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Abstract 

The results of a comprehensive set of measurements on the first purposeful 1.21 

Ge V high tune, high field damping ring for the SLAC Linear Collider are reported. 

Current dependent effects such as parasitic mode losses, head tail instabilities, 

synchrotron and betatron frequency shifts were measured to estimate the 

impedance. All results agree reasonably well with expectations and indicate no 

limitations to the design performance. A current of 55 mA (4 • 1010 particles), 

which represents 80% of the design intensity, has been successfully stored in the 

ring with no sign of instabilities. 

Some changes to the optics design that are being incorporated into the positron 

and electron damping rings now under construction are described. They are based 

on the operating experience with the present electron damping ring and include 

an improvement of the bending magnets and strengthening of the chromaticity 

correction scheme. As a consequence, the normalized equilibrium transverse 

emittance of the beam is expected to be 16 µ mrad. 

Some properties of possible lattices for a future very high energy linear collider 

damping ring are discussed in the appendices. 
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Chapter 1. Introduction 

The electron-positron colliders have proven to be an extremely powerful tool 

for high energy particle physics. They have grown in size from table top machines 

to the 2.2 km circumference Positron Electron Project at SLAC and a similar size 

ring PETRA at DESY with the available center-of-mass energy up to 40 Gev. The 

Large Electron Positron storage ring1 is under construction at CERN and will have 

the circumference of 27 km and the center-of-mass energy of 110 Gev in its first 

stage of operation and up to 210 Gev with major additions. 

It is unlikely that further advances in the available center-of-mass energy will 

be achieved by building a bigger circular collider. The reason is that the particles 

lose energy in a circular machine into the synchrotron radiation, and the lost power 

is proportional to the fourth power of the energy. This causes the costs and the size 

of a circular collider to grow as the square of the energy2. The experimental data 

on this law are shown in Fig. 1 where the size and energy of many storage rings, 

either already built or under construction, is given. 

The linear collider3 is a new technology that can provide a way to achieve 

much higher energies since the synchrotron radiation losses are absent. The idea 

is to use two linear accelerators to accelerate bunches of electrons and positrons to 

the design energy and bring them into collisions. 

SLAC Linear Collider4 , project that is under construction at the Stanford 

Linear Accelerator Center, is the first step in testing and developing this new 

technology. Besides the high energy physics motivation for building the SLC, the 

experience gained from this project will help in designing and building a very high 
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Figure 1. Average radius vs energy for the majority of the storage rings 
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energy linear collider. 

In order to be useful for the high energy physics a linear collider has to have 

high luminosity which is defined as the event rate for a process of unit crossection. 

If the repetition rate of the linac is f and the bunches are equally populated, N 

particles each, the luminosity can be written as 

JN2 
.C=­

A 

where A is the effective transverse area over which the collisions take place. In the 

case of the circular colliders f stands for the revolution frequency and is on the 

order of a few hundred KHz. Present linac technology limits the repetition rates to 

below a few hundred Hz. Circular machines also typically have higher number of 

particles in the bunches since they can accumulate. In order to obtain comparable 

or higher luminosities, the effective interaction area A has to be drastically reduced 

in the linear colliders. It is directly proportional to the transverse phase space 

volume occupied by the bunch or to its emittance e. If the transverse distribution 

of particles in a bunch is gaussian with the standard deviation Ur in both horizontal 

and vertical planes, the effective collision area is 

where we have expressed Ur in terms of the emittance of the beam and the envelope 

function /J* at the collision point (see Appendix A). 

The lower limit on the /J* is set at present by the higher order aberrations in the 

final optical elements before the collision point. The SLC design calls for /3* = 5 mm. 

In order to achieve useful luminosity, the invariant transverse emittance of the beam 

at the final energy of 50 Ge V has to be 

,edesign = 3 X 10-5 
m rad 

while the typical invariant emittance of positron beam, which is obtained from a 
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converter target that is struck by an electron beam, is 

1 c"! = 1 x 10-2 m rad 
in 

Damping rings are used to reduce the transverse emittance of the positron 

beam and also of the electron beam. The electron beam, obtained as it is from a 

hot cathode, has a smaller emittance, but it requires some damping nonetheless. 

The subject of this thesis is the first such damping ring that was built for the SLC 

project. 

§1.1 Scope of the Thesis 

In this dissertation we are gomg to describe the experiments and the 

development work done during the tests of the first purposeful damping ring. Some 

aspects and optimization of a possible lattice for a damping ring for a future linear 

collider are discussed in the appendices. 
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Chapter 2. Design Parameters 

In this chapter we will describe the basic design parameters of the damping 

ring as well as introduce the necessary notation. 

§2 .1 Equilibrium Transverse Emittance 

The equilibrium transverse emittance of the beam in a storage ring is the 

result of two competing processes. The quantum fluctuations due to the emission 

of synchrotron radiation blow up the beam. The process of radiation damping tends 

to reduce the transverse beam size. The balance struck between these two processes 

determines the value for the equilibrium emittance. 
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§§2.1.1 Betatron Motion 

We will consider only rings with the design orbit lying in the horizontal plane. 

The magnetic field in the midplane is purely vertical and can be specified by giving 

the value for the field in the midplane By(x, s) and the values for the field derivatives 

there. In particular, in linear approximation, the gradient of the field 

1 BBy 
k=---­

Bp ax 

is specified. Here Bp is the so called particle rigidity 

B[Tesla]p[m] = 3.33564 E[GeV] 

The field on the design orbit will be characterized by the curvature function5 

1 
G(s) = -

p 

and we will usually consider the case of the so-called separate function lattice where 

the bending is done by pure dipole magnets and G(s) is non-zero only inside them. 

Let us disregard (or turn off) radiation effects for a moment. An electron 

executes betatron oscillations around the design orbit. The equation of motion is 

that of a harmonic oscillator with periodically modulated frequency~ so called Hill's 

equation: 

where k(s) is a periodic function, with a period of at most the circumference of the 

ring. The solution to the above equation can be parametrized as follows: 

xt,(s) = a~ cos (cp(s) + cl>o) 
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where a is a constant, the betatron phase ¢(s) is defined as 

s 

I ds 
¢(s) = f3(s) 

0 

and {3 ( s) is a periodic function with a period of at most the circumference of the 

ring and is sometimes called an envelope function (see Appendix A). The betatron 

phase advance in one revolution, divided by 21r, is called the tune v. 

Introducing the rest of the Courant-Snyder parameters 

1 , 
a= --{3 

2 
1 + a:2 

{3 

we can write down the Courant-Snyder invariant of the betatron motion6 or the 

square of the invariant amplitude 

The above expression relates the displacement x13 and the slope x~ at any azimuth 

in the ring. It also describes an ellipse in the ( x {3, x~) phase space and the square of 

the invariant amplitude is just the area of this ellipse divided by 1r or the emittance. 

The presence of dispersion in the ring causes a particle with an energy different 

from the design energy to execute betatron oscillations around a new closed orbit, 

different from the design orbit. The total horizontal displacement of this orbit from 

the design orbit can be written as 

x(s) = x13(s) + 17(s)8 

where 8 is the fractional energy deviation and 17 ( s) is the dispersion function that 

describes the displaced orbit and satisfies the following equation5 

r,'' + k(s)17 = G(s) 
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§§2.1.2 Quantum Fluctuations 

If we now turn on the radiation, the invariant amplitude of the electron's 

betatron oscillations will no longer remain constant. Let us consider an electron 

that emits a photon of energy u along the tangent to its trajectory. This is a good 

approximation since most of the synchrotron radiation is emitted into a cone with 

an opening angle of 1/1 , which is much less than the typical slope of the trajectory. 

The particle's energy is reduced, but its displacement and the slope of the trajectory 

do not change, so we can write 

I I I U 
!::..x = 0 = t::..x13 - TJ E 

where Eis the design energy and we have assumed that prior to the photon emission 

the particle had the design energy. If our particle was following the design trajectory 

before radiating, i.e. its invariant betatron amplitude was zero, it now starts 

performing betatron oscillations with its square of the invariant amplitude given 

by 

Here we have introduced 

a function that will play a very important role in what follows. It describes the 

growth of the invariant betatron amplitudes due to the radiation-induced quantum 

fluctuations. 

Taking into account the spectrum of the synchrotron radiation~ we can write 

the full expression for the growth of the square of the invariant betatron amplitude 
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due to the quantum excitation as 

da
2 

2CqEUo f 3 dt = Q x = To f G2 ds • I G I){ ds 

where the quantum constant 

55 he _ 6 m 
Cq = . ;;:; ( 2) 3 = 1.468 • 10 --2 , 

32y3 me GeV 

E is the design energy, Uo is the radiation loss per turn 

and To is the revolution time along the design orbit. 

In an ideal storage ring with the design orbit lying in a horizontal plane the 

vertical dispersion is zero everywhere and there are no quantum fluctuations that 

drive the betatron oscillations in the vertical plane. 

§§2.1.3 Radiation Damping 

Turning on the radiation also introduces damping of the betatron oscillations. 

While radiating, an electron loses both transverse and longitudinal momentum. 

The momentum is replenished each turn in the RF accelerating cavities only in 

the longitudinal direction. The transverse momentum error and the oscillations 

amplitude gradually shrink. As is shown in Ref. 5, the vertical betatron oscillations 

decay exponentially with the damping time 

2ETo 
Ty=--, 

Uo 
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the horizontal betatron oscillations with damping time 

1 2ETo 
rx= --­

Jx Uo ' 
Jx = 1- D 

and the energy oscillations with damping time 

Here we have introduced the so-called damping partition numbers Ji such that 

2ET0 ro=-­
Uo 

and a new function of the lattice parameters 

D = f G(2k + G2
)77 ds 

- f G2 ds 

which is independent of the energy of the beam. 

§§2.1.4 Equilibrium Emittance 

The total rate of change of the square of the invariant betatron amplitudes can 

be summarized then as 
d (a2) 2(a2) 
-- =Qx- --

dt Tx 

A stationary distribution of the horizontal betatron oscillations of many particles 

is then characterized by the mean square horizontal spread of the beam 

2 1 2 1 
ax/3 = -(a )/Jx(s) = -rxQxf3x(s) 

2 4 
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The ratio 
_ a;,a(s) 1 

ex= f3x(s) = 4rxQx 

is called the horizontal equilibrium beam emittance. It 1s independent of the 

azimuths. 

Writing out rx and Qx we can write the emittance as 

or in case of a separate function lattice, where G is non-zero only in the dipole 

magnets and is equal there to 1/ p, 

where ()l)mag is the average value of )I in the dipoles, defined as 

()l)mag = -
1
- J )Ids 

21rp 
mag 

§§2.1.5 Synchrotron Radiation Integrals 

We have seen in a few equations above various integrals of the lattice functions 

and betatron functions around the ring. It is convenient to introduce special 

notation for these integrals and express the main parameters of the ring as functions 

of them?' The integrals are calculated by most of the computer optics programs 

that are used in the design of the accelerators like COMFORT8 , MAD9 and 

PATRICIA~o,n 

Ji - f 17G ds 
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where 

)I = "l'r/2 + 2etrJrJ' + f3rJ'2 

Some of the parameters of the ring that we have encountered so far are expressed 

in terms of these integrals as follows: 

• The radiation loss per turn 

C -5 ID 
1 = 8.846 • 10 --3 GeV 

• The D function and the damping partition numbers 

===} 

and the damping times are 

47rTo 1 47rTo 1 T ______ . 

X - C,E3 12 - /4' 
T - _. 

y - C,E3 Ji' 

• The equilibrium horizontal emittance 

-6 m 
Cq = 1.468 • 10 --2 GeV 

Two additional parameters that we shall have need of are5 

• The equilibrium energy spread of the beam 

• The orbit dilation or "momentum compaction" factor 

Ii a=-
L 
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where L is the circumference of the design orbit. 

It connects the change in orbit length with the relative particle energy change: 

b..L b..E 
-=a--
L E 

§2.2 Choice of Parameters 

The main parameters of the SLC project that determined the properties of the 

damping ring optics12,13 were 

• required damped beam invariant emittance of both electrons and positrons 

• the design repetition frequency of the collider 

f = 180Hz 

• the design initial emittances of the electron and positron beams to be damped 

down 

,c"tn = 1 X 10-2 m rad 

1 cin = 3 x 10-4 m rad 

The requirements on the positron damping ring, being more stringent smce 

the input positron emittance is much higher that the input electron emittance, 

determined the optics parameters of both rings, because we wished to build and 

operate identical machines. 

The output emittance of the damping ring can be written as 
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where '"'fco is the invariant equilibrium emittance, '"'fcin 1s the invariant input 

emittance, t is the time spent in the ring by the beam, and r is the damping time. 

The factor of two in the exponent is there because the emittance damps down with 

half of the horizontal damping time since it is proportional to the area occupied 

by the beam in the (x, x') phase space, and both x and x' damp down with the 

damping time r. 

In the next two subsections we will give some qualitative reasons for some of 

the design parameters choices. 

§§2.2.1 Damping Time 

The damping time has to be very short, since the time allowed for damping 

the emittance down, as determined by the repetition rate, is t = 5.5 msec. During 

this time the emittance has to be reduced by a factor 

thus the damping time has to be shorter than 

2t 
r < -

1
-- = 1.9msec 

- n330 

assuming co ~ cin In fact, it was decided to operate with two bunches of positrons 

in the damping ring, in order to double the time spent in the ring by each positron 

bunch and thus to permit doubling the minimum damping time to 

r:::; 3.8msec 
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The damping time can be written as (see previous section) 

2ET0 41rT0 1 
r=--=---

Uo C,E3 12 ' 
C -5 m 

1 = 8.846 • 10 --3 GeV 

where To is the revolution time, Uo is the radiation energy loss per turn, E is the 

energy of the beam, and 12 is the second synchrotron radiation integral 

f ds 1 f 2 
12 = P2 ex: E 2 B ds, B[Tesla]p[m] = 3.33564 E[GeV] 

and we have assumed that the horizontal partition number Jx = 1 which was the 

case for the separated function lattice the designers had in mind. 

We see from the above formulae that we have to make To, the revolution time, 

as short as possible, and the magnetic field B as high as possible. The revolution 

time was limited from below by the properties of the kicker magnet, since we have 

to inject a positron bunch into the ring while another bunch is circulating. The 

sum of the rise and fall times of the kicker pulse has to be less than one half of the 

revolution time. The choice was 

To = 117.6 nsec 

which corresponds to the circumference of the ring of C = 35.27 m. The magnetic 

field was chosen to be 

B = 19.8KG 

the highest we could obtain without using superconducting magnets. 

§§2.2.2 The Equilibrium Emittance 

The lattice that was chosen for the damping ring is the FODO cell lattice that 
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has been used extensively in the present storage rings. Its name derives from the 

sequence of the focusing elements and the bending magnets. It consists of repetitive 

cells, each containing one focusing and one defocusing quadrupole, separated by 

uniform field dipole magnets. The main properties of the lattice are described in 

more detail in Appendix B. 

The equilibrium transverse emittance in such a lattice is proportional to the 

cube of the bending angle per dipole magnet 

where Lb is the length of the bending magnet and p is the bending radius. It is 

also a strong function of the horizontal betatron phase advance per cell and reaches 

its minimum around 130° per cell14 . With such a phase advance we can write the 

approximate expression for the emittance in the FODO cell lattice as follows 

where Fm is the fraction of the length of the cell that is occupied by the bending 

magnets, which is usually close to a half. We have assumed that the horizontal 

partition number Jx = 1 in this approximation. 

However the choice of the magnetic field strength still allowed reaching the 

design emittance by making the length of the bending magnet rather short. 

Lm = 0.32m, e = go 

In addition, in order to reduce the equilibrium and output emittances by a factor 

of two, the damping rings are designed to operate with fully coupled beams (see 

more on this in the section on coupling, Chapter 4). 
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§§2.2.3 The Design Parameters 

After an optimization procedure12•13 the damping time and equilibrium 

emittance were chosen to be 

Tx =Ty= 3.06msec 

1 cx = 1 cy = 2.16 X 10-5 m rad 

such that the output emittance of positrons (after 11.1 msec) and electrons (after 

5.56msec) are 

The operating energy of the damping ring was optimized at 1.21 GeV. Some of the 

general parameters of the damping ring design are summarized in Table 1. 
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Table 1. Some general design parameters of the damping ring 

Energy 1.210 GeV 

Circumference 35.27 m 

Revolution Frequency 8.500 MHz 

RF 714.000 MHz 

Harmonic Number 84 

Transverse Damping Time 3.059 msec 

Equilibrium Emittance 9.1 • 10-9 rad m 

(with full coupling) 

Equilibrium rel. Energy Spread 7.3 · 10-4 

Momentum Comp. Factor .01814 

Energy Loss/Turn 93 .1 KeV 

Bending Radius 2.0372 m 

Bending Field 19.812 KG 

CELL - Structure 1/2 FODO 1/2 F 

Vx ~ 7.20 variable 

Vy ~ 3.20 variable 

Acceptance 

in phase space 2: 4.13 · 10-6 rad m 

in energy 2: ±1% 

RF System and Related Parameters 

RF - voltage 800 KV 

phase 6.7° 

Synchrotron Frequency 107.3 KHz 

tune .0126 

Equilibrium Bunch Length 5.9 mm 

Critical photon energy 1.9283 KeV 

I (2 bunches) 136.2 ma 

P (synchrotron radiation) 12.68 KW 
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Chapter 3. The Dampin g Ring 

The damping ring complex is located at the west end of the SLAC linear 

accelerator, one linac sector or 100 meters downstream of the electron injector. 

In Fig. 2 both damping rings with their transport lines are shown. The positron 

(north) damping ring is under construction now. The present electron (south) ring 

has been operational for the past two years and was the subject of the studies 

reported here. 

In Fig. 3 we show the layout of the electron damping ring components . 

§3.1 Dipoles 

The electron damping ring bending magnet was designed to be a wedge magnet 

(edges of the magnet are normal to the design orbit) with the specially shaped pole 

tips to provide the sextupole component of the field for the distributed correction 

of chromaticity. In Fig. 4 a drawing of the dipole magnet with the pole pieces is 

given. The bend angle per magnet is 9° and the field is 19.8 kG. The vertical gap 

is 2 cm. 
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Figure 3. The layout of the electron damping ring components. 
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§3.2 Quadrupoles 

The quadrupole magnets in the electron damping ring are organized into 

five families. The strong focusing required for the small equilibrium transverse 

emittance resulted in very large gradients and in the pole-tip fields close to the 

conventional limit of 10 kG. 

The focusing (QF's) and defocusing (QD's) quadrupoles in the arcs have 1-

inch bore while the straight section QFI's and QDI's have 2-inch bore. In Fig. 5 

we show a drawing of the QD and QF series quadrupole. 

§3.3 Sextupoles 

The bulk of the chromaticity correction is done with the distributed sextupoles 

realized as the shaped pole tips of the bending magnets. The sextupole field at the 

ends of the magnet is obtained from the roughly parabolic shape of the pole tip 

( see Fig. 4 ) so that the integrated magnetic field that a particle sees at the end of 

the magnet is a quadratic function of the distance away from the design trajectory. 

A small adjustment of ±1 unit of chromaticity is provided for by two families 

of sextupoles, SF and SD, each having two magnets. 
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§3.4 Injection and Extraction Magnets 

§§3.4.1 Septa 

The damping ring contains two DC septa, one in each straight section, for 

injection and extraction. The current sheet is 1 cm high and 3 mm wide, carrying 

the operating current of around 2500 A. The two septa provide a total of 7° bend and 

are powered by a single power supply. Backleg windings are provided to compensate 

the stray field in the stored-beam region. 

§§3.4.2 Kickers 

The kicker magnets15 are ferrite loaded transmission lines designed to provide 

a 7-mrad kick lasting no longer then 58 nsec-half of the revolution period, in order 

not to disturb the second bunch in the ring. 

The vertical gap is 2 cm. The amplitude of the voltage pulse is 40 KV and the 

vacuum chamber inside the kicker magnet is made out of ceramic that is covered on 

the inside with a very thin layer of Kovar in order to allow the beam image currents 

to flow freely and thus to minimize the disruption in the otherwise all metal vacuum 

pipe to the impedance of the ring (see the section on impedance in Chapter 4.) 
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§3.5 Correctors 

Orbit correction is achieved with a set of horizontal and vertical steering 

correctors distributed around the ring. The majority of the horizontal correctors 

is implemented as additional windings on the bending magnets. All of the vertical 

correctors are additional windings on the vertically focusing quadrupoles, powered 

to provide a dipole field. A few of the horizontal correctors are implemented in the 

horizontally focusing quads as well. In Fig. 6 we illustrate the implementation of 

the steering correctors in the damping ring quadrupoles. 

§3.6 RF System 

The RF system 16 in the damping ring consists of two RF cavities, each made up 

of two copper cells, driven by single 714 MHz klystron. The maximum energy gain 

from the system in 800 Ke V. Each cavity has a stepping-motor-controlled-tuner 

that is used to tune it via a feedback loop. The tuning range around the central 

resonant frequency of 714 MHz is ±200 KHz. 
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Figure 6. The implementation of the steering correctors in the quadrupole magnets. 
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§3. 7 Vacuum System 

The ring vacuum chamber is pumped by two sets of pumps: localized diffusion 

pumps and distributed ion pumps. The distributed pumps are located in the 

bending magnet chambers. A few vacuum gauges are provided for monitoring the 

pressure. Two valves, one at the end of LTR and the other one at the beginning 

of RTL, can be used to isolate the ring from the transport lines. Pressures on the 

order of a few nanotorrs have been achieved to date. 
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Chapter 4. Measurements 

§4.1 Optics 

From the point of view of linear optics the damping rmg 1s a four-fold 

symmetric machine. It consists of two arcs with regular FODO cell structure, 

each arc containing eight cells, and two straight sections that provide space for the 

injection and extraction of the beam. There are also four matching sections that 

provide the transition from the arcs to the straight sections. Shown in Fig. 7 are 

the #M, ~ and 77(s) in one quarter of the ring. 

§§4.1.1 The Arcs 

The FODO cell lattice of the arcs has been used in many existing storage 

rings and its properties have been well studied and understood. It determines the 

major parameters of the damping ring, in particular its emittance, since most of 

the radiation and focusing occurs in the arcs. 

The main characteristics of the FODO lattice can be parametrized in terms of 
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the betatron phase advance per cell17 and the equilibrium emittance that can be 

achieved with such a lattice is minimum at about 68° horizontal phase advance per 

half-cell~4 In the Fig. 8 we show the equilibrium horizontal beam emittance in the 

Damping Ring as a function of the horizontal betatron phase advance per half-cell. 

The analytical results in Ref. 14 used various approximations and give a slightly 

different shape of the curve than calculations done with optics programs. These 

approximations include thin lens model for the quadrupoles, equal betatron phase 

advances per cell in both planes and bending magnets filling all the space between 

the quads; they are discussed in more detail in Appendix B. 

The design optics configuration in the Damping Ring has the horizontal 

betatron phase advance per half-cell of 57° which corresponds to the horizontal 

tune of 1/x = 7.2 and the vertical tune is Vy = 3.2. The reasons why the operating 

tune was not chosen at the minimum of the emittance basically have to do with the 

fact that higher phase advance per cell requires stronger quadrupoles and sextupoles. 

See more on this in Appendix B. 

§§4.1.2 Straight Sections 

In order to facilitate injection and extraction the horizontal beta function in 

the straight sections is comparatively high, f3x = 4.4m, and the dispersion is close 

to zero. 
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§§4.1.3 Changes in the Design Optics 

The damping ring was optimized and built for operation at a single energy 

of 1.21 GeV. The bending magnets in the ring are run close to saturation and 

were carefully measured and shimmed to provide the design optics at that energy. 

Unfortunately, for the testing which was done during the first year of operation, 

the linear accelerator was able to provide the electron beam of only 0.95 Gev. 

The difference in energies was sufficient to cause considerable difficulties, especially 

due to the fact that the magnets had not been measured at that energy. The 

lower energy properties of the magnets were determined from the known magnetic 

measurement data, but yielded results only good to a few percent accuracy. 

In addition, an error in the construction of the bending magnets altered their 

focusing properties. What was supposed to be a sector 9° bending magnet with 4.5° 

equivalent horizontal focusing at each edge, turned out to have double strength edge 

focusing, equivalent to 9° at each edge. 

As a result, the strengths of the quadrupole families had to be empirically 

adjusted to obtain the design tunes. 

§4.2 Tune Measurement 

The tune is the phase advance of the betatron oscillations per one revolution, 

normalized by 21r 

1 f ds 
v = 21r {3(s) 
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It is equal to the number of the betatron oscillation periods that fit into one turn. 

§§4.2.1 Use of the BPM's on the First Turn 

The problems stated above were diagnosed and a rough set of quadrupole 

strengths that allowed stored beam were achieved by the following method of 

measuring the tune. 

The ring on the first turn was treated as a transport line and the position of 

the beam was measured on the BPM's (beam position monitors) as a function of 

a corrector at the entrance to the ring used as a variable deflector. The changes 

in position then exhibit a clear betatron oscillation and the number of periods was 

roughly counted. A very helpful way to view the data is to normalize the position 

measurements by the reciprocal square root of the (3 function at the place of the 

measurement and plot the results vs betatron phase advance µ(s) 

1 / ds 
µ(s) = 21r (J(s) 

The results then could be fitted to a simple sine wave. 

Such measurements on the first turn were also used to check that the phase 

advances in the two arcs of the ring were roughly the same as well as to check the 

symmetry of the ring. 
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§§4.2.2 Tune Monitor 

The tune is measured with the stored beam. The tune monitor employs two 

pairs of strip lines positioned at 45° with respect to the horizontal plane. One set 

serves as a driver and the other as an antenna. A swept frequency spectrum analyzer 

is used to measure the resonant frequency response of the beam. The spectrum 

analyzer generates a signal of a given frequency that is applied after amplification 

to the driver set of striplines and drives the beam. A signal proportional to the 

center of charge transverse motion of the bunch is picked up by the antenna, passed 

through a notch filter to remove the revolution frequency and its second harmonic 

components, is amplified and then spectrum analyzed. Successive passages provide 

a sampled waveform of the coherent beam oscillations. When the beam is driven at 

a betatron frequency a resonant response is detected. Since the revolution frequency 

is sampled, the frequency measured corresponds to the difference between the tune 

frequency and the nearest harmonic of the revolution frequency. 

In fact, the betatron frequencies show up as sidebands around the revolution 

frequency harmonics. We chose to measure the tune near the zeroth harmonic and 

for that purpose a swept frequency analyzer that went up to 5 MHz was used (the 

revolution frequency of the damping ring is 8.5 MHz). We then have to determine 

the integer part of the tune and whether the fractional part is above or below a 

half by some other means. The integer part can be determined with the help of the 

BPM's using stored beam or on the first turn as in the above section. 

To determine whether the fractional part is above or below a half we use the 

fact that a quadrupole lens focuses in one plane and defocuses in the other. The 

idea is to raise the strength of QF magnets, increase the horizontal focusing, thus 

pushing up the horizontal tune. If the measured frequency goes up, the fractional 

part is below half integer, if it goes down, the tune is above a half. In reality, 
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however, there is a difficulty since we often are confronted with two peaks on the 

frequency analyzer and do not know a priori which one is horizontal and which one 

is vertical. These can be identified, however, by using the fact that at the focusing 

quads f3x usually peaks and {Jy is usually low. Since the tune shift due to a gradient 

change is proportional to the {3 function at the place of change ( see section on 

measuring {3 ) , the horizontal tune will therefore move faster then the vertical. 

The minimum width of the tune signal on the spectrum analyzer was about 10 

KHz, or 

.6.vresolution ~ 0.001 

which corresponds to the tune spread for chromaticity of E ~ 1 and equilibrium 

relative energy spread being b ~ 10-3 . 

§4.3 Orbit Correction 

The closed orbit in an actual storage ring does not coincide with the design 

orbit due to the presence of imperfections in the guide field. The main sources 

of errors are misalignments of quadrupole magnets and errors in the bending field 

in the dipole magnets. A set of 26 horizontal and 14 vertical steering magnets in 

the damping ring is used to correct the closed orbit. All of the vertical correctors 

and 4 of the horizontal correctors are in the quadrupole magnets. The rest of the 

horizontal correctors are in the dipole magnets. 

There are also 26 beam position monitors18,19 around the ring. Their resolution 

was measured20 to be 100 µm. 

The orbit correction scheme21 ,22 used in the damping ring was adopted after 

the PEP storage ring correction scheme~3 It provides for approximately uniform 
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distribution of correctors and beam position monitors in betatron phase. There are 

four correctors per betatron oscillation period. The drawing of the damping ring in 

Fig. 9 shows the location of the beam position monitors and correctors. 

§4.4 Measuring the Beta Function 

Measurements of the /3 function constitute an important check of the ring optics 

and are indispensable in building a correct model of a ring with imperfections. The 

two basic methods used to measure the /3 function employ the effects caused by 

changing steering or focusing in the ring. 

§§4.4.1 Quadrupole Trims 

The first method for determining the /3 function utilizes changes in tune caused 

by a localized gradient change. The quadrupole magnets in the Damping Ring are 

arranged into families, each family powered by a single power supply. In order to 

measure the /3 function at a particular quadrupole, a passive shunt was used to 

bypass a variable amount of current around that magnet. Let us briefly describe 

the basis for the measurement~ 

At a given azimuth in the ring we can write the transfer matrix for one turn 
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around the ring in terms of the Courant-Snyder parameters at that location: 

( 

cos 21rv + a sin 21rv 
R= 

- 1 sin 21rv 

,B sin 21rv ) 

cos 21rv - a sin 21rv 

where vis the tune. Let us introduce a small localized change of gradient which we 

will describe as a thin lens of strength k. The new single turn matrix is the product 

of R with the matrix representing the thin lens 

J1 = R·( 
1 

-k 

0) ( cos 21rv + a sin 21rv - k,B sin 21rv 

1 - - 1 sin21rv - k(cos21rv - o:sin21rv) 

,B sin 21rv ) 

cos 21rv - a sin 21rv 

On the other hand we can write the R matrix in terms of the new values of the 

Courant-Snyder parameters at that azimuth 

_ ( cos 21rD + o: sin 21rD 
R= 

-1 sin 21rD 

"/3 sin 21rD ) 

cos 21rD - o: sin 21rD 

Consider now the trace of R in the two representations 

1 - 1 
-Tr R = cos 21rD = cos 21rv - -k,B sin 21rv 
2 2 

It is customary to make the following approximation to this result. Taking the 

derivative of both sides with respect to k we obtain 

or for small k 
1 

l:lv ~ -,Bk 
471" 

We can see now from these formulae that a small localized change of gradient 

introduces a tune shift proportional to the ,B function at that location. This fact 

serves as the basis of one of the methods to measure ,B function. 
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The tune shift is not the only effect caused by the local gradient change. The 

f3 function itself is changed, the very quantity we are trying to measure. Let us 

examine the magnitude of this change. Notice that the upper right element of the 

R matrix remains invariant under the gradient change. Taking its derivative with 

respect to k and evaluating it at k = 0, we can write 

d/3 . dv 
dk sm 21rv + 21r/3 cos 21rv dk = 0 

or, for small k, the relative change in f3 is 

Notice the resonant behavior of the /3 function if the tune is close to an integer 

or half-integer value. Usually the operating tune is comfortably away from these 

resonances. However, if one uses the approximations above, one cannot hope to 

make a measurement of the f3 function with an accuracy better then 10% if the 

tune shift during the measurement exceeds ~v = 0.01. Typical resolution of the 

tune measurement during running-in period was ~v = 0.002. 

§ § 4.4.2 Averages over the Magnet Strings 

By changing the power supply that controls a given family of quadrupole 

magnets we can measure an average value of the /3 function at the locations of 

those magnets. Since the tune shift due to a small distributed gradient change can 

be written in the following way 

1 / k N ~v ~ - f3(s)k(s) ds = - Lfii 
47r 47r . 

i=l 
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the tune shift is proportional to the average /3 function. Alternatively, some of the 

linear optics programs like COMFORT8 print out the values of the derivatives 

av 
Bk 

which can be compared directly with the results of the measurements. 

§§4.4.3 Cusp Method 

The second method of measuring /3 uses the localized changes in steering, or 

"bumps". The change in the closed orbit at an azimuth s1 due to a single corrector 

which produces an angular deflection .6.0 at an azimuth so is 

and, in particular, the change in orbit at the corrector is simply 

/3 
.6.Xco = .6.0 • ---

2 tan 1rv 

where .6. 0 is the strength of the corrector expressed as an angle in radians of the 

kick it gives to the beam. Given a combination of a position measuring device and 

a steering corrector at the same azimuth, one can determine the /3 function at that 

place. 

We have such combinations in the damping ring m the majority of the 

defocusing quadrupoles in the arcs as well as in the quadrupoles in the straight 

sections. The results of such a measurement are shown in Fig. 10, overlaid on the 

predicted by the model plot of the /3 functions in the ring. 
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Figure 10. The results of the measurements of the /3 function using the cusp method. 
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Another possibility we had to make a single measurement of this type was to 

use the synchrotron light monitor to measure the changes in position of the beam 

at the source point, which is in a dipole that has a horizontal corrector built into 

it. 

§4.5 Dispersion Measurements 

The dispersion, 17 ( s), is defined here as the first order change in particle position 

with energy deviation, so that the total deviation from the equilibrium orbit can be 

written as 
tip 

X = Xf3 + 17 • -
p 

1.e. the particle executes betatron oscillations around a new closed orbit described 

by the rJ function. In order to measure dispersion in the ring we change the energy of 

the beam by a small amount and measure the relative change in the beam position. 

The length of the orbit that is followed by an electron with an energy different 

from the design energy will differ from the length of the design orbit by an amount 

tiL = tip f rJ(s) ds 
p p(s) 

or 
tiL tip 
-=a-

L P 

where we have used the so called "momentum compaction factor" a (sometimes 

called "elongation factor") 

a = .!_ f 17 ( s) ds 
L p(s) 
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It is usually calculated by the optics programs like COMFORT8 , MAD9 and 

PATRICIA~o,n 

We can change the length of the orbit by changing the frequency of the RF 

system, since the orbit length always contains an integer number of RF wavelengths: 

where h is called the harmonic number. In the damping ring h = 84. The relative 

change in orbit length is then 

and the energy change that is introduced this way is 

b..p 1 flfrf 
=----

p ah frf 

The basis for the dispersion measurements described below can thus be summed up 

in the following formula: 

b..x(s) = _ 77(s) flfrf 
ah frf 

Notice that in order to calculate T/ from the displacement measurements we have 

to know the momentum compaction factor. An estimate of its magnitude can be 

given as5 

1 

and is usually rather good. For example, in the Damping Ring with the horizontal 

tune of Vx = 7.2 the optics programs calculate the value a= 0.0184 to be compared 

with 
1 

2 = 0.0193 
Vx 

In any case, it enters as an overall factor into the dispersion calculations, so one 

can still use the results to check the global pattern and matching of the dispersion. 
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An experimental check of a can be done by measurmg the tune of the 

synchrotron oscillations, Vs as a function of RF voltage, since the synchrotron tune 

can be written as 

where his the harmonic number, <Ps is the synchronous phase angle and VRF is the 

amplitude of the RF voltage. 

§§4.5.1 Using BPM's 

We measured the dispersion using the beam position monitors in the ring. An 

example of the results is given in Fig. 11 where the data points are plotted together 

with the model predictions for the dispersion. 

§§4.5.2 Using Scrapers 

The scrapers can be used to measure the change in position of the beam as 

a function of the RF frequency. One of the scrapers is driven towards the beam 

until it clearly affects the lifetime. The positions of the scraper that result in the 

same lifetime for different values of the RF frequency are then used to calculate the 

dispersion at the scrapers. 
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§§4.5.3 Using the Synchrotron Light Monitor 

The synchrotron light monitor affords an opportunity to check the dispersion 

at the source point of the light. In the damping ring, the dispersion is supposed 

to be very close to zero at that location and it was important to verify this fact. 

This measurement is also important for estimating the contribution to the beam 

size there due to the dispersion during the measurements of emittance. 

§4.6 Measuring and Correcting the Chromaticity 

Chromaticity 1s defined as the change in tune as a function of the relative 

energy deviation: 
tlp 

llv= e• -
p 

and characterizes the change in focusing for a change in particle energy. It is the 

integral around the ring of the focusing strength, weighted by the /3 function: 

e = _.!_ f k(s)f3(s) ds 
471" 

The focusing in the damping ring is rather strong in order to achieve a very small 

emittance. The natural chromaticity of the ring is correspondingly rather high for 

such a small ring: 

ex= -7.8, ey = -8.3 

The most important effect caused by negative chromaticity is the head-tail 

instability5 , which limits the stored beam intensity to very low values. The finite 
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chromaticity makes the betatron oscillation frequency dependent on the relative 

energy deviation of a particle. Since particles undergo energy or synchrotron 

oscillations, the betatron frequency is being driven periodically. In addition, the 

particles in the front of the bunch leave an electromagnetic wake that acts on the 

particles in the back. Thus the motion of the head and the tail of the bunch become 

coupled. The mode when the head and the tail oscillate in phase is damped when 

the chromaticity is positive. 

In order to correct the chromaticity, the sextupole magnets are introduced in 

the ring in places with non-zero dispersion. In these magnets the gradient of the 

magnetic field is zero on the axis and rises linearly with distance away from the 

center. Thus particles with different energies see different focusing effect due to 

these magnets. Arranged properly then, they can bring chromaticity to a positive 

value. 

A given sextupole contributes to the chromaticities in both planes, improving 

the situation in one plane and worsening it in the other plane. A thin horizontally 

focusing sextupole of integrated strength mF (m-2) contributes 

and it is clear that we have to position at least two sets of sextupoles in places 

where the /3 functions in the two planes are very different. 

The chromaticity correction scheme in the Damping Ring employs a large 

number of sextupole elements positioned at the ends of the dipole magnets (see 

Chapter 3). Their strength is fixed and is designed to compensate for the bulk of 

the chromaticity at E = 1.21 Ge V. The measured values for E = 1.21 Ge V were 

mD = -23.31 m-2 

In addition, four variable sextupoles are provided in the matching sections to allow 

for the chromaticity variation of 
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They are arranged into two families, SF and SD. 

§§4 .6.1 Measuring chromaticity 

The betatron tunes are measured as a function of RF frequency which, in 

effect, measures the dependence of the tunes on energy deviation (see the section 

on dispersion measurements). The chromaticity can then be calculated from the 

following formula 
_ b.Vx,y _ b.fx,y 

€x,y - -o:f RF b.f RF - -o:h b.f RF 

where his the harmonic number 

f x,y are the frequencies of transverse betatron oscillations one measures directly on 

the spectrum analyzer and !rev is the revolution frequency. 

The first measurement of the chromaticity at 0.95 Gev is presented in Fig. 12 

and was made with the variable sextupoles turned off in order to find out how 

much of the negative chromaticity is being compensated by the fixed sextupoles at 

this energy. The vertical chromaticity was negative. Later on, using both families 

of variable sextupoles with the same polarity, we were able to bring the vertical 

chromaticity to a slightly positive value. This was possible after we found a better 

matched optics in the ring. 

The difficulties we experienced in correcting the chromaticity prompted design 

changes in the sextupoles and their distribution in the new damping ring for 

positrons and in the rebuilt of the electron ring. The changes in the design are 

discussed in Chapter 5 on the results. 



50 

1.6 

X 2.4 

1.5 ts:=+3.4 {y=-2.7 

2.3 

1.4 - -N N 
~ ~ 
~ ~ ......... ......... 

"4 .... 
It-I 1H 2.2 

1.3 

1.2 2.1 

1.1 

2.0 
713.9 714 713.9 714 

fRF (MHz) fRF (MHz) 
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§4. 7 Bunch Length 

The SLC design requires very short bunches for reinjection back into the linac 

from the damping ring in order to minimize the energy spread in the linac. Since 

the equilibrium rms bunch length in the damping ring is on the order of 1 cm, and 

the required bunch length for the linac is 0.5 mm, a bunch length compressor is 

built into the Ring-to-Linac transport line. The compression scheme utilizes the 

fact that the relative energy spread of the bunch coming out of the damping ring 

is very small, on the order of 10-3 , and can be exchanged for the bunch length. A 

section of a standard disk-loaded wave guide ( a section of S-band linac) is placed in 

the beginning of the transport line and the S-band RF is timed so that the bunch 

passes the structure at a zero crossing of the accelerating field. The particles in 

the front of the bunch are accelerated while the ones in the back are decelerated. 

The rest of the transport line is non-isochronous i.e. the time it takes a particle 

to pass the line depends on its energy. The front particles, with higher energy, will 

take longer to reach the linac then the particles in the back, with lower energy. 

This is because, for example, higher energy particles are not focused enough and 

their trajectory is longer, in other words, the line is operated above the transition 

energy6 . The bunch length will shrink. In Fig. 13 the scheme is illustrated with the 

phase space plots. 

An important parameter in this scheme is the equilibrium bunch length in 

the ring. The equilibrium between the damping of energy-phase, or synchrotron, 

oscillations and their excitation by the quantum fluctuations results in the 

longitudinal phase space distribution with the bunch length related to the energy 

spread as5 

a OB 
<lz = c-- • - = cT0 

21f fs E 
aE <lE 

21rheVRFcos</>8 E 

where we have written the synchrotron oscillations frequency in terms of the RF 
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system and ring parameters. The design values for the bunch length and the energy 

spread in the damping ring at E = 1.21 Ge V and V RF = 800 Ke V are 

Uz = 5.8mm 

§§4. 7.1 Streak camera 

The bunch length was measured in the linac after the reinjection using a streak 

camera~4,25 A quartz Cherenkov light radiator was inserted into the beam in the 

linac and the time duration of the light pulse was measured with a streak camera. 

These measurements were made at different settings of the peak voltage in the 

compressor accelerating section. In particular the measurement with the compressor 

off gave us the equilibrium bunch length in the ring. The results are given in Fig. 14 

and the measured value of Uz = 7.4 mm agrees well with the predicted bunch length 

for the E = 0.95 Gev and VRF = 300 Kev. The energy spread was taken from an 

optics program predictions for that energy. 

§§4. 7.2 Using the Compressor 

Another way to measure the bunch length is to extract it from the horizontal 

beam size measurements on the profile monitor screen that is positioned shortly 

after the compressor. The beam size there is dominated by the energy spread 

introduced by the compressor because the dispersion at this point of the transport 
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line is high: 

where f3x, TJx are the envelope function and dispersion at the screen, ex is the output 

emittance (the measurements can be done with long storage times) and 8 and De 

are the total energy spread and the energy spread due to the compressor. At the 

design power the compressor introduces up to 2% energy spread, to be compared 

to a typical storage ring energy spread of 0.1% . 

The TJx at the screen can be measured directly by using the compressor at low 

power, timing the S-band RF so that the bunch rides on the crest of the wave, 

i.e. is being accelerated, and measuring the shift of the beam spot centroid as a 

function of energy deviation. 

The contribution to the energy spread from the compressor is 

£ _ Ve . 21raz 
uc - ER sm Ac 

where Ve is the peak accelerating voltage in MeV, ER is the energy of the ring, 

Ac = 10.5 cm is the S-band wavelength and O"z is the length of the bunch coming out 

of the damping ring. Then the bunch length can be calculated from the measured 

beam size: 

The results of this measurement also agreed well with the calculated 

predictions. Both methods were used with bunch intensities on the order of 

2 - 3 • 109 particles. 
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§4.8 Damping Times 

Damping time is the time it would take an electron to radiate its energy away 

if it continued to radiate at the same rate? If the energy loss per turn is Uo, we can 

write 
ETo 

Tf.= --
Uo 

where To is the revolution period. In fact, for the three degrees of freedom, the 

damping times are 

where 
2ETo 

ro=-­
Uo 

and Jx y f. are the so-called damping partition numbers, for which a rather general , , 

result is true26 

The damping ring is designed to have very short damping times since the SLC 

timing scheme allows only very short time for the bunches to damp down to the 

design emittance. For the 180 pps operation the allowed time is 5.56 msec. The 

design damping times at E = 1.21 Ge V are 

Tx = 3.06 msec Ty = 3.06 msec. 

§§4.8.1 Profi.le Monitor Measurements 

Beam size on the profile monitor in the beginning of the Ring To Linac 

transport line was measured as a function of time the beam was stored in the 
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damping ring. Beam size measurements are similar to the ones done to measure 

emittance and are described in the next section. The damping times were then 

obtained from a fit of the results to an exponential. We also obtained the damping 

times from the emittance measurements at different storage times. 

The results at 0.95 Ge V were 

Tx = 6.7msec and Ty= 4.6msec 

and measurements at the 1.21 Ge V gave 

Tx = 3.lmsec and Ty= 6.8msec 

We do not understand well the systematic errors in these measurements connected 

with trying to measure very small beam spots on the profile monitor as well 

as possible errors that are introduced by an interplay between the coherent and 

incoherent damping in the ring. The technique is under study~o 

§§4.8.2 Radiation Loss per Turn 

Returning to the definitions of the damping times we can write the sum of the 

damping decrements as 

By measuring the radiation loss per turn Uo we were able to determine the sum of 

the damping decrements~7 Assuming the predicted values for the partition numbers, 

we then have a good estimate of the damping times. 
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Due to phase focusing, the bunch in the ring adjusts itself in time with respect 

to the RF waveform, so that the energy it gains is equal to the energy lost in one 

turn. This defines the synchronous phase angle <Ps and we can write 

where V RF is the peak RF voltage. If we change the RF voltage, the phase angle 

cf>s will change accordingly, to maintain the above relationship, as shown in Fig. 15. 

Measuring the phase between the beam and the RF as a function of V RF we 

can determine Uo. In order to do that, a signal from the RF cavities was compared 

on a vector voltmeter to a filtered 714 MHz harmonic of the bunch intensity monitor 

signal. The phase difference between the two, obtained from the device, was plotted 

on the X-Y recorder as a function of the RF voltage. A typical curve obtained in this 

manner is shown in Fig. 15. The above relationship between VRF and <Ps is true for 

a single particle. Due to the interaction of the bunch with the surroundings, there 

is additional energy loss that depends on the intensity of the bunch; it is usually 

called parasitic mode loss. We made the measurements at various intensities and 

extrapolated the results to zero intensity to eliminate this loss. 

The radiation loss per turn at E = 1.21 Ge V was measured to be 

Uo = 84.0KeV 

and the sum of the damping decrements was measured as 

1 4Uo 1 I: - = -- = 1180.2 sec-
Ti ET0 

The vertical damping time therefore was measured to be 

Ty = 3.4 msec 

The comparison of the experimental results to the expected damping times is part 

of the discussion of results in Chapter 5. 
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Figure 15. The schematic drawing of the radiation loss per turn measurements 
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§4.9 Emittance Measurements 

Three ways we have used to measure emittance of the Damping Ring beam are 

described in this section. The quantity measured in all three methods is the beam 

size, and the emittance is then calculated, using other machine parameters. 

§§4.9.1 Scrapers Method 

Theory 

The distribution of particles in a bunch 1s Gaussian in an ideal linear 

machine? In a dispersion-free region the standard deviation of the transverse beam 

distribution can be expressed as 

where j3 is the envelope function at the azimuth in question and c is the equilibrium 

emittance of the beam. In fact this equation may be regarded as the definition 

of emittance. Quantum fluctuations in particle amplitudes due to the emission 

of synchrotron radiation populate the distribution including its tails and if an 

obstruction is introduced at some distance away from the beam center, some of 

the particles will be lost. The "quantum" lifetime of the beam due to an aperture 

at a distance X away from the beam centroid 1s given by the following simple 

formula5 

n2 
€=-

2 

X 
n=­

u 

where rd is the damping time and n is X in units of u . These formulae are valid 
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provided n ~ 1. We use the scrapers to introduce such an aperture and measure 

the lifetime of the beam as a function of scraper position. 

The damping time in the Damping Ring is on the order of a few milliseconds, 

and if the aperture is more than 6 a away from the beam, the quantum lifetime 

becomes a few hours. At that point other processes, like multiple Coulomb 

scattering on the residual gas, become dominant in determining the distribution. 

Measurements 

The device consists of four copper jaws, each powered by a stepping motor 

controlled by a computer. The stepping motor calibration is 8 steps per 0.001 

inches. The movement of a jaw is limited by two micro switches that define "inner" 

and "outer" limits. When not in use, jaws are parked at the outer limit. Only one 

jaw at a time can be moved from it's parked position. 

Starting from the outer limit, a jaw was moved inward in steps and lifetime of 

the beam was measured at each step. 

Analysis of the data 

A very convenient way to display the data is to calculate n from the formula 

given above for the quantum lifetime and plot it vs the scraper position. If the 

theory described above gives correct description of the beam distribution, the result 

would be a straight line pointing towards the origin. A typical set of data is shown 

in Fig. 16. The curve is certainly not a straight line, which shows that in a real 

machine the tails of the distribution deviate from a Gaussian due to processes like 

beam-gas bremsstrahlung or multiple Coulomb scattering on the residual gas, that 

contribute to the tail population and hence to the lifetime of the beam. Only when 

the scraper is driven well into the core of the beam the lifetime becomes dominated 

by the quantum fluctuations and the linear dependence is recovered. Unfortunately, 

the quantum lifetime regime is entered only when the lifetime becomes rather short, 

on the order of a minute. Such short lifetimes were difficult to measure with the 

available equipment. The measured emittance was heavily influenced by those 

points. In Fig. 17 data are reproduced from the run where lifetimes down to a 
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fraction of a minute were measured, providing better defined straight line. 

The results of the measurements at 0.95 Ge V were 

and F:y = 0.5 • 10-8 m rad 

or the equilibrium horizontal emittance with no coupling 

F:xo = F:x + F:y = 1.5 • 10-8 
m rad 

§§4.9.2 Synchrotron Light Monitor 

The synchrotron light monitor provides a direct measurement of the core of 

the beam distribution, as opposed to the previous method that studies the tails of 

the distribution to extract the core size. 

The monitor uses light emitted by the beam in the bending magnet adjacent 

to the injection straight section. The location, shown in Fig. 18, is the only place in 

the damping ring free from the magnets that allows to look into a dipole magnet. 

The light is reflected by a mirror inside the vacuum chamber, passes the quartz 

vacuum window and is imaged onto a TV camera by a single achromatic lens (focal 

length 450 mm) that is positioned just outside the vacuum window. 

The mirror is made out of a piece of molibdenum and is polished flat to quarter 

of the typical optical wavelength. Its position inside the vacuum chamber is remotely 

controlled. It is water cooled. The light, which travels along the tangent to the 

trajectory of the beam inside the bending magnet, makes 1 ° angle with the axis of 

the straight section at the location of the mirror. The angle of the mirror surface 

is 44.5° so it sends the light normal to the axis of the straight section, as shown in 

Fig. 18. 

The light is imaged onto a remotely controlled TV camera. The video signal 

is sent upstairs to the control room and is processed with a Colorado Video device 
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( see section on quad and screen method). 

Synchrotron light is strongly peaked in the forward direction and is mostly 

contained in a cone with a characteristic half opening angle 

1 
0 ~ - = 0.4mrad , 

for the photons with energy close to the critical photon energy, which in the damping 

ring at E = 1.21 GeV is 

Uc= l.9KeV 

For the light in the visible part of the spectrum the typical opening angle is much 

wider28 

0c = (~)½ = ( 
3

). )½ 
wp 21rp 

where p = 2 m is the bending radius. If the angular acceptance of the monitor 

matches this angular divergence, as shown in Fig. 18, the monitor collects the light 

from a part of the trajectory of length 

For >. = 600 nm, 0c = 5.2 mrad and t:..l = 2.1 cm. 

In the vertical plane the contributions to the resolution due to diffraction29 

and the depth of field effect 

are of the same order. In the horizontal plane, in addition, there is a contribution 

to the resolution due to the curvature of the orbit 

1 1 2 1 
rp = p(l - -cos0c) ~ -p0c = -r1 

2 2 2 



67 

The beam size at the source point of the light could have non-negligible 

contribution due to dispersion there 

where b is the equilibrium energy spread of the beam. According to the design 

the dispersion at the light source is close to zero. We checked it by measurmg 

the dispersion directly with the light monitor (see the section on dispersion 

measurements). 

In determining the emittance from the measurements of the transverse beam 

sizes the {3 function values were taken from the model, which presented the biggest 

uncertainty in the measurements. The design values are 

f3x = 0.7m {Jy = 6.6m 

For example, at E = 0.95 GeV we measured the transverse beam sizes 

Ux = 85µm and Uy= 134µm 

which correspond to the emittances of 

ex= 1.0 · 10-8 m rad and ey = 0.3 · 10-8 m rad 

or the equilibrium horizontal emittance with no coupling 

exo =ex+ ey = 1.3 • 10-8 mrad 

The discussion of the comparisons with the expected values for the emittance is 

given in Chapter 5 on the results . 
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§§4.9.3 Extracted Beam 

An independent measurement of the Damping Ring beam emittance was made 

using the extracted beam from the Damping Ring. Measurements were made in the 

beginning of the Ring to Linac transport line as well as downstream in the linac 

itself. The method has been used at SLAC extens.i:vely30 . 

Quad and Screen Method 

A typical setup consists of an adjustable quadrupole lens and a profile 

monitor some distance downstream of it. Let us consider the horizontal emittance 

measurement, the vertical case being entirely analogous. For different strengths 

of the lens the width of the beam profile on the screen is measured on a profile 

monitor. The input beam is kept unaltered during the measurement. One then 

plots the square of the width as a function of the lens strength k. The resulting 

curve is a parabola. The three coefficients of the parabola are sufficient to determine 

the emittance of the input beam. To show that this is true we will use the a matrix 

formalism summarized in Appendix A. 

Let the input beam be represented by the ain matrix and the transfer matrix 

for the transport line between the lens and the screen be Rtr· 

(We are assuming that the beam is "uncoupled" so that the two-by-two matrix 

formulation is valid. More on this point later.) The transfer matrix for the quad in 

the thin lens approximation is 

where k is the strength of the quad ( measured in uni ts of m - l) is the inverse of 

the focal length. If k is positive, this matrix represents a defocusing lens. The total 
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transfer matrix for the measuring system is then 

and the a 8 representing the beam at the screen is 

(1) 

where RT is the transpose of R. Multiplying the matrices we obtain 

(2) 

The measurement of the width of the beam profile on the screen determines the af1 

element of the beam matrix. It is indeed a quadratic function of k and fitting the 

data to a parabola one can extract the three elements that determine the symmetric 

beam matrix for the input beam. In particular, the emittance of the incoming beam 

(3) 

Measuring setup in RTL 

The optics used for the measurements is shown in Fig. 19. The four so-called 

matching quads, all individually controlled, are used to focus the beam spot on the 

downstream RTL profile monitor PR04A. 

The profile monitor consists of a remotely controlled fluorescent screen31 that 

can be inserted into the beam and a TV camera viewing the screen through a 

vacuum window. The screen has dark 300 - µm diameter dots that are 1.5mm 

apart. 

The TV camera has an RCA Ultricon™ tube together with a lens that 

provides a magnification of x 2 and has a remotely controlled iris. 

The video signal is piped up into the control room where it is processed using 

a Colorado VideoT M device32 that allows to select and measure the amplitude of 
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a single horizontal scan line or a set of vertical samples. This section of the beam 

profile can then be viewed on a scope. Alternatively the section can be digitized, 

input into the computer and a gaussian can be fit to the profile. 

The Measurement Procedure 

For different settings of one of the quads the beam width and height were 

measured using the hardware described above and the results were fitted with a 

parabola. The parameters of the parabola thus determined were used to calculate 

the emittance of the beam. In Fig. 20 the results of a typical measurement are 

displayed. The errors on the individual points were calculated by measuring the 

profile for a given setting of the quad several times and adding in quadrature the 

known systematic errors due to the finite resolution of the system. 

The Resolution and Errors 

It is estimated33 that the response of the measuring system to an infinitely thin 

bright line results in a measurement of the width of that line of approximately 

O'res ~ 80µm 

The resolution error is added in quadrature to the beam size so it will result in 

the upwards shift of the parabola and from the Eqn. 2 it is clear that the a 22 term 

will be overestimated. From the Eqn. 3 then it follows that the emittance will be 

overestimated. From the same equation one can see that a good way to fight the 

error in emittance due to the resolution is to decrease the ai71 term for the incoming 

beam at the quad or, in other words, to make the beam there as small as possible. 

The results 

The results of the measurements of the emittance at 1.21 Ge V are 

ex = (2.2 ± 0.2) X 10-8 m rad and cy = (0.8 ± 0.4) x 10-9 m rad 

and the errors reflect the averaging of the results of many measurements. 
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The Case of a Coupled Beam 

The method described above will fail in some degree if the beam is "coupled" 

i.e., if the two-by-two off- diagonal submatrices of the sigma matrix are not zero. 

Then the measurements will overestimate the true invariant of motion-the four 

dimensional volume occupied by the beam in the transverse phase space. An 

uncoupled beam is represented by a block diagonal beam matrix 

au a12 0 0 

a12 a22 0 0 (: ;) a= 
0 0 a33 a34 

0 0 a34 a44 

Four dimensional phase volume occupied by the beam at equilibrium, or four 

dimensional emittance, in this case, is just 

q = ~ = J detXdetY {4) 

and the experiment gives the right result . 

If coupling is present, in general, the beam is represented by a positive-definite 

symmetric matrix 

au a12 a13 a14 

a12 a22 a23 a24 (; ~) a= 
a13 a23 a33 a34 

a14 a24 a34 a44 

If the transport line used for measurement does not contain any coupling elements 

{e. g. skewed quadrupoles), that is, if the transport matrix representing the beam 

line is of the form 

ru r12 0 0 

r21 r22 0 0 (:" ;J R= 
0 0 r33 r34 

0 0 r43 r44 
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then from the transformation rules for the beam matrix, 

it is clear that the blocks U and V do not mix with the C blocks in an 

uncoupled channel. The determinants of the diagonal blocks are preserved since 

the determinants of Rx and Ry are equal to one. The method described in the 

previous section still determines only the U and V submatrices of the a matrix~4 

The determinant of the full beam matrix is less than or equal to the product of 

the determinants of the diagonal blocks, and the four dimensional emittance will 

be overestimated in such a measurement 

The proof of this inequality is given in the Appendix D. 

The beam extracted from the Damping Ring was coupled to some degree. 

Therefore these measurements could give only an upper limit on the emittance. 

Estimates of the effect 

If we take an uncoupled beam 

an a12 0 0 

a12 azz 0 0 
ai = 

0 0 a33 a34 

0 0 a34 a44 

and take it through a thin lens skewed quad of strength k: 

1 0 0 0 

O 1 k O 

0 0 1 0 

k O o 1 
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the result will be 

0-11 0-12 0 ko-11 

0-12 k
2

a33 + 0-22 ko-33 ko-34 + ko-12 
a!= 

0 ka33 0-33 0-3,1 

ka11 ka34 + ko-12 0-34 k2a11 + o-44 

The determinant of the a matrix did not change: 

but the determinants of the diagonal submatrices now are 

or in terms of emittance 

t:;f = t:;i + k2 f3x/3yExiEyi 

E!J = E~i + k2 f3x/3yExiEyi 

where f3x and /3y are the values of the envelope functions at the location of the 

rotated quadrupole. And if the initial emittances are equal, 

The /3 function is rather high in parts of the extraction channel before the measuring 

apparatus. For example, at one of the quadrupoles f3x = 20 m and /3y = 60 m. With 

the strength of that quadrupole k = 4m-1 and a half degree rotation around its 

axis, the resulting skewed quadrupole increases the measured emittance by 60%. 

A new method that would permit the determination of all of the independent 

elements of the beam matrix has been proposed in Reference 34. It employs in 

addition to a normal quadrupole a rotated one. 
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§§4.9.4 Summary 

We summarize here the results of the emittance measurements by all three 

methods , scaled to 1.21 GeV: 

• Scrapers 

ex = 1.8 • 10-8 m rad and ey = 0.8 • 10-8 m rad 

• Synchrotron light monitor 

ex = 1.6 • 10-8 m rad and ey = 0.5 • 10- 8 m rad 

exo =ex+ ey = 2.1 • 10-8 mrad 

• Quad and screen method 

ex= (2.2 ± 0.2) • 10-8 m rad and ey = (0.8 ± 0.4) • 10-9 m rad 

exo = ex+ ey = (3.0 ± 0.5) • 10-8 m rad 

All three methods suffer from various uncertainties mentioned above and give 

the results that are somewhat higher than the design equilibrium emittance without 

coupling of 

exODesign = 1.8 • 10-8 m rad 

Some reasons that the emittance indeed might be higher than the design value are 

given in Chapter 5. 
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§4.10 Coupling Effects 

The damping ring is designed to operate with the beam fully coupled. This 

is achieved by operating the ring on the so-called difference resonance, i.e. when 

the fractional parts of the horizontal and vertical tunes are equal. The design 

tunes are Vx = 7.2 and Vy = 3.2. On the difference resonance the horizontal 

betatron oscillations are linearly coupled to the vertical oscillations and the quantum 

fluctuations that drive the horizontal oscillations are now coupled into the vertical 

plane. Since the design damping times in both planes are the same, the horizontal 

equilibrium emittance in the absence of coupling, cxo, is now equally shared between 

the two planes5 

and 

gaining us a factor of two down in output emittance. 

Even if the beam is not fully coupled, the following holds 

We have measured the emittances of the stored beam in several optics configurations 

with different coupling, i.e. at different distances in the tune space from the 

difference resonance. In Fig. 21 we present the results of the measurements, which 

were done with the synchrotron light monitor. 

Linear coupling is also caused by accidental skew quadrupole fields in the 

lattice. They can be due to the tilted normal quadrupoles or to the vertical orbit 

errors in the sextupoles. A finite amount of such skew quad component in the 

ring results in a finite minimum distance in the tune space between the two tunes 

and prevented us from reaching the difference resonance. The minimum distance 

we were able to achieve during the measurements of emittance was l::.v = 0.08. 

Later on, the modeling group was able to pinpoint the source of some skew quad 
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component to a straight section family of quadrupoles QDI, which were slightly 

tilted. After realignment we were able to bring the tunes as close as ~v = 0.03. In 

the future it is planned to install variable rotated quadrupoles in the rings in order 

to compensate the residual skew quad component. 

§4.11 Dynamic Aperture 

The acceptance of the ring is defined as 

where Ao is the aperture of the machine and /Jo is the value of the envelope function 

at that point. The aperture could be due to a piece of vacuum pipe, the physical 

aperture. Or it could be due to the non-linearities in the ring, in the sense that 

if particle's displacement from the ideal trajectory exceeds Ao at that point, the 

particle would be lost from the ring. 

For an ideal linear magnetic guide field consisting of only dipole and quadrupole 

fields, oscillations around the design orbit of arbitrarily large amplitudes are stable, 

and so the aperture is the physical aperture in the ring. We intentionally introduce 

non-linear elements, sextupoles, into the ring in order to correct the chromatic 

effects of the quadrupoles, the negative chromaticity. The sextupoles limit the 

range of stable particle amplitudes to a finite value. One tries to arrange the 

sextupole correction so that the dynamic aperture that they introduce lies outside 

the physical aperture. The dynamic aperture due to the sextupoles can be studied 

with such computer programs as PATRICIA 10 and MAD9 by tracking the particles 

through the lattice that is modeled in the computer. Of course, there could be 
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other sources contributing to the reduction of the dynamic aperture, like accidental 

non-linearities, but the computer studies at least help to alleviate the problems due 

to the sextupoles. 

The physical aperture in the damping ring is at the septum magnets in the 

straight sections. The distance from the design orbit to the septum is Aph = 6 mm 

and the design value for the envelope function there is /3 = 4.4 m. The resulting 

physical aperture is c A,physical = 8.2 X 10-6 m rad, only a factor of two bigger than 

the design incoming positron emittance. 

In Fig. 22 we show the results of such a computer study with the program 

PATRICIA. The initial conditions of 400 particles were evenly distributed within 

the boundaries of the plot and the particles were then tracked for 1000 turns through 

the design damping ring lattice. The particles that survived to the end are marked 

with points. 

The dynamic aperture due to the sextupoles, according to this calculation, 

should be comparable to the physical aperture in the horizontal plane. 

We have measured the horizontal aperture in the damping ring by the following 

method. A horizontal kicker magnet was used to excite the stored beam. The 

amplitude of the excitation was chosen such that the lifetime became short. Then 

the scraper was driven into the beam until the lifetime changed further. At that 

point the scraper position was matching some aperture in the machine, and since 

we knew the f3 function at the scraper, we could calculate the resulting horizontal 

acceptance 

cA = (3.7 ± 0.5) x 10-6 mrad 
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§4.12 Impedance 

The remaining sections of this chapter are concerned with intensity dependent 

effects in the damping ring. A bunch of charged particles in the ring interacts with 

the surrounding vacuum chamber. The induced wall image charges act back on 

the bunch resulting in various current dependent phenomena that lead to energy 

losses and instabilities. The changes in the wall geometry result in resonant cavities 

that can trap some of the energy that is carried in the electromagnetic field of the 

bunch. A concept of impedance of the vacuum chamber is usually introduced to 

characterize this interaction. We will describe it below, while treating the subject 

of this section, the intensity dependent energy losses, or so-called parasitic mode 

loss. 

§§4.12.1 Impedance 

Consider a bunch with the charge distribution I(r) where r denotes position 

within the bunch. A particle B at a position r in the bunch sees a voltage due to 

a slice of charge A in front of it at a position r1. If the amount of charge in slice A 

is dqA = I(r1)dr1
, the voltage is 

where G( r - r 1) is the so-called wake potential, left by the slice A. Integrating over 
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all the slices in front of B, the total voltage seen by it is 

The particle loses different amount of energy in different parts of the ring, e.g. the 

biggest losses occur in the RF cavities. Introducing G(r - r1
) we smooth out the 

losses around the ring 

G(r - r1
) = f Ew(r - r1

, s)ds 

where Ew is the wake field left at a particular azimuth s. 

The total power loss by the bunch is obtained by integrating over all the 

particles in the bunch 
+oo 

W = J VB(r)I(r)dr 
-oo 

The impedance is defined as the Fourier transform of the wake potential 

Z(f) = G(f) 

and in this section we are concerned with the longitudinal impedance ZII · 

Introducing the Fourier transform of the charge distribution I(f), we can write 

the power loss as 
+oo 

w = I Z11U)II2 (f)ldf 
-oo 

The imaginary part of the impedance is an odd function of f and ll2 I = ll* 1s 

an even function, thus the loss only depends on the real part of the longitudinal 

impedance. 

For a bunch with a Gaussian distribution of charge, the parasitic mode loss is 

+oo 

W = I ZIIR(f)e -!2 /uj df 
-oo 
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The impedance consists of a series of delta function like peaks at the resonant 

frequencies of various cavities in the ring. These frequencies can be calculated 

with the existing computer programs for at least some known components, like 

RF cavities. But it is generally a very difficult problem to account for all the 

contributions to impedance from various components in the ring. A very useful 

approximate model of impedance is usually introduced for estimates and the 

interpretation of the measurements?5 It is the impedance of a broad band resonator 

where Rs is the so-called shunt impedance, Qr is the quality factor, usually taken to 

be Qr = 1, and fr is the resonant frequency. It has been applied to several existing 

storage rings, giving good qualitative agreement with the computer predictions?6 

Measurements 

The parasitic mode loss results in a phase shift between the bunch and the 

RF cavity voltage, such that the bunch maintains the design energy at different 

intensities. We have measured this phase shift as a function of bunch current by 

comparing on a vector voltmeter the reference RF signal from the cavities to the 

714 MHz component of the signal from a bunch intensity monitor. The setup was 

similar to the one used in the measurements of the radiation loss per turn. The 

intensity was varied by driving a scraper into the stored beam. In Fig. 23 we show 

the data from one such measurement. 

The energy loss per turn can be parametrized as follows 

U = Uo + kQ 

where Uo is the radiation loss per turn, Q is the charge in the bunch and k is the 

so-called parasitic mode loss factor37 that we extracted form the data. It can also 

be calculated from the broad band resonator model of impedance?5 The measured 

and expected38 values for the parasitic mode loss factor with the bunch length of 
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Figure 23. Measurement of the parasitic mode loss by observing the changes in the 
synchronous phase with bunch current. 



o = 7mm are 

V 
kmeas = (4.8 ± 2.9) pC 

86 

and 
V 

kexpect = 3.2 pC 

The expected value was calculated taking into account only the theoretical 

impedance of the RF cavities and estimating the other impedance from experience. 

The agreement with the measurement is rather good. The measurement accuracy 

did not allow us to extract the broad band resonator model parameters from 

measurements of k at different bunch lengths. 

§§4.12.2 Synchrotron Frequency Shift 

The imaginary part of the longitudinal impedance leads to the so-called 

potential well bunch lengthening. It is usually predominantly inductive, and bunch 

induced voltage reduces the slope of the RF voltage, lengthening the bunch. It also 

lowers the frequency of the coherent quadrupole or "breathing" mode of longitudinal 

oscillations~6 The coherent dipole mode is changed much less because the potential 

well moves with the bunch. The frequency shift is a function of impedance integrated 

over the bunch spectrum~5 

We have measured the coherent dipole and quadrupole frequencies as a function 

of current. In Fig. 24 the measurements for two different bunch lengths are shown. 

The dipole mode of coherent energy oscillations was excited by phase modulating 

the RF voltage at the synchrotron frequency. The quadrupole mode was excited by 

amplitude modulation of the RF voltage at twice the synchrotron frequency. The 

frequencies were measured with the tune monitor. 
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The quadrupole mode shift at 1.21 Ge V is 

MHz 
~fz = -(0.34 ± 0.03) ~ 

and the dipole mode shift was small and positive. 

§§4.12.3 Longitudinal Impedance 

From the measurements of the parasitic mode loss and the coherent frequency 

shift the broad band model parameters were determined to be27 

Rs= 2.8kO and fr= 5GHz 

The resonant frequency is relatively high compared with other storage rings which is 

consistent with the fact that the transverse dimensions of the damping ring vacuum 

chamber are very small (7 mm radius in the RF cavities). 

§§4.12.4 Betatron Frequency Shift 

The bunch passing through the vacuum chamber off axis excites transverse 

electromagnetic fields that in turn act on the particles in the bunch. The transverse 

fields, integrated over one revolution, that result from the passage of a unit current 



at a unit distance away from axis, are described by the transverse impedance Z .l · 35 

The imaginary part of the transverse impedance can lead to the betatron frequency 

shift. 

Alternatively, we can describe the effect as follows. The head of the bunch 

leaves behind a wake field that acts on the tail, driving it resonantly, since both 

are oscillating with the betatron frequency. But since the particles in the bunch 

undergo energy oscillations, the head and the tail will interchange places after half 

of the synchrotron oscillation period. Analysis of the stability conditions of such 

a process39 shows that there exists a threshold in bunch intensity, above which a 

so-called strong head-tail instability occurs. It is the instability that limits single 

bunch current in most of the existing storage rings. 

Below the threshold the effect results in a betatron tune shift that grows linearly 

with intensity. When the intensity approaches the threshold the tune shift grows 

faster but if one extrapolates the linear tune shift, the threshold occurs when the 

betatron tune has shifted by half of the synchrotron tune V 8 • 

We have observed the vertical tune shift with current of 

Extrapolating this result to higher currents, and since the synchrotron tune in 

the damping ring is 120 KHz, the threshold for the strong head-tail instability is 

predicted at 

The measurements were done at 0.95 GeV, and since the threshold scales linearly 

with energyf9 the beam should be stable at the design intensity of 5 X 1010 particles 

per bunch. We have not seen the instability at the maximum stored current that 

we have achieved of 4 x 1010 electrons in one bunch. 
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Chapter 5. Results 

§5.1 Linear Optics 

A successful model of the damping ring linear optics has been developed~o-42 

It is able to predict and to correct the tunes of the machine, the /3 functions 

and the dispersion. Linear optics configurations, developed with the help of the 

model, enabled us to run the damping ring with the above mentioned parameters 

close to the design values. The model has also helped us to identify a source 

of substantial rotated quadrupole field component in the ring (see the section on 

coupling, Chapter 4). 

§5.2 Damping Times and Emittance 

The measurement of the sum of the damping rates that was done by measuring 

the radiation loss per turn, gave the result that was 11 % lower than expected. The 
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measured and expected amount of radiation loss per turn at 1.21 Ge V were 

Uomeas = (84 .0 ± 0.4)KeV and Uodesign = 93.1 KeV 

The discrepancy was traced to the fringe field effects in the damping ring dipole 

magnet. The dipole, described in Chapter 3, has been treated in the design model 

in the hard edge approximation ( the field at the ends of the magnet rises from zero 

to the peak value discontinuously). In Fig. 25 we show the results of the magnetic 

field measurements in the dipole magnet. The integral of the square of the magnetic 

field along the magnet, taken from these data, was indeed 11 % smaller than the 

hard edge approximation result. The radiation loss per turn is proportional to this 

integral (see Chapter 2) 

The change in Uo of 11 % in turn means that the sum of the damping rates 

is also smaller by 11 % . Since we have observed no vertical dispersion in the ring , 

the vertical damping partition number Jy = 1 and the vertical damping rate is 

equal to one quarter of the measured sum, or in terms of the damping time 

Tymeas = (3.40 ± 0.0S)msec 

The horizontal and energy damping times are 

1 2ETo 
rx= Jx ~ and 

and must also be longer by the same 11 % . Moreover, in the design model the 

damping ring dipole magnet was treated as a rectangular magnet, for which43 

and 
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In reality, the magnet was built in such a way, that the calculated partition numbers 

become 

and 

which further increases the horizontal damping time to 

Tx = 3.8msec 

The equilibrium emittance can be written as (see Chapter 2) 

We have discussed how Jx and 12 have been modified. For the same reasons 

that Jx changed, the fifth synchrotron radiation integral 15 also changed. The 

calculated reduction is approximately 12%. In summary, what we believe to be 

actual emittance and the design value are 

')'cxOAct = 4.8 X 10-5 m rad, ')'cxOdesign = 4.3 X 10-5 m rad 

The changes described above imply the extracted beam emittances for electrons 

(after 5.56 msec) and positrons (after 11.1 msec) of 

,c--;;ut = 3.6 X 10-5 m rad 

,ctut = 4.5 X 10-5 m rad 

where we have assumed full coupling, and the positron emittance is calculated under 

the assumption that the positron damping ring would be built as an exact replica of 

the present electron damping ring. These values exceed the SLC design emittance 

of 

,ctsign = 3 X 10-5 m rad 

The results of emittance measurements described in Chapter 4 are consistent with 

the above conclusions but lacked sufficient accuracy to support them. 
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Figure 25. Magnetic field map of the damping ring dipole magnet. The soft edges 
are due to the saturation in the iron as well as to the specially shaped pole tips that 
provide the sextupole field component but lengthen the fringe fields. 
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§5.3 Chromaticity Correction 

The bulk of the negative chromaticity is corrected in the present damping ring 

by the sextupoles that are built into the ends of the dipole magnets by shaping 

their pole pieces. This scheme turned out to be barely adequate. Although we 

were able to maintain slightly positive chromaticity for most of the running, it was 

achieved by operating all of the variable sextupoles in one polarity. Saturation in 

the pole tips as well as difficulty in positioning them correctly during the magnet 

construction were probably the reasons for the difficulties in the implementation of 

the correction scheme. 

§5.4 Other Measurements 

In all other aspects the damping rmg has performed close to the design 

specifications. 

The bunch length agreed with the predictions and we have not observed any 

bunch lengthening up to intensities of 1 x 1010 electrons per bunch. 

The measurements on the intensity dependent phenomena also agreed with the 

predictions quite well and indicate no obstacles to achieving the design intensity in 

the ring of 5 x 1010 particles per bunch. 

The maximum current in one bunch we have stored so far was 4 x 1010 electrons, 

with no signs of instabilities. We have also stored two bunches of electrons, 2 x 1010 

particles each. 
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§5.5 Changes in the Design 

We have proposed to change some aspects of the damping ring optics44 in order 

to improve the output emittance and the chromaticity correction scheme. The main 

changes are 

• to improve the field quality of the damping ring bending magnet by removing 

the specially shaped pole tip pieces that provide sextupole fields but lengthen 

the fringe field of the magnet. The calculations and measurements of the new 

dipoles show an improvement in the second synchrotron radiation integral 12 

by 3% , which will improve all of the damping times by the same amount. 

• to make the dipole magnet as a rectangular magnet, so that the horizontal 

damping partition number will become Jx = 1. This will reduce the 

horizontal damping time and the equilibrium emittance by 10% . 

• to increase the horizontal betatron phase advance per cell from 114° (vx = 
7.2) to 135° (vx = 8.2), which will give a reduction in the equilibrium 

emittance of 25% {see Appendix B). 

• to install Samarium Cobalt permanent sextupole magnets45 instead of the 

removed pole tips, as well as to double the number of variable sextupoles. 

This should improve the chromaticity correction scheme. 

The resulting characteristics of the new design optics are compared in Table 2 

with the original design and with the actual values in the present damping ring. 

The higher design tune of Vx = 8.2 leads to larger negative chromaticity and 

thus to stronger sextupoles that are to correct it. The sextupole configuration has 

been optimized with the help of the computer tracking program PATRICIA 10 and 

the resulting dynamic aperture is shown in Fig. 26 {see the section on dynamic 

aperture, Chapter 4, for comparisons with the original design) . 
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Table 2. The general parameters of the damping ring optics that were changed in 
the new des ign are compared to the original design and actual numbers. 

Design Actual Proposed 

Units (CN 139) (e- D.R.) (e+ D.R.) 

Second synchrotron integral h m-1 3.084 2.731 2.804 

Fourth synchrotron integral !4 m-1 0.0 0.261 0.0 

Fifth synchrotron integral 15 m-1 0.0264 0.0232 0.0177 

Horizontal damping partition number Jx 1 0.904 1 

Horizontal damping time Tx msec 3.06 3.82 3.36 

Vertical damping time Ty msec 3.06 3.45 3.36 

Horizontal tune Vx 7.20 7.20 8.20 

Equilibrium emittance 1€ xO µradm 43.1 48.3 32.2 

( no coupling ) 

Equilibrium emittance 1€ µradm 21.6 23.0 16.1 

( full coupling ) 

180 pps (120 pps) extracted electron "tee- µradm 28.9 35.9 26.5 

normalized emittance (22 .8) (25.8) (17.6) 

180 pps (120 pps) extracted positron "tee+ µradm 28.6 44.9 29.5 

normalized emittance (21.7) (24.0) (16.6) 
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Figure 26. The result of the computer tracking studies of the new design sextupole 
correction scheme. The resulting dynamic aperture is comparable to the physical 
aperture. 
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Appendix A. Beam Parametrization 

Two approaches to the beam parametrization have been prevalent in the 

literature on the accelerator physics. Those are the u-matrix formalism46- 48 and 

the Courant-Snyder parameters~ In this appendix a brief sketch of how they are 

related to each other is given. For simplicity, the case of one degree of freedom is 

considered throughout. 

Single Particle Motion 

The transverse betatron motion of a particle is that of a harmonic oscillator, 

which amplitude and phase are modulated. The motion is described by the Hill's 

equation 

x" + k(s)x = 0 (5) 

where the dependence of k on s provides for the amplitude and phase modulation of 

the motion. In a circular accelerator k is a periodic function of s, the period being 

the circumference of the machine. The solution, then, is also periodic in s and is 

written as 

x(s) = av',e(s) cos[</>(s) - t?] (6) 

where f3 is also called the envelope function, is periodic in s and is connected to 

the </>( s) in the following way 
s 

J as 
</>(s) = /3(s) (7) 

0 
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Beam Envelope 

Consider now a beam of particles with a certain normalized density distribution 

in phase space e(x,p; s) 

J e(x,p; s) dxdp = 1 

The beam is described by the moments of this distribution defined in the usual way. 

For example 

x= j xe(x,p;s)dxdp 

p2 = j p2e(x,p;s) dxdp etc. 

It can be shown49 that the first moments satisfy the same Hill's equation 

x" + k(s)x = o 

and that there exists an invariant of motion involving second moments 

where we have assumed x = p = 0. The correlation matrix for the distribution is 

the beam matrix 

and the Courant-Snyder parameters are used to parametrize the beam matrix in 

the way shown above. Since defo = c2 

{31 - a 2 = 1 

The {3 function in Equation 6 is the same as above for the case of a circular machine. 
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§A.I a - Matrix Formalism 

This formalism was originally developed for the beam optics program 

TRANSPORT. It has been mainly used for the design and operation of beam 

transport lines. 

Beam is represented by an ellipse in (x, x') phase-space 

where X - coordinate vector, and a is a symmetric, positive-definite matrix. The 

area of the ellipse is 

If R is a transfer matrix between two points in a transport line, so that 

X2 = RX1 

the a matrix transforms as 

The formalism can be used in a higher dimensional phase space in a straightforward 

way. 
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Appendix B. FODO Cell Lattice 

The equilibrium transverse emittance in the ring is a strong function of the 

average value of )I in the bending magnets. We will derive here an analytic 

expression for ()l)mag in a uniform field dipole magnet, the kind used in the majority 

of the storage rings. We will then use this expression first to derive the formula for 

the emittance of the simple FODO cell lattice and second to find an optimized set 

of parameters to obtain the lowest possible emittance in a ring using such magnets. 

The expression we are set out to calculate is 

L/2 

()l)mag = 1 J )l(s) ds 

-L/2 

where we are integrating over the length L of the magnet and 

The dispersion parameters transform within the magnet as6 

where p is the bending radius, 

s 
C =cos-, 

p 
S 

. s 
sm­

p 
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and rJo, 11b are the initial values, taken in the middle of the magnet. 

Similarly, the Courant-Snyder parameters evolve within the magnet as 

-2pCS p
2

s
2

) ((3
0

) 
C 2 - S2 lcs ao p 

~cs c 2 ,o 

where the initial values /3o, ao and ,o are also taken in the middle of the magnet. 

The initial value for the 'Jf. in the middle of the magnet is 

1/ 2 2 I {3 I 2 
110 = ,0110 + ao110110 + 0110 

and a distance s away within the magnet 

'Jf.(s)='Jf.o 

+ ,o[-2cp2 + 2Cp110 - p2s2 + 2p2 - 2p110] 

+ ao[2Cp11b + 2CSp - 2S p + 2S110 - 2p11b] 

+ /3o[S 2 + 2s11b] 

Taking the integral of the above expression we then obtain the average value of 'Jf. 

as a function of the initial values of the Courant-Snyder and dispersion parameters 

in the middle of the magnet: 

L/2 

('Jf.)mag = 1 J 'Jf.(s) ds = ,0115 + 2aorJ017b + /3011b
2 

-L/2 

4. L 3 4. L 2 p3 L 32 
+ ,o[-- sm(-)p + - sm(-)p 110 + - sin(-)+ -p - 2prJo] 

L 2p L 2p 2L p 2 

[4p2 • ( L) I I l + ao -L sm - 110 - 2p170 2p 

[ p . (L , 2 1] + /3o - - sm - ) + rJo + -
2L p 2 

This result is valid for any uniform field bending magnet in the hard edge 

approximation, i.e. the field at the ends of the magnet is a step function. Similar 
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expression is given in Ref. 7 where the initial values of the optical parameters are 

taken at one end of the magnet. We found the choice of the middle of the magnet 

as the initial point more convenient for the minimization procedure that follows 

below. 

The edges of the magnet sometimes produce horizontal focusing, as in the case 

of a rectangular magnet (the magnet boundary is not normal to the ideal orbit). 

In our case the treatment of the edge effects is delayed until the initial optics 

parameters at the middle of the magnet are evaluated for a particular lattice. 

If the bending angle per magnet 0 = i is small, the result can be approximated 

as follows 

()l)mag = 10175 + 2ao11011b + /3011b 
2 

1 L 4 1 L2 1 L2 1 L 2 
+ ,o[-- - --110] - ao[--11b] + /3o[--] 

320 p2 12 p 12 p 12 p2 

§B.1 Emittance of the FODO Cell Lattice 

The FODO cell lattice consists of alternating focusing and defocusing 

quadrupoles with bending magnets in between. A single cell contains one focusing 

and one defocusing quadrupole and two bending magnets and is shown in Fig. 27. 

We will consider the FODO cell in the following approximation. The 

quadrupoles are treated as thin lenses of equal strength and the bending magnets 

of length L occupy all of the space between the quadrupoles. Thus the total length 

of the cell is 2L. 

We will consider the case of rectangular bending magnets. The focusing due an 

edge of the magnet is modeled as a thin lens defocusing quadrupole7 with strength 

1 0 
kE = -tan-

p 2 

where 0 is the bending angle per magnet. The transfer matrix in the horizontal 
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Figure 27. FODO cell optics elements 
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plane for half of the bending magnet can be written as 

p sin!) 
cos() 2 

and the transfer matrix for the whole magnet is 

RB= ( 
1 psin 0) 
0 1 

psin ! ) 
1/ cos! 

We observe that in the rectangular bending magnet the horizontal focusing due to 

the edges is cancelled by the weak focusing due to the main body of the magnet. 

In the small bending angle per magnet approximation the rectangular bend can be 

treated as a drift as far as Courant-Snyder parameters are concerned. 

In what follows we will use small bending angle per magnet approximation, 

since as it will become clear shortly, we will be interested in that regime. The 

horizontal transfer matrix for half of the FODO cell, consisting of half of the focusing 

quadrupole, bend and half of the defocusing quadrupole is 

where k is the strength of half of the quadrupole and we are usmg the three 

dimensional matrices that specify the transformation of the dispersion parameters. 

Their two-by-two upper left corner is the usual horizontal transfer matrix. 

The full cell transfer matrix is 

2L(l + kL) 

1- 2k2 L 2 

0 
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All of the main characteristics of the FODO cell can be parametrized in terms of 

betatron phase advance per cell~ 7 In particular, since the trace of the full horizontal 

transfer matrix specifies the phase advance per cell6 

2 cos 2µ =Rn+ R22 = 2 - 4k2 L 2 ===> sinµ= kL 

where we have introduced the phase advance per half cellµ. The stability condition 

for the betatron oscillations is 

OS kL S 1 

in the thin lens, equal strength quadrupoles FODO cell lattice. 

Solving for the Courant-Snyder parameters in the middle of a bending magnet, 

we obtain 
1 2 

(3 
_ L(2 - sin2 µ) 

0 - • 2 ' sm µ 
O'.Q = --, 

cosµ 
,o = L tanµ 

and the values of the dispersion parameters there are 

L 2 8 - sin2 µ 
170 = -

Sp sin2 µ ' 
I L 

17 = -0 psinµ 

Using the above initial conditions in the expression for the average value of )I derived 

in the previous section, we obtain the following result for the FODO cell 

( ") 2L
3 

[ 3 . 2 1 . 4 ] 
1t mag = 2 . 2 . 1 - - sm µ + - sm µ 

p sm µsm2µ 4 60 

which coincides exactly with the result obtained in Ref. 14. 

The transverse equilibrium emittance in the FODO cell lattice can be written 

then as 
CqE

2
()1)mag 2CqE2 

e3 ( ) 
ex = J = J FFODO µ 

xP x 

where O = L/ p is the bending angle per magnet and we have introduced an 

emittance form-factor for the FODO cell lattice FFODO which is a function of 

the betatron phase advance per half-cell only. 

1 3. 2 l.4 
FFono(µ) = . 2 . [1- - sm µ + - sm µ] 

sm µsm2µ 4 60 
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A plot of this form-factor is given in Fig. 28. 

We should note that with larger phase advance come stronger quadrupoles. 

And with stronger focusing the chromatic effects of the optics get worse. The usual 

parameter used to characteries the strength of the chromatic aberrations is called 

chromaticity. It relates the change in tune or normalized phase advance with change 

in energy of the particle: 

where 8 is the relative energy deviation and 

I J ds v-- --
- 2?r f3(s) 

The chromaticity in a FODO cell lattice can be expressed as a function of the phase 

advance17 

C = _ smµ 
2?rJ1 - sin2 µ 

and we see that as the phase advance per half-cell approaches go0
, the chromaticity 

starts to grow very fast. The negative chromaticity has to be corrected with 

sextupole magnets in order to avoid head-tail instability. Strong sextupole magnets 

limit stable betatron oscillation amplitudes, introducing small dynamic aperture. 

Thus we try to choose the horizontal phase advance as far away from go0 as 

1s consistent with our desire to get small emittance. In the vertical plane in an 

ideal flat machine there is no dispersion, no quantum fluctuations . We do not need 

strong focusing and in the damping ring the vertical phase advance was chosen to 

be much smaller then horizontal, typically 22 .5° degrees per half-cell. 

This in turn means that the defocusing quadrupoles are weaker then focusing 

ones. What happens to our simple model of the FODO cell and to the emittance 

in this situation is the subject of the next section. 
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Figure 28. The emittance of the FODO cell lattice a.s a function of the phase 
advance per half cell. 
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§§B.1.1 Different Phase Advances in the Two Planes 

The transfer matrix for the half-cell is now 

where k f and kd are the strengths of halves of the focusing and defocusing 

quadrupoles respectively. The full cell transfer matrix is 

( 

1 - 2X + 2Y - 2XY 

R = f ( 1 - X)(\- X - XY) 

2L(l + Y) 

1 - 2X + 2Y - 2XY 

0 

where we have introduced normalized strengths 

and 

The stability criterion for the horizontal betatron oscillations is ( cos 2µx 

1 - 2X + 2Y - 2XY ) 

-1 :::; 1 - 2X + 2Y - 2XY :::; 1 

and changing the signs of X and Y for vertical oscillations 

-1 :::; 1 + 2X - 2Y - 2XY :::; 1 
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and the stability or "necktie" region6 is shown in Fig. 29. 

The transverse emittance in the case of different phase advances in the two 

planes becomes 
2CqE2 

3 ex= ~-0 FFoDo(µx, X - Y) 
Jx 

where the new form factor now depends not only on the horizontal phase advance 

per half-cell, but also on the difference between the normalized strengths (X - Y) 

The effect actually lowers the emittance, but not by a large amount. In the damping 

ring it lowers the emittance by 11 % with typical phase advances in the two planes 

and 

§§B.1.2 Filling Factor 

Another approximation that we have made in the calculations of emittance was 

the fact that the bending magnets occupy all of the space between the thin lens 

quadrupoles. In reality space has to be left for diagnostics equipment, sextupoles 

and the quadrupoles usually are of finite length. The bending magnets occupy then 

only a fraction of the cell length that we will call Fm 

and typically only half of the cell length is occupied by dipoles. 

Modelling the space between the thin lens quadrupoles and the bends by the 

drifts of length 
l = L - Lbend = 1 - Fm L 

2 2 
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Figure 29. The shaded area is the stability region for the FODO cell lattice. The 
coordinates are the normalized quadrupole strengths X and Y. 
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and reverting back to the equal strength quadrupoles, we find that the effect on 

emittance is as follows 

where the new form factor is 

1 1 3. 2 l.4 
FFono(µ,Fm) = 2 -[1- -sm µ+ -sm µ 

sin µsin2µ Fm 4 60 

1 - Fm . 2 4 - 5Fm + F! . 4 ] 
- ---sm µ+------sm µ 

6 60 

The emittance is increased by roughly 1/ Fm factor, i.e. typically by a factor of 2, 

although the terms that depend on Fm in the brackets change this by a few percent. 

In the limit of Fm becoming small, the terms inside the brackets stop changing the 

form factor, but the overall factor 1/ Fm still remains. In Fig. 30 we show how the 

terms dependent on Fm inside the brackets influence the shape of the emittance 

form factor. 

§§B.1.3 Second Region in the Stability Diagram 

The emittance form factor for the FODO cell lattice diverges as the phase 

advance per half-cell approaches go0
• What happens when the phase advance 

per half-cell is greater then go0 ? To be sure, in a thin lens FODO cell that we 

have considered so far, the betatron oscillations are unstable above go0 
( see the 

conditions on stability in the above subsections). But if we modify the lattice, a 

second region of stability appears27 and the phase advance per half-cell of greater 

then go0 becomes possible. We will illustrate this situation on a particular example 
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Phase Advance per Half Cell in Degrees 

Figure 30. Plotted is the emittance form factor multiplied by the filling factor Fm. 
The two curves are the two limiting cases of Fm= 1.0 and Fm= 0.01. 
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of a cell that is very close to the SPEAR cell50 and is very close to the FODO 

cell. The focusing quadrupole is split into two halves and they are separated by a 

distance L equal to the half-cell length of our FODO lattice. The optics elements 

of this FOFOD cell are shown in Fig. 31. 

Computing the traces of the transfer matrices for this cell we can write down 

the stability conditions for the betatron oscillations in both planes: 

-1 :S 1 + 3Y - 3X - 4XY + X 2 + X 2Y :S 1 lil X 

-1 :S 1 - 3Y + 3X - 4XY + x 2 - X 2Y :S 1 lil y 

where we are again using the normalized quadrupole strengths 

and 

The stability regions for this cell are shown in Fig. 32 and in order to operate the 

lattice in the second stable region the strength of the focusing quadrupoles has to 

be several times higher than in the simple FODO cell lattice. 

A simple illustration of the second stable region50 is given in Fig. 31 where 

two possible stable trajectories are drawn. The one belonging to the second stable 

region crosses the axis between the focusing quadrupoles. 

The emittance form factor for FOFOD cell has been calculated using the 

program COMFORT for a particular case of vertical 'phase advance per half-cell 

of 45°. The results are presented in Fig. 33. We see that by going to the second 

region in the stability diagram we do not gain very much. The minimum value of 

the emittance is reduced by a factor of two, as compared with the emittance in the 

first stability region. A more efficient way of reducing the emittance is presented in 

Appendix C. 



115 

1/2QD l/2QF l/2QF l/2QD 
9-85 5238A9 

Figure 31. Arrangement of the optical elements in the FOFOD cell example 
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Figure 32. The two stable regions of the FOFOD cell are shown. The dashed lines 
correspond to 90° or 180° phase advance per half-cell 
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Figure 33. The emittance of FOFOD cell lattice as a function of the horizontal 
phase advance. Vertical phase advance was kept at 45° per half-cell. 
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Appendix C. Minimization 

In this appendix we are going to investigate how small an emittance can be 

achieved in a storage ring that uses rectangular uniform field dipole magnets. The 

emittance can be written as 

Cq = 1.468 • 10-6 ~ 
GeV 

where the average value of )< in the dipole magnets as a function of the initial optics 

parameters in the middle of the magnet is 

()<)mag = 10775 + 2ao7J07Jb + f3o77b
2 

1 L4 1 L2 1 L2 1 L2 

+ ,o[-- - --110] - ao[--776] + /Jo[--] 
320 p2 12 p 12 p 12 p 2 

in the small bending angle per magnet 0 = j approximation. 

It is convenient to introduce normalized initial optical parameters as follows: 

the Courant-Snyder parameters 

and the dispersion parameters 

/Jo= fJoL 
2 

ao = ao 

2-"to ,o=­
L 

L2 
Y/0 = 770 8p 

' _, L 
YJo = 770 2P 
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The average )I becomes 

( ) L3 
[- (_ 2 2_ 1) _ _ _, 4_, - _,2 4 

)I mag= 
32

p2 ,o 170 - 3110 + 5 + ao(417o17o - 3110) + /30(4110 + 3) 

The expression for the emittance can be rewritten then as follows 

where the emittance form factor Fmin is 

and we have introduced the coefficients that depend only on the initial dispersion 

parameters 

The minimization procedure 

For arbitrary initial dispersion parameters the initial values of the Courant­

Snyder parameters that achieve the minimum value of Fmin are 

-• 2A 
f3o = ✓4AC - B 2 

-* -B 
Q -----;:::==== 

o - ✓4AC- B 2 

-* 2C 
'Yo= ✓4AC- B 2 

and the minimum value is 
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To find the optimum values for the f7o and fib that minimize the F min we first write 

down the following partial derivatives 

8(4AC - B 2
) _ 32 (- _ !) 

8fio - 3 rJo 3 

8( 4AC - B 2 ) 128 _, 
aryb = 45 770 

and the optimum values are 

-1* 0 
rJo = ' 

-* 1 
rJo = -3 

Under these conditions the coefficients A,B and C are 

A= i_ 
45' 

B=O, 

Absolute minimum 

Reverting to the usual notation for the initial optical parameters, we can write 

down the conditions for the absolute minimum as follows 

, * 
rJo = o 

* 
L2 

170 = 24p 

The minimum value of the form factor under these conditions is a factor of 58 

smaller then the minimum value of the emittance form factor for the FODO cell 

lattice. 
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The lowest transverse equilibrium emittance that can be achievedd in a ring 

that uses uniform field dipole magnets with bending angle per magnet 0 and 

operated at an energy E is 

Similar optimization procedures have been carried out by several authors51- 53 and 

the minimum conditions agree with their results. 

The emittance is a steep function of the bending angle per magnet 0. However 

there is a lower bound on the possible transverse emittance5 due to the fact that 

the synchrotron radiation is emitted into a cone with the half opening angle of 1/1 . 

So far we have assumed that the emission of a photon was along the tangent to the 

trajectory. If we write again the change in the betatron displacement and slope due 

to a single emission of a photon of energy u making an angle 0, with the trajectory 

the change in the betatron amplitude becomes 

oa2 = 1 (8x13) 2 + 2a(8x13)(8x~) + f3(8x~) 2 

= ( ;
0

) 
2 

[ (,11
2 + 2a1717

1 + {317
12

) + 2{ a17 + {317
1
)0, + {30~] 

= (;0)2 [)t + )I'] 

where 

Since 0, can be positive or negative, the term linear in it will give no net contribution 

to the emittance and thus the estimate of the lower limit for the horizontal emittance 

lS 
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where we took a typical value for 81 = ~ and f3n is the average /3 function in the 

bending magnet. Under the conditions for the minimum emittance the average 

value 
1 L 2 

/3n = /3~ + a* - ~ 0.78L 
/JQ 12 

so that the corresponding emittance is 

We can now solve for the value of O that would give the emittance under the 

minimum conditions equal to ex min· Assuming that Jx = 1 (rectangular bends), 
' 

the lower limit on the bending angle per magnet is 

6 
emin = - rad 

"I 

and the lower bound on emittance becomes 

"femin = 1.78 X 10-12 m rad 
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Appendix D. Proof of an Inequality 

Definition 

A matrix S is called positive-definite, if for any non-zero coordinate vector X 

LEMMA 

Any symmetric positive-definite matrix S can be written in the following way 

S=PTP 

where P is a non-singular matrix (detP =/- 0). 

PROOF 

It is well known that a symmetric, positive-definite matrix has positive real 

eigenvalues and can be diagonalized with an orthogonal matrix, that is 

>-1 

S=MTDM=MT 
0 

0 

Then it is sufficient to take 

\!'Xi 
0 

P= 

0 

0 

>-2 

0 

0 

~ 

0 

0 

0 

0 

0 
M 



to satisfy the lemma. 

LEMMA 
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The following inequality is true for any positive-definite, symmetric matrix 

where S is n by n matrix. 

PROOF 

[
TrS]n 

detS ~ -;-

The eigenvalues of S are real and positive, so they must satisfy the Cauchy 

inequality54 which states that their arithmetic mean is greater or equal then their 

geometric mean 

Raising both sides to the nth power, we get 

But this is just the inequality we are trying to prove written for the D matrix of 

eigenvalues of S since 

And to show that the inequality of the lemma is true for S as well, it is sufficient 

to notice that 

detS = det(MTDM) = det(M- 1DM) = detD 

since MT = M-1 and 

because of the cyclic property of the trace. 
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MAIN PROOF 

We now consider the case of two coupled transverse degrees of freedom. For the 

corresponding a matrix, written in the 2 x 2 blocks form 

blocks H, V are symmetric, positive-definite, so according to the first lemma we 

can write them as 

H=PTP detH = (detP) 2 

detV = (detQ) 2 

and we can write the beam matrix as 

( 
pT O ) ( I X) ( P O ) 

a = 0 QT xT I O Q 

where I is a 2 x 2 unit matrix and X can be determined from C = pTxQ. 

Taking the determinant of both sides, 

det (a) = detHdetV detD 

and applying the inequality from the second lemma since the TrD = 4 and n = 4, 

detD :S 1 

we obtain 

det(a) :S detHdetV 

Q.E.D. 



126 

REFERENCES 

1. LEP Design Report 

CERN-LEP /84-01, June 1984 

2. Burton Richter, (SLAC), Nucl. Inst. and Meth. 136, 47, 1976 

Very high energy electron-positron colliding beams for the study of the weak 

interactions 

3. Burton Richter, SLAC-PUB-3669, May 1985 

Very High Energy Colliders 

Invited paper presented at the 1985 Particle Accelerator Conference, 

Vancouver, Canada. 

4. Burt Richter, (SLAC), Proc. XIth Int. Conf. on High Energy Acc., Geneva, 

1980 

The SLAG Linear Col/ider. 

5. Matthew Sands, (UC Santa Cruz), SLAC-121, UC-28, November 1970. 

The Physics of Electron Storage Rings, An Introduction 

6. E. D. Courant and H. S. Snyder, Annals of Physics, 3, 1 (1958) 

Theory of the Alternating-Gradient Synchrotron 

7. R.H. Helm, M. J. Lee, P. L. Morton and M. Sands, IEEE Nucl. Sci. NS-20, 

no. 3, 900 (1973) 

Evaluation of Synchrotron Radiation Integrals 

8. M. D Woodley, M. J. Lee, J. Jager and A. S. King, SLAC-PUB-3068 

Control of machine functions or transport systems 

9. F. Ch. Iselin, CERN-LEP-TH/85-15, 1985 

The MAD program {Methodical Accelerator Design): Reference manual 

10. Helmut Wiedemann, PEP Note 220, 1976 

Chromaticity correction in large storage rings 

11. Helmut Wiedemann, SSRL-ACD-Note 22 or ESRP-IRM-72/84 

Users Guide to PATRICIA 

12. Helmut Wiedemann, (SLAC), Internal Note AATF /79/8 



127 

Some remarks on the parameters of a damping ring for the linac collider 

proJect. 

13. Helmut Wiedemann, (SLAC), Proc. Xlth Int. Conf. on High Energy Acc., 

Geneva, 1980 

Scaling of damping rings for colliding linac beam systems. 

14. R.H. Helm and H. Wiedemann, (SLAC), PEP Note 303, 1979 

Emittance in a FODO cell lattice 

15. F. Bulos and A. Odian, SLAC-PUB-3453, 1984 

Design of a matched fast kicker system 

16. M. A. Allen, H. D. Schwarz and P. B. Wilson, SLAC-PUB-3084, 1983 

Damping ring RF system for SLC 

17. Helmut Wiedemann, PEP Note 39, PEP Summer Study, 1973 

Scaling of FODO cell parameters 

18. J.-1. Pellegrin, (SLAC), Proc. Proc. Xlth Int. Conf. on High Energy Acc., 

Geneva, 1980 

A review of accelerator instrumentation 

19. G. E. Fischer and J.-1. Pellegrin, (SLAC), Collider Note 80, 1981 

Some beam position monitor considerations for the damping ring complex 

20. Marc Ross, Private communication 

21. G. E. Fischer, (SLAC), Collider Note 98, 1981 

Some more orbit correction considerations for the damping ring 

22. G. E. Fischer and S. Kheifets, (SLAC), Collider Note 122, 1981 

Damping ring beam position correcting scheme 

23. E. Close, M. Cornacchia, A. S. King, M. J. Lee, (SLAC), PEP Note 271, 

1978 

A proposed orbit and vertical dispersion correction system for PEP 

24. J. C. Sheppard, J. E. Clendenin, M. B. James, R. H. Miller and M. C. Ross, 

SLAC-PUB-3584, 1985 

Real time bunch length measurements in the SLC linac 



128 

25. J. T. Seeman, M. C. Ross, J. C. Sheppard and R. F. Stiening, SLAC-PUB-

3673, 1985 

Observations of accelerated high current low emittance beams in the SLC linac 

26. K. Robinson, Physical Review 111, 373 (1958) 

Radiation Effects in Circular Electron Accelerators 

27. Albert Hofmann, Private communication 

28. J. D. Jackson, Classical Electrodynamics, Second edition, Wiley, New York, 

1975 

29. A. Hofmann and F. Meot, (CERN), NIM 203, (1982) 483 

Optical resolution of beam cross-section measurements by means of 

synchrotron radiation 

30. J. C. Sheppard et al., (SLAC), SLAC-PUB-3080, March 1983. 

Emittance Calculations for the Stanford Linear Collider In;'ector 

31. John Seeman, (SLAC), Private communication 

32. Colorado Video Corporation, Technical Information 

33. Marc Ross, (SLAC), Collider Note 280 

34. John Rees and Lenny Rivkin, (SLAC and Caltech), SLAC-PUB-3305, 

March 1984. 

On measuring emittances and sigma matrices 

35. A. Hofmann and J. R. Maidment, LEP Note 168, 1979 

Current dependent phenomena in LEP 

36. Albert Hofmann, (CERN), Proc. Xlth Int. Conf. on High Energy Acc., 

Geneva, 1980 

Diagnostics and cures for beam instabilities 

37. P. Wilson, J. Styles and K. Bane, IEEE Trans. on Nucl. Sci. NS 22-3, 

1838, (1975) 

38. Perry Wilson, (SLAC), Collider Note 35, 1981 

Parasitic mode losses in the damping ring 

39. A. W. Chao, AIP Conf. Proc. No. 105, 1983 



129 

Coherent instabilities of a relativistic bunched beam 

40. M. J. Lee, J.C. Sheppard, M. Sullenberger and M. D. Woodley, SLAC-PUB-

3217, 1983 

Models and simulations 

41. J. Jager, M. J. Lee, M. D. Woodley and J. P. Delahaye, SLAC-PUB-3408, 

1984 

Modeling of the SLC electron damping ring 

42. I. Almog, J. Jager, M. Lee and M. Woodley, SLAC-PUB-3608, 1985 

On line model driven control of the SLC electron damping ring 

43. M. Sands, Private communication 

44. J. P. Delahaye and L. Rivkin, SLAC-PUB-3649, 1985 

SLC positron damping ring optics design 

45. J. E. Spencer, SLAC-PUB-3647, 1985 

Some uses of REPMM's in storage rings and colliders 

46. Karl L. Brown, (SLAC), SLAC-Report-75, June 1982. 

A First- and Second-Order Matrix Theory for the Design of Beam Transport 

Systems and Charged Particle Spectrometers 

47. Brown K. L., Carey D. C., Iselin Ch. and Rothacker F., (SLAC), SLAC­

Report-91, 1974. 

TRANSPORT, a Computer Program for Designing Charged Particle Beam 

Transport Systems 

48. K. L. Brown and R. V. Servranckx, SLAC-PUB-3381, 1984 

First and second order charged particle optics 

49. Weissberg, H., (Caltech), Lecture Notes (1983), Unpublished 

Introduction to the Accelerator Physics 

50. Phil Morton, Private communication 

51. M. Sommer, LAL/RT/83-15, 1983 

Optimization of the emittance of the electrons (positrons} storage rings 

52. L. C. Teng, (ANL-FNAL), LS-17, 1985 



130 

Minimum emittance lattice for synchrotron radiation storage rings 

53. Helmut Wiedemann, Private communication 

54. G. P6lya, G. Szego, Problems and Theorems in Analysis,Volume 1, Springer­

Verlag, 1972 


