3V : 0.05LiOH : 0.03Zn(CH3COO)2 : 30H2O 150 6 0 VPI-8 

VII 0.3VII : 0.05LiOH : 0.03Zn(CH3COO)2 : 30H2O 150 6 0 VPI-8 

VIII 0.3VIII : 0.05LiOH : 0.03Zn(CH3COO)2 : 30H2O 150 6 0 VPI-8 
a SDA short names as defined in Figure 1 
b Aluminum from NaY (Silica to Alumina ratio = 6) 
c Sodium from sodium silicate solution (27% SiO2, 14% NaOH) 
d Rotation speed: revolutions per minute 
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Table 4-2. Properties of ZSM-5s with different organic contents and Si/Al ratios 

 ROH/SiO2 
(gel) Si/Al (gel)

Organic 
Content 
(Solid)a

Si/Al 
(Solid)b

Case 1 0.04 16.7 6.4% 13.8 
Case 2 0.10 16.7 7.8% 14.0 
Case 3 0.15 50 7.7% 40.8 

a measured by TGA (200~600oC) 
b measured by elemental analysis 
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5.1. Potential Applications of the New Methodology 

 

     The methodology proposed in this work can reduce the synthesis cost of zeolitic 

materials by recycling organic SDAs, although re-use of the recovered SDA is not 

demonstrated here. The evaluation of economical efficacy for the proposed 

methodology will be beneficial for its actual application in industry. The yield of 

recovered SDAs and the recovering cost including purification steps should be 

carefully estimated. This methodology will be especially useful for synthesis of pure-

silica molecular sieves with extra-large pores. As shown in Table 1 of Chapter 1, the 

bulky SDAs have been successfully used to find pure silica molecular sieves with 

extra-large pore 14MR, such as UTD-1 and CIT-5. The attempts to synthesize zeolitic 

materials with extra-large pore using even bulkier molecules such as sugar derivatives 

are continued. Because the synthesis cost of this bulky SDA is probably very high, 

SDA recycling will be particularly important in the applications. In addition, the 

removal of the fragmented SDA pieces will be easier in pure silicate system due to 

weak interactions of the organic molecules and the framework. The pieces can be 

removed by simple solvent extraction rather than ion-exchange, and this will facilitate 

easier purification of the recollected pieces. Therefore, the proposed methodology can 

contribute to the economical application of new zeolitic materials (especially pure 

silicate material) that will probably be discovered using bulkier SDAs.  

     The avoidance of high temperature procedures can provide tremendous 

opportunities to zeolitic materials as well. The proposed methodology suggests an 

unprecedented way to make inorganic crystalline materials porous at mild conditions. 

As novel applications of zeolitic materials have received much attention as explained 

in Chapter 1 and new classes of inorganic crystalline materials have appeared such as 
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metal-organic frameworks (MOF), the need for methods to handle the materials at 

varied conditions has increased. Potential applications to which the proposed 

methodology can contribute to expanding the use of zeolitic materials are suggested 

as below. 

      

• Preservation of organic functional groups anchored on inorganic frameworks  

     Organic groups have been anchored on inorganic crystalline frameworks[1-3] or 

hybrid materials with organic frameworks have been synthesized[4, 5]. Various 

organic functional groups such as phenyl, cyanoethyl, iodopropyl, allyl, bromopropyl, 

aminopropyl, mercaptopropyl groups were anchored on BEA frameworks and 

employed as catalytic sites[3]. Organic-inorganic hybrid zeolites with Si-CH2-Si were 

synthesized and the materials showed shape-selective lipophilicity indicating that it is 

not a physical mixture of conventional zeolite and amorphous organic-containing 

material but contains a genuine organic-inorganic hybrid zeolite[4]. Open metal-

organic frameworks consisting of inorganic clusters and organic linkers have been 

discovered, mainly by Yaghi group. Often zinc clusters with various connectivities 

have been used with rigid organic linkers such as 1,4-benzenedicarboxylate in order 

to construct MOFs[5]. Many of these hybrid materials also use organic templates to 

fill the space in the porous structure. Organically functionalized molecular sieves 

(OFMS) use various SDAs such as TEA and TPA, and MOF materials also use 

organic guest molecules as space-filler especially when flexible organic linkers were 

used[6, 7]. When these organic guests were used, the removal of only organic guests, 

not organic functionality is a key for their applications. In the case of OFMS, there 

has been only one case that the SDA can be removed from zeolite pore by extraction – 

TEA from zeolite β. The biggest obstacle for further applications of OFMS has been 
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difficulty to remove only guests. If calcination is used for removal, the high 

temperature would also destroy the organic functionality as well as the organic guest 

molecules. If the proposed methodology is used to remove SDAs, however, the 

organic functionality can be preserved inside the pore while the SDA can be removed 

by fragmentation as shown Fig. 1. The porous materials with organic functionality in 

the pores can be used as catalysts with enhanced catalytic activity or fuel cell 

composite materials with improved proton conductivity. On the other hand, when 

organic groups serve as constituents of the framework, calcination would destroy the 

whole framework by burning the organic framework and porosity would be lost. The 

proposed methodology can remove the organic guests while preserving the organic 

framework. There are many cases that porous crystalline materials cannot be prepared 

since the framework is destroyed upon the removal of guest molecules. Some cases 

are due to unstability of the framework itself, but the other cases are on account of 

harsh condition that the framework cannot endure during the removal. The new 

‘porous’ MOF materials that has been unable to be prepared using existing methods 

can be made by adapting the method shown in this work. 

 

• Preventing aggregation of zeolite nanoparticles 

     Recently, zeolite nanoparticles have been actively studied as building blocks for 

various hierarchical structures such as patterned films, self-standing films, zeolite 

fibers, ordered macroporous monoliths, etc[8-10]. Since the hierarchical materials are 

expected to be used for separation, catalysis, and microelectronics, organic SDAs 

inside the zeolite nanoparticles must be removed first from the zeolite nanoparticles. 

Later removal of the SDAs after construction would deform the hierarchical structures. 

However, calcination is unsuitable for SDA removal because it leads to significant 
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irreversible aggregation of colloidal nanoparticles. Wang et al. reported the 

preparation of SDA-removed zeolite nanocrystals by using an organic polymer 

network as a temporary barrier during calcination to prevent zeolite nanocrystal 

aggregation[11]. Also, monolayers of zeolite microcrystals have been synthesized by 

using various covalent linkages such as chemical linkers as amine or halide[12], ionic 

linkers using polyelectrolytes[13], and hydrogen bonding linkers using adenine-

thymine[14]. However, the zeolite crystals usually have large size of a few μm in 

these studies. They removed organic SDAs from zeolite microcrystals prior to 

monolayer formation by calcination at 550oC. When the patterning technique using 

various covalent bonds is to be applied for zeolite nanoparticles with smaller size, 

calcination would produce aggregates with broader size distribution and it will be 

hard to obtain a uniform zeolite microarray using those aggregates. The proposed 

methodology can provide a new way for SDA-removal while preventing aggregation 

and keeping narrow size distribution of zeolite nanoparticles. 

 

• Construction of pore-patterned film 

     Zeolite micropatterns have been produced using zeolite nanoparticles or pre-

patterned substrates as shown in Fig. 2[10, 12]. The pattern in Fig. 2(a) was produced 

by applying a patterned polydimethylsilane (PDMS) stamp facedown with a 

compression pressure onto a drop of nanoparticles suspension. In Fig. 2(b), organic 

moieties were attached onto glass or silicon wafer in a patterned manner, then zeolite 

particles with functional groups on the exterior surface were immobilized by chemical 

reaction with pre-patterned organic moieties. All of these works used separate zeolite 

crystals as building units to construct the micropatterns. On the other hand, a 

micropattern where the zeolite is porous only at selected areas within a single 
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crystalline film may be formed. The proposed methodology can be used to construct 

such a pore-patterned film by selectively removing SDAs from a zeolite film. When 

the SDA is fragmented at only a selected area of the film, the film will have non-

porous and porous areas in a patterned way after removing the fragments. Photolytic 

organic compounds can be used as a SDA for such a selective fragmentation.  

 

5.2. Conclusions 

 

     A new methodology has been proposed for synthesizing zeolite and zeolite-like 

materials. The existing method of preparing porous zeolitic materials has mostly used 

a high-temperature step – calcination – to remove organic compounds trapped inside 

the pore cavity during zeolite synthesis. The high temperature step, however, causes 

several undesired aspects, which include waste of valuable organic compounds, 

destruction of catalytic sites or, more severely, crystalline framework, additional 

synthesis cost due to the need for treatment of effluent gas generated by the 

combustion, etc. The new method, which removes trapped organic molecules without 

the high temperature step, provides an alternative that avoids such problems. A key 

component of the new methodology proposed in this work is a priori rational design 

of organic compounds that are usually used for zeolite synthesis. Organic molecules 

that can be easily cleaved to smaller fragments and recombined to their original shape 

are used to structure-direct zeolites. The trapped organic molecules are fragmented 

after synthesizing zeolites and the fragments are removed more easily than the whole 

molecules mainly due to their smaller size. The fragments can be recombined and the 

recovered organic molecules can be used for more zeolite synthesis. Porous zeolite-
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like materials can be prepared by following these steps without using high 

temperature.  

     The new methodology was realized by using an organic molecule containing a 

cyclic ketal group. 8,8-dimethyl-1,4-dioxa-8-azaspiro[4,5]decane successfully 

structure-directed the formation of ZSM-5. The organic molecule was cleaved using 

hydrolysis into its corresponding ketone molecule and ethylene glycol upon the acidic 

treatment and it was confirmed that the cleavage occurred inside the pore cavity. The 

fragments were removed from the pore by ion-exchange. The smaller size caused by 

fragmentation was considered a key for the successful removal. The ZSM-5 after the 

removal of the fragments showed equivalent microporosity to calcined ZSM-5. The 

porous ZSM-5 prepared by the proposed new methodology had the same catalytic 

activity and shape selectivity as conventional ZSM-5. 

     There have been cases, however, where ketal molecules remained intact inside 

pore cavity in spite of chemical treatments. Additional molecules such as H+ and H2O 

are necessary for the hydrolysis of ketal molecules. Tight packing of ketal molecules 

seemed to hinder movement of the additional molecules due to lack of space inside 

the pores. The necessary space was prepared by using two different kinds of organic 

molecules during zeolite synthesis. A ketal molecule with an ammonium group was 

used as the structure-directing agent and a small amine molecule with no electrostatic 

charge was used as a pore-filling agent. The amine had no influence on the structure 

of produced zeolite. The synthesized zeolite contained both of the ketal and amine 

molecules in the pore cavity. The amine was easily extracted, unlike the ketal, 

because of its smaller size and weaker interaction with zeolite framework. While the 

ketal had no chemical change upon acidic treatment before extraction of the amine, 

the same molecule was successfully hydrolyzed after removing the amine by 
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extraction. As previously discussed, the original methodology was expanded by using 

different kinds of organic molecules for zeolite synthesis. 

     Various ketal molecules (many different ketal groups were attached onto 1,1-

dimethylpiperidinium) were synthesized and used as structure-directing agents. ZSM-

5, ZSM-12, VPI-8, and MOR were synthesized using these organic molecules. The 

change of ketal group has less impact on the synthesized structure compared with the 

reactant gel composition. The effect of hydrophilicity and pore connectivity on the 

cleavage reaction of organic molecules in the pore cavity was evaluated with the 

synthesized zeolites. ZSM-5s with different Si/Al ratios were synthesized to 

investigate the effect of hydrophilicity. ZSM-5 with a lower Si/Al ratio has more 

hydrophilic character than ZSM-5 with a high Si/Al ratio and ketal molecules in the 

ZSM-5 pore cavity were more easily cleaved due to better mass transport of H2O 

molecule through the pore space. Comparing ZSM-5 with a 3-dimensionally (3-D) 

connected pore structure, MOR with 2-D, and ZSM-12 with 1-D, ketal molecules 

were degraded more easily in the zeolite with higher pore connectivity because of 

facilitated transport of H+ and H2O. The ketal molecule in MOR was degraded under 

a harsher condition. 

     The method developed in this work will be beneficial for future applications of 

zeolitic materials due to its ability to preserve organic functionality selectively and to 

minimize the deformation of inorganic crystalline phase. The new methodology is a 

powerful tool for controlling inorganic crystalline materials such as zeolites and 

molecular sieves rationally in a molecular level. 
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Figure 5-1. Removal of organic SDAs from organically functionalized zeolites. 
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Figure 5-2. Micropatterns prepared (a) by using zeolite nanoparticles [10], (b) by 

using pre-patterned substrates and functionalized zeolite microcrystals [12]. 

 
 


	Chapter One  
	 1.1. Zeolites and Molecular Sieve Materials 
	1.1.1. Applications 
	1.1.2. Synthesis Procedures 
	1.1.3. Synthesis Mechanism 

	1.2. Strategies for Rational Design of Zeolite 
	1.2.1. Organic Structure-Directing Agents 
	1.2.2. Novel building blocks 
	1.2.3. Computational Calculations 

	1.3. Removal of Organic SDAs From the Zeolite Pores 
	1.3.1. Calcination 
	1.3.2. Extraction 
	1.3.3. Need for a New Strategy to Remove SDA 
	References 


	Chapter Two  
	 2.1. Proposal of a Combustion-Free Methodology 
	2.2. Proof of Concept 
	2.3. Methods 
	2.3.1. Preparation of SDA (1)  
	2.3.2. Preparation of as-synthesized zeolite.  
	2.3.3. Characterizations.  
	Reference 



	Chapter Three  
	 3.1. Need for Pore-Filling Agents 
	3.2. Experimental Section 
	3.2.1. Synthesis of SDA-1   
	3.2.2. Synthesis of ZSM-5 with SDA-1.   
	3.2.3. Synthesis of VPI-8 with SDA-1.   
	3.2.4. Synthesis of ZSM-12 with SDA-1.   
	3.2.5. Synthesis of ZSM-5 with SDA-1 and pore-filling agents, isobutylamine or cyclopentylamine.   
	3.2.6. Analysis.  

	3.3. Results and Discussions 
	3.3.1. Syntheses with SDA-1.   
	3.3.2. Syntheses with SDA-1 and pore-filling agents.   
	3.3.3. Cleavage attempts with SDA in unidimensional materials.  
	3.3.4. Removal of PFAs and SDAs.   

	3.4. Conclusions 
	References 


	Chapter Four  
	 4.1. Using Various Ketal SDAs for Zeolite Synthesis 
	4.2. Experimental Section 
	4.2.1. Synthesis of Ketal Structure-Directing Agents.  
	4.2.2. Zeolite Synthesis.  
	4.2.3. Cleavage of SDAs in the Zeolite Pore Space.  
	4.2.4. Analytical.  

	4.3. Results and Discussion 
	4.3.1. Zeolite Synthesis 
	4.3.2. Cleavage reaction of ketal SDAs inside the pore space.  
	4.3.3. Effect of organic contents.  
	4.3.4. Effect of hydrophilicity.  
	4.3.5. Effect of pore connectivity.  

	4.4. Conclusions 
	References 


	Chapter Five  
	 5.1. Potential Applications of the New Methodology 
	5.2. Conclusions 
	References 




